Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * 6pack.c	This module implements the 6pack protocol for kernel-based
  4 *		devices like TTY. It interfaces between a raw TTY and the
  5 *		kernel's AX.25 protocol layers.
  6 *
  7 * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
  8 *              Ralf Baechle DL5RB <ralf@linux-mips.org>
  9 *
 10 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
 11 *
 12 *		Laurence Culhane, <loz@holmes.demon.co.uk>
 13 *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
 14 */
 15
 16#include <linux/module.h>
 17#include <linux/uaccess.h>
 18#include <linux/bitops.h>
 19#include <linux/string.h>
 20#include <linux/mm.h>
 21#include <linux/interrupt.h>
 22#include <linux/in.h>
 23#include <linux/tty.h>
 24#include <linux/errno.h>
 25#include <linux/netdevice.h>
 26#include <linux/timer.h>
 27#include <linux/slab.h>
 28#include <net/ax25.h>
 29#include <linux/etherdevice.h>
 30#include <linux/skbuff.h>
 31#include <linux/rtnetlink.h>
 32#include <linux/spinlock.h>
 33#include <linux/if_arp.h>
 34#include <linux/init.h>
 35#include <linux/ip.h>
 36#include <linux/tcp.h>
 37#include <linux/semaphore.h>
 38#include <linux/refcount.h>
 39
 40#define SIXPACK_VERSION    "Revision: 0.3.0"
 41
 42/* sixpack priority commands */
 43#define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
 44#define SIXP_TX_URUN		0x48	/* transmit overrun */
 45#define SIXP_RX_ORUN		0x50	/* receive overrun */
 46#define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
 47
 48#define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
 49
 50/* masks to get certain bits out of the status bytes sent by the TNC */
 51
 52#define SIXP_CMD_MASK		0xC0
 53#define SIXP_CHN_MASK		0x07
 54#define SIXP_PRIO_CMD_MASK	0x80
 55#define SIXP_STD_CMD_MASK	0x40
 56#define SIXP_PRIO_DATA_MASK	0x38
 57#define SIXP_TX_MASK		0x20
 58#define SIXP_RX_MASK		0x10
 59#define SIXP_RX_DCD_MASK	0x18
 60#define SIXP_LEDS_ON		0x78
 61#define SIXP_LEDS_OFF		0x60
 62#define SIXP_CON		0x08
 63#define SIXP_STA		0x10
 64
 65#define SIXP_FOUND_TNC		0xe9
 66#define SIXP_CON_ON		0x68
 67#define SIXP_DCD_MASK		0x08
 68#define SIXP_DAMA_OFF		0
 69
 70/* default level 2 parameters */
 71#define SIXP_TXDELAY			25	/* 250 ms */
 72#define SIXP_PERSIST			50	/* in 256ths */
 73#define SIXP_SLOTTIME			10	/* 100 ms */
 74#define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
 75#define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
 76
 77/* 6pack configuration. */
 78#define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
 79#define SIXP_MTU			256	/* Default MTU */
 80
 81enum sixpack_flags {
 82	SIXPF_ERROR,	/* Parity, etc. error	*/
 83};
 84
 85struct sixpack {
 86	/* Various fields. */
 87	struct tty_struct	*tty;		/* ptr to TTY structure	*/
 88	struct net_device	*dev;		/* easy for intr handling  */
 89
 90	/* These are pointers to the malloc()ed frame buffers. */
 91	unsigned char		*rbuff;		/* receiver buffer	*/
 92	int			rcount;         /* received chars counter  */
 93	unsigned char		*xbuff;		/* transmitter buffer	*/
 94	unsigned char		*xhead;         /* next byte to XMIT */
 95	int			xleft;          /* bytes left in XMIT queue  */
 96
 97	unsigned char		raw_buf[4];
 98	unsigned char		cooked_buf[400];
 99
100	unsigned int		rx_count;
101	unsigned int		rx_count_cooked;
102
103	int			mtu;		/* Our mtu (to spot changes!) */
104	int			buffsize;       /* Max buffers sizes */
105
106	unsigned long		flags;		/* Flag values/ mode etc */
107	unsigned char		mode;		/* 6pack mode */
108
109	/* 6pack stuff */
110	unsigned char		tx_delay;
111	unsigned char		persistence;
112	unsigned char		slottime;
113	unsigned char		duplex;
114	unsigned char		led_state;
115	unsigned char		status;
116	unsigned char		status1;
117	unsigned char		status2;
118	unsigned char		tx_enable;
119	unsigned char		tnc_state;
120
121	struct timer_list	tx_t;
122	struct timer_list	resync_t;
123	refcount_t		refcnt;
124	struct completion	dead;
125	spinlock_t		lock;
126};
127
128#define AX25_6PACK_HEADER_LEN 0
129
130static void sixpack_decode(struct sixpack *, const unsigned char[], int);
131static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
132
133/*
134 * Perform the persistence/slottime algorithm for CSMA access. If the
135 * persistence check was successful, write the data to the serial driver.
136 * Note that in case of DAMA operation, the data is not sent here.
137 */
138
139static void sp_xmit_on_air(struct timer_list *t)
140{
141	struct sixpack *sp = from_timer(sp, t, tx_t);
142	int actual, when = sp->slottime;
143	static unsigned char random;
144
145	random = random * 17 + 41;
146
147	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
148		sp->led_state = 0x70;
149		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
150		sp->tx_enable = 1;
151		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
152		sp->xleft -= actual;
153		sp->xhead += actual;
154		sp->led_state = 0x60;
155		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
156		sp->status2 = 0;
157	} else
158		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
159}
160
161/* ----> 6pack timer interrupt handler and friends. <---- */
162
163/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
164static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
165{
166	unsigned char *msg, *p = icp;
167	int actual, count;
168
169	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
170		msg = "oversized transmit packet!";
171		goto out_drop;
172	}
173
174	if (p[0] > 5) {
175		msg = "invalid KISS command";
176		goto out_drop;
177	}
178
179	if ((p[0] != 0) && (len > 2)) {
180		msg = "KISS control packet too long";
181		goto out_drop;
182	}
183
184	if ((p[0] == 0) && (len < 15)) {
185		msg = "bad AX.25 packet to transmit";
186		goto out_drop;
187	}
188
189	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
190	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
191
192	switch (p[0]) {
193	case 1:	sp->tx_delay = p[1];
194		return;
195	case 2:	sp->persistence = p[1];
196		return;
197	case 3:	sp->slottime = p[1];
198		return;
199	case 4:	/* ignored */
200		return;
201	case 5:	sp->duplex = p[1];
202		return;
203	}
204
205	if (p[0] != 0)
206		return;
207
208	/*
209	 * In case of fullduplex or DAMA operation, we don't take care about the
210	 * state of the DCD or of any timers, as the determination of the
211	 * correct time to send is the job of the AX.25 layer. We send
212	 * immediately after data has arrived.
213	 */
214	if (sp->duplex == 1) {
215		sp->led_state = 0x70;
216		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
217		sp->tx_enable = 1;
218		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
219		sp->xleft = count - actual;
220		sp->xhead = sp->xbuff + actual;
221		sp->led_state = 0x60;
222		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
223	} else {
224		sp->xleft = count;
225		sp->xhead = sp->xbuff;
226		sp->status2 = count;
227		sp_xmit_on_air(&sp->tx_t);
228	}
229
230	return;
231
232out_drop:
233	sp->dev->stats.tx_dropped++;
234	netif_start_queue(sp->dev);
235	if (net_ratelimit())
236		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
237}
238
239/* Encapsulate an IP datagram and kick it into a TTY queue. */
240
241static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
242{
243	struct sixpack *sp = netdev_priv(dev);
244
245	if (skb->protocol == htons(ETH_P_IP))
246		return ax25_ip_xmit(skb);
247
248	spin_lock_bh(&sp->lock);
249	/* We were not busy, so we are now... :-) */
250	netif_stop_queue(dev);
251	dev->stats.tx_bytes += skb->len;
252	sp_encaps(sp, skb->data, skb->len);
253	spin_unlock_bh(&sp->lock);
254
255	dev_kfree_skb(skb);
256
257	return NETDEV_TX_OK;
258}
259
260static int sp_open_dev(struct net_device *dev)
261{
262	struct sixpack *sp = netdev_priv(dev);
263
264	if (sp->tty == NULL)
265		return -ENODEV;
266	return 0;
267}
268
269/* Close the low-level part of the 6pack channel. */
270static int sp_close(struct net_device *dev)
271{
272	struct sixpack *sp = netdev_priv(dev);
273
274	spin_lock_bh(&sp->lock);
275	if (sp->tty) {
276		/* TTY discipline is running. */
277		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
278	}
279	netif_stop_queue(dev);
280	spin_unlock_bh(&sp->lock);
281
282	return 0;
283}
284
285static int sp_set_mac_address(struct net_device *dev, void *addr)
286{
287	struct sockaddr_ax25 *sa = addr;
288
289	netif_tx_lock_bh(dev);
290	netif_addr_lock(dev);
291	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
292	netif_addr_unlock(dev);
293	netif_tx_unlock_bh(dev);
294
295	return 0;
296}
297
298static const struct net_device_ops sp_netdev_ops = {
299	.ndo_open		= sp_open_dev,
300	.ndo_stop		= sp_close,
301	.ndo_start_xmit		= sp_xmit,
302	.ndo_set_mac_address    = sp_set_mac_address,
303};
304
305static void sp_setup(struct net_device *dev)
306{
307	/* Finish setting up the DEVICE info. */
308	dev->netdev_ops		= &sp_netdev_ops;
309	dev->needs_free_netdev	= true;
310	dev->mtu		= SIXP_MTU;
311	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
312	dev->header_ops 	= &ax25_header_ops;
313
314	dev->addr_len		= AX25_ADDR_LEN;
315	dev->type		= ARPHRD_AX25;
316	dev->tx_queue_len	= 10;
317
318	/* Only activated in AX.25 mode */
319	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
320	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
321
322	dev->flags		= 0;
323}
324
325/* Send one completely decapsulated IP datagram to the IP layer. */
326
327/*
328 * This is the routine that sends the received data to the kernel AX.25.
329 * 'cmd' is the KISS command. For AX.25 data, it is zero.
330 */
331
332static void sp_bump(struct sixpack *sp, char cmd)
333{
334	struct sk_buff *skb;
335	int count;
336	unsigned char *ptr;
337
338	count = sp->rcount + 1;
339
340	sp->dev->stats.rx_bytes += count;
341
342	if ((skb = dev_alloc_skb(count + 1)) == NULL)
343		goto out_mem;
344
345	ptr = skb_put(skb, count + 1);
346	*ptr++ = cmd;	/* KISS command */
347
348	memcpy(ptr, sp->cooked_buf + 1, count);
349	skb->protocol = ax25_type_trans(skb, sp->dev);
350	netif_rx(skb);
351	sp->dev->stats.rx_packets++;
352
353	return;
354
355out_mem:
356	sp->dev->stats.rx_dropped++;
357}
358
359
360/* ----------------------------------------------------------------------- */
361
362/*
363 * We have a potential race on dereferencing tty->disc_data, because the tty
364 * layer provides no locking at all - thus one cpu could be running
365 * sixpack_receive_buf while another calls sixpack_close, which zeroes
366 * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
367 * best way to fix this is to use a rwlock in the tty struct, but for now we
368 * use a single global rwlock for all ttys in ppp line discipline.
369 */
370static DEFINE_RWLOCK(disc_data_lock);
371                                                                                
372static struct sixpack *sp_get(struct tty_struct *tty)
373{
374	struct sixpack *sp;
375
376	read_lock(&disc_data_lock);
377	sp = tty->disc_data;
378	if (sp)
379		refcount_inc(&sp->refcnt);
380	read_unlock(&disc_data_lock);
381
382	return sp;
383}
384
385static void sp_put(struct sixpack *sp)
386{
387	if (refcount_dec_and_test(&sp->refcnt))
388		complete(&sp->dead);
389}
390
391/*
392 * Called by the TTY driver when there's room for more data.  If we have
393 * more packets to send, we send them here.
394 */
395static void sixpack_write_wakeup(struct tty_struct *tty)
396{
397	struct sixpack *sp = sp_get(tty);
398	int actual;
399
400	if (!sp)
401		return;
402	if (sp->xleft <= 0)  {
403		/* Now serial buffer is almost free & we can start
404		 * transmission of another packet */
405		sp->dev->stats.tx_packets++;
406		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
407		sp->tx_enable = 0;
408		netif_wake_queue(sp->dev);
409		goto out;
410	}
411
412	if (sp->tx_enable) {
413		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
414		sp->xleft -= actual;
415		sp->xhead += actual;
416	}
417
418out:
419	sp_put(sp);
420}
421
422/* ----------------------------------------------------------------------- */
423
424/*
425 * Handle the 'receiver data ready' interrupt.
426 * This function is called by the tty module in the kernel when
427 * a block of 6pack data has been received, which can now be decapsulated
428 * and sent on to some IP layer for further processing.
429 */
430static void sixpack_receive_buf(struct tty_struct *tty,
431	const unsigned char *cp, const char *fp, int count)
432{
433	struct sixpack *sp;
434	int count1;
435
436	if (!count)
437		return;
438
439	sp = sp_get(tty);
440	if (!sp)
441		return;
442
443	/* Read the characters out of the buffer */
444	count1 = count;
445	while (count) {
446		count--;
447		if (fp && *fp++) {
448			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
449				sp->dev->stats.rx_errors++;
450			continue;
451		}
452	}
453	sixpack_decode(sp, cp, count1);
454
455	sp_put(sp);
456	tty_unthrottle(tty);
457}
458
459/*
460 * Try to resync the TNC. Called by the resync timer defined in
461 * decode_prio_command
462 */
463
464#define TNC_UNINITIALIZED	0
465#define TNC_UNSYNC_STARTUP	1
466#define TNC_UNSYNCED		2
467#define TNC_IN_SYNC		3
468
469static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
470{
471	char *msg;
472
473	switch (new_tnc_state) {
474	default:			/* gcc oh piece-o-crap ... */
475	case TNC_UNSYNC_STARTUP:
476		msg = "Synchronizing with TNC";
477		break;
478	case TNC_UNSYNCED:
479		msg = "Lost synchronization with TNC\n";
480		break;
481	case TNC_IN_SYNC:
482		msg = "Found TNC";
483		break;
484	}
485
486	sp->tnc_state = new_tnc_state;
487	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
488}
489
490static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
491{
492	int old_tnc_state = sp->tnc_state;
493
494	if (old_tnc_state != new_tnc_state)
495		__tnc_set_sync_state(sp, new_tnc_state);
496}
497
498static void resync_tnc(struct timer_list *t)
499{
500	struct sixpack *sp = from_timer(sp, t, resync_t);
501	static char resync_cmd = 0xe8;
502
503	/* clear any data that might have been received */
504
505	sp->rx_count = 0;
506	sp->rx_count_cooked = 0;
507
508	/* reset state machine */
509
510	sp->status = 1;
511	sp->status1 = 1;
512	sp->status2 = 0;
513
514	/* resync the TNC */
515
516	sp->led_state = 0x60;
517	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
518	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
519
520
521	/* Start resync timer again -- the TNC might be still absent */
522	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
523}
524
525static inline int tnc_init(struct sixpack *sp)
526{
527	unsigned char inbyte = 0xe8;
528
529	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
530
531	sp->tty->ops->write(sp->tty, &inbyte, 1);
532
533	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
534
535	return 0;
536}
537
538/*
539 * Open the high-level part of the 6pack channel.
540 * This function is called by the TTY module when the
541 * 6pack line discipline is called for.  Because we are
542 * sure the tty line exists, we only have to link it to
543 * a free 6pcack channel...
544 */
545static int sixpack_open(struct tty_struct *tty)
546{
547	char *rbuff = NULL, *xbuff = NULL;
548	struct net_device *dev;
549	struct sixpack *sp;
550	unsigned long len;
551	int err = 0;
552
553	if (!capable(CAP_NET_ADMIN))
554		return -EPERM;
555	if (tty->ops->write == NULL)
556		return -EOPNOTSUPP;
557
558	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
559			   sp_setup);
560	if (!dev) {
561		err = -ENOMEM;
562		goto out;
563	}
564
565	sp = netdev_priv(dev);
566	sp->dev = dev;
567
568	spin_lock_init(&sp->lock);
 
569	refcount_set(&sp->refcnt, 1);
570	init_completion(&sp->dead);
571
572	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
573
574	len = dev->mtu * 2;
575
576	rbuff = kmalloc(len + 4, GFP_KERNEL);
577	xbuff = kmalloc(len + 4, GFP_KERNEL);
578
579	if (rbuff == NULL || xbuff == NULL) {
580		err = -ENOBUFS;
581		goto out_free;
582	}
583
584	spin_lock_bh(&sp->lock);
585
586	sp->tty = tty;
587
588	sp->rbuff	= rbuff;
589	sp->xbuff	= xbuff;
590
591	sp->mtu		= AX25_MTU + 73;
592	sp->buffsize	= len;
593	sp->rcount	= 0;
594	sp->rx_count	= 0;
595	sp->rx_count_cooked = 0;
596	sp->xleft	= 0;
597
598	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
599
600	sp->duplex	= 0;
601	sp->tx_delay    = SIXP_TXDELAY;
602	sp->persistence = SIXP_PERSIST;
603	sp->slottime    = SIXP_SLOTTIME;
604	sp->led_state   = 0x60;
605	sp->status      = 1;
606	sp->status1     = 1;
607	sp->status2     = 0;
608	sp->tx_enable   = 0;
609
610	netif_start_queue(dev);
611
612	timer_setup(&sp->tx_t, sp_xmit_on_air, 0);
613
614	timer_setup(&sp->resync_t, resync_tnc, 0);
615
616	spin_unlock_bh(&sp->lock);
617
618	/* Done.  We have linked the TTY line to a channel. */
619	tty->disc_data = sp;
620	tty->receive_room = 65536;
621
622	/* Now we're ready to register. */
623	err = register_netdev(dev);
624	if (err)
625		goto out_free;
626
627	tnc_init(sp);
628
629	return 0;
630
631out_free:
632	kfree(xbuff);
633	kfree(rbuff);
634
635	free_netdev(dev);
636
637out:
638	return err;
639}
640
641
642/*
643 * Close down a 6pack channel.
644 * This means flushing out any pending queues, and then restoring the
645 * TTY line discipline to what it was before it got hooked to 6pack
646 * (which usually is TTY again).
647 */
648static void sixpack_close(struct tty_struct *tty)
649{
650	struct sixpack *sp;
651
652	write_lock_irq(&disc_data_lock);
653	sp = tty->disc_data;
654	tty->disc_data = NULL;
655	write_unlock_irq(&disc_data_lock);
656	if (!sp)
657		return;
658
659	/*
660	 * We have now ensured that nobody can start using ap from now on, but
661	 * we have to wait for all existing users to finish.
662	 */
663	if (!refcount_dec_and_test(&sp->refcnt))
664		wait_for_completion(&sp->dead);
665
666	/* We must stop the queue to avoid potentially scribbling
667	 * on the free buffers. The sp->dead completion is not sufficient
668	 * to protect us from sp->xbuff access.
669	 */
670	netif_stop_queue(sp->dev);
671
 
 
672	del_timer_sync(&sp->tx_t);
673	del_timer_sync(&sp->resync_t);
674
675	/* Free all 6pack frame buffers. */
676	kfree(sp->rbuff);
677	kfree(sp->xbuff);
678
679	unregister_netdev(sp->dev);
680}
681
682/* Perform I/O control on an active 6pack channel. */
683static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
684	unsigned int cmd, unsigned long arg)
685{
686	struct sixpack *sp = sp_get(tty);
687	struct net_device *dev;
688	unsigned int tmp, err;
689
690	if (!sp)
691		return -ENXIO;
692	dev = sp->dev;
693
694	switch(cmd) {
695	case SIOCGIFNAME:
696		err = copy_to_user((void __user *) arg, dev->name,
697		                   strlen(dev->name) + 1) ? -EFAULT : 0;
698		break;
699
700	case SIOCGIFENCAP:
701		err = put_user(0, (int __user *) arg);
702		break;
703
704	case SIOCSIFENCAP:
705		if (get_user(tmp, (int __user *) arg)) {
706			err = -EFAULT;
707			break;
708		}
709
710		sp->mode = tmp;
711		dev->addr_len        = AX25_ADDR_LEN;
712		dev->hard_header_len = AX25_KISS_HEADER_LEN +
713		                       AX25_MAX_HEADER_LEN + 3;
714		dev->type            = ARPHRD_AX25;
715
716		err = 0;
717		break;
718
719	case SIOCSIFHWADDR: {
720			char addr[AX25_ADDR_LEN];
721
722			if (copy_from_user(&addr,
723					   (void __user *)arg, AX25_ADDR_LEN)) {
724				err = -EFAULT;
725				break;
726			}
727
728			netif_tx_lock_bh(dev);
729			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
730			netif_tx_unlock_bh(dev);
731			err = 0;
732			break;
733		}
734	default:
735		err = tty_mode_ioctl(tty, file, cmd, arg);
736	}
737
738	sp_put(sp);
739
740	return err;
741}
742
743static struct tty_ldisc_ops sp_ldisc = {
744	.owner		= THIS_MODULE,
745	.num		= N_6PACK,
746	.name		= "6pack",
747	.open		= sixpack_open,
748	.close		= sixpack_close,
749	.ioctl		= sixpack_ioctl,
750	.receive_buf	= sixpack_receive_buf,
751	.write_wakeup	= sixpack_write_wakeup,
752};
753
754/* Initialize 6pack control device -- register 6pack line discipline */
755
756static const char msg_banner[]  __initconst = KERN_INFO \
757	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
758static const char msg_regfail[] __initconst = KERN_ERR  \
759	"6pack: can't register line discipline (err = %d)\n";
760
761static int __init sixpack_init_driver(void)
762{
763	int status;
764
765	printk(msg_banner);
766
767	/* Register the provided line protocol discipline */
768	status = tty_register_ldisc(&sp_ldisc);
769	if (status)
770		printk(msg_regfail, status);
771
772	return status;
773}
774
775static void __exit sixpack_exit_driver(void)
776{
777	tty_unregister_ldisc(&sp_ldisc);
778}
779
780/* encode an AX.25 packet into 6pack */
781
782static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
783	int length, unsigned char tx_delay)
784{
785	int count = 0;
786	unsigned char checksum = 0, buf[400];
787	int raw_count = 0;
788
789	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
790	tx_buf_raw[raw_count++] = SIXP_SEOF;
791
792	buf[0] = tx_delay;
793	for (count = 1; count < length; count++)
794		buf[count] = tx_buf[count];
795
796	for (count = 0; count < length; count++)
797		checksum += buf[count];
798	buf[length] = (unsigned char) 0xff - checksum;
799
800	for (count = 0; count <= length; count++) {
801		if ((count % 3) == 0) {
802			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
803			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
804		} else if ((count % 3) == 1) {
805			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
806			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
807		} else {
808			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
809			tx_buf_raw[raw_count++] = (buf[count] >> 2);
810		}
811	}
812	if ((length % 3) != 2)
813		raw_count++;
814	tx_buf_raw[raw_count++] = SIXP_SEOF;
815	return raw_count;
816}
817
818/* decode 4 sixpack-encoded bytes into 3 data bytes */
819
820static void decode_data(struct sixpack *sp, unsigned char inbyte)
821{
822	unsigned char *buf;
823
824	if (sp->rx_count != 3) {
825		sp->raw_buf[sp->rx_count++] = inbyte;
826
827		return;
828	}
829
830	if (sp->rx_count_cooked + 2 >= sizeof(sp->cooked_buf)) {
831		pr_err("6pack: cooked buffer overrun, data loss\n");
832		sp->rx_count = 0;
833		return;
834	}
835
836	buf = sp->raw_buf;
837	sp->cooked_buf[sp->rx_count_cooked++] =
838		buf[0] | ((buf[1] << 2) & 0xc0);
839	sp->cooked_buf[sp->rx_count_cooked++] =
840		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
841	sp->cooked_buf[sp->rx_count_cooked++] =
842		(buf[2] & 0x03) | (inbyte << 2);
843	sp->rx_count = 0;
844}
845
846/* identify and execute a 6pack priority command byte */
847
848static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
849{
850	int actual;
851
852	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
853
854	/* RX and DCD flags can only be set in the same prio command,
855	   if the DCD flag has been set without the RX flag in the previous
856	   prio command. If DCD has not been set before, something in the
857	   transmission has gone wrong. In this case, RX and DCD are
858	   cleared in order to prevent the decode_data routine from
859	   reading further data that might be corrupt. */
860
861		if (((sp->status & SIXP_DCD_MASK) == 0) &&
862			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
863				if (sp->status != 1)
864					printk(KERN_DEBUG "6pack: protocol violation\n");
865				else
866					sp->status = 0;
867				cmd &= ~SIXP_RX_DCD_MASK;
868		}
869		sp->status = cmd & SIXP_PRIO_DATA_MASK;
870	} else { /* output watchdog char if idle */
871		if ((sp->status2 != 0) && (sp->duplex == 1)) {
872			sp->led_state = 0x70;
873			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
874			sp->tx_enable = 1;
875			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
876			sp->xleft -= actual;
877			sp->xhead += actual;
878			sp->led_state = 0x60;
879			sp->status2 = 0;
880
881		}
882	}
883
884	/* needed to trigger the TNC watchdog */
885	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
886
887        /* if the state byte has been received, the TNC is present,
888           so the resync timer can be reset. */
889
890	if (sp->tnc_state == TNC_IN_SYNC)
891		mod_timer(&sp->resync_t, jiffies + SIXP_INIT_RESYNC_TIMEOUT);
892
893	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
894}
895
896/* identify and execute a standard 6pack command byte */
897
898static void decode_std_command(struct sixpack *sp, unsigned char cmd)
899{
900	unsigned char checksum = 0, rest = 0;
901	short i;
902
903	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
904	case SIXP_SEOF:
905		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
906			if ((sp->status & SIXP_RX_DCD_MASK) ==
907				SIXP_RX_DCD_MASK) {
908				sp->led_state = 0x68;
909				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
910			}
911		} else {
912			sp->led_state = 0x60;
913			/* fill trailing bytes with zeroes */
914			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 
915			rest = sp->rx_count;
916			if (rest != 0)
917				 for (i = rest; i <= 3; i++)
918					decode_data(sp, 0);
919			if (rest == 2)
920				sp->rx_count_cooked -= 2;
921			else if (rest == 3)
922				sp->rx_count_cooked -= 1;
923			for (i = 0; i < sp->rx_count_cooked; i++)
924				checksum += sp->cooked_buf[i];
925			if (checksum != SIXP_CHKSUM) {
926				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
927			} else {
928				sp->rcount = sp->rx_count_cooked-2;
929				sp_bump(sp, 0);
930			}
931			sp->rx_count_cooked = 0;
 
932		}
933		break;
934	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
935		break;
936	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
937		break;
938	case SIXP_RX_BUF_OVL:
939		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
940	}
941}
942
943/* decode a 6pack packet */
944
945static void
946sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count)
947{
948	unsigned char inbyte;
949	int count1;
950
951	for (count1 = 0; count1 < count; count1++) {
952		inbyte = pre_rbuff[count1];
953		if (inbyte == SIXP_FOUND_TNC) {
954			tnc_set_sync_state(sp, TNC_IN_SYNC);
955			del_timer(&sp->resync_t);
956		}
957		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
958			decode_prio_command(sp, inbyte);
959		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
960			decode_std_command(sp, inbyte);
961		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
 
962			decode_data(sp, inbyte);
 
 
963	}
964}
965
966MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
967MODULE_DESCRIPTION("6pack driver for AX.25");
968MODULE_LICENSE("GPL");
969MODULE_ALIAS_LDISC(N_6PACK);
970
971module_init(sixpack_init_driver);
972module_exit(sixpack_exit_driver);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * 6pack.c	This module implements the 6pack protocol for kernel-based
  4 *		devices like TTY. It interfaces between a raw TTY and the
  5 *		kernel's AX.25 protocol layers.
  6 *
  7 * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
  8 *              Ralf Baechle DL5RB <ralf@linux-mips.org>
  9 *
 10 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
 11 *
 12 *		Laurence Culhane, <loz@holmes.demon.co.uk>
 13 *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
 14 */
 15
 16#include <linux/module.h>
 17#include <linux/uaccess.h>
 18#include <linux/bitops.h>
 19#include <linux/string.h>
 20#include <linux/mm.h>
 21#include <linux/interrupt.h>
 22#include <linux/in.h>
 23#include <linux/tty.h>
 24#include <linux/errno.h>
 25#include <linux/netdevice.h>
 26#include <linux/timer.h>
 27#include <linux/slab.h>
 28#include <net/ax25.h>
 29#include <linux/etherdevice.h>
 30#include <linux/skbuff.h>
 31#include <linux/rtnetlink.h>
 32#include <linux/spinlock.h>
 33#include <linux/if_arp.h>
 34#include <linux/init.h>
 35#include <linux/ip.h>
 36#include <linux/tcp.h>
 37#include <linux/semaphore.h>
 38#include <linux/refcount.h>
 39
 
 
 40/* sixpack priority commands */
 41#define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
 42#define SIXP_TX_URUN		0x48	/* transmit overrun */
 43#define SIXP_RX_ORUN		0x50	/* receive overrun */
 44#define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
 45
 46#define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
 47
 48/* masks to get certain bits out of the status bytes sent by the TNC */
 49
 50#define SIXP_CMD_MASK		0xC0
 51#define SIXP_CHN_MASK		0x07
 52#define SIXP_PRIO_CMD_MASK	0x80
 53#define SIXP_STD_CMD_MASK	0x40
 54#define SIXP_PRIO_DATA_MASK	0x38
 55#define SIXP_TX_MASK		0x20
 56#define SIXP_RX_MASK		0x10
 57#define SIXP_RX_DCD_MASK	0x18
 58#define SIXP_LEDS_ON		0x78
 59#define SIXP_LEDS_OFF		0x60
 60#define SIXP_CON		0x08
 61#define SIXP_STA		0x10
 62
 63#define SIXP_FOUND_TNC		0xe9
 64#define SIXP_CON_ON		0x68
 65#define SIXP_DCD_MASK		0x08
 66#define SIXP_DAMA_OFF		0
 67
 68/* default level 2 parameters */
 69#define SIXP_TXDELAY			25	/* 250 ms */
 70#define SIXP_PERSIST			50	/* in 256ths */
 71#define SIXP_SLOTTIME			10	/* 100 ms */
 72#define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
 73#define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
 74
 75/* 6pack configuration. */
 76#define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
 77#define SIXP_MTU			256	/* Default MTU */
 78
 79enum sixpack_flags {
 80	SIXPF_ERROR,	/* Parity, etc. error	*/
 81};
 82
 83struct sixpack {
 84	/* Various fields. */
 85	struct tty_struct	*tty;		/* ptr to TTY structure	*/
 86	struct net_device	*dev;		/* easy for intr handling  */
 87
 88	/* These are pointers to the malloc()ed frame buffers. */
 
 89	int			rcount;         /* received chars counter  */
 90	unsigned char		*xbuff;		/* transmitter buffer	*/
 91	unsigned char		*xhead;         /* next byte to XMIT */
 92	int			xleft;          /* bytes left in XMIT queue  */
 93
 94	u8			raw_buf[4];
 95	u8			cooked_buf[400];
 96
 97	unsigned int		rx_count;
 98	unsigned int		rx_count_cooked;
 99	spinlock_t		rxlock;
 
 
100
101	unsigned long		flags;		/* Flag values/ mode etc */
102	unsigned char		mode;		/* 6pack mode */
103
104	/* 6pack stuff */
105	unsigned char		tx_delay;
106	unsigned char		persistence;
107	unsigned char		slottime;
108	unsigned char		duplex;
109	unsigned char		led_state;
110	u8			status;
111	u8			status1;
112	unsigned char		status2;
113	unsigned char		tx_enable;
114	unsigned char		tnc_state;
115
116	struct timer_list	tx_t;
117	struct timer_list	resync_t;
118	refcount_t		refcnt;
119	struct completion	dead;
120	spinlock_t		lock;
121};
122
123#define AX25_6PACK_HEADER_LEN 0
124
125static void sixpack_decode(struct sixpack *, const u8 *, size_t);
126static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
127
128/*
129 * Perform the persistence/slottime algorithm for CSMA access. If the
130 * persistence check was successful, write the data to the serial driver.
131 * Note that in case of DAMA operation, the data is not sent here.
132 */
133
134static void sp_xmit_on_air(struct timer_list *t)
135{
136	struct sixpack *sp = from_timer(sp, t, tx_t);
137	int actual, when = sp->slottime;
138	static unsigned char random;
139
140	random = random * 17 + 41;
141
142	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
143		sp->led_state = 0x70;
144		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
145		sp->tx_enable = 1;
146		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
147		sp->xleft -= actual;
148		sp->xhead += actual;
149		sp->led_state = 0x60;
150		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
151		sp->status2 = 0;
152	} else
153		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
154}
155
156/* ----> 6pack timer interrupt handler and friends. <---- */
157
158/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
159static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
160{
161	unsigned char *msg, *p = icp;
162	int actual, count;
163
164	if (len > AX25_MTU + 73) {
165		msg = "oversized transmit packet!";
166		goto out_drop;
167	}
168
169	if (p[0] > 5) {
170		msg = "invalid KISS command";
171		goto out_drop;
172	}
173
174	if ((p[0] != 0) && (len > 2)) {
175		msg = "KISS control packet too long";
176		goto out_drop;
177	}
178
179	if ((p[0] == 0) && (len < 15)) {
180		msg = "bad AX.25 packet to transmit";
181		goto out_drop;
182	}
183
184	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
185	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
186
187	switch (p[0]) {
188	case 1:	sp->tx_delay = p[1];
189		return;
190	case 2:	sp->persistence = p[1];
191		return;
192	case 3:	sp->slottime = p[1];
193		return;
194	case 4:	/* ignored */
195		return;
196	case 5:	sp->duplex = p[1];
197		return;
198	}
199
200	if (p[0] != 0)
201		return;
202
203	/*
204	 * In case of fullduplex or DAMA operation, we don't take care about the
205	 * state of the DCD or of any timers, as the determination of the
206	 * correct time to send is the job of the AX.25 layer. We send
207	 * immediately after data has arrived.
208	 */
209	if (sp->duplex == 1) {
210		sp->led_state = 0x70;
211		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
212		sp->tx_enable = 1;
213		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
214		sp->xleft = count - actual;
215		sp->xhead = sp->xbuff + actual;
216		sp->led_state = 0x60;
217		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
218	} else {
219		sp->xleft = count;
220		sp->xhead = sp->xbuff;
221		sp->status2 = count;
222		sp_xmit_on_air(&sp->tx_t);
223	}
224
225	return;
226
227out_drop:
228	sp->dev->stats.tx_dropped++;
229	netif_start_queue(sp->dev);
230	if (net_ratelimit())
231		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
232}
233
234/* Encapsulate an IP datagram and kick it into a TTY queue. */
235
236static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
237{
238	struct sixpack *sp = netdev_priv(dev);
239
240	if (skb->protocol == htons(ETH_P_IP))
241		return ax25_ip_xmit(skb);
242
243	spin_lock_bh(&sp->lock);
244	/* We were not busy, so we are now... :-) */
245	netif_stop_queue(dev);
246	dev->stats.tx_bytes += skb->len;
247	sp_encaps(sp, skb->data, skb->len);
248	spin_unlock_bh(&sp->lock);
249
250	dev_kfree_skb(skb);
251
252	return NETDEV_TX_OK;
253}
254
255static int sp_open_dev(struct net_device *dev)
256{
257	struct sixpack *sp = netdev_priv(dev);
258
259	if (sp->tty == NULL)
260		return -ENODEV;
261	return 0;
262}
263
264/* Close the low-level part of the 6pack channel. */
265static int sp_close(struct net_device *dev)
266{
267	struct sixpack *sp = netdev_priv(dev);
268
269	spin_lock_bh(&sp->lock);
270	if (sp->tty) {
271		/* TTY discipline is running. */
272		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
273	}
274	netif_stop_queue(dev);
275	spin_unlock_bh(&sp->lock);
276
277	return 0;
278}
279
280static int sp_set_mac_address(struct net_device *dev, void *addr)
281{
282	struct sockaddr_ax25 *sa = addr;
283
284	netif_tx_lock_bh(dev);
285	netif_addr_lock(dev);
286	__dev_addr_set(dev, &sa->sax25_call, AX25_ADDR_LEN);
287	netif_addr_unlock(dev);
288	netif_tx_unlock_bh(dev);
289
290	return 0;
291}
292
293static const struct net_device_ops sp_netdev_ops = {
294	.ndo_open		= sp_open_dev,
295	.ndo_stop		= sp_close,
296	.ndo_start_xmit		= sp_xmit,
297	.ndo_set_mac_address    = sp_set_mac_address,
298};
299
300static void sp_setup(struct net_device *dev)
301{
302	/* Finish setting up the DEVICE info. */
303	dev->netdev_ops		= &sp_netdev_ops;
 
304	dev->mtu		= SIXP_MTU;
305	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
306	dev->header_ops 	= &ax25_header_ops;
307
308	dev->addr_len		= AX25_ADDR_LEN;
309	dev->type		= ARPHRD_AX25;
310	dev->tx_queue_len	= 10;
311
312	/* Only activated in AX.25 mode */
313	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
314	dev_addr_set(dev, (u8 *)&ax25_defaddr);
315
316	dev->flags		= 0;
317}
318
319/* Send one completely decapsulated IP datagram to the IP layer. */
320
321/*
322 * This is the routine that sends the received data to the kernel AX.25.
323 * 'cmd' is the KISS command. For AX.25 data, it is zero.
324 */
325
326static void sp_bump(struct sixpack *sp, char cmd)
327{
328	struct sk_buff *skb;
329	int count;
330	u8 *ptr;
331
332	count = sp->rcount + 1;
333
334	sp->dev->stats.rx_bytes += count;
335
336	if ((skb = dev_alloc_skb(count + 1)) == NULL)
337		goto out_mem;
338
339	ptr = skb_put(skb, count + 1);
340	*ptr++ = cmd;	/* KISS command */
341
342	memcpy(ptr, sp->cooked_buf + 1, count);
343	skb->protocol = ax25_type_trans(skb, sp->dev);
344	netif_rx(skb);
345	sp->dev->stats.rx_packets++;
346
347	return;
348
349out_mem:
350	sp->dev->stats.rx_dropped++;
351}
352
353
354/* ----------------------------------------------------------------------- */
355
356/*
357 * We have a potential race on dereferencing tty->disc_data, because the tty
358 * layer provides no locking at all - thus one cpu could be running
359 * sixpack_receive_buf while another calls sixpack_close, which zeroes
360 * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
361 * best way to fix this is to use a rwlock in the tty struct, but for now we
362 * use a single global rwlock for all ttys in ppp line discipline.
363 */
364static DEFINE_RWLOCK(disc_data_lock);
365                                                                                
366static struct sixpack *sp_get(struct tty_struct *tty)
367{
368	struct sixpack *sp;
369
370	read_lock(&disc_data_lock);
371	sp = tty->disc_data;
372	if (sp)
373		refcount_inc(&sp->refcnt);
374	read_unlock(&disc_data_lock);
375
376	return sp;
377}
378
379static void sp_put(struct sixpack *sp)
380{
381	if (refcount_dec_and_test(&sp->refcnt))
382		complete(&sp->dead);
383}
384
385/*
386 * Called by the TTY driver when there's room for more data.  If we have
387 * more packets to send, we send them here.
388 */
389static void sixpack_write_wakeup(struct tty_struct *tty)
390{
391	struct sixpack *sp = sp_get(tty);
392	int actual;
393
394	if (!sp)
395		return;
396	if (sp->xleft <= 0)  {
397		/* Now serial buffer is almost free & we can start
398		 * transmission of another packet */
399		sp->dev->stats.tx_packets++;
400		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
401		sp->tx_enable = 0;
402		netif_wake_queue(sp->dev);
403		goto out;
404	}
405
406	if (sp->tx_enable) {
407		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
408		sp->xleft -= actual;
409		sp->xhead += actual;
410	}
411
412out:
413	sp_put(sp);
414}
415
416/* ----------------------------------------------------------------------- */
417
418/*
419 * Handle the 'receiver data ready' interrupt.
420 * This function is called by the tty module in the kernel when
421 * a block of 6pack data has been received, which can now be decapsulated
422 * and sent on to some IP layer for further processing.
423 */
424static void sixpack_receive_buf(struct tty_struct *tty, const u8 *cp,
425				const u8 *fp, size_t count)
426{
427	struct sixpack *sp;
428	size_t count1;
429
430	if (!count)
431		return;
432
433	sp = sp_get(tty);
434	if (!sp)
435		return;
436
437	/* Read the characters out of the buffer */
438	count1 = count;
439	while (count) {
440		count--;
441		if (fp && *fp++) {
442			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
443				sp->dev->stats.rx_errors++;
444			continue;
445		}
446	}
447	sixpack_decode(sp, cp, count1);
448
449	sp_put(sp);
450	tty_unthrottle(tty);
451}
452
453/*
454 * Try to resync the TNC. Called by the resync timer defined in
455 * decode_prio_command
456 */
457
458#define TNC_UNINITIALIZED	0
459#define TNC_UNSYNC_STARTUP	1
460#define TNC_UNSYNCED		2
461#define TNC_IN_SYNC		3
462
463static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
464{
465	char *msg;
466
467	switch (new_tnc_state) {
468	default:			/* gcc oh piece-o-crap ... */
469	case TNC_UNSYNC_STARTUP:
470		msg = "Synchronizing with TNC";
471		break;
472	case TNC_UNSYNCED:
473		msg = "Lost synchronization with TNC\n";
474		break;
475	case TNC_IN_SYNC:
476		msg = "Found TNC";
477		break;
478	}
479
480	sp->tnc_state = new_tnc_state;
481	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
482}
483
484static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
485{
486	int old_tnc_state = sp->tnc_state;
487
488	if (old_tnc_state != new_tnc_state)
489		__tnc_set_sync_state(sp, new_tnc_state);
490}
491
492static void resync_tnc(struct timer_list *t)
493{
494	struct sixpack *sp = from_timer(sp, t, resync_t);
495	static char resync_cmd = 0xe8;
496
497	/* clear any data that might have been received */
498
499	sp->rx_count = 0;
500	sp->rx_count_cooked = 0;
501
502	/* reset state machine */
503
504	sp->status = 1;
505	sp->status1 = 1;
506	sp->status2 = 0;
507
508	/* resync the TNC */
509
510	sp->led_state = 0x60;
511	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
512	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
513
514
515	/* Start resync timer again -- the TNC might be still absent */
516	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
517}
518
519static inline int tnc_init(struct sixpack *sp)
520{
521	unsigned char inbyte = 0xe8;
522
523	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
524
525	sp->tty->ops->write(sp->tty, &inbyte, 1);
526
527	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
528
529	return 0;
530}
531
532/*
533 * Open the high-level part of the 6pack channel.
534 * This function is called by the TTY module when the
535 * 6pack line discipline is called for.  Because we are
536 * sure the tty line exists, we only have to link it to
537 * a free 6pcack channel...
538 */
539static int sixpack_open(struct tty_struct *tty)
540{
541	char *xbuff = NULL;
542	struct net_device *dev;
543	struct sixpack *sp;
544	unsigned long len;
545	int err = 0;
546
547	if (!capable(CAP_NET_ADMIN))
548		return -EPERM;
549	if (tty->ops->write == NULL)
550		return -EOPNOTSUPP;
551
552	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
553			   sp_setup);
554	if (!dev) {
555		err = -ENOMEM;
556		goto out;
557	}
558
559	sp = netdev_priv(dev);
560	sp->dev = dev;
561
562	spin_lock_init(&sp->lock);
563	spin_lock_init(&sp->rxlock);
564	refcount_set(&sp->refcnt, 1);
565	init_completion(&sp->dead);
566
567	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
568
569	len = dev->mtu * 2;
570
 
571	xbuff = kmalloc(len + 4, GFP_KERNEL);
572	if (xbuff == NULL) {
 
573		err = -ENOBUFS;
574		goto out_free;
575	}
576
577	spin_lock_bh(&sp->lock);
578
579	sp->tty = tty;
580
 
581	sp->xbuff	= xbuff;
582
 
 
583	sp->rcount	= 0;
584	sp->rx_count	= 0;
585	sp->rx_count_cooked = 0;
586	sp->xleft	= 0;
587
588	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
589
590	sp->duplex	= 0;
591	sp->tx_delay    = SIXP_TXDELAY;
592	sp->persistence = SIXP_PERSIST;
593	sp->slottime    = SIXP_SLOTTIME;
594	sp->led_state   = 0x60;
595	sp->status      = 1;
596	sp->status1     = 1;
597	sp->status2     = 0;
598	sp->tx_enable   = 0;
599
600	netif_start_queue(dev);
601
602	timer_setup(&sp->tx_t, sp_xmit_on_air, 0);
603
604	timer_setup(&sp->resync_t, resync_tnc, 0);
605
606	spin_unlock_bh(&sp->lock);
607
608	/* Done.  We have linked the TTY line to a channel. */
609	tty->disc_data = sp;
610	tty->receive_room = 65536;
611
612	/* Now we're ready to register. */
613	err = register_netdev(dev);
614	if (err)
615		goto out_free;
616
617	tnc_init(sp);
618
619	return 0;
620
621out_free:
622	kfree(xbuff);
 
623
624	free_netdev(dev);
625
626out:
627	return err;
628}
629
630
631/*
632 * Close down a 6pack channel.
633 * This means flushing out any pending queues, and then restoring the
634 * TTY line discipline to what it was before it got hooked to 6pack
635 * (which usually is TTY again).
636 */
637static void sixpack_close(struct tty_struct *tty)
638{
639	struct sixpack *sp;
640
641	write_lock_irq(&disc_data_lock);
642	sp = tty->disc_data;
643	tty->disc_data = NULL;
644	write_unlock_irq(&disc_data_lock);
645	if (!sp)
646		return;
647
648	/*
649	 * We have now ensured that nobody can start using ap from now on, but
650	 * we have to wait for all existing users to finish.
651	 */
652	if (!refcount_dec_and_test(&sp->refcnt))
653		wait_for_completion(&sp->dead);
654
655	/* We must stop the queue to avoid potentially scribbling
656	 * on the free buffers. The sp->dead completion is not sufficient
657	 * to protect us from sp->xbuff access.
658	 */
659	netif_stop_queue(sp->dev);
660
661	unregister_netdev(sp->dev);
662
663	del_timer_sync(&sp->tx_t);
664	del_timer_sync(&sp->resync_t);
665
666	/* Free all 6pack frame buffers after unreg. */
 
667	kfree(sp->xbuff);
668
669	free_netdev(sp->dev);
670}
671
672/* Perform I/O control on an active 6pack channel. */
673static int sixpack_ioctl(struct tty_struct *tty, unsigned int cmd,
674		unsigned long arg)
675{
676	struct sixpack *sp = sp_get(tty);
677	struct net_device *dev;
678	unsigned int tmp, err;
679
680	if (!sp)
681		return -ENXIO;
682	dev = sp->dev;
683
684	switch(cmd) {
685	case SIOCGIFNAME:
686		err = copy_to_user((void __user *) arg, dev->name,
687		                   strlen(dev->name) + 1) ? -EFAULT : 0;
688		break;
689
690	case SIOCGIFENCAP:
691		err = put_user(0, (int __user *) arg);
692		break;
693
694	case SIOCSIFENCAP:
695		if (get_user(tmp, (int __user *) arg)) {
696			err = -EFAULT;
697			break;
698		}
699
700		sp->mode = tmp;
701		dev->addr_len        = AX25_ADDR_LEN;
702		dev->hard_header_len = AX25_KISS_HEADER_LEN +
703		                       AX25_MAX_HEADER_LEN + 3;
704		dev->type            = ARPHRD_AX25;
705
706		err = 0;
707		break;
708
709	case SIOCSIFHWADDR: {
710			char addr[AX25_ADDR_LEN];
711
712			if (copy_from_user(&addr,
713					   (void __user *)arg, AX25_ADDR_LEN)) {
714				err = -EFAULT;
715				break;
716			}
717
718			netif_tx_lock_bh(dev);
719			__dev_addr_set(dev, &addr, AX25_ADDR_LEN);
720			netif_tx_unlock_bh(dev);
721			err = 0;
722			break;
723		}
724	default:
725		err = tty_mode_ioctl(tty, cmd, arg);
726	}
727
728	sp_put(sp);
729
730	return err;
731}
732
733static struct tty_ldisc_ops sp_ldisc = {
734	.owner		= THIS_MODULE,
735	.num		= N_6PACK,
736	.name		= "6pack",
737	.open		= sixpack_open,
738	.close		= sixpack_close,
739	.ioctl		= sixpack_ioctl,
740	.receive_buf	= sixpack_receive_buf,
741	.write_wakeup	= sixpack_write_wakeup,
742};
743
744/* Initialize 6pack control device -- register 6pack line discipline */
745
 
 
 
 
 
746static int __init sixpack_init_driver(void)
747{
748	int status;
749
 
 
750	/* Register the provided line protocol discipline */
751	status = tty_register_ldisc(&sp_ldisc);
752	if (status)
753		pr_err("6pack: can't register line discipline (err = %d)\n", status);
754
755	return status;
756}
757
758static void __exit sixpack_exit_driver(void)
759{
760	tty_unregister_ldisc(&sp_ldisc);
761}
762
763/* encode an AX.25 packet into 6pack */
764
765static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
766	int length, unsigned char tx_delay)
767{
768	int count = 0;
769	unsigned char checksum = 0, buf[400];
770	int raw_count = 0;
771
772	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
773	tx_buf_raw[raw_count++] = SIXP_SEOF;
774
775	buf[0] = tx_delay;
776	for (count = 1; count < length; count++)
777		buf[count] = tx_buf[count];
778
779	for (count = 0; count < length; count++)
780		checksum += buf[count];
781	buf[length] = (unsigned char) 0xff - checksum;
782
783	for (count = 0; count <= length; count++) {
784		if ((count % 3) == 0) {
785			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
786			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
787		} else if ((count % 3) == 1) {
788			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
789			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
790		} else {
791			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
792			tx_buf_raw[raw_count++] = (buf[count] >> 2);
793		}
794	}
795	if ((length % 3) != 2)
796		raw_count++;
797	tx_buf_raw[raw_count++] = SIXP_SEOF;
798	return raw_count;
799}
800
801/* decode 4 sixpack-encoded bytes into 3 data bytes */
802
803static void decode_data(struct sixpack *sp, u8 inbyte)
804{
805	u8 *buf;
806
807	if (sp->rx_count != 3) {
808		sp->raw_buf[sp->rx_count++] = inbyte;
809
810		return;
811	}
812
813	if (sp->rx_count_cooked + 2 >= sizeof(sp->cooked_buf)) {
814		pr_err("6pack: cooked buffer overrun, data loss\n");
815		sp->rx_count = 0;
816		return;
817	}
818
819	buf = sp->raw_buf;
820	sp->cooked_buf[sp->rx_count_cooked++] =
821		buf[0] | ((buf[1] << 2) & 0xc0);
822	sp->cooked_buf[sp->rx_count_cooked++] =
823		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
824	sp->cooked_buf[sp->rx_count_cooked++] =
825		(buf[2] & 0x03) | (inbyte << 2);
826	sp->rx_count = 0;
827}
828
829/* identify and execute a 6pack priority command byte */
830
831static void decode_prio_command(struct sixpack *sp, u8 cmd)
832{
833	ssize_t actual;
834
835	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
836
837	/* RX and DCD flags can only be set in the same prio command,
838	   if the DCD flag has been set without the RX flag in the previous
839	   prio command. If DCD has not been set before, something in the
840	   transmission has gone wrong. In this case, RX and DCD are
841	   cleared in order to prevent the decode_data routine from
842	   reading further data that might be corrupt. */
843
844		if (((sp->status & SIXP_DCD_MASK) == 0) &&
845			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
846				if (sp->status != 1)
847					printk(KERN_DEBUG "6pack: protocol violation\n");
848				else
849					sp->status = 0;
850				cmd &= ~SIXP_RX_DCD_MASK;
851		}
852		sp->status = cmd & SIXP_PRIO_DATA_MASK;
853	} else { /* output watchdog char if idle */
854		if ((sp->status2 != 0) && (sp->duplex == 1)) {
855			sp->led_state = 0x70;
856			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
857			sp->tx_enable = 1;
858			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
859			sp->xleft -= actual;
860			sp->xhead += actual;
861			sp->led_state = 0x60;
862			sp->status2 = 0;
863
864		}
865	}
866
867	/* needed to trigger the TNC watchdog */
868	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
869
870        /* if the state byte has been received, the TNC is present,
871           so the resync timer can be reset. */
872
873	if (sp->tnc_state == TNC_IN_SYNC)
874		mod_timer(&sp->resync_t, jiffies + SIXP_INIT_RESYNC_TIMEOUT);
875
876	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
877}
878
879/* identify and execute a standard 6pack command byte */
880
881static void decode_std_command(struct sixpack *sp, u8 cmd)
882{
883	u8 checksum = 0, rest = 0;
884	short i;
885
886	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
887	case SIXP_SEOF:
888		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
889			if ((sp->status & SIXP_RX_DCD_MASK) ==
890				SIXP_RX_DCD_MASK) {
891				sp->led_state = 0x68;
892				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
893			}
894		} else {
895			sp->led_state = 0x60;
896			/* fill trailing bytes with zeroes */
897			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
898			spin_lock_bh(&sp->rxlock);
899			rest = sp->rx_count;
900			if (rest != 0)
901				 for (i = rest; i <= 3; i++)
902					decode_data(sp, 0);
903			if (rest == 2)
904				sp->rx_count_cooked -= 2;
905			else if (rest == 3)
906				sp->rx_count_cooked -= 1;
907			for (i = 0; i < sp->rx_count_cooked; i++)
908				checksum += sp->cooked_buf[i];
909			if (checksum != SIXP_CHKSUM) {
910				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
911			} else {
912				sp->rcount = sp->rx_count_cooked-2;
913				sp_bump(sp, 0);
914			}
915			sp->rx_count_cooked = 0;
916			spin_unlock_bh(&sp->rxlock);
917		}
918		break;
919	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
920		break;
921	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
922		break;
923	case SIXP_RX_BUF_OVL:
924		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
925	}
926}
927
928/* decode a 6pack packet */
929
930static void
931sixpack_decode(struct sixpack *sp, const u8 *pre_rbuff, size_t count)
932{
933	size_t count1;
934	u8 inbyte;
935
936	for (count1 = 0; count1 < count; count1++) {
937		inbyte = pre_rbuff[count1];
938		if (inbyte == SIXP_FOUND_TNC) {
939			tnc_set_sync_state(sp, TNC_IN_SYNC);
940			del_timer(&sp->resync_t);
941		}
942		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
943			decode_prio_command(sp, inbyte);
944		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
945			decode_std_command(sp, inbyte);
946		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK) {
947			spin_lock_bh(&sp->rxlock);
948			decode_data(sp, inbyte);
949			spin_unlock_bh(&sp->rxlock);
950		}
951	}
952}
953
954MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
955MODULE_DESCRIPTION("6pack driver for AX.25");
956MODULE_LICENSE("GPL");
957MODULE_ALIAS_LDISC(N_6PACK);
958
959module_init(sixpack_init_driver);
960module_exit(sixpack_exit_driver);