Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: MIT
   2/*
   3 * Copyright © 2020 Intel Corporation
   4 */
 
   5#include <linux/kernel.h>
 
 
 
 
   6#include "intel_crtc.h"
 
   7#include "intel_de.h"
   8#include "intel_display_types.h"
   9#include "intel_display.h"
 
 
  10#include "intel_dpll.h"
  11#include "intel_lvds.h"
 
  12#include "intel_panel.h"
  13#include "intel_sideband.h"
 
 
 
 
 
 
 
 
 
 
  14
  15struct intel_limit {
  16	struct {
  17		int min, max;
  18	} dot, vco, n, m, m1, m2, p, p1;
  19
  20	struct {
  21		int dot_limit;
  22		int p2_slow, p2_fast;
  23	} p2;
  24};
  25static const struct intel_limit intel_limits_i8xx_dac = {
  26	.dot = { .min = 25000, .max = 350000 },
  27	.vco = { .min = 908000, .max = 1512000 },
  28	.n = { .min = 2, .max = 16 },
  29	.m = { .min = 96, .max = 140 },
  30	.m1 = { .min = 18, .max = 26 },
  31	.m2 = { .min = 6, .max = 16 },
  32	.p = { .min = 4, .max = 128 },
  33	.p1 = { .min = 2, .max = 33 },
  34	.p2 = { .dot_limit = 165000,
  35		.p2_slow = 4, .p2_fast = 2 },
  36};
  37
  38static const struct intel_limit intel_limits_i8xx_dvo = {
  39	.dot = { .min = 25000, .max = 350000 },
  40	.vco = { .min = 908000, .max = 1512000 },
  41	.n = { .min = 2, .max = 16 },
  42	.m = { .min = 96, .max = 140 },
  43	.m1 = { .min = 18, .max = 26 },
  44	.m2 = { .min = 6, .max = 16 },
  45	.p = { .min = 4, .max = 128 },
  46	.p1 = { .min = 2, .max = 33 },
  47	.p2 = { .dot_limit = 165000,
  48		.p2_slow = 4, .p2_fast = 4 },
  49};
  50
  51static const struct intel_limit intel_limits_i8xx_lvds = {
  52	.dot = { .min = 25000, .max = 350000 },
  53	.vco = { .min = 908000, .max = 1512000 },
  54	.n = { .min = 2, .max = 16 },
  55	.m = { .min = 96, .max = 140 },
  56	.m1 = { .min = 18, .max = 26 },
  57	.m2 = { .min = 6, .max = 16 },
  58	.p = { .min = 4, .max = 128 },
  59	.p1 = { .min = 1, .max = 6 },
  60	.p2 = { .dot_limit = 165000,
  61		.p2_slow = 14, .p2_fast = 7 },
  62};
  63
  64static const struct intel_limit intel_limits_i9xx_sdvo = {
  65	.dot = { .min = 20000, .max = 400000 },
  66	.vco = { .min = 1400000, .max = 2800000 },
  67	.n = { .min = 1, .max = 6 },
  68	.m = { .min = 70, .max = 120 },
  69	.m1 = { .min = 8, .max = 18 },
  70	.m2 = { .min = 3, .max = 7 },
  71	.p = { .min = 5, .max = 80 },
  72	.p1 = { .min = 1, .max = 8 },
  73	.p2 = { .dot_limit = 200000,
  74		.p2_slow = 10, .p2_fast = 5 },
  75};
  76
  77static const struct intel_limit intel_limits_i9xx_lvds = {
  78	.dot = { .min = 20000, .max = 400000 },
  79	.vco = { .min = 1400000, .max = 2800000 },
  80	.n = { .min = 1, .max = 6 },
  81	.m = { .min = 70, .max = 120 },
  82	.m1 = { .min = 8, .max = 18 },
  83	.m2 = { .min = 3, .max = 7 },
  84	.p = { .min = 7, .max = 98 },
  85	.p1 = { .min = 1, .max = 8 },
  86	.p2 = { .dot_limit = 112000,
  87		.p2_slow = 14, .p2_fast = 7 },
  88};
  89
  90
  91static const struct intel_limit intel_limits_g4x_sdvo = {
  92	.dot = { .min = 25000, .max = 270000 },
  93	.vco = { .min = 1750000, .max = 3500000},
  94	.n = { .min = 1, .max = 4 },
  95	.m = { .min = 104, .max = 138 },
  96	.m1 = { .min = 17, .max = 23 },
  97	.m2 = { .min = 5, .max = 11 },
  98	.p = { .min = 10, .max = 30 },
  99	.p1 = { .min = 1, .max = 3},
 100	.p2 = { .dot_limit = 270000,
 101		.p2_slow = 10,
 102		.p2_fast = 10
 103	},
 104};
 105
 106static const struct intel_limit intel_limits_g4x_hdmi = {
 107	.dot = { .min = 22000, .max = 400000 },
 108	.vco = { .min = 1750000, .max = 3500000},
 109	.n = { .min = 1, .max = 4 },
 110	.m = { .min = 104, .max = 138 },
 111	.m1 = { .min = 16, .max = 23 },
 112	.m2 = { .min = 5, .max = 11 },
 113	.p = { .min = 5, .max = 80 },
 114	.p1 = { .min = 1, .max = 8},
 115	.p2 = { .dot_limit = 165000,
 116		.p2_slow = 10, .p2_fast = 5 },
 117};
 118
 119static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
 120	.dot = { .min = 20000, .max = 115000 },
 121	.vco = { .min = 1750000, .max = 3500000 },
 122	.n = { .min = 1, .max = 3 },
 123	.m = { .min = 104, .max = 138 },
 124	.m1 = { .min = 17, .max = 23 },
 125	.m2 = { .min = 5, .max = 11 },
 126	.p = { .min = 28, .max = 112 },
 127	.p1 = { .min = 2, .max = 8 },
 128	.p2 = { .dot_limit = 0,
 129		.p2_slow = 14, .p2_fast = 14
 130	},
 131};
 132
 133static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
 134	.dot = { .min = 80000, .max = 224000 },
 135	.vco = { .min = 1750000, .max = 3500000 },
 136	.n = { .min = 1, .max = 3 },
 137	.m = { .min = 104, .max = 138 },
 138	.m1 = { .min = 17, .max = 23 },
 139	.m2 = { .min = 5, .max = 11 },
 140	.p = { .min = 14, .max = 42 },
 141	.p1 = { .min = 2, .max = 6 },
 142	.p2 = { .dot_limit = 0,
 143		.p2_slow = 7, .p2_fast = 7
 144	},
 145};
 146
 147static const struct intel_limit pnv_limits_sdvo = {
 148	.dot = { .min = 20000, .max = 400000},
 149	.vco = { .min = 1700000, .max = 3500000 },
 150	/* Pineview's Ncounter is a ring counter */
 151	.n = { .min = 3, .max = 6 },
 152	.m = { .min = 2, .max = 256 },
 153	/* Pineview only has one combined m divider, which we treat as m2. */
 154	.m1 = { .min = 0, .max = 0 },
 155	.m2 = { .min = 0, .max = 254 },
 156	.p = { .min = 5, .max = 80 },
 157	.p1 = { .min = 1, .max = 8 },
 158	.p2 = { .dot_limit = 200000,
 159		.p2_slow = 10, .p2_fast = 5 },
 160};
 161
 162static const struct intel_limit pnv_limits_lvds = {
 163	.dot = { .min = 20000, .max = 400000 },
 164	.vco = { .min = 1700000, .max = 3500000 },
 165	.n = { .min = 3, .max = 6 },
 166	.m = { .min = 2, .max = 256 },
 167	.m1 = { .min = 0, .max = 0 },
 168	.m2 = { .min = 0, .max = 254 },
 169	.p = { .min = 7, .max = 112 },
 170	.p1 = { .min = 1, .max = 8 },
 171	.p2 = { .dot_limit = 112000,
 172		.p2_slow = 14, .p2_fast = 14 },
 173};
 174
 175/* Ironlake / Sandybridge
 176 *
 177 * We calculate clock using (register_value + 2) for N/M1/M2, so here
 178 * the range value for them is (actual_value - 2).
 179 */
 180static const struct intel_limit ilk_limits_dac = {
 181	.dot = { .min = 25000, .max = 350000 },
 182	.vco = { .min = 1760000, .max = 3510000 },
 183	.n = { .min = 1, .max = 5 },
 184	.m = { .min = 79, .max = 127 },
 185	.m1 = { .min = 12, .max = 22 },
 186	.m2 = { .min = 5, .max = 9 },
 187	.p = { .min = 5, .max = 80 },
 188	.p1 = { .min = 1, .max = 8 },
 189	.p2 = { .dot_limit = 225000,
 190		.p2_slow = 10, .p2_fast = 5 },
 191};
 192
 193static const struct intel_limit ilk_limits_single_lvds = {
 194	.dot = { .min = 25000, .max = 350000 },
 195	.vco = { .min = 1760000, .max = 3510000 },
 196	.n = { .min = 1, .max = 3 },
 197	.m = { .min = 79, .max = 118 },
 198	.m1 = { .min = 12, .max = 22 },
 199	.m2 = { .min = 5, .max = 9 },
 200	.p = { .min = 28, .max = 112 },
 201	.p1 = { .min = 2, .max = 8 },
 202	.p2 = { .dot_limit = 225000,
 203		.p2_slow = 14, .p2_fast = 14 },
 204};
 205
 206static const struct intel_limit ilk_limits_dual_lvds = {
 207	.dot = { .min = 25000, .max = 350000 },
 208	.vco = { .min = 1760000, .max = 3510000 },
 209	.n = { .min = 1, .max = 3 },
 210	.m = { .min = 79, .max = 127 },
 211	.m1 = { .min = 12, .max = 22 },
 212	.m2 = { .min = 5, .max = 9 },
 213	.p = { .min = 14, .max = 56 },
 214	.p1 = { .min = 2, .max = 8 },
 215	.p2 = { .dot_limit = 225000,
 216		.p2_slow = 7, .p2_fast = 7 },
 217};
 218
 219/* LVDS 100mhz refclk limits. */
 220static const struct intel_limit ilk_limits_single_lvds_100m = {
 221	.dot = { .min = 25000, .max = 350000 },
 222	.vco = { .min = 1760000, .max = 3510000 },
 223	.n = { .min = 1, .max = 2 },
 224	.m = { .min = 79, .max = 126 },
 225	.m1 = { .min = 12, .max = 22 },
 226	.m2 = { .min = 5, .max = 9 },
 227	.p = { .min = 28, .max = 112 },
 228	.p1 = { .min = 2, .max = 8 },
 229	.p2 = { .dot_limit = 225000,
 230		.p2_slow = 14, .p2_fast = 14 },
 231};
 232
 233static const struct intel_limit ilk_limits_dual_lvds_100m = {
 234	.dot = { .min = 25000, .max = 350000 },
 235	.vco = { .min = 1760000, .max = 3510000 },
 236	.n = { .min = 1, .max = 3 },
 237	.m = { .min = 79, .max = 126 },
 238	.m1 = { .min = 12, .max = 22 },
 239	.m2 = { .min = 5, .max = 9 },
 240	.p = { .min = 14, .max = 42 },
 241	.p1 = { .min = 2, .max = 6 },
 242	.p2 = { .dot_limit = 225000,
 243		.p2_slow = 7, .p2_fast = 7 },
 244};
 245
 246static const struct intel_limit intel_limits_vlv = {
 247	 /*
 248	  * These are the data rate limits (measured in fast clocks)
 249	  * since those are the strictest limits we have. The fast
 250	  * clock and actual rate limits are more relaxed, so checking
 251	  * them would make no difference.
 252	  */
 253	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
 254	.vco = { .min = 4000000, .max = 6000000 },
 255	.n = { .min = 1, .max = 7 },
 256	.m1 = { .min = 2, .max = 3 },
 257	.m2 = { .min = 11, .max = 156 },
 258	.p1 = { .min = 2, .max = 3 },
 259	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
 260};
 261
 262static const struct intel_limit intel_limits_chv = {
 263	/*
 264	 * These are the data rate limits (measured in fast clocks)
 265	 * since those are the strictest limits we have.  The fast
 266	 * clock and actual rate limits are more relaxed, so checking
 267	 * them would make no difference.
 268	 */
 269	.dot = { .min = 25000 * 5, .max = 540000 * 5},
 270	.vco = { .min = 4800000, .max = 6480000 },
 271	.n = { .min = 1, .max = 1 },
 272	.m1 = { .min = 2, .max = 2 },
 273	.m2 = { .min = 24 << 22, .max = 175 << 22 },
 274	.p1 = { .min = 2, .max = 4 },
 275	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
 276};
 277
 278static const struct intel_limit intel_limits_bxt = {
 279	/* FIXME: find real dot limits */
 280	.dot = { .min = 0, .max = INT_MAX },
 281	.vco = { .min = 4800000, .max = 6700000 },
 282	.n = { .min = 1, .max = 1 },
 283	.m1 = { .min = 2, .max = 2 },
 284	/* FIXME: find real m2 limits */
 285	.m2 = { .min = 2 << 22, .max = 255 << 22 },
 286	.p1 = { .min = 2, .max = 4 },
 287	.p2 = { .p2_slow = 1, .p2_fast = 20 },
 288};
 289
 290/*
 291 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
 292 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
 293 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
 294 * The helpers' return value is the rate of the clock that is fed to the
 295 * display engine's pipe which can be the above fast dot clock rate or a
 296 * divided-down version of it.
 297 */
 298/* m1 is reserved as 0 in Pineview, n is a ring counter */
 299int pnv_calc_dpll_params(int refclk, struct dpll *clock)
 300{
 301	clock->m = clock->m2 + 2;
 302	clock->p = clock->p1 * clock->p2;
 303	if (WARN_ON(clock->n == 0 || clock->p == 0))
 304		return 0;
 305	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
 306	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 
 307
 308	return clock->dot;
 309}
 310
 311static u32 i9xx_dpll_compute_m(struct dpll *dpll)
 312{
 313	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
 314}
 315
 316int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
 317{
 318	clock->m = i9xx_dpll_compute_m(clock);
 319	clock->p = clock->p1 * clock->p2;
 320	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
 321		return 0;
 322	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
 323	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 
 324
 325	return clock->dot;
 326}
 327
 328int vlv_calc_dpll_params(int refclk, struct dpll *clock)
 329{
 330	clock->m = clock->m1 * clock->m2;
 331	clock->p = clock->p1 * clock->p2;
 332	if (WARN_ON(clock->n == 0 || clock->p == 0))
 333		return 0;
 334	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
 335	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 336
 337	return clock->dot / 5;
 
 
 
 
 
 338}
 339
 340int chv_calc_dpll_params(int refclk, struct dpll *clock)
 341{
 342	clock->m = clock->m1 * clock->m2;
 343	clock->p = clock->p1 * clock->p2;
 344	if (WARN_ON(clock->n == 0 || clock->p == 0))
 345		return 0;
 346	clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
 347					   clock->n << 22);
 348	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 349
 350	return clock->dot / 5;
 
 
 
 
 
 
 
 
 351}
 352
 353/*
 354 * Returns whether the given set of divisors are valid for a given refclk with
 355 * the given connectors.
 356 */
 357static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
 358			       const struct intel_limit *limit,
 359			       const struct dpll *clock)
 360{
 361	if (clock->n < limit->n.min || limit->n.max < clock->n)
 362		return false;
 363	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
 364		return false;
 365	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
 366		return false;
 367	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
 368		return false;
 369
 370	if (!IS_PINEVIEW(dev_priv) && !IS_LP(dev_priv))
 
 
 371		if (clock->m1 <= clock->m2)
 372			return false;
 373
 374	if (!IS_LP(dev_priv)) {
 
 375		if (clock->p < limit->p.min || limit->p.max < clock->p)
 376			return false;
 377		if (clock->m < limit->m.min || limit->m.max < clock->m)
 378			return false;
 379	}
 380
 381	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
 382		return false;
 383	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
 384	 * connector, etc., rather than just a single range.
 385	 */
 386	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
 387		return false;
 388
 389	return true;
 390}
 391
 392static int
 393i9xx_select_p2_div(const struct intel_limit *limit,
 394		   const struct intel_crtc_state *crtc_state,
 395		   int target)
 396{
 397	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
 398
 399	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
 400		/*
 401		 * For LVDS just rely on its current settings for dual-channel.
 402		 * We haven't figured out how to reliably set up different
 403		 * single/dual channel state, if we even can.
 404		 */
 405		if (intel_is_dual_link_lvds(dev_priv))
 406			return limit->p2.p2_fast;
 407		else
 408			return limit->p2.p2_slow;
 409	} else {
 410		if (target < limit->p2.dot_limit)
 411			return limit->p2.p2_slow;
 412		else
 413			return limit->p2.p2_fast;
 414	}
 415}
 416
 417/*
 418 * Returns a set of divisors for the desired target clock with the given
 419 * refclk, or FALSE.  The returned values represent the clock equation:
 420 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
 421 *
 422 * Target and reference clocks are specified in kHz.
 423 *
 424 * If match_clock is provided, then best_clock P divider must match the P
 425 * divider from @match_clock used for LVDS downclocking.
 426 */
 427static bool
 428i9xx_find_best_dpll(const struct intel_limit *limit,
 429		    struct intel_crtc_state *crtc_state,
 430		    int target, int refclk, struct dpll *match_clock,
 
 431		    struct dpll *best_clock)
 432{
 433	struct drm_device *dev = crtc_state->uapi.crtc->dev;
 434	struct dpll clock;
 435	int err = target;
 436
 437	memset(best_clock, 0, sizeof(*best_clock));
 438
 439	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
 440
 441	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
 442	     clock.m1++) {
 443		for (clock.m2 = limit->m2.min;
 444		     clock.m2 <= limit->m2.max; clock.m2++) {
 445			if (clock.m2 >= clock.m1)
 446				break;
 447			for (clock.n = limit->n.min;
 448			     clock.n <= limit->n.max; clock.n++) {
 449				for (clock.p1 = limit->p1.min;
 450					clock.p1 <= limit->p1.max; clock.p1++) {
 451					int this_err;
 452
 453					i9xx_calc_dpll_params(refclk, &clock);
 454					if (!intel_pll_is_valid(to_i915(dev),
 455								limit,
 456								&clock))
 457						continue;
 458					if (match_clock &&
 459					    clock.p != match_clock->p)
 460						continue;
 461
 462					this_err = abs(clock.dot - target);
 463					if (this_err < err) {
 464						*best_clock = clock;
 465						err = this_err;
 466					}
 467				}
 468			}
 469		}
 470	}
 471
 472	return (err != target);
 473}
 474
 475/*
 476 * Returns a set of divisors for the desired target clock with the given
 477 * refclk, or FALSE.  The returned values represent the clock equation:
 478 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
 479 *
 480 * Target and reference clocks are specified in kHz.
 481 *
 482 * If match_clock is provided, then best_clock P divider must match the P
 483 * divider from @match_clock used for LVDS downclocking.
 484 */
 485static bool
 486pnv_find_best_dpll(const struct intel_limit *limit,
 487		   struct intel_crtc_state *crtc_state,
 488		   int target, int refclk, struct dpll *match_clock,
 
 489		   struct dpll *best_clock)
 490{
 491	struct drm_device *dev = crtc_state->uapi.crtc->dev;
 492	struct dpll clock;
 493	int err = target;
 494
 495	memset(best_clock, 0, sizeof(*best_clock));
 496
 497	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
 498
 499	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
 500	     clock.m1++) {
 501		for (clock.m2 = limit->m2.min;
 502		     clock.m2 <= limit->m2.max; clock.m2++) {
 503			for (clock.n = limit->n.min;
 504			     clock.n <= limit->n.max; clock.n++) {
 505				for (clock.p1 = limit->p1.min;
 506					clock.p1 <= limit->p1.max; clock.p1++) {
 507					int this_err;
 508
 509					pnv_calc_dpll_params(refclk, &clock);
 510					if (!intel_pll_is_valid(to_i915(dev),
 511								limit,
 512								&clock))
 513						continue;
 514					if (match_clock &&
 515					    clock.p != match_clock->p)
 516						continue;
 517
 518					this_err = abs(clock.dot - target);
 519					if (this_err < err) {
 520						*best_clock = clock;
 521						err = this_err;
 522					}
 523				}
 524			}
 525		}
 526	}
 527
 528	return (err != target);
 529}
 530
 531/*
 532 * Returns a set of divisors for the desired target clock with the given
 533 * refclk, or FALSE.  The returned values represent the clock equation:
 534 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
 535 *
 536 * Target and reference clocks are specified in kHz.
 537 *
 538 * If match_clock is provided, then best_clock P divider must match the P
 539 * divider from @match_clock used for LVDS downclocking.
 540 */
 541static bool
 542g4x_find_best_dpll(const struct intel_limit *limit,
 543		   struct intel_crtc_state *crtc_state,
 544		   int target, int refclk, struct dpll *match_clock,
 
 545		   struct dpll *best_clock)
 546{
 547	struct drm_device *dev = crtc_state->uapi.crtc->dev;
 548	struct dpll clock;
 549	int max_n;
 550	bool found = false;
 551	/* approximately equals target * 0.00585 */
 552	int err_most = (target >> 8) + (target >> 9);
 553
 554	memset(best_clock, 0, sizeof(*best_clock));
 555
 556	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
 557
 558	max_n = limit->n.max;
 559	/* based on hardware requirement, prefer smaller n to precision */
 560	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
 561		/* based on hardware requirement, prefere larger m1,m2 */
 562		for (clock.m1 = limit->m1.max;
 563		     clock.m1 >= limit->m1.min; clock.m1--) {
 564			for (clock.m2 = limit->m2.max;
 565			     clock.m2 >= limit->m2.min; clock.m2--) {
 566				for (clock.p1 = limit->p1.max;
 567				     clock.p1 >= limit->p1.min; clock.p1--) {
 568					int this_err;
 569
 570					i9xx_calc_dpll_params(refclk, &clock);
 571					if (!intel_pll_is_valid(to_i915(dev),
 572								limit,
 573								&clock))
 574						continue;
 575
 576					this_err = abs(clock.dot - target);
 577					if (this_err < err_most) {
 578						*best_clock = clock;
 579						err_most = this_err;
 580						max_n = clock.n;
 581						found = true;
 582					}
 583				}
 584			}
 585		}
 586	}
 587	return found;
 588}
 589
 590/*
 591 * Check if the calculated PLL configuration is more optimal compared to the
 592 * best configuration and error found so far. Return the calculated error.
 593 */
 594static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
 595			       const struct dpll *calculated_clock,
 596			       const struct dpll *best_clock,
 597			       unsigned int best_error_ppm,
 598			       unsigned int *error_ppm)
 599{
 600	/*
 601	 * For CHV ignore the error and consider only the P value.
 602	 * Prefer a bigger P value based on HW requirements.
 603	 */
 604	if (IS_CHERRYVIEW(to_i915(dev))) {
 605		*error_ppm = 0;
 606
 607		return calculated_clock->p > best_clock->p;
 608	}
 609
 610	if (drm_WARN_ON_ONCE(dev, !target_freq))
 611		return false;
 612
 613	*error_ppm = div_u64(1000000ULL *
 614				abs(target_freq - calculated_clock->dot),
 615			     target_freq);
 616	/*
 617	 * Prefer a better P value over a better (smaller) error if the error
 618	 * is small. Ensure this preference for future configurations too by
 619	 * setting the error to 0.
 620	 */
 621	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
 622		*error_ppm = 0;
 623
 624		return true;
 625	}
 626
 627	return *error_ppm + 10 < best_error_ppm;
 628}
 629
 630/*
 631 * Returns a set of divisors for the desired target clock with the given
 632 * refclk, or FALSE.  The returned values represent the clock equation:
 633 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
 634 */
 635static bool
 636vlv_find_best_dpll(const struct intel_limit *limit,
 637		   struct intel_crtc_state *crtc_state,
 638		   int target, int refclk, struct dpll *match_clock,
 
 639		   struct dpll *best_clock)
 640{
 641	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 642	struct drm_device *dev = crtc->base.dev;
 643	struct dpll clock;
 644	unsigned int bestppm = 1000000;
 645	/* min update 19.2 MHz */
 646	int max_n = min(limit->n.max, refclk / 19200);
 647	bool found = false;
 648
 649	target *= 5; /* fast clock */
 650
 651	memset(best_clock, 0, sizeof(*best_clock));
 652
 653	/* based on hardware requirement, prefer smaller n to precision */
 654	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
 655		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
 656			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
 657			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
 658				clock.p = clock.p1 * clock.p2;
 659				/* based on hardware requirement, prefer bigger m1,m2 values */
 660				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
 661					unsigned int ppm;
 662
 663					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
 664								     refclk * clock.m1);
 665
 666					vlv_calc_dpll_params(refclk, &clock);
 667
 668					if (!intel_pll_is_valid(to_i915(dev),
 669								limit,
 670								&clock))
 671						continue;
 672
 673					if (!vlv_PLL_is_optimal(dev, target,
 674								&clock,
 675								best_clock,
 676								bestppm, &ppm))
 677						continue;
 678
 679					*best_clock = clock;
 680					bestppm = ppm;
 681					found = true;
 682				}
 683			}
 684		}
 685	}
 686
 687	return found;
 688}
 689
 690/*
 691 * Returns a set of divisors for the desired target clock with the given
 692 * refclk, or FALSE.  The returned values represent the clock equation:
 693 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
 694 */
 695static bool
 696chv_find_best_dpll(const struct intel_limit *limit,
 697		   struct intel_crtc_state *crtc_state,
 698		   int target, int refclk, struct dpll *match_clock,
 
 699		   struct dpll *best_clock)
 700{
 701	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 702	struct drm_device *dev = crtc->base.dev;
 703	unsigned int best_error_ppm;
 704	struct dpll clock;
 705	u64 m2;
 706	int found = false;
 707
 708	memset(best_clock, 0, sizeof(*best_clock));
 709	best_error_ppm = 1000000;
 710
 711	/*
 712	 * Based on hardware doc, the n always set to 1, and m1 always
 713	 * set to 2.  If requires to support 200Mhz refclk, we need to
 714	 * revisit this because n may not 1 anymore.
 715	 */
 716	clock.n = 1;
 717	clock.m1 = 2;
 718	target *= 5;	/* fast clock */
 719
 720	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
 721		for (clock.p2 = limit->p2.p2_fast;
 722				clock.p2 >= limit->p2.p2_slow;
 723				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
 724			unsigned int error_ppm;
 725
 726			clock.p = clock.p1 * clock.p2;
 727
 728			m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
 729						   refclk * clock.m1);
 730
 731			if (m2 > INT_MAX/clock.m1)
 732				continue;
 733
 734			clock.m2 = m2;
 735
 736			chv_calc_dpll_params(refclk, &clock);
 737
 738			if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
 739				continue;
 740
 741			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
 742						best_error_ppm, &error_ppm))
 743				continue;
 744
 745			*best_clock = clock;
 746			best_error_ppm = error_ppm;
 747			found = true;
 748		}
 749	}
 750
 751	return found;
 752}
 753
 754bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
 755			struct dpll *best_clock)
 756{
 757	int refclk = 100000;
 758	const struct intel_limit *limit = &intel_limits_bxt;
 
 759
 760	return chv_find_best_dpll(limit, crtc_state,
 761				  crtc_state->port_clock, refclk,
 762				  NULL, best_clock);
 763}
 764
 765static u32 pnv_dpll_compute_fp(struct dpll *dpll)
 766{
 767	return (1 << dpll->n) << 16 | dpll->m2;
 768}
 769
 770static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
 771				     struct intel_crtc_state *crtc_state,
 772				     struct dpll *reduced_clock)
 773{
 774	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 775	u32 fp, fp2 = 0;
 776
 777	if (IS_PINEVIEW(dev_priv)) {
 778		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
 779		if (reduced_clock)
 780			fp2 = pnv_dpll_compute_fp(reduced_clock);
 781	} else {
 782		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
 783		if (reduced_clock)
 784			fp2 = i9xx_dpll_compute_fp(reduced_clock);
 785	}
 786
 787	crtc_state->dpll_hw_state.fp0 = fp;
 788
 789	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
 790	    reduced_clock) {
 791		crtc_state->dpll_hw_state.fp1 = fp2;
 792	} else {
 793		crtc_state->dpll_hw_state.fp1 = fp;
 794	}
 795}
 796
 797static void i9xx_compute_dpll(struct intel_crtc *crtc,
 798			      struct intel_crtc_state *crtc_state,
 799			      struct dpll *reduced_clock)
 800{
 
 
 801	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 802	u32 dpll;
 803	struct dpll *clock = &crtc_state->dpll;
 804
 805	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
 806
 807	dpll = DPLL_VGA_MODE_DIS;
 808
 809	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
 810		dpll |= DPLLB_MODE_LVDS;
 811	else
 812		dpll |= DPLLB_MODE_DAC_SERIAL;
 813
 814	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
 815	    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
 816		dpll |= (crtc_state->pixel_multiplier - 1)
 817			<< SDVO_MULTIPLIER_SHIFT_HIRES;
 818	}
 819
 820	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
 821	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
 822		dpll |= DPLL_SDVO_HIGH_SPEED;
 823
 824	if (intel_crtc_has_dp_encoder(crtc_state))
 825		dpll |= DPLL_SDVO_HIGH_SPEED;
 826
 827	/* compute bitmask from p1 value */
 828	if (IS_PINEVIEW(dev_priv))
 
 
 
 829		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
 830	else {
 
 831		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
 832		if (IS_G4X(dev_priv) && reduced_clock)
 833			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
 834	}
 
 835	switch (clock->p2) {
 836	case 5:
 837		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
 838		break;
 839	case 7:
 840		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
 841		break;
 842	case 10:
 843		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
 844		break;
 845	case 14:
 846		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
 847		break;
 848	}
 
 
 849	if (DISPLAY_VER(dev_priv) >= 4)
 850		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
 851
 852	if (crtc_state->sdvo_tv_clock)
 853		dpll |= PLL_REF_INPUT_TVCLKINBC;
 854	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
 855		 intel_panel_use_ssc(dev_priv))
 856		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
 857	else
 858		dpll |= PLL_REF_INPUT_DREFCLK;
 859
 860	dpll |= DPLL_VCO_ENABLE;
 861	crtc_state->dpll_hw_state.dpll = dpll;
 862
 863	if (DISPLAY_VER(dev_priv) >= 4) {
 864		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
 865			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
 866		crtc_state->dpll_hw_state.dpll_md = dpll_md;
 
 
 
 
 
 
 
 
 
 
 867	}
 
 
 
 
 
 868}
 869
 870static void i8xx_compute_dpll(struct intel_crtc *crtc,
 871			      struct intel_crtc_state *crtc_state,
 872			      struct dpll *reduced_clock)
 873{
 874	struct drm_device *dev = crtc->base.dev;
 875	struct drm_i915_private *dev_priv = to_i915(dev);
 
 876	u32 dpll;
 877	struct dpll *clock = &crtc_state->dpll;
 878
 879	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
 880
 881	dpll = DPLL_VGA_MODE_DIS;
 882
 883	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
 884		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
 885	} else {
 886		if (clock->p1 == 2)
 887			dpll |= PLL_P1_DIVIDE_BY_TWO;
 888		else
 889			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
 890		if (clock->p2 == 4)
 891			dpll |= PLL_P2_DIVIDE_BY_4;
 892	}
 
 
 893
 894	/*
 895	 * Bspec:
 896	 * "[Almador Errata}: For the correct operation of the muxed DVO pins
 897	 *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
 898	 *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
 899	 *  Enable) must be set to “1” in both the DPLL A Control Register
 900	 *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
 901	 *
 902	 * For simplicity We simply keep both bits always enabled in
 903	 * both DPLLS. The spec says we should disable the DVO 2X clock
 904	 * when not needed, but this seems to work fine in practice.
 905	 */
 906	if (IS_I830(dev_priv) ||
 907	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
 908		dpll |= DPLL_DVO_2X_MODE;
 909
 910	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
 911	    intel_panel_use_ssc(dev_priv))
 912		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
 913	else
 914		dpll |= PLL_REF_INPUT_DREFCLK;
 915
 916	dpll |= DPLL_VCO_ENABLE;
 917	crtc_state->dpll_hw_state.dpll = dpll;
 918}
 919
 920static int hsw_crtc_compute_clock(struct intel_crtc *crtc,
 921				  struct intel_crtc_state *crtc_state)
 
 922{
 923	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 924	struct intel_atomic_state *state =
 925		to_intel_atomic_state(crtc_state->uapi.state);
 926
 927	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) ||
 928	    DISPLAY_VER(dev_priv) >= 11) {
 929		struct intel_encoder *encoder =
 930			intel_get_crtc_new_encoder(state, crtc_state);
 931
 932		if (!intel_reserve_shared_dplls(state, crtc, encoder)) {
 933			drm_dbg_kms(&dev_priv->drm,
 934				    "failed to find PLL for pipe %c\n",
 935				    pipe_name(crtc->pipe));
 936			return -EINVAL;
 937		}
 938	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 939
 940	return 0;
 941}
 942
 943static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 944{
 945	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
 
 
 
 
 
 
 
 
 
 
 
 
 946}
 947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 948
 949static void ilk_compute_dpll(struct intel_crtc *crtc,
 950			     struct intel_crtc_state *crtc_state,
 951			     struct dpll *reduced_clock)
 
 
 
 952{
 953	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 954	u32 dpll, fp, fp2;
 955	int factor;
 956
 957	/* Enable autotuning of the PLL clock (if permissible) */
 958	factor = 21;
 959	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
 960		if ((intel_panel_use_ssc(dev_priv) &&
 961		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
 962		    (HAS_PCH_IBX(dev_priv) &&
 963		     intel_is_dual_link_lvds(dev_priv)))
 964			factor = 25;
 965	} else if (crtc_state->sdvo_tv_clock) {
 966		factor = 20;
 967	}
 968
 969	fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
 
 
 
 970
 971	if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor))
 
 
 
 
 
 972		fp |= FP_CB_TUNE;
 973
 974	if (reduced_clock) {
 975		fp2 = i9xx_dpll_compute_fp(reduced_clock);
 976
 977		if (reduced_clock->m < factor * reduced_clock->n)
 978			fp2 |= FP_CB_TUNE;
 979	} else {
 980		fp2 = fp;
 981	}
 
 
 
 982
 983	dpll = 0;
 984
 985	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
 986		dpll |= DPLLB_MODE_LVDS;
 987	else
 988		dpll |= DPLLB_MODE_DAC_SERIAL;
 989
 990	dpll |= (crtc_state->pixel_multiplier - 1)
 991		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
 992
 993	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
 994	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
 995		dpll |= DPLL_SDVO_HIGH_SPEED;
 996
 997	if (intel_crtc_has_dp_encoder(crtc_state))
 998		dpll |= DPLL_SDVO_HIGH_SPEED;
 999
1000	/*
1001	 * The high speed IO clock is only really required for
1002	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
1003	 * possible to share the DPLL between CRT and HDMI. Enabling
1004	 * the clock needlessly does no real harm, except use up a
1005	 * bit of power potentially.
1006	 *
1007	 * We'll limit this to IVB with 3 pipes, since it has only two
1008	 * DPLLs and so DPLL sharing is the only way to get three pipes
1009	 * driving PCH ports at the same time. On SNB we could do this,
1010	 * and potentially avoid enabling the second DPLL, but it's not
1011	 * clear if it''s a win or loss power wise. No point in doing
1012	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
1013	 */
1014	if (INTEL_NUM_PIPES(dev_priv) == 3 &&
1015	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
1016		dpll |= DPLL_SDVO_HIGH_SPEED;
1017
1018	/* compute bitmask from p1 value */
1019	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1020	/* also FPA1 */
1021	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1022
1023	switch (crtc_state->dpll.p2) {
1024	case 5:
1025		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1026		break;
1027	case 7:
1028		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1029		break;
1030	case 10:
1031		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1032		break;
1033	case 14:
1034		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1035		break;
1036	}
 
1037
1038	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1039	    intel_panel_use_ssc(dev_priv))
1040		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1041	else
1042		dpll |= PLL_REF_INPUT_DREFCLK;
1043
1044	dpll |= DPLL_VCO_ENABLE;
 
 
 
 
 
 
 
 
 
 
 
1045
1046	crtc_state->dpll_hw_state.dpll = dpll;
1047	crtc_state->dpll_hw_state.fp0 = fp;
1048	crtc_state->dpll_hw_state.fp1 = fp2;
1049}
1050
1051static int ilk_crtc_compute_clock(struct intel_crtc *crtc,
1052				  struct intel_crtc_state *crtc_state)
1053{
1054	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1055	struct intel_atomic_state *state =
1056		to_intel_atomic_state(crtc_state->uapi.state);
 
1057	const struct intel_limit *limit;
1058	int refclk = 120000;
1059
1060	memset(&crtc_state->dpll_hw_state, 0,
1061	       sizeof(crtc_state->dpll_hw_state));
1062
1063	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1064	if (!crtc_state->has_pch_encoder)
1065		return 0;
1066
1067	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1068		if (intel_panel_use_ssc(dev_priv)) {
1069			drm_dbg_kms(&dev_priv->drm,
1070				    "using SSC reference clock of %d kHz\n",
1071				    dev_priv->vbt.lvds_ssc_freq);
1072			refclk = dev_priv->vbt.lvds_ssc_freq;
1073		}
1074
1075		if (intel_is_dual_link_lvds(dev_priv)) {
1076			if (refclk == 100000)
1077				limit = &ilk_limits_dual_lvds_100m;
1078			else
1079				limit = &ilk_limits_dual_lvds;
1080		} else {
1081			if (refclk == 100000)
1082				limit = &ilk_limits_single_lvds_100m;
1083			else
1084				limit = &ilk_limits_single_lvds;
1085		}
1086	} else {
1087		limit = &ilk_limits_dac;
1088	}
1089
1090	if (!crtc_state->clock_set &&
1091	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1092				refclk, NULL, &crtc_state->dpll)) {
1093		drm_err(&dev_priv->drm,
1094			"Couldn't find PLL settings for mode!\n");
1095		return -EINVAL;
1096	}
1097
1098	ilk_compute_dpll(crtc, crtc_state, NULL);
1099
1100	if (!intel_reserve_shared_dplls(state, crtc, NULL)) {
1101		drm_dbg_kms(&dev_priv->drm,
1102			    "failed to find PLL for pipe %c\n",
1103			    pipe_name(crtc->pipe));
1104		return -EINVAL;
1105	}
1106
1107	return 0;
 
 
 
 
 
 
 
1108}
1109
1110void vlv_compute_dpll(struct intel_crtc *crtc,
1111		      struct intel_crtc_state *pipe_config)
1112{
1113	pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
 
1115	if (crtc->pipe != PIPE_A)
1116		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1117
1118	/* DPLL not used with DSI, but still need the rest set up */
1119	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
1120		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
1121			DPLL_EXT_BUFFER_ENABLE_VLV;
1122
1123	pipe_config->dpll_hw_state.dpll_md =
1124		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1125}
1126
1127void chv_compute_dpll(struct intel_crtc *crtc,
1128		      struct intel_crtc_state *pipe_config)
1129{
1130	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
 
 
 
 
 
 
 
 
 
 
 
1131		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
 
1132	if (crtc->pipe != PIPE_A)
1133		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1134
1135	/* DPLL not used with DSI, but still need the rest set up */
1136	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
1137		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
1138
1139	pipe_config->dpll_hw_state.dpll_md =
1140		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1141}
1142
1143static int chv_crtc_compute_clock(struct intel_crtc *crtc,
1144				  struct intel_crtc_state *crtc_state)
1145{
1146	int refclk = 100000;
1147	const struct intel_limit *limit = &intel_limits_chv;
1148	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1149
1150	memset(&crtc_state->dpll_hw_state, 0,
1151	       sizeof(crtc_state->dpll_hw_state));
 
 
 
 
 
 
 
 
 
1152
1153	if (!crtc_state->clock_set &&
1154	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1155				refclk, NULL, &crtc_state->dpll)) {
1156		drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n");
1157		return -EINVAL;
1158	}
1159
1160	chv_compute_dpll(crtc, crtc_state);
 
 
 
 
 
 
 
 
 
1161
1162	return 0;
1163}
1164
1165static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
1166				  struct intel_crtc_state *crtc_state)
1167{
1168	int refclk = 100000;
 
1169	const struct intel_limit *limit = &intel_limits_vlv;
1170	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1171
1172	memset(&crtc_state->dpll_hw_state, 0,
1173	       sizeof(crtc_state->dpll_hw_state));
1174
1175	if (!crtc_state->clock_set &&
1176	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1177				refclk, NULL, &crtc_state->dpll)) {
1178		drm_err(&i915->drm,  "Couldn't find PLL settings for mode!\n");
1179		return -EINVAL;
1180	}
1181
1182	vlv_compute_dpll(crtc, crtc_state);
 
 
 
 
 
 
 
 
 
1183
1184	return 0;
1185}
1186
1187static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
1188				  struct intel_crtc_state *crtc_state)
1189{
1190	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 
 
 
1191	const struct intel_limit *limit;
1192	int refclk = 96000;
1193
1194	memset(&crtc_state->dpll_hw_state, 0,
1195	       sizeof(crtc_state->dpll_hw_state));
1196
1197	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1198		if (intel_panel_use_ssc(dev_priv)) {
1199			refclk = dev_priv->vbt.lvds_ssc_freq;
1200			drm_dbg_kms(&dev_priv->drm,
1201				    "using SSC reference clock of %d kHz\n",
1202				    refclk);
1203		}
1204
1205		if (intel_is_dual_link_lvds(dev_priv))
1206			limit = &intel_limits_g4x_dual_channel_lvds;
1207		else
1208			limit = &intel_limits_g4x_single_channel_lvds;
1209	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
1210		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
1211		limit = &intel_limits_g4x_hdmi;
1212	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
1213		limit = &intel_limits_g4x_sdvo;
1214	} else {
1215		/* The option is for other outputs */
1216		limit = &intel_limits_i9xx_sdvo;
1217	}
1218
1219	if (!crtc_state->clock_set &&
1220	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1221				refclk, NULL, &crtc_state->dpll)) {
1222		drm_err(&dev_priv->drm,
1223			"Couldn't find PLL settings for mode!\n");
1224		return -EINVAL;
1225	}
1226
1227	i9xx_compute_dpll(crtc, crtc_state, NULL);
 
 
 
 
 
 
 
 
1228
1229	return 0;
1230}
1231
1232static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
1233				  struct intel_crtc_state *crtc_state)
1234{
1235	struct drm_device *dev = crtc->base.dev;
1236	struct drm_i915_private *dev_priv = to_i915(dev);
 
 
1237	const struct intel_limit *limit;
1238	int refclk = 96000;
1239
1240	memset(&crtc_state->dpll_hw_state, 0,
1241	       sizeof(crtc_state->dpll_hw_state));
1242
1243	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1244		if (intel_panel_use_ssc(dev_priv)) {
1245			refclk = dev_priv->vbt.lvds_ssc_freq;
1246			drm_dbg_kms(&dev_priv->drm,
1247				    "using SSC reference clock of %d kHz\n",
1248				    refclk);
1249		}
1250
1251		limit = &pnv_limits_lvds;
1252	} else {
1253		limit = &pnv_limits_sdvo;
1254	}
1255
1256	if (!crtc_state->clock_set &&
1257	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1258				refclk, NULL, &crtc_state->dpll)) {
1259		drm_err(&dev_priv->drm,
1260			"Couldn't find PLL settings for mode!\n");
1261		return -EINVAL;
1262	}
1263
1264	i9xx_compute_dpll(crtc, crtc_state, NULL);
 
 
 
 
 
 
1265
1266	return 0;
1267}
1268
1269static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
1270				   struct intel_crtc_state *crtc_state)
1271{
1272	struct drm_device *dev = crtc->base.dev;
1273	struct drm_i915_private *dev_priv = to_i915(dev);
 
 
1274	const struct intel_limit *limit;
1275	int refclk = 96000;
1276
1277	memset(&crtc_state->dpll_hw_state, 0,
1278	       sizeof(crtc_state->dpll_hw_state));
1279
1280	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1281		if (intel_panel_use_ssc(dev_priv)) {
1282			refclk = dev_priv->vbt.lvds_ssc_freq;
1283			drm_dbg_kms(&dev_priv->drm,
1284				    "using SSC reference clock of %d kHz\n",
1285				    refclk);
1286		}
1287
1288		limit = &intel_limits_i9xx_lvds;
1289	} else {
1290		limit = &intel_limits_i9xx_sdvo;
1291	}
1292
1293	if (!crtc_state->clock_set &&
1294	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1295				 refclk, NULL, &crtc_state->dpll)) {
1296		drm_err(&dev_priv->drm,
1297			"Couldn't find PLL settings for mode!\n");
1298		return -EINVAL;
1299	}
1300
1301	i9xx_compute_dpll(crtc, crtc_state, NULL);
 
 
 
 
 
 
 
 
1302
1303	return 0;
1304}
1305
1306static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
1307				   struct intel_crtc_state *crtc_state)
1308{
1309	struct drm_device *dev = crtc->base.dev;
1310	struct drm_i915_private *dev_priv = to_i915(dev);
 
 
1311	const struct intel_limit *limit;
1312	int refclk = 48000;
1313
1314	memset(&crtc_state->dpll_hw_state, 0,
1315	       sizeof(crtc_state->dpll_hw_state));
1316
1317	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1318		if (intel_panel_use_ssc(dev_priv)) {
1319			refclk = dev_priv->vbt.lvds_ssc_freq;
1320			drm_dbg_kms(&dev_priv->drm,
1321				    "using SSC reference clock of %d kHz\n",
1322				    refclk);
1323		}
1324
1325		limit = &intel_limits_i8xx_lvds;
1326	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
1327		limit = &intel_limits_i8xx_dvo;
1328	} else {
1329		limit = &intel_limits_i8xx_dac;
1330	}
1331
1332	if (!crtc_state->clock_set &&
1333	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1334				 refclk, NULL, &crtc_state->dpll)) {
1335		drm_err(&dev_priv->drm,
1336			"Couldn't find PLL settings for mode!\n");
1337		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1338	}
1339
1340	i8xx_compute_dpll(crtc, crtc_state, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1341
1342	return 0;
1343}
1344
1345void
1346intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv)
1347{
1348	if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv))
1349		dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock;
 
 
 
 
1350	else if (HAS_PCH_SPLIT(dev_priv))
1351		dev_priv->display.crtc_compute_clock = ilk_crtc_compute_clock;
1352	else if (IS_CHERRYVIEW(dev_priv))
1353		dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
1354	else if (IS_VALLEYVIEW(dev_priv))
1355		dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
1356	else if (IS_G4X(dev_priv))
1357		dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
1358	else if (IS_PINEVIEW(dev_priv))
1359		dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
1360	else if (DISPLAY_VER(dev_priv) != 2)
1361		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
1362	else
1363		dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
1364}
1365
1366static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1367{
1368	if (IS_I830(dev_priv))
1369		return false;
1370
1371	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1372}
1373
1374void i9xx_enable_pll(struct intel_crtc *crtc,
1375		     const struct intel_crtc_state *crtc_state)
1376{
 
 
1377	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1378	i915_reg_t reg = DPLL(crtc->pipe);
1379	u32 dpll = crtc_state->dpll_hw_state.dpll;
1380	int i;
1381
1382	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1383
1384	/* PLL is protected by panel, make sure we can write it */
1385	if (i9xx_has_pps(dev_priv))
1386		assert_panel_unlocked(dev_priv, crtc->pipe);
 
 
 
1387
1388	/*
1389	 * Apparently we need to have VGA mode enabled prior to changing
1390	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1391	 * dividers, even though the register value does change.
1392	 */
1393	intel_de_write(dev_priv, reg, dpll & ~DPLL_VGA_MODE_DIS);
1394	intel_de_write(dev_priv, reg, dpll);
 
1395
1396	/* Wait for the clocks to stabilize. */
1397	intel_de_posting_read(dev_priv, reg);
1398	udelay(150);
1399
1400	if (DISPLAY_VER(dev_priv) >= 4) {
1401		intel_de_write(dev_priv, DPLL_MD(crtc->pipe),
1402			       crtc_state->dpll_hw_state.dpll_md);
1403	} else {
1404		/* The pixel multiplier can only be updated once the
1405		 * DPLL is enabled and the clocks are stable.
1406		 *
1407		 * So write it again.
1408		 */
1409		intel_de_write(dev_priv, reg, dpll);
1410	}
1411
1412	/* We do this three times for luck */
1413	for (i = 0; i < 3; i++) {
1414		intel_de_write(dev_priv, reg, dpll);
1415		intel_de_posting_read(dev_priv, reg);
1416		udelay(150); /* wait for warmup */
1417	}
1418}
1419
1420static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv,
1421				 enum pipe pipe)
1422{
1423	u32 reg_val;
1424
1425	/*
1426	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
1427	 * and set it to a reasonable value instead.
1428	 */
1429	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
1430	reg_val &= 0xffffff00;
1431	reg_val |= 0x00000030;
1432	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
1433
1434	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
1435	reg_val &= 0x00ffffff;
1436	reg_val |= 0x8c000000;
1437	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
1438
1439	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
1440	reg_val &= 0xffffff00;
1441	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
1442
1443	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
1444	reg_val &= 0x00ffffff;
1445	reg_val |= 0xb0000000;
1446	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
1447}
1448
1449static void _vlv_enable_pll(struct intel_crtc *crtc,
1450			    const struct intel_crtc_state *pipe_config)
1451{
1452	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1453	enum pipe pipe = crtc->pipe;
1454
1455	intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1456	intel_de_posting_read(dev_priv, DPLL(pipe));
1457	udelay(150);
1458
1459	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1460		drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
1461}
1462
1463void vlv_enable_pll(struct intel_crtc *crtc,
1464		    const struct intel_crtc_state *pipe_config)
1465{
1466	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1467	enum pipe pipe = crtc->pipe;
1468
1469	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1470
1471	/* PLL is protected by panel, make sure we can write it */
1472	assert_panel_unlocked(dev_priv, pipe);
1473
1474	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1475		_vlv_enable_pll(crtc, pipe_config);
1476
1477	intel_de_write(dev_priv, DPLL_MD(pipe),
1478		       pipe_config->dpll_hw_state.dpll_md);
1479	intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1480}
1481
1482
1483static void _chv_enable_pll(struct intel_crtc *crtc,
1484			    const struct intel_crtc_state *pipe_config)
1485{
 
1486	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 
 
 
1487	enum pipe pipe = crtc->pipe;
1488	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1489	u32 tmp;
1490
1491	vlv_dpio_get(dev_priv);
1492
1493	/* Enable back the 10bit clock to display controller */
1494	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1495	tmp |= DPIO_DCLKP_EN;
1496	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1497
1498	vlv_dpio_put(dev_priv);
1499
1500	/*
1501	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1502	 */
1503	udelay(1);
1504
1505	/* Enable PLL */
1506	intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1507
1508	/* Check PLL is locked */
1509	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1510		drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
1511}
1512
1513void chv_enable_pll(struct intel_crtc *crtc,
1514		    const struct intel_crtc_state *pipe_config)
1515{
1516	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1517	enum pipe pipe = crtc->pipe;
1518
1519	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1520
1521	/* PLL is protected by panel, make sure we can write it */
1522	assert_panel_unlocked(dev_priv, pipe);
1523
1524	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1525		_chv_enable_pll(crtc, pipe_config);
1526
1527	if (pipe != PIPE_A) {
1528		/*
1529		 * WaPixelRepeatModeFixForC0:chv
1530		 *
1531		 * DPLLCMD is AWOL. Use chicken bits to propagate
1532		 * the value from DPLLBMD to either pipe B or C.
1533		 */
1534		intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1535		intel_de_write(dev_priv, DPLL_MD(PIPE_B),
1536			       pipe_config->dpll_hw_state.dpll_md);
1537		intel_de_write(dev_priv, CBR4_VLV, 0);
1538		dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1539
1540		/*
1541		 * DPLLB VGA mode also seems to cause problems.
1542		 * We should always have it disabled.
1543		 */
1544		drm_WARN_ON(&dev_priv->drm,
1545			    (intel_de_read(dev_priv, DPLL(PIPE_B)) &
1546			     DPLL_VGA_MODE_DIS) == 0);
1547	} else {
1548		intel_de_write(dev_priv, DPLL_MD(pipe),
1549			       pipe_config->dpll_hw_state.dpll_md);
1550		intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1551	}
1552}
1553
1554void vlv_prepare_pll(struct intel_crtc *crtc,
1555		     const struct intel_crtc_state *pipe_config)
1556{
1557	struct drm_device *dev = crtc->base.dev;
1558	struct drm_i915_private *dev_priv = to_i915(dev);
1559	enum pipe pipe = crtc->pipe;
1560	u32 mdiv;
1561	u32 bestn, bestm1, bestm2, bestp1, bestp2;
1562	u32 coreclk, reg_val;
1563
1564	/* Enable Refclk */
1565	intel_de_write(dev_priv, DPLL(pipe),
1566		       pipe_config->dpll_hw_state.dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
1567
1568	/* No need to actually set up the DPLL with DSI */
1569	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
1570		return;
1571
1572	vlv_dpio_get(dev_priv);
1573
1574	bestn = pipe_config->dpll.n;
1575	bestm1 = pipe_config->dpll.m1;
1576	bestm2 = pipe_config->dpll.m2;
1577	bestp1 = pipe_config->dpll.p1;
1578	bestp2 = pipe_config->dpll.p2;
1579
1580	/* See eDP HDMI DPIO driver vbios notes doc */
1581
1582	/* PLL B needs special handling */
1583	if (pipe == PIPE_B)
1584		vlv_pllb_recal_opamp(dev_priv, pipe);
1585
1586	/* Set up Tx target for periodic Rcomp update */
1587	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
1588
1589	/* Disable target IRef on PLL */
1590	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
1591	reg_val &= 0x00ffffff;
1592	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
1593
1594	/* Disable fast lock */
1595	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
1596
1597	/* Set idtafcrecal before PLL is enabled */
1598	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
1599	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
1600	mdiv |= ((bestn << DPIO_N_SHIFT));
1601	mdiv |= (1 << DPIO_K_SHIFT);
 
 
1602
1603	/*
1604	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
1605	 * but we don't support that).
1606	 * Note: don't use the DAC post divider as it seems unstable.
1607	 */
1608	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
1609	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
1610
1611	mdiv |= DPIO_ENABLE_CALIBRATION;
1612	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
1613
1614	/* Set HBR and RBR LPF coefficients */
1615	if (pipe_config->port_clock == 162000 ||
1616	    intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) ||
1617	    intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
1618		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
1619				 0x009f0003);
1620	else
1621		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
1622				 0x00d0000f);
1623
1624	if (intel_crtc_has_dp_encoder(pipe_config)) {
1625		/* Use SSC source */
1626		if (pipe == PIPE_A)
1627			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1628					 0x0df40000);
1629		else
1630			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1631					 0x0df70000);
1632	} else { /* HDMI or VGA */
1633		/* Use bend source */
1634		if (pipe == PIPE_A)
1635			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1636					 0x0df70000);
1637		else
1638			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
1639					 0x0df40000);
1640	}
1641
1642	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
1643	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
1644	if (intel_crtc_has_dp_encoder(pipe_config))
1645		coreclk |= 0x01000000;
1646	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
1647
1648	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
1649
1650	vlv_dpio_put(dev_priv);
1651}
1652
1653void chv_prepare_pll(struct intel_crtc *crtc,
1654		     const struct intel_crtc_state *pipe_config)
1655{
1656	struct drm_device *dev = crtc->base.dev;
1657	struct drm_i915_private *dev_priv = to_i915(dev);
 
1658	enum pipe pipe = crtc->pipe;
1659	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1660	u32 loopfilter, tribuf_calcntr;
1661	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
1662	u32 dpio_val;
1663	int vco;
1664
1665	/* Enable Refclk and SSC */
1666	intel_de_write(dev_priv, DPLL(pipe),
1667		       pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
1668
1669	/* No need to actually set up the DPLL with DSI */
1670	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
1671		return;
1672
1673	bestn = pipe_config->dpll.n;
1674	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
1675	bestm1 = pipe_config->dpll.m1;
1676	bestm2 = pipe_config->dpll.m2 >> 22;
1677	bestp1 = pipe_config->dpll.p1;
1678	bestp2 = pipe_config->dpll.p2;
1679	vco = pipe_config->dpll.vco;
1680	dpio_val = 0;
1681	loopfilter = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1682
1683	vlv_dpio_get(dev_priv);
1684
1685	/* p1 and p2 divider */
1686	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
1687			5 << DPIO_CHV_S1_DIV_SHIFT |
1688			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
1689			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
1690			1 << DPIO_CHV_K_DIV_SHIFT);
1691
1692	/* Feedback post-divider - m2 */
1693	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
 
1694
1695	/* Feedback refclk divider - n and m1 */
1696	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
1697			DPIO_CHV_M1_DIV_BY_2 |
1698			1 << DPIO_CHV_N_DIV_SHIFT);
1699
1700	/* M2 fraction division */
1701	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
 
1702
1703	/* M2 fraction division enable */
1704	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
1705	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
1706	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
1707	if (bestm2_frac)
1708		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
1709	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
1710
1711	/* Program digital lock detect threshold */
1712	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
1713	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
1714					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
1715	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
1716	if (!bestm2_frac)
1717		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
1718	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
1719
1720	/* Loop filter */
1721	if (vco == 5400000) {
1722		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
1723		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
1724		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
1725		tribuf_calcntr = 0x9;
1726	} else if (vco <= 6200000) {
1727		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
1728		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
1729		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1730		tribuf_calcntr = 0x9;
1731	} else if (vco <= 6480000) {
1732		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
1733		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
1734		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1735		tribuf_calcntr = 0x8;
1736	} else {
1737		/* Not supported. Apply the same limits as in the max case */
1738		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
1739		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
1740		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
1741		tribuf_calcntr = 0;
1742	}
1743	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
1744
1745	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
1746	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
1747	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
1748	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
1749
1750	/* AFC Recal */
1751	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
1752			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
1753			DPIO_AFC_RECAL);
1754
1755	vlv_dpio_put(dev_priv);
1756}
1757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1758/**
1759 * vlv_force_pll_on - forcibly enable just the PLL
1760 * @dev_priv: i915 private structure
1761 * @pipe: pipe PLL to enable
1762 * @dpll: PLL configuration
1763 *
1764 * Enable the PLL for @pipe using the supplied @dpll config. To be used
1765 * in cases where we need the PLL enabled even when @pipe is not going to
1766 * be enabled.
1767 */
1768int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
1769		     const struct dpll *dpll)
1770{
1771	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1772	struct intel_crtc_state *pipe_config;
 
1773
1774	pipe_config = intel_crtc_state_alloc(crtc);
1775	if (!pipe_config)
1776		return -ENOMEM;
1777
1778	pipe_config->cpu_transcoder = (enum transcoder)pipe;
1779	pipe_config->pixel_multiplier = 1;
1780	pipe_config->dpll = *dpll;
 
1781
1782	if (IS_CHERRYVIEW(dev_priv)) {
1783		chv_compute_dpll(crtc, pipe_config);
1784		chv_prepare_pll(crtc, pipe_config);
1785		chv_enable_pll(crtc, pipe_config);
1786	} else {
1787		vlv_compute_dpll(crtc, pipe_config);
1788		vlv_prepare_pll(crtc, pipe_config);
1789		vlv_enable_pll(crtc, pipe_config);
1790	}
1791
1792	kfree(pipe_config);
1793
1794	return 0;
1795}
1796
1797void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1798{
1799	u32 val;
1800
1801	/* Make sure the pipe isn't still relying on us */
1802	assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1803
1804	val = DPLL_INTEGRATED_REF_CLK_VLV |
1805		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1806	if (pipe != PIPE_A)
1807		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1808
1809	intel_de_write(dev_priv, DPLL(pipe), val);
1810	intel_de_posting_read(dev_priv, DPLL(pipe));
1811}
1812
1813void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1814{
1815	enum dpio_channel port = vlv_pipe_to_channel(pipe);
 
1816	u32 val;
1817
1818	/* Make sure the pipe isn't still relying on us */
1819	assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1820
1821	val = DPLL_SSC_REF_CLK_CHV |
1822		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1823	if (pipe != PIPE_A)
1824		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1825
1826	intel_de_write(dev_priv, DPLL(pipe), val);
1827	intel_de_posting_read(dev_priv, DPLL(pipe));
1828
1829	vlv_dpio_get(dev_priv);
1830
1831	/* Disable 10bit clock to display controller */
1832	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1833	val &= ~DPIO_DCLKP_EN;
1834	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1835
1836	vlv_dpio_put(dev_priv);
1837}
1838
1839void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
1840{
1841	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1842	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1843	enum pipe pipe = crtc->pipe;
1844
1845	/* Don't disable pipe or pipe PLLs if needed */
1846	if (IS_I830(dev_priv))
1847		return;
1848
1849	/* Make sure the pipe isn't still relying on us */
1850	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1851
1852	intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
1853	intel_de_posting_read(dev_priv, DPLL(pipe));
1854}
1855
1856
1857/**
1858 * vlv_force_pll_off - forcibly disable just the PLL
1859 * @dev_priv: i915 private structure
1860 * @pipe: pipe PLL to disable
1861 *
1862 * Disable the PLL for @pipe. To be used in cases where we need
1863 * the PLL enabled even when @pipe is not going to be enabled.
1864 */
1865void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
1866{
1867	if (IS_CHERRYVIEW(dev_priv))
1868		chv_disable_pll(dev_priv, pipe);
1869	else
1870		vlv_disable_pll(dev_priv, pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1871}
v6.13.7
   1// SPDX-License-Identifier: MIT
   2/*
   3 * Copyright © 2020 Intel Corporation
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/string_helpers.h>
   8
   9#include "i915_reg.h"
  10#include "intel_atomic.h"
  11#include "intel_crtc.h"
  12#include "intel_cx0_phy.h"
  13#include "intel_de.h"
 
  14#include "intel_display.h"
  15#include "intel_display_types.h"
  16#include "intel_dpio_phy.h"
  17#include "intel_dpll.h"
  18#include "intel_lvds.h"
  19#include "intel_lvds_regs.h"
  20#include "intel_panel.h"
  21#include "intel_pps.h"
  22#include "intel_snps_phy.h"
  23#include "vlv_dpio_phy_regs.h"
  24#include "vlv_sideband.h"
  25
  26struct intel_dpll_funcs {
  27	int (*crtc_compute_clock)(struct intel_atomic_state *state,
  28				  struct intel_crtc *crtc);
  29	int (*crtc_get_shared_dpll)(struct intel_atomic_state *state,
  30				    struct intel_crtc *crtc);
  31};
  32
  33struct intel_limit {
  34	struct {
  35		int min, max;
  36	} dot, vco, n, m, m1, m2, p, p1;
  37
  38	struct {
  39		int dot_limit;
  40		int p2_slow, p2_fast;
  41	} p2;
  42};
  43static const struct intel_limit intel_limits_i8xx_dac = {
  44	.dot = { .min = 25000, .max = 350000 },
  45	.vco = { .min = 908000, .max = 1512000 },
  46	.n = { .min = 2, .max = 16 },
  47	.m = { .min = 96, .max = 140 },
  48	.m1 = { .min = 18, .max = 26 },
  49	.m2 = { .min = 6, .max = 16 },
  50	.p = { .min = 4, .max = 128 },
  51	.p1 = { .min = 2, .max = 33 },
  52	.p2 = { .dot_limit = 165000,
  53		.p2_slow = 4, .p2_fast = 2 },
  54};
  55
  56static const struct intel_limit intel_limits_i8xx_dvo = {
  57	.dot = { .min = 25000, .max = 350000 },
  58	.vco = { .min = 908000, .max = 1512000 },
  59	.n = { .min = 2, .max = 16 },
  60	.m = { .min = 96, .max = 140 },
  61	.m1 = { .min = 18, .max = 26 },
  62	.m2 = { .min = 6, .max = 16 },
  63	.p = { .min = 4, .max = 128 },
  64	.p1 = { .min = 2, .max = 33 },
  65	.p2 = { .dot_limit = 165000,
  66		.p2_slow = 4, .p2_fast = 4 },
  67};
  68
  69static const struct intel_limit intel_limits_i8xx_lvds = {
  70	.dot = { .min = 25000, .max = 350000 },
  71	.vco = { .min = 908000, .max = 1512000 },
  72	.n = { .min = 2, .max = 16 },
  73	.m = { .min = 96, .max = 140 },
  74	.m1 = { .min = 18, .max = 26 },
  75	.m2 = { .min = 6, .max = 16 },
  76	.p = { .min = 4, .max = 128 },
  77	.p1 = { .min = 1, .max = 6 },
  78	.p2 = { .dot_limit = 165000,
  79		.p2_slow = 14, .p2_fast = 7 },
  80};
  81
  82static const struct intel_limit intel_limits_i9xx_sdvo = {
  83	.dot = { .min = 20000, .max = 400000 },
  84	.vco = { .min = 1400000, .max = 2800000 },
  85	.n = { .min = 1, .max = 6 },
  86	.m = { .min = 70, .max = 120 },
  87	.m1 = { .min = 8, .max = 18 },
  88	.m2 = { .min = 3, .max = 7 },
  89	.p = { .min = 5, .max = 80 },
  90	.p1 = { .min = 1, .max = 8 },
  91	.p2 = { .dot_limit = 200000,
  92		.p2_slow = 10, .p2_fast = 5 },
  93};
  94
  95static const struct intel_limit intel_limits_i9xx_lvds = {
  96	.dot = { .min = 20000, .max = 400000 },
  97	.vco = { .min = 1400000, .max = 2800000 },
  98	.n = { .min = 1, .max = 6 },
  99	.m = { .min = 70, .max = 120 },
 100	.m1 = { .min = 8, .max = 18 },
 101	.m2 = { .min = 3, .max = 7 },
 102	.p = { .min = 7, .max = 98 },
 103	.p1 = { .min = 1, .max = 8 },
 104	.p2 = { .dot_limit = 112000,
 105		.p2_slow = 14, .p2_fast = 7 },
 106};
 107
 108
 109static const struct intel_limit intel_limits_g4x_sdvo = {
 110	.dot = { .min = 25000, .max = 270000 },
 111	.vco = { .min = 1750000, .max = 3500000},
 112	.n = { .min = 1, .max = 4 },
 113	.m = { .min = 104, .max = 138 },
 114	.m1 = { .min = 17, .max = 23 },
 115	.m2 = { .min = 5, .max = 11 },
 116	.p = { .min = 10, .max = 30 },
 117	.p1 = { .min = 1, .max = 3},
 118	.p2 = { .dot_limit = 270000,
 119		.p2_slow = 10,
 120		.p2_fast = 10
 121	},
 122};
 123
 124static const struct intel_limit intel_limits_g4x_hdmi = {
 125	.dot = { .min = 22000, .max = 400000 },
 126	.vco = { .min = 1750000, .max = 3500000},
 127	.n = { .min = 1, .max = 4 },
 128	.m = { .min = 104, .max = 138 },
 129	.m1 = { .min = 16, .max = 23 },
 130	.m2 = { .min = 5, .max = 11 },
 131	.p = { .min = 5, .max = 80 },
 132	.p1 = { .min = 1, .max = 8},
 133	.p2 = { .dot_limit = 165000,
 134		.p2_slow = 10, .p2_fast = 5 },
 135};
 136
 137static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
 138	.dot = { .min = 20000, .max = 115000 },
 139	.vco = { .min = 1750000, .max = 3500000 },
 140	.n = { .min = 1, .max = 3 },
 141	.m = { .min = 104, .max = 138 },
 142	.m1 = { .min = 17, .max = 23 },
 143	.m2 = { .min = 5, .max = 11 },
 144	.p = { .min = 28, .max = 112 },
 145	.p1 = { .min = 2, .max = 8 },
 146	.p2 = { .dot_limit = 0,
 147		.p2_slow = 14, .p2_fast = 14
 148	},
 149};
 150
 151static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
 152	.dot = { .min = 80000, .max = 224000 },
 153	.vco = { .min = 1750000, .max = 3500000 },
 154	.n = { .min = 1, .max = 3 },
 155	.m = { .min = 104, .max = 138 },
 156	.m1 = { .min = 17, .max = 23 },
 157	.m2 = { .min = 5, .max = 11 },
 158	.p = { .min = 14, .max = 42 },
 159	.p1 = { .min = 2, .max = 6 },
 160	.p2 = { .dot_limit = 0,
 161		.p2_slow = 7, .p2_fast = 7
 162	},
 163};
 164
 165static const struct intel_limit pnv_limits_sdvo = {
 166	.dot = { .min = 20000, .max = 400000},
 167	.vco = { .min = 1700000, .max = 3500000 },
 168	/* Pineview's Ncounter is a ring counter */
 169	.n = { .min = 3, .max = 6 },
 170	.m = { .min = 2, .max = 256 },
 171	/* Pineview only has one combined m divider, which we treat as m2. */
 172	.m1 = { .min = 0, .max = 0 },
 173	.m2 = { .min = 0, .max = 254 },
 174	.p = { .min = 5, .max = 80 },
 175	.p1 = { .min = 1, .max = 8 },
 176	.p2 = { .dot_limit = 200000,
 177		.p2_slow = 10, .p2_fast = 5 },
 178};
 179
 180static const struct intel_limit pnv_limits_lvds = {
 181	.dot = { .min = 20000, .max = 400000 },
 182	.vco = { .min = 1700000, .max = 3500000 },
 183	.n = { .min = 3, .max = 6 },
 184	.m = { .min = 2, .max = 256 },
 185	.m1 = { .min = 0, .max = 0 },
 186	.m2 = { .min = 0, .max = 254 },
 187	.p = { .min = 7, .max = 112 },
 188	.p1 = { .min = 1, .max = 8 },
 189	.p2 = { .dot_limit = 112000,
 190		.p2_slow = 14, .p2_fast = 14 },
 191};
 192
 193/* Ironlake / Sandybridge
 194 *
 195 * We calculate clock using (register_value + 2) for N/M1/M2, so here
 196 * the range value for them is (actual_value - 2).
 197 */
 198static const struct intel_limit ilk_limits_dac = {
 199	.dot = { .min = 25000, .max = 350000 },
 200	.vco = { .min = 1760000, .max = 3510000 },
 201	.n = { .min = 1, .max = 5 },
 202	.m = { .min = 79, .max = 127 },
 203	.m1 = { .min = 12, .max = 22 },
 204	.m2 = { .min = 5, .max = 9 },
 205	.p = { .min = 5, .max = 80 },
 206	.p1 = { .min = 1, .max = 8 },
 207	.p2 = { .dot_limit = 225000,
 208		.p2_slow = 10, .p2_fast = 5 },
 209};
 210
 211static const struct intel_limit ilk_limits_single_lvds = {
 212	.dot = { .min = 25000, .max = 350000 },
 213	.vco = { .min = 1760000, .max = 3510000 },
 214	.n = { .min = 1, .max = 3 },
 215	.m = { .min = 79, .max = 118 },
 216	.m1 = { .min = 12, .max = 22 },
 217	.m2 = { .min = 5, .max = 9 },
 218	.p = { .min = 28, .max = 112 },
 219	.p1 = { .min = 2, .max = 8 },
 220	.p2 = { .dot_limit = 225000,
 221		.p2_slow = 14, .p2_fast = 14 },
 222};
 223
 224static const struct intel_limit ilk_limits_dual_lvds = {
 225	.dot = { .min = 25000, .max = 350000 },
 226	.vco = { .min = 1760000, .max = 3510000 },
 227	.n = { .min = 1, .max = 3 },
 228	.m = { .min = 79, .max = 127 },
 229	.m1 = { .min = 12, .max = 22 },
 230	.m2 = { .min = 5, .max = 9 },
 231	.p = { .min = 14, .max = 56 },
 232	.p1 = { .min = 2, .max = 8 },
 233	.p2 = { .dot_limit = 225000,
 234		.p2_slow = 7, .p2_fast = 7 },
 235};
 236
 237/* LVDS 100mhz refclk limits. */
 238static const struct intel_limit ilk_limits_single_lvds_100m = {
 239	.dot = { .min = 25000, .max = 350000 },
 240	.vco = { .min = 1760000, .max = 3510000 },
 241	.n = { .min = 1, .max = 2 },
 242	.m = { .min = 79, .max = 126 },
 243	.m1 = { .min = 12, .max = 22 },
 244	.m2 = { .min = 5, .max = 9 },
 245	.p = { .min = 28, .max = 112 },
 246	.p1 = { .min = 2, .max = 8 },
 247	.p2 = { .dot_limit = 225000,
 248		.p2_slow = 14, .p2_fast = 14 },
 249};
 250
 251static const struct intel_limit ilk_limits_dual_lvds_100m = {
 252	.dot = { .min = 25000, .max = 350000 },
 253	.vco = { .min = 1760000, .max = 3510000 },
 254	.n = { .min = 1, .max = 3 },
 255	.m = { .min = 79, .max = 126 },
 256	.m1 = { .min = 12, .max = 22 },
 257	.m2 = { .min = 5, .max = 9 },
 258	.p = { .min = 14, .max = 42 },
 259	.p1 = { .min = 2, .max = 6 },
 260	.p2 = { .dot_limit = 225000,
 261		.p2_slow = 7, .p2_fast = 7 },
 262};
 263
 264static const struct intel_limit intel_limits_vlv = {
 265	 /*
 266	  * These are based on the data rate limits (measured in fast clocks)
 267	  * since those are the strictest limits we have. The fast
 268	  * clock and actual rate limits are more relaxed, so checking
 269	  * them would make no difference.
 270	  */
 271	.dot = { .min = 25000, .max = 270000 },
 272	.vco = { .min = 4000000, .max = 6000000 },
 273	.n = { .min = 1, .max = 7 },
 274	.m1 = { .min = 2, .max = 3 },
 275	.m2 = { .min = 11, .max = 156 },
 276	.p1 = { .min = 2, .max = 3 },
 277	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
 278};
 279
 280static const struct intel_limit intel_limits_chv = {
 281	/*
 282	 * These are based on the data rate limits (measured in fast clocks)
 283	 * since those are the strictest limits we have.  The fast
 284	 * clock and actual rate limits are more relaxed, so checking
 285	 * them would make no difference.
 286	 */
 287	.dot = { .min = 25000, .max = 540000 },
 288	.vco = { .min = 4800000, .max = 6480000 },
 289	.n = { .min = 1, .max = 1 },
 290	.m1 = { .min = 2, .max = 2 },
 291	.m2 = { .min = 24 << 22, .max = 175 << 22 },
 292	.p1 = { .min = 2, .max = 4 },
 293	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
 294};
 295
 296static const struct intel_limit intel_limits_bxt = {
 297	.dot = { .min = 25000, .max = 594000 },
 
 298	.vco = { .min = 4800000, .max = 6700000 },
 299	.n = { .min = 1, .max = 1 },
 300	.m1 = { .min = 2, .max = 2 },
 301	/* FIXME: find real m2 limits */
 302	.m2 = { .min = 2 << 22, .max = 255 << 22 },
 303	.p1 = { .min = 2, .max = 4 },
 304	.p2 = { .p2_slow = 1, .p2_fast = 20 },
 305};
 306
 307/*
 308 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
 309 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
 310 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
 311 * The helpers' return value is the rate of the clock that is fed to the
 312 * display engine's pipe which can be the above fast dot clock rate or a
 313 * divided-down version of it.
 314 */
 315/* m1 is reserved as 0 in Pineview, n is a ring counter */
 316static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
 317{
 318	clock->m = clock->m2 + 2;
 319	clock->p = clock->p1 * clock->p2;
 320
 321	clock->vco = clock->n == 0 ? 0 :
 322		DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
 323	clock->dot = clock->p == 0 ? 0 :
 324		DIV_ROUND_CLOSEST(clock->vco, clock->p);
 325
 326	return clock->dot;
 327}
 328
 329static u32 i9xx_dpll_compute_m(const struct dpll *dpll)
 330{
 331	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
 332}
 333
 334int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
 335{
 336	clock->m = i9xx_dpll_compute_m(clock);
 337	clock->p = clock->p1 * clock->p2;
 338
 339	clock->vco = clock->n + 2 == 0 ? 0 :
 340		DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
 341	clock->dot = clock->p == 0 ? 0 :
 342		DIV_ROUND_CLOSEST(clock->vco, clock->p);
 343
 344	return clock->dot;
 345}
 346
 347static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
 348{
 349	clock->m = clock->m1 * clock->m2;
 350	clock->p = clock->p1 * clock->p2 * 5;
 
 
 
 
 351
 352	clock->vco = clock->n == 0 ? 0 :
 353		DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
 354	clock->dot = clock->p == 0 ? 0 :
 355		DIV_ROUND_CLOSEST(clock->vco, clock->p);
 356
 357	return clock->dot;
 358}
 359
 360int chv_calc_dpll_params(int refclk, struct dpll *clock)
 361{
 362	clock->m = clock->m1 * clock->m2;
 363	clock->p = clock->p1 * clock->p2 * 5;
 364
 365	clock->vco = clock->n == 0 ? 0 :
 366		DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), clock->n << 22);
 367	clock->dot = clock->p == 0 ? 0 :
 368		DIV_ROUND_CLOSEST(clock->vco, clock->p);
 369
 370	return clock->dot;
 371}
 372
 373static int i9xx_pll_refclk(const struct intel_crtc_state *crtc_state)
 374{
 375	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
 376	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
 377
 378	if ((hw_state->dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
 379		return i915->display.vbt.lvds_ssc_freq;
 380	else if (HAS_PCH_SPLIT(i915))
 381		return 120000;
 382	else if (DISPLAY_VER(i915) != 2)
 383		return 96000;
 384	else
 385		return 48000;
 386}
 387
 388void i9xx_dpll_get_hw_state(struct intel_crtc *crtc,
 389			    struct intel_dpll_hw_state *dpll_hw_state)
 390{
 391	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 392	struct i9xx_dpll_hw_state *hw_state = &dpll_hw_state->i9xx;
 393
 394	if (DISPLAY_VER(dev_priv) >= 4) {
 395		u32 tmp;
 396
 397		/* No way to read it out on pipes B and C */
 398		if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
 399			tmp = dev_priv->display.state.chv_dpll_md[crtc->pipe];
 400		else
 401			tmp = intel_de_read(dev_priv,
 402					    DPLL_MD(dev_priv, crtc->pipe));
 403
 404		hw_state->dpll_md = tmp;
 405	}
 406
 407	hw_state->dpll = intel_de_read(dev_priv, DPLL(dev_priv, crtc->pipe));
 408
 409	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
 410		hw_state->fp0 = intel_de_read(dev_priv, FP0(crtc->pipe));
 411		hw_state->fp1 = intel_de_read(dev_priv, FP1(crtc->pipe));
 412	} else {
 413		/* Mask out read-only status bits. */
 414		hw_state->dpll &= ~(DPLL_LOCK_VLV |
 415				    DPLL_PORTC_READY_MASK |
 416				    DPLL_PORTB_READY_MASK);
 417	}
 418}
 419
 420/* Returns the clock of the currently programmed mode of the given pipe. */
 421void i9xx_crtc_clock_get(struct intel_crtc_state *crtc_state)
 422{
 423	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 424	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 425	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
 426	u32 dpll = hw_state->dpll;
 427	u32 fp;
 428	struct dpll clock;
 429	int port_clock;
 430	int refclk = i9xx_pll_refclk(crtc_state);
 431
 432	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
 433		fp = hw_state->fp0;
 434	else
 435		fp = hw_state->fp1;
 436
 437	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
 438	if (IS_PINEVIEW(dev_priv)) {
 439		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
 440		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
 441	} else {
 442		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
 443		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
 444	}
 445
 446	if (DISPLAY_VER(dev_priv) != 2) {
 447		if (IS_PINEVIEW(dev_priv))
 448			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
 449				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
 450		else
 451			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
 452			       DPLL_FPA01_P1_POST_DIV_SHIFT);
 453
 454		switch (dpll & DPLL_MODE_MASK) {
 455		case DPLLB_MODE_DAC_SERIAL:
 456			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
 457				5 : 10;
 458			break;
 459		case DPLLB_MODE_LVDS:
 460			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
 461				7 : 14;
 462			break;
 463		default:
 464			drm_dbg_kms(&dev_priv->drm,
 465				    "Unknown DPLL mode %08x in programmed "
 466				    "mode\n", (int)(dpll & DPLL_MODE_MASK));
 467			return;
 468		}
 469
 470		if (IS_PINEVIEW(dev_priv))
 471			port_clock = pnv_calc_dpll_params(refclk, &clock);
 472		else
 473			port_clock = i9xx_calc_dpll_params(refclk, &clock);
 474	} else {
 475		enum pipe lvds_pipe;
 476
 477		if (IS_I85X(dev_priv) &&
 478		    intel_lvds_port_enabled(dev_priv, LVDS, &lvds_pipe) &&
 479		    lvds_pipe == crtc->pipe) {
 480			u32 lvds = intel_de_read(dev_priv, LVDS);
 481
 482			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
 483				       DPLL_FPA01_P1_POST_DIV_SHIFT);
 484
 485			if (lvds & LVDS_CLKB_POWER_UP)
 486				clock.p2 = 7;
 487			else
 488				clock.p2 = 14;
 489		} else {
 490			if (dpll & PLL_P1_DIVIDE_BY_TWO)
 491				clock.p1 = 2;
 492			else {
 493				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
 494					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
 495			}
 496			if (dpll & PLL_P2_DIVIDE_BY_4)
 497				clock.p2 = 4;
 498			else
 499				clock.p2 = 2;
 500		}
 501
 502		port_clock = i9xx_calc_dpll_params(refclk, &clock);
 503	}
 504
 505	/*
 506	 * This value includes pixel_multiplier. We will use
 507	 * port_clock to compute adjusted_mode.crtc_clock in the
 508	 * encoder's get_config() function.
 509	 */
 510	crtc_state->port_clock = port_clock;
 511}
 512
 513void vlv_crtc_clock_get(struct intel_crtc_state *crtc_state)
 514{
 515	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 516	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 517	enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
 518	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
 519	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
 520	int refclk = 100000;
 521	struct dpll clock;
 522	u32 tmp;
 523
 524	/* In case of DSI, DPLL will not be used */
 525	if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0)
 526		return;
 527
 528	vlv_dpio_get(dev_priv);
 529	tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW3(ch));
 530	vlv_dpio_put(dev_priv);
 531
 532	clock.m1 = REG_FIELD_GET(DPIO_M1_DIV_MASK, tmp);
 533	clock.m2 = REG_FIELD_GET(DPIO_M2_DIV_MASK, tmp);
 534	clock.n = REG_FIELD_GET(DPIO_N_DIV_MASK, tmp);
 535	clock.p1 = REG_FIELD_GET(DPIO_P1_DIV_MASK, tmp);
 536	clock.p2 = REG_FIELD_GET(DPIO_P2_DIV_MASK, tmp);
 537
 538	crtc_state->port_clock = vlv_calc_dpll_params(refclk, &clock);
 539}
 540
 541void chv_crtc_clock_get(struct intel_crtc_state *crtc_state)
 542{
 543	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 544	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 545	enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
 546	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
 547	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
 548	struct dpll clock;
 549	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
 550	int refclk = 100000;
 551
 552	/* In case of DSI, DPLL will not be used */
 553	if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0)
 554		return;
 555
 556	vlv_dpio_get(dev_priv);
 557	cmn_dw13 = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW13(ch));
 558	pll_dw0 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW0(ch));
 559	pll_dw1 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW1(ch));
 560	pll_dw2 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW2(ch));
 561	pll_dw3 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch));
 562	vlv_dpio_put(dev_priv);
 563
 564	clock.m1 = REG_FIELD_GET(DPIO_CHV_M1_DIV_MASK, pll_dw1) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
 565	clock.m2 = REG_FIELD_GET(DPIO_CHV_M2_DIV_MASK, pll_dw0) << 22;
 566	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
 567		clock.m2 |= REG_FIELD_GET(DPIO_CHV_M2_FRAC_DIV_MASK, pll_dw2);
 568	clock.n = REG_FIELD_GET(DPIO_CHV_N_DIV_MASK, pll_dw1);
 569	clock.p1 = REG_FIELD_GET(DPIO_CHV_P1_DIV_MASK, cmn_dw13);
 570	clock.p2 = REG_FIELD_GET(DPIO_CHV_P2_DIV_MASK, cmn_dw13);
 571
 572	crtc_state->port_clock = chv_calc_dpll_params(refclk, &clock);
 573}
 574
 575/*
 576 * Returns whether the given set of divisors are valid for a given refclk with
 577 * the given connectors.
 578 */
 579static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
 580			       const struct intel_limit *limit,
 581			       const struct dpll *clock)
 582{
 583	if (clock->n < limit->n.min || limit->n.max < clock->n)
 584		return false;
 585	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
 586		return false;
 587	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
 588		return false;
 589	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
 590		return false;
 591
 592	if (!IS_PINEVIEW(dev_priv) &&
 593	    !IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
 594	    !IS_BROXTON(dev_priv) && !IS_GEMINILAKE(dev_priv))
 595		if (clock->m1 <= clock->m2)
 596			return false;
 597
 598	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
 599	    !IS_BROXTON(dev_priv) && !IS_GEMINILAKE(dev_priv)) {
 600		if (clock->p < limit->p.min || limit->p.max < clock->p)
 601			return false;
 602		if (clock->m < limit->m.min || limit->m.max < clock->m)
 603			return false;
 604	}
 605
 606	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
 607		return false;
 608	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
 609	 * connector, etc., rather than just a single range.
 610	 */
 611	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
 612		return false;
 613
 614	return true;
 615}
 616
 617static int
 618i9xx_select_p2_div(const struct intel_limit *limit,
 619		   const struct intel_crtc_state *crtc_state,
 620		   int target)
 621{
 622	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
 623
 624	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
 625		/*
 626		 * For LVDS just rely on its current settings for dual-channel.
 627		 * We haven't figured out how to reliably set up different
 628		 * single/dual channel state, if we even can.
 629		 */
 630		if (intel_is_dual_link_lvds(dev_priv))
 631			return limit->p2.p2_fast;
 632		else
 633			return limit->p2.p2_slow;
 634	} else {
 635		if (target < limit->p2.dot_limit)
 636			return limit->p2.p2_slow;
 637		else
 638			return limit->p2.p2_fast;
 639	}
 640}
 641
 642/*
 643 * Returns a set of divisors for the desired target clock with the given
 644 * refclk, or FALSE.
 
 645 *
 646 * Target and reference clocks are specified in kHz.
 647 *
 648 * If match_clock is provided, then best_clock P divider must match the P
 649 * divider from @match_clock used for LVDS downclocking.
 650 */
 651static bool
 652i9xx_find_best_dpll(const struct intel_limit *limit,
 653		    struct intel_crtc_state *crtc_state,
 654		    int target, int refclk,
 655		    const struct dpll *match_clock,
 656		    struct dpll *best_clock)
 657{
 658	struct drm_device *dev = crtc_state->uapi.crtc->dev;
 659	struct dpll clock;
 660	int err = target;
 661
 662	memset(best_clock, 0, sizeof(*best_clock));
 663
 664	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
 665
 666	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
 667	     clock.m1++) {
 668		for (clock.m2 = limit->m2.min;
 669		     clock.m2 <= limit->m2.max; clock.m2++) {
 670			if (clock.m2 >= clock.m1)
 671				break;
 672			for (clock.n = limit->n.min;
 673			     clock.n <= limit->n.max; clock.n++) {
 674				for (clock.p1 = limit->p1.min;
 675					clock.p1 <= limit->p1.max; clock.p1++) {
 676					int this_err;
 677
 678					i9xx_calc_dpll_params(refclk, &clock);
 679					if (!intel_pll_is_valid(to_i915(dev),
 680								limit,
 681								&clock))
 682						continue;
 683					if (match_clock &&
 684					    clock.p != match_clock->p)
 685						continue;
 686
 687					this_err = abs(clock.dot - target);
 688					if (this_err < err) {
 689						*best_clock = clock;
 690						err = this_err;
 691					}
 692				}
 693			}
 694		}
 695	}
 696
 697	return (err != target);
 698}
 699
 700/*
 701 * Returns a set of divisors for the desired target clock with the given
 702 * refclk, or FALSE.
 
 703 *
 704 * Target and reference clocks are specified in kHz.
 705 *
 706 * If match_clock is provided, then best_clock P divider must match the P
 707 * divider from @match_clock used for LVDS downclocking.
 708 */
 709static bool
 710pnv_find_best_dpll(const struct intel_limit *limit,
 711		   struct intel_crtc_state *crtc_state,
 712		   int target, int refclk,
 713		   const struct dpll *match_clock,
 714		   struct dpll *best_clock)
 715{
 716	struct drm_device *dev = crtc_state->uapi.crtc->dev;
 717	struct dpll clock;
 718	int err = target;
 719
 720	memset(best_clock, 0, sizeof(*best_clock));
 721
 722	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
 723
 724	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
 725	     clock.m1++) {
 726		for (clock.m2 = limit->m2.min;
 727		     clock.m2 <= limit->m2.max; clock.m2++) {
 728			for (clock.n = limit->n.min;
 729			     clock.n <= limit->n.max; clock.n++) {
 730				for (clock.p1 = limit->p1.min;
 731					clock.p1 <= limit->p1.max; clock.p1++) {
 732					int this_err;
 733
 734					pnv_calc_dpll_params(refclk, &clock);
 735					if (!intel_pll_is_valid(to_i915(dev),
 736								limit,
 737								&clock))
 738						continue;
 739					if (match_clock &&
 740					    clock.p != match_clock->p)
 741						continue;
 742
 743					this_err = abs(clock.dot - target);
 744					if (this_err < err) {
 745						*best_clock = clock;
 746						err = this_err;
 747					}
 748				}
 749			}
 750		}
 751	}
 752
 753	return (err != target);
 754}
 755
 756/*
 757 * Returns a set of divisors for the desired target clock with the given
 758 * refclk, or FALSE.
 
 759 *
 760 * Target and reference clocks are specified in kHz.
 761 *
 762 * If match_clock is provided, then best_clock P divider must match the P
 763 * divider from @match_clock used for LVDS downclocking.
 764 */
 765static bool
 766g4x_find_best_dpll(const struct intel_limit *limit,
 767		   struct intel_crtc_state *crtc_state,
 768		   int target, int refclk,
 769		   const struct dpll *match_clock,
 770		   struct dpll *best_clock)
 771{
 772	struct drm_device *dev = crtc_state->uapi.crtc->dev;
 773	struct dpll clock;
 774	int max_n;
 775	bool found = false;
 776	/* approximately equals target * 0.00585 */
 777	int err_most = (target >> 8) + (target >> 9);
 778
 779	memset(best_clock, 0, sizeof(*best_clock));
 780
 781	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
 782
 783	max_n = limit->n.max;
 784	/* based on hardware requirement, prefer smaller n to precision */
 785	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
 786		/* based on hardware requirement, prefer larger m1,m2 */
 787		for (clock.m1 = limit->m1.max;
 788		     clock.m1 >= limit->m1.min; clock.m1--) {
 789			for (clock.m2 = limit->m2.max;
 790			     clock.m2 >= limit->m2.min; clock.m2--) {
 791				for (clock.p1 = limit->p1.max;
 792				     clock.p1 >= limit->p1.min; clock.p1--) {
 793					int this_err;
 794
 795					i9xx_calc_dpll_params(refclk, &clock);
 796					if (!intel_pll_is_valid(to_i915(dev),
 797								limit,
 798								&clock))
 799						continue;
 800
 801					this_err = abs(clock.dot - target);
 802					if (this_err < err_most) {
 803						*best_clock = clock;
 804						err_most = this_err;
 805						max_n = clock.n;
 806						found = true;
 807					}
 808				}
 809			}
 810		}
 811	}
 812	return found;
 813}
 814
 815/*
 816 * Check if the calculated PLL configuration is more optimal compared to the
 817 * best configuration and error found so far. Return the calculated error.
 818 */
 819static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
 820			       const struct dpll *calculated_clock,
 821			       const struct dpll *best_clock,
 822			       unsigned int best_error_ppm,
 823			       unsigned int *error_ppm)
 824{
 825	/*
 826	 * For CHV ignore the error and consider only the P value.
 827	 * Prefer a bigger P value based on HW requirements.
 828	 */
 829	if (IS_CHERRYVIEW(to_i915(dev))) {
 830		*error_ppm = 0;
 831
 832		return calculated_clock->p > best_clock->p;
 833	}
 834
 835	if (drm_WARN_ON_ONCE(dev, !target_freq))
 836		return false;
 837
 838	*error_ppm = div_u64(1000000ULL *
 839				abs(target_freq - calculated_clock->dot),
 840			     target_freq);
 841	/*
 842	 * Prefer a better P value over a better (smaller) error if the error
 843	 * is small. Ensure this preference for future configurations too by
 844	 * setting the error to 0.
 845	 */
 846	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
 847		*error_ppm = 0;
 848
 849		return true;
 850	}
 851
 852	return *error_ppm + 10 < best_error_ppm;
 853}
 854
 855/*
 856 * Returns a set of divisors for the desired target clock with the given
 857 * refclk, or FALSE.
 
 858 */
 859static bool
 860vlv_find_best_dpll(const struct intel_limit *limit,
 861		   struct intel_crtc_state *crtc_state,
 862		   int target, int refclk,
 863		   const struct dpll *match_clock,
 864		   struct dpll *best_clock)
 865{
 866	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 867	struct drm_device *dev = crtc->base.dev;
 868	struct dpll clock;
 869	unsigned int bestppm = 1000000;
 870	/* min update 19.2 MHz */
 871	int max_n = min(limit->n.max, refclk / 19200);
 872	bool found = false;
 873
 
 
 874	memset(best_clock, 0, sizeof(*best_clock));
 875
 876	/* based on hardware requirement, prefer smaller n to precision */
 877	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
 878		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
 879			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
 880			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
 881				clock.p = clock.p1 * clock.p2 * 5;
 882				/* based on hardware requirement, prefer bigger m1,m2 values */
 883				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
 884					unsigned int ppm;
 885
 886					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
 887								     refclk * clock.m1);
 888
 889					vlv_calc_dpll_params(refclk, &clock);
 890
 891					if (!intel_pll_is_valid(to_i915(dev),
 892								limit,
 893								&clock))
 894						continue;
 895
 896					if (!vlv_PLL_is_optimal(dev, target,
 897								&clock,
 898								best_clock,
 899								bestppm, &ppm))
 900						continue;
 901
 902					*best_clock = clock;
 903					bestppm = ppm;
 904					found = true;
 905				}
 906			}
 907		}
 908	}
 909
 910	return found;
 911}
 912
 913/*
 914 * Returns a set of divisors for the desired target clock with the given
 915 * refclk, or FALSE.
 
 916 */
 917static bool
 918chv_find_best_dpll(const struct intel_limit *limit,
 919		   struct intel_crtc_state *crtc_state,
 920		   int target, int refclk,
 921		   const struct dpll *match_clock,
 922		   struct dpll *best_clock)
 923{
 924	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 925	struct drm_device *dev = crtc->base.dev;
 926	unsigned int best_error_ppm;
 927	struct dpll clock;
 928	u64 m2;
 929	int found = false;
 930
 931	memset(best_clock, 0, sizeof(*best_clock));
 932	best_error_ppm = 1000000;
 933
 934	/*
 935	 * Based on hardware doc, the n always set to 1, and m1 always
 936	 * set to 2.  If requires to support 200Mhz refclk, we need to
 937	 * revisit this because n may not 1 anymore.
 938	 */
 939	clock.n = 1;
 940	clock.m1 = 2;
 
 941
 942	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
 943		for (clock.p2 = limit->p2.p2_fast;
 944				clock.p2 >= limit->p2.p2_slow;
 945				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
 946			unsigned int error_ppm;
 947
 948			clock.p = clock.p1 * clock.p2 * 5;
 949
 950			m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
 951						   refclk * clock.m1);
 952
 953			if (m2 > INT_MAX/clock.m1)
 954				continue;
 955
 956			clock.m2 = m2;
 957
 958			chv_calc_dpll_params(refclk, &clock);
 959
 960			if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
 961				continue;
 962
 963			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
 964						best_error_ppm, &error_ppm))
 965				continue;
 966
 967			*best_clock = clock;
 968			best_error_ppm = error_ppm;
 969			found = true;
 970		}
 971	}
 972
 973	return found;
 974}
 975
 976bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
 977			struct dpll *best_clock)
 978{
 
 979	const struct intel_limit *limit = &intel_limits_bxt;
 980	int refclk = 100000;
 981
 982	return chv_find_best_dpll(limit, crtc_state,
 983				  crtc_state->port_clock, refclk,
 984				  NULL, best_clock);
 985}
 986
 987u32 i9xx_dpll_compute_fp(const struct dpll *dpll)
 988{
 989	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
 990}
 991
 992static u32 pnv_dpll_compute_fp(const struct dpll *dpll)
 
 
 993{
 994	return (1 << dpll->n) << 16 | dpll->m2;
 995}
 
 
 
 
 
 
 
 
 
 
 
 
 996
 997static u32 i965_dpll_md(const struct intel_crtc_state *crtc_state)
 998{
 999	return (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
 
 
 
1000}
1001
1002static u32 i9xx_dpll(const struct intel_crtc_state *crtc_state,
1003		     const struct dpll *clock,
1004		     const struct dpll *reduced_clock)
1005{
1006	struct intel_display *display = to_intel_display(crtc_state);
1007	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1008	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1009	u32 dpll;
 
1010
1011	dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS;
 
 
1012
1013	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1014		dpll |= DPLLB_MODE_LVDS;
1015	else
1016		dpll |= DPLLB_MODE_DAC_SERIAL;
1017
1018	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
1019	    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
1020		dpll |= (crtc_state->pixel_multiplier - 1)
1021			<< SDVO_MULTIPLIER_SHIFT_HIRES;
1022	}
1023
1024	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1025	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1026		dpll |= DPLL_SDVO_HIGH_SPEED;
1027
1028	if (intel_crtc_has_dp_encoder(crtc_state))
1029		dpll |= DPLL_SDVO_HIGH_SPEED;
1030
1031	/* compute bitmask from p1 value */
1032	if (IS_G4X(dev_priv)) {
1033		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1034		dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1035	} else if (IS_PINEVIEW(dev_priv)) {
1036		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
1037		WARN_ON(reduced_clock->p1 != clock->p1);
1038	} else {
1039		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1040		WARN_ON(reduced_clock->p1 != clock->p1);
 
1041	}
1042
1043	switch (clock->p2) {
1044	case 5:
1045		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1046		break;
1047	case 7:
1048		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1049		break;
1050	case 10:
1051		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1052		break;
1053	case 14:
1054		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1055		break;
1056	}
1057	WARN_ON(reduced_clock->p2 != clock->p2);
1058
1059	if (DISPLAY_VER(dev_priv) >= 4)
1060		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
1061
1062	if (crtc_state->sdvo_tv_clock)
1063		dpll |= PLL_REF_INPUT_TVCLKINBC;
1064	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1065		 intel_panel_use_ssc(display))
1066		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1067	else
1068		dpll |= PLL_REF_INPUT_DREFCLK;
1069
1070	return dpll;
1071}
1072
1073static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state,
1074			      const struct dpll *clock,
1075			      const struct dpll *reduced_clock)
1076{
1077	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1078	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1079	struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1080
1081	if (IS_PINEVIEW(dev_priv)) {
1082		hw_state->fp0 = pnv_dpll_compute_fp(clock);
1083		hw_state->fp1 = pnv_dpll_compute_fp(reduced_clock);
1084	} else {
1085		hw_state->fp0 = i9xx_dpll_compute_fp(clock);
1086		hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock);
1087	}
1088
1089	hw_state->dpll = i9xx_dpll(crtc_state, clock, reduced_clock);
1090
1091	if (DISPLAY_VER(dev_priv) >= 4)
1092		hw_state->dpll_md = i965_dpll_md(crtc_state);
1093}
1094
1095static u32 i8xx_dpll(const struct intel_crtc_state *crtc_state,
1096		     const struct dpll *clock,
1097		     const struct dpll *reduced_clock)
1098{
1099	struct intel_display *display = to_intel_display(crtc_state);
1100	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1101	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1102	u32 dpll;
 
1103
1104	dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS;
 
 
1105
1106	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1107		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1108	} else {
1109		if (clock->p1 == 2)
1110			dpll |= PLL_P1_DIVIDE_BY_TWO;
1111		else
1112			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1113		if (clock->p2 == 4)
1114			dpll |= PLL_P2_DIVIDE_BY_4;
1115	}
1116	WARN_ON(reduced_clock->p1 != clock->p1);
1117	WARN_ON(reduced_clock->p2 != clock->p2);
1118
1119	/*
1120	 * Bspec:
1121	 * "[Almador Errata}: For the correct operation of the muxed DVO pins
1122	 *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
1123	 *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
1124	 *  Enable) must be set to “1” in both the DPLL A Control Register
1125	 *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
1126	 *
1127	 * For simplicity We simply keep both bits always enabled in
1128	 * both DPLLS. The spec says we should disable the DVO 2X clock
1129	 * when not needed, but this seems to work fine in practice.
1130	 */
1131	if (IS_I830(dev_priv) ||
1132	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
1133		dpll |= DPLL_DVO_2X_MODE;
1134
1135	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1136	    intel_panel_use_ssc(display))
1137		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1138	else
1139		dpll |= PLL_REF_INPUT_DREFCLK;
1140
1141	return dpll;
 
1142}
1143
1144static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state,
1145			      const struct dpll *clock,
1146			      const struct dpll *reduced_clock)
1147{
1148	struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
 
 
1149
1150	hw_state->fp0 = i9xx_dpll_compute_fp(clock);
1151	hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock);
 
 
1152
1153	hw_state->dpll = i8xx_dpll(crtc_state, clock, reduced_clock);
1154}
1155
1156static int hsw_crtc_compute_clock(struct intel_atomic_state *state,
1157				  struct intel_crtc *crtc)
1158{
1159	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1160	struct intel_crtc_state *crtc_state =
1161		intel_atomic_get_new_crtc_state(state, crtc);
1162	struct intel_encoder *encoder =
1163		intel_get_crtc_new_encoder(state, crtc_state);
1164	int ret;
1165
1166	if (DISPLAY_VER(dev_priv) < 11 &&
1167	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1168		return 0;
1169
1170	ret = intel_compute_shared_dplls(state, crtc, encoder);
1171	if (ret)
1172		return ret;
1173
1174	/* FIXME this is a mess */
1175	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1176		return 0;
1177
1178	/* CRT dotclock is determined via other means */
1179	if (!crtc_state->has_pch_encoder)
1180		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1181
1182	return 0;
1183}
1184
1185static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state,
1186				    struct intel_crtc *crtc)
1187{
1188	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1189	struct intel_crtc_state *crtc_state =
1190		intel_atomic_get_new_crtc_state(state, crtc);
1191	struct intel_encoder *encoder =
1192		intel_get_crtc_new_encoder(state, crtc_state);
1193
1194	if (DISPLAY_VER(dev_priv) < 11 &&
1195	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1196		return 0;
1197
1198	return intel_reserve_shared_dplls(state, crtc, encoder);
1199}
1200
1201static int dg2_crtc_compute_clock(struct intel_atomic_state *state,
1202				  struct intel_crtc *crtc)
1203{
1204	struct intel_crtc_state *crtc_state =
1205		intel_atomic_get_new_crtc_state(state, crtc);
1206	struct intel_encoder *encoder =
1207		intel_get_crtc_new_encoder(state, crtc_state);
1208	int ret;
1209
1210	ret = intel_mpllb_calc_state(crtc_state, encoder);
1211	if (ret)
1212		return ret;
1213
1214	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1215
1216	return 0;
1217}
1218
1219static int mtl_crtc_compute_clock(struct intel_atomic_state *state,
1220				  struct intel_crtc *crtc)
1221{
1222	struct intel_crtc_state *crtc_state =
1223		intel_atomic_get_new_crtc_state(state, crtc);
1224	struct intel_encoder *encoder =
1225		intel_get_crtc_new_encoder(state, crtc_state);
1226	int ret;
1227
1228	ret = intel_cx0pll_calc_state(crtc_state, encoder);
1229	if (ret)
1230		return ret;
1231
1232	/* TODO: Do the readback via intel_compute_shared_dplls() */
1233	crtc_state->port_clock = intel_cx0pll_calc_port_clock(encoder, &crtc_state->dpll_hw_state.cx0pll);
1234
1235	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1236
1237	return 0;
1238}
1239
1240static int ilk_fb_cb_factor(const struct intel_crtc_state *crtc_state)
1241{
1242	struct intel_display *display = to_intel_display(crtc_state);
1243	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1244	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1245
1246	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1247	    ((intel_panel_use_ssc(display) && i915->display.vbt.lvds_ssc_freq == 100000) ||
1248	     (HAS_PCH_IBX(i915) && intel_is_dual_link_lvds(i915))))
1249		return 25;
1250
1251	if (crtc_state->sdvo_tv_clock)
1252		return 20;
1253
1254	return 21;
1255}
 
1256
1257static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor)
1258{
1259	return dpll->m < factor * dpll->n;
1260}
1261
1262static u32 ilk_dpll_compute_fp(const struct dpll *clock, int factor)
1263{
1264	u32 fp;
1265
1266	fp = i9xx_dpll_compute_fp(clock);
1267	if (ilk_needs_fb_cb_tune(clock, factor))
1268		fp |= FP_CB_TUNE;
1269
1270	return fp;
1271}
1272
1273static u32 ilk_dpll(const struct intel_crtc_state *crtc_state,
1274		    const struct dpll *clock,
1275		    const struct dpll *reduced_clock)
1276{
1277	struct intel_display *display = to_intel_display(crtc_state);
1278	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1279	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1280	u32 dpll;
1281
1282	dpll = DPLL_VCO_ENABLE;
1283
1284	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1285		dpll |= DPLLB_MODE_LVDS;
1286	else
1287		dpll |= DPLLB_MODE_DAC_SERIAL;
1288
1289	dpll |= (crtc_state->pixel_multiplier - 1)
1290		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
1291
1292	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1293	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1294		dpll |= DPLL_SDVO_HIGH_SPEED;
1295
1296	if (intel_crtc_has_dp_encoder(crtc_state))
1297		dpll |= DPLL_SDVO_HIGH_SPEED;
1298
1299	/*
1300	 * The high speed IO clock is only really required for
1301	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
1302	 * possible to share the DPLL between CRT and HDMI. Enabling
1303	 * the clock needlessly does no real harm, except use up a
1304	 * bit of power potentially.
1305	 *
1306	 * We'll limit this to IVB with 3 pipes, since it has only two
1307	 * DPLLs and so DPLL sharing is the only way to get three pipes
1308	 * driving PCH ports at the same time. On SNB we could do this,
1309	 * and potentially avoid enabling the second DPLL, but it's not
1310	 * clear if it''s a win or loss power wise. No point in doing
1311	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
1312	 */
1313	if (INTEL_NUM_PIPES(dev_priv) == 3 &&
1314	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
1315		dpll |= DPLL_SDVO_HIGH_SPEED;
1316
1317	/* compute bitmask from p1 value */
1318	dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1319	/* also FPA1 */
1320	dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1321
1322	switch (clock->p2) {
1323	case 5:
1324		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1325		break;
1326	case 7:
1327		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1328		break;
1329	case 10:
1330		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1331		break;
1332	case 14:
1333		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1334		break;
1335	}
1336	WARN_ON(reduced_clock->p2 != clock->p2);
1337
1338	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1339	    intel_panel_use_ssc(display))
1340		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1341	else
1342		dpll |= PLL_REF_INPUT_DREFCLK;
1343
1344	return dpll;
1345}
1346
1347static void ilk_compute_dpll(struct intel_crtc_state *crtc_state,
1348			     const struct dpll *clock,
1349			     const struct dpll *reduced_clock)
1350{
1351	struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1352	int factor = ilk_fb_cb_factor(crtc_state);
1353
1354	hw_state->fp0 = ilk_dpll_compute_fp(clock, factor);
1355	hw_state->fp1 = ilk_dpll_compute_fp(reduced_clock, factor);
1356
1357	hw_state->dpll = ilk_dpll(crtc_state, clock, reduced_clock);
 
 
1358}
1359
1360static int ilk_crtc_compute_clock(struct intel_atomic_state *state,
1361				  struct intel_crtc *crtc)
1362{
1363	struct intel_display *display = to_intel_display(state);
1364	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1365	struct intel_crtc_state *crtc_state =
1366		intel_atomic_get_new_crtc_state(state, crtc);
1367	const struct intel_limit *limit;
1368	int refclk = 120000;
1369	int ret;
 
 
1370
1371	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1372	if (!crtc_state->has_pch_encoder)
1373		return 0;
1374
1375	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1376		if (intel_panel_use_ssc(display)) {
1377			drm_dbg_kms(&dev_priv->drm,
1378				    "using SSC reference clock of %d kHz\n",
1379				    dev_priv->display.vbt.lvds_ssc_freq);
1380			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1381		}
1382
1383		if (intel_is_dual_link_lvds(dev_priv)) {
1384			if (refclk == 100000)
1385				limit = &ilk_limits_dual_lvds_100m;
1386			else
1387				limit = &ilk_limits_dual_lvds;
1388		} else {
1389			if (refclk == 100000)
1390				limit = &ilk_limits_single_lvds_100m;
1391			else
1392				limit = &ilk_limits_single_lvds;
1393		}
1394	} else {
1395		limit = &ilk_limits_dac;
1396	}
1397
1398	if (!crtc_state->clock_set &&
1399	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1400				refclk, NULL, &crtc_state->dpll))
 
 
1401		return -EINVAL;
 
1402
1403	i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1404
1405	ilk_compute_dpll(crtc_state, &crtc_state->dpll,
1406			 &crtc_state->dpll);
 
 
 
 
1407
1408	ret = intel_compute_shared_dplls(state, crtc, NULL);
1409	if (ret)
1410		return ret;
1411
1412	crtc_state->port_clock = crtc_state->dpll.dot;
1413	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1414
1415	return ret;
1416}
1417
1418static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state,
1419				    struct intel_crtc *crtc)
1420{
1421	struct intel_crtc_state *crtc_state =
1422		intel_atomic_get_new_crtc_state(state, crtc);
1423
1424	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1425	if (!crtc_state->has_pch_encoder)
1426		return 0;
1427
1428	return intel_reserve_shared_dplls(state, crtc, NULL);
1429}
1430
1431static u32 vlv_dpll(const struct intel_crtc_state *crtc_state)
1432{
1433	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1434	u32 dpll;
1435
1436	dpll = DPLL_INTEGRATED_REF_CLK_VLV |
1437		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1438
1439	if (crtc->pipe != PIPE_A)
1440		dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1441
1442	/* DPLL not used with DSI, but still need the rest set up */
1443	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1444		dpll |= DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV;
 
1445
1446	return dpll;
 
1447}
1448
1449void vlv_compute_dpll(struct intel_crtc_state *crtc_state)
 
1450{
1451	struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1452
1453	hw_state->dpll = vlv_dpll(crtc_state);
1454	hw_state->dpll_md = i965_dpll_md(crtc_state);
1455}
1456
1457static u32 chv_dpll(const struct intel_crtc_state *crtc_state)
1458{
1459	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1460	u32 dpll;
1461
1462	dpll = DPLL_SSC_REF_CLK_CHV |
1463		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1464
1465	if (crtc->pipe != PIPE_A)
1466		dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1467
1468	/* DPLL not used with DSI, but still need the rest set up */
1469	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1470		dpll |= DPLL_VCO_ENABLE;
1471
1472	return dpll;
 
1473}
1474
1475void chv_compute_dpll(struct intel_crtc_state *crtc_state)
 
1476{
1477	struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
 
 
1478
1479	hw_state->dpll = chv_dpll(crtc_state);
1480	hw_state->dpll_md = i965_dpll_md(crtc_state);
1481}
1482
1483static int chv_crtc_compute_clock(struct intel_atomic_state *state,
1484				  struct intel_crtc *crtc)
1485{
1486	struct intel_crtc_state *crtc_state =
1487		intel_atomic_get_new_crtc_state(state, crtc);
1488	const struct intel_limit *limit = &intel_limits_chv;
1489	int refclk = 100000;
1490
1491	if (!crtc_state->clock_set &&
1492	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1493				refclk, NULL, &crtc_state->dpll))
 
1494		return -EINVAL;
 
1495
1496	chv_calc_dpll_params(refclk, &crtc_state->dpll);
1497
1498	chv_compute_dpll(crtc_state);
1499
1500	/* FIXME this is a mess */
1501	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1502		return 0;
1503
1504	crtc_state->port_clock = crtc_state->dpll.dot;
1505	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1506
1507	return 0;
1508}
1509
1510static int vlv_crtc_compute_clock(struct intel_atomic_state *state,
1511				  struct intel_crtc *crtc)
1512{
1513	struct intel_crtc_state *crtc_state =
1514		intel_atomic_get_new_crtc_state(state, crtc);
1515	const struct intel_limit *limit = &intel_limits_vlv;
1516	int refclk = 100000;
 
 
 
1517
1518	if (!crtc_state->clock_set &&
1519	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1520				refclk, NULL, &crtc_state->dpll))
 
1521		return -EINVAL;
 
1522
1523	vlv_calc_dpll_params(refclk, &crtc_state->dpll);
1524
1525	vlv_compute_dpll(crtc_state);
1526
1527	/* FIXME this is a mess */
1528	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1529		return 0;
1530
1531	crtc_state->port_clock = crtc_state->dpll.dot;
1532	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1533
1534	return 0;
1535}
1536
1537static int g4x_crtc_compute_clock(struct intel_atomic_state *state,
1538				  struct intel_crtc *crtc)
1539{
1540	struct intel_display *display = to_intel_display(state);
1541	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1542	struct intel_crtc_state *crtc_state =
1543		intel_atomic_get_new_crtc_state(state, crtc);
1544	const struct intel_limit *limit;
1545	int refclk = 96000;
1546
 
 
 
1547	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1548		if (intel_panel_use_ssc(display)) {
1549			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1550			drm_dbg_kms(&dev_priv->drm,
1551				    "using SSC reference clock of %d kHz\n",
1552				    refclk);
1553		}
1554
1555		if (intel_is_dual_link_lvds(dev_priv))
1556			limit = &intel_limits_g4x_dual_channel_lvds;
1557		else
1558			limit = &intel_limits_g4x_single_channel_lvds;
1559	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
1560		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
1561		limit = &intel_limits_g4x_hdmi;
1562	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
1563		limit = &intel_limits_g4x_sdvo;
1564	} else {
1565		/* The option is for other outputs */
1566		limit = &intel_limits_i9xx_sdvo;
1567	}
1568
1569	if (!crtc_state->clock_set &&
1570	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1571				refclk, NULL, &crtc_state->dpll))
 
 
1572		return -EINVAL;
 
1573
1574	i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1575
1576	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1577			  &crtc_state->dpll);
1578
1579	crtc_state->port_clock = crtc_state->dpll.dot;
1580	/* FIXME this is a mess */
1581	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1582		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1583
1584	return 0;
1585}
1586
1587static int pnv_crtc_compute_clock(struct intel_atomic_state *state,
1588				  struct intel_crtc *crtc)
1589{
1590	struct intel_display *display = to_intel_display(state);
1591	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1592	struct intel_crtc_state *crtc_state =
1593		intel_atomic_get_new_crtc_state(state, crtc);
1594	const struct intel_limit *limit;
1595	int refclk = 96000;
1596
 
 
 
1597	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1598		if (intel_panel_use_ssc(display)) {
1599			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1600			drm_dbg_kms(&dev_priv->drm,
1601				    "using SSC reference clock of %d kHz\n",
1602				    refclk);
1603		}
1604
1605		limit = &pnv_limits_lvds;
1606	} else {
1607		limit = &pnv_limits_sdvo;
1608	}
1609
1610	if (!crtc_state->clock_set &&
1611	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1612				refclk, NULL, &crtc_state->dpll))
 
 
1613		return -EINVAL;
 
1614
1615	pnv_calc_dpll_params(refclk, &crtc_state->dpll);
1616
1617	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1618			  &crtc_state->dpll);
1619
1620	crtc_state->port_clock = crtc_state->dpll.dot;
1621	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1622
1623	return 0;
1624}
1625
1626static int i9xx_crtc_compute_clock(struct intel_atomic_state *state,
1627				   struct intel_crtc *crtc)
1628{
1629	struct intel_display *display = to_intel_display(state);
1630	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1631	struct intel_crtc_state *crtc_state =
1632		intel_atomic_get_new_crtc_state(state, crtc);
1633	const struct intel_limit *limit;
1634	int refclk = 96000;
1635
 
 
 
1636	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1637		if (intel_panel_use_ssc(display)) {
1638			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1639			drm_dbg_kms(&dev_priv->drm,
1640				    "using SSC reference clock of %d kHz\n",
1641				    refclk);
1642		}
1643
1644		limit = &intel_limits_i9xx_lvds;
1645	} else {
1646		limit = &intel_limits_i9xx_sdvo;
1647	}
1648
1649	if (!crtc_state->clock_set &&
1650	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1651				 refclk, NULL, &crtc_state->dpll))
 
 
1652		return -EINVAL;
 
1653
1654	i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1655
1656	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1657			  &crtc_state->dpll);
1658
1659	crtc_state->port_clock = crtc_state->dpll.dot;
1660	/* FIXME this is a mess */
1661	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1662		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1663
1664	return 0;
1665}
1666
1667static int i8xx_crtc_compute_clock(struct intel_atomic_state *state,
1668				   struct intel_crtc *crtc)
1669{
1670	struct intel_display *display = to_intel_display(state);
1671	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1672	struct intel_crtc_state *crtc_state =
1673		intel_atomic_get_new_crtc_state(state, crtc);
1674	const struct intel_limit *limit;
1675	int refclk = 48000;
1676
 
 
 
1677	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1678		if (intel_panel_use_ssc(display)) {
1679			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1680			drm_dbg_kms(&dev_priv->drm,
1681				    "using SSC reference clock of %d kHz\n",
1682				    refclk);
1683		}
1684
1685		limit = &intel_limits_i8xx_lvds;
1686	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
1687		limit = &intel_limits_i8xx_dvo;
1688	} else {
1689		limit = &intel_limits_i8xx_dac;
1690	}
1691
1692	if (!crtc_state->clock_set &&
1693	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1694				 refclk, NULL, &crtc_state->dpll))
 
 
1695		return -EINVAL;
1696
1697	i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1698
1699	i8xx_compute_dpll(crtc_state, &crtc_state->dpll,
1700			  &crtc_state->dpll);
1701
1702	crtc_state->port_clock = crtc_state->dpll.dot;
1703	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1704
1705	return 0;
1706}
1707
1708static const struct intel_dpll_funcs mtl_dpll_funcs = {
1709	.crtc_compute_clock = mtl_crtc_compute_clock,
1710};
1711
1712static const struct intel_dpll_funcs dg2_dpll_funcs = {
1713	.crtc_compute_clock = dg2_crtc_compute_clock,
1714};
1715
1716static const struct intel_dpll_funcs hsw_dpll_funcs = {
1717	.crtc_compute_clock = hsw_crtc_compute_clock,
1718	.crtc_get_shared_dpll = hsw_crtc_get_shared_dpll,
1719};
1720
1721static const struct intel_dpll_funcs ilk_dpll_funcs = {
1722	.crtc_compute_clock = ilk_crtc_compute_clock,
1723	.crtc_get_shared_dpll = ilk_crtc_get_shared_dpll,
1724};
1725
1726static const struct intel_dpll_funcs chv_dpll_funcs = {
1727	.crtc_compute_clock = chv_crtc_compute_clock,
1728};
1729
1730static const struct intel_dpll_funcs vlv_dpll_funcs = {
1731	.crtc_compute_clock = vlv_crtc_compute_clock,
1732};
1733
1734static const struct intel_dpll_funcs g4x_dpll_funcs = {
1735	.crtc_compute_clock = g4x_crtc_compute_clock,
1736};
1737
1738static const struct intel_dpll_funcs pnv_dpll_funcs = {
1739	.crtc_compute_clock = pnv_crtc_compute_clock,
1740};
1741
1742static const struct intel_dpll_funcs i9xx_dpll_funcs = {
1743	.crtc_compute_clock = i9xx_crtc_compute_clock,
1744};
1745
1746static const struct intel_dpll_funcs i8xx_dpll_funcs = {
1747	.crtc_compute_clock = i8xx_crtc_compute_clock,
1748};
1749
1750int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state,
1751				  struct intel_crtc *crtc)
1752{
1753	struct drm_i915_private *i915 = to_i915(state->base.dev);
1754	struct intel_crtc_state *crtc_state =
1755		intel_atomic_get_new_crtc_state(state, crtc);
1756	int ret;
1757
1758	drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1759
1760	memset(&crtc_state->dpll_hw_state, 0,
1761	       sizeof(crtc_state->dpll_hw_state));
1762
1763	if (!crtc_state->hw.enable)
1764		return 0;
1765
1766	ret = i915->display.funcs.dpll->crtc_compute_clock(state, crtc);
1767	if (ret) {
1768		drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n",
1769			    crtc->base.base.id, crtc->base.name);
1770		return ret;
1771	}
1772
1773	return 0;
1774}
1775
1776int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state,
1777				    struct intel_crtc *crtc)
1778{
1779	struct drm_i915_private *i915 = to_i915(state->base.dev);
1780	struct intel_crtc_state *crtc_state =
1781		intel_atomic_get_new_crtc_state(state, crtc);
1782	int ret;
1783
1784	drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1785	drm_WARN_ON(&i915->drm, !crtc_state->hw.enable && crtc_state->shared_dpll);
1786
1787	if (!crtc_state->hw.enable || crtc_state->shared_dpll)
1788		return 0;
1789
1790	if (!i915->display.funcs.dpll->crtc_get_shared_dpll)
1791		return 0;
1792
1793	ret = i915->display.funcs.dpll->crtc_get_shared_dpll(state, crtc);
1794	if (ret) {
1795		drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n",
1796			    crtc->base.base.id, crtc->base.name);
1797		return ret;
1798	}
1799
1800	return 0;
1801}
1802
1803void
1804intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv)
1805{
1806	if (DISPLAY_VER(dev_priv) >= 14)
1807		dev_priv->display.funcs.dpll = &mtl_dpll_funcs;
1808	else if (IS_DG2(dev_priv))
1809		dev_priv->display.funcs.dpll = &dg2_dpll_funcs;
1810	else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv))
1811		dev_priv->display.funcs.dpll = &hsw_dpll_funcs;
1812	else if (HAS_PCH_SPLIT(dev_priv))
1813		dev_priv->display.funcs.dpll = &ilk_dpll_funcs;
1814	else if (IS_CHERRYVIEW(dev_priv))
1815		dev_priv->display.funcs.dpll = &chv_dpll_funcs;
1816	else if (IS_VALLEYVIEW(dev_priv))
1817		dev_priv->display.funcs.dpll = &vlv_dpll_funcs;
1818	else if (IS_G4X(dev_priv))
1819		dev_priv->display.funcs.dpll = &g4x_dpll_funcs;
1820	else if (IS_PINEVIEW(dev_priv))
1821		dev_priv->display.funcs.dpll = &pnv_dpll_funcs;
1822	else if (DISPLAY_VER(dev_priv) != 2)
1823		dev_priv->display.funcs.dpll = &i9xx_dpll_funcs;
1824	else
1825		dev_priv->display.funcs.dpll = &i8xx_dpll_funcs;
1826}
1827
1828static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1829{
1830	if (IS_I830(dev_priv))
1831		return false;
1832
1833	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1834}
1835
1836void i9xx_enable_pll(const struct intel_crtc_state *crtc_state)
 
1837{
1838	struct intel_display *display = to_intel_display(crtc_state);
1839	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1840	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1841	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1842	enum pipe pipe = crtc->pipe;
1843	int i;
1844
1845	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1846
1847	/* PLL is protected by panel, make sure we can write it */
1848	if (i9xx_has_pps(dev_priv))
1849		assert_pps_unlocked(display, pipe);
1850
1851	intel_de_write(dev_priv, FP0(pipe), hw_state->fp0);
1852	intel_de_write(dev_priv, FP1(pipe), hw_state->fp1);
1853
1854	/*
1855	 * Apparently we need to have VGA mode enabled prior to changing
1856	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1857	 * dividers, even though the register value does change.
1858	 */
1859	intel_de_write(dev_priv, DPLL(dev_priv, pipe),
1860		       hw_state->dpll & ~DPLL_VGA_MODE_DIS);
1861	intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
1862
1863	/* Wait for the clocks to stabilize. */
1864	intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
1865	udelay(150);
1866
1867	if (DISPLAY_VER(dev_priv) >= 4) {
1868		intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe),
1869			       hw_state->dpll_md);
1870	} else {
1871		/* The pixel multiplier can only be updated once the
1872		 * DPLL is enabled and the clocks are stable.
1873		 *
1874		 * So write it again.
1875		 */
1876		intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
1877	}
1878
1879	/* We do this three times for luck */
1880	for (i = 0; i < 3; i++) {
1881		intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
1882		intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
1883		udelay(150); /* wait for warmup */
1884	}
1885}
1886
1887static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv,
1888				 enum dpio_phy phy, enum dpio_channel ch)
1889{
1890	u32 tmp;
1891
1892	/*
1893	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
1894	 * and set it to a reasonable value instead.
1895	 */
1896	tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch));
1897	tmp &= 0xffffff00;
1898	tmp |= 0x00000030;
1899	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp);
1900
1901	tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11);
1902	tmp &= 0x00ffffff;
1903	tmp |= 0x8c000000;
1904	vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp);
1905
1906	tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch));
1907	tmp &= 0xffffff00;
1908	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp);
1909
1910	tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11);
1911	tmp &= 0x00ffffff;
1912	tmp |= 0xb0000000;
1913	vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1914}
1915
1916static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state)
 
 
1917{
1918	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1919	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1920	const struct dpll *clock = &crtc_state->dpll;
1921	enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
1922	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
1923	enum pipe pipe = crtc->pipe;
1924	u32 tmp, coreclk;
 
1925
1926	vlv_dpio_get(dev_priv);
1927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1928	/* See eDP HDMI DPIO driver vbios notes doc */
1929
1930	/* PLL B needs special handling */
1931	if (pipe == PIPE_B)
1932		vlv_pllb_recal_opamp(dev_priv, phy, ch);
1933
1934	/* Set up Tx target for periodic Rcomp update */
1935	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW17_BCAST, 0x0100000f);
1936
1937	/* Disable target IRef on PLL */
1938	tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW16(ch));
1939	tmp &= 0x00ffffff;
1940	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW16(ch), tmp);
1941
1942	/* Disable fast lock */
1943	vlv_dpio_write(dev_priv, phy, VLV_CMN_DW0, 0x610);
1944
1945	/* Set idtafcrecal before PLL is enabled */
1946	tmp = DPIO_M1_DIV(clock->m1) |
1947		DPIO_M2_DIV(clock->m2) |
1948		DPIO_P1_DIV(clock->p1) |
1949		DPIO_P2_DIV(clock->p2) |
1950		DPIO_N_DIV(clock->n) |
1951		DPIO_K_DIV(1);
1952
1953	/*
1954	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
1955	 * but we don't support that).
1956	 * Note: don't use the DAC post divider as it seems unstable.
1957	 */
1958	tmp |= DPIO_S1_DIV(DPIO_S1_DIV_HDMIDP);
1959	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp);
1960
1961	tmp |= DPIO_ENABLE_CALIBRATION;
1962	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp);
1963
1964	/* Set HBR and RBR LPF coefficients */
1965	if (crtc_state->port_clock == 162000 ||
1966	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) ||
1967	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1968		vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch),
1969				 0x009f0003);
1970	else
1971		vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch),
1972				 0x00d0000f);
1973
1974	if (intel_crtc_has_dp_encoder(crtc_state)) {
1975		/* Use SSC source */
1976		if (pipe == PIPE_A)
1977			vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1978					 0x0df40000);
1979		else
1980			vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1981					 0x0df70000);
1982	} else { /* HDMI or VGA */
1983		/* Use bend source */
1984		if (pipe == PIPE_A)
1985			vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1986					 0x0df70000);
1987		else
1988			vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1989					 0x0df40000);
1990	}
1991
1992	coreclk = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW7(ch));
1993	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
1994	if (intel_crtc_has_dp_encoder(crtc_state))
1995		coreclk |= 0x01000000;
1996	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW7(ch), coreclk);
1997
1998	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW19(ch), 0x87871000);
1999
2000	vlv_dpio_put(dev_priv);
2001}
2002
2003static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state)
 
2004{
2005	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2006	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2007	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2008	enum pipe pipe = crtc->pipe;
 
 
 
 
 
2009
2010	intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
2011	intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
2012	udelay(150);
2013
2014	if (intel_de_wait_for_set(dev_priv, DPLL(dev_priv, pipe), DPLL_LOCK_VLV, 1))
2015		drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
2016}
2017
2018void vlv_enable_pll(const struct intel_crtc_state *crtc_state)
2019{
2020	struct intel_display *display = to_intel_display(crtc_state);
2021	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2022	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2023	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2024	enum pipe pipe = crtc->pipe;
2025
2026	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2027
2028	/* PLL is protected by panel, make sure we can write it */
2029	assert_pps_unlocked(display, pipe);
2030
2031	/* Enable Refclk */
2032	intel_de_write(dev_priv, DPLL(dev_priv, pipe),
2033		       hw_state->dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
2034
2035	if (hw_state->dpll & DPLL_VCO_ENABLE) {
2036		vlv_prepare_pll(crtc_state);
2037		_vlv_enable_pll(crtc_state);
2038	}
2039
2040	intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe), hw_state->dpll_md);
2041	intel_de_posting_read(dev_priv, DPLL_MD(dev_priv, pipe));
2042}
2043
2044static void chv_prepare_pll(const struct intel_crtc_state *crtc_state)
2045{
2046	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2047	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2048	const struct dpll *clock = &crtc_state->dpll;
2049	enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
2050	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
2051	u32 tmp, loopfilter, tribuf_calcntr;
2052	u32 m2_frac;
2053
2054	m2_frac = clock->m2 & 0x3fffff;
2055
2056	vlv_dpio_get(dev_priv);
2057
2058	/* p1 and p2 divider */
2059	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW13(ch),
2060		       DPIO_CHV_S1_DIV(5) |
2061		       DPIO_CHV_P1_DIV(clock->p1) |
2062		       DPIO_CHV_P2_DIV(clock->p2) |
2063		       DPIO_CHV_K_DIV(1));
2064
2065	/* Feedback post-divider - m2 */
2066	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW0(ch),
2067		       DPIO_CHV_M2_DIV(clock->m2 >> 22));
2068
2069	/* Feedback refclk divider - n and m1 */
2070	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW1(ch),
2071		       DPIO_CHV_M1_DIV(DPIO_CHV_M1_DIV_BY_2) |
2072		       DPIO_CHV_N_DIV(1));
2073
2074	/* M2 fraction division */
2075	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW2(ch),
2076		       DPIO_CHV_M2_FRAC_DIV(m2_frac));
2077
2078	/* M2 fraction division enable */
2079	tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch));
2080	tmp &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
2081	tmp |= DPIO_CHV_FEEDFWD_GAIN(2);
2082	if (m2_frac)
2083		tmp |= DPIO_CHV_FRAC_DIV_EN;
2084	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW3(ch), tmp);
2085
2086	/* Program digital lock detect threshold */
2087	tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW9(ch));
2088	tmp &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
2089		      DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
2090	tmp |= DPIO_CHV_INT_LOCK_THRESHOLD(0x5);
2091	if (!m2_frac)
2092		tmp |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
2093	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW9(ch), tmp);
2094
2095	/* Loop filter */
2096	if (clock->vco == 5400000) {
2097		loopfilter = DPIO_CHV_PROP_COEFF(0x3) |
2098			DPIO_CHV_INT_COEFF(0x8) |
2099			DPIO_CHV_GAIN_CTRL(0x1);
2100		tribuf_calcntr = 0x9;
2101	} else if (clock->vco <= 6200000) {
2102		loopfilter = DPIO_CHV_PROP_COEFF(0x5) |
2103			DPIO_CHV_INT_COEFF(0xB) |
2104			DPIO_CHV_GAIN_CTRL(0x3);
2105		tribuf_calcntr = 0x9;
2106	} else if (clock->vco <= 6480000) {
2107		loopfilter = DPIO_CHV_PROP_COEFF(0x4) |
2108			DPIO_CHV_INT_COEFF(0x9) |
2109			DPIO_CHV_GAIN_CTRL(0x3);
2110		tribuf_calcntr = 0x8;
2111	} else {
2112		/* Not supported. Apply the same limits as in the max case */
2113		loopfilter = DPIO_CHV_PROP_COEFF(0x4) |
2114			DPIO_CHV_INT_COEFF(0x9) |
2115			DPIO_CHV_GAIN_CTRL(0x3);
2116		tribuf_calcntr = 0;
2117	}
2118	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW6(ch), loopfilter);
2119
2120	tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW8(ch));
2121	tmp &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
2122	tmp |= DPIO_CHV_TDC_TARGET_CNT(tribuf_calcntr);
2123	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW8(ch), tmp);
2124
2125	/* AFC Recal */
2126	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch),
2127		       vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)) |
2128		       DPIO_AFC_RECAL);
2129
2130	vlv_dpio_put(dev_priv);
2131}
2132
2133static void _chv_enable_pll(const struct intel_crtc_state *crtc_state)
2134{
2135	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2136	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2137	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2138	enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
2139	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
2140	enum pipe pipe = crtc->pipe;
2141	u32 tmp;
2142
2143	vlv_dpio_get(dev_priv);
2144
2145	/* Enable back the 10bit clock to display controller */
2146	tmp = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch));
2147	tmp |= DPIO_DCLKP_EN;
2148	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), tmp);
2149
2150	vlv_dpio_put(dev_priv);
2151
2152	/*
2153	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
2154	 */
2155	udelay(1);
2156
2157	/* Enable PLL */
2158	intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
2159
2160	/* Check PLL is locked */
2161	if (intel_de_wait_for_set(dev_priv, DPLL(dev_priv, pipe), DPLL_LOCK_VLV, 1))
2162		drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
2163}
2164
2165void chv_enable_pll(const struct intel_crtc_state *crtc_state)
2166{
2167	struct intel_display *display = to_intel_display(crtc_state);
2168	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2169	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2170	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2171	enum pipe pipe = crtc->pipe;
2172
2173	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2174
2175	/* PLL is protected by panel, make sure we can write it */
2176	assert_pps_unlocked(display, pipe);
2177
2178	/* Enable Refclk and SSC */
2179	intel_de_write(dev_priv, DPLL(dev_priv, pipe),
2180		       hw_state->dpll & ~DPLL_VCO_ENABLE);
2181
2182	if (hw_state->dpll & DPLL_VCO_ENABLE) {
2183		chv_prepare_pll(crtc_state);
2184		_chv_enable_pll(crtc_state);
2185	}
2186
2187	if (pipe != PIPE_A) {
2188		/*
2189		 * WaPixelRepeatModeFixForC0:chv
2190		 *
2191		 * DPLLCMD is AWOL. Use chicken bits to propagate
2192		 * the value from DPLLBMD to either pipe B or C.
2193		 */
2194		intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
2195		intel_de_write(dev_priv, DPLL_MD(dev_priv, PIPE_B),
2196			       hw_state->dpll_md);
2197		intel_de_write(dev_priv, CBR4_VLV, 0);
2198		dev_priv->display.state.chv_dpll_md[pipe] = hw_state->dpll_md;
2199
2200		/*
2201		 * DPLLB VGA mode also seems to cause problems.
2202		 * We should always have it disabled.
2203		 */
2204		drm_WARN_ON(&dev_priv->drm,
2205			    (intel_de_read(dev_priv, DPLL(dev_priv, PIPE_B)) &
2206			     DPLL_VGA_MODE_DIS) == 0);
2207	} else {
2208		intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe),
2209			       hw_state->dpll_md);
2210		intel_de_posting_read(dev_priv, DPLL_MD(dev_priv, pipe));
2211	}
2212}
2213
2214/**
2215 * vlv_force_pll_on - forcibly enable just the PLL
2216 * @dev_priv: i915 private structure
2217 * @pipe: pipe PLL to enable
2218 * @dpll: PLL configuration
2219 *
2220 * Enable the PLL for @pipe using the supplied @dpll config. To be used
2221 * in cases where we need the PLL enabled even when @pipe is not going to
2222 * be enabled.
2223 */
2224int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
2225		     const struct dpll *dpll)
2226{
2227	struct intel_display *display = &dev_priv->display;
2228	struct intel_crtc *crtc = intel_crtc_for_pipe(display, pipe);
2229	struct intel_crtc_state *crtc_state;
2230
2231	crtc_state = intel_crtc_state_alloc(crtc);
2232	if (!crtc_state)
2233		return -ENOMEM;
2234
2235	crtc_state->cpu_transcoder = (enum transcoder)pipe;
2236	crtc_state->pixel_multiplier = 1;
2237	crtc_state->dpll = *dpll;
2238	crtc_state->output_types = BIT(INTEL_OUTPUT_EDP);
2239
2240	if (IS_CHERRYVIEW(dev_priv)) {
2241		chv_compute_dpll(crtc_state);
2242		chv_enable_pll(crtc_state);
 
2243	} else {
2244		vlv_compute_dpll(crtc_state);
2245		vlv_enable_pll(crtc_state);
 
2246	}
2247
2248	intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi);
2249
2250	return 0;
2251}
2252
2253void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2254{
2255	u32 val;
2256
2257	/* Make sure the pipe isn't still relying on us */
2258	assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2259
2260	val = DPLL_INTEGRATED_REF_CLK_VLV |
2261		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2262	if (pipe != PIPE_A)
2263		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2264
2265	intel_de_write(dev_priv, DPLL(dev_priv, pipe), val);
2266	intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
2267}
2268
2269void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2270{
2271	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
2272	enum dpio_phy phy = vlv_pipe_to_phy(pipe);
2273	u32 val;
2274
2275	/* Make sure the pipe isn't still relying on us */
2276	assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2277
2278	val = DPLL_SSC_REF_CLK_CHV |
2279		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2280	if (pipe != PIPE_A)
2281		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2282
2283	intel_de_write(dev_priv, DPLL(dev_priv, pipe), val);
2284	intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
2285
2286	vlv_dpio_get(dev_priv);
2287
2288	/* Disable 10bit clock to display controller */
2289	val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch));
2290	val &= ~DPIO_DCLKP_EN;
2291	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), val);
2292
2293	vlv_dpio_put(dev_priv);
2294}
2295
2296void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
2297{
2298	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2299	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2300	enum pipe pipe = crtc->pipe;
2301
2302	/* Don't disable pipe or pipe PLLs if needed */
2303	if (IS_I830(dev_priv))
2304		return;
2305
2306	/* Make sure the pipe isn't still relying on us */
2307	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2308
2309	intel_de_write(dev_priv, DPLL(dev_priv, pipe), DPLL_VGA_MODE_DIS);
2310	intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
2311}
2312
2313
2314/**
2315 * vlv_force_pll_off - forcibly disable just the PLL
2316 * @dev_priv: i915 private structure
2317 * @pipe: pipe PLL to disable
2318 *
2319 * Disable the PLL for @pipe. To be used in cases where we need
2320 * the PLL enabled even when @pipe is not going to be enabled.
2321 */
2322void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
2323{
2324	if (IS_CHERRYVIEW(dev_priv))
2325		chv_disable_pll(dev_priv, pipe);
2326	else
2327		vlv_disable_pll(dev_priv, pipe);
2328}
2329
2330/* Only for pre-ILK configs */
2331static void assert_pll(struct drm_i915_private *dev_priv,
2332		       enum pipe pipe, bool state)
2333{
2334	struct intel_display *display = &dev_priv->display;
2335	bool cur_state;
2336
2337	cur_state = intel_de_read(display, DPLL(display, pipe)) & DPLL_VCO_ENABLE;
2338	INTEL_DISPLAY_STATE_WARN(display, cur_state != state,
2339				 "PLL state assertion failure (expected %s, current %s)\n",
2340				 str_on_off(state), str_on_off(cur_state));
2341}
2342
2343void assert_pll_enabled(struct drm_i915_private *i915, enum pipe pipe)
2344{
2345	assert_pll(i915, pipe, true);
2346}
2347
2348void assert_pll_disabled(struct drm_i915_private *i915, enum pipe pipe)
2349{
2350	assert_pll(i915, pipe, false);
2351}