Loading...
1/*
2 * Common signal handling code for both 32 and 64 bits
3 *
4 * Copyright (c) 2007 Benjamin Herrenschmidt, IBM Corporation
5 * Extracted from signal_32.c and signal_64.c
6 *
7 * This file is subject to the terms and conditions of the GNU General
8 * Public License. See the file README.legal in the main directory of
9 * this archive for more details.
10 */
11
12#include <linux/tracehook.h>
13#include <linux/signal.h>
14#include <linux/uprobes.h>
15#include <linux/key.h>
16#include <linux/context_tracking.h>
17#include <linux/livepatch.h>
18#include <linux/syscalls.h>
19#include <asm/hw_breakpoint.h>
20#include <linux/uaccess.h>
21#include <asm/switch_to.h>
22#include <asm/unistd.h>
23#include <asm/debug.h>
24#include <asm/tm.h>
25
26#include "signal.h"
27
28#ifdef CONFIG_VSX
29unsigned long copy_fpr_to_user(void __user *to,
30 struct task_struct *task)
31{
32 u64 buf[ELF_NFPREG];
33 int i;
34
35 /* save FPR copy to local buffer then write to the thread_struct */
36 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
37 buf[i] = task->thread.TS_FPR(i);
38 buf[i] = task->thread.fp_state.fpscr;
39 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
40}
41
42unsigned long copy_fpr_from_user(struct task_struct *task,
43 void __user *from)
44{
45 u64 buf[ELF_NFPREG];
46 int i;
47
48 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
49 return 1;
50 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
51 task->thread.TS_FPR(i) = buf[i];
52 task->thread.fp_state.fpscr = buf[i];
53
54 return 0;
55}
56
57unsigned long copy_vsx_to_user(void __user *to,
58 struct task_struct *task)
59{
60 u64 buf[ELF_NVSRHALFREG];
61 int i;
62
63 /* save FPR copy to local buffer then write to the thread_struct */
64 for (i = 0; i < ELF_NVSRHALFREG; i++)
65 buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
66 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
67}
68
69unsigned long copy_vsx_from_user(struct task_struct *task,
70 void __user *from)
71{
72 u64 buf[ELF_NVSRHALFREG];
73 int i;
74
75 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
76 return 1;
77 for (i = 0; i < ELF_NVSRHALFREG ; i++)
78 task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
79 return 0;
80}
81
82#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
83unsigned long copy_ckfpr_to_user(void __user *to,
84 struct task_struct *task)
85{
86 u64 buf[ELF_NFPREG];
87 int i;
88
89 /* save FPR copy to local buffer then write to the thread_struct */
90 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
91 buf[i] = task->thread.TS_CKFPR(i);
92 buf[i] = task->thread.ckfp_state.fpscr;
93 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
94}
95
96unsigned long copy_ckfpr_from_user(struct task_struct *task,
97 void __user *from)
98{
99 u64 buf[ELF_NFPREG];
100 int i;
101
102 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
103 return 1;
104 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
105 task->thread.TS_CKFPR(i) = buf[i];
106 task->thread.ckfp_state.fpscr = buf[i];
107
108 return 0;
109}
110
111unsigned long copy_ckvsx_to_user(void __user *to,
112 struct task_struct *task)
113{
114 u64 buf[ELF_NVSRHALFREG];
115 int i;
116
117 /* save FPR copy to local buffer then write to the thread_struct */
118 for (i = 0; i < ELF_NVSRHALFREG; i++)
119 buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
120 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
121}
122
123unsigned long copy_ckvsx_from_user(struct task_struct *task,
124 void __user *from)
125{
126 u64 buf[ELF_NVSRHALFREG];
127 int i;
128
129 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
130 return 1;
131 for (i = 0; i < ELF_NVSRHALFREG ; i++)
132 task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
133 return 0;
134}
135#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
136#endif
137
138/* Log an error when sending an unhandled signal to a process. Controlled
139 * through debug.exception-trace sysctl.
140 */
141
142int show_unhandled_signals = 1;
143
144/*
145 * Allocate space for the signal frame
146 */
147static unsigned long get_tm_stackpointer(struct task_struct *tsk);
148
149void __user *get_sigframe(struct ksignal *ksig, struct task_struct *tsk,
150 size_t frame_size, int is_32)
151{
152 unsigned long oldsp, newsp;
153 unsigned long sp = get_tm_stackpointer(tsk);
154
155 /* Default to using normal stack */
156 if (is_32)
157 oldsp = sp & 0x0ffffffffUL;
158 else
159 oldsp = sp;
160 oldsp = sigsp(oldsp, ksig);
161 newsp = (oldsp - frame_size) & ~0xFUL;
162
163 return (void __user *)newsp;
164}
165
166static void check_syscall_restart(struct pt_regs *regs, struct k_sigaction *ka,
167 int has_handler)
168{
169 unsigned long ret = regs->gpr[3];
170 int restart = 1;
171
172 /* syscall ? */
173 if (!trap_is_syscall(regs))
174 return;
175
176 if (trap_norestart(regs))
177 return;
178
179 /* error signalled ? */
180 if (trap_is_scv(regs)) {
181 /* 32-bit compat mode sign extend? */
182 if (!IS_ERR_VALUE(ret))
183 return;
184 ret = -ret;
185 } else if (!(regs->ccr & 0x10000000)) {
186 return;
187 }
188
189 switch (ret) {
190 case ERESTART_RESTARTBLOCK:
191 case ERESTARTNOHAND:
192 /* ERESTARTNOHAND means that the syscall should only be
193 * restarted if there was no handler for the signal, and since
194 * we only get here if there is a handler, we dont restart.
195 */
196 restart = !has_handler;
197 break;
198 case ERESTARTSYS:
199 /* ERESTARTSYS means to restart the syscall if there is no
200 * handler or the handler was registered with SA_RESTART
201 */
202 restart = !has_handler || (ka->sa.sa_flags & SA_RESTART) != 0;
203 break;
204 case ERESTARTNOINTR:
205 /* ERESTARTNOINTR means that the syscall should be
206 * called again after the signal handler returns.
207 */
208 break;
209 default:
210 return;
211 }
212 if (restart) {
213 if (ret == ERESTART_RESTARTBLOCK)
214 regs->gpr[0] = __NR_restart_syscall;
215 else
216 regs->gpr[3] = regs->orig_gpr3;
217 regs_add_return_ip(regs, -4);
218 regs->result = 0;
219 } else {
220 if (trap_is_scv(regs)) {
221 regs->result = -EINTR;
222 regs->gpr[3] = -EINTR;
223 } else {
224 regs->result = -EINTR;
225 regs->gpr[3] = EINTR;
226 regs->ccr |= 0x10000000;
227 }
228 }
229}
230
231static void do_signal(struct task_struct *tsk)
232{
233 sigset_t *oldset = sigmask_to_save();
234 struct ksignal ksig = { .sig = 0 };
235 int ret;
236
237 BUG_ON(tsk != current);
238
239 get_signal(&ksig);
240
241 /* Is there any syscall restart business here ? */
242 check_syscall_restart(tsk->thread.regs, &ksig.ka, ksig.sig > 0);
243
244 if (ksig.sig <= 0) {
245 /* No signal to deliver -- put the saved sigmask back */
246 restore_saved_sigmask();
247 set_trap_norestart(tsk->thread.regs);
248 return; /* no signals delivered */
249 }
250
251 /*
252 * Reenable the DABR before delivering the signal to
253 * user space. The DABR will have been cleared if it
254 * triggered inside the kernel.
255 */
256 if (!IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
257 int i;
258
259 for (i = 0; i < nr_wp_slots(); i++) {
260 if (tsk->thread.hw_brk[i].address && tsk->thread.hw_brk[i].type)
261 __set_breakpoint(i, &tsk->thread.hw_brk[i]);
262 }
263 }
264
265 /* Re-enable the breakpoints for the signal stack */
266 thread_change_pc(tsk, tsk->thread.regs);
267
268 rseq_signal_deliver(&ksig, tsk->thread.regs);
269
270 if (is_32bit_task()) {
271 if (ksig.ka.sa.sa_flags & SA_SIGINFO)
272 ret = handle_rt_signal32(&ksig, oldset, tsk);
273 else
274 ret = handle_signal32(&ksig, oldset, tsk);
275 } else {
276 ret = handle_rt_signal64(&ksig, oldset, tsk);
277 }
278
279 set_trap_norestart(tsk->thread.regs);
280 signal_setup_done(ret, &ksig, test_thread_flag(TIF_SINGLESTEP));
281}
282
283void do_notify_resume(struct pt_regs *regs, unsigned long thread_info_flags)
284{
285 if (thread_info_flags & _TIF_UPROBE)
286 uprobe_notify_resume(regs);
287
288 if (thread_info_flags & _TIF_PATCH_PENDING)
289 klp_update_patch_state(current);
290
291 if (thread_info_flags & (_TIF_SIGPENDING | _TIF_NOTIFY_SIGNAL)) {
292 BUG_ON(regs != current->thread.regs);
293 do_signal(current);
294 }
295
296 if (thread_info_flags & _TIF_NOTIFY_RESUME) {
297 tracehook_notify_resume(regs);
298 rseq_handle_notify_resume(NULL, regs);
299 }
300}
301
302static unsigned long get_tm_stackpointer(struct task_struct *tsk)
303{
304 /* When in an active transaction that takes a signal, we need to be
305 * careful with the stack. It's possible that the stack has moved back
306 * up after the tbegin. The obvious case here is when the tbegin is
307 * called inside a function that returns before a tend. In this case,
308 * the stack is part of the checkpointed transactional memory state.
309 * If we write over this non transactionally or in suspend, we are in
310 * trouble because if we get a tm abort, the program counter and stack
311 * pointer will be back at the tbegin but our in memory stack won't be
312 * valid anymore.
313 *
314 * To avoid this, when taking a signal in an active transaction, we
315 * need to use the stack pointer from the checkpointed state, rather
316 * than the speculated state. This ensures that the signal context
317 * (written tm suspended) will be written below the stack required for
318 * the rollback. The transaction is aborted because of the treclaim,
319 * so any memory written between the tbegin and the signal will be
320 * rolled back anyway.
321 *
322 * For signals taken in non-TM or suspended mode, we use the
323 * normal/non-checkpointed stack pointer.
324 */
325 struct pt_regs *regs = tsk->thread.regs;
326 unsigned long ret = regs->gpr[1];
327
328#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
329 BUG_ON(tsk != current);
330
331 if (MSR_TM_ACTIVE(regs->msr)) {
332 preempt_disable();
333 tm_reclaim_current(TM_CAUSE_SIGNAL);
334 if (MSR_TM_TRANSACTIONAL(regs->msr))
335 ret = tsk->thread.ckpt_regs.gpr[1];
336
337 /*
338 * If we treclaim, we must clear the current thread's TM bits
339 * before re-enabling preemption. Otherwise we might be
340 * preempted and have the live MSR[TS] changed behind our back
341 * (tm_recheckpoint_new_task() would recheckpoint). Besides, we
342 * enter the signal handler in non-transactional state.
343 */
344 regs_set_return_msr(regs, regs->msr & ~MSR_TS_MASK);
345 preempt_enable();
346 }
347#endif
348 return ret;
349}
350
351static const char fm32[] = KERN_INFO "%s[%d]: bad frame in %s: %p nip %08lx lr %08lx\n";
352static const char fm64[] = KERN_INFO "%s[%d]: bad frame in %s: %p nip %016lx lr %016lx\n";
353
354void signal_fault(struct task_struct *tsk, struct pt_regs *regs,
355 const char *where, void __user *ptr)
356{
357 if (show_unhandled_signals)
358 printk_ratelimited(regs->msr & MSR_64BIT ? fm64 : fm32, tsk->comm,
359 task_pid_nr(tsk), where, ptr, regs->nip, regs->link);
360}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Common signal handling code for both 32 and 64 bits
4 *
5 * Copyright (c) 2007 Benjamin Herrenschmidt, IBM Corporation
6 * Extracted from signal_32.c and signal_64.c
7 */
8
9#include <linux/resume_user_mode.h>
10#include <linux/signal.h>
11#include <linux/uprobes.h>
12#include <linux/key.h>
13#include <linux/context_tracking.h>
14#include <linux/livepatch.h>
15#include <linux/syscalls.h>
16#include <asm/hw_breakpoint.h>
17#include <linux/uaccess.h>
18#include <asm/switch_to.h>
19#include <asm/unistd.h>
20#include <asm/debug.h>
21#include <asm/tm.h>
22
23#include "signal.h"
24
25#ifdef CONFIG_VSX
26unsigned long copy_fpr_to_user(void __user *to,
27 struct task_struct *task)
28{
29 u64 buf[ELF_NFPREG];
30 int i;
31
32 /* save FPR copy to local buffer then write to the thread_struct */
33 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
34 buf[i] = task->thread.TS_FPR(i);
35 buf[i] = task->thread.fp_state.fpscr;
36 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
37}
38
39unsigned long copy_fpr_from_user(struct task_struct *task,
40 void __user *from)
41{
42 u64 buf[ELF_NFPREG];
43 int i;
44
45 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
46 return 1;
47 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
48 task->thread.TS_FPR(i) = buf[i];
49 task->thread.fp_state.fpscr = buf[i];
50
51 return 0;
52}
53
54unsigned long copy_vsx_to_user(void __user *to,
55 struct task_struct *task)
56{
57 u64 buf[ELF_NVSRHALFREG];
58 int i;
59
60 /* save FPR copy to local buffer then write to the thread_struct */
61 for (i = 0; i < ELF_NVSRHALFREG; i++)
62 buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
63 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
64}
65
66unsigned long copy_vsx_from_user(struct task_struct *task,
67 void __user *from)
68{
69 u64 buf[ELF_NVSRHALFREG];
70 int i;
71
72 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
73 return 1;
74 for (i = 0; i < ELF_NVSRHALFREG ; i++)
75 task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
76 return 0;
77}
78
79#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80unsigned long copy_ckfpr_to_user(void __user *to,
81 struct task_struct *task)
82{
83 u64 buf[ELF_NFPREG];
84 int i;
85
86 /* save FPR copy to local buffer then write to the thread_struct */
87 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
88 buf[i] = task->thread.TS_CKFPR(i);
89 buf[i] = task->thread.ckfp_state.fpscr;
90 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
91}
92
93unsigned long copy_ckfpr_from_user(struct task_struct *task,
94 void __user *from)
95{
96 u64 buf[ELF_NFPREG];
97 int i;
98
99 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
100 return 1;
101 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
102 task->thread.TS_CKFPR(i) = buf[i];
103 task->thread.ckfp_state.fpscr = buf[i];
104
105 return 0;
106}
107
108unsigned long copy_ckvsx_to_user(void __user *to,
109 struct task_struct *task)
110{
111 u64 buf[ELF_NVSRHALFREG];
112 int i;
113
114 /* save FPR copy to local buffer then write to the thread_struct */
115 for (i = 0; i < ELF_NVSRHALFREG; i++)
116 buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
117 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
118}
119
120unsigned long copy_ckvsx_from_user(struct task_struct *task,
121 void __user *from)
122{
123 u64 buf[ELF_NVSRHALFREG];
124 int i;
125
126 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
127 return 1;
128 for (i = 0; i < ELF_NVSRHALFREG ; i++)
129 task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
130 return 0;
131}
132#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
133#endif
134
135/* Log an error when sending an unhandled signal to a process. Controlled
136 * through debug.exception-trace sysctl.
137 */
138
139int show_unhandled_signals = 1;
140
141unsigned long get_min_sigframe_size(void)
142{
143 if (IS_ENABLED(CONFIG_PPC64))
144 return get_min_sigframe_size_64();
145 else
146 return get_min_sigframe_size_32();
147}
148
149#ifdef CONFIG_COMPAT
150unsigned long get_min_sigframe_size_compat(void)
151{
152 return get_min_sigframe_size_32();
153}
154#endif
155
156/*
157 * Allocate space for the signal frame
158 */
159static unsigned long get_tm_stackpointer(struct task_struct *tsk);
160
161void __user *get_sigframe(struct ksignal *ksig, struct task_struct *tsk,
162 size_t frame_size, int is_32)
163{
164 unsigned long oldsp, newsp;
165 unsigned long sp = get_tm_stackpointer(tsk);
166
167 /* Default to using normal stack */
168 if (is_32)
169 oldsp = sp & 0x0ffffffffUL;
170 else
171 oldsp = sp;
172 oldsp = sigsp(oldsp, ksig);
173 newsp = (oldsp - frame_size) & ~0xFUL;
174
175 return (void __user *)newsp;
176}
177
178static void check_syscall_restart(struct pt_regs *regs, struct k_sigaction *ka,
179 int has_handler)
180{
181 unsigned long ret = regs->gpr[3];
182 int restart = 1;
183
184 /* syscall ? */
185 if (!trap_is_syscall(regs))
186 return;
187
188 if (trap_norestart(regs))
189 return;
190
191 /* error signalled ? */
192 if (trap_is_scv(regs)) {
193 /* 32-bit compat mode sign extend? */
194 if (!IS_ERR_VALUE(ret))
195 return;
196 ret = -ret;
197 } else if (!(regs->ccr & 0x10000000)) {
198 return;
199 }
200
201 switch (ret) {
202 case ERESTART_RESTARTBLOCK:
203 case ERESTARTNOHAND:
204 /* ERESTARTNOHAND means that the syscall should only be
205 * restarted if there was no handler for the signal, and since
206 * we only get here if there is a handler, we dont restart.
207 */
208 restart = !has_handler;
209 break;
210 case ERESTARTSYS:
211 /* ERESTARTSYS means to restart the syscall if there is no
212 * handler or the handler was registered with SA_RESTART
213 */
214 restart = !has_handler || (ka->sa.sa_flags & SA_RESTART) != 0;
215 break;
216 case ERESTARTNOINTR:
217 /* ERESTARTNOINTR means that the syscall should be
218 * called again after the signal handler returns.
219 */
220 break;
221 default:
222 return;
223 }
224 if (restart) {
225 if (ret == ERESTART_RESTARTBLOCK)
226 regs->gpr[0] = __NR_restart_syscall;
227 else
228 regs->gpr[3] = regs->orig_gpr3;
229 regs_add_return_ip(regs, -4);
230 regs->result = 0;
231 } else {
232 if (trap_is_scv(regs)) {
233 regs->result = -EINTR;
234 regs->gpr[3] = -EINTR;
235 } else {
236 regs->result = -EINTR;
237 regs->gpr[3] = EINTR;
238 regs->ccr |= 0x10000000;
239 }
240 }
241}
242
243static void do_signal(struct task_struct *tsk)
244{
245 sigset_t *oldset = sigmask_to_save();
246 struct ksignal ksig = { .sig = 0 };
247 int ret;
248
249 BUG_ON(tsk != current);
250
251 get_signal(&ksig);
252
253 /* Is there any syscall restart business here ? */
254 check_syscall_restart(tsk->thread.regs, &ksig.ka, ksig.sig > 0);
255
256 if (ksig.sig <= 0) {
257 /* No signal to deliver -- put the saved sigmask back */
258 restore_saved_sigmask();
259 set_trap_norestart(tsk->thread.regs);
260 return; /* no signals delivered */
261 }
262
263 /*
264 * Reenable the DABR before delivering the signal to
265 * user space. The DABR will have been cleared if it
266 * triggered inside the kernel.
267 */
268 if (!IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
269 int i;
270
271 for (i = 0; i < nr_wp_slots(); i++) {
272 if (tsk->thread.hw_brk[i].address && tsk->thread.hw_brk[i].type)
273 __set_breakpoint(i, &tsk->thread.hw_brk[i]);
274 }
275 }
276
277 /* Re-enable the breakpoints for the signal stack */
278 thread_change_pc(tsk, tsk->thread.regs);
279
280 rseq_signal_deliver(&ksig, tsk->thread.regs);
281
282 if (is_32bit_task()) {
283 if (ksig.ka.sa.sa_flags & SA_SIGINFO)
284 ret = handle_rt_signal32(&ksig, oldset, tsk);
285 else
286 ret = handle_signal32(&ksig, oldset, tsk);
287 } else {
288 ret = handle_rt_signal64(&ksig, oldset, tsk);
289 }
290
291 set_trap_norestart(tsk->thread.regs);
292 signal_setup_done(ret, &ksig, test_thread_flag(TIF_SINGLESTEP));
293}
294
295void do_notify_resume(struct pt_regs *regs, unsigned long thread_info_flags)
296{
297 if (thread_info_flags & _TIF_UPROBE)
298 uprobe_notify_resume(regs);
299
300 if (thread_info_flags & _TIF_PATCH_PENDING)
301 klp_update_patch_state(current);
302
303 if (thread_info_flags & (_TIF_SIGPENDING | _TIF_NOTIFY_SIGNAL)) {
304 BUG_ON(regs != current->thread.regs);
305 do_signal(current);
306 }
307
308 if (thread_info_flags & _TIF_NOTIFY_RESUME)
309 resume_user_mode_work(regs);
310}
311
312static unsigned long get_tm_stackpointer(struct task_struct *tsk)
313{
314 /* When in an active transaction that takes a signal, we need to be
315 * careful with the stack. It's possible that the stack has moved back
316 * up after the tbegin. The obvious case here is when the tbegin is
317 * called inside a function that returns before a tend. In this case,
318 * the stack is part of the checkpointed transactional memory state.
319 * If we write over this non transactionally or in suspend, we are in
320 * trouble because if we get a tm abort, the program counter and stack
321 * pointer will be back at the tbegin but our in memory stack won't be
322 * valid anymore.
323 *
324 * To avoid this, when taking a signal in an active transaction, we
325 * need to use the stack pointer from the checkpointed state, rather
326 * than the speculated state. This ensures that the signal context
327 * (written tm suspended) will be written below the stack required for
328 * the rollback. The transaction is aborted because of the treclaim,
329 * so any memory written between the tbegin and the signal will be
330 * rolled back anyway.
331 *
332 * For signals taken in non-TM or suspended mode, we use the
333 * normal/non-checkpointed stack pointer.
334 */
335 struct pt_regs *regs = tsk->thread.regs;
336 unsigned long ret = regs->gpr[1];
337
338#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
339 BUG_ON(tsk != current);
340
341 if (MSR_TM_ACTIVE(regs->msr)) {
342 preempt_disable();
343 tm_reclaim_current(TM_CAUSE_SIGNAL);
344 if (MSR_TM_TRANSACTIONAL(regs->msr))
345 ret = tsk->thread.ckpt_regs.gpr[1];
346
347 /*
348 * If we treclaim, we must clear the current thread's TM bits
349 * before re-enabling preemption. Otherwise we might be
350 * preempted and have the live MSR[TS] changed behind our back
351 * (tm_recheckpoint_new_task() would recheckpoint). Besides, we
352 * enter the signal handler in non-transactional state.
353 */
354 regs_set_return_msr(regs, regs->msr & ~MSR_TS_MASK);
355 preempt_enable();
356 }
357#endif
358 return ret;
359}
360
361static const char fm32[] = KERN_INFO "%s[%d]: bad frame in %s: %p nip %08lx lr %08lx\n";
362static const char fm64[] = KERN_INFO "%s[%d]: bad frame in %s: %p nip %016lx lr %016lx\n";
363
364void signal_fault(struct task_struct *tsk, struct pt_regs *regs,
365 const char *where, void __user *ptr)
366{
367 if (show_unhandled_signals)
368 printk_ratelimited(regs->msr & MSR_64BIT ? fm64 : fm32, tsk->comm,
369 task_pid_nr(tsk), where, ptr, regs->nip, regs->link);
370}