Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
   4 *
   5 *  Copyright (C) 2002 - 2011  Paul Mundt
   6 *  Copyright (C) 2015 Glider bvba
   7 *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
   8 *
   9 * based off of the old drivers/char/sh-sci.c by:
  10 *
  11 *   Copyright (C) 1999, 2000  Niibe Yutaka
  12 *   Copyright (C) 2000  Sugioka Toshinobu
  13 *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
  14 *   Modified to support SecureEdge. David McCullough (2002)
  15 *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
  16 *   Removed SH7300 support (Jul 2007).
  17 */
  18#undef DEBUG
  19
  20#include <linux/clk.h>
  21#include <linux/console.h>
  22#include <linux/ctype.h>
  23#include <linux/cpufreq.h>
  24#include <linux/delay.h>
  25#include <linux/dmaengine.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/err.h>
  28#include <linux/errno.h>
  29#include <linux/init.h>
  30#include <linux/interrupt.h>
  31#include <linux/ioport.h>
  32#include <linux/ktime.h>
  33#include <linux/major.h>
 
  34#include <linux/module.h>
  35#include <linux/mm.h>
  36#include <linux/of.h>
  37#include <linux/of_device.h>
  38#include <linux/platform_device.h>
  39#include <linux/pm_runtime.h>
 
  40#include <linux/scatterlist.h>
  41#include <linux/serial.h>
  42#include <linux/serial_sci.h>
  43#include <linux/sh_dma.h>
  44#include <linux/slab.h>
  45#include <linux/string.h>
  46#include <linux/sysrq.h>
  47#include <linux/timer.h>
  48#include <linux/tty.h>
  49#include <linux/tty_flip.h>
  50
  51#ifdef CONFIG_SUPERH
  52#include <asm/sh_bios.h>
  53#include <asm/platform_early.h>
  54#endif
  55
  56#include "serial_mctrl_gpio.h"
  57#include "sh-sci.h"
  58
  59/* Offsets into the sci_port->irqs array */
  60enum {
  61	SCIx_ERI_IRQ,
  62	SCIx_RXI_IRQ,
  63	SCIx_TXI_IRQ,
  64	SCIx_BRI_IRQ,
  65	SCIx_DRI_IRQ,
  66	SCIx_TEI_IRQ,
  67	SCIx_NR_IRQS,
  68
  69	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
  70};
  71
  72#define SCIx_IRQ_IS_MUXED(port)			\
  73	((port)->irqs[SCIx_ERI_IRQ] ==	\
  74	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
  75	((port)->irqs[SCIx_ERI_IRQ] &&	\
  76	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
  77
  78enum SCI_CLKS {
  79	SCI_FCK,		/* Functional Clock */
  80	SCI_SCK,		/* Optional External Clock */
  81	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
  82	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
  83	SCI_NUM_CLKS
  84};
  85
  86/* Bit x set means sampling rate x + 1 is supported */
  87#define SCI_SR(x)		BIT((x) - 1)
  88#define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
  89
  90#define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
  91				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
  92				SCI_SR(19) | SCI_SR(27)
  93
  94#define min_sr(_port)		ffs((_port)->sampling_rate_mask)
  95#define max_sr(_port)		fls((_port)->sampling_rate_mask)
  96
  97/* Iterate over all supported sampling rates, from high to low */
  98#define for_each_sr(_sr, _port)						\
  99	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
 100		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
 101
 102struct plat_sci_reg {
 103	u8 offset, size;
 104};
 105
 106struct sci_port_params {
 107	const struct plat_sci_reg regs[SCIx_NR_REGS];
 108	unsigned int fifosize;
 109	unsigned int overrun_reg;
 110	unsigned int overrun_mask;
 111	unsigned int sampling_rate_mask;
 112	unsigned int error_mask;
 113	unsigned int error_clear;
 114};
 115
 116struct sci_port {
 117	struct uart_port	port;
 118
 119	/* Platform configuration */
 120	const struct sci_port_params *params;
 121	const struct plat_sci_port *cfg;
 122	unsigned int		sampling_rate_mask;
 123	resource_size_t		reg_size;
 124	struct mctrl_gpios	*gpios;
 125
 126	/* Clocks */
 127	struct clk		*clks[SCI_NUM_CLKS];
 128	unsigned long		clk_rates[SCI_NUM_CLKS];
 129
 130	int			irqs[SCIx_NR_IRQS];
 131	char			*irqstr[SCIx_NR_IRQS];
 132
 133	struct dma_chan			*chan_tx;
 134	struct dma_chan			*chan_rx;
 135
 136#ifdef CONFIG_SERIAL_SH_SCI_DMA
 137	struct dma_chan			*chan_tx_saved;
 138	struct dma_chan			*chan_rx_saved;
 139	dma_cookie_t			cookie_tx;
 140	dma_cookie_t			cookie_rx[2];
 141	dma_cookie_t			active_rx;
 142	dma_addr_t			tx_dma_addr;
 143	unsigned int			tx_dma_len;
 144	struct scatterlist		sg_rx[2];
 145	void				*rx_buf[2];
 146	size_t				buf_len_rx;
 147	struct work_struct		work_tx;
 148	struct hrtimer			rx_timer;
 149	unsigned int			rx_timeout;	/* microseconds */
 150#endif
 151	unsigned int			rx_frame;
 152	int				rx_trigger;
 153	struct timer_list		rx_fifo_timer;
 154	int				rx_fifo_timeout;
 155	u16				hscif_tot;
 156
 157	bool has_rtscts;
 158	bool autorts;
 
 159};
 160
 161#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
 162
 163static struct sci_port sci_ports[SCI_NPORTS];
 164static unsigned long sci_ports_in_use;
 165static struct uart_driver sci_uart_driver;
 
 
 166
 167static inline struct sci_port *
 168to_sci_port(struct uart_port *uart)
 169{
 170	return container_of(uart, struct sci_port, port);
 171}
 172
 173static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
 174	/*
 175	 * Common SCI definitions, dependent on the port's regshift
 176	 * value.
 177	 */
 178	[SCIx_SCI_REGTYPE] = {
 179		.regs = {
 180			[SCSMR]		= { 0x00,  8 },
 181			[SCBRR]		= { 0x01,  8 },
 182			[SCSCR]		= { 0x02,  8 },
 183			[SCxTDR]	= { 0x03,  8 },
 184			[SCxSR]		= { 0x04,  8 },
 185			[SCxRDR]	= { 0x05,  8 },
 186		},
 187		.fifosize = 1,
 188		.overrun_reg = SCxSR,
 189		.overrun_mask = SCI_ORER,
 190		.sampling_rate_mask = SCI_SR(32),
 191		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
 192		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
 193	},
 194
 195	/*
 196	 * Common definitions for legacy IrDA ports.
 197	 */
 198	[SCIx_IRDA_REGTYPE] = {
 199		.regs = {
 200			[SCSMR]		= { 0x00,  8 },
 201			[SCBRR]		= { 0x02,  8 },
 202			[SCSCR]		= { 0x04,  8 },
 203			[SCxTDR]	= { 0x06,  8 },
 204			[SCxSR]		= { 0x08, 16 },
 205			[SCxRDR]	= { 0x0a,  8 },
 206			[SCFCR]		= { 0x0c,  8 },
 207			[SCFDR]		= { 0x0e, 16 },
 208		},
 209		.fifosize = 1,
 210		.overrun_reg = SCxSR,
 211		.overrun_mask = SCI_ORER,
 212		.sampling_rate_mask = SCI_SR(32),
 213		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
 214		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
 215	},
 216
 217	/*
 218	 * Common SCIFA definitions.
 219	 */
 220	[SCIx_SCIFA_REGTYPE] = {
 221		.regs = {
 222			[SCSMR]		= { 0x00, 16 },
 223			[SCBRR]		= { 0x04,  8 },
 224			[SCSCR]		= { 0x08, 16 },
 225			[SCxTDR]	= { 0x20,  8 },
 226			[SCxSR]		= { 0x14, 16 },
 227			[SCxRDR]	= { 0x24,  8 },
 228			[SCFCR]		= { 0x18, 16 },
 229			[SCFDR]		= { 0x1c, 16 },
 230			[SCPCR]		= { 0x30, 16 },
 231			[SCPDR]		= { 0x34, 16 },
 232		},
 233		.fifosize = 64,
 234		.overrun_reg = SCxSR,
 235		.overrun_mask = SCIFA_ORER,
 236		.sampling_rate_mask = SCI_SR_SCIFAB,
 237		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 238		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 239	},
 240
 241	/*
 242	 * Common SCIFB definitions.
 243	 */
 244	[SCIx_SCIFB_REGTYPE] = {
 245		.regs = {
 246			[SCSMR]		= { 0x00, 16 },
 247			[SCBRR]		= { 0x04,  8 },
 248			[SCSCR]		= { 0x08, 16 },
 249			[SCxTDR]	= { 0x40,  8 },
 250			[SCxSR]		= { 0x14, 16 },
 251			[SCxRDR]	= { 0x60,  8 },
 252			[SCFCR]		= { 0x18, 16 },
 253			[SCTFDR]	= { 0x38, 16 },
 254			[SCRFDR]	= { 0x3c, 16 },
 255			[SCPCR]		= { 0x30, 16 },
 256			[SCPDR]		= { 0x34, 16 },
 257		},
 258		.fifosize = 256,
 259		.overrun_reg = SCxSR,
 260		.overrun_mask = SCIFA_ORER,
 261		.sampling_rate_mask = SCI_SR_SCIFAB,
 262		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 263		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 264	},
 265
 266	/*
 267	 * Common SH-2(A) SCIF definitions for ports with FIFO data
 268	 * count registers.
 269	 */
 270	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
 271		.regs = {
 272			[SCSMR]		= { 0x00, 16 },
 273			[SCBRR]		= { 0x04,  8 },
 274			[SCSCR]		= { 0x08, 16 },
 275			[SCxTDR]	= { 0x0c,  8 },
 276			[SCxSR]		= { 0x10, 16 },
 277			[SCxRDR]	= { 0x14,  8 },
 278			[SCFCR]		= { 0x18, 16 },
 279			[SCFDR]		= { 0x1c, 16 },
 280			[SCSPTR]	= { 0x20, 16 },
 281			[SCLSR]		= { 0x24, 16 },
 282		},
 283		.fifosize = 16,
 284		.overrun_reg = SCLSR,
 285		.overrun_mask = SCLSR_ORER,
 286		.sampling_rate_mask = SCI_SR(32),
 287		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 288		.error_clear = SCIF_ERROR_CLEAR,
 289	},
 290
 291	/*
 292	 * The "SCIFA" that is in RZ/A2, RZ/G2L and RZ/T.
 293	 * It looks like a normal SCIF with FIFO data, but with a
 294	 * compressed address space. Also, the break out of interrupts
 295	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
 296	 */
 297	[SCIx_RZ_SCIFA_REGTYPE] = {
 298		.regs = {
 299			[SCSMR]		= { 0x00, 16 },
 300			[SCBRR]		= { 0x02,  8 },
 301			[SCSCR]		= { 0x04, 16 },
 302			[SCxTDR]	= { 0x06,  8 },
 303			[SCxSR]		= { 0x08, 16 },
 304			[SCxRDR]	= { 0x0A,  8 },
 305			[SCFCR]		= { 0x0C, 16 },
 306			[SCFDR]		= { 0x0E, 16 },
 307			[SCSPTR]	= { 0x10, 16 },
 308			[SCLSR]		= { 0x12, 16 },
 309			[SEMR]		= { 0x14, 8 },
 310		},
 311		.fifosize = 16,
 312		.overrun_reg = SCLSR,
 313		.overrun_mask = SCLSR_ORER,
 314		.sampling_rate_mask = SCI_SR(32),
 315		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 316		.error_clear = SCIF_ERROR_CLEAR,
 317	},
 318
 319	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 320	 * Common SH-3 SCIF definitions.
 321	 */
 322	[SCIx_SH3_SCIF_REGTYPE] = {
 323		.regs = {
 324			[SCSMR]		= { 0x00,  8 },
 325			[SCBRR]		= { 0x02,  8 },
 326			[SCSCR]		= { 0x04,  8 },
 327			[SCxTDR]	= { 0x06,  8 },
 328			[SCxSR]		= { 0x08, 16 },
 329			[SCxRDR]	= { 0x0a,  8 },
 330			[SCFCR]		= { 0x0c,  8 },
 331			[SCFDR]		= { 0x0e, 16 },
 332		},
 333		.fifosize = 16,
 334		.overrun_reg = SCLSR,
 335		.overrun_mask = SCLSR_ORER,
 336		.sampling_rate_mask = SCI_SR(32),
 337		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 338		.error_clear = SCIF_ERROR_CLEAR,
 339	},
 340
 341	/*
 342	 * Common SH-4(A) SCIF(B) definitions.
 343	 */
 344	[SCIx_SH4_SCIF_REGTYPE] = {
 345		.regs = {
 346			[SCSMR]		= { 0x00, 16 },
 347			[SCBRR]		= { 0x04,  8 },
 348			[SCSCR]		= { 0x08, 16 },
 349			[SCxTDR]	= { 0x0c,  8 },
 350			[SCxSR]		= { 0x10, 16 },
 351			[SCxRDR]	= { 0x14,  8 },
 352			[SCFCR]		= { 0x18, 16 },
 353			[SCFDR]		= { 0x1c, 16 },
 354			[SCSPTR]	= { 0x20, 16 },
 355			[SCLSR]		= { 0x24, 16 },
 356		},
 357		.fifosize = 16,
 358		.overrun_reg = SCLSR,
 359		.overrun_mask = SCLSR_ORER,
 360		.sampling_rate_mask = SCI_SR(32),
 361		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 362		.error_clear = SCIF_ERROR_CLEAR,
 363	},
 364
 365	/*
 366	 * Common SCIF definitions for ports with a Baud Rate Generator for
 367	 * External Clock (BRG).
 368	 */
 369	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
 370		.regs = {
 371			[SCSMR]		= { 0x00, 16 },
 372			[SCBRR]		= { 0x04,  8 },
 373			[SCSCR]		= { 0x08, 16 },
 374			[SCxTDR]	= { 0x0c,  8 },
 375			[SCxSR]		= { 0x10, 16 },
 376			[SCxRDR]	= { 0x14,  8 },
 377			[SCFCR]		= { 0x18, 16 },
 378			[SCFDR]		= { 0x1c, 16 },
 379			[SCSPTR]	= { 0x20, 16 },
 380			[SCLSR]		= { 0x24, 16 },
 381			[SCDL]		= { 0x30, 16 },
 382			[SCCKS]		= { 0x34, 16 },
 383		},
 384		.fifosize = 16,
 385		.overrun_reg = SCLSR,
 386		.overrun_mask = SCLSR_ORER,
 387		.sampling_rate_mask = SCI_SR(32),
 388		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 389		.error_clear = SCIF_ERROR_CLEAR,
 390	},
 391
 392	/*
 393	 * Common HSCIF definitions.
 394	 */
 395	[SCIx_HSCIF_REGTYPE] = {
 396		.regs = {
 397			[SCSMR]		= { 0x00, 16 },
 398			[SCBRR]		= { 0x04,  8 },
 399			[SCSCR]		= { 0x08, 16 },
 400			[SCxTDR]	= { 0x0c,  8 },
 401			[SCxSR]		= { 0x10, 16 },
 402			[SCxRDR]	= { 0x14,  8 },
 403			[SCFCR]		= { 0x18, 16 },
 404			[SCFDR]		= { 0x1c, 16 },
 405			[SCSPTR]	= { 0x20, 16 },
 406			[SCLSR]		= { 0x24, 16 },
 407			[HSSRR]		= { 0x40, 16 },
 408			[SCDL]		= { 0x30, 16 },
 409			[SCCKS]		= { 0x34, 16 },
 410			[HSRTRGR]	= { 0x54, 16 },
 411			[HSTTRGR]	= { 0x58, 16 },
 412		},
 413		.fifosize = 128,
 414		.overrun_reg = SCLSR,
 415		.overrun_mask = SCLSR_ORER,
 416		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
 417		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 418		.error_clear = SCIF_ERROR_CLEAR,
 419	},
 420
 421	/*
 422	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
 423	 * register.
 424	 */
 425	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
 426		.regs = {
 427			[SCSMR]		= { 0x00, 16 },
 428			[SCBRR]		= { 0x04,  8 },
 429			[SCSCR]		= { 0x08, 16 },
 430			[SCxTDR]	= { 0x0c,  8 },
 431			[SCxSR]		= { 0x10, 16 },
 432			[SCxRDR]	= { 0x14,  8 },
 433			[SCFCR]		= { 0x18, 16 },
 434			[SCFDR]		= { 0x1c, 16 },
 435			[SCLSR]		= { 0x24, 16 },
 436		},
 437		.fifosize = 16,
 438		.overrun_reg = SCLSR,
 439		.overrun_mask = SCLSR_ORER,
 440		.sampling_rate_mask = SCI_SR(32),
 441		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 442		.error_clear = SCIF_ERROR_CLEAR,
 443	},
 444
 445	/*
 446	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
 447	 * count registers.
 448	 */
 449	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
 450		.regs = {
 451			[SCSMR]		= { 0x00, 16 },
 452			[SCBRR]		= { 0x04,  8 },
 453			[SCSCR]		= { 0x08, 16 },
 454			[SCxTDR]	= { 0x0c,  8 },
 455			[SCxSR]		= { 0x10, 16 },
 456			[SCxRDR]	= { 0x14,  8 },
 457			[SCFCR]		= { 0x18, 16 },
 458			[SCFDR]		= { 0x1c, 16 },
 459			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
 460			[SCRFDR]	= { 0x20, 16 },
 461			[SCSPTR]	= { 0x24, 16 },
 462			[SCLSR]		= { 0x28, 16 },
 463		},
 464		.fifosize = 16,
 465		.overrun_reg = SCLSR,
 466		.overrun_mask = SCLSR_ORER,
 467		.sampling_rate_mask = SCI_SR(32),
 468		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 469		.error_clear = SCIF_ERROR_CLEAR,
 470	},
 471
 472	/*
 473	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
 474	 * registers.
 475	 */
 476	[SCIx_SH7705_SCIF_REGTYPE] = {
 477		.regs = {
 478			[SCSMR]		= { 0x00, 16 },
 479			[SCBRR]		= { 0x04,  8 },
 480			[SCSCR]		= { 0x08, 16 },
 481			[SCxTDR]	= { 0x20,  8 },
 482			[SCxSR]		= { 0x14, 16 },
 483			[SCxRDR]	= { 0x24,  8 },
 484			[SCFCR]		= { 0x18, 16 },
 485			[SCFDR]		= { 0x1c, 16 },
 486		},
 487		.fifosize = 64,
 488		.overrun_reg = SCxSR,
 489		.overrun_mask = SCIFA_ORER,
 490		.sampling_rate_mask = SCI_SR(16),
 491		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 492		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 493	},
 494};
 495
 496#define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
 497
 498/*
 499 * The "offset" here is rather misleading, in that it refers to an enum
 500 * value relative to the port mapping rather than the fixed offset
 501 * itself, which needs to be manually retrieved from the platform's
 502 * register map for the given port.
 503 */
 504static unsigned int sci_serial_in(struct uart_port *p, int offset)
 505{
 506	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 507
 508	if (reg->size == 8)
 509		return ioread8(p->membase + (reg->offset << p->regshift));
 510	else if (reg->size == 16)
 511		return ioread16(p->membase + (reg->offset << p->regshift));
 512	else
 513		WARN(1, "Invalid register access\n");
 514
 515	return 0;
 516}
 517
 518static void sci_serial_out(struct uart_port *p, int offset, int value)
 519{
 520	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 521
 522	if (reg->size == 8)
 523		iowrite8(value, p->membase + (reg->offset << p->regshift));
 524	else if (reg->size == 16)
 525		iowrite16(value, p->membase + (reg->offset << p->regshift));
 526	else
 527		WARN(1, "Invalid register access\n");
 528}
 529
 530static void sci_port_enable(struct sci_port *sci_port)
 531{
 532	unsigned int i;
 533
 534	if (!sci_port->port.dev)
 535		return;
 536
 537	pm_runtime_get_sync(sci_port->port.dev);
 538
 539	for (i = 0; i < SCI_NUM_CLKS; i++) {
 540		clk_prepare_enable(sci_port->clks[i]);
 541		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
 542	}
 543	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
 544}
 545
 546static void sci_port_disable(struct sci_port *sci_port)
 547{
 548	unsigned int i;
 549
 550	if (!sci_port->port.dev)
 551		return;
 552
 553	for (i = SCI_NUM_CLKS; i-- > 0; )
 554		clk_disable_unprepare(sci_port->clks[i]);
 555
 556	pm_runtime_put_sync(sci_port->port.dev);
 557}
 558
 559static inline unsigned long port_rx_irq_mask(struct uart_port *port)
 560{
 561	/*
 562	 * Not all ports (such as SCIFA) will support REIE. Rather than
 563	 * special-casing the port type, we check the port initialization
 564	 * IRQ enable mask to see whether the IRQ is desired at all. If
 565	 * it's unset, it's logically inferred that there's no point in
 566	 * testing for it.
 567	 */
 568	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
 569}
 570
 571static void sci_start_tx(struct uart_port *port)
 572{
 573	struct sci_port *s = to_sci_port(port);
 574	unsigned short ctrl;
 575
 576#ifdef CONFIG_SERIAL_SH_SCI_DMA
 577	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 578		u16 new, scr = serial_port_in(port, SCSCR);
 579		if (s->chan_tx)
 580			new = scr | SCSCR_TDRQE;
 581		else
 582			new = scr & ~SCSCR_TDRQE;
 583		if (new != scr)
 584			serial_port_out(port, SCSCR, new);
 585	}
 586
 587	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
 588	    dma_submit_error(s->cookie_tx)) {
 
 
 
 
 589		s->cookie_tx = 0;
 590		schedule_work(&s->work_tx);
 591	}
 592#endif
 593
 594	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 
 595		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
 596		ctrl = serial_port_in(port, SCSCR);
 597		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
 
 
 
 
 
 
 
 
 
 598	}
 599}
 600
 601static void sci_stop_tx(struct uart_port *port)
 602{
 603	unsigned short ctrl;
 604
 605	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
 606	ctrl = serial_port_in(port, SCSCR);
 607
 608	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 609		ctrl &= ~SCSCR_TDRQE;
 610
 611	ctrl &= ~SCSCR_TIE;
 612
 613	serial_port_out(port, SCSCR, ctrl);
 614
 615#ifdef CONFIG_SERIAL_SH_SCI_DMA
 616	if (to_sci_port(port)->chan_tx &&
 617	    !dma_submit_error(to_sci_port(port)->cookie_tx)) {
 618		dmaengine_terminate_async(to_sci_port(port)->chan_tx);
 619		to_sci_port(port)->cookie_tx = -EINVAL;
 620	}
 621#endif
 622}
 623
 624static void sci_start_rx(struct uart_port *port)
 625{
 626	unsigned short ctrl;
 627
 628	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
 629
 630	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 631		ctrl &= ~SCSCR_RDRQE;
 632
 633	serial_port_out(port, SCSCR, ctrl);
 634}
 635
 636static void sci_stop_rx(struct uart_port *port)
 637{
 638	unsigned short ctrl;
 639
 640	ctrl = serial_port_in(port, SCSCR);
 641
 642	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 643		ctrl &= ~SCSCR_RDRQE;
 644
 645	ctrl &= ~port_rx_irq_mask(port);
 646
 647	serial_port_out(port, SCSCR, ctrl);
 648}
 649
 650static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
 651{
 652	if (port->type == PORT_SCI) {
 653		/* Just store the mask */
 654		serial_port_out(port, SCxSR, mask);
 655	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
 656		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
 657		/* Only clear the status bits we want to clear */
 658		serial_port_out(port, SCxSR,
 659				serial_port_in(port, SCxSR) & mask);
 660	} else {
 661		/* Store the mask, clear parity/framing errors */
 662		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
 663	}
 664}
 665
 666#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
 667    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
 668
 669#ifdef CONFIG_CONSOLE_POLL
 670static int sci_poll_get_char(struct uart_port *port)
 671{
 672	unsigned short status;
 673	int c;
 674
 675	do {
 676		status = serial_port_in(port, SCxSR);
 677		if (status & SCxSR_ERRORS(port)) {
 678			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
 679			continue;
 680		}
 681		break;
 682	} while (1);
 683
 684	if (!(status & SCxSR_RDxF(port)))
 685		return NO_POLL_CHAR;
 686
 687	c = serial_port_in(port, SCxRDR);
 688
 689	/* Dummy read */
 690	serial_port_in(port, SCxSR);
 691	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 692
 693	return c;
 694}
 695#endif
 696
 697static void sci_poll_put_char(struct uart_port *port, unsigned char c)
 698{
 699	unsigned short status;
 700
 701	do {
 702		status = serial_port_in(port, SCxSR);
 703	} while (!(status & SCxSR_TDxE(port)));
 704
 705	serial_port_out(port, SCxTDR, c);
 706	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
 707}
 708#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
 709	  CONFIG_SERIAL_SH_SCI_EARLYCON */
 710
 711static void sci_init_pins(struct uart_port *port, unsigned int cflag)
 712{
 713	struct sci_port *s = to_sci_port(port);
 714
 715	/*
 716	 * Use port-specific handler if provided.
 717	 */
 718	if (s->cfg->ops && s->cfg->ops->init_pins) {
 719		s->cfg->ops->init_pins(port, cflag);
 720		return;
 721	}
 722
 723	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 724		u16 data = serial_port_in(port, SCPDR);
 725		u16 ctrl = serial_port_in(port, SCPCR);
 726
 727		/* Enable RXD and TXD pin functions */
 728		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
 729		if (to_sci_port(port)->has_rtscts) {
 730			/* RTS# is output, active low, unless autorts */
 731			if (!(port->mctrl & TIOCM_RTS)) {
 732				ctrl |= SCPCR_RTSC;
 733				data |= SCPDR_RTSD;
 734			} else if (!s->autorts) {
 735				ctrl |= SCPCR_RTSC;
 736				data &= ~SCPDR_RTSD;
 737			} else {
 738				/* Enable RTS# pin function */
 739				ctrl &= ~SCPCR_RTSC;
 740			}
 741			/* Enable CTS# pin function */
 742			ctrl &= ~SCPCR_CTSC;
 743		}
 744		serial_port_out(port, SCPDR, data);
 745		serial_port_out(port, SCPCR, ctrl);
 746	} else if (sci_getreg(port, SCSPTR)->size) {
 747		u16 status = serial_port_in(port, SCSPTR);
 748
 749		/* RTS# is always output; and active low, unless autorts */
 750		status |= SCSPTR_RTSIO;
 751		if (!(port->mctrl & TIOCM_RTS))
 752			status |= SCSPTR_RTSDT;
 753		else if (!s->autorts)
 754			status &= ~SCSPTR_RTSDT;
 755		/* CTS# and SCK are inputs */
 756		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
 757		serial_port_out(port, SCSPTR, status);
 758	}
 759}
 760
 761static int sci_txfill(struct uart_port *port)
 762{
 763	struct sci_port *s = to_sci_port(port);
 764	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
 765	const struct plat_sci_reg *reg;
 766
 767	reg = sci_getreg(port, SCTFDR);
 768	if (reg->size)
 769		return serial_port_in(port, SCTFDR) & fifo_mask;
 770
 771	reg = sci_getreg(port, SCFDR);
 772	if (reg->size)
 773		return serial_port_in(port, SCFDR) >> 8;
 774
 775	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
 776}
 777
 778static int sci_txroom(struct uart_port *port)
 779{
 780	return port->fifosize - sci_txfill(port);
 781}
 782
 783static int sci_rxfill(struct uart_port *port)
 784{
 785	struct sci_port *s = to_sci_port(port);
 786	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
 787	const struct plat_sci_reg *reg;
 788
 789	reg = sci_getreg(port, SCRFDR);
 790	if (reg->size)
 791		return serial_port_in(port, SCRFDR) & fifo_mask;
 792
 793	reg = sci_getreg(port, SCFDR);
 794	if (reg->size)
 795		return serial_port_in(port, SCFDR) & fifo_mask;
 796
 797	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
 798}
 799
 800/* ********************************************************************** *
 801 *                   the interrupt related routines                       *
 802 * ********************************************************************** */
 803
 804static void sci_transmit_chars(struct uart_port *port)
 805{
 806	struct circ_buf *xmit = &port->state->xmit;
 807	unsigned int stopped = uart_tx_stopped(port);
 
 808	unsigned short status;
 809	unsigned short ctrl;
 810	int count;
 811
 812	status = serial_port_in(port, SCxSR);
 813	if (!(status & SCxSR_TDxE(port))) {
 814		ctrl = serial_port_in(port, SCSCR);
 815		if (uart_circ_empty(xmit))
 816			ctrl &= ~SCSCR_TIE;
 817		else
 818			ctrl |= SCSCR_TIE;
 819		serial_port_out(port, SCSCR, ctrl);
 820		return;
 821	}
 822
 823	count = sci_txroom(port);
 824
 825	do {
 826		unsigned char c;
 827
 828		if (port->x_char) {
 829			c = port->x_char;
 830			port->x_char = 0;
 831		} else if (!uart_circ_empty(xmit) && !stopped) {
 832			c = xmit->buf[xmit->tail];
 833			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 834		} else {
 
 
 
 
 835			break;
 836		}
 837
 838		serial_port_out(port, SCxTDR, c);
 
 839
 840		port->icount.tx++;
 841	} while (--count > 0);
 842
 843	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
 844
 845	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 846		uart_write_wakeup(port);
 847	if (uart_circ_empty(xmit))
 848		sci_stop_tx(port);
 
 
 
 
 
 849
 
 
 850}
 851
 852static void sci_receive_chars(struct uart_port *port)
 853{
 854	struct tty_port *tport = &port->state->port;
 855	int i, count, copied = 0;
 856	unsigned short status;
 857	unsigned char flag;
 858
 859	status = serial_port_in(port, SCxSR);
 860	if (!(status & SCxSR_RDxF(port)))
 861		return;
 862
 863	while (1) {
 864		/* Don't copy more bytes than there is room for in the buffer */
 865		count = tty_buffer_request_room(tport, sci_rxfill(port));
 866
 867		/* If for any reason we can't copy more data, we're done! */
 868		if (count == 0)
 869			break;
 870
 871		if (port->type == PORT_SCI) {
 872			char c = serial_port_in(port, SCxRDR);
 873			if (uart_handle_sysrq_char(port, c))
 874				count = 0;
 875			else
 876				tty_insert_flip_char(tport, c, TTY_NORMAL);
 877		} else {
 878			for (i = 0; i < count; i++) {
 879				char c;
 880
 881				if (port->type == PORT_SCIF ||
 882				    port->type == PORT_HSCIF) {
 883					status = serial_port_in(port, SCxSR);
 884					c = serial_port_in(port, SCxRDR);
 885				} else {
 886					c = serial_port_in(port, SCxRDR);
 887					status = serial_port_in(port, SCxSR);
 888				}
 889				if (uart_handle_sysrq_char(port, c)) {
 890					count--; i--;
 891					continue;
 892				}
 893
 894				/* Store data and status */
 895				if (status & SCxSR_FER(port)) {
 896					flag = TTY_FRAME;
 897					port->icount.frame++;
 898					dev_notice(port->dev, "frame error\n");
 899				} else if (status & SCxSR_PER(port)) {
 900					flag = TTY_PARITY;
 901					port->icount.parity++;
 902					dev_notice(port->dev, "parity error\n");
 903				} else
 904					flag = TTY_NORMAL;
 905
 906				tty_insert_flip_char(tport, c, flag);
 907			}
 908		}
 909
 910		serial_port_in(port, SCxSR); /* dummy read */
 911		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 912
 913		copied += count;
 914		port->icount.rx += count;
 915	}
 916
 917	if (copied) {
 918		/* Tell the rest of the system the news. New characters! */
 919		tty_flip_buffer_push(tport);
 920	} else {
 921		/* TTY buffers full; read from RX reg to prevent lockup */
 922		serial_port_in(port, SCxRDR);
 923		serial_port_in(port, SCxSR); /* dummy read */
 924		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 925	}
 926}
 927
 928static int sci_handle_errors(struct uart_port *port)
 929{
 930	int copied = 0;
 931	unsigned short status = serial_port_in(port, SCxSR);
 932	struct tty_port *tport = &port->state->port;
 933	struct sci_port *s = to_sci_port(port);
 934
 935	/* Handle overruns */
 936	if (status & s->params->overrun_mask) {
 937		port->icount.overrun++;
 938
 939		/* overrun error */
 940		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
 941			copied++;
 942
 943		dev_notice(port->dev, "overrun error\n");
 944	}
 945
 946	if (status & SCxSR_FER(port)) {
 947		/* frame error */
 948		port->icount.frame++;
 949
 950		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
 951			copied++;
 952
 953		dev_notice(port->dev, "frame error\n");
 954	}
 955
 956	if (status & SCxSR_PER(port)) {
 957		/* parity error */
 958		port->icount.parity++;
 959
 960		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
 961			copied++;
 962
 963		dev_notice(port->dev, "parity error\n");
 964	}
 965
 966	if (copied)
 967		tty_flip_buffer_push(tport);
 968
 969	return copied;
 970}
 971
 972static int sci_handle_fifo_overrun(struct uart_port *port)
 973{
 974	struct tty_port *tport = &port->state->port;
 975	struct sci_port *s = to_sci_port(port);
 976	const struct plat_sci_reg *reg;
 977	int copied = 0;
 978	u16 status;
 979
 980	reg = sci_getreg(port, s->params->overrun_reg);
 981	if (!reg->size)
 982		return 0;
 983
 984	status = serial_port_in(port, s->params->overrun_reg);
 985	if (status & s->params->overrun_mask) {
 986		status &= ~s->params->overrun_mask;
 987		serial_port_out(port, s->params->overrun_reg, status);
 988
 989		port->icount.overrun++;
 990
 991		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
 992		tty_flip_buffer_push(tport);
 993
 994		dev_dbg(port->dev, "overrun error\n");
 995		copied++;
 996	}
 997
 998	return copied;
 999}
1000
1001static int sci_handle_breaks(struct uart_port *port)
1002{
1003	int copied = 0;
1004	unsigned short status = serial_port_in(port, SCxSR);
1005	struct tty_port *tport = &port->state->port;
1006
1007	if (uart_handle_break(port))
1008		return 0;
1009
1010	if (status & SCxSR_BRK(port)) {
1011		port->icount.brk++;
1012
1013		/* Notify of BREAK */
1014		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1015			copied++;
1016
1017		dev_dbg(port->dev, "BREAK detected\n");
1018	}
1019
1020	if (copied)
1021		tty_flip_buffer_push(tport);
1022
1023	copied += sci_handle_fifo_overrun(port);
1024
1025	return copied;
1026}
1027
1028static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1029{
1030	unsigned int bits;
1031
1032	if (rx_trig >= port->fifosize)
1033		rx_trig = port->fifosize - 1;
1034	if (rx_trig < 1)
1035		rx_trig = 1;
1036
1037	/* HSCIF can be set to an arbitrary level. */
1038	if (sci_getreg(port, HSRTRGR)->size) {
1039		serial_port_out(port, HSRTRGR, rx_trig);
1040		return rx_trig;
1041	}
1042
1043	switch (port->type) {
1044	case PORT_SCIF:
1045		if (rx_trig < 4) {
1046			bits = 0;
1047			rx_trig = 1;
1048		} else if (rx_trig < 8) {
1049			bits = SCFCR_RTRG0;
1050			rx_trig = 4;
1051		} else if (rx_trig < 14) {
1052			bits = SCFCR_RTRG1;
1053			rx_trig = 8;
1054		} else {
1055			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1056			rx_trig = 14;
1057		}
1058		break;
1059	case PORT_SCIFA:
1060	case PORT_SCIFB:
1061		if (rx_trig < 16) {
1062			bits = 0;
1063			rx_trig = 1;
1064		} else if (rx_trig < 32) {
1065			bits = SCFCR_RTRG0;
1066			rx_trig = 16;
1067		} else if (rx_trig < 48) {
1068			bits = SCFCR_RTRG1;
1069			rx_trig = 32;
1070		} else {
1071			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1072			rx_trig = 48;
1073		}
1074		break;
1075	default:
1076		WARN(1, "unknown FIFO configuration");
1077		return 1;
1078	}
1079
1080	serial_port_out(port, SCFCR,
1081		(serial_port_in(port, SCFCR) &
1082		~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1083
1084	return rx_trig;
1085}
1086
1087static int scif_rtrg_enabled(struct uart_port *port)
1088{
1089	if (sci_getreg(port, HSRTRGR)->size)
1090		return serial_port_in(port, HSRTRGR) != 0;
1091	else
1092		return (serial_port_in(port, SCFCR) &
1093			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1094}
1095
1096static void rx_fifo_timer_fn(struct timer_list *t)
1097{
1098	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1099	struct uart_port *port = &s->port;
1100
1101	dev_dbg(port->dev, "Rx timed out\n");
1102	scif_set_rtrg(port, 1);
1103}
1104
1105static ssize_t rx_fifo_trigger_show(struct device *dev,
1106				    struct device_attribute *attr, char *buf)
1107{
1108	struct uart_port *port = dev_get_drvdata(dev);
1109	struct sci_port *sci = to_sci_port(port);
1110
1111	return sprintf(buf, "%d\n", sci->rx_trigger);
1112}
1113
1114static ssize_t rx_fifo_trigger_store(struct device *dev,
1115				     struct device_attribute *attr,
1116				     const char *buf, size_t count)
1117{
1118	struct uart_port *port = dev_get_drvdata(dev);
1119	struct sci_port *sci = to_sci_port(port);
1120	int ret;
1121	long r;
1122
1123	ret = kstrtol(buf, 0, &r);
1124	if (ret)
1125		return ret;
1126
1127	sci->rx_trigger = scif_set_rtrg(port, r);
1128	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1129		scif_set_rtrg(port, 1);
1130
1131	return count;
1132}
1133
1134static DEVICE_ATTR_RW(rx_fifo_trigger);
1135
1136static ssize_t rx_fifo_timeout_show(struct device *dev,
1137			       struct device_attribute *attr,
1138			       char *buf)
1139{
1140	struct uart_port *port = dev_get_drvdata(dev);
1141	struct sci_port *sci = to_sci_port(port);
1142	int v;
1143
1144	if (port->type == PORT_HSCIF)
1145		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1146	else
1147		v = sci->rx_fifo_timeout;
1148
1149	return sprintf(buf, "%d\n", v);
1150}
1151
1152static ssize_t rx_fifo_timeout_store(struct device *dev,
1153				struct device_attribute *attr,
1154				const char *buf,
1155				size_t count)
1156{
1157	struct uart_port *port = dev_get_drvdata(dev);
1158	struct sci_port *sci = to_sci_port(port);
1159	int ret;
1160	long r;
1161
1162	ret = kstrtol(buf, 0, &r);
1163	if (ret)
1164		return ret;
1165
1166	if (port->type == PORT_HSCIF) {
1167		if (r < 0 || r > 3)
1168			return -EINVAL;
1169		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1170	} else {
1171		sci->rx_fifo_timeout = r;
1172		scif_set_rtrg(port, 1);
1173		if (r > 0)
1174			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1175	}
1176
1177	return count;
1178}
1179
1180static DEVICE_ATTR_RW(rx_fifo_timeout);
1181
1182
1183#ifdef CONFIG_SERIAL_SH_SCI_DMA
1184static void sci_dma_tx_complete(void *arg)
1185{
1186	struct sci_port *s = arg;
1187	struct uart_port *port = &s->port;
1188	struct circ_buf *xmit = &port->state->xmit;
1189	unsigned long flags;
1190
1191	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1192
1193	spin_lock_irqsave(&port->lock, flags);
1194
1195	xmit->tail += s->tx_dma_len;
1196	xmit->tail &= UART_XMIT_SIZE - 1;
1197
1198	port->icount.tx += s->tx_dma_len;
1199
1200	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1201		uart_write_wakeup(port);
1202
1203	if (!uart_circ_empty(xmit)) {
 
 
1204		s->cookie_tx = 0;
1205		schedule_work(&s->work_tx);
1206	} else {
1207		s->cookie_tx = -EINVAL;
1208		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1209			u16 ctrl = serial_port_in(port, SCSCR);
1210			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
 
 
 
 
 
 
1211		}
1212	}
1213
1214	spin_unlock_irqrestore(&port->lock, flags);
1215}
1216
1217/* Locking: called with port lock held */
1218static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1219{
1220	struct uart_port *port = &s->port;
1221	struct tty_port *tport = &port->state->port;
1222	int copied;
1223
1224	copied = tty_insert_flip_string(tport, buf, count);
1225	if (copied < count)
1226		port->icount.buf_overrun++;
1227
1228	port->icount.rx += copied;
1229
1230	return copied;
1231}
1232
1233static int sci_dma_rx_find_active(struct sci_port *s)
1234{
1235	unsigned int i;
1236
1237	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1238		if (s->active_rx == s->cookie_rx[i])
1239			return i;
1240
1241	return -1;
1242}
1243
 
1244static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1245{
1246	unsigned int i;
1247
1248	s->chan_rx = NULL;
1249	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1250		s->cookie_rx[i] = -EINVAL;
1251	s->active_rx = 0;
1252}
1253
1254static void sci_dma_rx_release(struct sci_port *s)
1255{
1256	struct dma_chan *chan = s->chan_rx_saved;
 
 
1257
 
1258	s->chan_rx_saved = NULL;
1259	sci_dma_rx_chan_invalidate(s);
 
 
1260	dmaengine_terminate_sync(chan);
1261	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1262			  sg_dma_address(&s->sg_rx[0]));
1263	dma_release_channel(chan);
1264}
1265
1266static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1267{
1268	long sec = usec / 1000000;
1269	long nsec = (usec % 1000000) * 1000;
1270	ktime_t t = ktime_set(sec, nsec);
1271
1272	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1273}
1274
1275static void sci_dma_rx_reenable_irq(struct sci_port *s)
1276{
1277	struct uart_port *port = &s->port;
1278	u16 scr;
1279
1280	/* Direct new serial port interrupts back to CPU */
1281	scr = serial_port_in(port, SCSCR);
1282	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1283		scr &= ~SCSCR_RDRQE;
1284		enable_irq(s->irqs[SCIx_RXI_IRQ]);
 
 
 
 
1285	}
1286	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1287}
1288
1289static void sci_dma_rx_complete(void *arg)
1290{
1291	struct sci_port *s = arg;
1292	struct dma_chan *chan = s->chan_rx;
1293	struct uart_port *port = &s->port;
1294	struct dma_async_tx_descriptor *desc;
1295	unsigned long flags;
1296	int active, count = 0;
1297
1298	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1299		s->active_rx);
1300
1301	spin_lock_irqsave(&port->lock, flags);
 
 
1302
1303	active = sci_dma_rx_find_active(s);
1304	if (active >= 0)
1305		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1306
1307	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1308
1309	if (count)
1310		tty_flip_buffer_push(&port->state->port);
1311
1312	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1313				       DMA_DEV_TO_MEM,
1314				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1315	if (!desc)
1316		goto fail;
1317
1318	desc->callback = sci_dma_rx_complete;
1319	desc->callback_param = s;
1320	s->cookie_rx[active] = dmaengine_submit(desc);
1321	if (dma_submit_error(s->cookie_rx[active]))
1322		goto fail;
1323
1324	s->active_rx = s->cookie_rx[!active];
1325
1326	dma_async_issue_pending(chan);
1327
1328	spin_unlock_irqrestore(&port->lock, flags);
1329	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1330		__func__, s->cookie_rx[active], active, s->active_rx);
 
 
 
1331	return;
1332
1333fail:
1334	spin_unlock_irqrestore(&port->lock, flags);
1335	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1336	/* Switch to PIO */
1337	spin_lock_irqsave(&port->lock, flags);
1338	dmaengine_terminate_async(chan);
1339	sci_dma_rx_chan_invalidate(s);
1340	sci_dma_rx_reenable_irq(s);
1341	spin_unlock_irqrestore(&port->lock, flags);
 
1342}
1343
1344static void sci_dma_tx_release(struct sci_port *s)
1345{
1346	struct dma_chan *chan = s->chan_tx_saved;
1347
1348	cancel_work_sync(&s->work_tx);
1349	s->chan_tx_saved = s->chan_tx = NULL;
1350	s->cookie_tx = -EINVAL;
1351	dmaengine_terminate_sync(chan);
1352	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1353			 DMA_TO_DEVICE);
1354	dma_release_channel(chan);
1355}
1356
1357static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1358{
1359	struct dma_chan *chan = s->chan_rx;
1360	struct uart_port *port = &s->port;
1361	unsigned long flags;
1362	int i;
1363
1364	for (i = 0; i < 2; i++) {
1365		struct scatterlist *sg = &s->sg_rx[i];
1366		struct dma_async_tx_descriptor *desc;
1367
1368		desc = dmaengine_prep_slave_sg(chan,
1369			sg, 1, DMA_DEV_TO_MEM,
1370			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1371		if (!desc)
1372			goto fail;
1373
1374		desc->callback = sci_dma_rx_complete;
1375		desc->callback_param = s;
1376		s->cookie_rx[i] = dmaengine_submit(desc);
1377		if (dma_submit_error(s->cookie_rx[i]))
1378			goto fail;
1379
1380	}
1381
1382	s->active_rx = s->cookie_rx[0];
1383
1384	dma_async_issue_pending(chan);
1385	return 0;
1386
1387fail:
1388	/* Switch to PIO */
1389	if (!port_lock_held)
1390		spin_lock_irqsave(&port->lock, flags);
1391	if (i)
1392		dmaengine_terminate_async(chan);
1393	sci_dma_rx_chan_invalidate(s);
1394	sci_start_rx(port);
1395	if (!port_lock_held)
1396		spin_unlock_irqrestore(&port->lock, flags);
1397	return -EAGAIN;
1398}
1399
1400static void sci_dma_tx_work_fn(struct work_struct *work)
1401{
1402	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1403	struct dma_async_tx_descriptor *desc;
1404	struct dma_chan *chan = s->chan_tx;
1405	struct uart_port *port = &s->port;
1406	struct circ_buf *xmit = &port->state->xmit;
1407	unsigned long flags;
 
1408	dma_addr_t buf;
1409	int head, tail;
1410
1411	/*
1412	 * DMA is idle now.
1413	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1414	 * offsets and lengths. Since it is a circular buffer, we have to
1415	 * transmit till the end, and then the rest. Take the port lock to get a
1416	 * consistent xmit buffer state.
1417	 */
1418	spin_lock_irq(&port->lock);
1419	head = xmit->head;
1420	tail = xmit->tail;
1421	buf = s->tx_dma_addr + (tail & (UART_XMIT_SIZE - 1));
1422	s->tx_dma_len = min_t(unsigned int,
1423		CIRC_CNT(head, tail, UART_XMIT_SIZE),
1424		CIRC_CNT_TO_END(head, tail, UART_XMIT_SIZE));
1425	if (!s->tx_dma_len) {
1426		/* Transmit buffer has been flushed */
1427		spin_unlock_irq(&port->lock);
1428		return;
1429	}
1430
1431	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1432					   DMA_MEM_TO_DEV,
1433					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1434	if (!desc) {
1435		spin_unlock_irq(&port->lock);
1436		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1437		goto switch_to_pio;
1438	}
1439
1440	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1441				   DMA_TO_DEVICE);
1442
1443	desc->callback = sci_dma_tx_complete;
1444	desc->callback_param = s;
1445	s->cookie_tx = dmaengine_submit(desc);
1446	if (dma_submit_error(s->cookie_tx)) {
1447		spin_unlock_irq(&port->lock);
1448		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1449		goto switch_to_pio;
1450	}
1451
1452	spin_unlock_irq(&port->lock);
1453	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1454		__func__, xmit->buf, tail, head, s->cookie_tx);
1455
1456	dma_async_issue_pending(chan);
1457	return;
1458
1459switch_to_pio:
1460	spin_lock_irqsave(&port->lock, flags);
1461	s->chan_tx = NULL;
1462	sci_start_tx(port);
1463	spin_unlock_irqrestore(&port->lock, flags);
1464	return;
1465}
1466
1467static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1468{
1469	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1470	struct dma_chan *chan = s->chan_rx;
1471	struct uart_port *port = &s->port;
1472	struct dma_tx_state state;
1473	enum dma_status status;
1474	unsigned long flags;
1475	unsigned int read;
1476	int active, count;
1477
1478	dev_dbg(port->dev, "DMA Rx timed out\n");
1479
1480	spin_lock_irqsave(&port->lock, flags);
1481
1482	active = sci_dma_rx_find_active(s);
1483	if (active < 0) {
1484		spin_unlock_irqrestore(&port->lock, flags);
1485		return HRTIMER_NORESTART;
1486	}
1487
1488	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1489	if (status == DMA_COMPLETE) {
1490		spin_unlock_irqrestore(&port->lock, flags);
1491		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1492			s->active_rx, active);
1493
1494		/* Let packet complete handler take care of the packet */
1495		return HRTIMER_NORESTART;
1496	}
1497
1498	dmaengine_pause(chan);
1499
1500	/*
1501	 * sometimes DMA transfer doesn't stop even if it is stopped and
1502	 * data keeps on coming until transaction is complete so check
1503	 * for DMA_COMPLETE again
1504	 * Let packet complete handler take care of the packet
1505	 */
1506	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1507	if (status == DMA_COMPLETE) {
1508		spin_unlock_irqrestore(&port->lock, flags);
1509		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1510		return HRTIMER_NORESTART;
1511	}
1512
1513	/* Handle incomplete DMA receive */
1514	dmaengine_terminate_async(s->chan_rx);
1515	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1516
1517	if (read) {
1518		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1519		if (count)
1520			tty_flip_buffer_push(&port->state->port);
1521	}
1522
1523	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 
1524		sci_dma_rx_submit(s, true);
1525
1526	sci_dma_rx_reenable_irq(s);
1527
1528	spin_unlock_irqrestore(&port->lock, flags);
1529
1530	return HRTIMER_NORESTART;
1531}
1532
1533static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1534					     enum dma_transfer_direction dir)
1535{
1536	struct dma_chan *chan;
1537	struct dma_slave_config cfg;
1538	int ret;
1539
1540	chan = dma_request_slave_channel(port->dev,
1541					 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1542	if (!chan) {
1543		dev_dbg(port->dev, "dma_request_slave_channel failed\n");
1544		return NULL;
1545	}
1546
1547	memset(&cfg, 0, sizeof(cfg));
1548	cfg.direction = dir;
1549	if (dir == DMA_MEM_TO_DEV) {
1550		cfg.dst_addr = port->mapbase +
1551			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1552		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1553	} else {
1554		cfg.src_addr = port->mapbase +
1555			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1556		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1557	}
1558
1559	ret = dmaengine_slave_config(chan, &cfg);
1560	if (ret) {
1561		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1562		dma_release_channel(chan);
1563		return NULL;
1564	}
1565
1566	return chan;
1567}
1568
1569static void sci_request_dma(struct uart_port *port)
1570{
1571	struct sci_port *s = to_sci_port(port);
 
1572	struct dma_chan *chan;
1573
1574	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1575
1576	/*
1577	 * DMA on console may interfere with Kernel log messages which use
1578	 * plain putchar(). So, simply don't use it with a console.
1579	 */
1580	if (uart_console(port))
1581		return;
1582
1583	if (!port->dev->of_node)
1584		return;
1585
1586	s->cookie_tx = -EINVAL;
1587
1588	/*
1589	 * Don't request a dma channel if no channel was specified
1590	 * in the device tree.
1591	 */
1592	if (!of_find_property(port->dev->of_node, "dmas", NULL))
1593		return;
1594
1595	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1596	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1597	if (chan) {
1598		/* UART circular tx buffer is an aligned page. */
1599		s->tx_dma_addr = dma_map_single(chan->device->dev,
1600						port->state->xmit.buf,
1601						UART_XMIT_SIZE,
1602						DMA_TO_DEVICE);
1603		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1604			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1605			dma_release_channel(chan);
1606		} else {
1607			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1608				__func__, UART_XMIT_SIZE,
1609				port->state->xmit.buf, &s->tx_dma_addr);
1610
1611			INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1612			s->chan_tx_saved = s->chan_tx = chan;
1613		}
1614	}
1615
1616	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1617	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1618	if (chan) {
1619		unsigned int i;
1620		dma_addr_t dma;
1621		void *buf;
1622
1623		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1624		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1625					 &dma, GFP_KERNEL);
1626		if (!buf) {
1627			dev_warn(port->dev,
1628				 "Failed to allocate Rx dma buffer, using PIO\n");
1629			dma_release_channel(chan);
1630			return;
1631		}
1632
1633		for (i = 0; i < 2; i++) {
1634			struct scatterlist *sg = &s->sg_rx[i];
1635
1636			sg_init_table(sg, 1);
1637			s->rx_buf[i] = buf;
1638			sg_dma_address(sg) = dma;
1639			sg_dma_len(sg) = s->buf_len_rx;
1640
1641			buf += s->buf_len_rx;
1642			dma += s->buf_len_rx;
1643		}
1644
1645		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1646		s->rx_timer.function = sci_dma_rx_timer_fn;
1647
1648		s->chan_rx_saved = s->chan_rx = chan;
1649
1650		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 
1651			sci_dma_rx_submit(s, false);
1652	}
1653}
1654
1655static void sci_free_dma(struct uart_port *port)
1656{
1657	struct sci_port *s = to_sci_port(port);
1658
1659	if (s->chan_tx_saved)
1660		sci_dma_tx_release(s);
1661	if (s->chan_rx_saved)
1662		sci_dma_rx_release(s);
1663}
1664
1665static void sci_flush_buffer(struct uart_port *port)
1666{
1667	struct sci_port *s = to_sci_port(port);
1668
1669	/*
1670	 * In uart_flush_buffer(), the xmit circular buffer has just been
1671	 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1672	 * pending transfers
1673	 */
1674	s->tx_dma_len = 0;
1675	if (s->chan_tx) {
1676		dmaengine_terminate_async(s->chan_tx);
1677		s->cookie_tx = -EINVAL;
1678	}
1679}
 
 
 
 
 
 
 
 
 
 
 
 
 
1680#else /* !CONFIG_SERIAL_SH_SCI_DMA */
1681static inline void sci_request_dma(struct uart_port *port)
1682{
1683}
1684
1685static inline void sci_free_dma(struct uart_port *port)
1686{
1687}
1688
 
 
 
 
1689#define sci_flush_buffer	NULL
1690#endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1691
1692static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1693{
1694	struct uart_port *port = ptr;
1695	struct sci_port *s = to_sci_port(port);
1696
1697#ifdef CONFIG_SERIAL_SH_SCI_DMA
1698	if (s->chan_rx) {
1699		u16 scr = serial_port_in(port, SCSCR);
1700		u16 ssr = serial_port_in(port, SCxSR);
1701
1702		/* Disable future Rx interrupts */
1703		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1704			disable_irq_nosync(irq);
1705			scr |= SCSCR_RDRQE;
 
 
 
 
 
 
1706		} else {
1707			if (sci_dma_rx_submit(s, false) < 0)
1708				goto handle_pio;
1709
1710			scr &= ~SCSCR_RIE;
1711		}
1712		serial_port_out(port, SCSCR, scr);
1713		/* Clear current interrupt */
1714		serial_port_out(port, SCxSR,
1715				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1716		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1717			jiffies, s->rx_timeout);
1718		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1719
1720		return IRQ_HANDLED;
1721	}
1722
1723handle_pio:
1724#endif
1725
1726	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1727		if (!scif_rtrg_enabled(port))
1728			scif_set_rtrg(port, s->rx_trigger);
1729
1730		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1731			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1732	}
1733
1734	/* I think sci_receive_chars has to be called irrespective
1735	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1736	 * to be disabled?
1737	 */
1738	sci_receive_chars(port);
1739
1740	return IRQ_HANDLED;
1741}
1742
1743static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1744{
1745	struct uart_port *port = ptr;
1746	unsigned long flags;
1747
1748	spin_lock_irqsave(&port->lock, flags);
1749	sci_transmit_chars(port);
1750	spin_unlock_irqrestore(&port->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1751
1752	return IRQ_HANDLED;
1753}
1754
1755static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1756{
1757	struct uart_port *port = ptr;
1758
1759	/* Handle BREAKs */
1760	sci_handle_breaks(port);
1761
1762	/* drop invalid character received before break was detected */
1763	serial_port_in(port, SCxRDR);
1764
1765	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1766
1767	return IRQ_HANDLED;
1768}
1769
1770static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1771{
1772	struct uart_port *port = ptr;
1773	struct sci_port *s = to_sci_port(port);
1774
1775	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1776		/* Break and Error interrupts are muxed */
1777		unsigned short ssr_status = serial_port_in(port, SCxSR);
1778
1779		/* Break Interrupt */
1780		if (ssr_status & SCxSR_BRK(port))
1781			sci_br_interrupt(irq, ptr);
1782
1783		/* Break only? */
1784		if (!(ssr_status & SCxSR_ERRORS(port)))
1785			return IRQ_HANDLED;
1786	}
1787
1788	/* Handle errors */
1789	if (port->type == PORT_SCI) {
1790		if (sci_handle_errors(port)) {
1791			/* discard character in rx buffer */
1792			serial_port_in(port, SCxSR);
1793			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1794		}
1795	} else {
1796		sci_handle_fifo_overrun(port);
1797		if (!s->chan_rx)
1798			sci_receive_chars(port);
1799	}
1800
1801	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1802
1803	/* Kick the transmission */
1804	if (!s->chan_tx)
1805		sci_tx_interrupt(irq, ptr);
1806
1807	return IRQ_HANDLED;
1808}
1809
1810static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1811{
1812	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1813	struct uart_port *port = ptr;
1814	struct sci_port *s = to_sci_port(port);
1815	irqreturn_t ret = IRQ_NONE;
1816
1817	ssr_status = serial_port_in(port, SCxSR);
1818	scr_status = serial_port_in(port, SCSCR);
1819	if (s->params->overrun_reg == SCxSR)
1820		orer_status = ssr_status;
1821	else if (sci_getreg(port, s->params->overrun_reg)->size)
1822		orer_status = serial_port_in(port, s->params->overrun_reg);
1823
1824	err_enabled = scr_status & port_rx_irq_mask(port);
1825
1826	/* Tx Interrupt */
1827	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1828	    !s->chan_tx)
1829		ret = sci_tx_interrupt(irq, ptr);
1830
1831	/*
1832	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1833	 * DR flags
1834	 */
1835	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1836	    (scr_status & SCSCR_RIE))
1837		ret = sci_rx_interrupt(irq, ptr);
1838
1839	/* Error Interrupt */
1840	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1841		ret = sci_er_interrupt(irq, ptr);
1842
1843	/* Break Interrupt */
1844	if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
1845	    (ssr_status & SCxSR_BRK(port)) && err_enabled)
1846		ret = sci_br_interrupt(irq, ptr);
1847
1848	/* Overrun Interrupt */
1849	if (orer_status & s->params->overrun_mask) {
1850		sci_handle_fifo_overrun(port);
1851		ret = IRQ_HANDLED;
1852	}
1853
1854	return ret;
1855}
1856
1857static const struct sci_irq_desc {
1858	const char	*desc;
1859	irq_handler_t	handler;
1860} sci_irq_desc[] = {
1861	/*
1862	 * Split out handlers, the default case.
1863	 */
1864	[SCIx_ERI_IRQ] = {
1865		.desc = "rx err",
1866		.handler = sci_er_interrupt,
1867	},
1868
1869	[SCIx_RXI_IRQ] = {
1870		.desc = "rx full",
1871		.handler = sci_rx_interrupt,
1872	},
1873
1874	[SCIx_TXI_IRQ] = {
1875		.desc = "tx empty",
1876		.handler = sci_tx_interrupt,
1877	},
1878
1879	[SCIx_BRI_IRQ] = {
1880		.desc = "break",
1881		.handler = sci_br_interrupt,
1882	},
1883
1884	[SCIx_DRI_IRQ] = {
1885		.desc = "rx ready",
1886		.handler = sci_rx_interrupt,
1887	},
1888
1889	[SCIx_TEI_IRQ] = {
1890		.desc = "tx end",
1891		.handler = sci_tx_interrupt,
1892	},
1893
1894	/*
1895	 * Special muxed handler.
1896	 */
1897	[SCIx_MUX_IRQ] = {
1898		.desc = "mux",
1899		.handler = sci_mpxed_interrupt,
1900	},
1901};
1902
1903static int sci_request_irq(struct sci_port *port)
1904{
1905	struct uart_port *up = &port->port;
1906	int i, j, w, ret = 0;
1907
1908	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1909		const struct sci_irq_desc *desc;
1910		int irq;
1911
1912		/* Check if already registered (muxed) */
1913		for (w = 0; w < i; w++)
1914			if (port->irqs[w] == port->irqs[i])
1915				w = i + 1;
1916		if (w > i)
1917			continue;
1918
1919		if (SCIx_IRQ_IS_MUXED(port)) {
1920			i = SCIx_MUX_IRQ;
1921			irq = up->irq;
1922		} else {
1923			irq = port->irqs[i];
1924
1925			/*
1926			 * Certain port types won't support all of the
1927			 * available interrupt sources.
1928			 */
1929			if (unlikely(irq < 0))
1930				continue;
1931		}
1932
1933		desc = sci_irq_desc + i;
1934		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1935					    dev_name(up->dev), desc->desc);
1936		if (!port->irqstr[j]) {
1937			ret = -ENOMEM;
1938			goto out_nomem;
1939		}
1940
1941		ret = request_irq(irq, desc->handler, up->irqflags,
1942				  port->irqstr[j], port);
1943		if (unlikely(ret)) {
1944			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1945			goto out_noirq;
1946		}
1947	}
1948
1949	return 0;
1950
1951out_noirq:
1952	while (--i >= 0)
1953		free_irq(port->irqs[i], port);
1954
1955out_nomem:
1956	while (--j >= 0)
1957		kfree(port->irqstr[j]);
1958
1959	return ret;
1960}
1961
1962static void sci_free_irq(struct sci_port *port)
1963{
1964	int i, j;
1965
1966	/*
1967	 * Intentionally in reverse order so we iterate over the muxed
1968	 * IRQ first.
1969	 */
1970	for (i = 0; i < SCIx_NR_IRQS; i++) {
1971		int irq = port->irqs[i];
1972
1973		/*
1974		 * Certain port types won't support all of the available
1975		 * interrupt sources.
1976		 */
1977		if (unlikely(irq < 0))
1978			continue;
1979
1980		/* Check if already freed (irq was muxed) */
1981		for (j = 0; j < i; j++)
1982			if (port->irqs[j] == irq)
1983				j = i + 1;
1984		if (j > i)
1985			continue;
1986
1987		free_irq(port->irqs[i], port);
1988		kfree(port->irqstr[i]);
1989
1990		if (SCIx_IRQ_IS_MUXED(port)) {
1991			/* If there's only one IRQ, we're done. */
1992			return;
1993		}
1994	}
1995}
1996
1997static unsigned int sci_tx_empty(struct uart_port *port)
1998{
1999	unsigned short status = serial_port_in(port, SCxSR);
2000	unsigned short in_tx_fifo = sci_txfill(port);
 
 
 
 
 
 
2001
2002	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
2003}
2004
2005static void sci_set_rts(struct uart_port *port, bool state)
2006{
2007	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2008		u16 data = serial_port_in(port, SCPDR);
2009
2010		/* Active low */
2011		if (state)
2012			data &= ~SCPDR_RTSD;
2013		else
2014			data |= SCPDR_RTSD;
2015		serial_port_out(port, SCPDR, data);
2016
2017		/* RTS# is output */
2018		serial_port_out(port, SCPCR,
2019				serial_port_in(port, SCPCR) | SCPCR_RTSC);
2020	} else if (sci_getreg(port, SCSPTR)->size) {
2021		u16 ctrl = serial_port_in(port, SCSPTR);
2022
2023		/* Active low */
2024		if (state)
2025			ctrl &= ~SCSPTR_RTSDT;
2026		else
2027			ctrl |= SCSPTR_RTSDT;
2028		serial_port_out(port, SCSPTR, ctrl);
2029	}
2030}
2031
2032static bool sci_get_cts(struct uart_port *port)
2033{
2034	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2035		/* Active low */
2036		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
2037	} else if (sci_getreg(port, SCSPTR)->size) {
2038		/* Active low */
2039		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
2040	}
2041
2042	return true;
2043}
2044
2045/*
2046 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2047 * CTS/RTS is supported in hardware by at least one port and controlled
2048 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2049 * handled via the ->init_pins() op, which is a bit of a one-way street,
2050 * lacking any ability to defer pin control -- this will later be
2051 * converted over to the GPIO framework).
2052 *
2053 * Other modes (such as loopback) are supported generically on certain
2054 * port types, but not others. For these it's sufficient to test for the
2055 * existence of the support register and simply ignore the port type.
2056 */
2057static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2058{
2059	struct sci_port *s = to_sci_port(port);
2060
2061	if (mctrl & TIOCM_LOOP) {
2062		const struct plat_sci_reg *reg;
2063
2064		/*
2065		 * Standard loopback mode for SCFCR ports.
2066		 */
2067		reg = sci_getreg(port, SCFCR);
2068		if (reg->size)
2069			serial_port_out(port, SCFCR,
2070					serial_port_in(port, SCFCR) |
2071					SCFCR_LOOP);
2072	}
2073
2074	mctrl_gpio_set(s->gpios, mctrl);
2075
2076	if (!s->has_rtscts)
2077		return;
2078
2079	if (!(mctrl & TIOCM_RTS)) {
2080		/* Disable Auto RTS */
2081		serial_port_out(port, SCFCR,
2082				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
 
2083
2084		/* Clear RTS */
2085		sci_set_rts(port, 0);
2086	} else if (s->autorts) {
2087		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2088			/* Enable RTS# pin function */
2089			serial_port_out(port, SCPCR,
2090				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
2091		}
2092
2093		/* Enable Auto RTS */
2094		serial_port_out(port, SCFCR,
2095				serial_port_in(port, SCFCR) | SCFCR_MCE);
 
2096	} else {
2097		/* Set RTS */
2098		sci_set_rts(port, 1);
2099	}
2100}
2101
2102static unsigned int sci_get_mctrl(struct uart_port *port)
2103{
2104	struct sci_port *s = to_sci_port(port);
2105	struct mctrl_gpios *gpios = s->gpios;
2106	unsigned int mctrl = 0;
2107
2108	mctrl_gpio_get(gpios, &mctrl);
2109
2110	/*
2111	 * CTS/RTS is handled in hardware when supported, while nothing
2112	 * else is wired up.
2113	 */
2114	if (s->autorts) {
2115		if (sci_get_cts(port))
2116			mctrl |= TIOCM_CTS;
2117	} else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2118		mctrl |= TIOCM_CTS;
2119	}
2120	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2121		mctrl |= TIOCM_DSR;
2122	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2123		mctrl |= TIOCM_CAR;
2124
2125	return mctrl;
2126}
2127
2128static void sci_enable_ms(struct uart_port *port)
2129{
2130	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2131}
2132
2133static void sci_break_ctl(struct uart_port *port, int break_state)
2134{
2135	unsigned short scscr, scsptr;
2136	unsigned long flags;
2137
2138	/* check whether the port has SCSPTR */
2139	if (!sci_getreg(port, SCSPTR)->size) {
2140		/*
2141		 * Not supported by hardware. Most parts couple break and rx
2142		 * interrupts together, with break detection always enabled.
2143		 */
2144		return;
2145	}
2146
2147	spin_lock_irqsave(&port->lock, flags);
2148	scsptr = serial_port_in(port, SCSPTR);
2149	scscr = serial_port_in(port, SCSCR);
2150
2151	if (break_state == -1) {
2152		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2153		scscr &= ~SCSCR_TE;
2154	} else {
2155		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2156		scscr |= SCSCR_TE;
2157	}
2158
2159	serial_port_out(port, SCSPTR, scsptr);
2160	serial_port_out(port, SCSCR, scscr);
2161	spin_unlock_irqrestore(&port->lock, flags);
2162}
2163
2164static int sci_startup(struct uart_port *port)
2165{
2166	struct sci_port *s = to_sci_port(port);
2167	int ret;
2168
2169	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2170
 
2171	sci_request_dma(port);
2172
2173	ret = sci_request_irq(s);
2174	if (unlikely(ret < 0)) {
2175		sci_free_dma(port);
2176		return ret;
2177	}
2178
2179	return 0;
2180}
2181
2182static void sci_shutdown(struct uart_port *port)
2183{
2184	struct sci_port *s = to_sci_port(port);
2185	unsigned long flags;
2186	u16 scr;
2187
2188	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2189
2190	s->autorts = false;
2191	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2192
2193	spin_lock_irqsave(&port->lock, flags);
2194	sci_stop_rx(port);
2195	sci_stop_tx(port);
2196	/*
2197	 * Stop RX and TX, disable related interrupts, keep clock source
2198	 * and HSCIF TOT bits
2199	 */
2200	scr = serial_port_in(port, SCSCR);
2201	serial_port_out(port, SCSCR, scr &
2202			(SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2203	spin_unlock_irqrestore(&port->lock, flags);
2204
2205#ifdef CONFIG_SERIAL_SH_SCI_DMA
2206	if (s->chan_rx_saved) {
2207		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2208			port->line);
2209		hrtimer_cancel(&s->rx_timer);
2210	}
2211#endif
2212
2213	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2214		del_timer_sync(&s->rx_fifo_timer);
2215	sci_free_irq(s);
2216	sci_free_dma(port);
2217}
2218
2219static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2220			unsigned int *srr)
2221{
2222	unsigned long freq = s->clk_rates[SCI_SCK];
2223	int err, min_err = INT_MAX;
2224	unsigned int sr;
2225
2226	if (s->port.type != PORT_HSCIF)
2227		freq *= 2;
2228
2229	for_each_sr(sr, s) {
2230		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2231		if (abs(err) >= abs(min_err))
2232			continue;
2233
2234		min_err = err;
2235		*srr = sr - 1;
2236
2237		if (!err)
2238			break;
2239	}
2240
2241	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2242		*srr + 1);
2243	return min_err;
2244}
2245
2246static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2247			unsigned long freq, unsigned int *dlr,
2248			unsigned int *srr)
2249{
2250	int err, min_err = INT_MAX;
2251	unsigned int sr, dl;
2252
2253	if (s->port.type != PORT_HSCIF)
2254		freq *= 2;
2255
2256	for_each_sr(sr, s) {
2257		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2258		dl = clamp(dl, 1U, 65535U);
2259
2260		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2261		if (abs(err) >= abs(min_err))
2262			continue;
2263
2264		min_err = err;
2265		*dlr = dl;
2266		*srr = sr - 1;
2267
2268		if (!err)
2269			break;
2270	}
2271
2272	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2273		min_err, *dlr, *srr + 1);
2274	return min_err;
2275}
2276
2277/* calculate sample rate, BRR, and clock select */
2278static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2279			  unsigned int *brr, unsigned int *srr,
2280			  unsigned int *cks)
2281{
2282	unsigned long freq = s->clk_rates[SCI_FCK];
2283	unsigned int sr, br, prediv, scrate, c;
2284	int err, min_err = INT_MAX;
2285
2286	if (s->port.type != PORT_HSCIF)
2287		freq *= 2;
2288
2289	/*
2290	 * Find the combination of sample rate and clock select with the
2291	 * smallest deviation from the desired baud rate.
2292	 * Prefer high sample rates to maximise the receive margin.
2293	 *
2294	 * M: Receive margin (%)
2295	 * N: Ratio of bit rate to clock (N = sampling rate)
2296	 * D: Clock duty (D = 0 to 1.0)
2297	 * L: Frame length (L = 9 to 12)
2298	 * F: Absolute value of clock frequency deviation
2299	 *
2300	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2301	 *      (|D - 0.5| / N * (1 + F))|
2302	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2303	 */
2304	for_each_sr(sr, s) {
2305		for (c = 0; c <= 3; c++) {
2306			/* integerized formulas from HSCIF documentation */
2307			prediv = sr * (1 << (2 * c + 1));
2308
2309			/*
2310			 * We need to calculate:
2311			 *
2312			 *     br = freq / (prediv * bps) clamped to [1..256]
2313			 *     err = freq / (br * prediv) - bps
2314			 *
2315			 * Watch out for overflow when calculating the desired
2316			 * sampling clock rate!
2317			 */
2318			if (bps > UINT_MAX / prediv)
2319				break;
2320
2321			scrate = prediv * bps;
2322			br = DIV_ROUND_CLOSEST(freq, scrate);
2323			br = clamp(br, 1U, 256U);
2324
2325			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2326			if (abs(err) >= abs(min_err))
2327				continue;
2328
2329			min_err = err;
2330			*brr = br - 1;
2331			*srr = sr - 1;
2332			*cks = c;
2333
2334			if (!err)
2335				goto found;
2336		}
2337	}
2338
2339found:
2340	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2341		min_err, *brr, *srr + 1, *cks);
2342	return min_err;
2343}
2344
2345static void sci_reset(struct uart_port *port)
2346{
2347	const struct plat_sci_reg *reg;
2348	unsigned int status;
2349	struct sci_port *s = to_sci_port(port);
2350
2351	serial_port_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2352
2353	reg = sci_getreg(port, SCFCR);
2354	if (reg->size)
2355		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2356
2357	sci_clear_SCxSR(port,
2358			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2359			SCxSR_BREAK_CLEAR(port));
2360	if (sci_getreg(port, SCLSR)->size) {
2361		status = serial_port_in(port, SCLSR);
2362		status &= ~(SCLSR_TO | SCLSR_ORER);
2363		serial_port_out(port, SCLSR, status);
2364	}
2365
2366	if (s->rx_trigger > 1) {
2367		if (s->rx_fifo_timeout) {
2368			scif_set_rtrg(port, 1);
2369			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2370		} else {
2371			if (port->type == PORT_SCIFA ||
2372			    port->type == PORT_SCIFB)
2373				scif_set_rtrg(port, 1);
2374			else
2375				scif_set_rtrg(port, s->rx_trigger);
2376		}
2377	}
2378}
2379
2380static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2381			    struct ktermios *old)
2382{
2383	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2384	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2385	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2386	struct sci_port *s = to_sci_port(port);
2387	const struct plat_sci_reg *reg;
2388	int min_err = INT_MAX, err;
2389	unsigned long max_freq = 0;
2390	int best_clk = -1;
2391	unsigned long flags;
2392
2393	if ((termios->c_cflag & CSIZE) == CS7)
2394		smr_val |= SCSMR_CHR;
 
 
 
 
2395	if (termios->c_cflag & PARENB)
2396		smr_val |= SCSMR_PE;
2397	if (termios->c_cflag & PARODD)
2398		smr_val |= SCSMR_PE | SCSMR_ODD;
2399	if (termios->c_cflag & CSTOPB)
2400		smr_val |= SCSMR_STOP;
2401
2402	/*
2403	 * earlyprintk comes here early on with port->uartclk set to zero.
2404	 * the clock framework is not up and running at this point so here
2405	 * we assume that 115200 is the maximum baud rate. please note that
2406	 * the baud rate is not programmed during earlyprintk - it is assumed
2407	 * that the previous boot loader has enabled required clocks and
2408	 * setup the baud rate generator hardware for us already.
2409	 */
2410	if (!port->uartclk) {
2411		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2412		goto done;
2413	}
2414
2415	for (i = 0; i < SCI_NUM_CLKS; i++)
2416		max_freq = max(max_freq, s->clk_rates[i]);
2417
2418	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2419	if (!baud)
2420		goto done;
2421
2422	/*
2423	 * There can be multiple sources for the sampling clock.  Find the one
2424	 * that gives us the smallest deviation from the desired baud rate.
2425	 */
2426
2427	/* Optional Undivided External Clock */
2428	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2429	    port->type != PORT_SCIFB) {
2430		err = sci_sck_calc(s, baud, &srr1);
2431		if (abs(err) < abs(min_err)) {
2432			best_clk = SCI_SCK;
2433			scr_val = SCSCR_CKE1;
2434			sccks = SCCKS_CKS;
2435			min_err = err;
2436			srr = srr1;
2437			if (!err)
2438				goto done;
2439		}
2440	}
2441
2442	/* Optional BRG Frequency Divided External Clock */
2443	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2444		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2445				   &srr1);
2446		if (abs(err) < abs(min_err)) {
2447			best_clk = SCI_SCIF_CLK;
2448			scr_val = SCSCR_CKE1;
2449			sccks = 0;
2450			min_err = err;
2451			dl = dl1;
2452			srr = srr1;
2453			if (!err)
2454				goto done;
2455		}
2456	}
2457
2458	/* Optional BRG Frequency Divided Internal Clock */
2459	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2460		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2461				   &srr1);
2462		if (abs(err) < abs(min_err)) {
2463			best_clk = SCI_BRG_INT;
2464			scr_val = SCSCR_CKE1;
2465			sccks = SCCKS_XIN;
2466			min_err = err;
2467			dl = dl1;
2468			srr = srr1;
2469			if (!min_err)
2470				goto done;
2471		}
2472	}
2473
2474	/* Divided Functional Clock using standard Bit Rate Register */
2475	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2476	if (abs(err) < abs(min_err)) {
2477		best_clk = SCI_FCK;
2478		scr_val = 0;
2479		min_err = err;
2480		brr = brr1;
2481		srr = srr1;
2482		cks = cks1;
2483	}
2484
2485done:
2486	if (best_clk >= 0)
2487		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2488			s->clks[best_clk], baud, min_err);
2489
2490	sci_port_enable(s);
2491
2492	/*
2493	 * Program the optional External Baud Rate Generator (BRG) first.
2494	 * It controls the mux to select (H)SCK or frequency divided clock.
2495	 */
2496	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2497		serial_port_out(port, SCDL, dl);
2498		serial_port_out(port, SCCKS, sccks);
2499	}
2500
2501	spin_lock_irqsave(&port->lock, flags);
2502
2503	sci_reset(port);
2504
2505	uart_update_timeout(port, termios->c_cflag, baud);
2506
2507	/* byte size and parity */
2508	bits = tty_get_frame_size(termios->c_cflag);
2509
2510	if (sci_getreg(port, SEMR)->size)
2511		serial_port_out(port, SEMR, 0);
2512
2513	if (best_clk >= 0) {
2514		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2515			switch (srr + 1) {
2516			case 5:  smr_val |= SCSMR_SRC_5;  break;
2517			case 7:  smr_val |= SCSMR_SRC_7;  break;
2518			case 11: smr_val |= SCSMR_SRC_11; break;
2519			case 13: smr_val |= SCSMR_SRC_13; break;
2520			case 16: smr_val |= SCSMR_SRC_16; break;
2521			case 17: smr_val |= SCSMR_SRC_17; break;
2522			case 19: smr_val |= SCSMR_SRC_19; break;
2523			case 27: smr_val |= SCSMR_SRC_27; break;
2524			}
2525		smr_val |= cks;
2526		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2527		serial_port_out(port, SCSMR, smr_val);
2528		serial_port_out(port, SCBRR, brr);
2529		if (sci_getreg(port, HSSRR)->size) {
2530			unsigned int hssrr = srr | HSCIF_SRE;
2531			/* Calculate deviation from intended rate at the
2532			 * center of the last stop bit in sampling clocks.
2533			 */
2534			int last_stop = bits * 2 - 1;
2535			int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2536							  (int)(srr + 1),
2537							  2 * (int)baud);
2538
2539			if (abs(deviation) >= 2) {
2540				/* At least two sampling clocks off at the
2541				 * last stop bit; we can increase the error
2542				 * margin by shifting the sampling point.
2543				 */
2544				int shift = clamp(deviation / 2, -8, 7);
2545
2546				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2547					 HSCIF_SRHP_MASK;
2548				hssrr |= HSCIF_SRDE;
2549			}
2550			serial_port_out(port, HSSRR, hssrr);
2551		}
2552
2553		/* Wait one bit interval */
2554		udelay((1000000 + (baud - 1)) / baud);
2555	} else {
2556		/* Don't touch the bit rate configuration */
2557		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2558		smr_val |= serial_port_in(port, SCSMR) &
2559			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2560		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2561		serial_port_out(port, SCSMR, smr_val);
2562	}
2563
2564	sci_init_pins(port, termios->c_cflag);
2565
2566	port->status &= ~UPSTAT_AUTOCTS;
2567	s->autorts = false;
2568	reg = sci_getreg(port, SCFCR);
2569	if (reg->size) {
2570		unsigned short ctrl = serial_port_in(port, SCFCR);
2571
2572		if ((port->flags & UPF_HARD_FLOW) &&
2573		    (termios->c_cflag & CRTSCTS)) {
2574			/* There is no CTS interrupt to restart the hardware */
2575			port->status |= UPSTAT_AUTOCTS;
2576			/* MCE is enabled when RTS is raised */
2577			s->autorts = true;
2578		}
2579
2580		/*
2581		 * As we've done a sci_reset() above, ensure we don't
2582		 * interfere with the FIFOs while toggling MCE. As the
2583		 * reset values could still be set, simply mask them out.
2584		 */
2585		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2586
2587		serial_port_out(port, SCFCR, ctrl);
2588	}
2589	if (port->flags & UPF_HARD_FLOW) {
2590		/* Refresh (Auto) RTS */
2591		sci_set_mctrl(port, port->mctrl);
2592	}
2593
2594	scr_val |= SCSCR_RE | SCSCR_TE |
2595		   (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2596	serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
 
 
 
 
 
 
2597	if ((srr + 1 == 5) &&
2598	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2599		/*
2600		 * In asynchronous mode, when the sampling rate is 1/5, first
2601		 * received data may become invalid on some SCIFA and SCIFB.
2602		 * To avoid this problem wait more than 1 serial data time (1
2603		 * bit time x serial data number) after setting SCSCR.RE = 1.
2604		 */
2605		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2606	}
2607
2608	/* Calculate delay for 2 DMA buffers (4 FIFO). */
2609	s->rx_frame = (10000 * bits) / (baud / 100);
2610#ifdef CONFIG_SERIAL_SH_SCI_DMA
2611	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2612#endif
2613
2614	if ((termios->c_cflag & CREAD) != 0)
2615		sci_start_rx(port);
2616
2617	spin_unlock_irqrestore(&port->lock, flags);
2618
2619	sci_port_disable(s);
2620
2621	if (UART_ENABLE_MS(port, termios->c_cflag))
2622		sci_enable_ms(port);
2623}
2624
2625static void sci_pm(struct uart_port *port, unsigned int state,
2626		   unsigned int oldstate)
2627{
2628	struct sci_port *sci_port = to_sci_port(port);
2629
2630	switch (state) {
2631	case UART_PM_STATE_OFF:
2632		sci_port_disable(sci_port);
2633		break;
2634	default:
2635		sci_port_enable(sci_port);
2636		break;
2637	}
2638}
2639
2640static const char *sci_type(struct uart_port *port)
2641{
2642	switch (port->type) {
2643	case PORT_IRDA:
2644		return "irda";
2645	case PORT_SCI:
2646		return "sci";
2647	case PORT_SCIF:
2648		return "scif";
2649	case PORT_SCIFA:
2650		return "scifa";
2651	case PORT_SCIFB:
2652		return "scifb";
2653	case PORT_HSCIF:
2654		return "hscif";
2655	}
2656
2657	return NULL;
2658}
2659
2660static int sci_remap_port(struct uart_port *port)
2661{
2662	struct sci_port *sport = to_sci_port(port);
2663
2664	/*
2665	 * Nothing to do if there's already an established membase.
2666	 */
2667	if (port->membase)
2668		return 0;
2669
2670	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2671		port->membase = ioremap(port->mapbase, sport->reg_size);
2672		if (unlikely(!port->membase)) {
2673			dev_err(port->dev, "can't remap port#%d\n", port->line);
2674			return -ENXIO;
2675		}
2676	} else {
2677		/*
2678		 * For the simple (and majority of) cases where we don't
2679		 * need to do any remapping, just cast the cookie
2680		 * directly.
2681		 */
2682		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2683	}
2684
2685	return 0;
2686}
2687
2688static void sci_release_port(struct uart_port *port)
2689{
2690	struct sci_port *sport = to_sci_port(port);
2691
2692	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2693		iounmap(port->membase);
2694		port->membase = NULL;
2695	}
2696
2697	release_mem_region(port->mapbase, sport->reg_size);
2698}
2699
2700static int sci_request_port(struct uart_port *port)
2701{
2702	struct resource *res;
2703	struct sci_port *sport = to_sci_port(port);
2704	int ret;
2705
2706	res = request_mem_region(port->mapbase, sport->reg_size,
2707				 dev_name(port->dev));
2708	if (unlikely(res == NULL)) {
2709		dev_err(port->dev, "request_mem_region failed.");
2710		return -EBUSY;
2711	}
2712
2713	ret = sci_remap_port(port);
2714	if (unlikely(ret != 0)) {
2715		release_resource(res);
2716		return ret;
2717	}
2718
2719	return 0;
2720}
2721
2722static void sci_config_port(struct uart_port *port, int flags)
2723{
2724	if (flags & UART_CONFIG_TYPE) {
2725		struct sci_port *sport = to_sci_port(port);
2726
2727		port->type = sport->cfg->type;
2728		sci_request_port(port);
2729	}
2730}
2731
2732static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2733{
2734	if (ser->baud_base < 2400)
2735		/* No paper tape reader for Mitch.. */
2736		return -EINVAL;
2737
2738	return 0;
2739}
2740
2741static const struct uart_ops sci_uart_ops = {
2742	.tx_empty	= sci_tx_empty,
2743	.set_mctrl	= sci_set_mctrl,
2744	.get_mctrl	= sci_get_mctrl,
2745	.start_tx	= sci_start_tx,
2746	.stop_tx	= sci_stop_tx,
2747	.stop_rx	= sci_stop_rx,
2748	.enable_ms	= sci_enable_ms,
2749	.break_ctl	= sci_break_ctl,
2750	.startup	= sci_startup,
2751	.shutdown	= sci_shutdown,
2752	.flush_buffer	= sci_flush_buffer,
2753	.set_termios	= sci_set_termios,
2754	.pm		= sci_pm,
2755	.type		= sci_type,
2756	.release_port	= sci_release_port,
2757	.request_port	= sci_request_port,
2758	.config_port	= sci_config_port,
2759	.verify_port	= sci_verify_port,
2760#ifdef CONFIG_CONSOLE_POLL
2761	.poll_get_char	= sci_poll_get_char,
2762	.poll_put_char	= sci_poll_put_char,
2763#endif
2764};
2765
2766static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2767{
2768	const char *clk_names[] = {
2769		[SCI_FCK] = "fck",
2770		[SCI_SCK] = "sck",
2771		[SCI_BRG_INT] = "brg_int",
2772		[SCI_SCIF_CLK] = "scif_clk",
2773	};
2774	struct clk *clk;
2775	unsigned int i;
2776
2777	if (sci_port->cfg->type == PORT_HSCIF)
2778		clk_names[SCI_SCK] = "hsck";
2779
2780	for (i = 0; i < SCI_NUM_CLKS; i++) {
2781		clk = devm_clk_get(dev, clk_names[i]);
2782		if (PTR_ERR(clk) == -EPROBE_DEFER)
2783			return -EPROBE_DEFER;
2784
2785		if (IS_ERR(clk) && i == SCI_FCK) {
2786			/*
2787			 * "fck" used to be called "sci_ick", and we need to
2788			 * maintain DT backward compatibility.
2789			 */
2790			clk = devm_clk_get(dev, "sci_ick");
2791			if (PTR_ERR(clk) == -EPROBE_DEFER)
2792				return -EPROBE_DEFER;
2793
2794			if (!IS_ERR(clk))
2795				goto found;
2796
 
2797			/*
2798			 * Not all SH platforms declare a clock lookup entry
2799			 * for SCI devices, in which case we need to get the
2800			 * global "peripheral_clk" clock.
2801			 */
2802			clk = devm_clk_get(dev, "peripheral_clk");
2803			if (!IS_ERR(clk))
2804				goto found;
2805
2806			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2807				PTR_ERR(clk));
2808			return PTR_ERR(clk);
2809		}
2810
2811found:
2812		if (IS_ERR(clk))
2813			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2814				PTR_ERR(clk));
2815		else
2816			dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2817				clk, clk_get_rate(clk));
2818		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2819	}
2820	return 0;
2821}
2822
2823static const struct sci_port_params *
2824sci_probe_regmap(const struct plat_sci_port *cfg)
2825{
2826	unsigned int regtype;
2827
2828	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2829		return &sci_port_params[cfg->regtype];
2830
2831	switch (cfg->type) {
2832	case PORT_SCI:
2833		regtype = SCIx_SCI_REGTYPE;
2834		break;
2835	case PORT_IRDA:
2836		regtype = SCIx_IRDA_REGTYPE;
2837		break;
2838	case PORT_SCIFA:
2839		regtype = SCIx_SCIFA_REGTYPE;
2840		break;
2841	case PORT_SCIFB:
2842		regtype = SCIx_SCIFB_REGTYPE;
2843		break;
2844	case PORT_SCIF:
2845		/*
2846		 * The SH-4 is a bit of a misnomer here, although that's
2847		 * where this particular port layout originated. This
2848		 * configuration (or some slight variation thereof)
2849		 * remains the dominant model for all SCIFs.
2850		 */
2851		regtype = SCIx_SH4_SCIF_REGTYPE;
2852		break;
2853	case PORT_HSCIF:
2854		regtype = SCIx_HSCIF_REGTYPE;
2855		break;
2856	default:
2857		pr_err("Can't probe register map for given port\n");
2858		return NULL;
2859	}
2860
2861	return &sci_port_params[regtype];
2862}
2863
2864static int sci_init_single(struct platform_device *dev,
2865			   struct sci_port *sci_port, unsigned int index,
2866			   const struct plat_sci_port *p, bool early)
2867{
2868	struct uart_port *port = &sci_port->port;
2869	const struct resource *res;
2870	unsigned int i;
2871	int ret;
2872
2873	sci_port->cfg	= p;
2874
2875	port->ops	= &sci_uart_ops;
2876	port->iotype	= UPIO_MEM;
2877	port->line	= index;
2878	port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
2879
2880	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2881	if (res == NULL)
2882		return -ENOMEM;
2883
2884	port->mapbase = res->start;
2885	sci_port->reg_size = resource_size(res);
2886
2887	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
2888		if (i)
2889			sci_port->irqs[i] = platform_get_irq_optional(dev, i);
2890		else
2891			sci_port->irqs[i] = platform_get_irq(dev, i);
2892	}
2893
 
 
 
 
 
 
 
2894	/* The SCI generates several interrupts. They can be muxed together or
2895	 * connected to different interrupt lines. In the muxed case only one
2896	 * interrupt resource is specified as there is only one interrupt ID.
2897	 * In the non-muxed case, up to 6 interrupt signals might be generated
2898	 * from the SCI, however those signals might have their own individual
2899	 * interrupt ID numbers, or muxed together with another interrupt.
2900	 */
2901	if (sci_port->irqs[0] < 0)
2902		return -ENXIO;
2903
2904	if (sci_port->irqs[1] < 0)
2905		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
2906			sci_port->irqs[i] = sci_port->irqs[0];
2907
2908	sci_port->params = sci_probe_regmap(p);
2909	if (unlikely(sci_port->params == NULL))
2910		return -EINVAL;
2911
2912	switch (p->type) {
2913	case PORT_SCIFB:
2914		sci_port->rx_trigger = 48;
2915		break;
2916	case PORT_HSCIF:
2917		sci_port->rx_trigger = 64;
2918		break;
2919	case PORT_SCIFA:
2920		sci_port->rx_trigger = 32;
2921		break;
2922	case PORT_SCIF:
2923		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2924			/* RX triggering not implemented for this IP */
2925			sci_port->rx_trigger = 1;
2926		else
2927			sci_port->rx_trigger = 8;
2928		break;
2929	default:
2930		sci_port->rx_trigger = 1;
2931		break;
2932	}
2933
2934	sci_port->rx_fifo_timeout = 0;
2935	sci_port->hscif_tot = 0;
2936
2937	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2938	 * match the SoC datasheet, this should be investigated. Let platform
2939	 * data override the sampling rate for now.
2940	 */
2941	sci_port->sampling_rate_mask = p->sampling_rate
2942				     ? SCI_SR(p->sampling_rate)
2943				     : sci_port->params->sampling_rate_mask;
2944
2945	if (!early) {
2946		ret = sci_init_clocks(sci_port, &dev->dev);
2947		if (ret < 0)
2948			return ret;
2949
2950		port->dev = &dev->dev;
2951
2952		pm_runtime_enable(&dev->dev);
2953	}
2954
2955	port->type		= p->type;
2956	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2957	port->fifosize		= sci_port->params->fifosize;
2958
2959	if (port->type == PORT_SCI) {
2960		if (sci_port->reg_size >= 0x20)
2961			port->regshift = 2;
2962		else
2963			port->regshift = 1;
2964	}
2965
2966	/*
2967	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2968	 * for the multi-IRQ ports, which is where we are primarily
2969	 * concerned with the shutdown path synchronization.
2970	 *
2971	 * For the muxed case there's nothing more to do.
2972	 */
2973	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2974	port->irqflags		= 0;
2975
2976	port->serial_in		= sci_serial_in;
2977	port->serial_out	= sci_serial_out;
2978
2979	return 0;
2980}
2981
2982static void sci_cleanup_single(struct sci_port *port)
2983{
2984	pm_runtime_disable(port->port.dev);
2985}
2986
2987#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2988    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2989static void serial_console_putchar(struct uart_port *port, int ch)
2990{
2991	sci_poll_put_char(port, ch);
2992}
2993
2994/*
2995 *	Print a string to the serial port trying not to disturb
2996 *	any possible real use of the port...
2997 */
2998static void serial_console_write(struct console *co, const char *s,
2999				 unsigned count)
3000{
3001	struct sci_port *sci_port = &sci_ports[co->index];
3002	struct uart_port *port = &sci_port->port;
3003	unsigned short bits, ctrl, ctrl_temp;
3004	unsigned long flags;
3005	int locked = 1;
3006
3007	if (port->sysrq)
3008		locked = 0;
3009	else if (oops_in_progress)
3010		locked = spin_trylock_irqsave(&port->lock, flags);
3011	else
3012		spin_lock_irqsave(&port->lock, flags);
3013
3014	/* first save SCSCR then disable interrupts, keep clock source */
3015	ctrl = serial_port_in(port, SCSCR);
3016	ctrl_temp = SCSCR_RE | SCSCR_TE |
3017		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3018		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3019	serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
3020
3021	uart_console_write(port, s, count, serial_console_putchar);
3022
3023	/* wait until fifo is empty and last bit has been transmitted */
3024	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3025	while ((serial_port_in(port, SCxSR) & bits) != bits)
3026		cpu_relax();
3027
3028	/* restore the SCSCR */
3029	serial_port_out(port, SCSCR, ctrl);
3030
3031	if (locked)
3032		spin_unlock_irqrestore(&port->lock, flags);
3033}
3034
3035static int serial_console_setup(struct console *co, char *options)
3036{
3037	struct sci_port *sci_port;
3038	struct uart_port *port;
3039	int baud = 115200;
3040	int bits = 8;
3041	int parity = 'n';
3042	int flow = 'n';
3043	int ret;
3044
3045	/*
3046	 * Refuse to handle any bogus ports.
3047	 */
3048	if (co->index < 0 || co->index >= SCI_NPORTS)
3049		return -ENODEV;
3050
3051	sci_port = &sci_ports[co->index];
3052	port = &sci_port->port;
3053
3054	/*
3055	 * Refuse to handle uninitialized ports.
3056	 */
3057	if (!port->ops)
3058		return -ENODEV;
3059
3060	ret = sci_remap_port(port);
3061	if (unlikely(ret != 0))
3062		return ret;
3063
3064	if (options)
3065		uart_parse_options(options, &baud, &parity, &bits, &flow);
3066
3067	return uart_set_options(port, co, baud, parity, bits, flow);
3068}
3069
3070static struct console serial_console = {
3071	.name		= "ttySC",
3072	.device		= uart_console_device,
3073	.write		= serial_console_write,
3074	.setup		= serial_console_setup,
3075	.flags		= CON_PRINTBUFFER,
3076	.index		= -1,
3077	.data		= &sci_uart_driver,
3078};
3079
3080#ifdef CONFIG_SUPERH
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3081static struct console early_serial_console = {
3082	.name           = "early_ttySC",
3083	.write          = serial_console_write,
 
3084	.flags          = CON_PRINTBUFFER,
3085	.index		= -1,
3086};
3087
3088static char early_serial_buf[32];
3089
3090static int sci_probe_earlyprintk(struct platform_device *pdev)
3091{
3092	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3093
3094	if (early_serial_console.data)
3095		return -EEXIST;
3096
3097	early_serial_console.index = pdev->id;
3098
3099	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3100
3101	serial_console_setup(&early_serial_console, early_serial_buf);
3102
3103	if (!strstr(early_serial_buf, "keep"))
3104		early_serial_console.flags |= CON_BOOT;
3105
3106	register_console(&early_serial_console);
3107	return 0;
3108}
3109#endif
3110
3111#define SCI_CONSOLE	(&serial_console)
3112
3113#else
3114static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3115{
3116	return -EINVAL;
3117}
3118
3119#define SCI_CONSOLE	NULL
3120
3121#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3122
3123static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3124
3125static DEFINE_MUTEX(sci_uart_registration_lock);
3126static struct uart_driver sci_uart_driver = {
3127	.owner		= THIS_MODULE,
3128	.driver_name	= "sci",
3129	.dev_name	= "ttySC",
3130	.major		= SCI_MAJOR,
3131	.minor		= SCI_MINOR_START,
3132	.nr		= SCI_NPORTS,
3133	.cons		= SCI_CONSOLE,
3134};
3135
3136static int sci_remove(struct platform_device *dev)
3137{
3138	struct sci_port *port = platform_get_drvdata(dev);
3139	unsigned int type = port->port.type;	/* uart_remove_... clears it */
3140
3141	sci_ports_in_use &= ~BIT(port->port.line);
3142	uart_remove_one_port(&sci_uart_driver, &port->port);
3143
3144	sci_cleanup_single(port);
3145
3146	if (port->port.fifosize > 1)
3147		device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3148	if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
3149		device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3150
3151	return 0;
3152}
3153
3154
3155#define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3156#define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3157#define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3158
3159static const struct of_device_id of_sci_match[] = {
3160	/* SoC-specific types */
3161	{
3162		.compatible = "renesas,scif-r7s72100",
3163		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3164	},
3165	{
3166		.compatible = "renesas,scif-r7s9210",
3167		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3168	},
3169	{
3170		.compatible = "renesas,scif-r9a07g044",
3171		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3172	},
 
 
 
 
3173	/* Family-specific types */
3174	{
3175		.compatible = "renesas,rcar-gen1-scif",
3176		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3177	}, {
3178		.compatible = "renesas,rcar-gen2-scif",
3179		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3180	}, {
3181		.compatible = "renesas,rcar-gen3-scif",
3182		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
 
 
 
3183	},
3184	/* Generic types */
3185	{
3186		.compatible = "renesas,scif",
3187		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3188	}, {
3189		.compatible = "renesas,scifa",
3190		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3191	}, {
3192		.compatible = "renesas,scifb",
3193		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3194	}, {
3195		.compatible = "renesas,hscif",
3196		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3197	}, {
3198		.compatible = "renesas,sci",
3199		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3200	}, {
3201		/* Terminator */
3202	},
3203};
3204MODULE_DEVICE_TABLE(of, of_sci_match);
3205
 
 
 
 
 
3206static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3207					  unsigned int *dev_id)
3208{
3209	struct device_node *np = pdev->dev.of_node;
 
3210	struct plat_sci_port *p;
3211	struct sci_port *sp;
3212	const void *data;
3213	int id;
3214
3215	if (!IS_ENABLED(CONFIG_OF) || !np)
3216		return NULL;
3217
3218	data = of_device_get_match_data(&pdev->dev);
3219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3220	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3221	if (!p)
3222		return NULL;
3223
3224	/* Get the line number from the aliases node. */
3225	id = of_alias_get_id(np, "serial");
3226	if (id < 0 && ~sci_ports_in_use)
3227		id = ffz(sci_ports_in_use);
3228	if (id < 0) {
3229		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3230		return NULL;
3231	}
3232	if (id >= ARRAY_SIZE(sci_ports)) {
3233		dev_err(&pdev->dev, "serial%d out of range\n", id);
3234		return NULL;
3235	}
3236
3237	sp = &sci_ports[id];
3238	*dev_id = id;
3239
3240	p->type = SCI_OF_TYPE(data);
3241	p->regtype = SCI_OF_REGTYPE(data);
3242
3243	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3244
3245	return p;
3246}
3247
3248static int sci_probe_single(struct platform_device *dev,
3249				      unsigned int index,
3250				      struct plat_sci_port *p,
3251				      struct sci_port *sciport)
 
3252{
3253	int ret;
3254
3255	/* Sanity check */
3256	if (unlikely(index >= SCI_NPORTS)) {
3257		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3258			   index+1, SCI_NPORTS);
3259		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3260		return -EINVAL;
3261	}
3262	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3263	if (sci_ports_in_use & BIT(index))
3264		return -EBUSY;
3265
3266	mutex_lock(&sci_uart_registration_lock);
3267	if (!sci_uart_driver.state) {
3268		ret = uart_register_driver(&sci_uart_driver);
3269		if (ret) {
3270			mutex_unlock(&sci_uart_registration_lock);
3271			return ret;
3272		}
3273	}
3274	mutex_unlock(&sci_uart_registration_lock);
3275
3276	ret = sci_init_single(dev, sciport, index, p, false);
3277	if (ret)
3278		return ret;
3279
 
 
 
 
 
3280	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3281	if (IS_ERR(sciport->gpios))
3282		return PTR_ERR(sciport->gpios);
3283
3284	if (sciport->has_rtscts) {
3285		if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3286		    mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
3287			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3288			return -EINVAL;
3289		}
3290		sciport->port.flags |= UPF_HARD_FLOW;
3291	}
3292
3293	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3294	if (ret) {
3295		sci_cleanup_single(sciport);
3296		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3297	}
3298
3299	return 0;
3300}
3301
3302static int sci_probe(struct platform_device *dev)
3303{
3304	struct plat_sci_port *p;
 
3305	struct sci_port *sp;
3306	unsigned int dev_id;
3307	int ret;
3308
3309	/*
3310	 * If we've come here via earlyprintk initialization, head off to
3311	 * the special early probe. We don't have sufficient device state
3312	 * to make it beyond this yet.
3313	 */
3314#ifdef CONFIG_SUPERH
3315	if (is_sh_early_platform_device(dev))
3316		return sci_probe_earlyprintk(dev);
3317#endif
3318
3319	if (dev->dev.of_node) {
3320		p = sci_parse_dt(dev, &dev_id);
3321		if (p == NULL)
3322			return -EINVAL;
3323	} else {
3324		p = dev->dev.platform_data;
3325		if (p == NULL) {
3326			dev_err(&dev->dev, "no platform data supplied\n");
3327			return -EINVAL;
3328		}
3329
3330		dev_id = dev->id;
3331	}
3332
3333	sp = &sci_ports[dev_id];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3334	platform_set_drvdata(dev, sp);
3335
3336	ret = sci_probe_single(dev, dev_id, p, sp);
3337	if (ret)
3338		return ret;
3339
3340	if (sp->port.fifosize > 1) {
3341		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3342		if (ret)
3343			return ret;
3344	}
3345	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3346	    sp->port.type == PORT_HSCIF) {
3347		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3348		if (ret) {
3349			if (sp->port.fifosize > 1) {
3350				device_remove_file(&dev->dev,
3351						   &dev_attr_rx_fifo_trigger);
3352			}
3353			return ret;
3354		}
3355	}
3356
3357#ifdef CONFIG_SH_STANDARD_BIOS
3358	sh_bios_gdb_detach();
3359#endif
3360
3361	sci_ports_in_use |= BIT(dev_id);
3362	return 0;
3363}
3364
3365static __maybe_unused int sci_suspend(struct device *dev)
3366{
3367	struct sci_port *sport = dev_get_drvdata(dev);
3368
3369	if (sport)
3370		uart_suspend_port(&sci_uart_driver, &sport->port);
3371
3372	return 0;
3373}
3374
3375static __maybe_unused int sci_resume(struct device *dev)
3376{
3377	struct sci_port *sport = dev_get_drvdata(dev);
3378
3379	if (sport)
3380		uart_resume_port(&sci_uart_driver, &sport->port);
3381
3382	return 0;
3383}
3384
3385static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3386
3387static struct platform_driver sci_driver = {
3388	.probe		= sci_probe,
3389	.remove		= sci_remove,
3390	.driver		= {
3391		.name	= "sh-sci",
3392		.pm	= &sci_dev_pm_ops,
3393		.of_match_table = of_match_ptr(of_sci_match),
3394	},
3395};
3396
3397static int __init sci_init(void)
3398{
3399	pr_info("%s\n", banner);
3400
3401	return platform_driver_register(&sci_driver);
3402}
3403
3404static void __exit sci_exit(void)
3405{
3406	platform_driver_unregister(&sci_driver);
3407
3408	if (sci_uart_driver.state)
3409		uart_unregister_driver(&sci_uart_driver);
3410}
3411
3412#if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
3413sh_early_platform_init_buffer("earlyprintk", &sci_driver,
3414			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3415#endif
3416#ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3417static struct plat_sci_port port_cfg __initdata;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3418
3419static int __init early_console_setup(struct earlycon_device *device,
3420				      int type)
3421{
3422	if (!device->port.membase)
3423		return -ENODEV;
3424
3425	device->port.serial_in = sci_serial_in;
3426	device->port.serial_out	= sci_serial_out;
3427	device->port.type = type;
3428	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3429	port_cfg.type = type;
3430	sci_ports[0].cfg = &port_cfg;
3431	sci_ports[0].params = sci_probe_regmap(&port_cfg);
 
3432	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3433	sci_serial_out(&sci_ports[0].port, SCSCR,
3434		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3435
3436	device->con->write = serial_console_write;
 
 
3437	return 0;
3438}
3439static int __init sci_early_console_setup(struct earlycon_device *device,
3440					  const char *opt)
3441{
3442	return early_console_setup(device, PORT_SCI);
3443}
3444static int __init scif_early_console_setup(struct earlycon_device *device,
3445					  const char *opt)
3446{
3447	return early_console_setup(device, PORT_SCIF);
3448}
3449static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3450					  const char *opt)
3451{
3452	port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3453	return early_console_setup(device, PORT_SCIF);
3454}
3455
 
 
 
 
 
 
 
3456static int __init scifa_early_console_setup(struct earlycon_device *device,
3457					  const char *opt)
3458{
3459	return early_console_setup(device, PORT_SCIFA);
3460}
3461static int __init scifb_early_console_setup(struct earlycon_device *device,
3462					  const char *opt)
3463{
3464	return early_console_setup(device, PORT_SCIFB);
3465}
3466static int __init hscif_early_console_setup(struct earlycon_device *device,
3467					  const char *opt)
3468{
3469	return early_console_setup(device, PORT_HSCIF);
3470}
3471
3472OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3473OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3474OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3475OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a07g044", rzscifa_early_console_setup);
 
3476OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3477OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3478OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3479#endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3480
3481module_init(sci_init);
3482module_exit(sci_exit);
3483
3484MODULE_LICENSE("GPL");
3485MODULE_ALIAS("platform:sh-sci");
3486MODULE_AUTHOR("Paul Mundt");
3487MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
   4 *
   5 *  Copyright (C) 2002 - 2011  Paul Mundt
   6 *  Copyright (C) 2015 Glider bvba
   7 *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
   8 *
   9 * based off of the old drivers/char/sh-sci.c by:
  10 *
  11 *   Copyright (C) 1999, 2000  Niibe Yutaka
  12 *   Copyright (C) 2000  Sugioka Toshinobu
  13 *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
  14 *   Modified to support SecureEdge. David McCullough (2002)
  15 *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
  16 *   Removed SH7300 support (Jul 2007).
  17 */
  18#undef DEBUG
  19
  20#include <linux/clk.h>
  21#include <linux/console.h>
  22#include <linux/ctype.h>
  23#include <linux/cpufreq.h>
  24#include <linux/delay.h>
  25#include <linux/dmaengine.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/err.h>
  28#include <linux/errno.h>
  29#include <linux/init.h>
  30#include <linux/interrupt.h>
  31#include <linux/ioport.h>
  32#include <linux/ktime.h>
  33#include <linux/major.h>
  34#include <linux/minmax.h>
  35#include <linux/module.h>
  36#include <linux/mm.h>
  37#include <linux/of.h>
 
  38#include <linux/platform_device.h>
  39#include <linux/pm_runtime.h>
  40#include <linux/reset.h>
  41#include <linux/scatterlist.h>
  42#include <linux/serial.h>
  43#include <linux/serial_sci.h>
  44#include <linux/sh_dma.h>
  45#include <linux/slab.h>
  46#include <linux/string.h>
  47#include <linux/sysrq.h>
  48#include <linux/timer.h>
  49#include <linux/tty.h>
  50#include <linux/tty_flip.h>
  51
  52#ifdef CONFIG_SUPERH
  53#include <asm/sh_bios.h>
  54#include <asm/platform_early.h>
  55#endif
  56
  57#include "serial_mctrl_gpio.h"
  58#include "sh-sci.h"
  59
  60/* Offsets into the sci_port->irqs array */
  61enum {
  62	SCIx_ERI_IRQ,
  63	SCIx_RXI_IRQ,
  64	SCIx_TXI_IRQ,
  65	SCIx_BRI_IRQ,
  66	SCIx_DRI_IRQ,
  67	SCIx_TEI_IRQ,
  68	SCIx_NR_IRQS,
  69
  70	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
  71};
  72
  73#define SCIx_IRQ_IS_MUXED(port)			\
  74	((port)->irqs[SCIx_ERI_IRQ] ==	\
  75	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
  76	((port)->irqs[SCIx_ERI_IRQ] &&	\
  77	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
  78
  79enum SCI_CLKS {
  80	SCI_FCK,		/* Functional Clock */
  81	SCI_SCK,		/* Optional External Clock */
  82	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
  83	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
  84	SCI_NUM_CLKS
  85};
  86
  87/* Bit x set means sampling rate x + 1 is supported */
  88#define SCI_SR(x)		BIT((x) - 1)
  89#define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
  90
  91#define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
  92				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
  93				SCI_SR(19) | SCI_SR(27)
  94
  95#define min_sr(_port)		ffs((_port)->sampling_rate_mask)
  96#define max_sr(_port)		fls((_port)->sampling_rate_mask)
  97
  98/* Iterate over all supported sampling rates, from high to low */
  99#define for_each_sr(_sr, _port)						\
 100	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
 101		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
 102
 103struct plat_sci_reg {
 104	u8 offset, size;
 105};
 106
 107struct sci_port_params {
 108	const struct plat_sci_reg regs[SCIx_NR_REGS];
 109	unsigned int fifosize;
 110	unsigned int overrun_reg;
 111	unsigned int overrun_mask;
 112	unsigned int sampling_rate_mask;
 113	unsigned int error_mask;
 114	unsigned int error_clear;
 115};
 116
 117struct sci_port {
 118	struct uart_port	port;
 119
 120	/* Platform configuration */
 121	const struct sci_port_params *params;
 122	const struct plat_sci_port *cfg;
 123	unsigned int		sampling_rate_mask;
 124	resource_size_t		reg_size;
 125	struct mctrl_gpios	*gpios;
 126
 127	/* Clocks */
 128	struct clk		*clks[SCI_NUM_CLKS];
 129	unsigned long		clk_rates[SCI_NUM_CLKS];
 130
 131	int			irqs[SCIx_NR_IRQS];
 132	char			*irqstr[SCIx_NR_IRQS];
 133
 134	struct dma_chan			*chan_tx;
 135	struct dma_chan			*chan_rx;
 136
 137#ifdef CONFIG_SERIAL_SH_SCI_DMA
 138	struct dma_chan			*chan_tx_saved;
 139	struct dma_chan			*chan_rx_saved;
 140	dma_cookie_t			cookie_tx;
 141	dma_cookie_t			cookie_rx[2];
 142	dma_cookie_t			active_rx;
 143	dma_addr_t			tx_dma_addr;
 144	unsigned int			tx_dma_len;
 145	struct scatterlist		sg_rx[2];
 146	void				*rx_buf[2];
 147	size_t				buf_len_rx;
 148	struct work_struct		work_tx;
 149	struct hrtimer			rx_timer;
 150	unsigned int			rx_timeout;	/* microseconds */
 151#endif
 152	unsigned int			rx_frame;
 153	int				rx_trigger;
 154	struct timer_list		rx_fifo_timer;
 155	int				rx_fifo_timeout;
 156	u16				hscif_tot;
 157
 158	bool has_rtscts;
 159	bool autorts;
 160	bool tx_occurred;
 161};
 162
 163#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
 164
 165static struct sci_port sci_ports[SCI_NPORTS];
 166static unsigned long sci_ports_in_use;
 167static struct uart_driver sci_uart_driver;
 168static bool sci_uart_earlycon;
 169static bool sci_uart_earlycon_dev_probing;
 170
 171static inline struct sci_port *
 172to_sci_port(struct uart_port *uart)
 173{
 174	return container_of(uart, struct sci_port, port);
 175}
 176
 177static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
 178	/*
 179	 * Common SCI definitions, dependent on the port's regshift
 180	 * value.
 181	 */
 182	[SCIx_SCI_REGTYPE] = {
 183		.regs = {
 184			[SCSMR]		= { 0x00,  8 },
 185			[SCBRR]		= { 0x01,  8 },
 186			[SCSCR]		= { 0x02,  8 },
 187			[SCxTDR]	= { 0x03,  8 },
 188			[SCxSR]		= { 0x04,  8 },
 189			[SCxRDR]	= { 0x05,  8 },
 190		},
 191		.fifosize = 1,
 192		.overrun_reg = SCxSR,
 193		.overrun_mask = SCI_ORER,
 194		.sampling_rate_mask = SCI_SR(32),
 195		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
 196		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
 197	},
 198
 199	/*
 200	 * Common definitions for legacy IrDA ports.
 201	 */
 202	[SCIx_IRDA_REGTYPE] = {
 203		.regs = {
 204			[SCSMR]		= { 0x00,  8 },
 205			[SCBRR]		= { 0x02,  8 },
 206			[SCSCR]		= { 0x04,  8 },
 207			[SCxTDR]	= { 0x06,  8 },
 208			[SCxSR]		= { 0x08, 16 },
 209			[SCxRDR]	= { 0x0a,  8 },
 210			[SCFCR]		= { 0x0c,  8 },
 211			[SCFDR]		= { 0x0e, 16 },
 212		},
 213		.fifosize = 1,
 214		.overrun_reg = SCxSR,
 215		.overrun_mask = SCI_ORER,
 216		.sampling_rate_mask = SCI_SR(32),
 217		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
 218		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
 219	},
 220
 221	/*
 222	 * Common SCIFA definitions.
 223	 */
 224	[SCIx_SCIFA_REGTYPE] = {
 225		.regs = {
 226			[SCSMR]		= { 0x00, 16 },
 227			[SCBRR]		= { 0x04,  8 },
 228			[SCSCR]		= { 0x08, 16 },
 229			[SCxTDR]	= { 0x20,  8 },
 230			[SCxSR]		= { 0x14, 16 },
 231			[SCxRDR]	= { 0x24,  8 },
 232			[SCFCR]		= { 0x18, 16 },
 233			[SCFDR]		= { 0x1c, 16 },
 234			[SCPCR]		= { 0x30, 16 },
 235			[SCPDR]		= { 0x34, 16 },
 236		},
 237		.fifosize = 64,
 238		.overrun_reg = SCxSR,
 239		.overrun_mask = SCIFA_ORER,
 240		.sampling_rate_mask = SCI_SR_SCIFAB,
 241		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 242		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 243	},
 244
 245	/*
 246	 * Common SCIFB definitions.
 247	 */
 248	[SCIx_SCIFB_REGTYPE] = {
 249		.regs = {
 250			[SCSMR]		= { 0x00, 16 },
 251			[SCBRR]		= { 0x04,  8 },
 252			[SCSCR]		= { 0x08, 16 },
 253			[SCxTDR]	= { 0x40,  8 },
 254			[SCxSR]		= { 0x14, 16 },
 255			[SCxRDR]	= { 0x60,  8 },
 256			[SCFCR]		= { 0x18, 16 },
 257			[SCTFDR]	= { 0x38, 16 },
 258			[SCRFDR]	= { 0x3c, 16 },
 259			[SCPCR]		= { 0x30, 16 },
 260			[SCPDR]		= { 0x34, 16 },
 261		},
 262		.fifosize = 256,
 263		.overrun_reg = SCxSR,
 264		.overrun_mask = SCIFA_ORER,
 265		.sampling_rate_mask = SCI_SR_SCIFAB,
 266		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 267		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 268	},
 269
 270	/*
 271	 * Common SH-2(A) SCIF definitions for ports with FIFO data
 272	 * count registers.
 273	 */
 274	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
 275		.regs = {
 276			[SCSMR]		= { 0x00, 16 },
 277			[SCBRR]		= { 0x04,  8 },
 278			[SCSCR]		= { 0x08, 16 },
 279			[SCxTDR]	= { 0x0c,  8 },
 280			[SCxSR]		= { 0x10, 16 },
 281			[SCxRDR]	= { 0x14,  8 },
 282			[SCFCR]		= { 0x18, 16 },
 283			[SCFDR]		= { 0x1c, 16 },
 284			[SCSPTR]	= { 0x20, 16 },
 285			[SCLSR]		= { 0x24, 16 },
 286		},
 287		.fifosize = 16,
 288		.overrun_reg = SCLSR,
 289		.overrun_mask = SCLSR_ORER,
 290		.sampling_rate_mask = SCI_SR(32),
 291		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 292		.error_clear = SCIF_ERROR_CLEAR,
 293	},
 294
 295	/*
 296	 * The "SCIFA" that is in RZ/A2, RZ/G2L and RZ/T.
 297	 * It looks like a normal SCIF with FIFO data, but with a
 298	 * compressed address space. Also, the break out of interrupts
 299	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
 300	 */
 301	[SCIx_RZ_SCIFA_REGTYPE] = {
 302		.regs = {
 303			[SCSMR]		= { 0x00, 16 },
 304			[SCBRR]		= { 0x02,  8 },
 305			[SCSCR]		= { 0x04, 16 },
 306			[SCxTDR]	= { 0x06,  8 },
 307			[SCxSR]		= { 0x08, 16 },
 308			[SCxRDR]	= { 0x0A,  8 },
 309			[SCFCR]		= { 0x0C, 16 },
 310			[SCFDR]		= { 0x0E, 16 },
 311			[SCSPTR]	= { 0x10, 16 },
 312			[SCLSR]		= { 0x12, 16 },
 313			[SEMR]		= { 0x14, 8 },
 314		},
 315		.fifosize = 16,
 316		.overrun_reg = SCLSR,
 317		.overrun_mask = SCLSR_ORER,
 318		.sampling_rate_mask = SCI_SR(32),
 319		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 320		.error_clear = SCIF_ERROR_CLEAR,
 321	},
 322
 323	/*
 324	 * The "SCIF" that is in RZ/V2H(P) SoC is similar to one found on RZ/G2L SoC
 325	 * with below differences,
 326	 * - Break out of interrupts are different: ERI, BRI, RXI, TXI, TEI, DRI,
 327	 *   TEI-DRI, RXI-EDGE and TXI-EDGE.
 328	 * - SCSMR register does not have CM bit (BIT(7)) ie it does not support synchronous mode.
 329	 * - SCFCR register does not have SCFCR_MCE bit.
 330	 * - SCSPTR register has only bits SCSPTR_SPB2DT and SCSPTR_SPB2IO.
 331	 */
 332	[SCIx_RZV2H_SCIF_REGTYPE] = {
 333		.regs = {
 334			[SCSMR]		= { 0x00, 16 },
 335			[SCBRR]		= { 0x02,  8 },
 336			[SCSCR]		= { 0x04, 16 },
 337			[SCxTDR]	= { 0x06,  8 },
 338			[SCxSR]		= { 0x08, 16 },
 339			[SCxRDR]	= { 0x0a,  8 },
 340			[SCFCR]		= { 0x0c, 16 },
 341			[SCFDR]		= { 0x0e, 16 },
 342			[SCSPTR]	= { 0x10, 16 },
 343			[SCLSR]		= { 0x12, 16 },
 344			[SEMR]		= { 0x14, 8 },
 345		},
 346		.fifosize = 16,
 347		.overrun_reg = SCLSR,
 348		.overrun_mask = SCLSR_ORER,
 349		.sampling_rate_mask = SCI_SR(32),
 350		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 351		.error_clear = SCIF_ERROR_CLEAR,
 352	},
 353
 354	/*
 355	 * Common SH-3 SCIF definitions.
 356	 */
 357	[SCIx_SH3_SCIF_REGTYPE] = {
 358		.regs = {
 359			[SCSMR]		= { 0x00,  8 },
 360			[SCBRR]		= { 0x02,  8 },
 361			[SCSCR]		= { 0x04,  8 },
 362			[SCxTDR]	= { 0x06,  8 },
 363			[SCxSR]		= { 0x08, 16 },
 364			[SCxRDR]	= { 0x0a,  8 },
 365			[SCFCR]		= { 0x0c,  8 },
 366			[SCFDR]		= { 0x0e, 16 },
 367		},
 368		.fifosize = 16,
 369		.overrun_reg = SCLSR,
 370		.overrun_mask = SCLSR_ORER,
 371		.sampling_rate_mask = SCI_SR(32),
 372		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 373		.error_clear = SCIF_ERROR_CLEAR,
 374	},
 375
 376	/*
 377	 * Common SH-4(A) SCIF(B) definitions.
 378	 */
 379	[SCIx_SH4_SCIF_REGTYPE] = {
 380		.regs = {
 381			[SCSMR]		= { 0x00, 16 },
 382			[SCBRR]		= { 0x04,  8 },
 383			[SCSCR]		= { 0x08, 16 },
 384			[SCxTDR]	= { 0x0c,  8 },
 385			[SCxSR]		= { 0x10, 16 },
 386			[SCxRDR]	= { 0x14,  8 },
 387			[SCFCR]		= { 0x18, 16 },
 388			[SCFDR]		= { 0x1c, 16 },
 389			[SCSPTR]	= { 0x20, 16 },
 390			[SCLSR]		= { 0x24, 16 },
 391		},
 392		.fifosize = 16,
 393		.overrun_reg = SCLSR,
 394		.overrun_mask = SCLSR_ORER,
 395		.sampling_rate_mask = SCI_SR(32),
 396		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 397		.error_clear = SCIF_ERROR_CLEAR,
 398	},
 399
 400	/*
 401	 * Common SCIF definitions for ports with a Baud Rate Generator for
 402	 * External Clock (BRG).
 403	 */
 404	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
 405		.regs = {
 406			[SCSMR]		= { 0x00, 16 },
 407			[SCBRR]		= { 0x04,  8 },
 408			[SCSCR]		= { 0x08, 16 },
 409			[SCxTDR]	= { 0x0c,  8 },
 410			[SCxSR]		= { 0x10, 16 },
 411			[SCxRDR]	= { 0x14,  8 },
 412			[SCFCR]		= { 0x18, 16 },
 413			[SCFDR]		= { 0x1c, 16 },
 414			[SCSPTR]	= { 0x20, 16 },
 415			[SCLSR]		= { 0x24, 16 },
 416			[SCDL]		= { 0x30, 16 },
 417			[SCCKS]		= { 0x34, 16 },
 418		},
 419		.fifosize = 16,
 420		.overrun_reg = SCLSR,
 421		.overrun_mask = SCLSR_ORER,
 422		.sampling_rate_mask = SCI_SR(32),
 423		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 424		.error_clear = SCIF_ERROR_CLEAR,
 425	},
 426
 427	/*
 428	 * Common HSCIF definitions.
 429	 */
 430	[SCIx_HSCIF_REGTYPE] = {
 431		.regs = {
 432			[SCSMR]		= { 0x00, 16 },
 433			[SCBRR]		= { 0x04,  8 },
 434			[SCSCR]		= { 0x08, 16 },
 435			[SCxTDR]	= { 0x0c,  8 },
 436			[SCxSR]		= { 0x10, 16 },
 437			[SCxRDR]	= { 0x14,  8 },
 438			[SCFCR]		= { 0x18, 16 },
 439			[SCFDR]		= { 0x1c, 16 },
 440			[SCSPTR]	= { 0x20, 16 },
 441			[SCLSR]		= { 0x24, 16 },
 442			[HSSRR]		= { 0x40, 16 },
 443			[SCDL]		= { 0x30, 16 },
 444			[SCCKS]		= { 0x34, 16 },
 445			[HSRTRGR]	= { 0x54, 16 },
 446			[HSTTRGR]	= { 0x58, 16 },
 447		},
 448		.fifosize = 128,
 449		.overrun_reg = SCLSR,
 450		.overrun_mask = SCLSR_ORER,
 451		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
 452		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 453		.error_clear = SCIF_ERROR_CLEAR,
 454	},
 455
 456	/*
 457	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
 458	 * register.
 459	 */
 460	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
 461		.regs = {
 462			[SCSMR]		= { 0x00, 16 },
 463			[SCBRR]		= { 0x04,  8 },
 464			[SCSCR]		= { 0x08, 16 },
 465			[SCxTDR]	= { 0x0c,  8 },
 466			[SCxSR]		= { 0x10, 16 },
 467			[SCxRDR]	= { 0x14,  8 },
 468			[SCFCR]		= { 0x18, 16 },
 469			[SCFDR]		= { 0x1c, 16 },
 470			[SCLSR]		= { 0x24, 16 },
 471		},
 472		.fifosize = 16,
 473		.overrun_reg = SCLSR,
 474		.overrun_mask = SCLSR_ORER,
 475		.sampling_rate_mask = SCI_SR(32),
 476		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 477		.error_clear = SCIF_ERROR_CLEAR,
 478	},
 479
 480	/*
 481	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
 482	 * count registers.
 483	 */
 484	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
 485		.regs = {
 486			[SCSMR]		= { 0x00, 16 },
 487			[SCBRR]		= { 0x04,  8 },
 488			[SCSCR]		= { 0x08, 16 },
 489			[SCxTDR]	= { 0x0c,  8 },
 490			[SCxSR]		= { 0x10, 16 },
 491			[SCxRDR]	= { 0x14,  8 },
 492			[SCFCR]		= { 0x18, 16 },
 493			[SCFDR]		= { 0x1c, 16 },
 494			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
 495			[SCRFDR]	= { 0x20, 16 },
 496			[SCSPTR]	= { 0x24, 16 },
 497			[SCLSR]		= { 0x28, 16 },
 498		},
 499		.fifosize = 16,
 500		.overrun_reg = SCLSR,
 501		.overrun_mask = SCLSR_ORER,
 502		.sampling_rate_mask = SCI_SR(32),
 503		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 504		.error_clear = SCIF_ERROR_CLEAR,
 505	},
 506
 507	/*
 508	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
 509	 * registers.
 510	 */
 511	[SCIx_SH7705_SCIF_REGTYPE] = {
 512		.regs = {
 513			[SCSMR]		= { 0x00, 16 },
 514			[SCBRR]		= { 0x04,  8 },
 515			[SCSCR]		= { 0x08, 16 },
 516			[SCxTDR]	= { 0x20,  8 },
 517			[SCxSR]		= { 0x14, 16 },
 518			[SCxRDR]	= { 0x24,  8 },
 519			[SCFCR]		= { 0x18, 16 },
 520			[SCFDR]		= { 0x1c, 16 },
 521		},
 522		.fifosize = 64,
 523		.overrun_reg = SCxSR,
 524		.overrun_mask = SCIFA_ORER,
 525		.sampling_rate_mask = SCI_SR(16),
 526		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 527		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 528	},
 529};
 530
 531#define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
 532
 533/*
 534 * The "offset" here is rather misleading, in that it refers to an enum
 535 * value relative to the port mapping rather than the fixed offset
 536 * itself, which needs to be manually retrieved from the platform's
 537 * register map for the given port.
 538 */
 539static unsigned int sci_serial_in(struct uart_port *p, int offset)
 540{
 541	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 542
 543	if (reg->size == 8)
 544		return ioread8(p->membase + (reg->offset << p->regshift));
 545	else if (reg->size == 16)
 546		return ioread16(p->membase + (reg->offset << p->regshift));
 547	else
 548		WARN(1, "Invalid register access\n");
 549
 550	return 0;
 551}
 552
 553static void sci_serial_out(struct uart_port *p, int offset, int value)
 554{
 555	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 556
 557	if (reg->size == 8)
 558		iowrite8(value, p->membase + (reg->offset << p->regshift));
 559	else if (reg->size == 16)
 560		iowrite16(value, p->membase + (reg->offset << p->regshift));
 561	else
 562		WARN(1, "Invalid register access\n");
 563}
 564
 565static void sci_port_enable(struct sci_port *sci_port)
 566{
 567	unsigned int i;
 568
 569	if (!sci_port->port.dev)
 570		return;
 571
 572	pm_runtime_get_sync(sci_port->port.dev);
 573
 574	for (i = 0; i < SCI_NUM_CLKS; i++) {
 575		clk_prepare_enable(sci_port->clks[i]);
 576		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
 577	}
 578	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
 579}
 580
 581static void sci_port_disable(struct sci_port *sci_port)
 582{
 583	unsigned int i;
 584
 585	if (!sci_port->port.dev)
 586		return;
 587
 588	for (i = SCI_NUM_CLKS; i-- > 0; )
 589		clk_disable_unprepare(sci_port->clks[i]);
 590
 591	pm_runtime_put_sync(sci_port->port.dev);
 592}
 593
 594static inline unsigned long port_rx_irq_mask(struct uart_port *port)
 595{
 596	/*
 597	 * Not all ports (such as SCIFA) will support REIE. Rather than
 598	 * special-casing the port type, we check the port initialization
 599	 * IRQ enable mask to see whether the IRQ is desired at all. If
 600	 * it's unset, it's logically inferred that there's no point in
 601	 * testing for it.
 602	 */
 603	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
 604}
 605
 606static void sci_start_tx(struct uart_port *port)
 607{
 608	struct sci_port *s = to_sci_port(port);
 609	unsigned short ctrl;
 610
 611#ifdef CONFIG_SERIAL_SH_SCI_DMA
 612	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 613		u16 new, scr = sci_serial_in(port, SCSCR);
 614		if (s->chan_tx)
 615			new = scr | SCSCR_TDRQE;
 616		else
 617			new = scr & ~SCSCR_TDRQE;
 618		if (new != scr)
 619			sci_serial_out(port, SCSCR, new);
 620	}
 621
 622	if (s->chan_tx && !kfifo_is_empty(&port->state->port.xmit_fifo) &&
 623	    dma_submit_error(s->cookie_tx)) {
 624		if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
 625			/* Switch irq from SCIF to DMA */
 626			disable_irq_nosync(s->irqs[SCIx_TXI_IRQ]);
 627
 628		s->cookie_tx = 0;
 629		schedule_work(&s->work_tx);
 630	}
 631#endif
 632
 633	if (!s->chan_tx || s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE ||
 634	    port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 635		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
 636		ctrl = sci_serial_in(port, SCSCR);
 637
 638		/*
 639		 * For SCI, TE (transmit enable) must be set after setting TIE
 640		 * (transmit interrupt enable) or in the same instruction to start
 641		 * the transmit process.
 642		 */
 643		if (port->type == PORT_SCI)
 644			ctrl |= SCSCR_TE;
 645
 646		sci_serial_out(port, SCSCR, ctrl | SCSCR_TIE);
 647	}
 648}
 649
 650static void sci_stop_tx(struct uart_port *port)
 651{
 652	unsigned short ctrl;
 653
 654	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
 655	ctrl = sci_serial_in(port, SCSCR);
 656
 657	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 658		ctrl &= ~SCSCR_TDRQE;
 659
 660	ctrl &= ~SCSCR_TIE;
 661
 662	sci_serial_out(port, SCSCR, ctrl);
 663
 664#ifdef CONFIG_SERIAL_SH_SCI_DMA
 665	if (to_sci_port(port)->chan_tx &&
 666	    !dma_submit_error(to_sci_port(port)->cookie_tx)) {
 667		dmaengine_terminate_async(to_sci_port(port)->chan_tx);
 668		to_sci_port(port)->cookie_tx = -EINVAL;
 669	}
 670#endif
 671}
 672
 673static void sci_start_rx(struct uart_port *port)
 674{
 675	unsigned short ctrl;
 676
 677	ctrl = sci_serial_in(port, SCSCR) | port_rx_irq_mask(port);
 678
 679	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 680		ctrl &= ~SCSCR_RDRQE;
 681
 682	sci_serial_out(port, SCSCR, ctrl);
 683}
 684
 685static void sci_stop_rx(struct uart_port *port)
 686{
 687	unsigned short ctrl;
 688
 689	ctrl = sci_serial_in(port, SCSCR);
 690
 691	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 692		ctrl &= ~SCSCR_RDRQE;
 693
 694	ctrl &= ~port_rx_irq_mask(port);
 695
 696	sci_serial_out(port, SCSCR, ctrl);
 697}
 698
 699static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
 700{
 701	if (port->type == PORT_SCI) {
 702		/* Just store the mask */
 703		sci_serial_out(port, SCxSR, mask);
 704	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
 705		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
 706		/* Only clear the status bits we want to clear */
 707		sci_serial_out(port, SCxSR, sci_serial_in(port, SCxSR) & mask);
 
 708	} else {
 709		/* Store the mask, clear parity/framing errors */
 710		sci_serial_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
 711	}
 712}
 713
 714#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
 715    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
 716
 717#ifdef CONFIG_CONSOLE_POLL
 718static int sci_poll_get_char(struct uart_port *port)
 719{
 720	unsigned short status;
 721	int c;
 722
 723	do {
 724		status = sci_serial_in(port, SCxSR);
 725		if (status & SCxSR_ERRORS(port)) {
 726			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
 727			continue;
 728		}
 729		break;
 730	} while (1);
 731
 732	if (!(status & SCxSR_RDxF(port)))
 733		return NO_POLL_CHAR;
 734
 735	c = sci_serial_in(port, SCxRDR);
 736
 737	/* Dummy read */
 738	sci_serial_in(port, SCxSR);
 739	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 740
 741	return c;
 742}
 743#endif
 744
 745static void sci_poll_put_char(struct uart_port *port, unsigned char c)
 746{
 747	unsigned short status;
 748
 749	do {
 750		status = sci_serial_in(port, SCxSR);
 751	} while (!(status & SCxSR_TDxE(port)));
 752
 753	sci_serial_out(port, SCxTDR, c);
 754	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
 755}
 756#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
 757	  CONFIG_SERIAL_SH_SCI_EARLYCON */
 758
 759static void sci_init_pins(struct uart_port *port, unsigned int cflag)
 760{
 761	struct sci_port *s = to_sci_port(port);
 762
 763	/*
 764	 * Use port-specific handler if provided.
 765	 */
 766	if (s->cfg->ops && s->cfg->ops->init_pins) {
 767		s->cfg->ops->init_pins(port, cflag);
 768		return;
 769	}
 770
 771	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 772		u16 data = sci_serial_in(port, SCPDR);
 773		u16 ctrl = sci_serial_in(port, SCPCR);
 774
 775		/* Enable RXD and TXD pin functions */
 776		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
 777		if (to_sci_port(port)->has_rtscts) {
 778			/* RTS# is output, active low, unless autorts */
 779			if (!(port->mctrl & TIOCM_RTS)) {
 780				ctrl |= SCPCR_RTSC;
 781				data |= SCPDR_RTSD;
 782			} else if (!s->autorts) {
 783				ctrl |= SCPCR_RTSC;
 784				data &= ~SCPDR_RTSD;
 785			} else {
 786				/* Enable RTS# pin function */
 787				ctrl &= ~SCPCR_RTSC;
 788			}
 789			/* Enable CTS# pin function */
 790			ctrl &= ~SCPCR_CTSC;
 791		}
 792		sci_serial_out(port, SCPDR, data);
 793		sci_serial_out(port, SCPCR, ctrl);
 794	} else if (sci_getreg(port, SCSPTR)->size && s->cfg->regtype != SCIx_RZV2H_SCIF_REGTYPE) {
 795		u16 status = sci_serial_in(port, SCSPTR);
 796
 797		/* RTS# is always output; and active low, unless autorts */
 798		status |= SCSPTR_RTSIO;
 799		if (!(port->mctrl & TIOCM_RTS))
 800			status |= SCSPTR_RTSDT;
 801		else if (!s->autorts)
 802			status &= ~SCSPTR_RTSDT;
 803		/* CTS# and SCK are inputs */
 804		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
 805		sci_serial_out(port, SCSPTR, status);
 806	}
 807}
 808
 809static int sci_txfill(struct uart_port *port)
 810{
 811	struct sci_port *s = to_sci_port(port);
 812	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
 813	const struct plat_sci_reg *reg;
 814
 815	reg = sci_getreg(port, SCTFDR);
 816	if (reg->size)
 817		return sci_serial_in(port, SCTFDR) & fifo_mask;
 818
 819	reg = sci_getreg(port, SCFDR);
 820	if (reg->size)
 821		return sci_serial_in(port, SCFDR) >> 8;
 822
 823	return !(sci_serial_in(port, SCxSR) & SCI_TDRE);
 824}
 825
 826static int sci_txroom(struct uart_port *port)
 827{
 828	return port->fifosize - sci_txfill(port);
 829}
 830
 831static int sci_rxfill(struct uart_port *port)
 832{
 833	struct sci_port *s = to_sci_port(port);
 834	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
 835	const struct plat_sci_reg *reg;
 836
 837	reg = sci_getreg(port, SCRFDR);
 838	if (reg->size)
 839		return sci_serial_in(port, SCRFDR) & fifo_mask;
 840
 841	reg = sci_getreg(port, SCFDR);
 842	if (reg->size)
 843		return sci_serial_in(port, SCFDR) & fifo_mask;
 844
 845	return (sci_serial_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
 846}
 847
 848/* ********************************************************************** *
 849 *                   the interrupt related routines                       *
 850 * ********************************************************************** */
 851
 852static void sci_transmit_chars(struct uart_port *port)
 853{
 854	struct tty_port *tport = &port->state->port;
 855	unsigned int stopped = uart_tx_stopped(port);
 856	struct sci_port *s = to_sci_port(port);
 857	unsigned short status;
 858	unsigned short ctrl;
 859	int count;
 860
 861	status = sci_serial_in(port, SCxSR);
 862	if (!(status & SCxSR_TDxE(port))) {
 863		ctrl = sci_serial_in(port, SCSCR);
 864		if (kfifo_is_empty(&tport->xmit_fifo))
 865			ctrl &= ~SCSCR_TIE;
 866		else
 867			ctrl |= SCSCR_TIE;
 868		sci_serial_out(port, SCSCR, ctrl);
 869		return;
 870	}
 871
 872	count = sci_txroom(port);
 873
 874	do {
 875		unsigned char c;
 876
 877		if (port->x_char) {
 878			c = port->x_char;
 879			port->x_char = 0;
 880		} else if (stopped || !kfifo_get(&tport->xmit_fifo, &c)) {
 881			if (port->type == PORT_SCI &&
 882				   kfifo_is_empty(&tport->xmit_fifo)) {
 883				ctrl = sci_serial_in(port, SCSCR);
 884				ctrl &= ~SCSCR_TE;
 885				sci_serial_out(port, SCSCR, ctrl);
 886				return;
 887			}
 888			break;
 889		}
 890
 891		sci_serial_out(port, SCxTDR, c);
 892		s->tx_occurred = true;
 893
 894		port->icount.tx++;
 895	} while (--count > 0);
 896
 897	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
 898
 899	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
 900		uart_write_wakeup(port);
 901	if (kfifo_is_empty(&tport->xmit_fifo)) {
 902		if (port->type == PORT_SCI) {
 903			ctrl = sci_serial_in(port, SCSCR);
 904			ctrl &= ~SCSCR_TIE;
 905			ctrl |= SCSCR_TEIE;
 906			sci_serial_out(port, SCSCR, ctrl);
 907		}
 908
 909		sci_stop_tx(port);
 910	}
 911}
 912
 913static void sci_receive_chars(struct uart_port *port)
 914{
 915	struct tty_port *tport = &port->state->port;
 916	int i, count, copied = 0;
 917	unsigned short status;
 918	unsigned char flag;
 919
 920	status = sci_serial_in(port, SCxSR);
 921	if (!(status & SCxSR_RDxF(port)))
 922		return;
 923
 924	while (1) {
 925		/* Don't copy more bytes than there is room for in the buffer */
 926		count = tty_buffer_request_room(tport, sci_rxfill(port));
 927
 928		/* If for any reason we can't copy more data, we're done! */
 929		if (count == 0)
 930			break;
 931
 932		if (port->type == PORT_SCI) {
 933			char c = sci_serial_in(port, SCxRDR);
 934			if (uart_handle_sysrq_char(port, c))
 935				count = 0;
 936			else
 937				tty_insert_flip_char(tport, c, TTY_NORMAL);
 938		} else {
 939			for (i = 0; i < count; i++) {
 940				char c;
 941
 942				if (port->type == PORT_SCIF ||
 943				    port->type == PORT_HSCIF) {
 944					status = sci_serial_in(port, SCxSR);
 945					c = sci_serial_in(port, SCxRDR);
 946				} else {
 947					c = sci_serial_in(port, SCxRDR);
 948					status = sci_serial_in(port, SCxSR);
 949				}
 950				if (uart_handle_sysrq_char(port, c)) {
 951					count--; i--;
 952					continue;
 953				}
 954
 955				/* Store data and status */
 956				if (status & SCxSR_FER(port)) {
 957					flag = TTY_FRAME;
 958					port->icount.frame++;
 
 959				} else if (status & SCxSR_PER(port)) {
 960					flag = TTY_PARITY;
 961					port->icount.parity++;
 
 962				} else
 963					flag = TTY_NORMAL;
 964
 965				tty_insert_flip_char(tport, c, flag);
 966			}
 967		}
 968
 969		sci_serial_in(port, SCxSR); /* dummy read */
 970		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 971
 972		copied += count;
 973		port->icount.rx += count;
 974	}
 975
 976	if (copied) {
 977		/* Tell the rest of the system the news. New characters! */
 978		tty_flip_buffer_push(tport);
 979	} else {
 980		/* TTY buffers full; read from RX reg to prevent lockup */
 981		sci_serial_in(port, SCxRDR);
 982		sci_serial_in(port, SCxSR); /* dummy read */
 983		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 984	}
 985}
 986
 987static int sci_handle_errors(struct uart_port *port)
 988{
 989	int copied = 0;
 990	unsigned short status = sci_serial_in(port, SCxSR);
 991	struct tty_port *tport = &port->state->port;
 992	struct sci_port *s = to_sci_port(port);
 993
 994	/* Handle overruns */
 995	if (status & s->params->overrun_mask) {
 996		port->icount.overrun++;
 997
 998		/* overrun error */
 999		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
1000			copied++;
 
 
1001	}
1002
1003	if (status & SCxSR_FER(port)) {
1004		/* frame error */
1005		port->icount.frame++;
1006
1007		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
1008			copied++;
 
 
1009	}
1010
1011	if (status & SCxSR_PER(port)) {
1012		/* parity error */
1013		port->icount.parity++;
1014
1015		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
1016			copied++;
 
 
1017	}
1018
1019	if (copied)
1020		tty_flip_buffer_push(tport);
1021
1022	return copied;
1023}
1024
1025static int sci_handle_fifo_overrun(struct uart_port *port)
1026{
1027	struct tty_port *tport = &port->state->port;
1028	struct sci_port *s = to_sci_port(port);
1029	const struct plat_sci_reg *reg;
1030	int copied = 0;
1031	u16 status;
1032
1033	reg = sci_getreg(port, s->params->overrun_reg);
1034	if (!reg->size)
1035		return 0;
1036
1037	status = sci_serial_in(port, s->params->overrun_reg);
1038	if (status & s->params->overrun_mask) {
1039		status &= ~s->params->overrun_mask;
1040		sci_serial_out(port, s->params->overrun_reg, status);
1041
1042		port->icount.overrun++;
1043
1044		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1045		tty_flip_buffer_push(tport);
 
 
1046		copied++;
1047	}
1048
1049	return copied;
1050}
1051
1052static int sci_handle_breaks(struct uart_port *port)
1053{
1054	int copied = 0;
1055	unsigned short status = sci_serial_in(port, SCxSR);
1056	struct tty_port *tport = &port->state->port;
1057
1058	if (uart_handle_break(port))
1059		return 0;
1060
1061	if (status & SCxSR_BRK(port)) {
1062		port->icount.brk++;
1063
1064		/* Notify of BREAK */
1065		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1066			copied++;
 
 
1067	}
1068
1069	if (copied)
1070		tty_flip_buffer_push(tport);
1071
1072	copied += sci_handle_fifo_overrun(port);
1073
1074	return copied;
1075}
1076
1077static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1078{
1079	unsigned int bits;
1080
1081	if (rx_trig >= port->fifosize)
1082		rx_trig = port->fifosize - 1;
1083	if (rx_trig < 1)
1084		rx_trig = 1;
1085
1086	/* HSCIF can be set to an arbitrary level. */
1087	if (sci_getreg(port, HSRTRGR)->size) {
1088		sci_serial_out(port, HSRTRGR, rx_trig);
1089		return rx_trig;
1090	}
1091
1092	switch (port->type) {
1093	case PORT_SCIF:
1094		if (rx_trig < 4) {
1095			bits = 0;
1096			rx_trig = 1;
1097		} else if (rx_trig < 8) {
1098			bits = SCFCR_RTRG0;
1099			rx_trig = 4;
1100		} else if (rx_trig < 14) {
1101			bits = SCFCR_RTRG1;
1102			rx_trig = 8;
1103		} else {
1104			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1105			rx_trig = 14;
1106		}
1107		break;
1108	case PORT_SCIFA:
1109	case PORT_SCIFB:
1110		if (rx_trig < 16) {
1111			bits = 0;
1112			rx_trig = 1;
1113		} else if (rx_trig < 32) {
1114			bits = SCFCR_RTRG0;
1115			rx_trig = 16;
1116		} else if (rx_trig < 48) {
1117			bits = SCFCR_RTRG1;
1118			rx_trig = 32;
1119		} else {
1120			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1121			rx_trig = 48;
1122		}
1123		break;
1124	default:
1125		WARN(1, "unknown FIFO configuration");
1126		return 1;
1127	}
1128
1129	sci_serial_out(port, SCFCR,
1130		       (sci_serial_in(port, SCFCR) &
1131			~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1132
1133	return rx_trig;
1134}
1135
1136static int scif_rtrg_enabled(struct uart_port *port)
1137{
1138	if (sci_getreg(port, HSRTRGR)->size)
1139		return sci_serial_in(port, HSRTRGR) != 0;
1140	else
1141		return (sci_serial_in(port, SCFCR) &
1142			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1143}
1144
1145static void rx_fifo_timer_fn(struct timer_list *t)
1146{
1147	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1148	struct uart_port *port = &s->port;
1149
1150	dev_dbg(port->dev, "Rx timed out\n");
1151	scif_set_rtrg(port, 1);
1152}
1153
1154static ssize_t rx_fifo_trigger_show(struct device *dev,
1155				    struct device_attribute *attr, char *buf)
1156{
1157	struct uart_port *port = dev_get_drvdata(dev);
1158	struct sci_port *sci = to_sci_port(port);
1159
1160	return sprintf(buf, "%d\n", sci->rx_trigger);
1161}
1162
1163static ssize_t rx_fifo_trigger_store(struct device *dev,
1164				     struct device_attribute *attr,
1165				     const char *buf, size_t count)
1166{
1167	struct uart_port *port = dev_get_drvdata(dev);
1168	struct sci_port *sci = to_sci_port(port);
1169	int ret;
1170	long r;
1171
1172	ret = kstrtol(buf, 0, &r);
1173	if (ret)
1174		return ret;
1175
1176	sci->rx_trigger = scif_set_rtrg(port, r);
1177	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1178		scif_set_rtrg(port, 1);
1179
1180	return count;
1181}
1182
1183static DEVICE_ATTR_RW(rx_fifo_trigger);
1184
1185static ssize_t rx_fifo_timeout_show(struct device *dev,
1186			       struct device_attribute *attr,
1187			       char *buf)
1188{
1189	struct uart_port *port = dev_get_drvdata(dev);
1190	struct sci_port *sci = to_sci_port(port);
1191	int v;
1192
1193	if (port->type == PORT_HSCIF)
1194		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1195	else
1196		v = sci->rx_fifo_timeout;
1197
1198	return sprintf(buf, "%d\n", v);
1199}
1200
1201static ssize_t rx_fifo_timeout_store(struct device *dev,
1202				struct device_attribute *attr,
1203				const char *buf,
1204				size_t count)
1205{
1206	struct uart_port *port = dev_get_drvdata(dev);
1207	struct sci_port *sci = to_sci_port(port);
1208	int ret;
1209	long r;
1210
1211	ret = kstrtol(buf, 0, &r);
1212	if (ret)
1213		return ret;
1214
1215	if (port->type == PORT_HSCIF) {
1216		if (r < 0 || r > 3)
1217			return -EINVAL;
1218		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1219	} else {
1220		sci->rx_fifo_timeout = r;
1221		scif_set_rtrg(port, 1);
1222		if (r > 0)
1223			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1224	}
1225
1226	return count;
1227}
1228
1229static DEVICE_ATTR_RW(rx_fifo_timeout);
1230
1231
1232#ifdef CONFIG_SERIAL_SH_SCI_DMA
1233static void sci_dma_tx_complete(void *arg)
1234{
1235	struct sci_port *s = arg;
1236	struct uart_port *port = &s->port;
1237	struct tty_port *tport = &port->state->port;
1238	unsigned long flags;
1239
1240	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1241
1242	uart_port_lock_irqsave(port, &flags);
 
 
 
1243
1244	uart_xmit_advance(port, s->tx_dma_len);
1245
1246	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
1247		uart_write_wakeup(port);
1248
1249	s->tx_occurred = true;
1250
1251	if (!kfifo_is_empty(&tport->xmit_fifo)) {
1252		s->cookie_tx = 0;
1253		schedule_work(&s->work_tx);
1254	} else {
1255		s->cookie_tx = -EINVAL;
1256		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1257		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1258			u16 ctrl = sci_serial_in(port, SCSCR);
1259			sci_serial_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1260			if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1261				/* Switch irq from DMA to SCIF */
1262				dmaengine_pause(s->chan_tx_saved);
1263				enable_irq(s->irqs[SCIx_TXI_IRQ]);
1264			}
1265		}
1266	}
1267
1268	uart_port_unlock_irqrestore(port, flags);
1269}
1270
1271/* Locking: called with port lock held */
1272static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1273{
1274	struct uart_port *port = &s->port;
1275	struct tty_port *tport = &port->state->port;
1276	int copied;
1277
1278	copied = tty_insert_flip_string(tport, buf, count);
1279	if (copied < count)
1280		port->icount.buf_overrun++;
1281
1282	port->icount.rx += copied;
1283
1284	return copied;
1285}
1286
1287static int sci_dma_rx_find_active(struct sci_port *s)
1288{
1289	unsigned int i;
1290
1291	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1292		if (s->active_rx == s->cookie_rx[i])
1293			return i;
1294
1295	return -1;
1296}
1297
1298/* Must only be called with uart_port_lock taken */
1299static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1300{
1301	unsigned int i;
1302
1303	s->chan_rx = NULL;
1304	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1305		s->cookie_rx[i] = -EINVAL;
1306	s->active_rx = 0;
1307}
1308
1309static void sci_dma_rx_release(struct sci_port *s)
1310{
1311	struct dma_chan *chan = s->chan_rx_saved;
1312	struct uart_port *port = &s->port;
1313	unsigned long flags;
1314
1315	uart_port_lock_irqsave(port, &flags);
1316	s->chan_rx_saved = NULL;
1317	sci_dma_rx_chan_invalidate(s);
1318	uart_port_unlock_irqrestore(port, flags);
1319
1320	dmaengine_terminate_sync(chan);
1321	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1322			  sg_dma_address(&s->sg_rx[0]));
1323	dma_release_channel(chan);
1324}
1325
1326static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1327{
1328	long sec = usec / 1000000;
1329	long nsec = (usec % 1000000) * 1000;
1330	ktime_t t = ktime_set(sec, nsec);
1331
1332	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1333}
1334
1335static void sci_dma_rx_reenable_irq(struct sci_port *s)
1336{
1337	struct uart_port *port = &s->port;
1338	u16 scr;
1339
1340	/* Direct new serial port interrupts back to CPU */
1341	scr = sci_serial_in(port, SCSCR);
1342	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1343	    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1344		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1345		if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1346			scif_set_rtrg(port, s->rx_trigger);
1347		else
1348			scr &= ~SCSCR_RDRQE;
1349	}
1350	sci_serial_out(port, SCSCR, scr | SCSCR_RIE);
1351}
1352
1353static void sci_dma_rx_complete(void *arg)
1354{
1355	struct sci_port *s = arg;
1356	struct dma_chan *chan = s->chan_rx;
1357	struct uart_port *port = &s->port;
1358	struct dma_async_tx_descriptor *desc;
1359	unsigned long flags;
1360	int active, count = 0;
1361
1362	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1363		s->active_rx);
1364
1365	hrtimer_cancel(&s->rx_timer);
1366
1367	uart_port_lock_irqsave(port, &flags);
1368
1369	active = sci_dma_rx_find_active(s);
1370	if (active >= 0)
1371		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1372
 
 
1373	if (count)
1374		tty_flip_buffer_push(&port->state->port);
1375
1376	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1377				       DMA_DEV_TO_MEM,
1378				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1379	if (!desc)
1380		goto fail;
1381
1382	desc->callback = sci_dma_rx_complete;
1383	desc->callback_param = s;
1384	s->cookie_rx[active] = dmaengine_submit(desc);
1385	if (dma_submit_error(s->cookie_rx[active]))
1386		goto fail;
1387
1388	s->active_rx = s->cookie_rx[!active];
1389
1390	dma_async_issue_pending(chan);
1391
1392	uart_port_unlock_irqrestore(port, flags);
1393	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1394		__func__, s->cookie_rx[active], active, s->active_rx);
1395
1396	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1397
1398	return;
1399
1400fail:
 
 
1401	/* Switch to PIO */
 
1402	dmaengine_terminate_async(chan);
1403	sci_dma_rx_chan_invalidate(s);
1404	sci_dma_rx_reenable_irq(s);
1405	uart_port_unlock_irqrestore(port, flags);
1406	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1407}
1408
1409static void sci_dma_tx_release(struct sci_port *s)
1410{
1411	struct dma_chan *chan = s->chan_tx_saved;
1412
1413	cancel_work_sync(&s->work_tx);
1414	s->chan_tx_saved = s->chan_tx = NULL;
1415	s->cookie_tx = -EINVAL;
1416	dmaengine_terminate_sync(chan);
1417	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1418			 DMA_TO_DEVICE);
1419	dma_release_channel(chan);
1420}
1421
1422static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1423{
1424	struct dma_chan *chan = s->chan_rx;
1425	struct uart_port *port = &s->port;
1426	unsigned long flags;
1427	int i;
1428
1429	for (i = 0; i < 2; i++) {
1430		struct scatterlist *sg = &s->sg_rx[i];
1431		struct dma_async_tx_descriptor *desc;
1432
1433		desc = dmaengine_prep_slave_sg(chan,
1434			sg, 1, DMA_DEV_TO_MEM,
1435			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1436		if (!desc)
1437			goto fail;
1438
1439		desc->callback = sci_dma_rx_complete;
1440		desc->callback_param = s;
1441		s->cookie_rx[i] = dmaengine_submit(desc);
1442		if (dma_submit_error(s->cookie_rx[i]))
1443			goto fail;
1444
1445	}
1446
1447	s->active_rx = s->cookie_rx[0];
1448
1449	dma_async_issue_pending(chan);
1450	return 0;
1451
1452fail:
1453	/* Switch to PIO */
1454	if (!port_lock_held)
1455		uart_port_lock_irqsave(port, &flags);
1456	if (i)
1457		dmaengine_terminate_async(chan);
1458	sci_dma_rx_chan_invalidate(s);
1459	sci_start_rx(port);
1460	if (!port_lock_held)
1461		uart_port_unlock_irqrestore(port, flags);
1462	return -EAGAIN;
1463}
1464
1465static void sci_dma_tx_work_fn(struct work_struct *work)
1466{
1467	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1468	struct dma_async_tx_descriptor *desc;
1469	struct dma_chan *chan = s->chan_tx;
1470	struct uart_port *port = &s->port;
1471	struct tty_port *tport = &port->state->port;
1472	unsigned long flags;
1473	unsigned int tail;
1474	dma_addr_t buf;
 
1475
1476	/*
1477	 * DMA is idle now.
1478	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1479	 * offsets and lengths. Since it is a circular buffer, we have to
1480	 * transmit till the end, and then the rest. Take the port lock to get a
1481	 * consistent xmit buffer state.
1482	 */
1483	uart_port_lock_irq(port);
1484	s->tx_dma_len = kfifo_out_linear(&tport->xmit_fifo, &tail,
1485			UART_XMIT_SIZE);
1486	buf = s->tx_dma_addr + tail;
 
 
 
1487	if (!s->tx_dma_len) {
1488		/* Transmit buffer has been flushed */
1489		uart_port_unlock_irq(port);
1490		return;
1491	}
1492
1493	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1494					   DMA_MEM_TO_DEV,
1495					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1496	if (!desc) {
1497		uart_port_unlock_irq(port);
1498		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1499		goto switch_to_pio;
1500	}
1501
1502	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1503				   DMA_TO_DEVICE);
1504
1505	desc->callback = sci_dma_tx_complete;
1506	desc->callback_param = s;
1507	s->cookie_tx = dmaengine_submit(desc);
1508	if (dma_submit_error(s->cookie_tx)) {
1509		uart_port_unlock_irq(port);
1510		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1511		goto switch_to_pio;
1512	}
1513
1514	uart_port_unlock_irq(port);
1515	dev_dbg(port->dev, "%s: %p: %u, cookie %d\n",
1516		__func__, tport->xmit_buf, tail, s->cookie_tx);
1517
1518	dma_async_issue_pending(chan);
1519	return;
1520
1521switch_to_pio:
1522	uart_port_lock_irqsave(port, &flags);
1523	s->chan_tx = NULL;
1524	sci_start_tx(port);
1525	uart_port_unlock_irqrestore(port, flags);
1526	return;
1527}
1528
1529static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1530{
1531	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1532	struct dma_chan *chan = s->chan_rx;
1533	struct uart_port *port = &s->port;
1534	struct dma_tx_state state;
1535	enum dma_status status;
1536	unsigned long flags;
1537	unsigned int read;
1538	int active, count;
1539
1540	dev_dbg(port->dev, "DMA Rx timed out\n");
1541
1542	uart_port_lock_irqsave(port, &flags);
1543
1544	active = sci_dma_rx_find_active(s);
1545	if (active < 0) {
1546		uart_port_unlock_irqrestore(port, flags);
1547		return HRTIMER_NORESTART;
1548	}
1549
1550	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1551	if (status == DMA_COMPLETE) {
1552		uart_port_unlock_irqrestore(port, flags);
1553		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1554			s->active_rx, active);
1555
1556		/* Let packet complete handler take care of the packet */
1557		return HRTIMER_NORESTART;
1558	}
1559
1560	dmaengine_pause(chan);
1561
1562	/*
1563	 * sometimes DMA transfer doesn't stop even if it is stopped and
1564	 * data keeps on coming until transaction is complete so check
1565	 * for DMA_COMPLETE again
1566	 * Let packet complete handler take care of the packet
1567	 */
1568	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1569	if (status == DMA_COMPLETE) {
1570		uart_port_unlock_irqrestore(port, flags);
1571		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1572		return HRTIMER_NORESTART;
1573	}
1574
1575	/* Handle incomplete DMA receive */
1576	dmaengine_terminate_async(s->chan_rx);
1577	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1578
1579	if (read) {
1580		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1581		if (count)
1582			tty_flip_buffer_push(&port->state->port);
1583	}
1584
1585	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1586	    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1587		sci_dma_rx_submit(s, true);
1588
1589	sci_dma_rx_reenable_irq(s);
1590
1591	uart_port_unlock_irqrestore(port, flags);
1592
1593	return HRTIMER_NORESTART;
1594}
1595
1596static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1597					     enum dma_transfer_direction dir)
1598{
1599	struct dma_chan *chan;
1600	struct dma_slave_config cfg;
1601	int ret;
1602
1603	chan = dma_request_chan(port->dev, dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1604	if (IS_ERR(chan)) {
1605		dev_dbg(port->dev, "dma_request_chan failed\n");
 
1606		return NULL;
1607	}
1608
1609	memset(&cfg, 0, sizeof(cfg));
1610	cfg.direction = dir;
1611	cfg.dst_addr = port->mapbase +
1612		(sci_getreg(port, SCxTDR)->offset << port->regshift);
1613	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1614	cfg.src_addr = port->mapbase +
1615		(sci_getreg(port, SCxRDR)->offset << port->regshift);
1616	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 
 
 
1617
1618	ret = dmaengine_slave_config(chan, &cfg);
1619	if (ret) {
1620		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1621		dma_release_channel(chan);
1622		return NULL;
1623	}
1624
1625	return chan;
1626}
1627
1628static void sci_request_dma(struct uart_port *port)
1629{
1630	struct sci_port *s = to_sci_port(port);
1631	struct tty_port *tport = &port->state->port;
1632	struct dma_chan *chan;
1633
1634	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1635
1636	/*
1637	 * DMA on console may interfere with Kernel log messages which use
1638	 * plain putchar(). So, simply don't use it with a console.
1639	 */
1640	if (uart_console(port))
1641		return;
1642
1643	if (!port->dev->of_node)
1644		return;
1645
1646	s->cookie_tx = -EINVAL;
1647
1648	/*
1649	 * Don't request a dma channel if no channel was specified
1650	 * in the device tree.
1651	 */
1652	if (!of_property_present(port->dev->of_node, "dmas"))
1653		return;
1654
1655	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1656	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1657	if (chan) {
1658		/* UART circular tx buffer is an aligned page. */
1659		s->tx_dma_addr = dma_map_single(chan->device->dev,
1660						tport->xmit_buf,
1661						UART_XMIT_SIZE,
1662						DMA_TO_DEVICE);
1663		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1664			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1665			dma_release_channel(chan);
1666		} else {
1667			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1668				__func__, UART_XMIT_SIZE,
1669				tport->xmit_buf, &s->tx_dma_addr);
1670
1671			INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1672			s->chan_tx_saved = s->chan_tx = chan;
1673		}
1674	}
1675
1676	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1677	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1678	if (chan) {
1679		unsigned int i;
1680		dma_addr_t dma;
1681		void *buf;
1682
1683		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1684		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1685					 &dma, GFP_KERNEL);
1686		if (!buf) {
1687			dev_warn(port->dev,
1688				 "Failed to allocate Rx dma buffer, using PIO\n");
1689			dma_release_channel(chan);
1690			return;
1691		}
1692
1693		for (i = 0; i < 2; i++) {
1694			struct scatterlist *sg = &s->sg_rx[i];
1695
1696			sg_init_table(sg, 1);
1697			s->rx_buf[i] = buf;
1698			sg_dma_address(sg) = dma;
1699			sg_dma_len(sg) = s->buf_len_rx;
1700
1701			buf += s->buf_len_rx;
1702			dma += s->buf_len_rx;
1703		}
1704
1705		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1706		s->rx_timer.function = sci_dma_rx_timer_fn;
1707
1708		s->chan_rx_saved = s->chan_rx = chan;
1709
1710		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1711		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1712			sci_dma_rx_submit(s, false);
1713	}
1714}
1715
1716static void sci_free_dma(struct uart_port *port)
1717{
1718	struct sci_port *s = to_sci_port(port);
1719
1720	if (s->chan_tx_saved)
1721		sci_dma_tx_release(s);
1722	if (s->chan_rx_saved)
1723		sci_dma_rx_release(s);
1724}
1725
1726static void sci_flush_buffer(struct uart_port *port)
1727{
1728	struct sci_port *s = to_sci_port(port);
1729
1730	/*
1731	 * In uart_flush_buffer(), the xmit circular buffer has just been
1732	 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1733	 * pending transfers
1734	 */
1735	s->tx_dma_len = 0;
1736	if (s->chan_tx) {
1737		dmaengine_terminate_async(s->chan_tx);
1738		s->cookie_tx = -EINVAL;
1739	}
1740}
1741
1742static void sci_dma_check_tx_occurred(struct sci_port *s)
1743{
1744	struct dma_tx_state state;
1745	enum dma_status status;
1746
1747	if (!s->chan_tx)
1748		return;
1749
1750	status = dmaengine_tx_status(s->chan_tx, s->cookie_tx, &state);
1751	if (status == DMA_COMPLETE || status == DMA_IN_PROGRESS)
1752		s->tx_occurred = true;
1753}
1754#else /* !CONFIG_SERIAL_SH_SCI_DMA */
1755static inline void sci_request_dma(struct uart_port *port)
1756{
1757}
1758
1759static inline void sci_free_dma(struct uart_port *port)
1760{
1761}
1762
1763static void sci_dma_check_tx_occurred(struct sci_port *s)
1764{
1765}
1766
1767#define sci_flush_buffer	NULL
1768#endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1769
1770static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1771{
1772	struct uart_port *port = ptr;
1773	struct sci_port *s = to_sci_port(port);
1774
1775#ifdef CONFIG_SERIAL_SH_SCI_DMA
1776	if (s->chan_rx) {
1777		u16 scr = sci_serial_in(port, SCSCR);
1778		u16 ssr = sci_serial_in(port, SCxSR);
1779
1780		/* Disable future Rx interrupts */
1781		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1782		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1783			disable_irq_nosync(s->irqs[SCIx_RXI_IRQ]);
1784			if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1785				scif_set_rtrg(port, 1);
1786				scr |= SCSCR_RIE;
1787			} else {
1788				scr |= SCSCR_RDRQE;
1789			}
1790		} else {
1791			if (sci_dma_rx_submit(s, false) < 0)
1792				goto handle_pio;
1793
1794			scr &= ~SCSCR_RIE;
1795		}
1796		sci_serial_out(port, SCSCR, scr);
1797		/* Clear current interrupt */
1798		sci_serial_out(port, SCxSR,
1799			       ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1800		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1801			jiffies, s->rx_timeout);
1802		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1803
1804		return IRQ_HANDLED;
1805	}
1806
1807handle_pio:
1808#endif
1809
1810	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1811		if (!scif_rtrg_enabled(port))
1812			scif_set_rtrg(port, s->rx_trigger);
1813
1814		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1815			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1816	}
1817
1818	/* I think sci_receive_chars has to be called irrespective
1819	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1820	 * to be disabled?
1821	 */
1822	sci_receive_chars(port);
1823
1824	return IRQ_HANDLED;
1825}
1826
1827static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1828{
1829	struct uart_port *port = ptr;
1830	unsigned long flags;
1831
1832	uart_port_lock_irqsave(port, &flags);
1833	sci_transmit_chars(port);
1834	uart_port_unlock_irqrestore(port, flags);
1835
1836	return IRQ_HANDLED;
1837}
1838
1839static irqreturn_t sci_tx_end_interrupt(int irq, void *ptr)
1840{
1841	struct uart_port *port = ptr;
1842	unsigned long flags;
1843	unsigned short ctrl;
1844
1845	if (port->type != PORT_SCI)
1846		return sci_tx_interrupt(irq, ptr);
1847
1848	uart_port_lock_irqsave(port, &flags);
1849	ctrl = sci_serial_in(port, SCSCR);
1850	ctrl &= ~(SCSCR_TE | SCSCR_TEIE);
1851	sci_serial_out(port, SCSCR, ctrl);
1852	uart_port_unlock_irqrestore(port, flags);
1853
1854	return IRQ_HANDLED;
1855}
1856
1857static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1858{
1859	struct uart_port *port = ptr;
1860
1861	/* Handle BREAKs */
1862	sci_handle_breaks(port);
1863
1864	/* drop invalid character received before break was detected */
1865	sci_serial_in(port, SCxRDR);
1866
1867	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1868
1869	return IRQ_HANDLED;
1870}
1871
1872static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1873{
1874	struct uart_port *port = ptr;
1875	struct sci_port *s = to_sci_port(port);
1876
1877	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1878		/* Break and Error interrupts are muxed */
1879		unsigned short ssr_status = sci_serial_in(port, SCxSR);
1880
1881		/* Break Interrupt */
1882		if (ssr_status & SCxSR_BRK(port))
1883			sci_br_interrupt(irq, ptr);
1884
1885		/* Break only? */
1886		if (!(ssr_status & SCxSR_ERRORS(port)))
1887			return IRQ_HANDLED;
1888	}
1889
1890	/* Handle errors */
1891	if (port->type == PORT_SCI) {
1892		if (sci_handle_errors(port)) {
1893			/* discard character in rx buffer */
1894			sci_serial_in(port, SCxSR);
1895			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1896		}
1897	} else {
1898		sci_handle_fifo_overrun(port);
1899		if (!s->chan_rx)
1900			sci_receive_chars(port);
1901	}
1902
1903	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1904
1905	/* Kick the transmission */
1906	if (!s->chan_tx)
1907		sci_tx_interrupt(irq, ptr);
1908
1909	return IRQ_HANDLED;
1910}
1911
1912static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1913{
1914	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1915	struct uart_port *port = ptr;
1916	struct sci_port *s = to_sci_port(port);
1917	irqreturn_t ret = IRQ_NONE;
1918
1919	ssr_status = sci_serial_in(port, SCxSR);
1920	scr_status = sci_serial_in(port, SCSCR);
1921	if (s->params->overrun_reg == SCxSR)
1922		orer_status = ssr_status;
1923	else if (sci_getreg(port, s->params->overrun_reg)->size)
1924		orer_status = sci_serial_in(port, s->params->overrun_reg);
1925
1926	err_enabled = scr_status & port_rx_irq_mask(port);
1927
1928	/* Tx Interrupt */
1929	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1930	    !s->chan_tx)
1931		ret = sci_tx_interrupt(irq, ptr);
1932
1933	/*
1934	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1935	 * DR flags
1936	 */
1937	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1938	    (scr_status & SCSCR_RIE))
1939		ret = sci_rx_interrupt(irq, ptr);
1940
1941	/* Error Interrupt */
1942	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1943		ret = sci_er_interrupt(irq, ptr);
1944
1945	/* Break Interrupt */
1946	if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
1947	    (ssr_status & SCxSR_BRK(port)) && err_enabled)
1948		ret = sci_br_interrupt(irq, ptr);
1949
1950	/* Overrun Interrupt */
1951	if (orer_status & s->params->overrun_mask) {
1952		sci_handle_fifo_overrun(port);
1953		ret = IRQ_HANDLED;
1954	}
1955
1956	return ret;
1957}
1958
1959static const struct sci_irq_desc {
1960	const char	*desc;
1961	irq_handler_t	handler;
1962} sci_irq_desc[] = {
1963	/*
1964	 * Split out handlers, the default case.
1965	 */
1966	[SCIx_ERI_IRQ] = {
1967		.desc = "rx err",
1968		.handler = sci_er_interrupt,
1969	},
1970
1971	[SCIx_RXI_IRQ] = {
1972		.desc = "rx full",
1973		.handler = sci_rx_interrupt,
1974	},
1975
1976	[SCIx_TXI_IRQ] = {
1977		.desc = "tx empty",
1978		.handler = sci_tx_interrupt,
1979	},
1980
1981	[SCIx_BRI_IRQ] = {
1982		.desc = "break",
1983		.handler = sci_br_interrupt,
1984	},
1985
1986	[SCIx_DRI_IRQ] = {
1987		.desc = "rx ready",
1988		.handler = sci_rx_interrupt,
1989	},
1990
1991	[SCIx_TEI_IRQ] = {
1992		.desc = "tx end",
1993		.handler = sci_tx_end_interrupt,
1994	},
1995
1996	/*
1997	 * Special muxed handler.
1998	 */
1999	[SCIx_MUX_IRQ] = {
2000		.desc = "mux",
2001		.handler = sci_mpxed_interrupt,
2002	},
2003};
2004
2005static int sci_request_irq(struct sci_port *port)
2006{
2007	struct uart_port *up = &port->port;
2008	int i, j, w, ret = 0;
2009
2010	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
2011		const struct sci_irq_desc *desc;
2012		int irq;
2013
2014		/* Check if already registered (muxed) */
2015		for (w = 0; w < i; w++)
2016			if (port->irqs[w] == port->irqs[i])
2017				w = i + 1;
2018		if (w > i)
2019			continue;
2020
2021		if (SCIx_IRQ_IS_MUXED(port)) {
2022			i = SCIx_MUX_IRQ;
2023			irq = up->irq;
2024		} else {
2025			irq = port->irqs[i];
2026
2027			/*
2028			 * Certain port types won't support all of the
2029			 * available interrupt sources.
2030			 */
2031			if (unlikely(irq < 0))
2032				continue;
2033		}
2034
2035		desc = sci_irq_desc + i;
2036		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
2037					    dev_name(up->dev), desc->desc);
2038		if (!port->irqstr[j]) {
2039			ret = -ENOMEM;
2040			goto out_nomem;
2041		}
2042
2043		ret = request_irq(irq, desc->handler, up->irqflags,
2044				  port->irqstr[j], port);
2045		if (unlikely(ret)) {
2046			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
2047			goto out_noirq;
2048		}
2049	}
2050
2051	return 0;
2052
2053out_noirq:
2054	while (--i >= 0)
2055		free_irq(port->irqs[i], port);
2056
2057out_nomem:
2058	while (--j >= 0)
2059		kfree(port->irqstr[j]);
2060
2061	return ret;
2062}
2063
2064static void sci_free_irq(struct sci_port *port)
2065{
2066	int i, j;
2067
2068	/*
2069	 * Intentionally in reverse order so we iterate over the muxed
2070	 * IRQ first.
2071	 */
2072	for (i = 0; i < SCIx_NR_IRQS; i++) {
2073		int irq = port->irqs[i];
2074
2075		/*
2076		 * Certain port types won't support all of the available
2077		 * interrupt sources.
2078		 */
2079		if (unlikely(irq < 0))
2080			continue;
2081
2082		/* Check if already freed (irq was muxed) */
2083		for (j = 0; j < i; j++)
2084			if (port->irqs[j] == irq)
2085				j = i + 1;
2086		if (j > i)
2087			continue;
2088
2089		free_irq(port->irqs[i], port);
2090		kfree(port->irqstr[i]);
2091
2092		if (SCIx_IRQ_IS_MUXED(port)) {
2093			/* If there's only one IRQ, we're done. */
2094			return;
2095		}
2096	}
2097}
2098
2099static unsigned int sci_tx_empty(struct uart_port *port)
2100{
2101	unsigned short status = sci_serial_in(port, SCxSR);
2102	unsigned short in_tx_fifo = sci_txfill(port);
2103	struct sci_port *s = to_sci_port(port);
2104
2105	sci_dma_check_tx_occurred(s);
2106
2107	if (!s->tx_occurred)
2108		return TIOCSER_TEMT;
2109
2110	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
2111}
2112
2113static void sci_set_rts(struct uart_port *port, bool state)
2114{
2115	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2116		u16 data = sci_serial_in(port, SCPDR);
2117
2118		/* Active low */
2119		if (state)
2120			data &= ~SCPDR_RTSD;
2121		else
2122			data |= SCPDR_RTSD;
2123		sci_serial_out(port, SCPDR, data);
2124
2125		/* RTS# is output */
2126		sci_serial_out(port, SCPCR,
2127			       sci_serial_in(port, SCPCR) | SCPCR_RTSC);
2128	} else if (sci_getreg(port, SCSPTR)->size) {
2129		u16 ctrl = sci_serial_in(port, SCSPTR);
2130
2131		/* Active low */
2132		if (state)
2133			ctrl &= ~SCSPTR_RTSDT;
2134		else
2135			ctrl |= SCSPTR_RTSDT;
2136		sci_serial_out(port, SCSPTR, ctrl);
2137	}
2138}
2139
2140static bool sci_get_cts(struct uart_port *port)
2141{
2142	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2143		/* Active low */
2144		return !(sci_serial_in(port, SCPDR) & SCPDR_CTSD);
2145	} else if (sci_getreg(port, SCSPTR)->size) {
2146		/* Active low */
2147		return !(sci_serial_in(port, SCSPTR) & SCSPTR_CTSDT);
2148	}
2149
2150	return true;
2151}
2152
2153/*
2154 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2155 * CTS/RTS is supported in hardware by at least one port and controlled
2156 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2157 * handled via the ->init_pins() op, which is a bit of a one-way street,
2158 * lacking any ability to defer pin control -- this will later be
2159 * converted over to the GPIO framework).
2160 *
2161 * Other modes (such as loopback) are supported generically on certain
2162 * port types, but not others. For these it's sufficient to test for the
2163 * existence of the support register and simply ignore the port type.
2164 */
2165static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2166{
2167	struct sci_port *s = to_sci_port(port);
2168
2169	if (mctrl & TIOCM_LOOP) {
2170		const struct plat_sci_reg *reg;
2171
2172		/*
2173		 * Standard loopback mode for SCFCR ports.
2174		 */
2175		reg = sci_getreg(port, SCFCR);
2176		if (reg->size)
2177			sci_serial_out(port, SCFCR,
2178				       sci_serial_in(port, SCFCR) | SCFCR_LOOP);
 
2179	}
2180
2181	mctrl_gpio_set(s->gpios, mctrl);
2182
2183	if (!s->has_rtscts)
2184		return;
2185
2186	if (!(mctrl & TIOCM_RTS)) {
2187		/* Disable Auto RTS */
2188		if (s->cfg->regtype != SCIx_RZV2H_SCIF_REGTYPE)
2189			sci_serial_out(port, SCFCR,
2190				       sci_serial_in(port, SCFCR) & ~SCFCR_MCE);
2191
2192		/* Clear RTS */
2193		sci_set_rts(port, 0);
2194	} else if (s->autorts) {
2195		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2196			/* Enable RTS# pin function */
2197			sci_serial_out(port, SCPCR,
2198				sci_serial_in(port, SCPCR) & ~SCPCR_RTSC);
2199		}
2200
2201		/* Enable Auto RTS */
2202		if (s->cfg->regtype != SCIx_RZV2H_SCIF_REGTYPE)
2203			sci_serial_out(port, SCFCR,
2204				       sci_serial_in(port, SCFCR) | SCFCR_MCE);
2205	} else {
2206		/* Set RTS */
2207		sci_set_rts(port, 1);
2208	}
2209}
2210
2211static unsigned int sci_get_mctrl(struct uart_port *port)
2212{
2213	struct sci_port *s = to_sci_port(port);
2214	struct mctrl_gpios *gpios = s->gpios;
2215	unsigned int mctrl = 0;
2216
2217	mctrl_gpio_get(gpios, &mctrl);
2218
2219	/*
2220	 * CTS/RTS is handled in hardware when supported, while nothing
2221	 * else is wired up.
2222	 */
2223	if (s->autorts) {
2224		if (sci_get_cts(port))
2225			mctrl |= TIOCM_CTS;
2226	} else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2227		mctrl |= TIOCM_CTS;
2228	}
2229	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2230		mctrl |= TIOCM_DSR;
2231	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2232		mctrl |= TIOCM_CAR;
2233
2234	return mctrl;
2235}
2236
2237static void sci_enable_ms(struct uart_port *port)
2238{
2239	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2240}
2241
2242static void sci_break_ctl(struct uart_port *port, int break_state)
2243{
2244	unsigned short scscr, scsptr;
2245	unsigned long flags;
2246
2247	/* check whether the port has SCSPTR */
2248	if (!sci_getreg(port, SCSPTR)->size) {
2249		/*
2250		 * Not supported by hardware. Most parts couple break and rx
2251		 * interrupts together, with break detection always enabled.
2252		 */
2253		return;
2254	}
2255
2256	uart_port_lock_irqsave(port, &flags);
2257	scsptr = sci_serial_in(port, SCSPTR);
2258	scscr = sci_serial_in(port, SCSCR);
2259
2260	if (break_state == -1) {
2261		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2262		scscr &= ~SCSCR_TE;
2263	} else {
2264		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2265		scscr |= SCSCR_TE;
2266	}
2267
2268	sci_serial_out(port, SCSPTR, scsptr);
2269	sci_serial_out(port, SCSCR, scscr);
2270	uart_port_unlock_irqrestore(port, flags);
2271}
2272
2273static int sci_startup(struct uart_port *port)
2274{
2275	struct sci_port *s = to_sci_port(port);
2276	int ret;
2277
2278	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2279
2280	s->tx_occurred = false;
2281	sci_request_dma(port);
2282
2283	ret = sci_request_irq(s);
2284	if (unlikely(ret < 0)) {
2285		sci_free_dma(port);
2286		return ret;
2287	}
2288
2289	return 0;
2290}
2291
2292static void sci_shutdown(struct uart_port *port)
2293{
2294	struct sci_port *s = to_sci_port(port);
2295	unsigned long flags;
2296	u16 scr;
2297
2298	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2299
2300	s->autorts = false;
2301	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2302
2303	uart_port_lock_irqsave(port, &flags);
2304	sci_stop_rx(port);
2305	sci_stop_tx(port);
2306	/*
2307	 * Stop RX and TX, disable related interrupts, keep clock source
2308	 * and HSCIF TOT bits
2309	 */
2310	scr = sci_serial_in(port, SCSCR);
2311	sci_serial_out(port, SCSCR,
2312		       scr & (SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2313	uart_port_unlock_irqrestore(port, flags);
2314
2315#ifdef CONFIG_SERIAL_SH_SCI_DMA
2316	if (s->chan_rx_saved) {
2317		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2318			port->line);
2319		hrtimer_cancel(&s->rx_timer);
2320	}
2321#endif
2322
2323	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2324		del_timer_sync(&s->rx_fifo_timer);
2325	sci_free_irq(s);
2326	sci_free_dma(port);
2327}
2328
2329static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2330			unsigned int *srr)
2331{
2332	unsigned long freq = s->clk_rates[SCI_SCK];
2333	int err, min_err = INT_MAX;
2334	unsigned int sr;
2335
2336	if (s->port.type != PORT_HSCIF)
2337		freq *= 2;
2338
2339	for_each_sr(sr, s) {
2340		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2341		if (abs(err) >= abs(min_err))
2342			continue;
2343
2344		min_err = err;
2345		*srr = sr - 1;
2346
2347		if (!err)
2348			break;
2349	}
2350
2351	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2352		*srr + 1);
2353	return min_err;
2354}
2355
2356static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2357			unsigned long freq, unsigned int *dlr,
2358			unsigned int *srr)
2359{
2360	int err, min_err = INT_MAX;
2361	unsigned int sr, dl;
2362
2363	if (s->port.type != PORT_HSCIF)
2364		freq *= 2;
2365
2366	for_each_sr(sr, s) {
2367		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2368		dl = clamp(dl, 1U, 65535U);
2369
2370		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2371		if (abs(err) >= abs(min_err))
2372			continue;
2373
2374		min_err = err;
2375		*dlr = dl;
2376		*srr = sr - 1;
2377
2378		if (!err)
2379			break;
2380	}
2381
2382	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2383		min_err, *dlr, *srr + 1);
2384	return min_err;
2385}
2386
2387/* calculate sample rate, BRR, and clock select */
2388static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2389			  unsigned int *brr, unsigned int *srr,
2390			  unsigned int *cks)
2391{
2392	unsigned long freq = s->clk_rates[SCI_FCK];
2393	unsigned int sr, br, prediv, scrate, c;
2394	int err, min_err = INT_MAX;
2395
2396	if (s->port.type != PORT_HSCIF)
2397		freq *= 2;
2398
2399	/*
2400	 * Find the combination of sample rate and clock select with the
2401	 * smallest deviation from the desired baud rate.
2402	 * Prefer high sample rates to maximise the receive margin.
2403	 *
2404	 * M: Receive margin (%)
2405	 * N: Ratio of bit rate to clock (N = sampling rate)
2406	 * D: Clock duty (D = 0 to 1.0)
2407	 * L: Frame length (L = 9 to 12)
2408	 * F: Absolute value of clock frequency deviation
2409	 *
2410	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2411	 *      (|D - 0.5| / N * (1 + F))|
2412	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2413	 */
2414	for_each_sr(sr, s) {
2415		for (c = 0; c <= 3; c++) {
2416			/* integerized formulas from HSCIF documentation */
2417			prediv = sr << (2 * c + 1);
2418
2419			/*
2420			 * We need to calculate:
2421			 *
2422			 *     br = freq / (prediv * bps) clamped to [1..256]
2423			 *     err = freq / (br * prediv) - bps
2424			 *
2425			 * Watch out for overflow when calculating the desired
2426			 * sampling clock rate!
2427			 */
2428			if (bps > UINT_MAX / prediv)
2429				break;
2430
2431			scrate = prediv * bps;
2432			br = DIV_ROUND_CLOSEST(freq, scrate);
2433			br = clamp(br, 1U, 256U);
2434
2435			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2436			if (abs(err) >= abs(min_err))
2437				continue;
2438
2439			min_err = err;
2440			*brr = br - 1;
2441			*srr = sr - 1;
2442			*cks = c;
2443
2444			if (!err)
2445				goto found;
2446		}
2447	}
2448
2449found:
2450	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2451		min_err, *brr, *srr + 1, *cks);
2452	return min_err;
2453}
2454
2455static void sci_reset(struct uart_port *port)
2456{
2457	const struct plat_sci_reg *reg;
2458	unsigned int status;
2459	struct sci_port *s = to_sci_port(port);
2460
2461	sci_serial_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2462
2463	reg = sci_getreg(port, SCFCR);
2464	if (reg->size)
2465		sci_serial_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2466
2467	sci_clear_SCxSR(port,
2468			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2469			SCxSR_BREAK_CLEAR(port));
2470	if (sci_getreg(port, SCLSR)->size) {
2471		status = sci_serial_in(port, SCLSR);
2472		status &= ~(SCLSR_TO | SCLSR_ORER);
2473		sci_serial_out(port, SCLSR, status);
2474	}
2475
2476	if (s->rx_trigger > 1) {
2477		if (s->rx_fifo_timeout) {
2478			scif_set_rtrg(port, 1);
2479			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2480		} else {
2481			if (port->type == PORT_SCIFA ||
2482			    port->type == PORT_SCIFB)
2483				scif_set_rtrg(port, 1);
2484			else
2485				scif_set_rtrg(port, s->rx_trigger);
2486		}
2487	}
2488}
2489
2490static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2491		            const struct ktermios *old)
2492{
2493	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2494	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2495	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2496	struct sci_port *s = to_sci_port(port);
2497	const struct plat_sci_reg *reg;
2498	int min_err = INT_MAX, err;
2499	unsigned long max_freq = 0;
2500	int best_clk = -1;
2501	unsigned long flags;
2502
2503	if ((termios->c_cflag & CSIZE) == CS7) {
2504		smr_val |= SCSMR_CHR;
2505	} else {
2506		termios->c_cflag &= ~CSIZE;
2507		termios->c_cflag |= CS8;
2508	}
2509	if (termios->c_cflag & PARENB)
2510		smr_val |= SCSMR_PE;
2511	if (termios->c_cflag & PARODD)
2512		smr_val |= SCSMR_PE | SCSMR_ODD;
2513	if (termios->c_cflag & CSTOPB)
2514		smr_val |= SCSMR_STOP;
2515
2516	/*
2517	 * earlyprintk comes here early on with port->uartclk set to zero.
2518	 * the clock framework is not up and running at this point so here
2519	 * we assume that 115200 is the maximum baud rate. please note that
2520	 * the baud rate is not programmed during earlyprintk - it is assumed
2521	 * that the previous boot loader has enabled required clocks and
2522	 * setup the baud rate generator hardware for us already.
2523	 */
2524	if (!port->uartclk) {
2525		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2526		goto done;
2527	}
2528
2529	for (i = 0; i < SCI_NUM_CLKS; i++)
2530		max_freq = max(max_freq, s->clk_rates[i]);
2531
2532	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2533	if (!baud)
2534		goto done;
2535
2536	/*
2537	 * There can be multiple sources for the sampling clock.  Find the one
2538	 * that gives us the smallest deviation from the desired baud rate.
2539	 */
2540
2541	/* Optional Undivided External Clock */
2542	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2543	    port->type != PORT_SCIFB) {
2544		err = sci_sck_calc(s, baud, &srr1);
2545		if (abs(err) < abs(min_err)) {
2546			best_clk = SCI_SCK;
2547			scr_val = SCSCR_CKE1;
2548			sccks = SCCKS_CKS;
2549			min_err = err;
2550			srr = srr1;
2551			if (!err)
2552				goto done;
2553		}
2554	}
2555
2556	/* Optional BRG Frequency Divided External Clock */
2557	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2558		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2559				   &srr1);
2560		if (abs(err) < abs(min_err)) {
2561			best_clk = SCI_SCIF_CLK;
2562			scr_val = SCSCR_CKE1;
2563			sccks = 0;
2564			min_err = err;
2565			dl = dl1;
2566			srr = srr1;
2567			if (!err)
2568				goto done;
2569		}
2570	}
2571
2572	/* Optional BRG Frequency Divided Internal Clock */
2573	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2574		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2575				   &srr1);
2576		if (abs(err) < abs(min_err)) {
2577			best_clk = SCI_BRG_INT;
2578			scr_val = SCSCR_CKE1;
2579			sccks = SCCKS_XIN;
2580			min_err = err;
2581			dl = dl1;
2582			srr = srr1;
2583			if (!min_err)
2584				goto done;
2585		}
2586	}
2587
2588	/* Divided Functional Clock using standard Bit Rate Register */
2589	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2590	if (abs(err) < abs(min_err)) {
2591		best_clk = SCI_FCK;
2592		scr_val = 0;
2593		min_err = err;
2594		brr = brr1;
2595		srr = srr1;
2596		cks = cks1;
2597	}
2598
2599done:
2600	if (best_clk >= 0)
2601		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2602			s->clks[best_clk], baud, min_err);
2603
2604	sci_port_enable(s);
2605
2606	/*
2607	 * Program the optional External Baud Rate Generator (BRG) first.
2608	 * It controls the mux to select (H)SCK or frequency divided clock.
2609	 */
2610	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2611		sci_serial_out(port, SCDL, dl);
2612		sci_serial_out(port, SCCKS, sccks);
2613	}
2614
2615	uart_port_lock_irqsave(port, &flags);
2616
2617	sci_reset(port);
2618
2619	uart_update_timeout(port, termios->c_cflag, baud);
2620
2621	/* byte size and parity */
2622	bits = tty_get_frame_size(termios->c_cflag);
2623
2624	if (sci_getreg(port, SEMR)->size)
2625		sci_serial_out(port, SEMR, 0);
2626
2627	if (best_clk >= 0) {
2628		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2629			switch (srr + 1) {
2630			case 5:  smr_val |= SCSMR_SRC_5;  break;
2631			case 7:  smr_val |= SCSMR_SRC_7;  break;
2632			case 11: smr_val |= SCSMR_SRC_11; break;
2633			case 13: smr_val |= SCSMR_SRC_13; break;
2634			case 16: smr_val |= SCSMR_SRC_16; break;
2635			case 17: smr_val |= SCSMR_SRC_17; break;
2636			case 19: smr_val |= SCSMR_SRC_19; break;
2637			case 27: smr_val |= SCSMR_SRC_27; break;
2638			}
2639		smr_val |= cks;
2640		sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2641		sci_serial_out(port, SCSMR, smr_val);
2642		sci_serial_out(port, SCBRR, brr);
2643		if (sci_getreg(port, HSSRR)->size) {
2644			unsigned int hssrr = srr | HSCIF_SRE;
2645			/* Calculate deviation from intended rate at the
2646			 * center of the last stop bit in sampling clocks.
2647			 */
2648			int last_stop = bits * 2 - 1;
2649			int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2650							  (int)(srr + 1),
2651							  2 * (int)baud);
2652
2653			if (abs(deviation) >= 2) {
2654				/* At least two sampling clocks off at the
2655				 * last stop bit; we can increase the error
2656				 * margin by shifting the sampling point.
2657				 */
2658				int shift = clamp(deviation / 2, -8, 7);
2659
2660				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2661					 HSCIF_SRHP_MASK;
2662				hssrr |= HSCIF_SRDE;
2663			}
2664			sci_serial_out(port, HSSRR, hssrr);
2665		}
2666
2667		/* Wait one bit interval */
2668		udelay((1000000 + (baud - 1)) / baud);
2669	} else {
2670		/* Don't touch the bit rate configuration */
2671		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2672		smr_val |= sci_serial_in(port, SCSMR) &
2673			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2674		sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2675		sci_serial_out(port, SCSMR, smr_val);
2676	}
2677
2678	sci_init_pins(port, termios->c_cflag);
2679
2680	port->status &= ~UPSTAT_AUTOCTS;
2681	s->autorts = false;
2682	reg = sci_getreg(port, SCFCR);
2683	if (reg->size) {
2684		unsigned short ctrl = sci_serial_in(port, SCFCR);
2685
2686		if ((port->flags & UPF_HARD_FLOW) &&
2687		    (termios->c_cflag & CRTSCTS)) {
2688			/* There is no CTS interrupt to restart the hardware */
2689			port->status |= UPSTAT_AUTOCTS;
2690			/* MCE is enabled when RTS is raised */
2691			s->autorts = true;
2692		}
2693
2694		/*
2695		 * As we've done a sci_reset() above, ensure we don't
2696		 * interfere with the FIFOs while toggling MCE. As the
2697		 * reset values could still be set, simply mask them out.
2698		 */
2699		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2700
2701		sci_serial_out(port, SCFCR, ctrl);
2702	}
2703	if (port->flags & UPF_HARD_FLOW) {
2704		/* Refresh (Auto) RTS */
2705		sci_set_mctrl(port, port->mctrl);
2706	}
2707
2708	/*
2709	 * For SCI, TE (transmit enable) must be set after setting TIE
2710	 * (transmit interrupt enable) or in the same instruction to
2711	 * start the transmitting process. So skip setting TE here for SCI.
2712	 */
2713	if (port->type != PORT_SCI)
2714		scr_val |= SCSCR_TE;
2715	scr_val |= SCSCR_RE | (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2716	sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2717	if ((srr + 1 == 5) &&
2718	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2719		/*
2720		 * In asynchronous mode, when the sampling rate is 1/5, first
2721		 * received data may become invalid on some SCIFA and SCIFB.
2722		 * To avoid this problem wait more than 1 serial data time (1
2723		 * bit time x serial data number) after setting SCSCR.RE = 1.
2724		 */
2725		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2726	}
2727
2728	/* Calculate delay for 2 DMA buffers (4 FIFO). */
2729	s->rx_frame = (10000 * bits) / (baud / 100);
2730#ifdef CONFIG_SERIAL_SH_SCI_DMA
2731	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2732#endif
2733
2734	if ((termios->c_cflag & CREAD) != 0)
2735		sci_start_rx(port);
2736
2737	uart_port_unlock_irqrestore(port, flags);
2738
2739	sci_port_disable(s);
2740
2741	if (UART_ENABLE_MS(port, termios->c_cflag))
2742		sci_enable_ms(port);
2743}
2744
2745static void sci_pm(struct uart_port *port, unsigned int state,
2746		   unsigned int oldstate)
2747{
2748	struct sci_port *sci_port = to_sci_port(port);
2749
2750	switch (state) {
2751	case UART_PM_STATE_OFF:
2752		sci_port_disable(sci_port);
2753		break;
2754	default:
2755		sci_port_enable(sci_port);
2756		break;
2757	}
2758}
2759
2760static const char *sci_type(struct uart_port *port)
2761{
2762	switch (port->type) {
2763	case PORT_IRDA:
2764		return "irda";
2765	case PORT_SCI:
2766		return "sci";
2767	case PORT_SCIF:
2768		return "scif";
2769	case PORT_SCIFA:
2770		return "scifa";
2771	case PORT_SCIFB:
2772		return "scifb";
2773	case PORT_HSCIF:
2774		return "hscif";
2775	}
2776
2777	return NULL;
2778}
2779
2780static int sci_remap_port(struct uart_port *port)
2781{
2782	struct sci_port *sport = to_sci_port(port);
2783
2784	/*
2785	 * Nothing to do if there's already an established membase.
2786	 */
2787	if (port->membase)
2788		return 0;
2789
2790	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2791		port->membase = ioremap(port->mapbase, sport->reg_size);
2792		if (unlikely(!port->membase)) {
2793			dev_err(port->dev, "can't remap port#%d\n", port->line);
2794			return -ENXIO;
2795		}
2796	} else {
2797		/*
2798		 * For the simple (and majority of) cases where we don't
2799		 * need to do any remapping, just cast the cookie
2800		 * directly.
2801		 */
2802		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2803	}
2804
2805	return 0;
2806}
2807
2808static void sci_release_port(struct uart_port *port)
2809{
2810	struct sci_port *sport = to_sci_port(port);
2811
2812	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2813		iounmap(port->membase);
2814		port->membase = NULL;
2815	}
2816
2817	release_mem_region(port->mapbase, sport->reg_size);
2818}
2819
2820static int sci_request_port(struct uart_port *port)
2821{
2822	struct resource *res;
2823	struct sci_port *sport = to_sci_port(port);
2824	int ret;
2825
2826	res = request_mem_region(port->mapbase, sport->reg_size,
2827				 dev_name(port->dev));
2828	if (unlikely(res == NULL)) {
2829		dev_err(port->dev, "request_mem_region failed.");
2830		return -EBUSY;
2831	}
2832
2833	ret = sci_remap_port(port);
2834	if (unlikely(ret != 0)) {
2835		release_resource(res);
2836		return ret;
2837	}
2838
2839	return 0;
2840}
2841
2842static void sci_config_port(struct uart_port *port, int flags)
2843{
2844	if (flags & UART_CONFIG_TYPE) {
2845		struct sci_port *sport = to_sci_port(port);
2846
2847		port->type = sport->cfg->type;
2848		sci_request_port(port);
2849	}
2850}
2851
2852static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2853{
2854	if (ser->baud_base < 2400)
2855		/* No paper tape reader for Mitch.. */
2856		return -EINVAL;
2857
2858	return 0;
2859}
2860
2861static const struct uart_ops sci_uart_ops = {
2862	.tx_empty	= sci_tx_empty,
2863	.set_mctrl	= sci_set_mctrl,
2864	.get_mctrl	= sci_get_mctrl,
2865	.start_tx	= sci_start_tx,
2866	.stop_tx	= sci_stop_tx,
2867	.stop_rx	= sci_stop_rx,
2868	.enable_ms	= sci_enable_ms,
2869	.break_ctl	= sci_break_ctl,
2870	.startup	= sci_startup,
2871	.shutdown	= sci_shutdown,
2872	.flush_buffer	= sci_flush_buffer,
2873	.set_termios	= sci_set_termios,
2874	.pm		= sci_pm,
2875	.type		= sci_type,
2876	.release_port	= sci_release_port,
2877	.request_port	= sci_request_port,
2878	.config_port	= sci_config_port,
2879	.verify_port	= sci_verify_port,
2880#ifdef CONFIG_CONSOLE_POLL
2881	.poll_get_char	= sci_poll_get_char,
2882	.poll_put_char	= sci_poll_put_char,
2883#endif
2884};
2885
2886static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2887{
2888	const char *clk_names[] = {
2889		[SCI_FCK] = "fck",
2890		[SCI_SCK] = "sck",
2891		[SCI_BRG_INT] = "brg_int",
2892		[SCI_SCIF_CLK] = "scif_clk",
2893	};
2894	struct clk *clk;
2895	unsigned int i;
2896
2897	if (sci_port->cfg->type == PORT_HSCIF)
2898		clk_names[SCI_SCK] = "hsck";
2899
2900	for (i = 0; i < SCI_NUM_CLKS; i++) {
2901		clk = devm_clk_get_optional(dev, clk_names[i]);
2902		if (IS_ERR(clk))
2903			return PTR_ERR(clk);
 
 
 
 
 
 
 
 
 
 
 
 
2904
2905		if (!clk && i == SCI_FCK) {
2906			/*
2907			 * Not all SH platforms declare a clock lookup entry
2908			 * for SCI devices, in which case we need to get the
2909			 * global "peripheral_clk" clock.
2910			 */
2911			clk = devm_clk_get(dev, "peripheral_clk");
2912			if (IS_ERR(clk))
2913				return dev_err_probe(dev, PTR_ERR(clk),
2914						     "failed to get %s\n",
2915						     clk_names[i]);
 
 
2916		}
2917
2918		if (!clk)
2919			dev_dbg(dev, "failed to get %s\n", clk_names[i]);
 
 
2920		else
2921			dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2922				clk, clk_get_rate(clk));
2923		sci_port->clks[i] = clk;
2924	}
2925	return 0;
2926}
2927
2928static const struct sci_port_params *
2929sci_probe_regmap(const struct plat_sci_port *cfg)
2930{
2931	unsigned int regtype;
2932
2933	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2934		return &sci_port_params[cfg->regtype];
2935
2936	switch (cfg->type) {
2937	case PORT_SCI:
2938		regtype = SCIx_SCI_REGTYPE;
2939		break;
2940	case PORT_IRDA:
2941		regtype = SCIx_IRDA_REGTYPE;
2942		break;
2943	case PORT_SCIFA:
2944		regtype = SCIx_SCIFA_REGTYPE;
2945		break;
2946	case PORT_SCIFB:
2947		regtype = SCIx_SCIFB_REGTYPE;
2948		break;
2949	case PORT_SCIF:
2950		/*
2951		 * The SH-4 is a bit of a misnomer here, although that's
2952		 * where this particular port layout originated. This
2953		 * configuration (or some slight variation thereof)
2954		 * remains the dominant model for all SCIFs.
2955		 */
2956		regtype = SCIx_SH4_SCIF_REGTYPE;
2957		break;
2958	case PORT_HSCIF:
2959		regtype = SCIx_HSCIF_REGTYPE;
2960		break;
2961	default:
2962		pr_err("Can't probe register map for given port\n");
2963		return NULL;
2964	}
2965
2966	return &sci_port_params[regtype];
2967}
2968
2969static int sci_init_single(struct platform_device *dev,
2970			   struct sci_port *sci_port, unsigned int index,
2971			   const struct plat_sci_port *p, bool early)
2972{
2973	struct uart_port *port = &sci_port->port;
2974	const struct resource *res;
2975	unsigned int i;
2976	int ret;
2977
2978	sci_port->cfg	= p;
2979
2980	port->ops	= &sci_uart_ops;
2981	port->iotype	= UPIO_MEM;
2982	port->line	= index;
2983	port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
2984
2985	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2986	if (res == NULL)
2987		return -ENOMEM;
2988
2989	port->mapbase = res->start;
2990	sci_port->reg_size = resource_size(res);
2991
2992	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
2993		if (i)
2994			sci_port->irqs[i] = platform_get_irq_optional(dev, i);
2995		else
2996			sci_port->irqs[i] = platform_get_irq(dev, i);
2997	}
2998
2999	/*
3000	 * The fourth interrupt on SCI port is transmit end interrupt, so
3001	 * shuffle the interrupts.
3002	 */
3003	if (p->type == PORT_SCI)
3004		swap(sci_port->irqs[SCIx_BRI_IRQ], sci_port->irqs[SCIx_TEI_IRQ]);
3005
3006	/* The SCI generates several interrupts. They can be muxed together or
3007	 * connected to different interrupt lines. In the muxed case only one
3008	 * interrupt resource is specified as there is only one interrupt ID.
3009	 * In the non-muxed case, up to 6 interrupt signals might be generated
3010	 * from the SCI, however those signals might have their own individual
3011	 * interrupt ID numbers, or muxed together with another interrupt.
3012	 */
3013	if (sci_port->irqs[0] < 0)
3014		return -ENXIO;
3015
3016	if (sci_port->irqs[1] < 0)
3017		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
3018			sci_port->irqs[i] = sci_port->irqs[0];
3019
3020	sci_port->params = sci_probe_regmap(p);
3021	if (unlikely(sci_port->params == NULL))
3022		return -EINVAL;
3023
3024	switch (p->type) {
3025	case PORT_SCIFB:
3026		sci_port->rx_trigger = 48;
3027		break;
3028	case PORT_HSCIF:
3029		sci_port->rx_trigger = 64;
3030		break;
3031	case PORT_SCIFA:
3032		sci_port->rx_trigger = 32;
3033		break;
3034	case PORT_SCIF:
3035		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
3036			/* RX triggering not implemented for this IP */
3037			sci_port->rx_trigger = 1;
3038		else
3039			sci_port->rx_trigger = 8;
3040		break;
3041	default:
3042		sci_port->rx_trigger = 1;
3043		break;
3044	}
3045
3046	sci_port->rx_fifo_timeout = 0;
3047	sci_port->hscif_tot = 0;
3048
3049	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
3050	 * match the SoC datasheet, this should be investigated. Let platform
3051	 * data override the sampling rate for now.
3052	 */
3053	sci_port->sampling_rate_mask = p->sampling_rate
3054				     ? SCI_SR(p->sampling_rate)
3055				     : sci_port->params->sampling_rate_mask;
3056
3057	if (!early) {
3058		ret = sci_init_clocks(sci_port, &dev->dev);
3059		if (ret < 0)
3060			return ret;
 
 
 
 
3061	}
3062
3063	port->type		= p->type;
3064	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
3065	port->fifosize		= sci_port->params->fifosize;
3066
3067	if (port->type == PORT_SCI && !dev->dev.of_node) {
3068		if (sci_port->reg_size >= 0x20)
3069			port->regshift = 2;
3070		else
3071			port->regshift = 1;
3072	}
3073
3074	/*
3075	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
3076	 * for the multi-IRQ ports, which is where we are primarily
3077	 * concerned with the shutdown path synchronization.
3078	 *
3079	 * For the muxed case there's nothing more to do.
3080	 */
3081	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
3082	port->irqflags		= 0;
3083
 
 
 
3084	return 0;
3085}
3086
 
 
 
 
 
3087#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
3088    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
3089static void serial_console_putchar(struct uart_port *port, unsigned char ch)
3090{
3091	sci_poll_put_char(port, ch);
3092}
3093
3094/*
3095 *	Print a string to the serial port trying not to disturb
3096 *	any possible real use of the port...
3097 */
3098static void serial_console_write(struct console *co, const char *s,
3099				 unsigned count)
3100{
3101	struct sci_port *sci_port = &sci_ports[co->index];
3102	struct uart_port *port = &sci_port->port;
3103	unsigned short bits, ctrl, ctrl_temp;
3104	unsigned long flags;
3105	int locked = 1;
3106
3107	if (port->sysrq)
3108		locked = 0;
3109	else if (oops_in_progress)
3110		locked = uart_port_trylock_irqsave(port, &flags);
3111	else
3112		uart_port_lock_irqsave(port, &flags);
3113
3114	/* first save SCSCR then disable interrupts, keep clock source */
3115	ctrl = sci_serial_in(port, SCSCR);
3116	ctrl_temp = SCSCR_RE | SCSCR_TE |
3117		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3118		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3119	sci_serial_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
3120
3121	uart_console_write(port, s, count, serial_console_putchar);
3122
3123	/* wait until fifo is empty and last bit has been transmitted */
3124	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3125	while ((sci_serial_in(port, SCxSR) & bits) != bits)
3126		cpu_relax();
3127
3128	/* restore the SCSCR */
3129	sci_serial_out(port, SCSCR, ctrl);
3130
3131	if (locked)
3132		uart_port_unlock_irqrestore(port, flags);
3133}
3134
3135static int serial_console_setup(struct console *co, char *options)
3136{
3137	struct sci_port *sci_port;
3138	struct uart_port *port;
3139	int baud = 115200;
3140	int bits = 8;
3141	int parity = 'n';
3142	int flow = 'n';
3143	int ret;
3144
3145	/*
3146	 * Refuse to handle any bogus ports.
3147	 */
3148	if (co->index < 0 || co->index >= SCI_NPORTS)
3149		return -ENODEV;
3150
3151	sci_port = &sci_ports[co->index];
3152	port = &sci_port->port;
3153
3154	/*
3155	 * Refuse to handle uninitialized ports.
3156	 */
3157	if (!port->ops)
3158		return -ENODEV;
3159
3160	ret = sci_remap_port(port);
3161	if (unlikely(ret != 0))
3162		return ret;
3163
3164	if (options)
3165		uart_parse_options(options, &baud, &parity, &bits, &flow);
3166
3167	return uart_set_options(port, co, baud, parity, bits, flow);
3168}
3169
3170static struct console serial_console = {
3171	.name		= "ttySC",
3172	.device		= uart_console_device,
3173	.write		= serial_console_write,
3174	.setup		= serial_console_setup,
3175	.flags		= CON_PRINTBUFFER,
3176	.index		= -1,
3177	.data		= &sci_uart_driver,
3178};
3179
3180#ifdef CONFIG_SUPERH
3181static char early_serial_buf[32];
3182
3183static int early_serial_console_setup(struct console *co, char *options)
3184{
3185	/*
3186	 * This early console is always registered using the earlyprintk=
3187	 * parameter, which does not call add_preferred_console(). Thus
3188	 * @options is always NULL and the options for this early console
3189	 * are passed using a custom buffer.
3190	 */
3191	WARN_ON(options);
3192
3193	return serial_console_setup(co, early_serial_buf);
3194}
3195
3196static struct console early_serial_console = {
3197	.name           = "early_ttySC",
3198	.write          = serial_console_write,
3199	.setup		= early_serial_console_setup,
3200	.flags          = CON_PRINTBUFFER,
3201	.index		= -1,
3202};
3203
 
 
3204static int sci_probe_earlyprintk(struct platform_device *pdev)
3205{
3206	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3207
3208	if (early_serial_console.data)
3209		return -EEXIST;
3210
3211	early_serial_console.index = pdev->id;
3212
3213	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3214
 
 
3215	if (!strstr(early_serial_buf, "keep"))
3216		early_serial_console.flags |= CON_BOOT;
3217
3218	register_console(&early_serial_console);
3219	return 0;
3220}
3221#endif
3222
3223#define SCI_CONSOLE	(&serial_console)
3224
3225#else
3226static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3227{
3228	return -EINVAL;
3229}
3230
3231#define SCI_CONSOLE	NULL
3232
3233#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3234
3235static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3236
3237static DEFINE_MUTEX(sci_uart_registration_lock);
3238static struct uart_driver sci_uart_driver = {
3239	.owner		= THIS_MODULE,
3240	.driver_name	= "sci",
3241	.dev_name	= "ttySC",
3242	.major		= SCI_MAJOR,
3243	.minor		= SCI_MINOR_START,
3244	.nr		= SCI_NPORTS,
3245	.cons		= SCI_CONSOLE,
3246};
3247
3248static void sci_remove(struct platform_device *dev)
3249{
3250	struct sci_port *port = platform_get_drvdata(dev);
3251	unsigned int type = port->port.type;	/* uart_remove_... clears it */
3252
3253	sci_ports_in_use &= ~BIT(port->port.line);
3254	uart_remove_one_port(&sci_uart_driver, &port->port);
3255
 
 
3256	if (port->port.fifosize > 1)
3257		device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3258	if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
3259		device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
 
 
3260}
3261
3262
3263#define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3264#define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3265#define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3266
3267static const struct of_device_id of_sci_match[] __maybe_unused = {
3268	/* SoC-specific types */
3269	{
3270		.compatible = "renesas,scif-r7s72100",
3271		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3272	},
3273	{
3274		.compatible = "renesas,scif-r7s9210",
3275		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3276	},
3277	{
3278		.compatible = "renesas,scif-r9a07g044",
3279		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3280	},
3281	{
3282		.compatible = "renesas,scif-r9a09g057",
3283		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZV2H_SCIF_REGTYPE),
3284	},
3285	/* Family-specific types */
3286	{
3287		.compatible = "renesas,rcar-gen1-scif",
3288		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3289	}, {
3290		.compatible = "renesas,rcar-gen2-scif",
3291		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3292	}, {
3293		.compatible = "renesas,rcar-gen3-scif",
3294		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3295	}, {
3296		.compatible = "renesas,rcar-gen4-scif",
3297		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3298	},
3299	/* Generic types */
3300	{
3301		.compatible = "renesas,scif",
3302		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3303	}, {
3304		.compatible = "renesas,scifa",
3305		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3306	}, {
3307		.compatible = "renesas,scifb",
3308		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3309	}, {
3310		.compatible = "renesas,hscif",
3311		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3312	}, {
3313		.compatible = "renesas,sci",
3314		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3315	}, {
3316		/* Terminator */
3317	},
3318};
3319MODULE_DEVICE_TABLE(of, of_sci_match);
3320
3321static void sci_reset_control_assert(void *data)
3322{
3323	reset_control_assert(data);
3324}
3325
3326static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3327					  unsigned int *dev_id)
3328{
3329	struct device_node *np = pdev->dev.of_node;
3330	struct reset_control *rstc;
3331	struct plat_sci_port *p;
3332	struct sci_port *sp;
3333	const void *data;
3334	int id, ret;
3335
3336	if (!IS_ENABLED(CONFIG_OF) || !np)
3337		return ERR_PTR(-EINVAL);
3338
3339	data = of_device_get_match_data(&pdev->dev);
3340
3341	rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
3342	if (IS_ERR(rstc))
3343		return ERR_PTR(dev_err_probe(&pdev->dev, PTR_ERR(rstc),
3344					     "failed to get reset ctrl\n"));
3345
3346	ret = reset_control_deassert(rstc);
3347	if (ret) {
3348		dev_err(&pdev->dev, "failed to deassert reset %d\n", ret);
3349		return ERR_PTR(ret);
3350	}
3351
3352	ret = devm_add_action_or_reset(&pdev->dev, sci_reset_control_assert, rstc);
3353	if (ret) {
3354		dev_err(&pdev->dev, "failed to register assert devm action, %d\n",
3355			ret);
3356		return ERR_PTR(ret);
3357	}
3358
3359	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3360	if (!p)
3361		return ERR_PTR(-ENOMEM);
3362
3363	/* Get the line number from the aliases node. */
3364	id = of_alias_get_id(np, "serial");
3365	if (id < 0 && ~sci_ports_in_use)
3366		id = ffz(sci_ports_in_use);
3367	if (id < 0) {
3368		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3369		return ERR_PTR(-EINVAL);
3370	}
3371	if (id >= ARRAY_SIZE(sci_ports)) {
3372		dev_err(&pdev->dev, "serial%d out of range\n", id);
3373		return ERR_PTR(-EINVAL);
3374	}
3375
3376	sp = &sci_ports[id];
3377	*dev_id = id;
3378
3379	p->type = SCI_OF_TYPE(data);
3380	p->regtype = SCI_OF_REGTYPE(data);
3381
3382	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3383
3384	return p;
3385}
3386
3387static int sci_probe_single(struct platform_device *dev,
3388				      unsigned int index,
3389				      struct plat_sci_port *p,
3390				      struct sci_port *sciport,
3391				      struct resource *sci_res)
3392{
3393	int ret;
3394
3395	/* Sanity check */
3396	if (unlikely(index >= SCI_NPORTS)) {
3397		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3398			   index+1, SCI_NPORTS);
3399		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3400		return -EINVAL;
3401	}
3402	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3403	if (sci_ports_in_use & BIT(index))
3404		return -EBUSY;
3405
3406	mutex_lock(&sci_uart_registration_lock);
3407	if (!sci_uart_driver.state) {
3408		ret = uart_register_driver(&sci_uart_driver);
3409		if (ret) {
3410			mutex_unlock(&sci_uart_registration_lock);
3411			return ret;
3412		}
3413	}
3414	mutex_unlock(&sci_uart_registration_lock);
3415
3416	ret = sci_init_single(dev, sciport, index, p, false);
3417	if (ret)
3418		return ret;
3419
3420	sciport->port.dev = &dev->dev;
3421	ret = devm_pm_runtime_enable(&dev->dev);
3422	if (ret)
3423		return ret;
3424
3425	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3426	if (IS_ERR(sciport->gpios))
3427		return PTR_ERR(sciport->gpios);
3428
3429	if (sciport->has_rtscts) {
3430		if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3431		    mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
3432			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3433			return -EINVAL;
3434		}
3435		sciport->port.flags |= UPF_HARD_FLOW;
3436	}
3437
3438	if (sci_uart_earlycon && sci_ports[0].port.mapbase == sci_res->start) {
3439		/*
3440		 * In case:
3441		 * - this is the earlycon port (mapped on index 0 in sci_ports[]) and
3442		 * - it now maps to an alias other than zero and
3443		 * - the earlycon is still alive (e.g., "earlycon keep_bootcon" is
3444		 *   available in bootargs)
3445		 *
3446		 * we need to avoid disabling clocks and PM domains through the runtime
3447		 * PM APIs called in __device_attach(). For this, increment the runtime
3448		 * PM reference counter (the clocks and PM domains were already enabled
3449		 * by the bootloader). Otherwise the earlycon may access the HW when it
3450		 * has no clocks enabled leading to failures (infinite loop in
3451		 * sci_poll_put_char()).
3452		 */
3453		pm_runtime_get_noresume(&dev->dev);
3454
3455		/*
3456		 * Skip cleanup the sci_port[0] in early_console_exit(), this
3457		 * port is the same as the earlycon one.
3458		 */
3459		sci_uart_earlycon_dev_probing = true;
3460	}
3461
3462	return uart_add_one_port(&sci_uart_driver, &sciport->port);
3463}
3464
3465static int sci_probe(struct platform_device *dev)
3466{
3467	struct plat_sci_port *p;
3468	struct resource *res;
3469	struct sci_port *sp;
3470	unsigned int dev_id;
3471	int ret;
3472
3473	/*
3474	 * If we've come here via earlyprintk initialization, head off to
3475	 * the special early probe. We don't have sufficient device state
3476	 * to make it beyond this yet.
3477	 */
3478#ifdef CONFIG_SUPERH
3479	if (is_sh_early_platform_device(dev))
3480		return sci_probe_earlyprintk(dev);
3481#endif
3482
3483	if (dev->dev.of_node) {
3484		p = sci_parse_dt(dev, &dev_id);
3485		if (IS_ERR(p))
3486			return PTR_ERR(p);
3487	} else {
3488		p = dev->dev.platform_data;
3489		if (p == NULL) {
3490			dev_err(&dev->dev, "no platform data supplied\n");
3491			return -EINVAL;
3492		}
3493
3494		dev_id = dev->id;
3495	}
3496
3497	sp = &sci_ports[dev_id];
3498
3499	/*
3500	 * In case:
3501	 * - the probed port alias is zero (as the one used by earlycon), and
3502	 * - the earlycon is still active (e.g., "earlycon keep_bootcon" in
3503	 *   bootargs)
3504	 *
3505	 * defer the probe of this serial. This is a debug scenario and the user
3506	 * must be aware of it.
3507	 *
3508	 * Except when the probed port is the same as the earlycon port.
3509	 */
3510
3511	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
3512	if (!res)
3513		return -ENODEV;
3514
3515	if (sci_uart_earlycon && sp == &sci_ports[0] && sp->port.mapbase != res->start)
3516		return dev_err_probe(&dev->dev, -EBUSY, "sci_port[0] is used by earlycon!\n");
3517
3518	platform_set_drvdata(dev, sp);
3519
3520	ret = sci_probe_single(dev, dev_id, p, sp, res);
3521	if (ret)
3522		return ret;
3523
3524	if (sp->port.fifosize > 1) {
3525		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3526		if (ret)
3527			return ret;
3528	}
3529	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3530	    sp->port.type == PORT_HSCIF) {
3531		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3532		if (ret) {
3533			if (sp->port.fifosize > 1) {
3534				device_remove_file(&dev->dev,
3535						   &dev_attr_rx_fifo_trigger);
3536			}
3537			return ret;
3538		}
3539	}
3540
3541#ifdef CONFIG_SH_STANDARD_BIOS
3542	sh_bios_gdb_detach();
3543#endif
3544
3545	sci_ports_in_use |= BIT(dev_id);
3546	return 0;
3547}
3548
3549static __maybe_unused int sci_suspend(struct device *dev)
3550{
3551	struct sci_port *sport = dev_get_drvdata(dev);
3552
3553	if (sport)
3554		uart_suspend_port(&sci_uart_driver, &sport->port);
3555
3556	return 0;
3557}
3558
3559static __maybe_unused int sci_resume(struct device *dev)
3560{
3561	struct sci_port *sport = dev_get_drvdata(dev);
3562
3563	if (sport)
3564		uart_resume_port(&sci_uart_driver, &sport->port);
3565
3566	return 0;
3567}
3568
3569static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3570
3571static struct platform_driver sci_driver = {
3572	.probe		= sci_probe,
3573	.remove		= sci_remove,
3574	.driver		= {
3575		.name	= "sh-sci",
3576		.pm	= &sci_dev_pm_ops,
3577		.of_match_table = of_match_ptr(of_sci_match),
3578	},
3579};
3580
3581static int __init sci_init(void)
3582{
3583	pr_info("%s\n", banner);
3584
3585	return platform_driver_register(&sci_driver);
3586}
3587
3588static void __exit sci_exit(void)
3589{
3590	platform_driver_unregister(&sci_driver);
3591
3592	if (sci_uart_driver.state)
3593		uart_unregister_driver(&sci_uart_driver);
3594}
3595
3596#if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
3597sh_early_platform_init_buffer("earlyprintk", &sci_driver,
3598			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3599#endif
3600#ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3601static struct plat_sci_port port_cfg;
3602
3603static int early_console_exit(struct console *co)
3604{
3605	struct sci_port *sci_port = &sci_ports[0];
3606
3607	/*
3608	 * Clean the slot used by earlycon. A new SCI device might
3609	 * map to this slot.
3610	 */
3611	if (!sci_uart_earlycon_dev_probing) {
3612		memset(sci_port, 0, sizeof(*sci_port));
3613		sci_uart_earlycon = false;
3614	}
3615
3616	return 0;
3617}
3618
3619static int __init early_console_setup(struct earlycon_device *device,
3620				      int type)
3621{
3622	if (!device->port.membase)
3623		return -ENODEV;
3624
 
 
3625	device->port.type = type;
3626	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3627	port_cfg.type = type;
3628	sci_ports[0].cfg = &port_cfg;
3629	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3630	sci_uart_earlycon = true;
3631	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3632	sci_serial_out(&sci_ports[0].port, SCSCR,
3633		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3634
3635	device->con->write = serial_console_write;
3636	device->con->exit = early_console_exit;
3637
3638	return 0;
3639}
3640static int __init sci_early_console_setup(struct earlycon_device *device,
3641					  const char *opt)
3642{
3643	return early_console_setup(device, PORT_SCI);
3644}
3645static int __init scif_early_console_setup(struct earlycon_device *device,
3646					  const char *opt)
3647{
3648	return early_console_setup(device, PORT_SCIF);
3649}
3650static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3651					  const char *opt)
3652{
3653	port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3654	return early_console_setup(device, PORT_SCIF);
3655}
3656
3657static int __init rzv2hscif_early_console_setup(struct earlycon_device *device,
3658						const char *opt)
3659{
3660	port_cfg.regtype = SCIx_RZV2H_SCIF_REGTYPE;
3661	return early_console_setup(device, PORT_SCIF);
3662}
3663
3664static int __init scifa_early_console_setup(struct earlycon_device *device,
3665					  const char *opt)
3666{
3667	return early_console_setup(device, PORT_SCIFA);
3668}
3669static int __init scifb_early_console_setup(struct earlycon_device *device,
3670					  const char *opt)
3671{
3672	return early_console_setup(device, PORT_SCIFB);
3673}
3674static int __init hscif_early_console_setup(struct earlycon_device *device,
3675					  const char *opt)
3676{
3677	return early_console_setup(device, PORT_HSCIF);
3678}
3679
3680OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3681OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3682OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3683OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a07g044", rzscifa_early_console_setup);
3684OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a09g057", rzv2hscif_early_console_setup);
3685OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3686OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3687OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3688#endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3689
3690module_init(sci_init);
3691module_exit(sci_exit);
3692
3693MODULE_LICENSE("GPL");
3694MODULE_ALIAS("platform:sh-sci");
3695MODULE_AUTHOR("Paul Mundt");
3696MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");