Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2/* Copyright (c) 2018 Facebook */
   3
   4#include <byteswap.h>
   5#include <endian.h>
   6#include <stdio.h>
   7#include <stdlib.h>
   8#include <string.h>
   9#include <fcntl.h>
  10#include <unistd.h>
  11#include <errno.h>
  12#include <sys/utsname.h>
  13#include <sys/param.h>
  14#include <sys/stat.h>
  15#include <linux/kernel.h>
  16#include <linux/err.h>
  17#include <linux/btf.h>
  18#include <gelf.h>
  19#include "btf.h"
  20#include "bpf.h"
  21#include "libbpf.h"
  22#include "libbpf_internal.h"
  23#include "hashmap.h"
  24#include "strset.h"
 
  25
  26#define BTF_MAX_NR_TYPES 0x7fffffffU
  27#define BTF_MAX_STR_OFFSET 0x7fffffffU
  28
  29static struct btf_type btf_void;
  30
  31struct btf {
  32	/* raw BTF data in native endianness */
  33	void *raw_data;
  34	/* raw BTF data in non-native endianness */
  35	void *raw_data_swapped;
  36	__u32 raw_size;
  37	/* whether target endianness differs from the native one */
  38	bool swapped_endian;
  39
  40	/*
  41	 * When BTF is loaded from an ELF or raw memory it is stored
  42	 * in a contiguous memory block. The hdr, type_data, and, strs_data
  43	 * point inside that memory region to their respective parts of BTF
  44	 * representation:
  45	 *
  46	 * +--------------------------------+
  47	 * |  Header  |  Types  |  Strings  |
  48	 * +--------------------------------+
  49	 * ^          ^         ^
  50	 * |          |         |
  51	 * hdr        |         |
  52	 * types_data-+         |
  53	 * strs_data------------+
  54	 *
  55	 * If BTF data is later modified, e.g., due to types added or
  56	 * removed, BTF deduplication performed, etc, this contiguous
  57	 * representation is broken up into three independently allocated
  58	 * memory regions to be able to modify them independently.
  59	 * raw_data is nulled out at that point, but can be later allocated
  60	 * and cached again if user calls btf__get_raw_data(), at which point
  61	 * raw_data will contain a contiguous copy of header, types, and
  62	 * strings:
  63	 *
  64	 * +----------+  +---------+  +-----------+
  65	 * |  Header  |  |  Types  |  |  Strings  |
  66	 * +----------+  +---------+  +-----------+
  67	 * ^             ^            ^
  68	 * |             |            |
  69	 * hdr           |            |
  70	 * types_data----+            |
  71	 * strset__data(strs_set)-----+
  72	 *
  73	 *               +----------+---------+-----------+
  74	 *               |  Header  |  Types  |  Strings  |
  75	 * raw_data----->+----------+---------+-----------+
  76	 */
  77	struct btf_header *hdr;
  78
  79	void *types_data;
  80	size_t types_data_cap; /* used size stored in hdr->type_len */
  81
  82	/* type ID to `struct btf_type *` lookup index
  83	 * type_offs[0] corresponds to the first non-VOID type:
  84	 *   - for base BTF it's type [1];
  85	 *   - for split BTF it's the first non-base BTF type.
  86	 */
  87	__u32 *type_offs;
  88	size_t type_offs_cap;
  89	/* number of types in this BTF instance:
  90	 *   - doesn't include special [0] void type;
  91	 *   - for split BTF counts number of types added on top of base BTF.
  92	 */
  93	__u32 nr_types;
  94	/* if not NULL, points to the base BTF on top of which the current
  95	 * split BTF is based
  96	 */
  97	struct btf *base_btf;
  98	/* BTF type ID of the first type in this BTF instance:
  99	 *   - for base BTF it's equal to 1;
 100	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
 101	 */
 102	int start_id;
 103	/* logical string offset of this BTF instance:
 104	 *   - for base BTF it's equal to 0;
 105	 *   - for split BTF it's equal to total size of base BTF's string section size.
 106	 */
 107	int start_str_off;
 108
 109	/* only one of strs_data or strs_set can be non-NULL, depending on
 110	 * whether BTF is in a modifiable state (strs_set is used) or not
 111	 * (strs_data points inside raw_data)
 112	 */
 113	void *strs_data;
 114	/* a set of unique strings */
 115	struct strset *strs_set;
 116	/* whether strings are already deduplicated */
 117	bool strs_deduped;
 118
 
 
 
 119	/* BTF object FD, if loaded into kernel */
 120	int fd;
 121
 122	/* Pointer size (in bytes) for a target architecture of this BTF */
 123	int ptr_sz;
 124};
 125
 126static inline __u64 ptr_to_u64(const void *ptr)
 127{
 128	return (__u64) (unsigned long) ptr;
 129}
 130
 131/* Ensure given dynamically allocated memory region pointed to by *data* with
 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
 133 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
 134 * are already used. At most *max_cnt* elements can be ever allocated.
 135 * If necessary, memory is reallocated and all existing data is copied over,
 136 * new pointer to the memory region is stored at *data, new memory region
 137 * capacity (in number of elements) is stored in *cap.
 138 * On success, memory pointer to the beginning of unused memory is returned.
 139 * On error, NULL is returned.
 140 */
 141void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
 142		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
 143{
 144	size_t new_cnt;
 145	void *new_data;
 146
 147	if (cur_cnt + add_cnt <= *cap_cnt)
 148		return *data + cur_cnt * elem_sz;
 149
 150	/* requested more than the set limit */
 151	if (cur_cnt + add_cnt > max_cnt)
 152		return NULL;
 153
 154	new_cnt = *cap_cnt;
 155	new_cnt += new_cnt / 4;		  /* expand by 25% */
 156	if (new_cnt < 16)		  /* but at least 16 elements */
 157		new_cnt = 16;
 158	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
 159		new_cnt = max_cnt;
 160	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
 161		new_cnt = cur_cnt + add_cnt;
 162
 163	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
 164	if (!new_data)
 165		return NULL;
 166
 167	/* zero out newly allocated portion of memory */
 168	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
 169
 170	*data = new_data;
 171	*cap_cnt = new_cnt;
 172	return new_data + cur_cnt * elem_sz;
 173}
 174
 175/* Ensure given dynamically allocated memory region has enough allocated space
 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
 177 */
 178int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
 179{
 180	void *p;
 181
 182	if (need_cnt <= *cap_cnt)
 183		return 0;
 184
 185	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
 186	if (!p)
 187		return -ENOMEM;
 188
 189	return 0;
 190}
 191
 
 
 
 
 
 
 192static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
 193{
 194	__u32 *p;
 195
 196	p = libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
 197			   btf->nr_types, BTF_MAX_NR_TYPES, 1);
 198	if (!p)
 199		return -ENOMEM;
 200
 201	*p = type_off;
 202	return 0;
 203}
 204
 205static void btf_bswap_hdr(struct btf_header *h)
 206{
 207	h->magic = bswap_16(h->magic);
 208	h->hdr_len = bswap_32(h->hdr_len);
 209	h->type_off = bswap_32(h->type_off);
 210	h->type_len = bswap_32(h->type_len);
 211	h->str_off = bswap_32(h->str_off);
 212	h->str_len = bswap_32(h->str_len);
 213}
 214
 215static int btf_parse_hdr(struct btf *btf)
 216{
 217	struct btf_header *hdr = btf->hdr;
 218	__u32 meta_left;
 219
 220	if (btf->raw_size < sizeof(struct btf_header)) {
 221		pr_debug("BTF header not found\n");
 222		return -EINVAL;
 223	}
 224
 225	if (hdr->magic == bswap_16(BTF_MAGIC)) {
 226		btf->swapped_endian = true;
 227		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
 228			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
 229				bswap_32(hdr->hdr_len));
 230			return -ENOTSUP;
 231		}
 232		btf_bswap_hdr(hdr);
 233	} else if (hdr->magic != BTF_MAGIC) {
 234		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
 235		return -EINVAL;
 236	}
 237
 238	meta_left = btf->raw_size - sizeof(*hdr);
 239	if (meta_left < hdr->str_off + hdr->str_len) {
 240		pr_debug("Invalid BTF total size:%u\n", btf->raw_size);
 241		return -EINVAL;
 242	}
 243
 244	if (hdr->type_off + hdr->type_len > hdr->str_off) {
 
 
 
 
 
 
 245		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
 246			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
 247		return -EINVAL;
 248	}
 249
 250	if (hdr->type_off % 4) {
 251		pr_debug("BTF type section is not aligned to 4 bytes\n");
 252		return -EINVAL;
 253	}
 254
 255	return 0;
 256}
 257
 258static int btf_parse_str_sec(struct btf *btf)
 259{
 260	const struct btf_header *hdr = btf->hdr;
 261	const char *start = btf->strs_data;
 262	const char *end = start + btf->hdr->str_len;
 263
 264	if (btf->base_btf && hdr->str_len == 0)
 265		return 0;
 266	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
 267		pr_debug("Invalid BTF string section\n");
 268		return -EINVAL;
 269	}
 270	if (!btf->base_btf && start[0]) {
 271		pr_debug("Invalid BTF string section\n");
 272		return -EINVAL;
 273	}
 274	return 0;
 275}
 276
 277static int btf_type_size(const struct btf_type *t)
 278{
 279	const int base_size = sizeof(struct btf_type);
 280	__u16 vlen = btf_vlen(t);
 281
 282	switch (btf_kind(t)) {
 283	case BTF_KIND_FWD:
 284	case BTF_KIND_CONST:
 285	case BTF_KIND_VOLATILE:
 286	case BTF_KIND_RESTRICT:
 287	case BTF_KIND_PTR:
 288	case BTF_KIND_TYPEDEF:
 289	case BTF_KIND_FUNC:
 290	case BTF_KIND_FLOAT:
 
 291		return base_size;
 292	case BTF_KIND_INT:
 293		return base_size + sizeof(__u32);
 294	case BTF_KIND_ENUM:
 295		return base_size + vlen * sizeof(struct btf_enum);
 
 
 296	case BTF_KIND_ARRAY:
 297		return base_size + sizeof(struct btf_array);
 298	case BTF_KIND_STRUCT:
 299	case BTF_KIND_UNION:
 300		return base_size + vlen * sizeof(struct btf_member);
 301	case BTF_KIND_FUNC_PROTO:
 302		return base_size + vlen * sizeof(struct btf_param);
 303	case BTF_KIND_VAR:
 304		return base_size + sizeof(struct btf_var);
 305	case BTF_KIND_DATASEC:
 306		return base_size + vlen * sizeof(struct btf_var_secinfo);
 
 
 307	default:
 308		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 309		return -EINVAL;
 310	}
 311}
 312
 313static void btf_bswap_type_base(struct btf_type *t)
 314{
 315	t->name_off = bswap_32(t->name_off);
 316	t->info = bswap_32(t->info);
 317	t->type = bswap_32(t->type);
 318}
 319
 320static int btf_bswap_type_rest(struct btf_type *t)
 321{
 322	struct btf_var_secinfo *v;
 
 323	struct btf_member *m;
 324	struct btf_array *a;
 325	struct btf_param *p;
 326	struct btf_enum *e;
 327	__u16 vlen = btf_vlen(t);
 328	int i;
 329
 330	switch (btf_kind(t)) {
 331	case BTF_KIND_FWD:
 332	case BTF_KIND_CONST:
 333	case BTF_KIND_VOLATILE:
 334	case BTF_KIND_RESTRICT:
 335	case BTF_KIND_PTR:
 336	case BTF_KIND_TYPEDEF:
 337	case BTF_KIND_FUNC:
 338	case BTF_KIND_FLOAT:
 
 339		return 0;
 340	case BTF_KIND_INT:
 341		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
 342		return 0;
 343	case BTF_KIND_ENUM:
 344		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
 345			e->name_off = bswap_32(e->name_off);
 346			e->val = bswap_32(e->val);
 347		}
 348		return 0;
 
 
 
 
 
 
 
 349	case BTF_KIND_ARRAY:
 350		a = btf_array(t);
 351		a->type = bswap_32(a->type);
 352		a->index_type = bswap_32(a->index_type);
 353		a->nelems = bswap_32(a->nelems);
 354		return 0;
 355	case BTF_KIND_STRUCT:
 356	case BTF_KIND_UNION:
 357		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
 358			m->name_off = bswap_32(m->name_off);
 359			m->type = bswap_32(m->type);
 360			m->offset = bswap_32(m->offset);
 361		}
 362		return 0;
 363	case BTF_KIND_FUNC_PROTO:
 364		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
 365			p->name_off = bswap_32(p->name_off);
 366			p->type = bswap_32(p->type);
 367		}
 368		return 0;
 369	case BTF_KIND_VAR:
 370		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
 371		return 0;
 372	case BTF_KIND_DATASEC:
 373		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
 374			v->type = bswap_32(v->type);
 375			v->offset = bswap_32(v->offset);
 376			v->size = bswap_32(v->size);
 377		}
 378		return 0;
 
 
 
 379	default:
 380		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 381		return -EINVAL;
 382	}
 383}
 384
 385static int btf_parse_type_sec(struct btf *btf)
 386{
 387	struct btf_header *hdr = btf->hdr;
 388	void *next_type = btf->types_data;
 389	void *end_type = next_type + hdr->type_len;
 390	int err, type_size;
 391
 392	while (next_type + sizeof(struct btf_type) <= end_type) {
 393		if (btf->swapped_endian)
 394			btf_bswap_type_base(next_type);
 395
 396		type_size = btf_type_size(next_type);
 397		if (type_size < 0)
 398			return type_size;
 399		if (next_type + type_size > end_type) {
 400			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
 401			return -EINVAL;
 402		}
 403
 404		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
 405			return -EINVAL;
 406
 407		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
 408		if (err)
 409			return err;
 410
 411		next_type += type_size;
 412		btf->nr_types++;
 413	}
 414
 415	if (next_type != end_type) {
 416		pr_warn("BTF types data is malformed\n");
 417		return -EINVAL;
 418	}
 419
 420	return 0;
 421}
 422
 423__u32 btf__get_nr_types(const struct btf *btf)
 424{
 425	return btf->start_id + btf->nr_types - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 426}
 427
 428const struct btf *btf__base_btf(const struct btf *btf)
 429{
 430	return btf->base_btf;
 431}
 432
 433/* internal helper returning non-const pointer to a type */
 434struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
 435{
 436	if (type_id == 0)
 437		return &btf_void;
 438	if (type_id < btf->start_id)
 439		return btf_type_by_id(btf->base_btf, type_id);
 440	return btf->types_data + btf->type_offs[type_id - btf->start_id];
 441}
 442
 443const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
 444{
 445	if (type_id >= btf->start_id + btf->nr_types)
 446		return errno = EINVAL, NULL;
 447	return btf_type_by_id((struct btf *)btf, type_id);
 448}
 449
 450static int determine_ptr_size(const struct btf *btf)
 451{
 
 
 
 
 
 
 
 
 
 
 
 
 
 452	const struct btf_type *t;
 453	const char *name;
 454	int i, n;
 455
 456	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
 457		return btf->base_btf->ptr_sz;
 458
 459	n = btf__get_nr_types(btf);
 460	for (i = 1; i <= n; i++) {
 461		t = btf__type_by_id(btf, i);
 462		if (!btf_is_int(t))
 463			continue;
 464
 
 
 
 465		name = btf__name_by_offset(btf, t->name_off);
 466		if (!name)
 467			continue;
 468
 469		if (strcmp(name, "long int") == 0 ||
 470		    strcmp(name, "long unsigned int") == 0) {
 471			if (t->size != 4 && t->size != 8)
 472				continue;
 473			return t->size;
 474		}
 475	}
 476
 477	return -1;
 478}
 479
 480static size_t btf_ptr_sz(const struct btf *btf)
 481{
 482	if (!btf->ptr_sz)
 483		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 484	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
 485}
 486
 487/* Return pointer size this BTF instance assumes. The size is heuristically
 488 * determined by looking for 'long' or 'unsigned long' integer type and
 489 * recording its size in bytes. If BTF type information doesn't have any such
 490 * type, this function returns 0. In the latter case, native architecture's
 491 * pointer size is assumed, so will be either 4 or 8, depending on
 492 * architecture that libbpf was compiled for. It's possible to override
 493 * guessed value by using btf__set_pointer_size() API.
 494 */
 495size_t btf__pointer_size(const struct btf *btf)
 496{
 497	if (!btf->ptr_sz)
 498		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 499
 500	if (btf->ptr_sz < 0)
 501		/* not enough BTF type info to guess */
 502		return 0;
 503
 504	return btf->ptr_sz;
 505}
 506
 507/* Override or set pointer size in bytes. Only values of 4 and 8 are
 508 * supported.
 509 */
 510int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
 511{
 512	if (ptr_sz != 4 && ptr_sz != 8)
 513		return libbpf_err(-EINVAL);
 514	btf->ptr_sz = ptr_sz;
 515	return 0;
 516}
 517
 518static bool is_host_big_endian(void)
 519{
 520#if __BYTE_ORDER == __LITTLE_ENDIAN
 521	return false;
 522#elif __BYTE_ORDER == __BIG_ENDIAN
 523	return true;
 524#else
 525# error "Unrecognized __BYTE_ORDER__"
 526#endif
 527}
 528
 529enum btf_endianness btf__endianness(const struct btf *btf)
 530{
 531	if (is_host_big_endian())
 532		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
 533	else
 534		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
 535}
 536
 537int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
 538{
 539	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
 540		return libbpf_err(-EINVAL);
 541
 542	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
 543	if (!btf->swapped_endian) {
 544		free(btf->raw_data_swapped);
 545		btf->raw_data_swapped = NULL;
 546	}
 547	return 0;
 548}
 549
 550static bool btf_type_is_void(const struct btf_type *t)
 551{
 552	return t == &btf_void || btf_is_fwd(t);
 553}
 554
 555static bool btf_type_is_void_or_null(const struct btf_type *t)
 556{
 557	return !t || btf_type_is_void(t);
 558}
 559
 560#define MAX_RESOLVE_DEPTH 32
 561
 562__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
 563{
 564	const struct btf_array *array;
 565	const struct btf_type *t;
 566	__u32 nelems = 1;
 567	__s64 size = -1;
 568	int i;
 569
 570	t = btf__type_by_id(btf, type_id);
 571	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
 572		switch (btf_kind(t)) {
 573		case BTF_KIND_INT:
 574		case BTF_KIND_STRUCT:
 575		case BTF_KIND_UNION:
 576		case BTF_KIND_ENUM:
 
 577		case BTF_KIND_DATASEC:
 578		case BTF_KIND_FLOAT:
 579			size = t->size;
 580			goto done;
 581		case BTF_KIND_PTR:
 582			size = btf_ptr_sz(btf);
 583			goto done;
 584		case BTF_KIND_TYPEDEF:
 585		case BTF_KIND_VOLATILE:
 586		case BTF_KIND_CONST:
 587		case BTF_KIND_RESTRICT:
 588		case BTF_KIND_VAR:
 
 
 589			type_id = t->type;
 590			break;
 591		case BTF_KIND_ARRAY:
 592			array = btf_array(t);
 593			if (nelems && array->nelems > UINT32_MAX / nelems)
 594				return libbpf_err(-E2BIG);
 595			nelems *= array->nelems;
 596			type_id = array->type;
 597			break;
 598		default:
 599			return libbpf_err(-EINVAL);
 600		}
 601
 602		t = btf__type_by_id(btf, type_id);
 603	}
 604
 605done:
 606	if (size < 0)
 607		return libbpf_err(-EINVAL);
 608	if (nelems && size > UINT32_MAX / nelems)
 609		return libbpf_err(-E2BIG);
 610
 611	return nelems * size;
 612}
 613
 614int btf__align_of(const struct btf *btf, __u32 id)
 615{
 616	const struct btf_type *t = btf__type_by_id(btf, id);
 617	__u16 kind = btf_kind(t);
 618
 619	switch (kind) {
 620	case BTF_KIND_INT:
 621	case BTF_KIND_ENUM:
 
 622	case BTF_KIND_FLOAT:
 623		return min(btf_ptr_sz(btf), (size_t)t->size);
 624	case BTF_KIND_PTR:
 625		return btf_ptr_sz(btf);
 626	case BTF_KIND_TYPEDEF:
 627	case BTF_KIND_VOLATILE:
 628	case BTF_KIND_CONST:
 629	case BTF_KIND_RESTRICT:
 
 630		return btf__align_of(btf, t->type);
 631	case BTF_KIND_ARRAY:
 632		return btf__align_of(btf, btf_array(t)->type);
 633	case BTF_KIND_STRUCT:
 634	case BTF_KIND_UNION: {
 635		const struct btf_member *m = btf_members(t);
 636		__u16 vlen = btf_vlen(t);
 637		int i, max_align = 1, align;
 638
 639		for (i = 0; i < vlen; i++, m++) {
 640			align = btf__align_of(btf, m->type);
 641			if (align <= 0)
 642				return libbpf_err(align);
 643			max_align = max(max_align, align);
 
 
 
 
 
 
 
 644		}
 645
 
 
 
 
 
 
 646		return max_align;
 647	}
 648	default:
 649		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
 650		return errno = EINVAL, 0;
 651	}
 652}
 653
 654int btf__resolve_type(const struct btf *btf, __u32 type_id)
 655{
 656	const struct btf_type *t;
 657	int depth = 0;
 658
 659	t = btf__type_by_id(btf, type_id);
 660	while (depth < MAX_RESOLVE_DEPTH &&
 661	       !btf_type_is_void_or_null(t) &&
 662	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
 663		type_id = t->type;
 664		t = btf__type_by_id(btf, type_id);
 665		depth++;
 666	}
 667
 668	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
 669		return libbpf_err(-EINVAL);
 670
 671	return type_id;
 672}
 673
 674__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
 675{
 676	__u32 i, nr_types = btf__get_nr_types(btf);
 677
 678	if (!strcmp(type_name, "void"))
 679		return 0;
 680
 681	for (i = 1; i <= nr_types; i++) {
 682		const struct btf_type *t = btf__type_by_id(btf, i);
 683		const char *name = btf__name_by_offset(btf, t->name_off);
 684
 685		if (name && !strcmp(type_name, name))
 686			return i;
 687	}
 688
 689	return libbpf_err(-ENOENT);
 690}
 691
 692__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
 693			     __u32 kind)
 694{
 695	__u32 i, nr_types = btf__get_nr_types(btf);
 696
 697	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
 698		return 0;
 699
 700	for (i = 1; i <= nr_types; i++) {
 701		const struct btf_type *t = btf__type_by_id(btf, i);
 702		const char *name;
 703
 704		if (btf_kind(t) != kind)
 705			continue;
 706		name = btf__name_by_offset(btf, t->name_off);
 707		if (name && !strcmp(type_name, name))
 708			return i;
 709	}
 710
 711	return libbpf_err(-ENOENT);
 712}
 713
 
 
 
 
 
 
 
 
 
 
 
 
 714static bool btf_is_modifiable(const struct btf *btf)
 715{
 716	return (void *)btf->hdr != btf->raw_data;
 717}
 718
 719void btf__free(struct btf *btf)
 720{
 721	if (IS_ERR_OR_NULL(btf))
 722		return;
 723
 724	if (btf->fd >= 0)
 725		close(btf->fd);
 726
 727	if (btf_is_modifiable(btf)) {
 728		/* if BTF was modified after loading, it will have a split
 729		 * in-memory representation for header, types, and strings
 730		 * sections, so we need to free all of them individually. It
 731		 * might still have a cached contiguous raw data present,
 732		 * which will be unconditionally freed below.
 733		 */
 734		free(btf->hdr);
 735		free(btf->types_data);
 736		strset__free(btf->strs_set);
 737	}
 738	free(btf->raw_data);
 739	free(btf->raw_data_swapped);
 740	free(btf->type_offs);
 
 
 741	free(btf);
 742}
 743
 744static struct btf *btf_new_empty(struct btf *base_btf)
 745{
 746	struct btf *btf;
 747
 748	btf = calloc(1, sizeof(*btf));
 749	if (!btf)
 750		return ERR_PTR(-ENOMEM);
 751
 752	btf->nr_types = 0;
 753	btf->start_id = 1;
 754	btf->start_str_off = 0;
 755	btf->fd = -1;
 756	btf->ptr_sz = sizeof(void *);
 757	btf->swapped_endian = false;
 758
 759	if (base_btf) {
 760		btf->base_btf = base_btf;
 761		btf->start_id = btf__get_nr_types(base_btf) + 1;
 762		btf->start_str_off = base_btf->hdr->str_len;
 
 763	}
 764
 765	/* +1 for empty string at offset 0 */
 766	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
 767	btf->raw_data = calloc(1, btf->raw_size);
 768	if (!btf->raw_data) {
 769		free(btf);
 770		return ERR_PTR(-ENOMEM);
 771	}
 772
 773	btf->hdr = btf->raw_data;
 774	btf->hdr->hdr_len = sizeof(struct btf_header);
 775	btf->hdr->magic = BTF_MAGIC;
 776	btf->hdr->version = BTF_VERSION;
 777
 778	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
 779	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
 780	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
 781
 782	return btf;
 783}
 784
 785struct btf *btf__new_empty(void)
 786{
 787	return libbpf_ptr(btf_new_empty(NULL));
 788}
 789
 790struct btf *btf__new_empty_split(struct btf *base_btf)
 791{
 792	return libbpf_ptr(btf_new_empty(base_btf));
 793}
 794
 795static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
 796{
 797	struct btf *btf;
 798	int err;
 799
 800	btf = calloc(1, sizeof(struct btf));
 801	if (!btf)
 802		return ERR_PTR(-ENOMEM);
 803
 804	btf->nr_types = 0;
 805	btf->start_id = 1;
 806	btf->start_str_off = 0;
 807	btf->fd = -1;
 808
 809	if (base_btf) {
 810		btf->base_btf = base_btf;
 811		btf->start_id = btf__get_nr_types(base_btf) + 1;
 812		btf->start_str_off = base_btf->hdr->str_len;
 813	}
 814
 815	btf->raw_data = malloc(size);
 816	if (!btf->raw_data) {
 817		err = -ENOMEM;
 818		goto done;
 819	}
 820	memcpy(btf->raw_data, data, size);
 821	btf->raw_size = size;
 822
 823	btf->hdr = btf->raw_data;
 824	err = btf_parse_hdr(btf);
 825	if (err)
 826		goto done;
 827
 828	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
 829	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
 830
 831	err = btf_parse_str_sec(btf);
 832	err = err ?: btf_parse_type_sec(btf);
 
 833	if (err)
 834		goto done;
 835
 836done:
 837	if (err) {
 838		btf__free(btf);
 839		return ERR_PTR(err);
 840	}
 841
 842	return btf;
 843}
 844
 845struct btf *btf__new(const void *data, __u32 size)
 846{
 847	return libbpf_ptr(btf_new(data, size, NULL));
 848}
 849
 850static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
 851				 struct btf_ext **btf_ext)
 
 
 
 
 
 
 
 
 
 
 852{
 853	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
 854	int err = 0, fd = -1, idx = 0;
 855	struct btf *btf = NULL;
 856	Elf_Scn *scn = NULL;
 857	Elf *elf = NULL;
 858	GElf_Ehdr ehdr;
 859	size_t shstrndx;
 
 860
 861	if (elf_version(EV_CURRENT) == EV_NONE) {
 862		pr_warn("failed to init libelf for %s\n", path);
 863		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
 864	}
 865
 866	fd = open(path, O_RDONLY);
 867	if (fd < 0) {
 868		err = -errno;
 869		pr_warn("failed to open %s: %s\n", path, strerror(errno));
 870		return ERR_PTR(err);
 871	}
 872
 873	err = -LIBBPF_ERRNO__FORMAT;
 874
 875	elf = elf_begin(fd, ELF_C_READ, NULL);
 876	if (!elf) {
 877		pr_warn("failed to open %s as ELF file\n", path);
 878		goto done;
 879	}
 880	if (!gelf_getehdr(elf, &ehdr)) {
 881		pr_warn("failed to get EHDR from %s\n", path);
 882		goto done;
 883	}
 884
 885	if (elf_getshdrstrndx(elf, &shstrndx)) {
 886		pr_warn("failed to get section names section index for %s\n",
 887			path);
 888		goto done;
 889	}
 890
 891	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
 892		pr_warn("failed to get e_shstrndx from %s\n", path);
 893		goto done;
 894	}
 895
 896	while ((scn = elf_nextscn(elf, scn)) != NULL) {
 
 897		GElf_Shdr sh;
 898		char *name;
 899
 900		idx++;
 901		if (gelf_getshdr(scn, &sh) != &sh) {
 902			pr_warn("failed to get section(%d) header from %s\n",
 903				idx, path);
 904			goto done;
 905		}
 906		name = elf_strptr(elf, shstrndx, sh.sh_name);
 907		if (!name) {
 908			pr_warn("failed to get section(%d) name from %s\n",
 909				idx, path);
 910			goto done;
 911		}
 912		if (strcmp(name, BTF_ELF_SEC) == 0) {
 913			btf_data = elf_getdata(scn, 0);
 914			if (!btf_data) {
 915				pr_warn("failed to get section(%d, %s) data from %s\n",
 916					idx, name, path);
 917				goto done;
 918			}
 919			continue;
 920		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
 921			btf_ext_data = elf_getdata(scn, 0);
 922			if (!btf_ext_data) {
 923				pr_warn("failed to get section(%d, %s) data from %s\n",
 924					idx, name, path);
 925				goto done;
 926			}
 927			continue;
 
 
 
 
 
 
 928		}
 
 929	}
 930
 931	err = 0;
 
 
 
 
 932
 933	if (!btf_data) {
 934		err = -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 935		goto done;
 936	}
 937	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
 938	err = libbpf_get_error(btf);
 939	if (err)
 940		goto done;
 941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942	switch (gelf_getclass(elf)) {
 943	case ELFCLASS32:
 944		btf__set_pointer_size(btf, 4);
 945		break;
 946	case ELFCLASS64:
 947		btf__set_pointer_size(btf, 8);
 948		break;
 949	default:
 950		pr_warn("failed to get ELF class (bitness) for %s\n", path);
 951		break;
 952	}
 953
 954	if (btf_ext && btf_ext_data) {
 955		*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
 956		err = libbpf_get_error(*btf_ext);
 957		if (err)
 958			goto done;
 
 959	} else if (btf_ext) {
 960		*btf_ext = NULL;
 961	}
 962done:
 963	if (elf)
 964		elf_end(elf);
 965	close(fd);
 966
 967	if (!err)
 968		return btf;
 969
 970	if (btf_ext)
 971		btf_ext__free(*btf_ext);
 
 972	btf__free(btf);
 973
 974	return ERR_PTR(err);
 975}
 976
 977struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
 978{
 979	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
 980}
 981
 982struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
 983{
 984	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
 985}
 986
 987static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
 988{
 989	struct btf *btf = NULL;
 990	void *data = NULL;
 991	FILE *f = NULL;
 992	__u16 magic;
 993	int err = 0;
 994	long sz;
 995
 996	f = fopen(path, "rb");
 997	if (!f) {
 998		err = -errno;
 999		goto err_out;
1000	}
1001
1002	/* check BTF magic */
1003	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1004		err = -EIO;
1005		goto err_out;
1006	}
1007	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1008		/* definitely not a raw BTF */
1009		err = -EPROTO;
1010		goto err_out;
1011	}
1012
1013	/* get file size */
1014	if (fseek(f, 0, SEEK_END)) {
1015		err = -errno;
1016		goto err_out;
1017	}
1018	sz = ftell(f);
1019	if (sz < 0) {
1020		err = -errno;
1021		goto err_out;
1022	}
1023	/* rewind to the start */
1024	if (fseek(f, 0, SEEK_SET)) {
1025		err = -errno;
1026		goto err_out;
1027	}
1028
1029	/* pre-alloc memory and read all of BTF data */
1030	data = malloc(sz);
1031	if (!data) {
1032		err = -ENOMEM;
1033		goto err_out;
1034	}
1035	if (fread(data, 1, sz, f) < sz) {
1036		err = -EIO;
1037		goto err_out;
1038	}
1039
1040	/* finally parse BTF data */
1041	btf = btf_new(data, sz, base_btf);
1042
1043err_out:
1044	free(data);
1045	if (f)
1046		fclose(f);
1047	return err ? ERR_PTR(err) : btf;
1048}
1049
1050struct btf *btf__parse_raw(const char *path)
1051{
1052	return libbpf_ptr(btf_parse_raw(path, NULL));
1053}
1054
1055struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1056{
1057	return libbpf_ptr(btf_parse_raw(path, base_btf));
1058}
1059
1060static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1061{
1062	struct btf *btf;
1063	int err;
1064
1065	if (btf_ext)
1066		*btf_ext = NULL;
1067
1068	btf = btf_parse_raw(path, base_btf);
1069	err = libbpf_get_error(btf);
1070	if (!err)
1071		return btf;
1072	if (err != -EPROTO)
1073		return ERR_PTR(err);
1074	return btf_parse_elf(path, base_btf, btf_ext);
1075}
1076
1077struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1078{
1079	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1080}
1081
1082struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1083{
1084	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1085}
1086
1087static int compare_vsi_off(const void *_a, const void *_b)
1088{
1089	const struct btf_var_secinfo *a = _a;
1090	const struct btf_var_secinfo *b = _b;
1091
1092	return a->offset - b->offset;
1093}
1094
1095static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
1096			     struct btf_type *t)
1097{
1098	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
1099	const char *name = btf__name_by_offset(btf, t->name_off);
1100	const struct btf_type *t_var;
1101	struct btf_var_secinfo *vsi;
1102	const struct btf_var *var;
1103	int ret;
1104
1105	if (!name) {
1106		pr_debug("No name found in string section for DATASEC kind.\n");
1107		return -ENOENT;
1108	}
1109
1110	/* .extern datasec size and var offsets were set correctly during
1111	 * extern collection step, so just skip straight to sorting variables
1112	 */
1113	if (t->size)
1114		goto sort_vars;
1115
1116	ret = bpf_object__section_size(obj, name, &size);
1117	if (ret || !size || (t->size && t->size != size)) {
1118		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
1119		return -ENOENT;
1120	}
1121
1122	t->size = size;
1123
1124	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
1125		t_var = btf__type_by_id(btf, vsi->type);
1126		var = btf_var(t_var);
1127
1128		if (!btf_is_var(t_var)) {
1129			pr_debug("Non-VAR type seen in section %s\n", name);
1130			return -EINVAL;
1131		}
1132
1133		if (var->linkage == BTF_VAR_STATIC)
1134			continue;
1135
1136		name = btf__name_by_offset(btf, t_var->name_off);
1137		if (!name) {
1138			pr_debug("No name found in string section for VAR kind\n");
1139			return -ENOENT;
1140		}
1141
1142		ret = bpf_object__variable_offset(obj, name, &off);
1143		if (ret) {
1144			pr_debug("No offset found in symbol table for VAR %s\n",
1145				 name);
1146			return -ENOENT;
1147		}
1148
1149		vsi->offset = off;
1150	}
1151
1152sort_vars:
1153	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
1154	return 0;
1155}
1156
1157int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
1158{
1159	int err = 0;
1160	__u32 i;
1161
1162	for (i = 1; i <= btf->nr_types; i++) {
1163		struct btf_type *t = btf_type_by_id(btf, i);
1164
1165		/* Loader needs to fix up some of the things compiler
1166		 * couldn't get its hands on while emitting BTF. This
1167		 * is section size and global variable offset. We use
1168		 * the info from the ELF itself for this purpose.
1169		 */
1170		if (btf_is_datasec(t)) {
1171			err = btf_fixup_datasec(obj, btf, t);
1172			if (err)
1173				break;
1174		}
1175	}
1176
1177	return libbpf_err(err);
1178}
1179
1180static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1181
1182int btf__load(struct btf *btf)
1183{
1184	__u32 log_buf_size = 0, raw_size;
1185	char *log_buf = NULL;
 
 
 
1186	void *raw_data;
1187	int err = 0;
1188
1189	if (btf->fd >= 0)
1190		return libbpf_err(-EEXIST);
 
 
1191
1192retry_load:
1193	if (log_buf_size) {
1194		log_buf = malloc(log_buf_size);
1195		if (!log_buf)
1196			return libbpf_err(-ENOMEM);
1197
1198		*log_buf = 0;
1199	}
1200
1201	raw_data = btf_get_raw_data(btf, &raw_size, false);
1202	if (!raw_data) {
1203		err = -ENOMEM;
1204		goto done;
1205	}
1206	/* cache native raw data representation */
1207	btf->raw_size = raw_size;
1208	btf->raw_data = raw_data;
1209
1210	btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1211	if (btf->fd < 0) {
1212		if (!log_buf || errno == ENOSPC) {
1213			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1214					   log_buf_size << 1);
1215			free(log_buf);
1216			goto retry_load;
1217		}
 
 
 
 
 
1218
1219		err = -errno;
1220		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1221		if (*log_buf)
1222			pr_warn("%s\n", log_buf);
1223		goto done;
1224	}
1225
1226done:
1227	free(log_buf);
1228	return libbpf_err(err);
1229}
1230
 
 
 
 
 
1231int btf__fd(const struct btf *btf)
1232{
1233	return btf->fd;
1234}
1235
1236void btf__set_fd(struct btf *btf, int fd)
1237{
1238	btf->fd = fd;
1239}
1240
1241static const void *btf_strs_data(const struct btf *btf)
1242{
1243	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1244}
1245
1246static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1247{
1248	struct btf_header *hdr = btf->hdr;
1249	struct btf_type *t;
1250	void *data, *p;
1251	__u32 data_sz;
1252	int i;
1253
1254	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1255	if (data) {
1256		*size = btf->raw_size;
1257		return data;
1258	}
1259
1260	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1261	data = calloc(1, data_sz);
1262	if (!data)
1263		return NULL;
1264	p = data;
1265
1266	memcpy(p, hdr, hdr->hdr_len);
1267	if (swap_endian)
1268		btf_bswap_hdr(p);
1269	p += hdr->hdr_len;
1270
1271	memcpy(p, btf->types_data, hdr->type_len);
1272	if (swap_endian) {
1273		for (i = 0; i < btf->nr_types; i++) {
1274			t = p + btf->type_offs[i];
1275			/* btf_bswap_type_rest() relies on native t->info, so
1276			 * we swap base type info after we swapped all the
1277			 * additional information
1278			 */
1279			if (btf_bswap_type_rest(t))
1280				goto err_out;
1281			btf_bswap_type_base(t);
1282		}
1283	}
1284	p += hdr->type_len;
1285
1286	memcpy(p, btf_strs_data(btf), hdr->str_len);
1287	p += hdr->str_len;
1288
1289	*size = data_sz;
1290	return data;
1291err_out:
1292	free(data);
1293	return NULL;
1294}
1295
1296const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
1297{
1298	struct btf *btf = (struct btf *)btf_ro;
1299	__u32 data_sz;
1300	void *data;
1301
1302	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1303	if (!data)
1304		return errno = -ENOMEM, NULL;
1305
1306	btf->raw_size = data_sz;
1307	if (btf->swapped_endian)
1308		btf->raw_data_swapped = data;
1309	else
1310		btf->raw_data = data;
1311	*size = data_sz;
1312	return data;
1313}
1314
 
 
 
1315const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1316{
1317	if (offset < btf->start_str_off)
1318		return btf__str_by_offset(btf->base_btf, offset);
1319	else if (offset - btf->start_str_off < btf->hdr->str_len)
1320		return btf_strs_data(btf) + (offset - btf->start_str_off);
1321	else
1322		return errno = EINVAL, NULL;
1323}
1324
1325const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1326{
1327	return btf__str_by_offset(btf, offset);
1328}
1329
1330struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1331{
1332	struct bpf_btf_info btf_info;
1333	__u32 len = sizeof(btf_info);
1334	__u32 last_size;
1335	struct btf *btf;
1336	void *ptr;
1337	int err;
1338
1339	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1340	 * let's start with a sane default - 4KiB here - and resize it only if
1341	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1342	 */
1343	last_size = 4096;
1344	ptr = malloc(last_size);
1345	if (!ptr)
1346		return ERR_PTR(-ENOMEM);
1347
1348	memset(&btf_info, 0, sizeof(btf_info));
1349	btf_info.btf = ptr_to_u64(ptr);
1350	btf_info.btf_size = last_size;
1351	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1352
1353	if (!err && btf_info.btf_size > last_size) {
1354		void *temp_ptr;
1355
1356		last_size = btf_info.btf_size;
1357		temp_ptr = realloc(ptr, last_size);
1358		if (!temp_ptr) {
1359			btf = ERR_PTR(-ENOMEM);
1360			goto exit_free;
1361		}
1362		ptr = temp_ptr;
1363
1364		len = sizeof(btf_info);
1365		memset(&btf_info, 0, sizeof(btf_info));
1366		btf_info.btf = ptr_to_u64(ptr);
1367		btf_info.btf_size = last_size;
1368
1369		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1370	}
1371
1372	if (err || btf_info.btf_size > last_size) {
1373		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1374		goto exit_free;
1375	}
1376
1377	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1378
1379exit_free:
1380	free(ptr);
1381	return btf;
1382}
1383
1384int btf__get_from_id(__u32 id, struct btf **btf)
1385{
1386	struct btf *res;
1387	int err, btf_fd;
1388
1389	*btf = NULL;
1390	btf_fd = bpf_btf_get_fd_by_id(id);
1391	if (btf_fd < 0)
1392		return libbpf_err(-errno);
1393
1394	res = btf_get_from_fd(btf_fd, NULL);
1395	err = libbpf_get_error(res);
1396
 
1397	close(btf_fd);
1398
1399	if (err)
1400		return libbpf_err(err);
1401
1402	*btf = res;
1403	return 0;
1404}
1405
1406int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1407			 __u32 expected_key_size, __u32 expected_value_size,
1408			 __u32 *key_type_id, __u32 *value_type_id)
1409{
1410	const struct btf_type *container_type;
1411	const struct btf_member *key, *value;
1412	const size_t max_name = 256;
1413	char container_name[max_name];
1414	__s64 key_size, value_size;
1415	__s32 container_id;
1416
1417	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) {
1418		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1419			map_name, map_name);
1420		return libbpf_err(-EINVAL);
1421	}
1422
1423	container_id = btf__find_by_name(btf, container_name);
1424	if (container_id < 0) {
1425		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1426			 map_name, container_name);
1427		return libbpf_err(container_id);
1428	}
1429
1430	container_type = btf__type_by_id(btf, container_id);
1431	if (!container_type) {
1432		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1433			map_name, container_id);
1434		return libbpf_err(-EINVAL);
1435	}
1436
1437	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1438		pr_warn("map:%s container_name:%s is an invalid container struct\n",
1439			map_name, container_name);
1440		return libbpf_err(-EINVAL);
1441	}
1442
1443	key = btf_members(container_type);
1444	value = key + 1;
1445
1446	key_size = btf__resolve_size(btf, key->type);
1447	if (key_size < 0) {
1448		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1449		return libbpf_err(key_size);
1450	}
1451
1452	if (expected_key_size != key_size) {
1453		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1454			map_name, (__u32)key_size, expected_key_size);
1455		return libbpf_err(-EINVAL);
1456	}
1457
1458	value_size = btf__resolve_size(btf, value->type);
1459	if (value_size < 0) {
1460		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1461		return libbpf_err(value_size);
1462	}
1463
1464	if (expected_value_size != value_size) {
1465		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1466			map_name, (__u32)value_size, expected_value_size);
1467		return libbpf_err(-EINVAL);
1468	}
1469
1470	*key_type_id = key->type;
1471	*value_type_id = value->type;
1472
1473	return 0;
1474}
1475
1476static void btf_invalidate_raw_data(struct btf *btf)
1477{
1478	if (btf->raw_data) {
1479		free(btf->raw_data);
1480		btf->raw_data = NULL;
1481	}
1482	if (btf->raw_data_swapped) {
1483		free(btf->raw_data_swapped);
1484		btf->raw_data_swapped = NULL;
1485	}
1486}
1487
1488/* Ensure BTF is ready to be modified (by splitting into a three memory
1489 * regions for header, types, and strings). Also invalidate cached
1490 * raw_data, if any.
1491 */
1492static int btf_ensure_modifiable(struct btf *btf)
1493{
1494	void *hdr, *types;
1495	struct strset *set = NULL;
1496	int err = -ENOMEM;
1497
1498	if (btf_is_modifiable(btf)) {
1499		/* any BTF modification invalidates raw_data */
1500		btf_invalidate_raw_data(btf);
1501		return 0;
1502	}
1503
1504	/* split raw data into three memory regions */
1505	hdr = malloc(btf->hdr->hdr_len);
1506	types = malloc(btf->hdr->type_len);
1507	if (!hdr || !types)
1508		goto err_out;
1509
1510	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1511	memcpy(types, btf->types_data, btf->hdr->type_len);
1512
1513	/* build lookup index for all strings */
1514	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1515	if (IS_ERR(set)) {
1516		err = PTR_ERR(set);
1517		goto err_out;
1518	}
1519
1520	/* only when everything was successful, update internal state */
1521	btf->hdr = hdr;
1522	btf->types_data = types;
1523	btf->types_data_cap = btf->hdr->type_len;
1524	btf->strs_data = NULL;
1525	btf->strs_set = set;
1526	/* if BTF was created from scratch, all strings are guaranteed to be
1527	 * unique and deduplicated
1528	 */
1529	if (btf->hdr->str_len == 0)
1530		btf->strs_deduped = true;
1531	if (!btf->base_btf && btf->hdr->str_len == 1)
1532		btf->strs_deduped = true;
1533
1534	/* invalidate raw_data representation */
1535	btf_invalidate_raw_data(btf);
1536
1537	return 0;
1538
1539err_out:
1540	strset__free(set);
1541	free(hdr);
1542	free(types);
1543	return err;
1544}
1545
1546/* Find an offset in BTF string section that corresponds to a given string *s*.
1547 * Returns:
1548 *   - >0 offset into string section, if string is found;
1549 *   - -ENOENT, if string is not in the string section;
1550 *   - <0, on any other error.
1551 */
1552int btf__find_str(struct btf *btf, const char *s)
1553{
1554	int off;
1555
1556	if (btf->base_btf) {
1557		off = btf__find_str(btf->base_btf, s);
1558		if (off != -ENOENT)
1559			return off;
1560	}
1561
1562	/* BTF needs to be in a modifiable state to build string lookup index */
1563	if (btf_ensure_modifiable(btf))
1564		return libbpf_err(-ENOMEM);
1565
1566	off = strset__find_str(btf->strs_set, s);
1567	if (off < 0)
1568		return libbpf_err(off);
1569
1570	return btf->start_str_off + off;
1571}
1572
1573/* Add a string s to the BTF string section.
1574 * Returns:
1575 *   - > 0 offset into string section, on success;
1576 *   - < 0, on error.
1577 */
1578int btf__add_str(struct btf *btf, const char *s)
1579{
1580	int off;
1581
1582	if (btf->base_btf) {
1583		off = btf__find_str(btf->base_btf, s);
1584		if (off != -ENOENT)
1585			return off;
1586	}
1587
1588	if (btf_ensure_modifiable(btf))
1589		return libbpf_err(-ENOMEM);
1590
1591	off = strset__add_str(btf->strs_set, s);
1592	if (off < 0)
1593		return libbpf_err(off);
1594
1595	btf->hdr->str_len = strset__data_size(btf->strs_set);
1596
1597	return btf->start_str_off + off;
1598}
1599
1600static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1601{
1602	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1603			      btf->hdr->type_len, UINT_MAX, add_sz);
1604}
1605
1606static void btf_type_inc_vlen(struct btf_type *t)
1607{
1608	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1609}
1610
1611static int btf_commit_type(struct btf *btf, int data_sz)
1612{
1613	int err;
1614
1615	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1616	if (err)
1617		return libbpf_err(err);
1618
1619	btf->hdr->type_len += data_sz;
1620	btf->hdr->str_off += data_sz;
1621	btf->nr_types++;
1622	return btf->start_id + btf->nr_types - 1;
1623}
1624
1625struct btf_pipe {
1626	const struct btf *src;
1627	struct btf *dst;
 
1628};
1629
1630static int btf_rewrite_str(__u32 *str_off, void *ctx)
1631{
1632	struct btf_pipe *p = ctx;
1633	int off;
1634
1635	if (!*str_off) /* nothing to do for empty strings */
1636		return 0;
1637
 
 
 
 
 
 
1638	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1639	if (off < 0)
1640		return off;
1641
 
 
 
 
 
 
 
 
 
1642	*str_off = off;
1643	return 0;
1644}
1645
1646int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1647{
1648	struct btf_pipe p = { .src = src_btf, .dst = btf };
1649	struct btf_type *t;
 
1650	int sz, err;
1651
1652	sz = btf_type_size(src_type);
1653	if (sz < 0)
1654		return libbpf_err(sz);
1655
1656	/* deconstruct BTF, if necessary, and invalidate raw_data */
1657	if (btf_ensure_modifiable(btf))
1658		return libbpf_err(-ENOMEM);
1659
1660	t = btf_add_type_mem(btf, sz);
1661	if (!t)
1662		return libbpf_err(-ENOMEM);
1663
1664	memcpy(t, src_type, sz);
1665
1666	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1667	if (err)
1668		return libbpf_err(err);
1669
1670	return btf_commit_type(btf, sz);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1671}
1672
1673/*
1674 * Append new BTF_KIND_INT type with:
1675 *   - *name* - non-empty, non-NULL type name;
1676 *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1677 *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1678 * Returns:
1679 *   - >0, type ID of newly added BTF type;
1680 *   - <0, on error.
1681 */
1682int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1683{
1684	struct btf_type *t;
1685	int sz, name_off;
1686
1687	/* non-empty name */
1688	if (!name || !name[0])
1689		return libbpf_err(-EINVAL);
1690	/* byte_sz must be power of 2 */
1691	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1692		return libbpf_err(-EINVAL);
1693	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1694		return libbpf_err(-EINVAL);
1695
1696	/* deconstruct BTF, if necessary, and invalidate raw_data */
1697	if (btf_ensure_modifiable(btf))
1698		return libbpf_err(-ENOMEM);
1699
1700	sz = sizeof(struct btf_type) + sizeof(int);
1701	t = btf_add_type_mem(btf, sz);
1702	if (!t)
1703		return libbpf_err(-ENOMEM);
1704
1705	/* if something goes wrong later, we might end up with an extra string,
1706	 * but that shouldn't be a problem, because BTF can't be constructed
1707	 * completely anyway and will most probably be just discarded
1708	 */
1709	name_off = btf__add_str(btf, name);
1710	if (name_off < 0)
1711		return name_off;
1712
1713	t->name_off = name_off;
1714	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1715	t->size = byte_sz;
1716	/* set INT info, we don't allow setting legacy bit offset/size */
1717	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1718
1719	return btf_commit_type(btf, sz);
1720}
1721
1722/*
1723 * Append new BTF_KIND_FLOAT type with:
1724 *   - *name* - non-empty, non-NULL type name;
1725 *   - *sz* - size of the type, in bytes;
1726 * Returns:
1727 *   - >0, type ID of newly added BTF type;
1728 *   - <0, on error.
1729 */
1730int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1731{
1732	struct btf_type *t;
1733	int sz, name_off;
1734
1735	/* non-empty name */
1736	if (!name || !name[0])
1737		return libbpf_err(-EINVAL);
1738
1739	/* byte_sz must be one of the explicitly allowed values */
1740	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1741	    byte_sz != 16)
1742		return libbpf_err(-EINVAL);
1743
1744	if (btf_ensure_modifiable(btf))
1745		return libbpf_err(-ENOMEM);
1746
1747	sz = sizeof(struct btf_type);
1748	t = btf_add_type_mem(btf, sz);
1749	if (!t)
1750		return libbpf_err(-ENOMEM);
1751
1752	name_off = btf__add_str(btf, name);
1753	if (name_off < 0)
1754		return name_off;
1755
1756	t->name_off = name_off;
1757	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1758	t->size = byte_sz;
1759
1760	return btf_commit_type(btf, sz);
1761}
1762
1763/* it's completely legal to append BTF types with type IDs pointing forward to
1764 * types that haven't been appended yet, so we only make sure that id looks
1765 * sane, we can't guarantee that ID will always be valid
1766 */
1767static int validate_type_id(int id)
1768{
1769	if (id < 0 || id > BTF_MAX_NR_TYPES)
1770		return -EINVAL;
1771	return 0;
1772}
1773
1774/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1775static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1776{
1777	struct btf_type *t;
1778	int sz, name_off = 0;
1779
1780	if (validate_type_id(ref_type_id))
1781		return libbpf_err(-EINVAL);
1782
1783	if (btf_ensure_modifiable(btf))
1784		return libbpf_err(-ENOMEM);
1785
1786	sz = sizeof(struct btf_type);
1787	t = btf_add_type_mem(btf, sz);
1788	if (!t)
1789		return libbpf_err(-ENOMEM);
1790
1791	if (name && name[0]) {
1792		name_off = btf__add_str(btf, name);
1793		if (name_off < 0)
1794			return name_off;
1795	}
1796
1797	t->name_off = name_off;
1798	t->info = btf_type_info(kind, 0, 0);
1799	t->type = ref_type_id;
1800
1801	return btf_commit_type(btf, sz);
1802}
1803
1804/*
1805 * Append new BTF_KIND_PTR type with:
1806 *   - *ref_type_id* - referenced type ID, it might not exist yet;
1807 * Returns:
1808 *   - >0, type ID of newly added BTF type;
1809 *   - <0, on error.
1810 */
1811int btf__add_ptr(struct btf *btf, int ref_type_id)
1812{
1813	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1814}
1815
1816/*
1817 * Append new BTF_KIND_ARRAY type with:
1818 *   - *index_type_id* - type ID of the type describing array index;
1819 *   - *elem_type_id* - type ID of the type describing array element;
1820 *   - *nr_elems* - the size of the array;
1821 * Returns:
1822 *   - >0, type ID of newly added BTF type;
1823 *   - <0, on error.
1824 */
1825int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1826{
1827	struct btf_type *t;
1828	struct btf_array *a;
1829	int sz;
1830
1831	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1832		return libbpf_err(-EINVAL);
1833
1834	if (btf_ensure_modifiable(btf))
1835		return libbpf_err(-ENOMEM);
1836
1837	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1838	t = btf_add_type_mem(btf, sz);
1839	if (!t)
1840		return libbpf_err(-ENOMEM);
1841
1842	t->name_off = 0;
1843	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1844	t->size = 0;
1845
1846	a = btf_array(t);
1847	a->type = elem_type_id;
1848	a->index_type = index_type_id;
1849	a->nelems = nr_elems;
1850
1851	return btf_commit_type(btf, sz);
1852}
1853
1854/* generic STRUCT/UNION append function */
1855static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1856{
1857	struct btf_type *t;
1858	int sz, name_off = 0;
1859
1860	if (btf_ensure_modifiable(btf))
1861		return libbpf_err(-ENOMEM);
1862
1863	sz = sizeof(struct btf_type);
1864	t = btf_add_type_mem(btf, sz);
1865	if (!t)
1866		return libbpf_err(-ENOMEM);
1867
1868	if (name && name[0]) {
1869		name_off = btf__add_str(btf, name);
1870		if (name_off < 0)
1871			return name_off;
1872	}
1873
1874	/* start out with vlen=0 and no kflag; this will be adjusted when
1875	 * adding each member
1876	 */
1877	t->name_off = name_off;
1878	t->info = btf_type_info(kind, 0, 0);
1879	t->size = bytes_sz;
1880
1881	return btf_commit_type(btf, sz);
1882}
1883
1884/*
1885 * Append new BTF_KIND_STRUCT type with:
1886 *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1887 *   - *byte_sz* - size of the struct, in bytes;
1888 *
1889 * Struct initially has no fields in it. Fields can be added by
1890 * btf__add_field() right after btf__add_struct() succeeds.
1891 *
1892 * Returns:
1893 *   - >0, type ID of newly added BTF type;
1894 *   - <0, on error.
1895 */
1896int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1897{
1898	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1899}
1900
1901/*
1902 * Append new BTF_KIND_UNION type with:
1903 *   - *name* - name of the union, can be NULL or empty for anonymous union;
1904 *   - *byte_sz* - size of the union, in bytes;
1905 *
1906 * Union initially has no fields in it. Fields can be added by
1907 * btf__add_field() right after btf__add_union() succeeds. All fields
1908 * should have *bit_offset* of 0.
1909 *
1910 * Returns:
1911 *   - >0, type ID of newly added BTF type;
1912 *   - <0, on error.
1913 */
1914int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1915{
1916	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1917}
1918
1919static struct btf_type *btf_last_type(struct btf *btf)
1920{
1921	return btf_type_by_id(btf, btf__get_nr_types(btf));
1922}
1923
1924/*
1925 * Append new field for the current STRUCT/UNION type with:
1926 *   - *name* - name of the field, can be NULL or empty for anonymous field;
1927 *   - *type_id* - type ID for the type describing field type;
1928 *   - *bit_offset* - bit offset of the start of the field within struct/union;
1929 *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1930 * Returns:
1931 *   -  0, on success;
1932 *   - <0, on error.
1933 */
1934int btf__add_field(struct btf *btf, const char *name, int type_id,
1935		   __u32 bit_offset, __u32 bit_size)
1936{
1937	struct btf_type *t;
1938	struct btf_member *m;
1939	bool is_bitfield;
1940	int sz, name_off = 0;
1941
1942	/* last type should be union/struct */
1943	if (btf->nr_types == 0)
1944		return libbpf_err(-EINVAL);
1945	t = btf_last_type(btf);
1946	if (!btf_is_composite(t))
1947		return libbpf_err(-EINVAL);
1948
1949	if (validate_type_id(type_id))
1950		return libbpf_err(-EINVAL);
1951	/* best-effort bit field offset/size enforcement */
1952	is_bitfield = bit_size || (bit_offset % 8 != 0);
1953	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
1954		return libbpf_err(-EINVAL);
1955
1956	/* only offset 0 is allowed for unions */
1957	if (btf_is_union(t) && bit_offset)
1958		return libbpf_err(-EINVAL);
1959
1960	/* decompose and invalidate raw data */
1961	if (btf_ensure_modifiable(btf))
1962		return libbpf_err(-ENOMEM);
1963
1964	sz = sizeof(struct btf_member);
1965	m = btf_add_type_mem(btf, sz);
1966	if (!m)
1967		return libbpf_err(-ENOMEM);
1968
1969	if (name && name[0]) {
1970		name_off = btf__add_str(btf, name);
1971		if (name_off < 0)
1972			return name_off;
1973	}
1974
1975	m->name_off = name_off;
1976	m->type = type_id;
1977	m->offset = bit_offset | (bit_size << 24);
1978
1979	/* btf_add_type_mem can invalidate t pointer */
1980	t = btf_last_type(btf);
1981	/* update parent type's vlen and kflag */
1982	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
1983
1984	btf->hdr->type_len += sz;
1985	btf->hdr->str_off += sz;
1986	return 0;
1987}
1988
1989/*
1990 * Append new BTF_KIND_ENUM type with:
1991 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
1992 *   - *byte_sz* - size of the enum, in bytes.
1993 *
1994 * Enum initially has no enum values in it (and corresponds to enum forward
1995 * declaration). Enumerator values can be added by btf__add_enum_value()
1996 * immediately after btf__add_enum() succeeds.
1997 *
1998 * Returns:
1999 *   - >0, type ID of newly added BTF type;
2000 *   - <0, on error.
2001 */
2002int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2003{
2004	struct btf_type *t;
2005	int sz, name_off = 0;
2006
2007	/* byte_sz must be power of 2 */
2008	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2009		return libbpf_err(-EINVAL);
2010
2011	if (btf_ensure_modifiable(btf))
2012		return libbpf_err(-ENOMEM);
2013
2014	sz = sizeof(struct btf_type);
2015	t = btf_add_type_mem(btf, sz);
2016	if (!t)
2017		return libbpf_err(-ENOMEM);
2018
2019	if (name && name[0]) {
2020		name_off = btf__add_str(btf, name);
2021		if (name_off < 0)
2022			return name_off;
2023	}
2024
2025	/* start out with vlen=0; it will be adjusted when adding enum values */
2026	t->name_off = name_off;
2027	t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2028	t->size = byte_sz;
2029
2030	return btf_commit_type(btf, sz);
2031}
2032
2033/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2034 * Append new enum value for the current ENUM type with:
2035 *   - *name* - name of the enumerator value, can't be NULL or empty;
2036 *   - *value* - integer value corresponding to enum value *name*;
2037 * Returns:
2038 *   -  0, on success;
2039 *   - <0, on error.
2040 */
2041int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2042{
2043	struct btf_type *t;
2044	struct btf_enum *v;
2045	int sz, name_off;
2046
2047	/* last type should be BTF_KIND_ENUM */
2048	if (btf->nr_types == 0)
2049		return libbpf_err(-EINVAL);
2050	t = btf_last_type(btf);
2051	if (!btf_is_enum(t))
2052		return libbpf_err(-EINVAL);
2053
2054	/* non-empty name */
2055	if (!name || !name[0])
2056		return libbpf_err(-EINVAL);
2057	if (value < INT_MIN || value > UINT_MAX)
2058		return libbpf_err(-E2BIG);
2059
2060	/* decompose and invalidate raw data */
2061	if (btf_ensure_modifiable(btf))
2062		return libbpf_err(-ENOMEM);
2063
2064	sz = sizeof(struct btf_enum);
2065	v = btf_add_type_mem(btf, sz);
2066	if (!v)
2067		return libbpf_err(-ENOMEM);
2068
2069	name_off = btf__add_str(btf, name);
2070	if (name_off < 0)
2071		return name_off;
2072
2073	v->name_off = name_off;
2074	v->val = value;
2075
2076	/* update parent type's vlen */
2077	t = btf_last_type(btf);
2078	btf_type_inc_vlen(t);
2079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2080	btf->hdr->type_len += sz;
2081	btf->hdr->str_off += sz;
2082	return 0;
2083}
2084
2085/*
2086 * Append new BTF_KIND_FWD type with:
2087 *   - *name*, non-empty/non-NULL name;
2088 *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2089 *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2090 * Returns:
2091 *   - >0, type ID of newly added BTF type;
2092 *   - <0, on error.
2093 */
2094int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2095{
2096	if (!name || !name[0])
2097		return libbpf_err(-EINVAL);
2098
2099	switch (fwd_kind) {
2100	case BTF_FWD_STRUCT:
2101	case BTF_FWD_UNION: {
2102		struct btf_type *t;
2103		int id;
2104
2105		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2106		if (id <= 0)
2107			return id;
2108		t = btf_type_by_id(btf, id);
2109		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2110		return id;
2111	}
2112	case BTF_FWD_ENUM:
2113		/* enum forward in BTF currently is just an enum with no enum
2114		 * values; we also assume a standard 4-byte size for it
2115		 */
2116		return btf__add_enum(btf, name, sizeof(int));
2117	default:
2118		return libbpf_err(-EINVAL);
2119	}
2120}
2121
2122/*
2123 * Append new BTF_KING_TYPEDEF type with:
2124 *   - *name*, non-empty/non-NULL name;
2125 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2126 * Returns:
2127 *   - >0, type ID of newly added BTF type;
2128 *   - <0, on error.
2129 */
2130int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2131{
2132	if (!name || !name[0])
2133		return libbpf_err(-EINVAL);
2134
2135	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2136}
2137
2138/*
2139 * Append new BTF_KIND_VOLATILE type with:
2140 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2141 * Returns:
2142 *   - >0, type ID of newly added BTF type;
2143 *   - <0, on error.
2144 */
2145int btf__add_volatile(struct btf *btf, int ref_type_id)
2146{
2147	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2148}
2149
2150/*
2151 * Append new BTF_KIND_CONST type with:
2152 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2153 * Returns:
2154 *   - >0, type ID of newly added BTF type;
2155 *   - <0, on error.
2156 */
2157int btf__add_const(struct btf *btf, int ref_type_id)
2158{
2159	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2160}
2161
2162/*
2163 * Append new BTF_KIND_RESTRICT type with:
2164 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2165 * Returns:
2166 *   - >0, type ID of newly added BTF type;
2167 *   - <0, on error.
2168 */
2169int btf__add_restrict(struct btf *btf, int ref_type_id)
2170{
2171	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2172}
2173
2174/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2175 * Append new BTF_KIND_FUNC type with:
2176 *   - *name*, non-empty/non-NULL name;
2177 *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2178 * Returns:
2179 *   - >0, type ID of newly added BTF type;
2180 *   - <0, on error.
2181 */
2182int btf__add_func(struct btf *btf, const char *name,
2183		  enum btf_func_linkage linkage, int proto_type_id)
2184{
2185	int id;
2186
2187	if (!name || !name[0])
2188		return libbpf_err(-EINVAL);
2189	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2190	    linkage != BTF_FUNC_EXTERN)
2191		return libbpf_err(-EINVAL);
2192
2193	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2194	if (id > 0) {
2195		struct btf_type *t = btf_type_by_id(btf, id);
2196
2197		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2198	}
2199	return libbpf_err(id);
2200}
2201
2202/*
2203 * Append new BTF_KIND_FUNC_PROTO with:
2204 *   - *ret_type_id* - type ID for return result of a function.
2205 *
2206 * Function prototype initially has no arguments, but they can be added by
2207 * btf__add_func_param() one by one, immediately after
2208 * btf__add_func_proto() succeeded.
2209 *
2210 * Returns:
2211 *   - >0, type ID of newly added BTF type;
2212 *   - <0, on error.
2213 */
2214int btf__add_func_proto(struct btf *btf, int ret_type_id)
2215{
2216	struct btf_type *t;
2217	int sz;
2218
2219	if (validate_type_id(ret_type_id))
2220		return libbpf_err(-EINVAL);
2221
2222	if (btf_ensure_modifiable(btf))
2223		return libbpf_err(-ENOMEM);
2224
2225	sz = sizeof(struct btf_type);
2226	t = btf_add_type_mem(btf, sz);
2227	if (!t)
2228		return libbpf_err(-ENOMEM);
2229
2230	/* start out with vlen=0; this will be adjusted when adding enum
2231	 * values, if necessary
2232	 */
2233	t->name_off = 0;
2234	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2235	t->type = ret_type_id;
2236
2237	return btf_commit_type(btf, sz);
2238}
2239
2240/*
2241 * Append new function parameter for current FUNC_PROTO type with:
2242 *   - *name* - parameter name, can be NULL or empty;
2243 *   - *type_id* - type ID describing the type of the parameter.
2244 * Returns:
2245 *   -  0, on success;
2246 *   - <0, on error.
2247 */
2248int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2249{
2250	struct btf_type *t;
2251	struct btf_param *p;
2252	int sz, name_off = 0;
2253
2254	if (validate_type_id(type_id))
2255		return libbpf_err(-EINVAL);
2256
2257	/* last type should be BTF_KIND_FUNC_PROTO */
2258	if (btf->nr_types == 0)
2259		return libbpf_err(-EINVAL);
2260	t = btf_last_type(btf);
2261	if (!btf_is_func_proto(t))
2262		return libbpf_err(-EINVAL);
2263
2264	/* decompose and invalidate raw data */
2265	if (btf_ensure_modifiable(btf))
2266		return libbpf_err(-ENOMEM);
2267
2268	sz = sizeof(struct btf_param);
2269	p = btf_add_type_mem(btf, sz);
2270	if (!p)
2271		return libbpf_err(-ENOMEM);
2272
2273	if (name && name[0]) {
2274		name_off = btf__add_str(btf, name);
2275		if (name_off < 0)
2276			return name_off;
2277	}
2278
2279	p->name_off = name_off;
2280	p->type = type_id;
2281
2282	/* update parent type's vlen */
2283	t = btf_last_type(btf);
2284	btf_type_inc_vlen(t);
2285
2286	btf->hdr->type_len += sz;
2287	btf->hdr->str_off += sz;
2288	return 0;
2289}
2290
2291/*
2292 * Append new BTF_KIND_VAR type with:
2293 *   - *name* - non-empty/non-NULL name;
2294 *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2295 *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2296 *   - *type_id* - type ID of the type describing the type of the variable.
2297 * Returns:
2298 *   - >0, type ID of newly added BTF type;
2299 *   - <0, on error.
2300 */
2301int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2302{
2303	struct btf_type *t;
2304	struct btf_var *v;
2305	int sz, name_off;
2306
2307	/* non-empty name */
2308	if (!name || !name[0])
2309		return libbpf_err(-EINVAL);
2310	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2311	    linkage != BTF_VAR_GLOBAL_EXTERN)
2312		return libbpf_err(-EINVAL);
2313	if (validate_type_id(type_id))
2314		return libbpf_err(-EINVAL);
2315
2316	/* deconstruct BTF, if necessary, and invalidate raw_data */
2317	if (btf_ensure_modifiable(btf))
2318		return libbpf_err(-ENOMEM);
2319
2320	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2321	t = btf_add_type_mem(btf, sz);
2322	if (!t)
2323		return libbpf_err(-ENOMEM);
2324
2325	name_off = btf__add_str(btf, name);
2326	if (name_off < 0)
2327		return name_off;
2328
2329	t->name_off = name_off;
2330	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2331	t->type = type_id;
2332
2333	v = btf_var(t);
2334	v->linkage = linkage;
2335
2336	return btf_commit_type(btf, sz);
2337}
2338
2339/*
2340 * Append new BTF_KIND_DATASEC type with:
2341 *   - *name* - non-empty/non-NULL name;
2342 *   - *byte_sz* - data section size, in bytes.
2343 *
2344 * Data section is initially empty. Variables info can be added with
2345 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2346 *
2347 * Returns:
2348 *   - >0, type ID of newly added BTF type;
2349 *   - <0, on error.
2350 */
2351int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2352{
2353	struct btf_type *t;
2354	int sz, name_off;
2355
2356	/* non-empty name */
2357	if (!name || !name[0])
2358		return libbpf_err(-EINVAL);
2359
2360	if (btf_ensure_modifiable(btf))
2361		return libbpf_err(-ENOMEM);
2362
2363	sz = sizeof(struct btf_type);
2364	t = btf_add_type_mem(btf, sz);
2365	if (!t)
2366		return libbpf_err(-ENOMEM);
2367
2368	name_off = btf__add_str(btf, name);
2369	if (name_off < 0)
2370		return name_off;
2371
2372	/* start with vlen=0, which will be update as var_secinfos are added */
2373	t->name_off = name_off;
2374	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2375	t->size = byte_sz;
2376
2377	return btf_commit_type(btf, sz);
2378}
2379
2380/*
2381 * Append new data section variable information entry for current DATASEC type:
2382 *   - *var_type_id* - type ID, describing type of the variable;
2383 *   - *offset* - variable offset within data section, in bytes;
2384 *   - *byte_sz* - variable size, in bytes.
2385 *
2386 * Returns:
2387 *   -  0, on success;
2388 *   - <0, on error.
2389 */
2390int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2391{
2392	struct btf_type *t;
2393	struct btf_var_secinfo *v;
2394	int sz;
2395
2396	/* last type should be BTF_KIND_DATASEC */
2397	if (btf->nr_types == 0)
2398		return libbpf_err(-EINVAL);
2399	t = btf_last_type(btf);
2400	if (!btf_is_datasec(t))
2401		return libbpf_err(-EINVAL);
2402
2403	if (validate_type_id(var_type_id))
2404		return libbpf_err(-EINVAL);
2405
2406	/* decompose and invalidate raw data */
2407	if (btf_ensure_modifiable(btf))
2408		return libbpf_err(-ENOMEM);
2409
2410	sz = sizeof(struct btf_var_secinfo);
2411	v = btf_add_type_mem(btf, sz);
2412	if (!v)
2413		return libbpf_err(-ENOMEM);
2414
2415	v->type = var_type_id;
2416	v->offset = offset;
2417	v->size = byte_sz;
2418
2419	/* update parent type's vlen */
2420	t = btf_last_type(btf);
2421	btf_type_inc_vlen(t);
2422
2423	btf->hdr->type_len += sz;
2424	btf->hdr->str_off += sz;
2425	return 0;
2426}
2427
2428struct btf_ext_sec_setup_param {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2429	__u32 off;
2430	__u32 len;
2431	__u32 min_rec_size;
2432	struct btf_ext_info *ext_info;
2433	const char *desc;
2434};
2435
2436static int btf_ext_setup_info(struct btf_ext *btf_ext,
2437			      struct btf_ext_sec_setup_param *ext_sec)
 
 
 
 
 
 
 
2438{
2439	const struct btf_ext_info_sec *sinfo;
2440	struct btf_ext_info *ext_info;
2441	__u32 info_left, record_size;
2442	/* The start of the info sec (including the __u32 record_size). */
2443	void *info;
2444
2445	if (ext_sec->len == 0)
2446		return 0;
2447
2448	if (ext_sec->off & 0x03) {
2449		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2450		     ext_sec->desc);
2451		return -EINVAL;
2452	}
2453
 
2454	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2455	info_left = ext_sec->len;
2456
2457	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2458		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2459			 ext_sec->desc, ext_sec->off, ext_sec->len);
2460		return -EINVAL;
2461	}
2462
2463	/* At least a record size */
2464	if (info_left < sizeof(__u32)) {
2465		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2466		return -EINVAL;
2467	}
2468
2469	/* The record size needs to meet the minimum standard */
2470	record_size = *(__u32 *)info;
 
 
 
2471	if (record_size < ext_sec->min_rec_size ||
 
2472	    record_size & 0x03) {
2473		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2474			 ext_sec->desc, record_size);
2475		return -EINVAL;
2476	}
2477
2478	sinfo = info + sizeof(__u32);
2479	info_left -= sizeof(__u32);
2480
2481	/* If no records, return failure now so .BTF.ext won't be used. */
2482	if (!info_left) {
2483		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2484		return -EINVAL;
2485	}
2486
2487	while (info_left) {
2488		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2489		__u64 total_record_size;
2490		__u32 num_records;
2491
2492		if (info_left < sec_hdrlen) {
2493			pr_debug("%s section header is not found in .BTF.ext\n",
2494			     ext_sec->desc);
2495			return -EINVAL;
2496		}
2497
2498		num_records = sinfo->num_info;
2499		if (num_records == 0) {
2500			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2501			     ext_sec->desc);
2502			return -EINVAL;
2503		}
2504
2505		total_record_size = sec_hdrlen +
2506				    (__u64)num_records * record_size;
2507		if (info_left < total_record_size) {
2508			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2509			     ext_sec->desc);
2510			return -EINVAL;
2511		}
2512
2513		info_left -= total_record_size;
2514		sinfo = (void *)sinfo + total_record_size;
 
2515	}
2516
2517	ext_info = ext_sec->ext_info;
2518	ext_info->len = ext_sec->len - sizeof(__u32);
2519	ext_info->rec_size = record_size;
2520	ext_info->info = info + sizeof(__u32);
 
2521
2522	return 0;
2523}
2524
2525static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
 
2526{
2527	struct btf_ext_sec_setup_param param = {
2528		.off = btf_ext->hdr->func_info_off,
2529		.len = btf_ext->hdr->func_info_len,
2530		.min_rec_size = sizeof(struct bpf_func_info_min),
2531		.ext_info = &btf_ext->func_info,
2532		.desc = "func_info"
2533	};
2534
2535	return btf_ext_setup_info(btf_ext, &param);
2536}
2537
2538static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2539{
2540	struct btf_ext_sec_setup_param param = {
2541		.off = btf_ext->hdr->line_info_off,
2542		.len = btf_ext->hdr->line_info_len,
2543		.min_rec_size = sizeof(struct bpf_line_info_min),
2544		.ext_info = &btf_ext->line_info,
2545		.desc = "line_info",
2546	};
2547
2548	return btf_ext_setup_info(btf_ext, &param);
2549}
2550
2551static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2552{
2553	struct btf_ext_sec_setup_param param = {
2554		.off = btf_ext->hdr->core_relo_off,
2555		.len = btf_ext->hdr->core_relo_len,
2556		.min_rec_size = sizeof(struct bpf_core_relo),
2557		.ext_info = &btf_ext->core_relo_info,
2558		.desc = "core_relo",
2559	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2560
2561	return btf_ext_setup_info(btf_ext, &param);
 
 
2562}
2563
2564static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
 
2565{
2566	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
 
 
 
2567
2568	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2569	    data_size < hdr->hdr_len) {
2570		pr_debug("BTF.ext header not found");
2571		return -EINVAL;
2572	}
2573
 
2574	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2575		pr_warn("BTF.ext in non-native endianness is not supported\n");
2576		return -ENOTSUP;
2577	} else if (hdr->magic != BTF_MAGIC) {
2578		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2579		return -EINVAL;
2580	}
2581
2582	if (hdr->version != BTF_VERSION) {
 
2583		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2584		return -ENOTSUP;
2585	}
2586
2587	if (hdr->flags) {
2588		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2589		return -ENOTSUP;
2590	}
2591
2592	if (data_size == hdr->hdr_len) {
 
 
 
2593		pr_debug("BTF.ext has no data\n");
2594		return -EINVAL;
2595	}
2596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2597	return 0;
2598}
2599
2600void btf_ext__free(struct btf_ext *btf_ext)
2601{
2602	if (IS_ERR_OR_NULL(btf_ext))
2603		return;
 
 
 
2604	free(btf_ext->data);
 
2605	free(btf_ext);
2606}
2607
2608struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
2609{
2610	struct btf_ext *btf_ext;
2611	int err;
2612
2613	err = btf_ext_parse_hdr(data, size);
2614	if (err)
2615		return libbpf_err_ptr(err);
2616
2617	btf_ext = calloc(1, sizeof(struct btf_ext));
2618	if (!btf_ext)
2619		return libbpf_err_ptr(-ENOMEM);
2620
2621	btf_ext->data_size = size;
2622	btf_ext->data = malloc(size);
2623	if (!btf_ext->data) {
2624		err = -ENOMEM;
2625		goto done;
2626	}
2627	memcpy(btf_ext->data, data, size);
2628
2629	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2630		err = -EINVAL;
2631		goto done;
2632	}
2633
2634	err = btf_ext_setup_func_info(btf_ext);
2635	if (err)
2636		goto done;
2637
2638	err = btf_ext_setup_line_info(btf_ext);
2639	if (err)
2640		goto done;
2641
2642	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) {
2643		err = -EINVAL;
2644		goto done;
2645	}
2646
2647	err = btf_ext_setup_core_relos(btf_ext);
2648	if (err)
2649		goto done;
2650
2651done:
2652	if (err) {
2653		btf_ext__free(btf_ext);
2654		return libbpf_err_ptr(err);
2655	}
2656
2657	return btf_ext;
2658}
2659
2660const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2661{
2662	*size = btf_ext->data_size;
2663	return btf_ext->data;
2664}
2665
2666static int btf_ext_reloc_info(const struct btf *btf,
2667			      const struct btf_ext_info *ext_info,
2668			      const char *sec_name, __u32 insns_cnt,
2669			      void **info, __u32 *cnt)
2670{
2671	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2672	__u32 i, record_size, existing_len, records_len;
2673	struct btf_ext_info_sec *sinfo;
2674	const char *info_sec_name;
2675	__u64 remain_len;
2676	void *data;
2677
2678	record_size = ext_info->rec_size;
2679	sinfo = ext_info->info;
2680	remain_len = ext_info->len;
2681	while (remain_len > 0) {
2682		records_len = sinfo->num_info * record_size;
2683		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2684		if (strcmp(info_sec_name, sec_name)) {
2685			remain_len -= sec_hdrlen + records_len;
2686			sinfo = (void *)sinfo + sec_hdrlen + records_len;
2687			continue;
2688		}
2689
2690		existing_len = (*cnt) * record_size;
2691		data = realloc(*info, existing_len + records_len);
2692		if (!data)
2693			return libbpf_err(-ENOMEM);
2694
2695		memcpy(data + existing_len, sinfo->data, records_len);
2696		/* adjust insn_off only, the rest data will be passed
2697		 * to the kernel.
2698		 */
2699		for (i = 0; i < sinfo->num_info; i++) {
2700			__u32 *insn_off;
2701
2702			insn_off = data + existing_len + (i * record_size);
2703			*insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt;
2704		}
2705		*info = data;
2706		*cnt += sinfo->num_info;
2707		return 0;
2708	}
2709
2710	return libbpf_err(-ENOENT);
 
 
 
2711}
2712
2713int btf_ext__reloc_func_info(const struct btf *btf,
2714			     const struct btf_ext *btf_ext,
2715			     const char *sec_name, __u32 insns_cnt,
2716			     void **func_info, __u32 *cnt)
2717{
2718	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2719				  insns_cnt, func_info, cnt);
2720}
2721
2722int btf_ext__reloc_line_info(const struct btf *btf,
2723			     const struct btf_ext *btf_ext,
2724			     const char *sec_name, __u32 insns_cnt,
2725			     void **line_info, __u32 *cnt)
2726{
2727	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2728				  insns_cnt, line_info, cnt);
2729}
2730
2731__u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
 
 
 
2732{
2733	return btf_ext->func_info.rec_size;
 
 
 
2734}
2735
2736__u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2737{
2738	return btf_ext->line_info.rec_size;
 
 
 
 
 
 
 
 
 
2739}
2740
2741struct btf_dedup;
2742
2743static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2744				       const struct btf_dedup_opts *opts);
2745static void btf_dedup_free(struct btf_dedup *d);
2746static int btf_dedup_prep(struct btf_dedup *d);
2747static int btf_dedup_strings(struct btf_dedup *d);
2748static int btf_dedup_prim_types(struct btf_dedup *d);
2749static int btf_dedup_struct_types(struct btf_dedup *d);
2750static int btf_dedup_ref_types(struct btf_dedup *d);
 
2751static int btf_dedup_compact_types(struct btf_dedup *d);
2752static int btf_dedup_remap_types(struct btf_dedup *d);
2753
2754/*
2755 * Deduplicate BTF types and strings.
2756 *
2757 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2758 * section with all BTF type descriptors and string data. It overwrites that
2759 * memory in-place with deduplicated types and strings without any loss of
2760 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2761 * is provided, all the strings referenced from .BTF.ext section are honored
2762 * and updated to point to the right offsets after deduplication.
2763 *
2764 * If function returns with error, type/string data might be garbled and should
2765 * be discarded.
2766 *
2767 * More verbose and detailed description of both problem btf_dedup is solving,
2768 * as well as solution could be found at:
2769 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2770 *
2771 * Problem description and justification
2772 * =====================================
2773 *
2774 * BTF type information is typically emitted either as a result of conversion
2775 * from DWARF to BTF or directly by compiler. In both cases, each compilation
2776 * unit contains information about a subset of all the types that are used
2777 * in an application. These subsets are frequently overlapping and contain a lot
2778 * of duplicated information when later concatenated together into a single
2779 * binary. This algorithm ensures that each unique type is represented by single
2780 * BTF type descriptor, greatly reducing resulting size of BTF data.
2781 *
2782 * Compilation unit isolation and subsequent duplication of data is not the only
2783 * problem. The same type hierarchy (e.g., struct and all the type that struct
2784 * references) in different compilation units can be represented in BTF to
2785 * various degrees of completeness (or, rather, incompleteness) due to
2786 * struct/union forward declarations.
2787 *
2788 * Let's take a look at an example, that we'll use to better understand the
2789 * problem (and solution). Suppose we have two compilation units, each using
2790 * same `struct S`, but each of them having incomplete type information about
2791 * struct's fields:
2792 *
2793 * // CU #1:
2794 * struct S;
2795 * struct A {
2796 *	int a;
2797 *	struct A* self;
2798 *	struct S* parent;
2799 * };
2800 * struct B;
2801 * struct S {
2802 *	struct A* a_ptr;
2803 *	struct B* b_ptr;
2804 * };
2805 *
2806 * // CU #2:
2807 * struct S;
2808 * struct A;
2809 * struct B {
2810 *	int b;
2811 *	struct B* self;
2812 *	struct S* parent;
2813 * };
2814 * struct S {
2815 *	struct A* a_ptr;
2816 *	struct B* b_ptr;
2817 * };
2818 *
2819 * In case of CU #1, BTF data will know only that `struct B` exist (but no
2820 * more), but will know the complete type information about `struct A`. While
2821 * for CU #2, it will know full type information about `struct B`, but will
2822 * only know about forward declaration of `struct A` (in BTF terms, it will
2823 * have `BTF_KIND_FWD` type descriptor with name `B`).
2824 *
2825 * This compilation unit isolation means that it's possible that there is no
2826 * single CU with complete type information describing structs `S`, `A`, and
2827 * `B`. Also, we might get tons of duplicated and redundant type information.
2828 *
2829 * Additional complication we need to keep in mind comes from the fact that
2830 * types, in general, can form graphs containing cycles, not just DAGs.
2831 *
2832 * While algorithm does deduplication, it also merges and resolves type
2833 * information (unless disabled throught `struct btf_opts`), whenever possible.
2834 * E.g., in the example above with two compilation units having partial type
2835 * information for structs `A` and `B`, the output of algorithm will emit
2836 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2837 * (as well as type information for `int` and pointers), as if they were defined
2838 * in a single compilation unit as:
2839 *
2840 * struct A {
2841 *	int a;
2842 *	struct A* self;
2843 *	struct S* parent;
2844 * };
2845 * struct B {
2846 *	int b;
2847 *	struct B* self;
2848 *	struct S* parent;
2849 * };
2850 * struct S {
2851 *	struct A* a_ptr;
2852 *	struct B* b_ptr;
2853 * };
2854 *
2855 * Algorithm summary
2856 * =================
2857 *
2858 * Algorithm completes its work in 6 separate passes:
2859 *
2860 * 1. Strings deduplication.
2861 * 2. Primitive types deduplication (int, enum, fwd).
2862 * 3. Struct/union types deduplication.
2863 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
 
2864 *    protos, and const/volatile/restrict modifiers).
2865 * 5. Types compaction.
2866 * 6. Types remapping.
2867 *
2868 * Algorithm determines canonical type descriptor, which is a single
2869 * representative type for each truly unique type. This canonical type is the
2870 * one that will go into final deduplicated BTF type information. For
2871 * struct/unions, it is also the type that algorithm will merge additional type
2872 * information into (while resolving FWDs), as it discovers it from data in
2873 * other CUs. Each input BTF type eventually gets either mapped to itself, if
2874 * that type is canonical, or to some other type, if that type is equivalent
2875 * and was chosen as canonical representative. This mapping is stored in
2876 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2877 * FWD type got resolved to.
2878 *
2879 * To facilitate fast discovery of canonical types, we also maintain canonical
2880 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2881 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2882 * that match that signature. With sufficiently good choice of type signature
2883 * hashing function, we can limit number of canonical types for each unique type
2884 * signature to a very small number, allowing to find canonical type for any
2885 * duplicated type very quickly.
2886 *
2887 * Struct/union deduplication is the most critical part and algorithm for
2888 * deduplicating structs/unions is described in greater details in comments for
2889 * `btf_dedup_is_equiv` function.
2890 */
2891int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2892	       const struct btf_dedup_opts *opts)
2893{
2894	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
2895	int err;
2896
 
 
 
 
2897	if (IS_ERR(d)) {
2898		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
2899		return libbpf_err(-EINVAL);
2900	}
2901
2902	if (btf_ensure_modifiable(btf))
2903		return libbpf_err(-ENOMEM);
 
 
2904
2905	err = btf_dedup_prep(d);
2906	if (err) {
2907		pr_debug("btf_dedup_prep failed:%d\n", err);
2908		goto done;
2909	}
2910	err = btf_dedup_strings(d);
2911	if (err < 0) {
2912		pr_debug("btf_dedup_strings failed:%d\n", err);
2913		goto done;
2914	}
2915	err = btf_dedup_prim_types(d);
2916	if (err < 0) {
2917		pr_debug("btf_dedup_prim_types failed:%d\n", err);
2918		goto done;
2919	}
2920	err = btf_dedup_struct_types(d);
2921	if (err < 0) {
2922		pr_debug("btf_dedup_struct_types failed:%d\n", err);
 
 
 
 
 
2923		goto done;
2924	}
2925	err = btf_dedup_ref_types(d);
2926	if (err < 0) {
2927		pr_debug("btf_dedup_ref_types failed:%d\n", err);
2928		goto done;
2929	}
2930	err = btf_dedup_compact_types(d);
2931	if (err < 0) {
2932		pr_debug("btf_dedup_compact_types failed:%d\n", err);
2933		goto done;
2934	}
2935	err = btf_dedup_remap_types(d);
2936	if (err < 0) {
2937		pr_debug("btf_dedup_remap_types failed:%d\n", err);
2938		goto done;
2939	}
2940
2941done:
2942	btf_dedup_free(d);
2943	return libbpf_err(err);
2944}
2945
2946#define BTF_UNPROCESSED_ID ((__u32)-1)
2947#define BTF_IN_PROGRESS_ID ((__u32)-2)
2948
2949struct btf_dedup {
2950	/* .BTF section to be deduped in-place */
2951	struct btf *btf;
2952	/*
2953	 * Optional .BTF.ext section. When provided, any strings referenced
2954	 * from it will be taken into account when deduping strings
2955	 */
2956	struct btf_ext *btf_ext;
2957	/*
2958	 * This is a map from any type's signature hash to a list of possible
2959	 * canonical representative type candidates. Hash collisions are
2960	 * ignored, so even types of various kinds can share same list of
2961	 * candidates, which is fine because we rely on subsequent
2962	 * btf_xxx_equal() checks to authoritatively verify type equality.
2963	 */
2964	struct hashmap *dedup_table;
2965	/* Canonical types map */
2966	__u32 *map;
2967	/* Hypothetical mapping, used during type graph equivalence checks */
2968	__u32 *hypot_map;
2969	__u32 *hypot_list;
2970	size_t hypot_cnt;
2971	size_t hypot_cap;
2972	/* Whether hypothetical mapping, if successful, would need to adjust
2973	 * already canonicalized types (due to a new forward declaration to
2974	 * concrete type resolution). In such case, during split BTF dedup
2975	 * candidate type would still be considered as different, because base
2976	 * BTF is considered to be immutable.
2977	 */
2978	bool hypot_adjust_canon;
2979	/* Various option modifying behavior of algorithm */
2980	struct btf_dedup_opts opts;
2981	/* temporary strings deduplication state */
2982	struct strset *strs_set;
2983};
2984
2985static long hash_combine(long h, long value)
2986{
2987	return h * 31 + value;
2988}
2989
2990#define for_each_dedup_cand(d, node, hash) \
2991	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
2992
2993static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
2994{
2995	return hashmap__append(d->dedup_table,
2996			       (void *)hash, (void *)(long)type_id);
2997}
2998
2999static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3000				   __u32 from_id, __u32 to_id)
3001{
3002	if (d->hypot_cnt == d->hypot_cap) {
3003		__u32 *new_list;
3004
3005		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3006		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3007		if (!new_list)
3008			return -ENOMEM;
3009		d->hypot_list = new_list;
3010	}
3011	d->hypot_list[d->hypot_cnt++] = from_id;
3012	d->hypot_map[from_id] = to_id;
3013	return 0;
3014}
3015
3016static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3017{
3018	int i;
3019
3020	for (i = 0; i < d->hypot_cnt; i++)
3021		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3022	d->hypot_cnt = 0;
3023	d->hypot_adjust_canon = false;
3024}
3025
3026static void btf_dedup_free(struct btf_dedup *d)
3027{
3028	hashmap__free(d->dedup_table);
3029	d->dedup_table = NULL;
3030
3031	free(d->map);
3032	d->map = NULL;
3033
3034	free(d->hypot_map);
3035	d->hypot_map = NULL;
3036
3037	free(d->hypot_list);
3038	d->hypot_list = NULL;
3039
3040	free(d);
3041}
3042
3043static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3044{
3045	return (size_t)key;
3046}
3047
3048static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3049{
3050	return 0;
3051}
3052
3053static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3054{
3055	return k1 == k2;
3056}
3057
3058static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
3059				       const struct btf_dedup_opts *opts)
3060{
3061	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3062	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3063	int i, err = 0, type_cnt;
3064
3065	if (!d)
3066		return ERR_PTR(-ENOMEM);
3067
3068	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
3069	/* dedup_table_size is now used only to force collisions in tests */
3070	if (opts && opts->dedup_table_size == 1)
3071		hash_fn = btf_dedup_collision_hash_fn;
3072
3073	d->btf = btf;
3074	d->btf_ext = btf_ext;
3075
3076	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3077	if (IS_ERR(d->dedup_table)) {
3078		err = PTR_ERR(d->dedup_table);
3079		d->dedup_table = NULL;
3080		goto done;
3081	}
3082
3083	type_cnt = btf__get_nr_types(btf) + 1;
3084	d->map = malloc(sizeof(__u32) * type_cnt);
3085	if (!d->map) {
3086		err = -ENOMEM;
3087		goto done;
3088	}
3089	/* special BTF "void" type is made canonical immediately */
3090	d->map[0] = 0;
3091	for (i = 1; i < type_cnt; i++) {
3092		struct btf_type *t = btf_type_by_id(d->btf, i);
3093
3094		/* VAR and DATASEC are never deduped and are self-canonical */
3095		if (btf_is_var(t) || btf_is_datasec(t))
3096			d->map[i] = i;
3097		else
3098			d->map[i] = BTF_UNPROCESSED_ID;
3099	}
3100
3101	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3102	if (!d->hypot_map) {
3103		err = -ENOMEM;
3104		goto done;
3105	}
3106	for (i = 0; i < type_cnt; i++)
3107		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3108
3109done:
3110	if (err) {
3111		btf_dedup_free(d);
3112		return ERR_PTR(err);
3113	}
3114
3115	return d;
3116}
3117
3118/*
3119 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3120 * string and pass pointer to it to a provided callback `fn`.
3121 */
3122static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3123{
3124	int i, r;
3125
3126	for (i = 0; i < d->btf->nr_types; i++) {
 
3127		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
 
3128
3129		r = btf_type_visit_str_offs(t, fn, ctx);
3130		if (r)
3131			return r;
 
 
 
 
 
 
3132	}
3133
3134	if (!d->btf_ext)
3135		return 0;
3136
3137	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3138	if (r)
3139		return r;
3140
3141	return 0;
3142}
3143
3144static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3145{
3146	struct btf_dedup *d = ctx;
3147	__u32 str_off = *str_off_ptr;
3148	const char *s;
3149	int off, err;
3150
3151	/* don't touch empty string or string in main BTF */
3152	if (str_off == 0 || str_off < d->btf->start_str_off)
3153		return 0;
3154
3155	s = btf__str_by_offset(d->btf, str_off);
3156	if (d->btf->base_btf) {
3157		err = btf__find_str(d->btf->base_btf, s);
3158		if (err >= 0) {
3159			*str_off_ptr = err;
3160			return 0;
3161		}
3162		if (err != -ENOENT)
3163			return err;
3164	}
3165
3166	off = strset__add_str(d->strs_set, s);
3167	if (off < 0)
3168		return off;
3169
3170	*str_off_ptr = d->btf->start_str_off + off;
3171	return 0;
3172}
3173
3174/*
3175 * Dedup string and filter out those that are not referenced from either .BTF
3176 * or .BTF.ext (if provided) sections.
3177 *
3178 * This is done by building index of all strings in BTF's string section,
3179 * then iterating over all entities that can reference strings (e.g., type
3180 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3181 * strings as used. After that all used strings are deduped and compacted into
3182 * sequential blob of memory and new offsets are calculated. Then all the string
3183 * references are iterated again and rewritten using new offsets.
3184 */
3185static int btf_dedup_strings(struct btf_dedup *d)
3186{
3187	int err;
3188
3189	if (d->btf->strs_deduped)
3190		return 0;
3191
3192	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3193	if (IS_ERR(d->strs_set)) {
3194		err = PTR_ERR(d->strs_set);
3195		goto err_out;
3196	}
3197
3198	if (!d->btf->base_btf) {
3199		/* insert empty string; we won't be looking it up during strings
3200		 * dedup, but it's good to have it for generic BTF string lookups
3201		 */
3202		err = strset__add_str(d->strs_set, "");
3203		if (err < 0)
3204			goto err_out;
3205	}
3206
3207	/* remap string offsets */
3208	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3209	if (err)
3210		goto err_out;
3211
3212	/* replace BTF string data and hash with deduped ones */
3213	strset__free(d->btf->strs_set);
3214	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3215	d->btf->strs_set = d->strs_set;
3216	d->strs_set = NULL;
3217	d->btf->strs_deduped = true;
3218	return 0;
3219
3220err_out:
3221	strset__free(d->strs_set);
3222	d->strs_set = NULL;
3223
3224	return err;
3225}
3226
3227static long btf_hash_common(struct btf_type *t)
3228{
3229	long h;
3230
3231	h = hash_combine(0, t->name_off);
3232	h = hash_combine(h, t->info);
3233	h = hash_combine(h, t->size);
3234	return h;
3235}
3236
3237static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3238{
3239	return t1->name_off == t2->name_off &&
3240	       t1->info == t2->info &&
3241	       t1->size == t2->size;
3242}
3243
3244/* Calculate type signature hash of INT. */
3245static long btf_hash_int(struct btf_type *t)
3246{
3247	__u32 info = *(__u32 *)(t + 1);
3248	long h;
3249
3250	h = btf_hash_common(t);
3251	h = hash_combine(h, info);
3252	return h;
3253}
3254
3255/* Check structural equality of two INTs. */
3256static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
3257{
3258	__u32 info1, info2;
3259
3260	if (!btf_equal_common(t1, t2))
3261		return false;
3262	info1 = *(__u32 *)(t1 + 1);
3263	info2 = *(__u32 *)(t2 + 1);
3264	return info1 == info2;
3265}
3266
3267/* Calculate type signature hash of ENUM. */
3268static long btf_hash_enum(struct btf_type *t)
3269{
3270	long h;
3271
3272	/* don't hash vlen and enum members to support enum fwd resolving */
3273	h = hash_combine(0, t->name_off);
3274	h = hash_combine(h, t->info & ~0xffff);
3275	h = hash_combine(h, t->size);
3276	return h;
3277}
3278
3279/* Check structural equality of two ENUMs. */
3280static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3281{
3282	const struct btf_enum *m1, *m2;
3283	__u16 vlen;
3284	int i;
3285
3286	if (!btf_equal_common(t1, t2))
3287		return false;
3288
3289	vlen = btf_vlen(t1);
3290	m1 = btf_enum(t1);
3291	m2 = btf_enum(t2);
3292	for (i = 0; i < vlen; i++) {
3293		if (m1->name_off != m2->name_off || m1->val != m2->val)
3294			return false;
3295		m1++;
3296		m2++;
3297	}
3298	return true;
3299}
3300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3301static inline bool btf_is_enum_fwd(struct btf_type *t)
3302{
3303	return btf_is_enum(t) && btf_vlen(t) == 0;
3304}
3305
3306static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3307{
3308	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3309		return btf_equal_enum(t1, t2);
3310	/* ignore vlen when comparing */
 
 
 
 
 
3311	return t1->name_off == t2->name_off &&
3312	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3313	       t1->size == t2->size;
3314}
3315
3316/*
3317 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3318 * as referenced type IDs equivalence is established separately during type
3319 * graph equivalence check algorithm.
3320 */
3321static long btf_hash_struct(struct btf_type *t)
3322{
3323	const struct btf_member *member = btf_members(t);
3324	__u32 vlen = btf_vlen(t);
3325	long h = btf_hash_common(t);
3326	int i;
3327
3328	for (i = 0; i < vlen; i++) {
3329		h = hash_combine(h, member->name_off);
3330		h = hash_combine(h, member->offset);
3331		/* no hashing of referenced type ID, it can be unresolved yet */
3332		member++;
3333	}
3334	return h;
3335}
3336
3337/*
3338 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3339 * IDs. This check is performed during type graph equivalence check and
3340 * referenced types equivalence is checked separately.
3341 */
3342static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3343{
3344	const struct btf_member *m1, *m2;
3345	__u16 vlen;
3346	int i;
3347
3348	if (!btf_equal_common(t1, t2))
3349		return false;
3350
3351	vlen = btf_vlen(t1);
3352	m1 = btf_members(t1);
3353	m2 = btf_members(t2);
3354	for (i = 0; i < vlen; i++) {
3355		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3356			return false;
3357		m1++;
3358		m2++;
3359	}
3360	return true;
3361}
3362
3363/*
3364 * Calculate type signature hash of ARRAY, including referenced type IDs,
3365 * under assumption that they were already resolved to canonical type IDs and
3366 * are not going to change.
3367 */
3368static long btf_hash_array(struct btf_type *t)
3369{
3370	const struct btf_array *info = btf_array(t);
3371	long h = btf_hash_common(t);
3372
3373	h = hash_combine(h, info->type);
3374	h = hash_combine(h, info->index_type);
3375	h = hash_combine(h, info->nelems);
3376	return h;
3377}
3378
3379/*
3380 * Check exact equality of two ARRAYs, taking into account referenced
3381 * type IDs, under assumption that they were already resolved to canonical
3382 * type IDs and are not going to change.
3383 * This function is called during reference types deduplication to compare
3384 * ARRAY to potential canonical representative.
3385 */
3386static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3387{
3388	const struct btf_array *info1, *info2;
3389
3390	if (!btf_equal_common(t1, t2))
3391		return false;
3392
3393	info1 = btf_array(t1);
3394	info2 = btf_array(t2);
3395	return info1->type == info2->type &&
3396	       info1->index_type == info2->index_type &&
3397	       info1->nelems == info2->nelems;
3398}
3399
3400/*
3401 * Check structural compatibility of two ARRAYs, ignoring referenced type
3402 * IDs. This check is performed during type graph equivalence check and
3403 * referenced types equivalence is checked separately.
3404 */
3405static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3406{
3407	if (!btf_equal_common(t1, t2))
3408		return false;
3409
3410	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3411}
3412
3413/*
3414 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3415 * under assumption that they were already resolved to canonical type IDs and
3416 * are not going to change.
3417 */
3418static long btf_hash_fnproto(struct btf_type *t)
3419{
3420	const struct btf_param *member = btf_params(t);
3421	__u16 vlen = btf_vlen(t);
3422	long h = btf_hash_common(t);
3423	int i;
3424
3425	for (i = 0; i < vlen; i++) {
3426		h = hash_combine(h, member->name_off);
3427		h = hash_combine(h, member->type);
3428		member++;
3429	}
3430	return h;
3431}
3432
3433/*
3434 * Check exact equality of two FUNC_PROTOs, taking into account referenced
3435 * type IDs, under assumption that they were already resolved to canonical
3436 * type IDs and are not going to change.
3437 * This function is called during reference types deduplication to compare
3438 * FUNC_PROTO to potential canonical representative.
3439 */
3440static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3441{
3442	const struct btf_param *m1, *m2;
3443	__u16 vlen;
3444	int i;
3445
3446	if (!btf_equal_common(t1, t2))
3447		return false;
3448
3449	vlen = btf_vlen(t1);
3450	m1 = btf_params(t1);
3451	m2 = btf_params(t2);
3452	for (i = 0; i < vlen; i++) {
3453		if (m1->name_off != m2->name_off || m1->type != m2->type)
3454			return false;
3455		m1++;
3456		m2++;
3457	}
3458	return true;
3459}
3460
3461/*
3462 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3463 * IDs. This check is performed during type graph equivalence check and
3464 * referenced types equivalence is checked separately.
3465 */
3466static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3467{
3468	const struct btf_param *m1, *m2;
3469	__u16 vlen;
3470	int i;
3471
3472	/* skip return type ID */
3473	if (t1->name_off != t2->name_off || t1->info != t2->info)
3474		return false;
3475
3476	vlen = btf_vlen(t1);
3477	m1 = btf_params(t1);
3478	m2 = btf_params(t2);
3479	for (i = 0; i < vlen; i++) {
3480		if (m1->name_off != m2->name_off)
3481			return false;
3482		m1++;
3483		m2++;
3484	}
3485	return true;
3486}
3487
3488/* Prepare split BTF for deduplication by calculating hashes of base BTF's
3489 * types and initializing the rest of the state (canonical type mapping) for
3490 * the fixed base BTF part.
3491 */
3492static int btf_dedup_prep(struct btf_dedup *d)
3493{
3494	struct btf_type *t;
3495	int type_id;
3496	long h;
3497
3498	if (!d->btf->base_btf)
3499		return 0;
3500
3501	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3502		t = btf_type_by_id(d->btf, type_id);
3503
3504		/* all base BTF types are self-canonical by definition */
3505		d->map[type_id] = type_id;
3506
3507		switch (btf_kind(t)) {
3508		case BTF_KIND_VAR:
3509		case BTF_KIND_DATASEC:
3510			/* VAR and DATASEC are never hash/deduplicated */
3511			continue;
3512		case BTF_KIND_CONST:
3513		case BTF_KIND_VOLATILE:
3514		case BTF_KIND_RESTRICT:
3515		case BTF_KIND_PTR:
3516		case BTF_KIND_FWD:
3517		case BTF_KIND_TYPEDEF:
3518		case BTF_KIND_FUNC:
3519		case BTF_KIND_FLOAT:
 
3520			h = btf_hash_common(t);
3521			break;
3522		case BTF_KIND_INT:
3523			h = btf_hash_int(t);
 
3524			break;
3525		case BTF_KIND_ENUM:
 
3526			h = btf_hash_enum(t);
3527			break;
3528		case BTF_KIND_STRUCT:
3529		case BTF_KIND_UNION:
3530			h = btf_hash_struct(t);
3531			break;
3532		case BTF_KIND_ARRAY:
3533			h = btf_hash_array(t);
3534			break;
3535		case BTF_KIND_FUNC_PROTO:
3536			h = btf_hash_fnproto(t);
3537			break;
3538		default:
3539			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3540			return -EINVAL;
3541		}
3542		if (btf_dedup_table_add(d, h, type_id))
3543			return -ENOMEM;
3544	}
3545
3546	return 0;
3547}
3548
3549/*
3550 * Deduplicate primitive types, that can't reference other types, by calculating
3551 * their type signature hash and comparing them with any possible canonical
3552 * candidate. If no canonical candidate matches, type itself is marked as
3553 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3554 */
3555static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3556{
3557	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3558	struct hashmap_entry *hash_entry;
3559	struct btf_type *cand;
3560	/* if we don't find equivalent type, then we are canonical */
3561	__u32 new_id = type_id;
3562	__u32 cand_id;
3563	long h;
3564
3565	switch (btf_kind(t)) {
3566	case BTF_KIND_CONST:
3567	case BTF_KIND_VOLATILE:
3568	case BTF_KIND_RESTRICT:
3569	case BTF_KIND_PTR:
3570	case BTF_KIND_TYPEDEF:
3571	case BTF_KIND_ARRAY:
3572	case BTF_KIND_STRUCT:
3573	case BTF_KIND_UNION:
3574	case BTF_KIND_FUNC:
3575	case BTF_KIND_FUNC_PROTO:
3576	case BTF_KIND_VAR:
3577	case BTF_KIND_DATASEC:
 
 
3578		return 0;
3579
3580	case BTF_KIND_INT:
3581		h = btf_hash_int(t);
3582		for_each_dedup_cand(d, hash_entry, h) {
3583			cand_id = (__u32)(long)hash_entry->value;
3584			cand = btf_type_by_id(d->btf, cand_id);
3585			if (btf_equal_int(t, cand)) {
3586				new_id = cand_id;
3587				break;
3588			}
3589		}
3590		break;
3591
3592	case BTF_KIND_ENUM:
 
3593		h = btf_hash_enum(t);
3594		for_each_dedup_cand(d, hash_entry, h) {
3595			cand_id = (__u32)(long)hash_entry->value;
3596			cand = btf_type_by_id(d->btf, cand_id);
3597			if (btf_equal_enum(t, cand)) {
3598				new_id = cand_id;
3599				break;
3600			}
3601			if (d->opts.dont_resolve_fwds)
3602				continue;
3603			if (btf_compat_enum(t, cand)) {
3604				if (btf_is_enum_fwd(t)) {
3605					/* resolve fwd to full enum */
3606					new_id = cand_id;
3607					break;
3608				}
3609				/* resolve canonical enum fwd to full enum */
3610				d->map[cand_id] = type_id;
3611			}
3612		}
3613		break;
3614
3615	case BTF_KIND_FWD:
3616	case BTF_KIND_FLOAT:
3617		h = btf_hash_common(t);
3618		for_each_dedup_cand(d, hash_entry, h) {
3619			cand_id = (__u32)(long)hash_entry->value;
3620			cand = btf_type_by_id(d->btf, cand_id);
3621			if (btf_equal_common(t, cand)) {
3622				new_id = cand_id;
3623				break;
3624			}
3625		}
3626		break;
3627
3628	default:
3629		return -EINVAL;
3630	}
3631
3632	d->map[type_id] = new_id;
3633	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3634		return -ENOMEM;
3635
3636	return 0;
3637}
3638
3639static int btf_dedup_prim_types(struct btf_dedup *d)
3640{
3641	int i, err;
3642
3643	for (i = 0; i < d->btf->nr_types; i++) {
3644		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3645		if (err)
3646			return err;
3647	}
3648	return 0;
3649}
3650
3651/*
3652 * Check whether type is already mapped into canonical one (could be to itself).
3653 */
3654static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3655{
3656	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3657}
3658
3659/*
3660 * Resolve type ID into its canonical type ID, if any; otherwise return original
3661 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3662 * STRUCT/UNION link and resolve it into canonical type ID as well.
3663 */
3664static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3665{
3666	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3667		type_id = d->map[type_id];
3668	return type_id;
3669}
3670
3671/*
3672 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3673 * type ID.
3674 */
3675static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3676{
3677	__u32 orig_type_id = type_id;
3678
3679	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3680		return type_id;
3681
3682	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3683		type_id = d->map[type_id];
3684
3685	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3686		return type_id;
3687
3688	return orig_type_id;
3689}
3690
3691
3692static inline __u16 btf_fwd_kind(struct btf_type *t)
3693{
3694	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3695}
3696
3697/* Check if given two types are identical ARRAY definitions */
3698static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3699{
3700	struct btf_type *t1, *t2;
3701
3702	t1 = btf_type_by_id(d->btf, id1);
3703	t2 = btf_type_by_id(d->btf, id2);
3704	if (!btf_is_array(t1) || !btf_is_array(t2))
3705		return 0;
3706
3707	return btf_equal_array(t1, t2);
3708}
3709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3710/*
3711 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3712 * call it "candidate graph" in this description for brevity) to a type graph
3713 * formed by (potential) canonical struct/union ("canonical graph" for brevity
3714 * here, though keep in mind that not all types in canonical graph are
3715 * necessarily canonical representatives themselves, some of them might be
3716 * duplicates or its uniqueness might not have been established yet).
3717 * Returns:
3718 *  - >0, if type graphs are equivalent;
3719 *  -  0, if not equivalent;
3720 *  - <0, on error.
3721 *
3722 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3723 * equivalence of BTF types at each step. If at any point BTF types in candidate
3724 * and canonical graphs are not compatible structurally, whole graphs are
3725 * incompatible. If types are structurally equivalent (i.e., all information
3726 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3727 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3728 * If a type references other types, then those referenced types are checked
3729 * for equivalence recursively.
3730 *
3731 * During DFS traversal, if we find that for current `canon_id` type we
3732 * already have some mapping in hypothetical map, we check for two possible
3733 * situations:
3734 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3735 *     happen when type graphs have cycles. In this case we assume those two
3736 *     types are equivalent.
3737 *   - `canon_id` is mapped to different type. This is contradiction in our
3738 *     hypothetical mapping, because same graph in canonical graph corresponds
3739 *     to two different types in candidate graph, which for equivalent type
3740 *     graphs shouldn't happen. This condition terminates equivalence check
3741 *     with negative result.
3742 *
3743 * If type graphs traversal exhausts types to check and find no contradiction,
3744 * then type graphs are equivalent.
3745 *
3746 * When checking types for equivalence, there is one special case: FWD types.
3747 * If FWD type resolution is allowed and one of the types (either from canonical
3748 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3749 * flag) and their names match, hypothetical mapping is updated to point from
3750 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3751 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3752 *
3753 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3754 * if there are two exactly named (or anonymous) structs/unions that are
3755 * compatible structurally, one of which has FWD field, while other is concrete
3756 * STRUCT/UNION, but according to C sources they are different structs/unions
3757 * that are referencing different types with the same name. This is extremely
3758 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3759 * this logic is causing problems.
3760 *
3761 * Doing FWD resolution means that both candidate and/or canonical graphs can
3762 * consists of portions of the graph that come from multiple compilation units.
3763 * This is due to the fact that types within single compilation unit are always
3764 * deduplicated and FWDs are already resolved, if referenced struct/union
3765 * definiton is available. So, if we had unresolved FWD and found corresponding
3766 * STRUCT/UNION, they will be from different compilation units. This
3767 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3768 * type graph will likely have at least two different BTF types that describe
3769 * same type (e.g., most probably there will be two different BTF types for the
3770 * same 'int' primitive type) and could even have "overlapping" parts of type
3771 * graph that describe same subset of types.
3772 *
3773 * This in turn means that our assumption that each type in canonical graph
3774 * must correspond to exactly one type in candidate graph might not hold
3775 * anymore and will make it harder to detect contradictions using hypothetical
3776 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3777 * resolution only in canonical graph. FWDs in candidate graphs are never
3778 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3779 * that can occur:
3780 *   - Both types in canonical and candidate graphs are FWDs. If they are
3781 *     structurally equivalent, then they can either be both resolved to the
3782 *     same STRUCT/UNION or not resolved at all. In both cases they are
3783 *     equivalent and there is no need to resolve FWD on candidate side.
3784 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3785 *     so nothing to resolve as well, algorithm will check equivalence anyway.
3786 *   - Type in canonical graph is FWD, while type in candidate is concrete
3787 *     STRUCT/UNION. In this case candidate graph comes from single compilation
3788 *     unit, so there is exactly one BTF type for each unique C type. After
3789 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3790 *     in canonical graph mapping to single BTF type in candidate graph, but
3791 *     because hypothetical mapping maps from canonical to candidate types, it's
3792 *     alright, and we still maintain the property of having single `canon_id`
3793 *     mapping to single `cand_id` (there could be two different `canon_id`
3794 *     mapped to the same `cand_id`, but it's not contradictory).
3795 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3796 *     graph is FWD. In this case we are just going to check compatibility of
3797 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3798 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3799 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3800 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3801 *     canonical graph.
3802 */
3803static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3804			      __u32 canon_id)
3805{
3806	struct btf_type *cand_type;
3807	struct btf_type *canon_type;
3808	__u32 hypot_type_id;
3809	__u16 cand_kind;
3810	__u16 canon_kind;
3811	int i, eq;
3812
3813	/* if both resolve to the same canonical, they must be equivalent */
3814	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3815		return 1;
3816
3817	canon_id = resolve_fwd_id(d, canon_id);
3818
3819	hypot_type_id = d->hypot_map[canon_id];
3820	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
 
 
3821		/* In some cases compiler will generate different DWARF types
3822		 * for *identical* array type definitions and use them for
3823		 * different fields within the *same* struct. This breaks type
3824		 * equivalence check, which makes an assumption that candidate
3825		 * types sub-graph has a consistent and deduped-by-compiler
3826		 * types within a single CU. So work around that by explicitly
3827		 * allowing identical array types here.
3828		 */
3829		return hypot_type_id == cand_id ||
3830		       btf_dedup_identical_arrays(d, hypot_type_id, cand_id);
 
 
 
 
 
 
 
 
 
 
3831	}
3832
3833	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3834		return -ENOMEM;
3835
3836	cand_type = btf_type_by_id(d->btf, cand_id);
3837	canon_type = btf_type_by_id(d->btf, canon_id);
3838	cand_kind = btf_kind(cand_type);
3839	canon_kind = btf_kind(canon_type);
3840
3841	if (cand_type->name_off != canon_type->name_off)
3842		return 0;
3843
3844	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
3845	if (!d->opts.dont_resolve_fwds
3846	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
3847	    && cand_kind != canon_kind) {
3848		__u16 real_kind;
3849		__u16 fwd_kind;
3850
3851		if (cand_kind == BTF_KIND_FWD) {
3852			real_kind = canon_kind;
3853			fwd_kind = btf_fwd_kind(cand_type);
3854		} else {
3855			real_kind = cand_kind;
3856			fwd_kind = btf_fwd_kind(canon_type);
3857			/* we'd need to resolve base FWD to STRUCT/UNION */
3858			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
3859				d->hypot_adjust_canon = true;
3860		}
3861		return fwd_kind == real_kind;
3862	}
3863
3864	if (cand_kind != canon_kind)
3865		return 0;
3866
3867	switch (cand_kind) {
3868	case BTF_KIND_INT:
3869		return btf_equal_int(cand_type, canon_type);
3870
3871	case BTF_KIND_ENUM:
3872		if (d->opts.dont_resolve_fwds)
3873			return btf_equal_enum(cand_type, canon_type);
3874		else
3875			return btf_compat_enum(cand_type, canon_type);
3876
3877	case BTF_KIND_FWD:
3878	case BTF_KIND_FLOAT:
3879		return btf_equal_common(cand_type, canon_type);
3880
3881	case BTF_KIND_CONST:
3882	case BTF_KIND_VOLATILE:
3883	case BTF_KIND_RESTRICT:
3884	case BTF_KIND_PTR:
3885	case BTF_KIND_TYPEDEF:
3886	case BTF_KIND_FUNC:
 
3887		if (cand_type->info != canon_type->info)
3888			return 0;
3889		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3890
3891	case BTF_KIND_ARRAY: {
3892		const struct btf_array *cand_arr, *canon_arr;
3893
3894		if (!btf_compat_array(cand_type, canon_type))
3895			return 0;
3896		cand_arr = btf_array(cand_type);
3897		canon_arr = btf_array(canon_type);
3898		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
3899		if (eq <= 0)
3900			return eq;
3901		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
3902	}
3903
3904	case BTF_KIND_STRUCT:
3905	case BTF_KIND_UNION: {
3906		const struct btf_member *cand_m, *canon_m;
3907		__u16 vlen;
3908
3909		if (!btf_shallow_equal_struct(cand_type, canon_type))
3910			return 0;
3911		vlen = btf_vlen(cand_type);
3912		cand_m = btf_members(cand_type);
3913		canon_m = btf_members(canon_type);
3914		for (i = 0; i < vlen; i++) {
3915			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
3916			if (eq <= 0)
3917				return eq;
3918			cand_m++;
3919			canon_m++;
3920		}
3921
3922		return 1;
3923	}
3924
3925	case BTF_KIND_FUNC_PROTO: {
3926		const struct btf_param *cand_p, *canon_p;
3927		__u16 vlen;
3928
3929		if (!btf_compat_fnproto(cand_type, canon_type))
3930			return 0;
3931		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3932		if (eq <= 0)
3933			return eq;
3934		vlen = btf_vlen(cand_type);
3935		cand_p = btf_params(cand_type);
3936		canon_p = btf_params(canon_type);
3937		for (i = 0; i < vlen; i++) {
3938			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
3939			if (eq <= 0)
3940				return eq;
3941			cand_p++;
3942			canon_p++;
3943		}
3944		return 1;
3945	}
3946
3947	default:
3948		return -EINVAL;
3949	}
3950	return 0;
3951}
3952
3953/*
3954 * Use hypothetical mapping, produced by successful type graph equivalence
3955 * check, to augment existing struct/union canonical mapping, where possible.
3956 *
3957 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
3958 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
3959 * it doesn't matter if FWD type was part of canonical graph or candidate one,
3960 * we are recording the mapping anyway. As opposed to carefulness required
3961 * for struct/union correspondence mapping (described below), for FWD resolution
3962 * it's not important, as by the time that FWD type (reference type) will be
3963 * deduplicated all structs/unions will be deduped already anyway.
3964 *
3965 * Recording STRUCT/UNION mapping is purely a performance optimization and is
3966 * not required for correctness. It needs to be done carefully to ensure that
3967 * struct/union from candidate's type graph is not mapped into corresponding
3968 * struct/union from canonical type graph that itself hasn't been resolved into
3969 * canonical representative. The only guarantee we have is that canonical
3970 * struct/union was determined as canonical and that won't change. But any
3971 * types referenced through that struct/union fields could have been not yet
3972 * resolved, so in case like that it's too early to establish any kind of
3973 * correspondence between structs/unions.
3974 *
3975 * No canonical correspondence is derived for primitive types (they are already
3976 * deduplicated completely already anyway) or reference types (they rely on
3977 * stability of struct/union canonical relationship for equivalence checks).
3978 */
3979static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
3980{
3981	__u32 canon_type_id, targ_type_id;
3982	__u16 t_kind, c_kind;
3983	__u32 t_id, c_id;
3984	int i;
3985
3986	for (i = 0; i < d->hypot_cnt; i++) {
3987		canon_type_id = d->hypot_list[i];
3988		targ_type_id = d->hypot_map[canon_type_id];
3989		t_id = resolve_type_id(d, targ_type_id);
3990		c_id = resolve_type_id(d, canon_type_id);
3991		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
3992		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
3993		/*
3994		 * Resolve FWD into STRUCT/UNION.
3995		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
3996		 * mapped to canonical representative (as opposed to
3997		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
3998		 * eventually that struct is going to be mapped and all resolved
3999		 * FWDs will automatically resolve to correct canonical
4000		 * representative. This will happen before ref type deduping,
4001		 * which critically depends on stability of these mapping. This
4002		 * stability is not a requirement for STRUCT/UNION equivalence
4003		 * checks, though.
4004		 */
4005
4006		/* if it's the split BTF case, we still need to point base FWD
4007		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4008		 * will be resolved against base FWD. If we don't point base
4009		 * canonical FWD to the resolved STRUCT/UNION, then all the
4010		 * FWDs in split BTF won't be correctly resolved to a proper
4011		 * STRUCT/UNION.
4012		 */
4013		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4014			d->map[c_id] = t_id;
4015
4016		/* if graph equivalence determined that we'd need to adjust
4017		 * base canonical types, then we need to only point base FWDs
4018		 * to STRUCTs/UNIONs and do no more modifications. For all
4019		 * other purposes the type graphs were not equivalent.
4020		 */
4021		if (d->hypot_adjust_canon)
4022			continue;
4023		
4024		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4025			d->map[t_id] = c_id;
4026
4027		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4028		    c_kind != BTF_KIND_FWD &&
4029		    is_type_mapped(d, c_id) &&
4030		    !is_type_mapped(d, t_id)) {
4031			/*
4032			 * as a perf optimization, we can map struct/union
4033			 * that's part of type graph we just verified for
4034			 * equivalence. We can do that for struct/union that has
4035			 * canonical representative only, though.
4036			 */
4037			d->map[t_id] = c_id;
4038		}
4039	}
4040}
4041
4042/*
4043 * Deduplicate struct/union types.
4044 *
4045 * For each struct/union type its type signature hash is calculated, taking
4046 * into account type's name, size, number, order and names of fields, but
4047 * ignoring type ID's referenced from fields, because they might not be deduped
4048 * completely until after reference types deduplication phase. This type hash
4049 * is used to iterate over all potential canonical types, sharing same hash.
4050 * For each canonical candidate we check whether type graphs that they form
4051 * (through referenced types in fields and so on) are equivalent using algorithm
4052 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4053 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4054 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4055 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4056 * potentially map other structs/unions to their canonical representatives,
4057 * if such relationship hasn't yet been established. This speeds up algorithm
4058 * by eliminating some of the duplicate work.
4059 *
4060 * If no matching canonical representative was found, struct/union is marked
4061 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4062 * for further look ups.
4063 */
4064static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4065{
4066	struct btf_type *cand_type, *t;
4067	struct hashmap_entry *hash_entry;
4068	/* if we don't find equivalent type, then we are canonical */
4069	__u32 new_id = type_id;
4070	__u16 kind;
4071	long h;
4072
4073	/* already deduped or is in process of deduping (loop detected) */
4074	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4075		return 0;
4076
4077	t = btf_type_by_id(d->btf, type_id);
4078	kind = btf_kind(t);
4079
4080	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4081		return 0;
4082
4083	h = btf_hash_struct(t);
4084	for_each_dedup_cand(d, hash_entry, h) {
4085		__u32 cand_id = (__u32)(long)hash_entry->value;
4086		int eq;
4087
4088		/*
4089		 * Even though btf_dedup_is_equiv() checks for
4090		 * btf_shallow_equal_struct() internally when checking two
4091		 * structs (unions) for equivalence, we need to guard here
4092		 * from picking matching FWD type as a dedup candidate.
4093		 * This can happen due to hash collision. In such case just
4094		 * relying on btf_dedup_is_equiv() would lead to potentially
4095		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4096		 * FWD and compatible STRUCT/UNION are considered equivalent.
4097		 */
4098		cand_type = btf_type_by_id(d->btf, cand_id);
4099		if (!btf_shallow_equal_struct(t, cand_type))
4100			continue;
4101
4102		btf_dedup_clear_hypot_map(d);
4103		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4104		if (eq < 0)
4105			return eq;
4106		if (!eq)
4107			continue;
4108		btf_dedup_merge_hypot_map(d);
4109		if (d->hypot_adjust_canon) /* not really equivalent */
4110			continue;
4111		new_id = cand_id;
4112		break;
4113	}
4114
4115	d->map[type_id] = new_id;
4116	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4117		return -ENOMEM;
4118
4119	return 0;
4120}
4121
4122static int btf_dedup_struct_types(struct btf_dedup *d)
4123{
4124	int i, err;
4125
4126	for (i = 0; i < d->btf->nr_types; i++) {
4127		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4128		if (err)
4129			return err;
4130	}
4131	return 0;
4132}
4133
4134/*
4135 * Deduplicate reference type.
4136 *
4137 * Once all primitive and struct/union types got deduplicated, we can easily
4138 * deduplicate all other (reference) BTF types. This is done in two steps:
4139 *
4140 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4141 * resolution can be done either immediately for primitive or struct/union types
4142 * (because they were deduped in previous two phases) or recursively for
4143 * reference types. Recursion will always terminate at either primitive or
4144 * struct/union type, at which point we can "unwind" chain of reference types
4145 * one by one. There is no danger of encountering cycles because in C type
4146 * system the only way to form type cycle is through struct/union, so any chain
4147 * of reference types, even those taking part in a type cycle, will inevitably
4148 * reach struct/union at some point.
4149 *
4150 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4151 * becomes "stable", in the sense that no further deduplication will cause
4152 * any changes to it. With that, it's now possible to calculate type's signature
4153 * hash (this time taking into account referenced type IDs) and loop over all
4154 * potential canonical representatives. If no match was found, current type
4155 * will become canonical representative of itself and will be added into
4156 * btf_dedup->dedup_table as another possible canonical representative.
4157 */
4158static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4159{
4160	struct hashmap_entry *hash_entry;
4161	__u32 new_id = type_id, cand_id;
4162	struct btf_type *t, *cand;
4163	/* if we don't find equivalent type, then we are representative type */
4164	int ref_type_id;
4165	long h;
4166
4167	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4168		return -ELOOP;
4169	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4170		return resolve_type_id(d, type_id);
4171
4172	t = btf_type_by_id(d->btf, type_id);
4173	d->map[type_id] = BTF_IN_PROGRESS_ID;
4174
4175	switch (btf_kind(t)) {
4176	case BTF_KIND_CONST:
4177	case BTF_KIND_VOLATILE:
4178	case BTF_KIND_RESTRICT:
4179	case BTF_KIND_PTR:
4180	case BTF_KIND_TYPEDEF:
4181	case BTF_KIND_FUNC:
 
4182		ref_type_id = btf_dedup_ref_type(d, t->type);
4183		if (ref_type_id < 0)
4184			return ref_type_id;
4185		t->type = ref_type_id;
4186
4187		h = btf_hash_common(t);
4188		for_each_dedup_cand(d, hash_entry, h) {
4189			cand_id = (__u32)(long)hash_entry->value;
4190			cand = btf_type_by_id(d->btf, cand_id);
4191			if (btf_equal_common(t, cand)) {
4192				new_id = cand_id;
4193				break;
4194			}
4195		}
4196		break;
4197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4198	case BTF_KIND_ARRAY: {
4199		struct btf_array *info = btf_array(t);
4200
4201		ref_type_id = btf_dedup_ref_type(d, info->type);
4202		if (ref_type_id < 0)
4203			return ref_type_id;
4204		info->type = ref_type_id;
4205
4206		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4207		if (ref_type_id < 0)
4208			return ref_type_id;
4209		info->index_type = ref_type_id;
4210
4211		h = btf_hash_array(t);
4212		for_each_dedup_cand(d, hash_entry, h) {
4213			cand_id = (__u32)(long)hash_entry->value;
4214			cand = btf_type_by_id(d->btf, cand_id);
4215			if (btf_equal_array(t, cand)) {
4216				new_id = cand_id;
4217				break;
4218			}
4219		}
4220		break;
4221	}
4222
4223	case BTF_KIND_FUNC_PROTO: {
4224		struct btf_param *param;
4225		__u16 vlen;
4226		int i;
4227
4228		ref_type_id = btf_dedup_ref_type(d, t->type);
4229		if (ref_type_id < 0)
4230			return ref_type_id;
4231		t->type = ref_type_id;
4232
4233		vlen = btf_vlen(t);
4234		param = btf_params(t);
4235		for (i = 0; i < vlen; i++) {
4236			ref_type_id = btf_dedup_ref_type(d, param->type);
4237			if (ref_type_id < 0)
4238				return ref_type_id;
4239			param->type = ref_type_id;
4240			param++;
4241		}
4242
4243		h = btf_hash_fnproto(t);
4244		for_each_dedup_cand(d, hash_entry, h) {
4245			cand_id = (__u32)(long)hash_entry->value;
4246			cand = btf_type_by_id(d->btf, cand_id);
4247			if (btf_equal_fnproto(t, cand)) {
4248				new_id = cand_id;
4249				break;
4250			}
4251		}
4252		break;
4253	}
4254
4255	default:
4256		return -EINVAL;
4257	}
4258
4259	d->map[type_id] = new_id;
4260	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4261		return -ENOMEM;
4262
4263	return new_id;
4264}
4265
4266static int btf_dedup_ref_types(struct btf_dedup *d)
4267{
4268	int i, err;
4269
4270	for (i = 0; i < d->btf->nr_types; i++) {
4271		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4272		if (err < 0)
4273			return err;
4274	}
4275	/* we won't need d->dedup_table anymore */
4276	hashmap__free(d->dedup_table);
4277	d->dedup_table = NULL;
4278	return 0;
4279}
4280
4281/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4282 * Compact types.
4283 *
4284 * After we established for each type its corresponding canonical representative
4285 * type, we now can eliminate types that are not canonical and leave only
4286 * canonical ones layed out sequentially in memory by copying them over
4287 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4288 * a map from original type ID to a new compacted type ID, which will be used
4289 * during next phase to "fix up" type IDs, referenced from struct/union and
4290 * reference types.
4291 */
4292static int btf_dedup_compact_types(struct btf_dedup *d)
4293{
4294	__u32 *new_offs;
4295	__u32 next_type_id = d->btf->start_id;
4296	const struct btf_type *t;
4297	void *p;
4298	int i, id, len;
4299
4300	/* we are going to reuse hypot_map to store compaction remapping */
4301	d->hypot_map[0] = 0;
4302	/* base BTF types are not renumbered */
4303	for (id = 1; id < d->btf->start_id; id++)
4304		d->hypot_map[id] = id;
4305	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4306		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4307
4308	p = d->btf->types_data;
4309
4310	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4311		if (d->map[id] != id)
4312			continue;
4313
4314		t = btf__type_by_id(d->btf, id);
4315		len = btf_type_size(t);
4316		if (len < 0)
4317			return len;
4318
4319		memmove(p, t, len);
4320		d->hypot_map[id] = next_type_id;
4321		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4322		p += len;
4323		next_type_id++;
4324	}
4325
4326	/* shrink struct btf's internal types index and update btf_header */
4327	d->btf->nr_types = next_type_id - d->btf->start_id;
4328	d->btf->type_offs_cap = d->btf->nr_types;
4329	d->btf->hdr->type_len = p - d->btf->types_data;
4330	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4331				       sizeof(*new_offs));
4332	if (d->btf->type_offs_cap && !new_offs)
4333		return -ENOMEM;
4334	d->btf->type_offs = new_offs;
4335	d->btf->hdr->str_off = d->btf->hdr->type_len;
4336	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4337	return 0;
4338}
4339
4340/*
4341 * Figure out final (deduplicated and compacted) type ID for provided original
4342 * `type_id` by first resolving it into corresponding canonical type ID and
4343 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4344 * which is populated during compaction phase.
4345 */
4346static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4347{
4348	struct btf_dedup *d = ctx;
4349	__u32 resolved_type_id, new_type_id;
4350
4351	resolved_type_id = resolve_type_id(d, *type_id);
4352	new_type_id = d->hypot_map[resolved_type_id];
4353	if (new_type_id > BTF_MAX_NR_TYPES)
4354		return -EINVAL;
4355
4356	*type_id = new_type_id;
4357	return 0;
4358}
4359
4360/*
4361 * Remap referenced type IDs into deduped type IDs.
4362 *
4363 * After BTF types are deduplicated and compacted, their final type IDs may
4364 * differ from original ones. The map from original to a corresponding
4365 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4366 * compaction phase. During remapping phase we are rewriting all type IDs
4367 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4368 * their final deduped type IDs.
4369 */
4370static int btf_dedup_remap_types(struct btf_dedup *d)
4371{
4372	int i, r;
4373
4374	for (i = 0; i < d->btf->nr_types; i++) {
4375		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
 
 
4376
4377		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4378		if (r)
4379			return r;
 
 
 
 
 
 
 
 
 
 
 
4380	}
4381
4382	if (!d->btf_ext)
4383		return 0;
4384
4385	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4386	if (r)
4387		return r;
4388
4389	return 0;
4390}
4391
4392/*
4393 * Probe few well-known locations for vmlinux kernel image and try to load BTF
4394 * data out of it to use for target BTF.
4395 */
4396struct btf *libbpf_find_kernel_btf(void)
4397{
4398	struct {
4399		const char *path_fmt;
4400		bool raw_btf;
4401	} locations[] = {
4402		/* try canonical vmlinux BTF through sysfs first */
4403		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4404		/* fall back to trying to find vmlinux ELF on disk otherwise */
4405		{ "/boot/vmlinux-%1$s" },
4406		{ "/lib/modules/%1$s/vmlinux-%1$s" },
4407		{ "/lib/modules/%1$s/build/vmlinux" },
4408		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
4409		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
4410		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4411		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4412	};
4413	char path[PATH_MAX + 1];
4414	struct utsname buf;
4415	struct btf *btf;
4416	int i, err;
4417
4418	uname(&buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4419
 
 
4420	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4421		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4422
4423		if (access(path, R_OK))
4424			continue;
4425
4426		if (locations[i].raw_btf)
4427			btf = btf__parse_raw(path);
4428		else
4429			btf = btf__parse_elf(path, NULL);
4430		err = libbpf_get_error(btf);
4431		pr_debug("loading kernel BTF '%s': %d\n", path, err);
4432		if (err)
4433			continue;
4434
4435		return btf;
4436	}
4437
4438	pr_warn("failed to find valid kernel BTF\n");
4439	return libbpf_err_ptr(-ESRCH);
4440}
4441
4442int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4443{
4444	int i, n, err;
4445
4446	switch (btf_kind(t)) {
4447	case BTF_KIND_INT:
4448	case BTF_KIND_FLOAT:
4449	case BTF_KIND_ENUM:
4450		return 0;
4451
4452	case BTF_KIND_FWD:
4453	case BTF_KIND_CONST:
4454	case BTF_KIND_VOLATILE:
4455	case BTF_KIND_RESTRICT:
4456	case BTF_KIND_PTR:
4457	case BTF_KIND_TYPEDEF:
4458	case BTF_KIND_FUNC:
4459	case BTF_KIND_VAR:
4460		return visit(&t->type, ctx);
4461
4462	case BTF_KIND_ARRAY: {
4463		struct btf_array *a = btf_array(t);
4464
4465		err = visit(&a->type, ctx);
4466		err = err ?: visit(&a->index_type, ctx);
4467		return err;
4468	}
4469
4470	case BTF_KIND_STRUCT:
4471	case BTF_KIND_UNION: {
4472		struct btf_member *m = btf_members(t);
4473
4474		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4475			err = visit(&m->type, ctx);
4476			if (err)
4477				return err;
4478		}
4479		return 0;
4480	}
4481
4482	case BTF_KIND_FUNC_PROTO: {
4483		struct btf_param *m = btf_params(t);
4484
4485		err = visit(&t->type, ctx);
4486		if (err)
4487			return err;
4488		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4489			err = visit(&m->type, ctx);
4490			if (err)
4491				return err;
4492		}
4493		return 0;
4494	}
4495
4496	case BTF_KIND_DATASEC: {
4497		struct btf_var_secinfo *m = btf_var_secinfos(t);
4498
4499		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4500			err = visit(&m->type, ctx);
4501			if (err)
4502				return err;
4503		}
4504		return 0;
4505	}
4506
4507	default:
4508		return -EINVAL;
4509	}
4510}
4511
4512int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4513{
4514	int i, n, err;
4515
4516	err = visit(&t->name_off, ctx);
4517	if (err)
4518		return err;
4519
4520	switch (btf_kind(t)) {
4521	case BTF_KIND_STRUCT:
4522	case BTF_KIND_UNION: {
4523		struct btf_member *m = btf_members(t);
4524
4525		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4526			err = visit(&m->name_off, ctx);
4527			if (err)
4528				return err;
4529		}
4530		break;
4531	}
4532	case BTF_KIND_ENUM: {
4533		struct btf_enum *m = btf_enum(t);
4534
4535		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4536			err = visit(&m->name_off, ctx);
4537			if (err)
4538				return err;
4539		}
4540		break;
4541	}
4542	case BTF_KIND_FUNC_PROTO: {
4543		struct btf_param *m = btf_params(t);
4544
4545		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4546			err = visit(&m->name_off, ctx);
4547			if (err)
4548				return err;
4549		}
4550		break;
4551	}
4552	default:
4553		break;
4554	}
4555
4556	return 0;
4557}
4558
4559int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4560{
4561	const struct btf_ext_info *seg;
4562	struct btf_ext_info_sec *sec;
4563	int i, err;
4564
4565	seg = &btf_ext->func_info;
4566	for_each_btf_ext_sec(seg, sec) {
4567		struct bpf_func_info_min *rec;
4568
4569		for_each_btf_ext_rec(seg, sec, i, rec) {
4570			err = visit(&rec->type_id, ctx);
4571			if (err < 0)
4572				return err;
4573		}
4574	}
4575
4576	seg = &btf_ext->core_relo_info;
4577	for_each_btf_ext_sec(seg, sec) {
4578		struct bpf_core_relo *rec;
4579
4580		for_each_btf_ext_rec(seg, sec, i, rec) {
4581			err = visit(&rec->type_id, ctx);
4582			if (err < 0)
4583				return err;
4584		}
4585	}
4586
4587	return 0;
4588}
4589
4590int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4591{
4592	const struct btf_ext_info *seg;
4593	struct btf_ext_info_sec *sec;
4594	int i, err;
4595
4596	seg = &btf_ext->func_info;
4597	for_each_btf_ext_sec(seg, sec) {
4598		err = visit(&sec->sec_name_off, ctx);
4599		if (err)
4600			return err;
4601	}
4602
4603	seg = &btf_ext->line_info;
4604	for_each_btf_ext_sec(seg, sec) {
4605		struct bpf_line_info_min *rec;
4606
4607		err = visit(&sec->sec_name_off, ctx);
4608		if (err)
4609			return err;
4610
4611		for_each_btf_ext_rec(seg, sec, i, rec) {
4612			err = visit(&rec->file_name_off, ctx);
4613			if (err)
4614				return err;
4615			err = visit(&rec->line_off, ctx);
4616			if (err)
4617				return err;
4618		}
4619	}
4620
4621	seg = &btf_ext->core_relo_info;
4622	for_each_btf_ext_sec(seg, sec) {
4623		struct bpf_core_relo *rec;
4624
4625		err = visit(&sec->sec_name_off, ctx);
4626		if (err)
4627			return err;
4628
4629		for_each_btf_ext_rec(seg, sec, i, rec) {
4630			err = visit(&rec->access_str_off, ctx);
4631			if (err)
4632				return err;
4633		}
4634	}
4635
4636	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4637}
v6.13.7
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2/* Copyright (c) 2018 Facebook */
   3
   4#include <byteswap.h>
   5#include <endian.h>
   6#include <stdio.h>
   7#include <stdlib.h>
   8#include <string.h>
   9#include <fcntl.h>
  10#include <unistd.h>
  11#include <errno.h>
  12#include <sys/utsname.h>
  13#include <sys/param.h>
  14#include <sys/stat.h>
  15#include <linux/kernel.h>
  16#include <linux/err.h>
  17#include <linux/btf.h>
  18#include <gelf.h>
  19#include "btf.h"
  20#include "bpf.h"
  21#include "libbpf.h"
  22#include "libbpf_internal.h"
  23#include "hashmap.h"
  24#include "strset.h"
  25#include "str_error.h"
  26
  27#define BTF_MAX_NR_TYPES 0x7fffffffU
  28#define BTF_MAX_STR_OFFSET 0x7fffffffU
  29
  30static struct btf_type btf_void;
  31
  32struct btf {
  33	/* raw BTF data in native endianness */
  34	void *raw_data;
  35	/* raw BTF data in non-native endianness */
  36	void *raw_data_swapped;
  37	__u32 raw_size;
  38	/* whether target endianness differs from the native one */
  39	bool swapped_endian;
  40
  41	/*
  42	 * When BTF is loaded from an ELF or raw memory it is stored
  43	 * in a contiguous memory block. The hdr, type_data, and, strs_data
  44	 * point inside that memory region to their respective parts of BTF
  45	 * representation:
  46	 *
  47	 * +--------------------------------+
  48	 * |  Header  |  Types  |  Strings  |
  49	 * +--------------------------------+
  50	 * ^          ^         ^
  51	 * |          |         |
  52	 * hdr        |         |
  53	 * types_data-+         |
  54	 * strs_data------------+
  55	 *
  56	 * If BTF data is later modified, e.g., due to types added or
  57	 * removed, BTF deduplication performed, etc, this contiguous
  58	 * representation is broken up into three independently allocated
  59	 * memory regions to be able to modify them independently.
  60	 * raw_data is nulled out at that point, but can be later allocated
  61	 * and cached again if user calls btf__raw_data(), at which point
  62	 * raw_data will contain a contiguous copy of header, types, and
  63	 * strings:
  64	 *
  65	 * +----------+  +---------+  +-----------+
  66	 * |  Header  |  |  Types  |  |  Strings  |
  67	 * +----------+  +---------+  +-----------+
  68	 * ^             ^            ^
  69	 * |             |            |
  70	 * hdr           |            |
  71	 * types_data----+            |
  72	 * strset__data(strs_set)-----+
  73	 *
  74	 *               +----------+---------+-----------+
  75	 *               |  Header  |  Types  |  Strings  |
  76	 * raw_data----->+----------+---------+-----------+
  77	 */
  78	struct btf_header *hdr;
  79
  80	void *types_data;
  81	size_t types_data_cap; /* used size stored in hdr->type_len */
  82
  83	/* type ID to `struct btf_type *` lookup index
  84	 * type_offs[0] corresponds to the first non-VOID type:
  85	 *   - for base BTF it's type [1];
  86	 *   - for split BTF it's the first non-base BTF type.
  87	 */
  88	__u32 *type_offs;
  89	size_t type_offs_cap;
  90	/* number of types in this BTF instance:
  91	 *   - doesn't include special [0] void type;
  92	 *   - for split BTF counts number of types added on top of base BTF.
  93	 */
  94	__u32 nr_types;
  95	/* if not NULL, points to the base BTF on top of which the current
  96	 * split BTF is based
  97	 */
  98	struct btf *base_btf;
  99	/* BTF type ID of the first type in this BTF instance:
 100	 *   - for base BTF it's equal to 1;
 101	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
 102	 */
 103	int start_id;
 104	/* logical string offset of this BTF instance:
 105	 *   - for base BTF it's equal to 0;
 106	 *   - for split BTF it's equal to total size of base BTF's string section size.
 107	 */
 108	int start_str_off;
 109
 110	/* only one of strs_data or strs_set can be non-NULL, depending on
 111	 * whether BTF is in a modifiable state (strs_set is used) or not
 112	 * (strs_data points inside raw_data)
 113	 */
 114	void *strs_data;
 115	/* a set of unique strings */
 116	struct strset *strs_set;
 117	/* whether strings are already deduplicated */
 118	bool strs_deduped;
 119
 120	/* whether base_btf should be freed in btf_free for this instance */
 121	bool owns_base;
 122
 123	/* BTF object FD, if loaded into kernel */
 124	int fd;
 125
 126	/* Pointer size (in bytes) for a target architecture of this BTF */
 127	int ptr_sz;
 128};
 129
 130static inline __u64 ptr_to_u64(const void *ptr)
 131{
 132	return (__u64) (unsigned long) ptr;
 133}
 134
 135/* Ensure given dynamically allocated memory region pointed to by *data* with
 136 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
 137 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements
 138 * are already used. At most *max_cnt* elements can be ever allocated.
 139 * If necessary, memory is reallocated and all existing data is copied over,
 140 * new pointer to the memory region is stored at *data, new memory region
 141 * capacity (in number of elements) is stored in *cap.
 142 * On success, memory pointer to the beginning of unused memory is returned.
 143 * On error, NULL is returned.
 144 */
 145void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
 146		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
 147{
 148	size_t new_cnt;
 149	void *new_data;
 150
 151	if (cur_cnt + add_cnt <= *cap_cnt)
 152		return *data + cur_cnt * elem_sz;
 153
 154	/* requested more than the set limit */
 155	if (cur_cnt + add_cnt > max_cnt)
 156		return NULL;
 157
 158	new_cnt = *cap_cnt;
 159	new_cnt += new_cnt / 4;		  /* expand by 25% */
 160	if (new_cnt < 16)		  /* but at least 16 elements */
 161		new_cnt = 16;
 162	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
 163		new_cnt = max_cnt;
 164	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
 165		new_cnt = cur_cnt + add_cnt;
 166
 167	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
 168	if (!new_data)
 169		return NULL;
 170
 171	/* zero out newly allocated portion of memory */
 172	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
 173
 174	*data = new_data;
 175	*cap_cnt = new_cnt;
 176	return new_data + cur_cnt * elem_sz;
 177}
 178
 179/* Ensure given dynamically allocated memory region has enough allocated space
 180 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
 181 */
 182int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
 183{
 184	void *p;
 185
 186	if (need_cnt <= *cap_cnt)
 187		return 0;
 188
 189	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
 190	if (!p)
 191		return -ENOMEM;
 192
 193	return 0;
 194}
 195
 196static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
 197{
 198	return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
 199			      btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
 200}
 201
 202static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
 203{
 204	__u32 *p;
 205
 206	p = btf_add_type_offs_mem(btf, 1);
 
 207	if (!p)
 208		return -ENOMEM;
 209
 210	*p = type_off;
 211	return 0;
 212}
 213
 214static void btf_bswap_hdr(struct btf_header *h)
 215{
 216	h->magic = bswap_16(h->magic);
 217	h->hdr_len = bswap_32(h->hdr_len);
 218	h->type_off = bswap_32(h->type_off);
 219	h->type_len = bswap_32(h->type_len);
 220	h->str_off = bswap_32(h->str_off);
 221	h->str_len = bswap_32(h->str_len);
 222}
 223
 224static int btf_parse_hdr(struct btf *btf)
 225{
 226	struct btf_header *hdr = btf->hdr;
 227	__u32 meta_left;
 228
 229	if (btf->raw_size < sizeof(struct btf_header)) {
 230		pr_debug("BTF header not found\n");
 231		return -EINVAL;
 232	}
 233
 234	if (hdr->magic == bswap_16(BTF_MAGIC)) {
 235		btf->swapped_endian = true;
 236		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
 237			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
 238				bswap_32(hdr->hdr_len));
 239			return -ENOTSUP;
 240		}
 241		btf_bswap_hdr(hdr);
 242	} else if (hdr->magic != BTF_MAGIC) {
 243		pr_debug("Invalid BTF magic: %x\n", hdr->magic);
 244		return -EINVAL;
 245	}
 246
 247	if (btf->raw_size < hdr->hdr_len) {
 248		pr_debug("BTF header len %u larger than data size %u\n",
 249			 hdr->hdr_len, btf->raw_size);
 250		return -EINVAL;
 251	}
 252
 253	meta_left = btf->raw_size - hdr->hdr_len;
 254	if (meta_left < (long long)hdr->str_off + hdr->str_len) {
 255		pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
 256		return -EINVAL;
 257	}
 258
 259	if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
 260		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
 261			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
 262		return -EINVAL;
 263	}
 264
 265	if (hdr->type_off % 4) {
 266		pr_debug("BTF type section is not aligned to 4 bytes\n");
 267		return -EINVAL;
 268	}
 269
 270	return 0;
 271}
 272
 273static int btf_parse_str_sec(struct btf *btf)
 274{
 275	const struct btf_header *hdr = btf->hdr;
 276	const char *start = btf->strs_data;
 277	const char *end = start + btf->hdr->str_len;
 278
 279	if (btf->base_btf && hdr->str_len == 0)
 280		return 0;
 281	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
 282		pr_debug("Invalid BTF string section\n");
 283		return -EINVAL;
 284	}
 285	if (!btf->base_btf && start[0]) {
 286		pr_debug("Invalid BTF string section\n");
 287		return -EINVAL;
 288	}
 289	return 0;
 290}
 291
 292static int btf_type_size(const struct btf_type *t)
 293{
 294	const int base_size = sizeof(struct btf_type);
 295	__u16 vlen = btf_vlen(t);
 296
 297	switch (btf_kind(t)) {
 298	case BTF_KIND_FWD:
 299	case BTF_KIND_CONST:
 300	case BTF_KIND_VOLATILE:
 301	case BTF_KIND_RESTRICT:
 302	case BTF_KIND_PTR:
 303	case BTF_KIND_TYPEDEF:
 304	case BTF_KIND_FUNC:
 305	case BTF_KIND_FLOAT:
 306	case BTF_KIND_TYPE_TAG:
 307		return base_size;
 308	case BTF_KIND_INT:
 309		return base_size + sizeof(__u32);
 310	case BTF_KIND_ENUM:
 311		return base_size + vlen * sizeof(struct btf_enum);
 312	case BTF_KIND_ENUM64:
 313		return base_size + vlen * sizeof(struct btf_enum64);
 314	case BTF_KIND_ARRAY:
 315		return base_size + sizeof(struct btf_array);
 316	case BTF_KIND_STRUCT:
 317	case BTF_KIND_UNION:
 318		return base_size + vlen * sizeof(struct btf_member);
 319	case BTF_KIND_FUNC_PROTO:
 320		return base_size + vlen * sizeof(struct btf_param);
 321	case BTF_KIND_VAR:
 322		return base_size + sizeof(struct btf_var);
 323	case BTF_KIND_DATASEC:
 324		return base_size + vlen * sizeof(struct btf_var_secinfo);
 325	case BTF_KIND_DECL_TAG:
 326		return base_size + sizeof(struct btf_decl_tag);
 327	default:
 328		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 329		return -EINVAL;
 330	}
 331}
 332
 333static void btf_bswap_type_base(struct btf_type *t)
 334{
 335	t->name_off = bswap_32(t->name_off);
 336	t->info = bswap_32(t->info);
 337	t->type = bswap_32(t->type);
 338}
 339
 340static int btf_bswap_type_rest(struct btf_type *t)
 341{
 342	struct btf_var_secinfo *v;
 343	struct btf_enum64 *e64;
 344	struct btf_member *m;
 345	struct btf_array *a;
 346	struct btf_param *p;
 347	struct btf_enum *e;
 348	__u16 vlen = btf_vlen(t);
 349	int i;
 350
 351	switch (btf_kind(t)) {
 352	case BTF_KIND_FWD:
 353	case BTF_KIND_CONST:
 354	case BTF_KIND_VOLATILE:
 355	case BTF_KIND_RESTRICT:
 356	case BTF_KIND_PTR:
 357	case BTF_KIND_TYPEDEF:
 358	case BTF_KIND_FUNC:
 359	case BTF_KIND_FLOAT:
 360	case BTF_KIND_TYPE_TAG:
 361		return 0;
 362	case BTF_KIND_INT:
 363		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
 364		return 0;
 365	case BTF_KIND_ENUM:
 366		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
 367			e->name_off = bswap_32(e->name_off);
 368			e->val = bswap_32(e->val);
 369		}
 370		return 0;
 371	case BTF_KIND_ENUM64:
 372		for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) {
 373			e64->name_off = bswap_32(e64->name_off);
 374			e64->val_lo32 = bswap_32(e64->val_lo32);
 375			e64->val_hi32 = bswap_32(e64->val_hi32);
 376		}
 377		return 0;
 378	case BTF_KIND_ARRAY:
 379		a = btf_array(t);
 380		a->type = bswap_32(a->type);
 381		a->index_type = bswap_32(a->index_type);
 382		a->nelems = bswap_32(a->nelems);
 383		return 0;
 384	case BTF_KIND_STRUCT:
 385	case BTF_KIND_UNION:
 386		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
 387			m->name_off = bswap_32(m->name_off);
 388			m->type = bswap_32(m->type);
 389			m->offset = bswap_32(m->offset);
 390		}
 391		return 0;
 392	case BTF_KIND_FUNC_PROTO:
 393		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
 394			p->name_off = bswap_32(p->name_off);
 395			p->type = bswap_32(p->type);
 396		}
 397		return 0;
 398	case BTF_KIND_VAR:
 399		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
 400		return 0;
 401	case BTF_KIND_DATASEC:
 402		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
 403			v->type = bswap_32(v->type);
 404			v->offset = bswap_32(v->offset);
 405			v->size = bswap_32(v->size);
 406		}
 407		return 0;
 408	case BTF_KIND_DECL_TAG:
 409		btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
 410		return 0;
 411	default:
 412		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 413		return -EINVAL;
 414	}
 415}
 416
 417static int btf_parse_type_sec(struct btf *btf)
 418{
 419	struct btf_header *hdr = btf->hdr;
 420	void *next_type = btf->types_data;
 421	void *end_type = next_type + hdr->type_len;
 422	int err, type_size;
 423
 424	while (next_type + sizeof(struct btf_type) <= end_type) {
 425		if (btf->swapped_endian)
 426			btf_bswap_type_base(next_type);
 427
 428		type_size = btf_type_size(next_type);
 429		if (type_size < 0)
 430			return type_size;
 431		if (next_type + type_size > end_type) {
 432			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
 433			return -EINVAL;
 434		}
 435
 436		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
 437			return -EINVAL;
 438
 439		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
 440		if (err)
 441			return err;
 442
 443		next_type += type_size;
 444		btf->nr_types++;
 445	}
 446
 447	if (next_type != end_type) {
 448		pr_warn("BTF types data is malformed\n");
 449		return -EINVAL;
 450	}
 451
 452	return 0;
 453}
 454
 455static int btf_validate_str(const struct btf *btf, __u32 str_off, const char *what, __u32 type_id)
 456{
 457	const char *s;
 458
 459	s = btf__str_by_offset(btf, str_off);
 460	if (!s) {
 461		pr_warn("btf: type [%u]: invalid %s (string offset %u)\n", type_id, what, str_off);
 462		return -EINVAL;
 463	}
 464
 465	return 0;
 466}
 467
 468static int btf_validate_id(const struct btf *btf, __u32 id, __u32 ctx_id)
 469{
 470	const struct btf_type *t;
 471
 472	t = btf__type_by_id(btf, id);
 473	if (!t) {
 474		pr_warn("btf: type [%u]: invalid referenced type ID %u\n", ctx_id, id);
 475		return -EINVAL;
 476	}
 477
 478	return 0;
 479}
 480
 481static int btf_validate_type(const struct btf *btf, const struct btf_type *t, __u32 id)
 482{
 483	__u32 kind = btf_kind(t);
 484	int err, i, n;
 485
 486	err = btf_validate_str(btf, t->name_off, "type name", id);
 487	if (err)
 488		return err;
 489
 490	switch (kind) {
 491	case BTF_KIND_UNKN:
 492	case BTF_KIND_INT:
 493	case BTF_KIND_FWD:
 494	case BTF_KIND_FLOAT:
 495		break;
 496	case BTF_KIND_PTR:
 497	case BTF_KIND_TYPEDEF:
 498	case BTF_KIND_VOLATILE:
 499	case BTF_KIND_CONST:
 500	case BTF_KIND_RESTRICT:
 501	case BTF_KIND_VAR:
 502	case BTF_KIND_DECL_TAG:
 503	case BTF_KIND_TYPE_TAG:
 504		err = btf_validate_id(btf, t->type, id);
 505		if (err)
 506			return err;
 507		break;
 508	case BTF_KIND_ARRAY: {
 509		const struct btf_array *a = btf_array(t);
 510
 511		err = btf_validate_id(btf, a->type, id);
 512		err = err ?: btf_validate_id(btf, a->index_type, id);
 513		if (err)
 514			return err;
 515		break;
 516	}
 517	case BTF_KIND_STRUCT:
 518	case BTF_KIND_UNION: {
 519		const struct btf_member *m = btf_members(t);
 520
 521		n = btf_vlen(t);
 522		for (i = 0; i < n; i++, m++) {
 523			err = btf_validate_str(btf, m->name_off, "field name", id);
 524			err = err ?: btf_validate_id(btf, m->type, id);
 525			if (err)
 526				return err;
 527		}
 528		break;
 529	}
 530	case BTF_KIND_ENUM: {
 531		const struct btf_enum *m = btf_enum(t);
 532
 533		n = btf_vlen(t);
 534		for (i = 0; i < n; i++, m++) {
 535			err = btf_validate_str(btf, m->name_off, "enum name", id);
 536			if (err)
 537				return err;
 538		}
 539		break;
 540	}
 541	case BTF_KIND_ENUM64: {
 542		const struct btf_enum64 *m = btf_enum64(t);
 543
 544		n = btf_vlen(t);
 545		for (i = 0; i < n; i++, m++) {
 546			err = btf_validate_str(btf, m->name_off, "enum name", id);
 547			if (err)
 548				return err;
 549		}
 550		break;
 551	}
 552	case BTF_KIND_FUNC: {
 553		const struct btf_type *ft;
 554
 555		err = btf_validate_id(btf, t->type, id);
 556		if (err)
 557			return err;
 558		ft = btf__type_by_id(btf, t->type);
 559		if (btf_kind(ft) != BTF_KIND_FUNC_PROTO) {
 560			pr_warn("btf: type [%u]: referenced type [%u] is not FUNC_PROTO\n", id, t->type);
 561			return -EINVAL;
 562		}
 563		break;
 564	}
 565	case BTF_KIND_FUNC_PROTO: {
 566		const struct btf_param *m = btf_params(t);
 567
 568		n = btf_vlen(t);
 569		for (i = 0; i < n; i++, m++) {
 570			err = btf_validate_str(btf, m->name_off, "param name", id);
 571			err = err ?: btf_validate_id(btf, m->type, id);
 572			if (err)
 573				return err;
 574		}
 575		break;
 576	}
 577	case BTF_KIND_DATASEC: {
 578		const struct btf_var_secinfo *m = btf_var_secinfos(t);
 579
 580		n = btf_vlen(t);
 581		for (i = 0; i < n; i++, m++) {
 582			err = btf_validate_id(btf, m->type, id);
 583			if (err)
 584				return err;
 585		}
 586		break;
 587	}
 588	default:
 589		pr_warn("btf: type [%u]: unrecognized kind %u\n", id, kind);
 590		return -EINVAL;
 591	}
 592	return 0;
 593}
 594
 595/* Validate basic sanity of BTF. It's intentionally less thorough than
 596 * kernel's validation and validates only properties of BTF that libbpf relies
 597 * on to be correct (e.g., valid type IDs, valid string offsets, etc)
 598 */
 599static int btf_sanity_check(const struct btf *btf)
 600{
 601	const struct btf_type *t;
 602	__u32 i, n = btf__type_cnt(btf);
 603	int err;
 604
 605	for (i = btf->start_id; i < n; i++) {
 606		t = btf_type_by_id(btf, i);
 607		err = btf_validate_type(btf, t, i);
 608		if (err)
 609			return err;
 610	}
 611	return 0;
 612}
 613
 614__u32 btf__type_cnt(const struct btf *btf)
 615{
 616	return btf->start_id + btf->nr_types;
 617}
 618
 619const struct btf *btf__base_btf(const struct btf *btf)
 620{
 621	return btf->base_btf;
 622}
 623
 624/* internal helper returning non-const pointer to a type */
 625struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
 626{
 627	if (type_id == 0)
 628		return &btf_void;
 629	if (type_id < btf->start_id)
 630		return btf_type_by_id(btf->base_btf, type_id);
 631	return btf->types_data + btf->type_offs[type_id - btf->start_id];
 632}
 633
 634const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
 635{
 636	if (type_id >= btf->start_id + btf->nr_types)
 637		return errno = EINVAL, NULL;
 638	return btf_type_by_id((struct btf *)btf, type_id);
 639}
 640
 641static int determine_ptr_size(const struct btf *btf)
 642{
 643	static const char * const long_aliases[] = {
 644		"long",
 645		"long int",
 646		"int long",
 647		"unsigned long",
 648		"long unsigned",
 649		"unsigned long int",
 650		"unsigned int long",
 651		"long unsigned int",
 652		"long int unsigned",
 653		"int unsigned long",
 654		"int long unsigned",
 655	};
 656	const struct btf_type *t;
 657	const char *name;
 658	int i, j, n;
 659
 660	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
 661		return btf->base_btf->ptr_sz;
 662
 663	n = btf__type_cnt(btf);
 664	for (i = 1; i < n; i++) {
 665		t = btf__type_by_id(btf, i);
 666		if (!btf_is_int(t))
 667			continue;
 668
 669		if (t->size != 4 && t->size != 8)
 670			continue;
 671
 672		name = btf__name_by_offset(btf, t->name_off);
 673		if (!name)
 674			continue;
 675
 676		for (j = 0; j < ARRAY_SIZE(long_aliases); j++) {
 677			if (strcmp(name, long_aliases[j]) == 0)
 678				return t->size;
 
 
 679		}
 680	}
 681
 682	return -1;
 683}
 684
 685static size_t btf_ptr_sz(const struct btf *btf)
 686{
 687	if (!btf->ptr_sz)
 688		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 689	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
 690}
 691
 692/* Return pointer size this BTF instance assumes. The size is heuristically
 693 * determined by looking for 'long' or 'unsigned long' integer type and
 694 * recording its size in bytes. If BTF type information doesn't have any such
 695 * type, this function returns 0. In the latter case, native architecture's
 696 * pointer size is assumed, so will be either 4 or 8, depending on
 697 * architecture that libbpf was compiled for. It's possible to override
 698 * guessed value by using btf__set_pointer_size() API.
 699 */
 700size_t btf__pointer_size(const struct btf *btf)
 701{
 702	if (!btf->ptr_sz)
 703		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 704
 705	if (btf->ptr_sz < 0)
 706		/* not enough BTF type info to guess */
 707		return 0;
 708
 709	return btf->ptr_sz;
 710}
 711
 712/* Override or set pointer size in bytes. Only values of 4 and 8 are
 713 * supported.
 714 */
 715int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
 716{
 717	if (ptr_sz != 4 && ptr_sz != 8)
 718		return libbpf_err(-EINVAL);
 719	btf->ptr_sz = ptr_sz;
 720	return 0;
 721}
 722
 723static bool is_host_big_endian(void)
 724{
 725#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
 726	return false;
 727#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 728	return true;
 729#else
 730# error "Unrecognized __BYTE_ORDER__"
 731#endif
 732}
 733
 734enum btf_endianness btf__endianness(const struct btf *btf)
 735{
 736	if (is_host_big_endian())
 737		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
 738	else
 739		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
 740}
 741
 742int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
 743{
 744	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
 745		return libbpf_err(-EINVAL);
 746
 747	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
 748	if (!btf->swapped_endian) {
 749		free(btf->raw_data_swapped);
 750		btf->raw_data_swapped = NULL;
 751	}
 752	return 0;
 753}
 754
 755static bool btf_type_is_void(const struct btf_type *t)
 756{
 757	return t == &btf_void || btf_is_fwd(t);
 758}
 759
 760static bool btf_type_is_void_or_null(const struct btf_type *t)
 761{
 762	return !t || btf_type_is_void(t);
 763}
 764
 765#define MAX_RESOLVE_DEPTH 32
 766
 767__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
 768{
 769	const struct btf_array *array;
 770	const struct btf_type *t;
 771	__u32 nelems = 1;
 772	__s64 size = -1;
 773	int i;
 774
 775	t = btf__type_by_id(btf, type_id);
 776	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
 777		switch (btf_kind(t)) {
 778		case BTF_KIND_INT:
 779		case BTF_KIND_STRUCT:
 780		case BTF_KIND_UNION:
 781		case BTF_KIND_ENUM:
 782		case BTF_KIND_ENUM64:
 783		case BTF_KIND_DATASEC:
 784		case BTF_KIND_FLOAT:
 785			size = t->size;
 786			goto done;
 787		case BTF_KIND_PTR:
 788			size = btf_ptr_sz(btf);
 789			goto done;
 790		case BTF_KIND_TYPEDEF:
 791		case BTF_KIND_VOLATILE:
 792		case BTF_KIND_CONST:
 793		case BTF_KIND_RESTRICT:
 794		case BTF_KIND_VAR:
 795		case BTF_KIND_DECL_TAG:
 796		case BTF_KIND_TYPE_TAG:
 797			type_id = t->type;
 798			break;
 799		case BTF_KIND_ARRAY:
 800			array = btf_array(t);
 801			if (nelems && array->nelems > UINT32_MAX / nelems)
 802				return libbpf_err(-E2BIG);
 803			nelems *= array->nelems;
 804			type_id = array->type;
 805			break;
 806		default:
 807			return libbpf_err(-EINVAL);
 808		}
 809
 810		t = btf__type_by_id(btf, type_id);
 811	}
 812
 813done:
 814	if (size < 0)
 815		return libbpf_err(-EINVAL);
 816	if (nelems && size > UINT32_MAX / nelems)
 817		return libbpf_err(-E2BIG);
 818
 819	return nelems * size;
 820}
 821
 822int btf__align_of(const struct btf *btf, __u32 id)
 823{
 824	const struct btf_type *t = btf__type_by_id(btf, id);
 825	__u16 kind = btf_kind(t);
 826
 827	switch (kind) {
 828	case BTF_KIND_INT:
 829	case BTF_KIND_ENUM:
 830	case BTF_KIND_ENUM64:
 831	case BTF_KIND_FLOAT:
 832		return min(btf_ptr_sz(btf), (size_t)t->size);
 833	case BTF_KIND_PTR:
 834		return btf_ptr_sz(btf);
 835	case BTF_KIND_TYPEDEF:
 836	case BTF_KIND_VOLATILE:
 837	case BTF_KIND_CONST:
 838	case BTF_KIND_RESTRICT:
 839	case BTF_KIND_TYPE_TAG:
 840		return btf__align_of(btf, t->type);
 841	case BTF_KIND_ARRAY:
 842		return btf__align_of(btf, btf_array(t)->type);
 843	case BTF_KIND_STRUCT:
 844	case BTF_KIND_UNION: {
 845		const struct btf_member *m = btf_members(t);
 846		__u16 vlen = btf_vlen(t);
 847		int i, max_align = 1, align;
 848
 849		for (i = 0; i < vlen; i++, m++) {
 850			align = btf__align_of(btf, m->type);
 851			if (align <= 0)
 852				return libbpf_err(align);
 853			max_align = max(max_align, align);
 854
 855			/* if field offset isn't aligned according to field
 856			 * type's alignment, then struct must be packed
 857			 */
 858			if (btf_member_bitfield_size(t, i) == 0 &&
 859			    (m->offset % (8 * align)) != 0)
 860				return 1;
 861		}
 862
 863		/* if struct/union size isn't a multiple of its alignment,
 864		 * then struct must be packed
 865		 */
 866		if ((t->size % max_align) != 0)
 867			return 1;
 868
 869		return max_align;
 870	}
 871	default:
 872		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
 873		return errno = EINVAL, 0;
 874	}
 875}
 876
 877int btf__resolve_type(const struct btf *btf, __u32 type_id)
 878{
 879	const struct btf_type *t;
 880	int depth = 0;
 881
 882	t = btf__type_by_id(btf, type_id);
 883	while (depth < MAX_RESOLVE_DEPTH &&
 884	       !btf_type_is_void_or_null(t) &&
 885	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
 886		type_id = t->type;
 887		t = btf__type_by_id(btf, type_id);
 888		depth++;
 889	}
 890
 891	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
 892		return libbpf_err(-EINVAL);
 893
 894	return type_id;
 895}
 896
 897__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
 898{
 899	__u32 i, nr_types = btf__type_cnt(btf);
 900
 901	if (!strcmp(type_name, "void"))
 902		return 0;
 903
 904	for (i = 1; i < nr_types; i++) {
 905		const struct btf_type *t = btf__type_by_id(btf, i);
 906		const char *name = btf__name_by_offset(btf, t->name_off);
 907
 908		if (name && !strcmp(type_name, name))
 909			return i;
 910	}
 911
 912	return libbpf_err(-ENOENT);
 913}
 914
 915static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
 916				   const char *type_name, __u32 kind)
 917{
 918	__u32 i, nr_types = btf__type_cnt(btf);
 919
 920	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
 921		return 0;
 922
 923	for (i = start_id; i < nr_types; i++) {
 924		const struct btf_type *t = btf__type_by_id(btf, i);
 925		const char *name;
 926
 927		if (btf_kind(t) != kind)
 928			continue;
 929		name = btf__name_by_offset(btf, t->name_off);
 930		if (name && !strcmp(type_name, name))
 931			return i;
 932	}
 933
 934	return libbpf_err(-ENOENT);
 935}
 936
 937__s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
 938				 __u32 kind)
 939{
 940	return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
 941}
 942
 943__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
 944			     __u32 kind)
 945{
 946	return btf_find_by_name_kind(btf, 1, type_name, kind);
 947}
 948
 949static bool btf_is_modifiable(const struct btf *btf)
 950{
 951	return (void *)btf->hdr != btf->raw_data;
 952}
 953
 954void btf__free(struct btf *btf)
 955{
 956	if (IS_ERR_OR_NULL(btf))
 957		return;
 958
 959	if (btf->fd >= 0)
 960		close(btf->fd);
 961
 962	if (btf_is_modifiable(btf)) {
 963		/* if BTF was modified after loading, it will have a split
 964		 * in-memory representation for header, types, and strings
 965		 * sections, so we need to free all of them individually. It
 966		 * might still have a cached contiguous raw data present,
 967		 * which will be unconditionally freed below.
 968		 */
 969		free(btf->hdr);
 970		free(btf->types_data);
 971		strset__free(btf->strs_set);
 972	}
 973	free(btf->raw_data);
 974	free(btf->raw_data_swapped);
 975	free(btf->type_offs);
 976	if (btf->owns_base)
 977		btf__free(btf->base_btf);
 978	free(btf);
 979}
 980
 981static struct btf *btf_new_empty(struct btf *base_btf)
 982{
 983	struct btf *btf;
 984
 985	btf = calloc(1, sizeof(*btf));
 986	if (!btf)
 987		return ERR_PTR(-ENOMEM);
 988
 989	btf->nr_types = 0;
 990	btf->start_id = 1;
 991	btf->start_str_off = 0;
 992	btf->fd = -1;
 993	btf->ptr_sz = sizeof(void *);
 994	btf->swapped_endian = false;
 995
 996	if (base_btf) {
 997		btf->base_btf = base_btf;
 998		btf->start_id = btf__type_cnt(base_btf);
 999		btf->start_str_off = base_btf->hdr->str_len;
1000		btf->swapped_endian = base_btf->swapped_endian;
1001	}
1002
1003	/* +1 for empty string at offset 0 */
1004	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
1005	btf->raw_data = calloc(1, btf->raw_size);
1006	if (!btf->raw_data) {
1007		free(btf);
1008		return ERR_PTR(-ENOMEM);
1009	}
1010
1011	btf->hdr = btf->raw_data;
1012	btf->hdr->hdr_len = sizeof(struct btf_header);
1013	btf->hdr->magic = BTF_MAGIC;
1014	btf->hdr->version = BTF_VERSION;
1015
1016	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
1017	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
1018	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
1019
1020	return btf;
1021}
1022
1023struct btf *btf__new_empty(void)
1024{
1025	return libbpf_ptr(btf_new_empty(NULL));
1026}
1027
1028struct btf *btf__new_empty_split(struct btf *base_btf)
1029{
1030	return libbpf_ptr(btf_new_empty(base_btf));
1031}
1032
1033static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
1034{
1035	struct btf *btf;
1036	int err;
1037
1038	btf = calloc(1, sizeof(struct btf));
1039	if (!btf)
1040		return ERR_PTR(-ENOMEM);
1041
1042	btf->nr_types = 0;
1043	btf->start_id = 1;
1044	btf->start_str_off = 0;
1045	btf->fd = -1;
1046
1047	if (base_btf) {
1048		btf->base_btf = base_btf;
1049		btf->start_id = btf__type_cnt(base_btf);
1050		btf->start_str_off = base_btf->hdr->str_len;
1051	}
1052
1053	btf->raw_data = malloc(size);
1054	if (!btf->raw_data) {
1055		err = -ENOMEM;
1056		goto done;
1057	}
1058	memcpy(btf->raw_data, data, size);
1059	btf->raw_size = size;
1060
1061	btf->hdr = btf->raw_data;
1062	err = btf_parse_hdr(btf);
1063	if (err)
1064		goto done;
1065
1066	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
1067	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
1068
1069	err = btf_parse_str_sec(btf);
1070	err = err ?: btf_parse_type_sec(btf);
1071	err = err ?: btf_sanity_check(btf);
1072	if (err)
1073		goto done;
1074
1075done:
1076	if (err) {
1077		btf__free(btf);
1078		return ERR_PTR(err);
1079	}
1080
1081	return btf;
1082}
1083
1084struct btf *btf__new(const void *data, __u32 size)
1085{
1086	return libbpf_ptr(btf_new(data, size, NULL));
1087}
1088
1089struct btf *btf__new_split(const void *data, __u32 size, struct btf *base_btf)
1090{
1091	return libbpf_ptr(btf_new(data, size, base_btf));
1092}
1093
1094struct btf_elf_secs {
1095	Elf_Data *btf_data;
1096	Elf_Data *btf_ext_data;
1097	Elf_Data *btf_base_data;
1098};
1099
1100static int btf_find_elf_sections(Elf *elf, const char *path, struct btf_elf_secs *secs)
1101{
 
 
 
1102	Elf_Scn *scn = NULL;
1103	Elf_Data *data;
1104	GElf_Ehdr ehdr;
1105	size_t shstrndx;
1106	int idx = 0;
1107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108	if (!gelf_getehdr(elf, &ehdr)) {
1109		pr_warn("failed to get EHDR from %s\n", path);
1110		goto err;
1111	}
1112
1113	if (elf_getshdrstrndx(elf, &shstrndx)) {
1114		pr_warn("failed to get section names section index for %s\n",
1115			path);
1116		goto err;
1117	}
1118
1119	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
1120		pr_warn("failed to get e_shstrndx from %s\n", path);
1121		goto err;
1122	}
1123
1124	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1125		Elf_Data **field;
1126		GElf_Shdr sh;
1127		char *name;
1128
1129		idx++;
1130		if (gelf_getshdr(scn, &sh) != &sh) {
1131			pr_warn("failed to get section(%d) header from %s\n",
1132				idx, path);
1133			goto err;
1134		}
1135		name = elf_strptr(elf, shstrndx, sh.sh_name);
1136		if (!name) {
1137			pr_warn("failed to get section(%d) name from %s\n",
1138				idx, path);
1139			goto err;
1140		}
1141
1142		if (strcmp(name, BTF_ELF_SEC) == 0)
1143			field = &secs->btf_data;
1144		else if (strcmp(name, BTF_EXT_ELF_SEC) == 0)
1145			field = &secs->btf_ext_data;
1146		else if (strcmp(name, BTF_BASE_ELF_SEC) == 0)
1147			field = &secs->btf_base_data;
1148		else
 
 
 
 
 
 
 
1149			continue;
1150
1151		data = elf_getdata(scn, 0);
1152		if (!data) {
1153			pr_warn("failed to get section(%d, %s) data from %s\n",
1154				idx, name, path);
1155			goto err;
1156		}
1157		*field = data;
1158	}
1159
1160	return 0;
1161
1162err:
1163	return -LIBBPF_ERRNO__FORMAT;
1164}
1165
1166static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
1167				 struct btf_ext **btf_ext)
1168{
1169	struct btf_elf_secs secs = {};
1170	struct btf *dist_base_btf = NULL;
1171	struct btf *btf = NULL;
1172	int err = 0, fd = -1;
1173	Elf *elf = NULL;
1174
1175	if (elf_version(EV_CURRENT) == EV_NONE) {
1176		pr_warn("failed to init libelf for %s\n", path);
1177		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
1178	}
1179
1180	fd = open(path, O_RDONLY | O_CLOEXEC);
1181	if (fd < 0) {
1182		err = -errno;
1183		pr_warn("failed to open %s: %s\n", path, errstr(err));
1184		return ERR_PTR(err);
1185	}
1186
1187	elf = elf_begin(fd, ELF_C_READ, NULL);
1188	if (!elf) {
1189		err = -LIBBPF_ERRNO__FORMAT;
1190		pr_warn("failed to open %s as ELF file\n", path);
1191		goto done;
1192	}
1193
1194	err = btf_find_elf_sections(elf, path, &secs);
1195	if (err)
1196		goto done;
1197
1198	if (!secs.btf_data) {
1199		pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path);
1200		err = -ENODATA;
1201		goto done;
1202	}
1203
1204	if (secs.btf_base_data) {
1205		dist_base_btf = btf_new(secs.btf_base_data->d_buf, secs.btf_base_data->d_size,
1206					NULL);
1207		if (IS_ERR(dist_base_btf)) {
1208			err = PTR_ERR(dist_base_btf);
1209			dist_base_btf = NULL;
1210			goto done;
1211		}
1212	}
1213
1214	btf = btf_new(secs.btf_data->d_buf, secs.btf_data->d_size,
1215		      dist_base_btf ?: base_btf);
1216	if (IS_ERR(btf)) {
1217		err = PTR_ERR(btf);
1218		goto done;
1219	}
1220	if (dist_base_btf && base_btf) {
1221		err = btf__relocate(btf, base_btf);
1222		if (err)
1223			goto done;
1224		btf__free(dist_base_btf);
1225		dist_base_btf = NULL;
1226	}
1227
1228	if (dist_base_btf)
1229		btf->owns_base = true;
1230
1231	switch (gelf_getclass(elf)) {
1232	case ELFCLASS32:
1233		btf__set_pointer_size(btf, 4);
1234		break;
1235	case ELFCLASS64:
1236		btf__set_pointer_size(btf, 8);
1237		break;
1238	default:
1239		pr_warn("failed to get ELF class (bitness) for %s\n", path);
1240		break;
1241	}
1242
1243	if (btf_ext && secs.btf_ext_data) {
1244		*btf_ext = btf_ext__new(secs.btf_ext_data->d_buf, secs.btf_ext_data->d_size);
1245		if (IS_ERR(*btf_ext)) {
1246			err = PTR_ERR(*btf_ext);
1247			goto done;
1248		}
1249	} else if (btf_ext) {
1250		*btf_ext = NULL;
1251	}
1252done:
1253	if (elf)
1254		elf_end(elf);
1255	close(fd);
1256
1257	if (!err)
1258		return btf;
1259
1260	if (btf_ext)
1261		btf_ext__free(*btf_ext);
1262	btf__free(dist_base_btf);
1263	btf__free(btf);
1264
1265	return ERR_PTR(err);
1266}
1267
1268struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1269{
1270	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1271}
1272
1273struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1274{
1275	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1276}
1277
1278static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1279{
1280	struct btf *btf = NULL;
1281	void *data = NULL;
1282	FILE *f = NULL;
1283	__u16 magic;
1284	int err = 0;
1285	long sz;
1286
1287	f = fopen(path, "rbe");
1288	if (!f) {
1289		err = -errno;
1290		goto err_out;
1291	}
1292
1293	/* check BTF magic */
1294	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1295		err = -EIO;
1296		goto err_out;
1297	}
1298	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1299		/* definitely not a raw BTF */
1300		err = -EPROTO;
1301		goto err_out;
1302	}
1303
1304	/* get file size */
1305	if (fseek(f, 0, SEEK_END)) {
1306		err = -errno;
1307		goto err_out;
1308	}
1309	sz = ftell(f);
1310	if (sz < 0) {
1311		err = -errno;
1312		goto err_out;
1313	}
1314	/* rewind to the start */
1315	if (fseek(f, 0, SEEK_SET)) {
1316		err = -errno;
1317		goto err_out;
1318	}
1319
1320	/* pre-alloc memory and read all of BTF data */
1321	data = malloc(sz);
1322	if (!data) {
1323		err = -ENOMEM;
1324		goto err_out;
1325	}
1326	if (fread(data, 1, sz, f) < sz) {
1327		err = -EIO;
1328		goto err_out;
1329	}
1330
1331	/* finally parse BTF data */
1332	btf = btf_new(data, sz, base_btf);
1333
1334err_out:
1335	free(data);
1336	if (f)
1337		fclose(f);
1338	return err ? ERR_PTR(err) : btf;
1339}
1340
1341struct btf *btf__parse_raw(const char *path)
1342{
1343	return libbpf_ptr(btf_parse_raw(path, NULL));
1344}
1345
1346struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1347{
1348	return libbpf_ptr(btf_parse_raw(path, base_btf));
1349}
1350
1351static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1352{
1353	struct btf *btf;
1354	int err;
1355
1356	if (btf_ext)
1357		*btf_ext = NULL;
1358
1359	btf = btf_parse_raw(path, base_btf);
1360	err = libbpf_get_error(btf);
1361	if (!err)
1362		return btf;
1363	if (err != -EPROTO)
1364		return ERR_PTR(err);
1365	return btf_parse_elf(path, base_btf, btf_ext);
1366}
1367
1368struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1369{
1370	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1371}
1372
1373struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1374{
1375	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1376}
1377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1379
1380int btf_load_into_kernel(struct btf *btf,
1381			 char *log_buf, size_t log_sz, __u32 log_level,
1382			 int token_fd)
1383{
1384	LIBBPF_OPTS(bpf_btf_load_opts, opts);
1385	__u32 buf_sz = 0, raw_size;
1386	char *buf = NULL, *tmp;
1387	void *raw_data;
1388	int err = 0;
1389
1390	if (btf->fd >= 0)
1391		return libbpf_err(-EEXIST);
1392	if (log_sz && !log_buf)
1393		return libbpf_err(-EINVAL);
1394
1395	/* cache native raw data representation */
 
 
 
 
 
 
 
 
1396	raw_data = btf_get_raw_data(btf, &raw_size, false);
1397	if (!raw_data) {
1398		err = -ENOMEM;
1399		goto done;
1400	}
 
1401	btf->raw_size = raw_size;
1402	btf->raw_data = raw_data;
1403
1404retry_load:
1405	/* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1406	 * initially. Only if BTF loading fails, we bump log_level to 1 and
1407	 * retry, using either auto-allocated or custom log_buf. This way
1408	 * non-NULL custom log_buf provides a buffer just in case, but hopes
1409	 * for successful load and no need for log_buf.
1410	 */
1411	if (log_level) {
1412		/* if caller didn't provide custom log_buf, we'll keep
1413		 * allocating our own progressively bigger buffers for BTF
1414		 * verification log
1415		 */
1416		if (!log_buf) {
1417			buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1418			tmp = realloc(buf, buf_sz);
1419			if (!tmp) {
1420				err = -ENOMEM;
1421				goto done;
1422			}
1423			buf = tmp;
1424			buf[0] = '\0';
1425		}
1426
1427		opts.log_buf = log_buf ? log_buf : buf;
1428		opts.log_size = log_buf ? log_sz : buf_sz;
1429		opts.log_level = log_level;
1430	}
1431
1432	opts.token_fd = token_fd;
1433	if (token_fd)
1434		opts.btf_flags |= BPF_F_TOKEN_FD;
1435
1436	btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1437	if (btf->fd < 0) {
1438		/* time to turn on verbose mode and try again */
1439		if (log_level == 0) {
1440			log_level = 1;
 
1441			goto retry_load;
1442		}
1443		/* only retry if caller didn't provide custom log_buf, but
1444		 * make sure we can never overflow buf_sz
1445		 */
1446		if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1447			goto retry_load;
1448
1449		err = -errno;
1450		pr_warn("BTF loading error: %s\n", errstr(err));
1451		/* don't print out contents of custom log_buf */
1452		if (!log_buf && buf[0])
1453			pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
1454	}
1455
1456done:
1457	free(buf);
1458	return libbpf_err(err);
1459}
1460
1461int btf__load_into_kernel(struct btf *btf)
1462{
1463	return btf_load_into_kernel(btf, NULL, 0, 0, 0);
1464}
1465
1466int btf__fd(const struct btf *btf)
1467{
1468	return btf->fd;
1469}
1470
1471void btf__set_fd(struct btf *btf, int fd)
1472{
1473	btf->fd = fd;
1474}
1475
1476static const void *btf_strs_data(const struct btf *btf)
1477{
1478	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1479}
1480
1481static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1482{
1483	struct btf_header *hdr = btf->hdr;
1484	struct btf_type *t;
1485	void *data, *p;
1486	__u32 data_sz;
1487	int i;
1488
1489	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1490	if (data) {
1491		*size = btf->raw_size;
1492		return data;
1493	}
1494
1495	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1496	data = calloc(1, data_sz);
1497	if (!data)
1498		return NULL;
1499	p = data;
1500
1501	memcpy(p, hdr, hdr->hdr_len);
1502	if (swap_endian)
1503		btf_bswap_hdr(p);
1504	p += hdr->hdr_len;
1505
1506	memcpy(p, btf->types_data, hdr->type_len);
1507	if (swap_endian) {
1508		for (i = 0; i < btf->nr_types; i++) {
1509			t = p + btf->type_offs[i];
1510			/* btf_bswap_type_rest() relies on native t->info, so
1511			 * we swap base type info after we swapped all the
1512			 * additional information
1513			 */
1514			if (btf_bswap_type_rest(t))
1515				goto err_out;
1516			btf_bswap_type_base(t);
1517		}
1518	}
1519	p += hdr->type_len;
1520
1521	memcpy(p, btf_strs_data(btf), hdr->str_len);
1522	p += hdr->str_len;
1523
1524	*size = data_sz;
1525	return data;
1526err_out:
1527	free(data);
1528	return NULL;
1529}
1530
1531const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1532{
1533	struct btf *btf = (struct btf *)btf_ro;
1534	__u32 data_sz;
1535	void *data;
1536
1537	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1538	if (!data)
1539		return errno = ENOMEM, NULL;
1540
1541	btf->raw_size = data_sz;
1542	if (btf->swapped_endian)
1543		btf->raw_data_swapped = data;
1544	else
1545		btf->raw_data = data;
1546	*size = data_sz;
1547	return data;
1548}
1549
1550__attribute__((alias("btf__raw_data")))
1551const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1552
1553const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1554{
1555	if (offset < btf->start_str_off)
1556		return btf__str_by_offset(btf->base_btf, offset);
1557	else if (offset - btf->start_str_off < btf->hdr->str_len)
1558		return btf_strs_data(btf) + (offset - btf->start_str_off);
1559	else
1560		return errno = EINVAL, NULL;
1561}
1562
1563const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1564{
1565	return btf__str_by_offset(btf, offset);
1566}
1567
1568struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1569{
1570	struct bpf_btf_info btf_info;
1571	__u32 len = sizeof(btf_info);
1572	__u32 last_size;
1573	struct btf *btf;
1574	void *ptr;
1575	int err;
1576
1577	/* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so
1578	 * let's start with a sane default - 4KiB here - and resize it only if
1579	 * bpf_btf_get_info_by_fd() needs a bigger buffer.
1580	 */
1581	last_size = 4096;
1582	ptr = malloc(last_size);
1583	if (!ptr)
1584		return ERR_PTR(-ENOMEM);
1585
1586	memset(&btf_info, 0, sizeof(btf_info));
1587	btf_info.btf = ptr_to_u64(ptr);
1588	btf_info.btf_size = last_size;
1589	err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1590
1591	if (!err && btf_info.btf_size > last_size) {
1592		void *temp_ptr;
1593
1594		last_size = btf_info.btf_size;
1595		temp_ptr = realloc(ptr, last_size);
1596		if (!temp_ptr) {
1597			btf = ERR_PTR(-ENOMEM);
1598			goto exit_free;
1599		}
1600		ptr = temp_ptr;
1601
1602		len = sizeof(btf_info);
1603		memset(&btf_info, 0, sizeof(btf_info));
1604		btf_info.btf = ptr_to_u64(ptr);
1605		btf_info.btf_size = last_size;
1606
1607		err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1608	}
1609
1610	if (err || btf_info.btf_size > last_size) {
1611		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1612		goto exit_free;
1613	}
1614
1615	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1616
1617exit_free:
1618	free(ptr);
1619	return btf;
1620}
1621
1622struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1623{
1624	struct btf *btf;
1625	int btf_fd;
1626
 
1627	btf_fd = bpf_btf_get_fd_by_id(id);
1628	if (btf_fd < 0)
1629		return libbpf_err_ptr(-errno);
 
 
 
1630
1631	btf = btf_get_from_fd(btf_fd, base_btf);
1632	close(btf_fd);
1633
1634	return libbpf_ptr(btf);
 
 
 
 
1635}
1636
1637struct btf *btf__load_from_kernel_by_id(__u32 id)
 
 
1638{
1639	return btf__load_from_kernel_by_id_split(id, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1640}
1641
1642static void btf_invalidate_raw_data(struct btf *btf)
1643{
1644	if (btf->raw_data) {
1645		free(btf->raw_data);
1646		btf->raw_data = NULL;
1647	}
1648	if (btf->raw_data_swapped) {
1649		free(btf->raw_data_swapped);
1650		btf->raw_data_swapped = NULL;
1651	}
1652}
1653
1654/* Ensure BTF is ready to be modified (by splitting into a three memory
1655 * regions for header, types, and strings). Also invalidate cached
1656 * raw_data, if any.
1657 */
1658static int btf_ensure_modifiable(struct btf *btf)
1659{
1660	void *hdr, *types;
1661	struct strset *set = NULL;
1662	int err = -ENOMEM;
1663
1664	if (btf_is_modifiable(btf)) {
1665		/* any BTF modification invalidates raw_data */
1666		btf_invalidate_raw_data(btf);
1667		return 0;
1668	}
1669
1670	/* split raw data into three memory regions */
1671	hdr = malloc(btf->hdr->hdr_len);
1672	types = malloc(btf->hdr->type_len);
1673	if (!hdr || !types)
1674		goto err_out;
1675
1676	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1677	memcpy(types, btf->types_data, btf->hdr->type_len);
1678
1679	/* build lookup index for all strings */
1680	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1681	if (IS_ERR(set)) {
1682		err = PTR_ERR(set);
1683		goto err_out;
1684	}
1685
1686	/* only when everything was successful, update internal state */
1687	btf->hdr = hdr;
1688	btf->types_data = types;
1689	btf->types_data_cap = btf->hdr->type_len;
1690	btf->strs_data = NULL;
1691	btf->strs_set = set;
1692	/* if BTF was created from scratch, all strings are guaranteed to be
1693	 * unique and deduplicated
1694	 */
1695	if (btf->hdr->str_len == 0)
1696		btf->strs_deduped = true;
1697	if (!btf->base_btf && btf->hdr->str_len == 1)
1698		btf->strs_deduped = true;
1699
1700	/* invalidate raw_data representation */
1701	btf_invalidate_raw_data(btf);
1702
1703	return 0;
1704
1705err_out:
1706	strset__free(set);
1707	free(hdr);
1708	free(types);
1709	return err;
1710}
1711
1712/* Find an offset in BTF string section that corresponds to a given string *s*.
1713 * Returns:
1714 *   - >0 offset into string section, if string is found;
1715 *   - -ENOENT, if string is not in the string section;
1716 *   - <0, on any other error.
1717 */
1718int btf__find_str(struct btf *btf, const char *s)
1719{
1720	int off;
1721
1722	if (btf->base_btf) {
1723		off = btf__find_str(btf->base_btf, s);
1724		if (off != -ENOENT)
1725			return off;
1726	}
1727
1728	/* BTF needs to be in a modifiable state to build string lookup index */
1729	if (btf_ensure_modifiable(btf))
1730		return libbpf_err(-ENOMEM);
1731
1732	off = strset__find_str(btf->strs_set, s);
1733	if (off < 0)
1734		return libbpf_err(off);
1735
1736	return btf->start_str_off + off;
1737}
1738
1739/* Add a string s to the BTF string section.
1740 * Returns:
1741 *   - > 0 offset into string section, on success;
1742 *   - < 0, on error.
1743 */
1744int btf__add_str(struct btf *btf, const char *s)
1745{
1746	int off;
1747
1748	if (btf->base_btf) {
1749		off = btf__find_str(btf->base_btf, s);
1750		if (off != -ENOENT)
1751			return off;
1752	}
1753
1754	if (btf_ensure_modifiable(btf))
1755		return libbpf_err(-ENOMEM);
1756
1757	off = strset__add_str(btf->strs_set, s);
1758	if (off < 0)
1759		return libbpf_err(off);
1760
1761	btf->hdr->str_len = strset__data_size(btf->strs_set);
1762
1763	return btf->start_str_off + off;
1764}
1765
1766static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1767{
1768	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1769			      btf->hdr->type_len, UINT_MAX, add_sz);
1770}
1771
1772static void btf_type_inc_vlen(struct btf_type *t)
1773{
1774	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1775}
1776
1777static int btf_commit_type(struct btf *btf, int data_sz)
1778{
1779	int err;
1780
1781	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1782	if (err)
1783		return libbpf_err(err);
1784
1785	btf->hdr->type_len += data_sz;
1786	btf->hdr->str_off += data_sz;
1787	btf->nr_types++;
1788	return btf->start_id + btf->nr_types - 1;
1789}
1790
1791struct btf_pipe {
1792	const struct btf *src;
1793	struct btf *dst;
1794	struct hashmap *str_off_map; /* map string offsets from src to dst */
1795};
1796
1797static int btf_rewrite_str(struct btf_pipe *p, __u32 *str_off)
1798{
1799	long mapped_off;
1800	int off, err;
1801
1802	if (!*str_off) /* nothing to do for empty strings */
1803		return 0;
1804
1805	if (p->str_off_map &&
1806	    hashmap__find(p->str_off_map, *str_off, &mapped_off)) {
1807		*str_off = mapped_off;
1808		return 0;
1809	}
1810
1811	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1812	if (off < 0)
1813		return off;
1814
1815	/* Remember string mapping from src to dst.  It avoids
1816	 * performing expensive string comparisons.
1817	 */
1818	if (p->str_off_map) {
1819		err = hashmap__append(p->str_off_map, *str_off, off);
1820		if (err)
1821			return err;
1822	}
1823
1824	*str_off = off;
1825	return 0;
1826}
1827
1828static int btf_add_type(struct btf_pipe *p, const struct btf_type *src_type)
1829{
1830	struct btf_field_iter it;
1831	struct btf_type *t;
1832	__u32 *str_off;
1833	int sz, err;
1834
1835	sz = btf_type_size(src_type);
1836	if (sz < 0)
1837		return libbpf_err(sz);
1838
1839	/* deconstruct BTF, if necessary, and invalidate raw_data */
1840	if (btf_ensure_modifiable(p->dst))
1841		return libbpf_err(-ENOMEM);
1842
1843	t = btf_add_type_mem(p->dst, sz);
1844	if (!t)
1845		return libbpf_err(-ENOMEM);
1846
1847	memcpy(t, src_type, sz);
1848
1849	err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS);
1850	if (err)
1851		return libbpf_err(err);
1852
1853	while ((str_off = btf_field_iter_next(&it))) {
1854		err = btf_rewrite_str(p, str_off);
1855		if (err)
1856			return libbpf_err(err);
1857	}
1858
1859	return btf_commit_type(p->dst, sz);
1860}
1861
1862int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1863{
1864	struct btf_pipe p = { .src = src_btf, .dst = btf };
1865
1866	return btf_add_type(&p, src_type);
1867}
1868
1869static size_t btf_dedup_identity_hash_fn(long key, void *ctx);
1870static bool btf_dedup_equal_fn(long k1, long k2, void *ctx);
1871
1872int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1873{
1874	struct btf_pipe p = { .src = src_btf, .dst = btf };
1875	int data_sz, sz, cnt, i, err, old_strs_len;
1876	__u32 *off;
1877	void *t;
1878
1879	/* appending split BTF isn't supported yet */
1880	if (src_btf->base_btf)
1881		return libbpf_err(-ENOTSUP);
1882
1883	/* deconstruct BTF, if necessary, and invalidate raw_data */
1884	if (btf_ensure_modifiable(btf))
1885		return libbpf_err(-ENOMEM);
1886
1887	/* remember original strings section size if we have to roll back
1888	 * partial strings section changes
1889	 */
1890	old_strs_len = btf->hdr->str_len;
1891
1892	data_sz = src_btf->hdr->type_len;
1893	cnt = btf__type_cnt(src_btf) - 1;
1894
1895	/* pre-allocate enough memory for new types */
1896	t = btf_add_type_mem(btf, data_sz);
1897	if (!t)
1898		return libbpf_err(-ENOMEM);
1899
1900	/* pre-allocate enough memory for type offset index for new types */
1901	off = btf_add_type_offs_mem(btf, cnt);
1902	if (!off)
1903		return libbpf_err(-ENOMEM);
1904
1905	/* Map the string offsets from src_btf to the offsets from btf to improve performance */
1906	p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1907	if (IS_ERR(p.str_off_map))
1908		return libbpf_err(-ENOMEM);
1909
1910	/* bulk copy types data for all types from src_btf */
1911	memcpy(t, src_btf->types_data, data_sz);
1912
1913	for (i = 0; i < cnt; i++) {
1914		struct btf_field_iter it;
1915		__u32 *type_id, *str_off;
1916
1917		sz = btf_type_size(t);
1918		if (sz < 0) {
1919			/* unlikely, has to be corrupted src_btf */
1920			err = sz;
1921			goto err_out;
1922		}
1923
1924		/* fill out type ID to type offset mapping for lookups by type ID */
1925		*off = t - btf->types_data;
1926
1927		/* add, dedup, and remap strings referenced by this BTF type */
1928		err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS);
1929		if (err)
1930			goto err_out;
1931		while ((str_off = btf_field_iter_next(&it))) {
1932			err = btf_rewrite_str(&p, str_off);
1933			if (err)
1934				goto err_out;
1935		}
1936
1937		/* remap all type IDs referenced from this BTF type */
1938		err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS);
1939		if (err)
1940			goto err_out;
1941
1942		while ((type_id = btf_field_iter_next(&it))) {
1943			if (!*type_id) /* nothing to do for VOID references */
1944				continue;
1945
1946			/* we haven't updated btf's type count yet, so
1947			 * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1948			 * add to all newly added BTF types
1949			 */
1950			*type_id += btf->start_id + btf->nr_types - 1;
1951		}
1952
1953		/* go to next type data and type offset index entry */
1954		t += sz;
1955		off++;
1956	}
1957
1958	/* Up until now any of the copied type data was effectively invisible,
1959	 * so if we exited early before this point due to error, BTF would be
1960	 * effectively unmodified. There would be extra internal memory
1961	 * pre-allocated, but it would not be available for querying.  But now
1962	 * that we've copied and rewritten all the data successfully, we can
1963	 * update type count and various internal offsets and sizes to
1964	 * "commit" the changes and made them visible to the outside world.
1965	 */
1966	btf->hdr->type_len += data_sz;
1967	btf->hdr->str_off += data_sz;
1968	btf->nr_types += cnt;
1969
1970	hashmap__free(p.str_off_map);
1971
1972	/* return type ID of the first added BTF type */
1973	return btf->start_id + btf->nr_types - cnt;
1974err_out:
1975	/* zero out preallocated memory as if it was just allocated with
1976	 * libbpf_add_mem()
1977	 */
1978	memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1979	memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1980
1981	/* and now restore original strings section size; types data size
1982	 * wasn't modified, so doesn't need restoring, see big comment above
1983	 */
1984	btf->hdr->str_len = old_strs_len;
1985
1986	hashmap__free(p.str_off_map);
1987
1988	return libbpf_err(err);
1989}
1990
1991/*
1992 * Append new BTF_KIND_INT type with:
1993 *   - *name* - non-empty, non-NULL type name;
1994 *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1995 *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1996 * Returns:
1997 *   - >0, type ID of newly added BTF type;
1998 *   - <0, on error.
1999 */
2000int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
2001{
2002	struct btf_type *t;
2003	int sz, name_off;
2004
2005	/* non-empty name */
2006	if (!name || !name[0])
2007		return libbpf_err(-EINVAL);
2008	/* byte_sz must be power of 2 */
2009	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
2010		return libbpf_err(-EINVAL);
2011	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
2012		return libbpf_err(-EINVAL);
2013
2014	/* deconstruct BTF, if necessary, and invalidate raw_data */
2015	if (btf_ensure_modifiable(btf))
2016		return libbpf_err(-ENOMEM);
2017
2018	sz = sizeof(struct btf_type) + sizeof(int);
2019	t = btf_add_type_mem(btf, sz);
2020	if (!t)
2021		return libbpf_err(-ENOMEM);
2022
2023	/* if something goes wrong later, we might end up with an extra string,
2024	 * but that shouldn't be a problem, because BTF can't be constructed
2025	 * completely anyway and will most probably be just discarded
2026	 */
2027	name_off = btf__add_str(btf, name);
2028	if (name_off < 0)
2029		return name_off;
2030
2031	t->name_off = name_off;
2032	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
2033	t->size = byte_sz;
2034	/* set INT info, we don't allow setting legacy bit offset/size */
2035	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
2036
2037	return btf_commit_type(btf, sz);
2038}
2039
2040/*
2041 * Append new BTF_KIND_FLOAT type with:
2042 *   - *name* - non-empty, non-NULL type name;
2043 *   - *sz* - size of the type, in bytes;
2044 * Returns:
2045 *   - >0, type ID of newly added BTF type;
2046 *   - <0, on error.
2047 */
2048int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
2049{
2050	struct btf_type *t;
2051	int sz, name_off;
2052
2053	/* non-empty name */
2054	if (!name || !name[0])
2055		return libbpf_err(-EINVAL);
2056
2057	/* byte_sz must be one of the explicitly allowed values */
2058	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
2059	    byte_sz != 16)
2060		return libbpf_err(-EINVAL);
2061
2062	if (btf_ensure_modifiable(btf))
2063		return libbpf_err(-ENOMEM);
2064
2065	sz = sizeof(struct btf_type);
2066	t = btf_add_type_mem(btf, sz);
2067	if (!t)
2068		return libbpf_err(-ENOMEM);
2069
2070	name_off = btf__add_str(btf, name);
2071	if (name_off < 0)
2072		return name_off;
2073
2074	t->name_off = name_off;
2075	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
2076	t->size = byte_sz;
2077
2078	return btf_commit_type(btf, sz);
2079}
2080
2081/* it's completely legal to append BTF types with type IDs pointing forward to
2082 * types that haven't been appended yet, so we only make sure that id looks
2083 * sane, we can't guarantee that ID will always be valid
2084 */
2085static int validate_type_id(int id)
2086{
2087	if (id < 0 || id > BTF_MAX_NR_TYPES)
2088		return -EINVAL;
2089	return 0;
2090}
2091
2092/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
2093static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
2094{
2095	struct btf_type *t;
2096	int sz, name_off = 0;
2097
2098	if (validate_type_id(ref_type_id))
2099		return libbpf_err(-EINVAL);
2100
2101	if (btf_ensure_modifiable(btf))
2102		return libbpf_err(-ENOMEM);
2103
2104	sz = sizeof(struct btf_type);
2105	t = btf_add_type_mem(btf, sz);
2106	if (!t)
2107		return libbpf_err(-ENOMEM);
2108
2109	if (name && name[0]) {
2110		name_off = btf__add_str(btf, name);
2111		if (name_off < 0)
2112			return name_off;
2113	}
2114
2115	t->name_off = name_off;
2116	t->info = btf_type_info(kind, 0, 0);
2117	t->type = ref_type_id;
2118
2119	return btf_commit_type(btf, sz);
2120}
2121
2122/*
2123 * Append new BTF_KIND_PTR type with:
2124 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2125 * Returns:
2126 *   - >0, type ID of newly added BTF type;
2127 *   - <0, on error.
2128 */
2129int btf__add_ptr(struct btf *btf, int ref_type_id)
2130{
2131	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
2132}
2133
2134/*
2135 * Append new BTF_KIND_ARRAY type with:
2136 *   - *index_type_id* - type ID of the type describing array index;
2137 *   - *elem_type_id* - type ID of the type describing array element;
2138 *   - *nr_elems* - the size of the array;
2139 * Returns:
2140 *   - >0, type ID of newly added BTF type;
2141 *   - <0, on error.
2142 */
2143int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
2144{
2145	struct btf_type *t;
2146	struct btf_array *a;
2147	int sz;
2148
2149	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
2150		return libbpf_err(-EINVAL);
2151
2152	if (btf_ensure_modifiable(btf))
2153		return libbpf_err(-ENOMEM);
2154
2155	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
2156	t = btf_add_type_mem(btf, sz);
2157	if (!t)
2158		return libbpf_err(-ENOMEM);
2159
2160	t->name_off = 0;
2161	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
2162	t->size = 0;
2163
2164	a = btf_array(t);
2165	a->type = elem_type_id;
2166	a->index_type = index_type_id;
2167	a->nelems = nr_elems;
2168
2169	return btf_commit_type(btf, sz);
2170}
2171
2172/* generic STRUCT/UNION append function */
2173static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
2174{
2175	struct btf_type *t;
2176	int sz, name_off = 0;
2177
2178	if (btf_ensure_modifiable(btf))
2179		return libbpf_err(-ENOMEM);
2180
2181	sz = sizeof(struct btf_type);
2182	t = btf_add_type_mem(btf, sz);
2183	if (!t)
2184		return libbpf_err(-ENOMEM);
2185
2186	if (name && name[0]) {
2187		name_off = btf__add_str(btf, name);
2188		if (name_off < 0)
2189			return name_off;
2190	}
2191
2192	/* start out with vlen=0 and no kflag; this will be adjusted when
2193	 * adding each member
2194	 */
2195	t->name_off = name_off;
2196	t->info = btf_type_info(kind, 0, 0);
2197	t->size = bytes_sz;
2198
2199	return btf_commit_type(btf, sz);
2200}
2201
2202/*
2203 * Append new BTF_KIND_STRUCT type with:
2204 *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
2205 *   - *byte_sz* - size of the struct, in bytes;
2206 *
2207 * Struct initially has no fields in it. Fields can be added by
2208 * btf__add_field() right after btf__add_struct() succeeds.
2209 *
2210 * Returns:
2211 *   - >0, type ID of newly added BTF type;
2212 *   - <0, on error.
2213 */
2214int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
2215{
2216	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
2217}
2218
2219/*
2220 * Append new BTF_KIND_UNION type with:
2221 *   - *name* - name of the union, can be NULL or empty for anonymous union;
2222 *   - *byte_sz* - size of the union, in bytes;
2223 *
2224 * Union initially has no fields in it. Fields can be added by
2225 * btf__add_field() right after btf__add_union() succeeds. All fields
2226 * should have *bit_offset* of 0.
2227 *
2228 * Returns:
2229 *   - >0, type ID of newly added BTF type;
2230 *   - <0, on error.
2231 */
2232int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
2233{
2234	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
2235}
2236
2237static struct btf_type *btf_last_type(struct btf *btf)
2238{
2239	return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
2240}
2241
2242/*
2243 * Append new field for the current STRUCT/UNION type with:
2244 *   - *name* - name of the field, can be NULL or empty for anonymous field;
2245 *   - *type_id* - type ID for the type describing field type;
2246 *   - *bit_offset* - bit offset of the start of the field within struct/union;
2247 *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
2248 * Returns:
2249 *   -  0, on success;
2250 *   - <0, on error.
2251 */
2252int btf__add_field(struct btf *btf, const char *name, int type_id,
2253		   __u32 bit_offset, __u32 bit_size)
2254{
2255	struct btf_type *t;
2256	struct btf_member *m;
2257	bool is_bitfield;
2258	int sz, name_off = 0;
2259
2260	/* last type should be union/struct */
2261	if (btf->nr_types == 0)
2262		return libbpf_err(-EINVAL);
2263	t = btf_last_type(btf);
2264	if (!btf_is_composite(t))
2265		return libbpf_err(-EINVAL);
2266
2267	if (validate_type_id(type_id))
2268		return libbpf_err(-EINVAL);
2269	/* best-effort bit field offset/size enforcement */
2270	is_bitfield = bit_size || (bit_offset % 8 != 0);
2271	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2272		return libbpf_err(-EINVAL);
2273
2274	/* only offset 0 is allowed for unions */
2275	if (btf_is_union(t) && bit_offset)
2276		return libbpf_err(-EINVAL);
2277
2278	/* decompose and invalidate raw data */
2279	if (btf_ensure_modifiable(btf))
2280		return libbpf_err(-ENOMEM);
2281
2282	sz = sizeof(struct btf_member);
2283	m = btf_add_type_mem(btf, sz);
2284	if (!m)
2285		return libbpf_err(-ENOMEM);
2286
2287	if (name && name[0]) {
2288		name_off = btf__add_str(btf, name);
2289		if (name_off < 0)
2290			return name_off;
2291	}
2292
2293	m->name_off = name_off;
2294	m->type = type_id;
2295	m->offset = bit_offset | (bit_size << 24);
2296
2297	/* btf_add_type_mem can invalidate t pointer */
2298	t = btf_last_type(btf);
2299	/* update parent type's vlen and kflag */
2300	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2301
2302	btf->hdr->type_len += sz;
2303	btf->hdr->str_off += sz;
2304	return 0;
2305}
2306
2307static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz,
2308			       bool is_signed, __u8 kind)
 
 
 
 
 
 
 
 
 
 
 
 
2309{
2310	struct btf_type *t;
2311	int sz, name_off = 0;
2312
2313	/* byte_sz must be power of 2 */
2314	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2315		return libbpf_err(-EINVAL);
2316
2317	if (btf_ensure_modifiable(btf))
2318		return libbpf_err(-ENOMEM);
2319
2320	sz = sizeof(struct btf_type);
2321	t = btf_add_type_mem(btf, sz);
2322	if (!t)
2323		return libbpf_err(-ENOMEM);
2324
2325	if (name && name[0]) {
2326		name_off = btf__add_str(btf, name);
2327		if (name_off < 0)
2328			return name_off;
2329	}
2330
2331	/* start out with vlen=0; it will be adjusted when adding enum values */
2332	t->name_off = name_off;
2333	t->info = btf_type_info(kind, 0, is_signed);
2334	t->size = byte_sz;
2335
2336	return btf_commit_type(btf, sz);
2337}
2338
2339/*
2340 * Append new BTF_KIND_ENUM type with:
2341 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2342 *   - *byte_sz* - size of the enum, in bytes.
2343 *
2344 * Enum initially has no enum values in it (and corresponds to enum forward
2345 * declaration). Enumerator values can be added by btf__add_enum_value()
2346 * immediately after btf__add_enum() succeeds.
2347 *
2348 * Returns:
2349 *   - >0, type ID of newly added BTF type;
2350 *   - <0, on error.
2351 */
2352int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2353{
2354	/*
2355	 * set the signedness to be unsigned, it will change to signed
2356	 * if any later enumerator is negative.
2357	 */
2358	return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM);
2359}
2360
2361/*
2362 * Append new enum value for the current ENUM type with:
2363 *   - *name* - name of the enumerator value, can't be NULL or empty;
2364 *   - *value* - integer value corresponding to enum value *name*;
2365 * Returns:
2366 *   -  0, on success;
2367 *   - <0, on error.
2368 */
2369int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2370{
2371	struct btf_type *t;
2372	struct btf_enum *v;
2373	int sz, name_off;
2374
2375	/* last type should be BTF_KIND_ENUM */
2376	if (btf->nr_types == 0)
2377		return libbpf_err(-EINVAL);
2378	t = btf_last_type(btf);
2379	if (!btf_is_enum(t))
2380		return libbpf_err(-EINVAL);
2381
2382	/* non-empty name */
2383	if (!name || !name[0])
2384		return libbpf_err(-EINVAL);
2385	if (value < INT_MIN || value > UINT_MAX)
2386		return libbpf_err(-E2BIG);
2387
2388	/* decompose and invalidate raw data */
2389	if (btf_ensure_modifiable(btf))
2390		return libbpf_err(-ENOMEM);
2391
2392	sz = sizeof(struct btf_enum);
2393	v = btf_add_type_mem(btf, sz);
2394	if (!v)
2395		return libbpf_err(-ENOMEM);
2396
2397	name_off = btf__add_str(btf, name);
2398	if (name_off < 0)
2399		return name_off;
2400
2401	v->name_off = name_off;
2402	v->val = value;
2403
2404	/* update parent type's vlen */
2405	t = btf_last_type(btf);
2406	btf_type_inc_vlen(t);
2407
2408	/* if negative value, set signedness to signed */
2409	if (value < 0)
2410		t->info = btf_type_info(btf_kind(t), btf_vlen(t), true);
2411
2412	btf->hdr->type_len += sz;
2413	btf->hdr->str_off += sz;
2414	return 0;
2415}
2416
2417/*
2418 * Append new BTF_KIND_ENUM64 type with:
2419 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2420 *   - *byte_sz* - size of the enum, in bytes.
2421 *   - *is_signed* - whether the enum values are signed or not;
2422 *
2423 * Enum initially has no enum values in it (and corresponds to enum forward
2424 * declaration). Enumerator values can be added by btf__add_enum64_value()
2425 * immediately after btf__add_enum64() succeeds.
2426 *
2427 * Returns:
2428 *   - >0, type ID of newly added BTF type;
2429 *   - <0, on error.
2430 */
2431int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz,
2432		    bool is_signed)
2433{
2434	return btf_add_enum_common(btf, name, byte_sz, is_signed,
2435				   BTF_KIND_ENUM64);
2436}
2437
2438/*
2439 * Append new enum value for the current ENUM64 type with:
2440 *   - *name* - name of the enumerator value, can't be NULL or empty;
2441 *   - *value* - integer value corresponding to enum value *name*;
2442 * Returns:
2443 *   -  0, on success;
2444 *   - <0, on error.
2445 */
2446int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value)
2447{
2448	struct btf_enum64 *v;
2449	struct btf_type *t;
2450	int sz, name_off;
2451
2452	/* last type should be BTF_KIND_ENUM64 */
2453	if (btf->nr_types == 0)
2454		return libbpf_err(-EINVAL);
2455	t = btf_last_type(btf);
2456	if (!btf_is_enum64(t))
2457		return libbpf_err(-EINVAL);
2458
2459	/* non-empty name */
2460	if (!name || !name[0])
2461		return libbpf_err(-EINVAL);
2462
2463	/* decompose and invalidate raw data */
2464	if (btf_ensure_modifiable(btf))
2465		return libbpf_err(-ENOMEM);
2466
2467	sz = sizeof(struct btf_enum64);
2468	v = btf_add_type_mem(btf, sz);
2469	if (!v)
2470		return libbpf_err(-ENOMEM);
2471
2472	name_off = btf__add_str(btf, name);
2473	if (name_off < 0)
2474		return name_off;
2475
2476	v->name_off = name_off;
2477	v->val_lo32 = (__u32)value;
2478	v->val_hi32 = value >> 32;
2479
2480	/* update parent type's vlen */
2481	t = btf_last_type(btf);
2482	btf_type_inc_vlen(t);
2483
2484	btf->hdr->type_len += sz;
2485	btf->hdr->str_off += sz;
2486	return 0;
2487}
2488
2489/*
2490 * Append new BTF_KIND_FWD type with:
2491 *   - *name*, non-empty/non-NULL name;
2492 *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2493 *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2494 * Returns:
2495 *   - >0, type ID of newly added BTF type;
2496 *   - <0, on error.
2497 */
2498int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2499{
2500	if (!name || !name[0])
2501		return libbpf_err(-EINVAL);
2502
2503	switch (fwd_kind) {
2504	case BTF_FWD_STRUCT:
2505	case BTF_FWD_UNION: {
2506		struct btf_type *t;
2507		int id;
2508
2509		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2510		if (id <= 0)
2511			return id;
2512		t = btf_type_by_id(btf, id);
2513		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2514		return id;
2515	}
2516	case BTF_FWD_ENUM:
2517		/* enum forward in BTF currently is just an enum with no enum
2518		 * values; we also assume a standard 4-byte size for it
2519		 */
2520		return btf__add_enum(btf, name, sizeof(int));
2521	default:
2522		return libbpf_err(-EINVAL);
2523	}
2524}
2525
2526/*
2527 * Append new BTF_KING_TYPEDEF type with:
2528 *   - *name*, non-empty/non-NULL name;
2529 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2530 * Returns:
2531 *   - >0, type ID of newly added BTF type;
2532 *   - <0, on error.
2533 */
2534int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2535{
2536	if (!name || !name[0])
2537		return libbpf_err(-EINVAL);
2538
2539	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2540}
2541
2542/*
2543 * Append new BTF_KIND_VOLATILE type with:
2544 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2545 * Returns:
2546 *   - >0, type ID of newly added BTF type;
2547 *   - <0, on error.
2548 */
2549int btf__add_volatile(struct btf *btf, int ref_type_id)
2550{
2551	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2552}
2553
2554/*
2555 * Append new BTF_KIND_CONST type with:
2556 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2557 * Returns:
2558 *   - >0, type ID of newly added BTF type;
2559 *   - <0, on error.
2560 */
2561int btf__add_const(struct btf *btf, int ref_type_id)
2562{
2563	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2564}
2565
2566/*
2567 * Append new BTF_KIND_RESTRICT type with:
2568 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2569 * Returns:
2570 *   - >0, type ID of newly added BTF type;
2571 *   - <0, on error.
2572 */
2573int btf__add_restrict(struct btf *btf, int ref_type_id)
2574{
2575	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2576}
2577
2578/*
2579 * Append new BTF_KIND_TYPE_TAG type with:
2580 *   - *value*, non-empty/non-NULL tag value;
2581 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2582 * Returns:
2583 *   - >0, type ID of newly added BTF type;
2584 *   - <0, on error.
2585 */
2586int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2587{
2588	if (!value || !value[0])
2589		return libbpf_err(-EINVAL);
2590
2591	return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2592}
2593
2594/*
2595 * Append new BTF_KIND_FUNC type with:
2596 *   - *name*, non-empty/non-NULL name;
2597 *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2598 * Returns:
2599 *   - >0, type ID of newly added BTF type;
2600 *   - <0, on error.
2601 */
2602int btf__add_func(struct btf *btf, const char *name,
2603		  enum btf_func_linkage linkage, int proto_type_id)
2604{
2605	int id;
2606
2607	if (!name || !name[0])
2608		return libbpf_err(-EINVAL);
2609	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2610	    linkage != BTF_FUNC_EXTERN)
2611		return libbpf_err(-EINVAL);
2612
2613	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2614	if (id > 0) {
2615		struct btf_type *t = btf_type_by_id(btf, id);
2616
2617		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2618	}
2619	return libbpf_err(id);
2620}
2621
2622/*
2623 * Append new BTF_KIND_FUNC_PROTO with:
2624 *   - *ret_type_id* - type ID for return result of a function.
2625 *
2626 * Function prototype initially has no arguments, but they can be added by
2627 * btf__add_func_param() one by one, immediately after
2628 * btf__add_func_proto() succeeded.
2629 *
2630 * Returns:
2631 *   - >0, type ID of newly added BTF type;
2632 *   - <0, on error.
2633 */
2634int btf__add_func_proto(struct btf *btf, int ret_type_id)
2635{
2636	struct btf_type *t;
2637	int sz;
2638
2639	if (validate_type_id(ret_type_id))
2640		return libbpf_err(-EINVAL);
2641
2642	if (btf_ensure_modifiable(btf))
2643		return libbpf_err(-ENOMEM);
2644
2645	sz = sizeof(struct btf_type);
2646	t = btf_add_type_mem(btf, sz);
2647	if (!t)
2648		return libbpf_err(-ENOMEM);
2649
2650	/* start out with vlen=0; this will be adjusted when adding enum
2651	 * values, if necessary
2652	 */
2653	t->name_off = 0;
2654	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2655	t->type = ret_type_id;
2656
2657	return btf_commit_type(btf, sz);
2658}
2659
2660/*
2661 * Append new function parameter for current FUNC_PROTO type with:
2662 *   - *name* - parameter name, can be NULL or empty;
2663 *   - *type_id* - type ID describing the type of the parameter.
2664 * Returns:
2665 *   -  0, on success;
2666 *   - <0, on error.
2667 */
2668int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2669{
2670	struct btf_type *t;
2671	struct btf_param *p;
2672	int sz, name_off = 0;
2673
2674	if (validate_type_id(type_id))
2675		return libbpf_err(-EINVAL);
2676
2677	/* last type should be BTF_KIND_FUNC_PROTO */
2678	if (btf->nr_types == 0)
2679		return libbpf_err(-EINVAL);
2680	t = btf_last_type(btf);
2681	if (!btf_is_func_proto(t))
2682		return libbpf_err(-EINVAL);
2683
2684	/* decompose and invalidate raw data */
2685	if (btf_ensure_modifiable(btf))
2686		return libbpf_err(-ENOMEM);
2687
2688	sz = sizeof(struct btf_param);
2689	p = btf_add_type_mem(btf, sz);
2690	if (!p)
2691		return libbpf_err(-ENOMEM);
2692
2693	if (name && name[0]) {
2694		name_off = btf__add_str(btf, name);
2695		if (name_off < 0)
2696			return name_off;
2697	}
2698
2699	p->name_off = name_off;
2700	p->type = type_id;
2701
2702	/* update parent type's vlen */
2703	t = btf_last_type(btf);
2704	btf_type_inc_vlen(t);
2705
2706	btf->hdr->type_len += sz;
2707	btf->hdr->str_off += sz;
2708	return 0;
2709}
2710
2711/*
2712 * Append new BTF_KIND_VAR type with:
2713 *   - *name* - non-empty/non-NULL name;
2714 *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2715 *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2716 *   - *type_id* - type ID of the type describing the type of the variable.
2717 * Returns:
2718 *   - >0, type ID of newly added BTF type;
2719 *   - <0, on error.
2720 */
2721int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2722{
2723	struct btf_type *t;
2724	struct btf_var *v;
2725	int sz, name_off;
2726
2727	/* non-empty name */
2728	if (!name || !name[0])
2729		return libbpf_err(-EINVAL);
2730	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2731	    linkage != BTF_VAR_GLOBAL_EXTERN)
2732		return libbpf_err(-EINVAL);
2733	if (validate_type_id(type_id))
2734		return libbpf_err(-EINVAL);
2735
2736	/* deconstruct BTF, if necessary, and invalidate raw_data */
2737	if (btf_ensure_modifiable(btf))
2738		return libbpf_err(-ENOMEM);
2739
2740	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2741	t = btf_add_type_mem(btf, sz);
2742	if (!t)
2743		return libbpf_err(-ENOMEM);
2744
2745	name_off = btf__add_str(btf, name);
2746	if (name_off < 0)
2747		return name_off;
2748
2749	t->name_off = name_off;
2750	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2751	t->type = type_id;
2752
2753	v = btf_var(t);
2754	v->linkage = linkage;
2755
2756	return btf_commit_type(btf, sz);
2757}
2758
2759/*
2760 * Append new BTF_KIND_DATASEC type with:
2761 *   - *name* - non-empty/non-NULL name;
2762 *   - *byte_sz* - data section size, in bytes.
2763 *
2764 * Data section is initially empty. Variables info can be added with
2765 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2766 *
2767 * Returns:
2768 *   - >0, type ID of newly added BTF type;
2769 *   - <0, on error.
2770 */
2771int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2772{
2773	struct btf_type *t;
2774	int sz, name_off;
2775
2776	/* non-empty name */
2777	if (!name || !name[0])
2778		return libbpf_err(-EINVAL);
2779
2780	if (btf_ensure_modifiable(btf))
2781		return libbpf_err(-ENOMEM);
2782
2783	sz = sizeof(struct btf_type);
2784	t = btf_add_type_mem(btf, sz);
2785	if (!t)
2786		return libbpf_err(-ENOMEM);
2787
2788	name_off = btf__add_str(btf, name);
2789	if (name_off < 0)
2790		return name_off;
2791
2792	/* start with vlen=0, which will be update as var_secinfos are added */
2793	t->name_off = name_off;
2794	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2795	t->size = byte_sz;
2796
2797	return btf_commit_type(btf, sz);
2798}
2799
2800/*
2801 * Append new data section variable information entry for current DATASEC type:
2802 *   - *var_type_id* - type ID, describing type of the variable;
2803 *   - *offset* - variable offset within data section, in bytes;
2804 *   - *byte_sz* - variable size, in bytes.
2805 *
2806 * Returns:
2807 *   -  0, on success;
2808 *   - <0, on error.
2809 */
2810int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2811{
2812	struct btf_type *t;
2813	struct btf_var_secinfo *v;
2814	int sz;
2815
2816	/* last type should be BTF_KIND_DATASEC */
2817	if (btf->nr_types == 0)
2818		return libbpf_err(-EINVAL);
2819	t = btf_last_type(btf);
2820	if (!btf_is_datasec(t))
2821		return libbpf_err(-EINVAL);
2822
2823	if (validate_type_id(var_type_id))
2824		return libbpf_err(-EINVAL);
2825
2826	/* decompose and invalidate raw data */
2827	if (btf_ensure_modifiable(btf))
2828		return libbpf_err(-ENOMEM);
2829
2830	sz = sizeof(struct btf_var_secinfo);
2831	v = btf_add_type_mem(btf, sz);
2832	if (!v)
2833		return libbpf_err(-ENOMEM);
2834
2835	v->type = var_type_id;
2836	v->offset = offset;
2837	v->size = byte_sz;
2838
2839	/* update parent type's vlen */
2840	t = btf_last_type(btf);
2841	btf_type_inc_vlen(t);
2842
2843	btf->hdr->type_len += sz;
2844	btf->hdr->str_off += sz;
2845	return 0;
2846}
2847
2848/*
2849 * Append new BTF_KIND_DECL_TAG type with:
2850 *   - *value* - non-empty/non-NULL string;
2851 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2852 *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2853 *     member or function argument index;
2854 * Returns:
2855 *   - >0, type ID of newly added BTF type;
2856 *   - <0, on error.
2857 */
2858int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2859		 int component_idx)
2860{
2861	struct btf_type *t;
2862	int sz, value_off;
2863
2864	if (!value || !value[0] || component_idx < -1)
2865		return libbpf_err(-EINVAL);
2866
2867	if (validate_type_id(ref_type_id))
2868		return libbpf_err(-EINVAL);
2869
2870	if (btf_ensure_modifiable(btf))
2871		return libbpf_err(-ENOMEM);
2872
2873	sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2874	t = btf_add_type_mem(btf, sz);
2875	if (!t)
2876		return libbpf_err(-ENOMEM);
2877
2878	value_off = btf__add_str(btf, value);
2879	if (value_off < 0)
2880		return value_off;
2881
2882	t->name_off = value_off;
2883	t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2884	t->type = ref_type_id;
2885	btf_decl_tag(t)->component_idx = component_idx;
2886
2887	return btf_commit_type(btf, sz);
2888}
2889
2890struct btf_ext_sec_info_param {
2891	__u32 off;
2892	__u32 len;
2893	__u32 min_rec_size;
2894	struct btf_ext_info *ext_info;
2895	const char *desc;
2896};
2897
2898/*
2899 * Parse a single info subsection of the BTF.ext info data:
2900 *  - validate subsection structure and elements
2901 *  - save info subsection start and sizing details in struct btf_ext
2902 *  - endian-independent operation, for calling before byte-swapping
2903 */
2904static int btf_ext_parse_sec_info(struct btf_ext *btf_ext,
2905				  struct btf_ext_sec_info_param *ext_sec,
2906				  bool is_native)
2907{
2908	const struct btf_ext_info_sec *sinfo;
2909	struct btf_ext_info *ext_info;
2910	__u32 info_left, record_size;
2911	size_t sec_cnt = 0;
2912	void *info;
2913
2914	if (ext_sec->len == 0)
2915		return 0;
2916
2917	if (ext_sec->off & 0x03) {
2918		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2919		     ext_sec->desc);
2920		return -EINVAL;
2921	}
2922
2923	/* The start of the info sec (including the __u32 record_size). */
2924	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2925	info_left = ext_sec->len;
2926
2927	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2928		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2929			 ext_sec->desc, ext_sec->off, ext_sec->len);
2930		return -EINVAL;
2931	}
2932
2933	/* At least a record size */
2934	if (info_left < sizeof(__u32)) {
2935		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2936		return -EINVAL;
2937	}
2938
2939	/* The record size needs to meet either the minimum standard or, when
2940	 * handling non-native endianness data, the exact standard so as
2941	 * to allow safe byte-swapping.
2942	 */
2943	record_size = is_native ? *(__u32 *)info : bswap_32(*(__u32 *)info);
2944	if (record_size < ext_sec->min_rec_size ||
2945	    (!is_native && record_size != ext_sec->min_rec_size) ||
2946	    record_size & 0x03) {
2947		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2948			 ext_sec->desc, record_size);
2949		return -EINVAL;
2950	}
2951
2952	sinfo = info + sizeof(__u32);
2953	info_left -= sizeof(__u32);
2954
2955	/* If no records, return failure now so .BTF.ext won't be used. */
2956	if (!info_left) {
2957		pr_debug("%s section in .BTF.ext has no records\n", ext_sec->desc);
2958		return -EINVAL;
2959	}
2960
2961	while (info_left) {
2962		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2963		__u64 total_record_size;
2964		__u32 num_records;
2965
2966		if (info_left < sec_hdrlen) {
2967			pr_debug("%s section header is not found in .BTF.ext\n",
2968			     ext_sec->desc);
2969			return -EINVAL;
2970		}
2971
2972		num_records = is_native ? sinfo->num_info : bswap_32(sinfo->num_info);
2973		if (num_records == 0) {
2974			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2975			     ext_sec->desc);
2976			return -EINVAL;
2977		}
2978
2979		total_record_size = sec_hdrlen + (__u64)num_records * record_size;
 
2980		if (info_left < total_record_size) {
2981			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2982			     ext_sec->desc);
2983			return -EINVAL;
2984		}
2985
2986		info_left -= total_record_size;
2987		sinfo = (void *)sinfo + total_record_size;
2988		sec_cnt++;
2989	}
2990
2991	ext_info = ext_sec->ext_info;
2992	ext_info->len = ext_sec->len - sizeof(__u32);
2993	ext_info->rec_size = record_size;
2994	ext_info->info = info + sizeof(__u32);
2995	ext_info->sec_cnt = sec_cnt;
2996
2997	return 0;
2998}
2999
3000/* Parse all info secs in the BTF.ext info data */
3001static int btf_ext_parse_info(struct btf_ext *btf_ext, bool is_native)
3002{
3003	struct btf_ext_sec_info_param func_info = {
3004		.off = btf_ext->hdr->func_info_off,
3005		.len = btf_ext->hdr->func_info_len,
3006		.min_rec_size = sizeof(struct bpf_func_info_min),
3007		.ext_info = &btf_ext->func_info,
3008		.desc = "func_info"
3009	};
3010	struct btf_ext_sec_info_param line_info = {
 
 
 
 
 
 
3011		.off = btf_ext->hdr->line_info_off,
3012		.len = btf_ext->hdr->line_info_len,
3013		.min_rec_size = sizeof(struct bpf_line_info_min),
3014		.ext_info = &btf_ext->line_info,
3015		.desc = "line_info",
3016	};
3017	struct btf_ext_sec_info_param core_relo = {
 
 
 
 
 
 
3018		.off = btf_ext->hdr->core_relo_off,
3019		.len = btf_ext->hdr->core_relo_len,
3020		.min_rec_size = sizeof(struct bpf_core_relo),
3021		.ext_info = &btf_ext->core_relo_info,
3022		.desc = "core_relo",
3023	};
3024	int err;
3025
3026	err = btf_ext_parse_sec_info(btf_ext, &func_info, is_native);
3027	if (err)
3028		return err;
3029
3030	err = btf_ext_parse_sec_info(btf_ext, &line_info, is_native);
3031	if (err)
3032		return err;
3033
3034	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3035		return 0; /* skip core relos parsing */
3036
3037	err = btf_ext_parse_sec_info(btf_ext, &core_relo, is_native);
3038	if (err)
3039		return err;
3040
3041	return 0;
3042}
3043
3044/* Swap byte-order of BTF.ext header with any endianness */
3045static void btf_ext_bswap_hdr(struct btf_ext_header *h)
3046{
3047	bool is_native = h->magic == BTF_MAGIC;
3048	__u32 hdr_len;
3049
3050	hdr_len = is_native ? h->hdr_len : bswap_32(h->hdr_len);
3051
3052	h->magic = bswap_16(h->magic);
3053	h->hdr_len = bswap_32(h->hdr_len);
3054	h->func_info_off = bswap_32(h->func_info_off);
3055	h->func_info_len = bswap_32(h->func_info_len);
3056	h->line_info_off = bswap_32(h->line_info_off);
3057	h->line_info_len = bswap_32(h->line_info_len);
3058
3059	if (hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3060		return;
3061
3062	h->core_relo_off = bswap_32(h->core_relo_off);
3063	h->core_relo_len = bswap_32(h->core_relo_len);
3064}
3065
3066/* Swap byte-order of generic info subsection */
3067static void btf_ext_bswap_info_sec(void *info, __u32 len, bool is_native,
3068				   info_rec_bswap_fn bswap_fn)
3069{
3070	struct btf_ext_info_sec *sec;
3071	__u32 info_left, rec_size, *rs;
3072
3073	if (len == 0)
3074		return;
3075
3076	rs = info;				/* info record size */
3077	rec_size = is_native ? *rs : bswap_32(*rs);
3078	*rs = bswap_32(*rs);
3079
3080	sec = info + sizeof(__u32);		/* info sec #1 */
3081	info_left = len - sizeof(__u32);
3082	while (info_left) {
3083		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
3084		__u32 i, num_recs;
3085		void *p;
3086
3087		num_recs = is_native ? sec->num_info : bswap_32(sec->num_info);
3088		sec->sec_name_off = bswap_32(sec->sec_name_off);
3089		sec->num_info = bswap_32(sec->num_info);
3090		p = sec->data;			/* info rec #1 */
3091		for (i = 0; i < num_recs; i++, p += rec_size)
3092			bswap_fn(p);
3093		sec = p;
3094		info_left -= sec_hdrlen + (__u64)rec_size * num_recs;
3095	}
3096}
3097
3098/*
3099 * Swap byte-order of all info data in a BTF.ext section
3100 *  - requires BTF.ext hdr in native endianness
3101 */
3102static void btf_ext_bswap_info(struct btf_ext *btf_ext, void *data)
3103{
3104	const bool is_native = btf_ext->swapped_endian;
3105	const struct btf_ext_header *h = data;
3106	void *info;
3107
3108	/* Swap func_info subsection byte-order */
3109	info = data + h->hdr_len + h->func_info_off;
3110	btf_ext_bswap_info_sec(info, h->func_info_len, is_native,
3111			       (info_rec_bswap_fn)bpf_func_info_bswap);
3112
3113	/* Swap line_info subsection byte-order */
3114	info = data + h->hdr_len + h->line_info_off;
3115	btf_ext_bswap_info_sec(info, h->line_info_len, is_native,
3116			       (info_rec_bswap_fn)bpf_line_info_bswap);
3117
3118	/* Swap core_relo subsection byte-order (if present) */
3119	if (h->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3120		return;
3121
3122	info = data + h->hdr_len + h->core_relo_off;
3123	btf_ext_bswap_info_sec(info, h->core_relo_len, is_native,
3124			       (info_rec_bswap_fn)bpf_core_relo_bswap);
3125}
3126
3127/* Parse hdr data and info sections: check and convert to native endianness */
3128static int btf_ext_parse(struct btf_ext *btf_ext)
3129{
3130	__u32 hdr_len, data_size = btf_ext->data_size;
3131	struct btf_ext_header *hdr = btf_ext->hdr;
3132	bool swapped_endian = false;
3133	int err;
3134
3135	if (data_size < offsetofend(struct btf_ext_header, hdr_len)) {
3136		pr_debug("BTF.ext header too short\n");
 
3137		return -EINVAL;
3138	}
3139
3140	hdr_len = hdr->hdr_len;
3141	if (hdr->magic == bswap_16(BTF_MAGIC)) {
3142		swapped_endian = true;
3143		hdr_len = bswap_32(hdr_len);
3144	} else if (hdr->magic != BTF_MAGIC) {
3145		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
3146		return -EINVAL;
3147	}
3148
3149	/* Ensure known version of structs, current BTF_VERSION == 1 */
3150	if (hdr->version != 1) {
3151		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
3152		return -ENOTSUP;
3153	}
3154
3155	if (hdr->flags) {
3156		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
3157		return -ENOTSUP;
3158	}
3159
3160	if (data_size < hdr_len) {
3161		pr_debug("BTF.ext header not found\n");
3162		return -EINVAL;
3163	} else if (data_size == hdr_len) {
3164		pr_debug("BTF.ext has no data\n");
3165		return -EINVAL;
3166	}
3167
3168	/* Verify mandatory hdr info details present */
3169	if (hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
3170		pr_warn("BTF.ext header missing func_info, line_info\n");
3171		return -EINVAL;
3172	}
3173
3174	/* Keep hdr native byte-order in memory for introspection */
3175	if (swapped_endian)
3176		btf_ext_bswap_hdr(btf_ext->hdr);
3177
3178	/* Validate info subsections and cache key metadata */
3179	err = btf_ext_parse_info(btf_ext, !swapped_endian);
3180	if (err)
3181		return err;
3182
3183	/* Keep infos native byte-order in memory for introspection */
3184	if (swapped_endian)
3185		btf_ext_bswap_info(btf_ext, btf_ext->data);
3186
3187	/*
3188	 * Set btf_ext->swapped_endian only after all header and info data has
3189	 * been swapped, helping bswap functions determine if their data are
3190	 * in native byte-order when called.
3191	 */
3192	btf_ext->swapped_endian = swapped_endian;
3193	return 0;
3194}
3195
3196void btf_ext__free(struct btf_ext *btf_ext)
3197{
3198	if (IS_ERR_OR_NULL(btf_ext))
3199		return;
3200	free(btf_ext->func_info.sec_idxs);
3201	free(btf_ext->line_info.sec_idxs);
3202	free(btf_ext->core_relo_info.sec_idxs);
3203	free(btf_ext->data);
3204	free(btf_ext->data_swapped);
3205	free(btf_ext);
3206}
3207
3208struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
3209{
3210	struct btf_ext *btf_ext;
3211	int err;
3212
 
 
 
 
3213	btf_ext = calloc(1, sizeof(struct btf_ext));
3214	if (!btf_ext)
3215		return libbpf_err_ptr(-ENOMEM);
3216
3217	btf_ext->data_size = size;
3218	btf_ext->data = malloc(size);
3219	if (!btf_ext->data) {
3220		err = -ENOMEM;
3221		goto done;
3222	}
3223	memcpy(btf_ext->data, data, size);
3224
3225	err = btf_ext_parse(btf_ext);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3226
3227done:
3228	if (err) {
3229		btf_ext__free(btf_ext);
3230		return libbpf_err_ptr(err);
3231	}
3232
3233	return btf_ext;
3234}
3235
3236static void *btf_ext_raw_data(const struct btf_ext *btf_ext_ro, bool swap_endian)
3237{
3238	struct btf_ext *btf_ext = (struct btf_ext *)btf_ext_ro;
3239	const __u32 data_sz = btf_ext->data_size;
 
 
 
 
 
 
 
 
 
 
 
 
3240	void *data;
3241
3242	/* Return native data (always present) or swapped data if present */
3243	if (!swap_endian)
3244		return btf_ext->data;
3245	else if (btf_ext->data_swapped)
3246		return btf_ext->data_swapped;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3247
3248	/* Recreate missing swapped data, then cache and return */
3249	data = calloc(1, data_sz);
3250	if (!data)
3251		return NULL;
3252	memcpy(data, btf_ext->data, data_sz);
 
 
3253
3254	btf_ext_bswap_info(btf_ext, data);
3255	btf_ext_bswap_hdr(data);
3256	btf_ext->data_swapped = data;
3257	return data;
3258}
3259
3260const void *btf_ext__raw_data(const struct btf_ext *btf_ext, __u32 *size)
 
 
 
3261{
3262	void *data;
 
 
3263
3264	data = btf_ext_raw_data(btf_ext, btf_ext->swapped_endian);
3265	if (!data)
3266		return errno = ENOMEM, NULL;
3267
3268	*size = btf_ext->data_size;
3269	return data;
 
3270}
3271
3272__attribute__((alias("btf_ext__raw_data")))
3273const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size);
3274
3275enum btf_endianness btf_ext__endianness(const struct btf_ext *btf_ext)
3276{
3277	if (is_host_big_endian())
3278		return btf_ext->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
3279	else
3280		return btf_ext->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
3281}
3282
3283int btf_ext__set_endianness(struct btf_ext *btf_ext, enum btf_endianness endian)
3284{
3285	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
3286		return libbpf_err(-EINVAL);
3287
3288	btf_ext->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
3289
3290	if (!btf_ext->swapped_endian) {
3291		free(btf_ext->data_swapped);
3292		btf_ext->data_swapped = NULL;
3293	}
3294	return 0;
3295}
3296
3297struct btf_dedup;
3298
3299static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
 
3300static void btf_dedup_free(struct btf_dedup *d);
3301static int btf_dedup_prep(struct btf_dedup *d);
3302static int btf_dedup_strings(struct btf_dedup *d);
3303static int btf_dedup_prim_types(struct btf_dedup *d);
3304static int btf_dedup_struct_types(struct btf_dedup *d);
3305static int btf_dedup_ref_types(struct btf_dedup *d);
3306static int btf_dedup_resolve_fwds(struct btf_dedup *d);
3307static int btf_dedup_compact_types(struct btf_dedup *d);
3308static int btf_dedup_remap_types(struct btf_dedup *d);
3309
3310/*
3311 * Deduplicate BTF types and strings.
3312 *
3313 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
3314 * section with all BTF type descriptors and string data. It overwrites that
3315 * memory in-place with deduplicated types and strings without any loss of
3316 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
3317 * is provided, all the strings referenced from .BTF.ext section are honored
3318 * and updated to point to the right offsets after deduplication.
3319 *
3320 * If function returns with error, type/string data might be garbled and should
3321 * be discarded.
3322 *
3323 * More verbose and detailed description of both problem btf_dedup is solving,
3324 * as well as solution could be found at:
3325 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
3326 *
3327 * Problem description and justification
3328 * =====================================
3329 *
3330 * BTF type information is typically emitted either as a result of conversion
3331 * from DWARF to BTF or directly by compiler. In both cases, each compilation
3332 * unit contains information about a subset of all the types that are used
3333 * in an application. These subsets are frequently overlapping and contain a lot
3334 * of duplicated information when later concatenated together into a single
3335 * binary. This algorithm ensures that each unique type is represented by single
3336 * BTF type descriptor, greatly reducing resulting size of BTF data.
3337 *
3338 * Compilation unit isolation and subsequent duplication of data is not the only
3339 * problem. The same type hierarchy (e.g., struct and all the type that struct
3340 * references) in different compilation units can be represented in BTF to
3341 * various degrees of completeness (or, rather, incompleteness) due to
3342 * struct/union forward declarations.
3343 *
3344 * Let's take a look at an example, that we'll use to better understand the
3345 * problem (and solution). Suppose we have two compilation units, each using
3346 * same `struct S`, but each of them having incomplete type information about
3347 * struct's fields:
3348 *
3349 * // CU #1:
3350 * struct S;
3351 * struct A {
3352 *	int a;
3353 *	struct A* self;
3354 *	struct S* parent;
3355 * };
3356 * struct B;
3357 * struct S {
3358 *	struct A* a_ptr;
3359 *	struct B* b_ptr;
3360 * };
3361 *
3362 * // CU #2:
3363 * struct S;
3364 * struct A;
3365 * struct B {
3366 *	int b;
3367 *	struct B* self;
3368 *	struct S* parent;
3369 * };
3370 * struct S {
3371 *	struct A* a_ptr;
3372 *	struct B* b_ptr;
3373 * };
3374 *
3375 * In case of CU #1, BTF data will know only that `struct B` exist (but no
3376 * more), but will know the complete type information about `struct A`. While
3377 * for CU #2, it will know full type information about `struct B`, but will
3378 * only know about forward declaration of `struct A` (in BTF terms, it will
3379 * have `BTF_KIND_FWD` type descriptor with name `B`).
3380 *
3381 * This compilation unit isolation means that it's possible that there is no
3382 * single CU with complete type information describing structs `S`, `A`, and
3383 * `B`. Also, we might get tons of duplicated and redundant type information.
3384 *
3385 * Additional complication we need to keep in mind comes from the fact that
3386 * types, in general, can form graphs containing cycles, not just DAGs.
3387 *
3388 * While algorithm does deduplication, it also merges and resolves type
3389 * information (unless disabled throught `struct btf_opts`), whenever possible.
3390 * E.g., in the example above with two compilation units having partial type
3391 * information for structs `A` and `B`, the output of algorithm will emit
3392 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
3393 * (as well as type information for `int` and pointers), as if they were defined
3394 * in a single compilation unit as:
3395 *
3396 * struct A {
3397 *	int a;
3398 *	struct A* self;
3399 *	struct S* parent;
3400 * };
3401 * struct B {
3402 *	int b;
3403 *	struct B* self;
3404 *	struct S* parent;
3405 * };
3406 * struct S {
3407 *	struct A* a_ptr;
3408 *	struct B* b_ptr;
3409 * };
3410 *
3411 * Algorithm summary
3412 * =================
3413 *
3414 * Algorithm completes its work in 7 separate passes:
3415 *
3416 * 1. Strings deduplication.
3417 * 2. Primitive types deduplication (int, enum, fwd).
3418 * 3. Struct/union types deduplication.
3419 * 4. Resolve unambiguous forward declarations.
3420 * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3421 *    protos, and const/volatile/restrict modifiers).
3422 * 6. Types compaction.
3423 * 7. Types remapping.
3424 *
3425 * Algorithm determines canonical type descriptor, which is a single
3426 * representative type for each truly unique type. This canonical type is the
3427 * one that will go into final deduplicated BTF type information. For
3428 * struct/unions, it is also the type that algorithm will merge additional type
3429 * information into (while resolving FWDs), as it discovers it from data in
3430 * other CUs. Each input BTF type eventually gets either mapped to itself, if
3431 * that type is canonical, or to some other type, if that type is equivalent
3432 * and was chosen as canonical representative. This mapping is stored in
3433 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3434 * FWD type got resolved to.
3435 *
3436 * To facilitate fast discovery of canonical types, we also maintain canonical
3437 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3438 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3439 * that match that signature. With sufficiently good choice of type signature
3440 * hashing function, we can limit number of canonical types for each unique type
3441 * signature to a very small number, allowing to find canonical type for any
3442 * duplicated type very quickly.
3443 *
3444 * Struct/union deduplication is the most critical part and algorithm for
3445 * deduplicating structs/unions is described in greater details in comments for
3446 * `btf_dedup_is_equiv` function.
3447 */
3448int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts)
 
3449{
3450	struct btf_dedup *d;
3451	int err;
3452
3453	if (!OPTS_VALID(opts, btf_dedup_opts))
3454		return libbpf_err(-EINVAL);
3455
3456	d = btf_dedup_new(btf, opts);
3457	if (IS_ERR(d)) {
3458		pr_debug("btf_dedup_new failed: %ld\n", PTR_ERR(d));
3459		return libbpf_err(-EINVAL);
3460	}
3461
3462	if (btf_ensure_modifiable(btf)) {
3463		err = -ENOMEM;
3464		goto done;
3465	}
3466
3467	err = btf_dedup_prep(d);
3468	if (err) {
3469		pr_debug("btf_dedup_prep failed: %s\n", errstr(err));
3470		goto done;
3471	}
3472	err = btf_dedup_strings(d);
3473	if (err < 0) {
3474		pr_debug("btf_dedup_strings failed: %s\n", errstr(err));
3475		goto done;
3476	}
3477	err = btf_dedup_prim_types(d);
3478	if (err < 0) {
3479		pr_debug("btf_dedup_prim_types failed: %s\n", errstr(err));
3480		goto done;
3481	}
3482	err = btf_dedup_struct_types(d);
3483	if (err < 0) {
3484		pr_debug("btf_dedup_struct_types failed: %s\n", errstr(err));
3485		goto done;
3486	}
3487	err = btf_dedup_resolve_fwds(d);
3488	if (err < 0) {
3489		pr_debug("btf_dedup_resolve_fwds failed: %s\n", errstr(err));
3490		goto done;
3491	}
3492	err = btf_dedup_ref_types(d);
3493	if (err < 0) {
3494		pr_debug("btf_dedup_ref_types failed: %s\n", errstr(err));
3495		goto done;
3496	}
3497	err = btf_dedup_compact_types(d);
3498	if (err < 0) {
3499		pr_debug("btf_dedup_compact_types failed: %s\n", errstr(err));
3500		goto done;
3501	}
3502	err = btf_dedup_remap_types(d);
3503	if (err < 0) {
3504		pr_debug("btf_dedup_remap_types failed: %s\n", errstr(err));
3505		goto done;
3506	}
3507
3508done:
3509	btf_dedup_free(d);
3510	return libbpf_err(err);
3511}
3512
3513#define BTF_UNPROCESSED_ID ((__u32)-1)
3514#define BTF_IN_PROGRESS_ID ((__u32)-2)
3515
3516struct btf_dedup {
3517	/* .BTF section to be deduped in-place */
3518	struct btf *btf;
3519	/*
3520	 * Optional .BTF.ext section. When provided, any strings referenced
3521	 * from it will be taken into account when deduping strings
3522	 */
3523	struct btf_ext *btf_ext;
3524	/*
3525	 * This is a map from any type's signature hash to a list of possible
3526	 * canonical representative type candidates. Hash collisions are
3527	 * ignored, so even types of various kinds can share same list of
3528	 * candidates, which is fine because we rely on subsequent
3529	 * btf_xxx_equal() checks to authoritatively verify type equality.
3530	 */
3531	struct hashmap *dedup_table;
3532	/* Canonical types map */
3533	__u32 *map;
3534	/* Hypothetical mapping, used during type graph equivalence checks */
3535	__u32 *hypot_map;
3536	__u32 *hypot_list;
3537	size_t hypot_cnt;
3538	size_t hypot_cap;
3539	/* Whether hypothetical mapping, if successful, would need to adjust
3540	 * already canonicalized types (due to a new forward declaration to
3541	 * concrete type resolution). In such case, during split BTF dedup
3542	 * candidate type would still be considered as different, because base
3543	 * BTF is considered to be immutable.
3544	 */
3545	bool hypot_adjust_canon;
3546	/* Various option modifying behavior of algorithm */
3547	struct btf_dedup_opts opts;
3548	/* temporary strings deduplication state */
3549	struct strset *strs_set;
3550};
3551
3552static unsigned long hash_combine(unsigned long h, unsigned long value)
3553{
3554	return h * 31 + value;
3555}
3556
3557#define for_each_dedup_cand(d, node, hash) \
3558	hashmap__for_each_key_entry(d->dedup_table, node, hash)
3559
3560static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3561{
3562	return hashmap__append(d->dedup_table, hash, type_id);
 
3563}
3564
3565static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3566				   __u32 from_id, __u32 to_id)
3567{
3568	if (d->hypot_cnt == d->hypot_cap) {
3569		__u32 *new_list;
3570
3571		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3572		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3573		if (!new_list)
3574			return -ENOMEM;
3575		d->hypot_list = new_list;
3576	}
3577	d->hypot_list[d->hypot_cnt++] = from_id;
3578	d->hypot_map[from_id] = to_id;
3579	return 0;
3580}
3581
3582static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3583{
3584	int i;
3585
3586	for (i = 0; i < d->hypot_cnt; i++)
3587		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3588	d->hypot_cnt = 0;
3589	d->hypot_adjust_canon = false;
3590}
3591
3592static void btf_dedup_free(struct btf_dedup *d)
3593{
3594	hashmap__free(d->dedup_table);
3595	d->dedup_table = NULL;
3596
3597	free(d->map);
3598	d->map = NULL;
3599
3600	free(d->hypot_map);
3601	d->hypot_map = NULL;
3602
3603	free(d->hypot_list);
3604	d->hypot_list = NULL;
3605
3606	free(d);
3607}
3608
3609static size_t btf_dedup_identity_hash_fn(long key, void *ctx)
3610{
3611	return key;
3612}
3613
3614static size_t btf_dedup_collision_hash_fn(long key, void *ctx)
3615{
3616	return 0;
3617}
3618
3619static bool btf_dedup_equal_fn(long k1, long k2, void *ctx)
3620{
3621	return k1 == k2;
3622}
3623
3624static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
 
3625{
3626	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3627	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3628	int i, err = 0, type_cnt;
3629
3630	if (!d)
3631		return ERR_PTR(-ENOMEM);
3632
3633	if (OPTS_GET(opts, force_collisions, false))
 
 
3634		hash_fn = btf_dedup_collision_hash_fn;
3635
3636	d->btf = btf;
3637	d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3638
3639	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3640	if (IS_ERR(d->dedup_table)) {
3641		err = PTR_ERR(d->dedup_table);
3642		d->dedup_table = NULL;
3643		goto done;
3644	}
3645
3646	type_cnt = btf__type_cnt(btf);
3647	d->map = malloc(sizeof(__u32) * type_cnt);
3648	if (!d->map) {
3649		err = -ENOMEM;
3650		goto done;
3651	}
3652	/* special BTF "void" type is made canonical immediately */
3653	d->map[0] = 0;
3654	for (i = 1; i < type_cnt; i++) {
3655		struct btf_type *t = btf_type_by_id(d->btf, i);
3656
3657		/* VAR and DATASEC are never deduped and are self-canonical */
3658		if (btf_is_var(t) || btf_is_datasec(t))
3659			d->map[i] = i;
3660		else
3661			d->map[i] = BTF_UNPROCESSED_ID;
3662	}
3663
3664	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3665	if (!d->hypot_map) {
3666		err = -ENOMEM;
3667		goto done;
3668	}
3669	for (i = 0; i < type_cnt; i++)
3670		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3671
3672done:
3673	if (err) {
3674		btf_dedup_free(d);
3675		return ERR_PTR(err);
3676	}
3677
3678	return d;
3679}
3680
3681/*
3682 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3683 * string and pass pointer to it to a provided callback `fn`.
3684 */
3685static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3686{
3687	int i, r;
3688
3689	for (i = 0; i < d->btf->nr_types; i++) {
3690		struct btf_field_iter it;
3691		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3692		__u32 *str_off;
3693
3694		r = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS);
3695		if (r)
3696			return r;
3697
3698		while ((str_off = btf_field_iter_next(&it))) {
3699			r = fn(str_off, ctx);
3700			if (r)
3701				return r;
3702		}
3703	}
3704
3705	if (!d->btf_ext)
3706		return 0;
3707
3708	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3709	if (r)
3710		return r;
3711
3712	return 0;
3713}
3714
3715static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3716{
3717	struct btf_dedup *d = ctx;
3718	__u32 str_off = *str_off_ptr;
3719	const char *s;
3720	int off, err;
3721
3722	/* don't touch empty string or string in main BTF */
3723	if (str_off == 0 || str_off < d->btf->start_str_off)
3724		return 0;
3725
3726	s = btf__str_by_offset(d->btf, str_off);
3727	if (d->btf->base_btf) {
3728		err = btf__find_str(d->btf->base_btf, s);
3729		if (err >= 0) {
3730			*str_off_ptr = err;
3731			return 0;
3732		}
3733		if (err != -ENOENT)
3734			return err;
3735	}
3736
3737	off = strset__add_str(d->strs_set, s);
3738	if (off < 0)
3739		return off;
3740
3741	*str_off_ptr = d->btf->start_str_off + off;
3742	return 0;
3743}
3744
3745/*
3746 * Dedup string and filter out those that are not referenced from either .BTF
3747 * or .BTF.ext (if provided) sections.
3748 *
3749 * This is done by building index of all strings in BTF's string section,
3750 * then iterating over all entities that can reference strings (e.g., type
3751 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3752 * strings as used. After that all used strings are deduped and compacted into
3753 * sequential blob of memory and new offsets are calculated. Then all the string
3754 * references are iterated again and rewritten using new offsets.
3755 */
3756static int btf_dedup_strings(struct btf_dedup *d)
3757{
3758	int err;
3759
3760	if (d->btf->strs_deduped)
3761		return 0;
3762
3763	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3764	if (IS_ERR(d->strs_set)) {
3765		err = PTR_ERR(d->strs_set);
3766		goto err_out;
3767	}
3768
3769	if (!d->btf->base_btf) {
3770		/* insert empty string; we won't be looking it up during strings
3771		 * dedup, but it's good to have it for generic BTF string lookups
3772		 */
3773		err = strset__add_str(d->strs_set, "");
3774		if (err < 0)
3775			goto err_out;
3776	}
3777
3778	/* remap string offsets */
3779	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3780	if (err)
3781		goto err_out;
3782
3783	/* replace BTF string data and hash with deduped ones */
3784	strset__free(d->btf->strs_set);
3785	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3786	d->btf->strs_set = d->strs_set;
3787	d->strs_set = NULL;
3788	d->btf->strs_deduped = true;
3789	return 0;
3790
3791err_out:
3792	strset__free(d->strs_set);
3793	d->strs_set = NULL;
3794
3795	return err;
3796}
3797
3798static long btf_hash_common(struct btf_type *t)
3799{
3800	long h;
3801
3802	h = hash_combine(0, t->name_off);
3803	h = hash_combine(h, t->info);
3804	h = hash_combine(h, t->size);
3805	return h;
3806}
3807
3808static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3809{
3810	return t1->name_off == t2->name_off &&
3811	       t1->info == t2->info &&
3812	       t1->size == t2->size;
3813}
3814
3815/* Calculate type signature hash of INT or TAG. */
3816static long btf_hash_int_decl_tag(struct btf_type *t)
3817{
3818	__u32 info = *(__u32 *)(t + 1);
3819	long h;
3820
3821	h = btf_hash_common(t);
3822	h = hash_combine(h, info);
3823	return h;
3824}
3825
3826/* Check structural equality of two INTs or TAGs. */
3827static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3828{
3829	__u32 info1, info2;
3830
3831	if (!btf_equal_common(t1, t2))
3832		return false;
3833	info1 = *(__u32 *)(t1 + 1);
3834	info2 = *(__u32 *)(t2 + 1);
3835	return info1 == info2;
3836}
3837
3838/* Calculate type signature hash of ENUM/ENUM64. */
3839static long btf_hash_enum(struct btf_type *t)
3840{
3841	long h;
3842
3843	/* don't hash vlen, enum members and size to support enum fwd resolving */
3844	h = hash_combine(0, t->name_off);
 
 
3845	return h;
3846}
3847
3848static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2)
 
3849{
3850	const struct btf_enum *m1, *m2;
3851	__u16 vlen;
3852	int i;
3853
 
 
 
3854	vlen = btf_vlen(t1);
3855	m1 = btf_enum(t1);
3856	m2 = btf_enum(t2);
3857	for (i = 0; i < vlen; i++) {
3858		if (m1->name_off != m2->name_off || m1->val != m2->val)
3859			return false;
3860		m1++;
3861		m2++;
3862	}
3863	return true;
3864}
3865
3866static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2)
3867{
3868	const struct btf_enum64 *m1, *m2;
3869	__u16 vlen;
3870	int i;
3871
3872	vlen = btf_vlen(t1);
3873	m1 = btf_enum64(t1);
3874	m2 = btf_enum64(t2);
3875	for (i = 0; i < vlen; i++) {
3876		if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 ||
3877		    m1->val_hi32 != m2->val_hi32)
3878			return false;
3879		m1++;
3880		m2++;
3881	}
3882	return true;
3883}
3884
3885/* Check structural equality of two ENUMs or ENUM64s. */
3886static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3887{
3888	if (!btf_equal_common(t1, t2))
3889		return false;
3890
3891	/* t1 & t2 kinds are identical because of btf_equal_common */
3892	if (btf_kind(t1) == BTF_KIND_ENUM)
3893		return btf_equal_enum_members(t1, t2);
3894	else
3895		return btf_equal_enum64_members(t1, t2);
3896}
3897
3898static inline bool btf_is_enum_fwd(struct btf_type *t)
3899{
3900	return btf_is_any_enum(t) && btf_vlen(t) == 0;
3901}
3902
3903static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3904{
3905	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3906		return btf_equal_enum(t1, t2);
3907	/* At this point either t1 or t2 or both are forward declarations, thus:
3908	 * - skip comparing vlen because it is zero for forward declarations;
3909	 * - skip comparing size to allow enum forward declarations
3910	 *   to be compatible with enum64 full declarations;
3911	 * - skip comparing kind for the same reason.
3912	 */
3913	return t1->name_off == t2->name_off &&
3914	       btf_is_any_enum(t1) && btf_is_any_enum(t2);
 
3915}
3916
3917/*
3918 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3919 * as referenced type IDs equivalence is established separately during type
3920 * graph equivalence check algorithm.
3921 */
3922static long btf_hash_struct(struct btf_type *t)
3923{
3924	const struct btf_member *member = btf_members(t);
3925	__u32 vlen = btf_vlen(t);
3926	long h = btf_hash_common(t);
3927	int i;
3928
3929	for (i = 0; i < vlen; i++) {
3930		h = hash_combine(h, member->name_off);
3931		h = hash_combine(h, member->offset);
3932		/* no hashing of referenced type ID, it can be unresolved yet */
3933		member++;
3934	}
3935	return h;
3936}
3937
3938/*
3939 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3940 * type IDs. This check is performed during type graph equivalence check and
3941 * referenced types equivalence is checked separately.
3942 */
3943static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3944{
3945	const struct btf_member *m1, *m2;
3946	__u16 vlen;
3947	int i;
3948
3949	if (!btf_equal_common(t1, t2))
3950		return false;
3951
3952	vlen = btf_vlen(t1);
3953	m1 = btf_members(t1);
3954	m2 = btf_members(t2);
3955	for (i = 0; i < vlen; i++) {
3956		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3957			return false;
3958		m1++;
3959		m2++;
3960	}
3961	return true;
3962}
3963
3964/*
3965 * Calculate type signature hash of ARRAY, including referenced type IDs,
3966 * under assumption that they were already resolved to canonical type IDs and
3967 * are not going to change.
3968 */
3969static long btf_hash_array(struct btf_type *t)
3970{
3971	const struct btf_array *info = btf_array(t);
3972	long h = btf_hash_common(t);
3973
3974	h = hash_combine(h, info->type);
3975	h = hash_combine(h, info->index_type);
3976	h = hash_combine(h, info->nelems);
3977	return h;
3978}
3979
3980/*
3981 * Check exact equality of two ARRAYs, taking into account referenced
3982 * type IDs, under assumption that they were already resolved to canonical
3983 * type IDs and are not going to change.
3984 * This function is called during reference types deduplication to compare
3985 * ARRAY to potential canonical representative.
3986 */
3987static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3988{
3989	const struct btf_array *info1, *info2;
3990
3991	if (!btf_equal_common(t1, t2))
3992		return false;
3993
3994	info1 = btf_array(t1);
3995	info2 = btf_array(t2);
3996	return info1->type == info2->type &&
3997	       info1->index_type == info2->index_type &&
3998	       info1->nelems == info2->nelems;
3999}
4000
4001/*
4002 * Check structural compatibility of two ARRAYs, ignoring referenced type
4003 * IDs. This check is performed during type graph equivalence check and
4004 * referenced types equivalence is checked separately.
4005 */
4006static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
4007{
4008	if (!btf_equal_common(t1, t2))
4009		return false;
4010
4011	return btf_array(t1)->nelems == btf_array(t2)->nelems;
4012}
4013
4014/*
4015 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
4016 * under assumption that they were already resolved to canonical type IDs and
4017 * are not going to change.
4018 */
4019static long btf_hash_fnproto(struct btf_type *t)
4020{
4021	const struct btf_param *member = btf_params(t);
4022	__u16 vlen = btf_vlen(t);
4023	long h = btf_hash_common(t);
4024	int i;
4025
4026	for (i = 0; i < vlen; i++) {
4027		h = hash_combine(h, member->name_off);
4028		h = hash_combine(h, member->type);
4029		member++;
4030	}
4031	return h;
4032}
4033
4034/*
4035 * Check exact equality of two FUNC_PROTOs, taking into account referenced
4036 * type IDs, under assumption that they were already resolved to canonical
4037 * type IDs and are not going to change.
4038 * This function is called during reference types deduplication to compare
4039 * FUNC_PROTO to potential canonical representative.
4040 */
4041static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
4042{
4043	const struct btf_param *m1, *m2;
4044	__u16 vlen;
4045	int i;
4046
4047	if (!btf_equal_common(t1, t2))
4048		return false;
4049
4050	vlen = btf_vlen(t1);
4051	m1 = btf_params(t1);
4052	m2 = btf_params(t2);
4053	for (i = 0; i < vlen; i++) {
4054		if (m1->name_off != m2->name_off || m1->type != m2->type)
4055			return false;
4056		m1++;
4057		m2++;
4058	}
4059	return true;
4060}
4061
4062/*
4063 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
4064 * IDs. This check is performed during type graph equivalence check and
4065 * referenced types equivalence is checked separately.
4066 */
4067static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
4068{
4069	const struct btf_param *m1, *m2;
4070	__u16 vlen;
4071	int i;
4072
4073	/* skip return type ID */
4074	if (t1->name_off != t2->name_off || t1->info != t2->info)
4075		return false;
4076
4077	vlen = btf_vlen(t1);
4078	m1 = btf_params(t1);
4079	m2 = btf_params(t2);
4080	for (i = 0; i < vlen; i++) {
4081		if (m1->name_off != m2->name_off)
4082			return false;
4083		m1++;
4084		m2++;
4085	}
4086	return true;
4087}
4088
4089/* Prepare split BTF for deduplication by calculating hashes of base BTF's
4090 * types and initializing the rest of the state (canonical type mapping) for
4091 * the fixed base BTF part.
4092 */
4093static int btf_dedup_prep(struct btf_dedup *d)
4094{
4095	struct btf_type *t;
4096	int type_id;
4097	long h;
4098
4099	if (!d->btf->base_btf)
4100		return 0;
4101
4102	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
4103		t = btf_type_by_id(d->btf, type_id);
4104
4105		/* all base BTF types are self-canonical by definition */
4106		d->map[type_id] = type_id;
4107
4108		switch (btf_kind(t)) {
4109		case BTF_KIND_VAR:
4110		case BTF_KIND_DATASEC:
4111			/* VAR and DATASEC are never hash/deduplicated */
4112			continue;
4113		case BTF_KIND_CONST:
4114		case BTF_KIND_VOLATILE:
4115		case BTF_KIND_RESTRICT:
4116		case BTF_KIND_PTR:
4117		case BTF_KIND_FWD:
4118		case BTF_KIND_TYPEDEF:
4119		case BTF_KIND_FUNC:
4120		case BTF_KIND_FLOAT:
4121		case BTF_KIND_TYPE_TAG:
4122			h = btf_hash_common(t);
4123			break;
4124		case BTF_KIND_INT:
4125		case BTF_KIND_DECL_TAG:
4126			h = btf_hash_int_decl_tag(t);
4127			break;
4128		case BTF_KIND_ENUM:
4129		case BTF_KIND_ENUM64:
4130			h = btf_hash_enum(t);
4131			break;
4132		case BTF_KIND_STRUCT:
4133		case BTF_KIND_UNION:
4134			h = btf_hash_struct(t);
4135			break;
4136		case BTF_KIND_ARRAY:
4137			h = btf_hash_array(t);
4138			break;
4139		case BTF_KIND_FUNC_PROTO:
4140			h = btf_hash_fnproto(t);
4141			break;
4142		default:
4143			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
4144			return -EINVAL;
4145		}
4146		if (btf_dedup_table_add(d, h, type_id))
4147			return -ENOMEM;
4148	}
4149
4150	return 0;
4151}
4152
4153/*
4154 * Deduplicate primitive types, that can't reference other types, by calculating
4155 * their type signature hash and comparing them with any possible canonical
4156 * candidate. If no canonical candidate matches, type itself is marked as
4157 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
4158 */
4159static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
4160{
4161	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4162	struct hashmap_entry *hash_entry;
4163	struct btf_type *cand;
4164	/* if we don't find equivalent type, then we are canonical */
4165	__u32 new_id = type_id;
4166	__u32 cand_id;
4167	long h;
4168
4169	switch (btf_kind(t)) {
4170	case BTF_KIND_CONST:
4171	case BTF_KIND_VOLATILE:
4172	case BTF_KIND_RESTRICT:
4173	case BTF_KIND_PTR:
4174	case BTF_KIND_TYPEDEF:
4175	case BTF_KIND_ARRAY:
4176	case BTF_KIND_STRUCT:
4177	case BTF_KIND_UNION:
4178	case BTF_KIND_FUNC:
4179	case BTF_KIND_FUNC_PROTO:
4180	case BTF_KIND_VAR:
4181	case BTF_KIND_DATASEC:
4182	case BTF_KIND_DECL_TAG:
4183	case BTF_KIND_TYPE_TAG:
4184		return 0;
4185
4186	case BTF_KIND_INT:
4187		h = btf_hash_int_decl_tag(t);
4188		for_each_dedup_cand(d, hash_entry, h) {
4189			cand_id = hash_entry->value;
4190			cand = btf_type_by_id(d->btf, cand_id);
4191			if (btf_equal_int_tag(t, cand)) {
4192				new_id = cand_id;
4193				break;
4194			}
4195		}
4196		break;
4197
4198	case BTF_KIND_ENUM:
4199	case BTF_KIND_ENUM64:
4200		h = btf_hash_enum(t);
4201		for_each_dedup_cand(d, hash_entry, h) {
4202			cand_id = hash_entry->value;
4203			cand = btf_type_by_id(d->btf, cand_id);
4204			if (btf_equal_enum(t, cand)) {
4205				new_id = cand_id;
4206				break;
4207			}
 
 
4208			if (btf_compat_enum(t, cand)) {
4209				if (btf_is_enum_fwd(t)) {
4210					/* resolve fwd to full enum */
4211					new_id = cand_id;
4212					break;
4213				}
4214				/* resolve canonical enum fwd to full enum */
4215				d->map[cand_id] = type_id;
4216			}
4217		}
4218		break;
4219
4220	case BTF_KIND_FWD:
4221	case BTF_KIND_FLOAT:
4222		h = btf_hash_common(t);
4223		for_each_dedup_cand(d, hash_entry, h) {
4224			cand_id = hash_entry->value;
4225			cand = btf_type_by_id(d->btf, cand_id);
4226			if (btf_equal_common(t, cand)) {
4227				new_id = cand_id;
4228				break;
4229			}
4230		}
4231		break;
4232
4233	default:
4234		return -EINVAL;
4235	}
4236
4237	d->map[type_id] = new_id;
4238	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4239		return -ENOMEM;
4240
4241	return 0;
4242}
4243
4244static int btf_dedup_prim_types(struct btf_dedup *d)
4245{
4246	int i, err;
4247
4248	for (i = 0; i < d->btf->nr_types; i++) {
4249		err = btf_dedup_prim_type(d, d->btf->start_id + i);
4250		if (err)
4251			return err;
4252	}
4253	return 0;
4254}
4255
4256/*
4257 * Check whether type is already mapped into canonical one (could be to itself).
4258 */
4259static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
4260{
4261	return d->map[type_id] <= BTF_MAX_NR_TYPES;
4262}
4263
4264/*
4265 * Resolve type ID into its canonical type ID, if any; otherwise return original
4266 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
4267 * STRUCT/UNION link and resolve it into canonical type ID as well.
4268 */
4269static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
4270{
4271	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
4272		type_id = d->map[type_id];
4273	return type_id;
4274}
4275
4276/*
4277 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
4278 * type ID.
4279 */
4280static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
4281{
4282	__u32 orig_type_id = type_id;
4283
4284	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
4285		return type_id;
4286
4287	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
4288		type_id = d->map[type_id];
4289
4290	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
4291		return type_id;
4292
4293	return orig_type_id;
4294}
4295
4296
4297static inline __u16 btf_fwd_kind(struct btf_type *t)
4298{
4299	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
4300}
4301
4302/* Check if given two types are identical ARRAY definitions */
4303static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
4304{
4305	struct btf_type *t1, *t2;
4306
4307	t1 = btf_type_by_id(d->btf, id1);
4308	t2 = btf_type_by_id(d->btf, id2);
4309	if (!btf_is_array(t1) || !btf_is_array(t2))
4310		return false;
4311
4312	return btf_equal_array(t1, t2);
4313}
4314
4315/* Check if given two types are identical STRUCT/UNION definitions */
4316static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
4317{
4318	const struct btf_member *m1, *m2;
4319	struct btf_type *t1, *t2;
4320	int n, i;
4321
4322	t1 = btf_type_by_id(d->btf, id1);
4323	t2 = btf_type_by_id(d->btf, id2);
4324
4325	if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
4326		return false;
4327
4328	if (!btf_shallow_equal_struct(t1, t2))
4329		return false;
4330
4331	m1 = btf_members(t1);
4332	m2 = btf_members(t2);
4333	for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
4334		if (m1->type != m2->type &&
4335		    !btf_dedup_identical_arrays(d, m1->type, m2->type) &&
4336		    !btf_dedup_identical_structs(d, m1->type, m2->type))
4337			return false;
4338	}
4339	return true;
4340}
4341
4342/*
4343 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
4344 * call it "candidate graph" in this description for brevity) to a type graph
4345 * formed by (potential) canonical struct/union ("canonical graph" for brevity
4346 * here, though keep in mind that not all types in canonical graph are
4347 * necessarily canonical representatives themselves, some of them might be
4348 * duplicates or its uniqueness might not have been established yet).
4349 * Returns:
4350 *  - >0, if type graphs are equivalent;
4351 *  -  0, if not equivalent;
4352 *  - <0, on error.
4353 *
4354 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
4355 * equivalence of BTF types at each step. If at any point BTF types in candidate
4356 * and canonical graphs are not compatible structurally, whole graphs are
4357 * incompatible. If types are structurally equivalent (i.e., all information
4358 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
4359 * a `cand_id` is recoded in hypothetical mapping (`btf_dedup->hypot_map`).
4360 * If a type references other types, then those referenced types are checked
4361 * for equivalence recursively.
4362 *
4363 * During DFS traversal, if we find that for current `canon_id` type we
4364 * already have some mapping in hypothetical map, we check for two possible
4365 * situations:
4366 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
4367 *     happen when type graphs have cycles. In this case we assume those two
4368 *     types are equivalent.
4369 *   - `canon_id` is mapped to different type. This is contradiction in our
4370 *     hypothetical mapping, because same graph in canonical graph corresponds
4371 *     to two different types in candidate graph, which for equivalent type
4372 *     graphs shouldn't happen. This condition terminates equivalence check
4373 *     with negative result.
4374 *
4375 * If type graphs traversal exhausts types to check and find no contradiction,
4376 * then type graphs are equivalent.
4377 *
4378 * When checking types for equivalence, there is one special case: FWD types.
4379 * If FWD type resolution is allowed and one of the types (either from canonical
4380 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
4381 * flag) and their names match, hypothetical mapping is updated to point from
4382 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
4383 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
4384 *
4385 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
4386 * if there are two exactly named (or anonymous) structs/unions that are
4387 * compatible structurally, one of which has FWD field, while other is concrete
4388 * STRUCT/UNION, but according to C sources they are different structs/unions
4389 * that are referencing different types with the same name. This is extremely
4390 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
4391 * this logic is causing problems.
4392 *
4393 * Doing FWD resolution means that both candidate and/or canonical graphs can
4394 * consists of portions of the graph that come from multiple compilation units.
4395 * This is due to the fact that types within single compilation unit are always
4396 * deduplicated and FWDs are already resolved, if referenced struct/union
4397 * definition is available. So, if we had unresolved FWD and found corresponding
4398 * STRUCT/UNION, they will be from different compilation units. This
4399 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
4400 * type graph will likely have at least two different BTF types that describe
4401 * same type (e.g., most probably there will be two different BTF types for the
4402 * same 'int' primitive type) and could even have "overlapping" parts of type
4403 * graph that describe same subset of types.
4404 *
4405 * This in turn means that our assumption that each type in canonical graph
4406 * must correspond to exactly one type in candidate graph might not hold
4407 * anymore and will make it harder to detect contradictions using hypothetical
4408 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
4409 * resolution only in canonical graph. FWDs in candidate graphs are never
4410 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
4411 * that can occur:
4412 *   - Both types in canonical and candidate graphs are FWDs. If they are
4413 *     structurally equivalent, then they can either be both resolved to the
4414 *     same STRUCT/UNION or not resolved at all. In both cases they are
4415 *     equivalent and there is no need to resolve FWD on candidate side.
4416 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
4417 *     so nothing to resolve as well, algorithm will check equivalence anyway.
4418 *   - Type in canonical graph is FWD, while type in candidate is concrete
4419 *     STRUCT/UNION. In this case candidate graph comes from single compilation
4420 *     unit, so there is exactly one BTF type for each unique C type. After
4421 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
4422 *     in canonical graph mapping to single BTF type in candidate graph, but
4423 *     because hypothetical mapping maps from canonical to candidate types, it's
4424 *     alright, and we still maintain the property of having single `canon_id`
4425 *     mapping to single `cand_id` (there could be two different `canon_id`
4426 *     mapped to the same `cand_id`, but it's not contradictory).
4427 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
4428 *     graph is FWD. In this case we are just going to check compatibility of
4429 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4430 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4431 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4432 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4433 *     canonical graph.
4434 */
4435static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4436			      __u32 canon_id)
4437{
4438	struct btf_type *cand_type;
4439	struct btf_type *canon_type;
4440	__u32 hypot_type_id;
4441	__u16 cand_kind;
4442	__u16 canon_kind;
4443	int i, eq;
4444
4445	/* if both resolve to the same canonical, they must be equivalent */
4446	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4447		return 1;
4448
4449	canon_id = resolve_fwd_id(d, canon_id);
4450
4451	hypot_type_id = d->hypot_map[canon_id];
4452	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4453		if (hypot_type_id == cand_id)
4454			return 1;
4455		/* In some cases compiler will generate different DWARF types
4456		 * for *identical* array type definitions and use them for
4457		 * different fields within the *same* struct. This breaks type
4458		 * equivalence check, which makes an assumption that candidate
4459		 * types sub-graph has a consistent and deduped-by-compiler
4460		 * types within a single CU. So work around that by explicitly
4461		 * allowing identical array types here.
4462		 */
4463		if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4464			return 1;
4465		/* It turns out that similar situation can happen with
4466		 * struct/union sometimes, sigh... Handle the case where
4467		 * structs/unions are exactly the same, down to the referenced
4468		 * type IDs. Anything more complicated (e.g., if referenced
4469		 * types are different, but equivalent) is *way more*
4470		 * complicated and requires a many-to-many equivalence mapping.
4471		 */
4472		if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4473			return 1;
4474		return 0;
4475	}
4476
4477	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4478		return -ENOMEM;
4479
4480	cand_type = btf_type_by_id(d->btf, cand_id);
4481	canon_type = btf_type_by_id(d->btf, canon_id);
4482	cand_kind = btf_kind(cand_type);
4483	canon_kind = btf_kind(canon_type);
4484
4485	if (cand_type->name_off != canon_type->name_off)
4486		return 0;
4487
4488	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
4489	if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
 
4490	    && cand_kind != canon_kind) {
4491		__u16 real_kind;
4492		__u16 fwd_kind;
4493
4494		if (cand_kind == BTF_KIND_FWD) {
4495			real_kind = canon_kind;
4496			fwd_kind = btf_fwd_kind(cand_type);
4497		} else {
4498			real_kind = cand_kind;
4499			fwd_kind = btf_fwd_kind(canon_type);
4500			/* we'd need to resolve base FWD to STRUCT/UNION */
4501			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4502				d->hypot_adjust_canon = true;
4503		}
4504		return fwd_kind == real_kind;
4505	}
4506
4507	if (cand_kind != canon_kind)
4508		return 0;
4509
4510	switch (cand_kind) {
4511	case BTF_KIND_INT:
4512		return btf_equal_int_tag(cand_type, canon_type);
4513
4514	case BTF_KIND_ENUM:
4515	case BTF_KIND_ENUM64:
4516		return btf_compat_enum(cand_type, canon_type);
 
 
4517
4518	case BTF_KIND_FWD:
4519	case BTF_KIND_FLOAT:
4520		return btf_equal_common(cand_type, canon_type);
4521
4522	case BTF_KIND_CONST:
4523	case BTF_KIND_VOLATILE:
4524	case BTF_KIND_RESTRICT:
4525	case BTF_KIND_PTR:
4526	case BTF_KIND_TYPEDEF:
4527	case BTF_KIND_FUNC:
4528	case BTF_KIND_TYPE_TAG:
4529		if (cand_type->info != canon_type->info)
4530			return 0;
4531		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4532
4533	case BTF_KIND_ARRAY: {
4534		const struct btf_array *cand_arr, *canon_arr;
4535
4536		if (!btf_compat_array(cand_type, canon_type))
4537			return 0;
4538		cand_arr = btf_array(cand_type);
4539		canon_arr = btf_array(canon_type);
4540		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4541		if (eq <= 0)
4542			return eq;
4543		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4544	}
4545
4546	case BTF_KIND_STRUCT:
4547	case BTF_KIND_UNION: {
4548		const struct btf_member *cand_m, *canon_m;
4549		__u16 vlen;
4550
4551		if (!btf_shallow_equal_struct(cand_type, canon_type))
4552			return 0;
4553		vlen = btf_vlen(cand_type);
4554		cand_m = btf_members(cand_type);
4555		canon_m = btf_members(canon_type);
4556		for (i = 0; i < vlen; i++) {
4557			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4558			if (eq <= 0)
4559				return eq;
4560			cand_m++;
4561			canon_m++;
4562		}
4563
4564		return 1;
4565	}
4566
4567	case BTF_KIND_FUNC_PROTO: {
4568		const struct btf_param *cand_p, *canon_p;
4569		__u16 vlen;
4570
4571		if (!btf_compat_fnproto(cand_type, canon_type))
4572			return 0;
4573		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4574		if (eq <= 0)
4575			return eq;
4576		vlen = btf_vlen(cand_type);
4577		cand_p = btf_params(cand_type);
4578		canon_p = btf_params(canon_type);
4579		for (i = 0; i < vlen; i++) {
4580			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4581			if (eq <= 0)
4582				return eq;
4583			cand_p++;
4584			canon_p++;
4585		}
4586		return 1;
4587	}
4588
4589	default:
4590		return -EINVAL;
4591	}
4592	return 0;
4593}
4594
4595/*
4596 * Use hypothetical mapping, produced by successful type graph equivalence
4597 * check, to augment existing struct/union canonical mapping, where possible.
4598 *
4599 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4600 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4601 * it doesn't matter if FWD type was part of canonical graph or candidate one,
4602 * we are recording the mapping anyway. As opposed to carefulness required
4603 * for struct/union correspondence mapping (described below), for FWD resolution
4604 * it's not important, as by the time that FWD type (reference type) will be
4605 * deduplicated all structs/unions will be deduped already anyway.
4606 *
4607 * Recording STRUCT/UNION mapping is purely a performance optimization and is
4608 * not required for correctness. It needs to be done carefully to ensure that
4609 * struct/union from candidate's type graph is not mapped into corresponding
4610 * struct/union from canonical type graph that itself hasn't been resolved into
4611 * canonical representative. The only guarantee we have is that canonical
4612 * struct/union was determined as canonical and that won't change. But any
4613 * types referenced through that struct/union fields could have been not yet
4614 * resolved, so in case like that it's too early to establish any kind of
4615 * correspondence between structs/unions.
4616 *
4617 * No canonical correspondence is derived for primitive types (they are already
4618 * deduplicated completely already anyway) or reference types (they rely on
4619 * stability of struct/union canonical relationship for equivalence checks).
4620 */
4621static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4622{
4623	__u32 canon_type_id, targ_type_id;
4624	__u16 t_kind, c_kind;
4625	__u32 t_id, c_id;
4626	int i;
4627
4628	for (i = 0; i < d->hypot_cnt; i++) {
4629		canon_type_id = d->hypot_list[i];
4630		targ_type_id = d->hypot_map[canon_type_id];
4631		t_id = resolve_type_id(d, targ_type_id);
4632		c_id = resolve_type_id(d, canon_type_id);
4633		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4634		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4635		/*
4636		 * Resolve FWD into STRUCT/UNION.
4637		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4638		 * mapped to canonical representative (as opposed to
4639		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4640		 * eventually that struct is going to be mapped and all resolved
4641		 * FWDs will automatically resolve to correct canonical
4642		 * representative. This will happen before ref type deduping,
4643		 * which critically depends on stability of these mapping. This
4644		 * stability is not a requirement for STRUCT/UNION equivalence
4645		 * checks, though.
4646		 */
4647
4648		/* if it's the split BTF case, we still need to point base FWD
4649		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4650		 * will be resolved against base FWD. If we don't point base
4651		 * canonical FWD to the resolved STRUCT/UNION, then all the
4652		 * FWDs in split BTF won't be correctly resolved to a proper
4653		 * STRUCT/UNION.
4654		 */
4655		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4656			d->map[c_id] = t_id;
4657
4658		/* if graph equivalence determined that we'd need to adjust
4659		 * base canonical types, then we need to only point base FWDs
4660		 * to STRUCTs/UNIONs and do no more modifications. For all
4661		 * other purposes the type graphs were not equivalent.
4662		 */
4663		if (d->hypot_adjust_canon)
4664			continue;
4665
4666		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4667			d->map[t_id] = c_id;
4668
4669		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4670		    c_kind != BTF_KIND_FWD &&
4671		    is_type_mapped(d, c_id) &&
4672		    !is_type_mapped(d, t_id)) {
4673			/*
4674			 * as a perf optimization, we can map struct/union
4675			 * that's part of type graph we just verified for
4676			 * equivalence. We can do that for struct/union that has
4677			 * canonical representative only, though.
4678			 */
4679			d->map[t_id] = c_id;
4680		}
4681	}
4682}
4683
4684/*
4685 * Deduplicate struct/union types.
4686 *
4687 * For each struct/union type its type signature hash is calculated, taking
4688 * into account type's name, size, number, order and names of fields, but
4689 * ignoring type ID's referenced from fields, because they might not be deduped
4690 * completely until after reference types deduplication phase. This type hash
4691 * is used to iterate over all potential canonical types, sharing same hash.
4692 * For each canonical candidate we check whether type graphs that they form
4693 * (through referenced types in fields and so on) are equivalent using algorithm
4694 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4695 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4696 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4697 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4698 * potentially map other structs/unions to their canonical representatives,
4699 * if such relationship hasn't yet been established. This speeds up algorithm
4700 * by eliminating some of the duplicate work.
4701 *
4702 * If no matching canonical representative was found, struct/union is marked
4703 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4704 * for further look ups.
4705 */
4706static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4707{
4708	struct btf_type *cand_type, *t;
4709	struct hashmap_entry *hash_entry;
4710	/* if we don't find equivalent type, then we are canonical */
4711	__u32 new_id = type_id;
4712	__u16 kind;
4713	long h;
4714
4715	/* already deduped or is in process of deduping (loop detected) */
4716	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4717		return 0;
4718
4719	t = btf_type_by_id(d->btf, type_id);
4720	kind = btf_kind(t);
4721
4722	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4723		return 0;
4724
4725	h = btf_hash_struct(t);
4726	for_each_dedup_cand(d, hash_entry, h) {
4727		__u32 cand_id = hash_entry->value;
4728		int eq;
4729
4730		/*
4731		 * Even though btf_dedup_is_equiv() checks for
4732		 * btf_shallow_equal_struct() internally when checking two
4733		 * structs (unions) for equivalence, we need to guard here
4734		 * from picking matching FWD type as a dedup candidate.
4735		 * This can happen due to hash collision. In such case just
4736		 * relying on btf_dedup_is_equiv() would lead to potentially
4737		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4738		 * FWD and compatible STRUCT/UNION are considered equivalent.
4739		 */
4740		cand_type = btf_type_by_id(d->btf, cand_id);
4741		if (!btf_shallow_equal_struct(t, cand_type))
4742			continue;
4743
4744		btf_dedup_clear_hypot_map(d);
4745		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4746		if (eq < 0)
4747			return eq;
4748		if (!eq)
4749			continue;
4750		btf_dedup_merge_hypot_map(d);
4751		if (d->hypot_adjust_canon) /* not really equivalent */
4752			continue;
4753		new_id = cand_id;
4754		break;
4755	}
4756
4757	d->map[type_id] = new_id;
4758	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4759		return -ENOMEM;
4760
4761	return 0;
4762}
4763
4764static int btf_dedup_struct_types(struct btf_dedup *d)
4765{
4766	int i, err;
4767
4768	for (i = 0; i < d->btf->nr_types; i++) {
4769		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4770		if (err)
4771			return err;
4772	}
4773	return 0;
4774}
4775
4776/*
4777 * Deduplicate reference type.
4778 *
4779 * Once all primitive and struct/union types got deduplicated, we can easily
4780 * deduplicate all other (reference) BTF types. This is done in two steps:
4781 *
4782 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4783 * resolution can be done either immediately for primitive or struct/union types
4784 * (because they were deduped in previous two phases) or recursively for
4785 * reference types. Recursion will always terminate at either primitive or
4786 * struct/union type, at which point we can "unwind" chain of reference types
4787 * one by one. There is no danger of encountering cycles because in C type
4788 * system the only way to form type cycle is through struct/union, so any chain
4789 * of reference types, even those taking part in a type cycle, will inevitably
4790 * reach struct/union at some point.
4791 *
4792 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4793 * becomes "stable", in the sense that no further deduplication will cause
4794 * any changes to it. With that, it's now possible to calculate type's signature
4795 * hash (this time taking into account referenced type IDs) and loop over all
4796 * potential canonical representatives. If no match was found, current type
4797 * will become canonical representative of itself and will be added into
4798 * btf_dedup->dedup_table as another possible canonical representative.
4799 */
4800static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4801{
4802	struct hashmap_entry *hash_entry;
4803	__u32 new_id = type_id, cand_id;
4804	struct btf_type *t, *cand;
4805	/* if we don't find equivalent type, then we are representative type */
4806	int ref_type_id;
4807	long h;
4808
4809	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4810		return -ELOOP;
4811	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4812		return resolve_type_id(d, type_id);
4813
4814	t = btf_type_by_id(d->btf, type_id);
4815	d->map[type_id] = BTF_IN_PROGRESS_ID;
4816
4817	switch (btf_kind(t)) {
4818	case BTF_KIND_CONST:
4819	case BTF_KIND_VOLATILE:
4820	case BTF_KIND_RESTRICT:
4821	case BTF_KIND_PTR:
4822	case BTF_KIND_TYPEDEF:
4823	case BTF_KIND_FUNC:
4824	case BTF_KIND_TYPE_TAG:
4825		ref_type_id = btf_dedup_ref_type(d, t->type);
4826		if (ref_type_id < 0)
4827			return ref_type_id;
4828		t->type = ref_type_id;
4829
4830		h = btf_hash_common(t);
4831		for_each_dedup_cand(d, hash_entry, h) {
4832			cand_id = hash_entry->value;
4833			cand = btf_type_by_id(d->btf, cand_id);
4834			if (btf_equal_common(t, cand)) {
4835				new_id = cand_id;
4836				break;
4837			}
4838		}
4839		break;
4840
4841	case BTF_KIND_DECL_TAG:
4842		ref_type_id = btf_dedup_ref_type(d, t->type);
4843		if (ref_type_id < 0)
4844			return ref_type_id;
4845		t->type = ref_type_id;
4846
4847		h = btf_hash_int_decl_tag(t);
4848		for_each_dedup_cand(d, hash_entry, h) {
4849			cand_id = hash_entry->value;
4850			cand = btf_type_by_id(d->btf, cand_id);
4851			if (btf_equal_int_tag(t, cand)) {
4852				new_id = cand_id;
4853				break;
4854			}
4855		}
4856		break;
4857
4858	case BTF_KIND_ARRAY: {
4859		struct btf_array *info = btf_array(t);
4860
4861		ref_type_id = btf_dedup_ref_type(d, info->type);
4862		if (ref_type_id < 0)
4863			return ref_type_id;
4864		info->type = ref_type_id;
4865
4866		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4867		if (ref_type_id < 0)
4868			return ref_type_id;
4869		info->index_type = ref_type_id;
4870
4871		h = btf_hash_array(t);
4872		for_each_dedup_cand(d, hash_entry, h) {
4873			cand_id = hash_entry->value;
4874			cand = btf_type_by_id(d->btf, cand_id);
4875			if (btf_equal_array(t, cand)) {
4876				new_id = cand_id;
4877				break;
4878			}
4879		}
4880		break;
4881	}
4882
4883	case BTF_KIND_FUNC_PROTO: {
4884		struct btf_param *param;
4885		__u16 vlen;
4886		int i;
4887
4888		ref_type_id = btf_dedup_ref_type(d, t->type);
4889		if (ref_type_id < 0)
4890			return ref_type_id;
4891		t->type = ref_type_id;
4892
4893		vlen = btf_vlen(t);
4894		param = btf_params(t);
4895		for (i = 0; i < vlen; i++) {
4896			ref_type_id = btf_dedup_ref_type(d, param->type);
4897			if (ref_type_id < 0)
4898				return ref_type_id;
4899			param->type = ref_type_id;
4900			param++;
4901		}
4902
4903		h = btf_hash_fnproto(t);
4904		for_each_dedup_cand(d, hash_entry, h) {
4905			cand_id = hash_entry->value;
4906			cand = btf_type_by_id(d->btf, cand_id);
4907			if (btf_equal_fnproto(t, cand)) {
4908				new_id = cand_id;
4909				break;
4910			}
4911		}
4912		break;
4913	}
4914
4915	default:
4916		return -EINVAL;
4917	}
4918
4919	d->map[type_id] = new_id;
4920	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4921		return -ENOMEM;
4922
4923	return new_id;
4924}
4925
4926static int btf_dedup_ref_types(struct btf_dedup *d)
4927{
4928	int i, err;
4929
4930	for (i = 0; i < d->btf->nr_types; i++) {
4931		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4932		if (err < 0)
4933			return err;
4934	}
4935	/* we won't need d->dedup_table anymore */
4936	hashmap__free(d->dedup_table);
4937	d->dedup_table = NULL;
4938	return 0;
4939}
4940
4941/*
4942 * Collect a map from type names to type ids for all canonical structs
4943 * and unions. If the same name is shared by several canonical types
4944 * use a special value 0 to indicate this fact.
4945 */
4946static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map)
4947{
4948	__u32 nr_types = btf__type_cnt(d->btf);
4949	struct btf_type *t;
4950	__u32 type_id;
4951	__u16 kind;
4952	int err;
4953
4954	/*
4955	 * Iterate over base and split module ids in order to get all
4956	 * available structs in the map.
4957	 */
4958	for (type_id = 1; type_id < nr_types; ++type_id) {
4959		t = btf_type_by_id(d->btf, type_id);
4960		kind = btf_kind(t);
4961
4962		if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4963			continue;
4964
4965		/* Skip non-canonical types */
4966		if (type_id != d->map[type_id])
4967			continue;
4968
4969		err = hashmap__add(names_map, t->name_off, type_id);
4970		if (err == -EEXIST)
4971			err = hashmap__set(names_map, t->name_off, 0, NULL, NULL);
4972
4973		if (err)
4974			return err;
4975	}
4976
4977	return 0;
4978}
4979
4980static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id)
4981{
4982	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4983	enum btf_fwd_kind fwd_kind = btf_kflag(t);
4984	__u16 cand_kind, kind = btf_kind(t);
4985	struct btf_type *cand_t;
4986	uintptr_t cand_id;
4987
4988	if (kind != BTF_KIND_FWD)
4989		return 0;
4990
4991	/* Skip if this FWD already has a mapping */
4992	if (type_id != d->map[type_id])
4993		return 0;
4994
4995	if (!hashmap__find(names_map, t->name_off, &cand_id))
4996		return 0;
4997
4998	/* Zero is a special value indicating that name is not unique */
4999	if (!cand_id)
5000		return 0;
5001
5002	cand_t = btf_type_by_id(d->btf, cand_id);
5003	cand_kind = btf_kind(cand_t);
5004	if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) ||
5005	    (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION))
5006		return 0;
5007
5008	d->map[type_id] = cand_id;
5009
5010	return 0;
5011}
5012
5013/*
5014 * Resolve unambiguous forward declarations.
5015 *
5016 * The lion's share of all FWD declarations is resolved during
5017 * `btf_dedup_struct_types` phase when different type graphs are
5018 * compared against each other. However, if in some compilation unit a
5019 * FWD declaration is not a part of a type graph compared against
5020 * another type graph that declaration's canonical type would not be
5021 * changed. Example:
5022 *
5023 * CU #1:
5024 *
5025 * struct foo;
5026 * struct foo *some_global;
5027 *
5028 * CU #2:
5029 *
5030 * struct foo { int u; };
5031 * struct foo *another_global;
5032 *
5033 * After `btf_dedup_struct_types` the BTF looks as follows:
5034 *
5035 * [1] STRUCT 'foo' size=4 vlen=1 ...
5036 * [2] INT 'int' size=4 ...
5037 * [3] PTR '(anon)' type_id=1
5038 * [4] FWD 'foo' fwd_kind=struct
5039 * [5] PTR '(anon)' type_id=4
5040 *
5041 * This pass assumes that such FWD declarations should be mapped to
5042 * structs or unions with identical name in case if the name is not
5043 * ambiguous.
5044 */
5045static int btf_dedup_resolve_fwds(struct btf_dedup *d)
5046{
5047	int i, err;
5048	struct hashmap *names_map;
5049
5050	names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
5051	if (IS_ERR(names_map))
5052		return PTR_ERR(names_map);
5053
5054	err = btf_dedup_fill_unique_names_map(d, names_map);
5055	if (err < 0)
5056		goto exit;
5057
5058	for (i = 0; i < d->btf->nr_types; i++) {
5059		err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i);
5060		if (err < 0)
5061			break;
5062	}
5063
5064exit:
5065	hashmap__free(names_map);
5066	return err;
5067}
5068
5069/*
5070 * Compact types.
5071 *
5072 * After we established for each type its corresponding canonical representative
5073 * type, we now can eliminate types that are not canonical and leave only
5074 * canonical ones layed out sequentially in memory by copying them over
5075 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
5076 * a map from original type ID to a new compacted type ID, which will be used
5077 * during next phase to "fix up" type IDs, referenced from struct/union and
5078 * reference types.
5079 */
5080static int btf_dedup_compact_types(struct btf_dedup *d)
5081{
5082	__u32 *new_offs;
5083	__u32 next_type_id = d->btf->start_id;
5084	const struct btf_type *t;
5085	void *p;
5086	int i, id, len;
5087
5088	/* we are going to reuse hypot_map to store compaction remapping */
5089	d->hypot_map[0] = 0;
5090	/* base BTF types are not renumbered */
5091	for (id = 1; id < d->btf->start_id; id++)
5092		d->hypot_map[id] = id;
5093	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
5094		d->hypot_map[id] = BTF_UNPROCESSED_ID;
5095
5096	p = d->btf->types_data;
5097
5098	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
5099		if (d->map[id] != id)
5100			continue;
5101
5102		t = btf__type_by_id(d->btf, id);
5103		len = btf_type_size(t);
5104		if (len < 0)
5105			return len;
5106
5107		memmove(p, t, len);
5108		d->hypot_map[id] = next_type_id;
5109		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
5110		p += len;
5111		next_type_id++;
5112	}
5113
5114	/* shrink struct btf's internal types index and update btf_header */
5115	d->btf->nr_types = next_type_id - d->btf->start_id;
5116	d->btf->type_offs_cap = d->btf->nr_types;
5117	d->btf->hdr->type_len = p - d->btf->types_data;
5118	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
5119				       sizeof(*new_offs));
5120	if (d->btf->type_offs_cap && !new_offs)
5121		return -ENOMEM;
5122	d->btf->type_offs = new_offs;
5123	d->btf->hdr->str_off = d->btf->hdr->type_len;
5124	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
5125	return 0;
5126}
5127
5128/*
5129 * Figure out final (deduplicated and compacted) type ID for provided original
5130 * `type_id` by first resolving it into corresponding canonical type ID and
5131 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
5132 * which is populated during compaction phase.
5133 */
5134static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
5135{
5136	struct btf_dedup *d = ctx;
5137	__u32 resolved_type_id, new_type_id;
5138
5139	resolved_type_id = resolve_type_id(d, *type_id);
5140	new_type_id = d->hypot_map[resolved_type_id];
5141	if (new_type_id > BTF_MAX_NR_TYPES)
5142		return -EINVAL;
5143
5144	*type_id = new_type_id;
5145	return 0;
5146}
5147
5148/*
5149 * Remap referenced type IDs into deduped type IDs.
5150 *
5151 * After BTF types are deduplicated and compacted, their final type IDs may
5152 * differ from original ones. The map from original to a corresponding
5153 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
5154 * compaction phase. During remapping phase we are rewriting all type IDs
5155 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
5156 * their final deduped type IDs.
5157 */
5158static int btf_dedup_remap_types(struct btf_dedup *d)
5159{
5160	int i, r;
5161
5162	for (i = 0; i < d->btf->nr_types; i++) {
5163		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
5164		struct btf_field_iter it;
5165		__u32 *type_id;
5166
5167		r = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS);
5168		if (r)
5169			return r;
5170
5171		while ((type_id = btf_field_iter_next(&it))) {
5172			__u32 resolved_id, new_id;
5173
5174			resolved_id = resolve_type_id(d, *type_id);
5175			new_id = d->hypot_map[resolved_id];
5176			if (new_id > BTF_MAX_NR_TYPES)
5177				return -EINVAL;
5178
5179			*type_id = new_id;
5180		}
5181	}
5182
5183	if (!d->btf_ext)
5184		return 0;
5185
5186	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
5187	if (r)
5188		return r;
5189
5190	return 0;
5191}
5192
5193/*
5194 * Probe few well-known locations for vmlinux kernel image and try to load BTF
5195 * data out of it to use for target BTF.
5196 */
5197struct btf *btf__load_vmlinux_btf(void)
5198{
5199	const char *sysfs_btf_path = "/sys/kernel/btf/vmlinux";
5200	/* fall back locations, trying to find vmlinux on disk */
5201	const char *locations[] = {
5202		"/boot/vmlinux-%1$s",
5203		"/lib/modules/%1$s/vmlinux-%1$s",
5204		"/lib/modules/%1$s/build/vmlinux",
5205		"/usr/lib/modules/%1$s/kernel/vmlinux",
5206		"/usr/lib/debug/boot/vmlinux-%1$s",
5207		"/usr/lib/debug/boot/vmlinux-%1$s.debug",
5208		"/usr/lib/debug/lib/modules/%1$s/vmlinux",
 
 
 
 
5209	};
5210	char path[PATH_MAX + 1];
5211	struct utsname buf;
5212	struct btf *btf;
5213	int i, err;
5214
5215	/* is canonical sysfs location accessible? */
5216	if (faccessat(AT_FDCWD, sysfs_btf_path, F_OK, AT_EACCESS) < 0) {
5217		pr_warn("kernel BTF is missing at '%s', was CONFIG_DEBUG_INFO_BTF enabled?\n",
5218			sysfs_btf_path);
5219	} else {
5220		btf = btf__parse(sysfs_btf_path, NULL);
5221		if (!btf) {
5222			err = -errno;
5223			pr_warn("failed to read kernel BTF from '%s': %s\n",
5224				sysfs_btf_path, errstr(err));
5225			return libbpf_err_ptr(err);
5226		}
5227		pr_debug("loaded kernel BTF from '%s'\n", sysfs_btf_path);
5228		return btf;
5229	}
5230
5231	/* try fallback locations */
5232	uname(&buf);
5233	for (i = 0; i < ARRAY_SIZE(locations); i++) {
5234		snprintf(path, PATH_MAX, locations[i], buf.release);
5235
5236		if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS))
5237			continue;
5238
5239		btf = btf__parse(path, NULL);
 
 
 
5240		err = libbpf_get_error(btf);
5241		pr_debug("loading kernel BTF '%s': %s\n", path, errstr(err));
5242		if (err)
5243			continue;
5244
5245		return btf;
5246	}
5247
5248	pr_warn("failed to find valid kernel BTF\n");
5249	return libbpf_err_ptr(-ESRCH);
5250}
5251
5252struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5253
5254struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
5255{
5256	char path[80];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5257
5258	snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
5259	return btf__parse_split(path, vmlinux_btf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5260}
5261
5262int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
5263{
5264	const struct btf_ext_info *seg;
5265	struct btf_ext_info_sec *sec;
5266	int i, err;
5267
5268	seg = &btf_ext->func_info;
5269	for_each_btf_ext_sec(seg, sec) {
5270		struct bpf_func_info_min *rec;
5271
5272		for_each_btf_ext_rec(seg, sec, i, rec) {
5273			err = visit(&rec->type_id, ctx);
5274			if (err < 0)
5275				return err;
5276		}
5277	}
5278
5279	seg = &btf_ext->core_relo_info;
5280	for_each_btf_ext_sec(seg, sec) {
5281		struct bpf_core_relo *rec;
5282
5283		for_each_btf_ext_rec(seg, sec, i, rec) {
5284			err = visit(&rec->type_id, ctx);
5285			if (err < 0)
5286				return err;
5287		}
5288	}
5289
5290	return 0;
5291}
5292
5293int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
5294{
5295	const struct btf_ext_info *seg;
5296	struct btf_ext_info_sec *sec;
5297	int i, err;
5298
5299	seg = &btf_ext->func_info;
5300	for_each_btf_ext_sec(seg, sec) {
5301		err = visit(&sec->sec_name_off, ctx);
5302		if (err)
5303			return err;
5304	}
5305
5306	seg = &btf_ext->line_info;
5307	for_each_btf_ext_sec(seg, sec) {
5308		struct bpf_line_info_min *rec;
5309
5310		err = visit(&sec->sec_name_off, ctx);
5311		if (err)
5312			return err;
5313
5314		for_each_btf_ext_rec(seg, sec, i, rec) {
5315			err = visit(&rec->file_name_off, ctx);
5316			if (err)
5317				return err;
5318			err = visit(&rec->line_off, ctx);
5319			if (err)
5320				return err;
5321		}
5322	}
5323
5324	seg = &btf_ext->core_relo_info;
5325	for_each_btf_ext_sec(seg, sec) {
5326		struct bpf_core_relo *rec;
5327
5328		err = visit(&sec->sec_name_off, ctx);
5329		if (err)
5330			return err;
5331
5332		for_each_btf_ext_rec(seg, sec, i, rec) {
5333			err = visit(&rec->access_str_off, ctx);
5334			if (err)
5335				return err;
5336		}
5337	}
5338
5339	return 0;
5340}
5341
5342struct btf_distill {
5343	struct btf_pipe pipe;
5344	int *id_map;
5345	unsigned int split_start_id;
5346	unsigned int split_start_str;
5347	int diff_id;
5348};
5349
5350static int btf_add_distilled_type_ids(struct btf_distill *dist, __u32 i)
5351{
5352	struct btf_type *split_t = btf_type_by_id(dist->pipe.src, i);
5353	struct btf_field_iter it;
5354	__u32 *id;
5355	int err;
5356
5357	err = btf_field_iter_init(&it, split_t, BTF_FIELD_ITER_IDS);
5358	if (err)
5359		return err;
5360	while ((id = btf_field_iter_next(&it))) {
5361		struct btf_type *base_t;
5362
5363		if (!*id)
5364			continue;
5365		/* split BTF id, not needed */
5366		if (*id >= dist->split_start_id)
5367			continue;
5368		/* already added ? */
5369		if (dist->id_map[*id] > 0)
5370			continue;
5371
5372		/* only a subset of base BTF types should be referenced from
5373		 * split BTF; ensure nothing unexpected is referenced.
5374		 */
5375		base_t = btf_type_by_id(dist->pipe.src, *id);
5376		switch (btf_kind(base_t)) {
5377		case BTF_KIND_INT:
5378		case BTF_KIND_FLOAT:
5379		case BTF_KIND_FWD:
5380		case BTF_KIND_ARRAY:
5381		case BTF_KIND_STRUCT:
5382		case BTF_KIND_UNION:
5383		case BTF_KIND_TYPEDEF:
5384		case BTF_KIND_ENUM:
5385		case BTF_KIND_ENUM64:
5386		case BTF_KIND_PTR:
5387		case BTF_KIND_CONST:
5388		case BTF_KIND_RESTRICT:
5389		case BTF_KIND_VOLATILE:
5390		case BTF_KIND_FUNC_PROTO:
5391		case BTF_KIND_TYPE_TAG:
5392			dist->id_map[*id] = *id;
5393			break;
5394		default:
5395			pr_warn("unexpected reference to base type[%u] of kind [%u] when creating distilled base BTF.\n",
5396				*id, btf_kind(base_t));
5397			return -EINVAL;
5398		}
5399		/* If a base type is used, ensure types it refers to are
5400		 * marked as used also; so for example if we find a PTR to INT
5401		 * we need both the PTR and INT.
5402		 *
5403		 * The only exception is named struct/unions, since distilled
5404		 * base BTF composite types have no members.
5405		 */
5406		if (btf_is_composite(base_t) && base_t->name_off)
5407			continue;
5408		err = btf_add_distilled_type_ids(dist, *id);
5409		if (err)
5410			return err;
5411	}
5412	return 0;
5413}
5414
5415static int btf_add_distilled_types(struct btf_distill *dist)
5416{
5417	bool adding_to_base = dist->pipe.dst->start_id == 1;
5418	int id = btf__type_cnt(dist->pipe.dst);
5419	struct btf_type *t;
5420	int i, err = 0;
5421
5422
5423	/* Add types for each of the required references to either distilled
5424	 * base or split BTF, depending on type characteristics.
5425	 */
5426	for (i = 1; i < dist->split_start_id; i++) {
5427		const char *name;
5428		int kind;
5429
5430		if (!dist->id_map[i])
5431			continue;
5432		t = btf_type_by_id(dist->pipe.src, i);
5433		kind = btf_kind(t);
5434		name = btf__name_by_offset(dist->pipe.src, t->name_off);
5435
5436		switch (kind) {
5437		case BTF_KIND_INT:
5438		case BTF_KIND_FLOAT:
5439		case BTF_KIND_FWD:
5440			/* Named int, float, fwd are added to base. */
5441			if (!adding_to_base)
5442				continue;
5443			err = btf_add_type(&dist->pipe, t);
5444			break;
5445		case BTF_KIND_STRUCT:
5446		case BTF_KIND_UNION:
5447			/* Named struct/union are added to base as 0-vlen
5448			 * struct/union of same size.  Anonymous struct/unions
5449			 * are added to split BTF as-is.
5450			 */
5451			if (adding_to_base) {
5452				if (!t->name_off)
5453					continue;
5454				err = btf_add_composite(dist->pipe.dst, kind, name, t->size);
5455			} else {
5456				if (t->name_off)
5457					continue;
5458				err = btf_add_type(&dist->pipe, t);
5459			}
5460			break;
5461		case BTF_KIND_ENUM:
5462		case BTF_KIND_ENUM64:
5463			/* Named enum[64]s are added to base as a sized
5464			 * enum; relocation will match with appropriately-named
5465			 * and sized enum or enum64.
5466			 *
5467			 * Anonymous enums are added to split BTF as-is.
5468			 */
5469			if (adding_to_base) {
5470				if (!t->name_off)
5471					continue;
5472				err = btf__add_enum(dist->pipe.dst, name, t->size);
5473			} else {
5474				if (t->name_off)
5475					continue;
5476				err = btf_add_type(&dist->pipe, t);
5477			}
5478			break;
5479		case BTF_KIND_ARRAY:
5480		case BTF_KIND_TYPEDEF:
5481		case BTF_KIND_PTR:
5482		case BTF_KIND_CONST:
5483		case BTF_KIND_RESTRICT:
5484		case BTF_KIND_VOLATILE:
5485		case BTF_KIND_FUNC_PROTO:
5486		case BTF_KIND_TYPE_TAG:
5487			/* All other types are added to split BTF. */
5488			if (adding_to_base)
5489				continue;
5490			err = btf_add_type(&dist->pipe, t);
5491			break;
5492		default:
5493			pr_warn("unexpected kind when adding base type '%s'[%u] of kind [%u] to distilled base BTF.\n",
5494				name, i, kind);
5495			return -EINVAL;
5496
5497		}
5498		if (err < 0)
5499			break;
5500		dist->id_map[i] = id++;
5501	}
5502	return err;
5503}
5504
5505/* Split BTF ids without a mapping will be shifted downwards since distilled
5506 * base BTF is smaller than the original base BTF.  For those that have a
5507 * mapping (either to base or updated split BTF), update the id based on
5508 * that mapping.
5509 */
5510static int btf_update_distilled_type_ids(struct btf_distill *dist, __u32 i)
5511{
5512	struct btf_type *t = btf_type_by_id(dist->pipe.dst, i);
5513	struct btf_field_iter it;
5514	__u32 *id;
5515	int err;
5516
5517	err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS);
5518	if (err)
5519		return err;
5520	while ((id = btf_field_iter_next(&it))) {
5521		if (dist->id_map[*id])
5522			*id = dist->id_map[*id];
5523		else if (*id >= dist->split_start_id)
5524			*id -= dist->diff_id;
5525	}
5526	return 0;
5527}
5528
5529/* Create updated split BTF with distilled base BTF; distilled base BTF
5530 * consists of BTF information required to clarify the types that split
5531 * BTF refers to, omitting unneeded details.  Specifically it will contain
5532 * base types and memberless definitions of named structs, unions and enumerated
5533 * types. Associated reference types like pointers, arrays and anonymous
5534 * structs, unions and enumerated types will be added to split BTF.
5535 * Size is recorded for named struct/unions to help guide matching to the
5536 * target base BTF during later relocation.
5537 *
5538 * The only case where structs, unions or enumerated types are fully represented
5539 * is when they are anonymous; in such cases, the anonymous type is added to
5540 * split BTF in full.
5541 *
5542 * We return newly-created split BTF where the split BTF refers to a newly-created
5543 * distilled base BTF. Both must be freed separately by the caller.
5544 */
5545int btf__distill_base(const struct btf *src_btf, struct btf **new_base_btf,
5546		      struct btf **new_split_btf)
5547{
5548	struct btf *new_base = NULL, *new_split = NULL;
5549	const struct btf *old_base;
5550	unsigned int n = btf__type_cnt(src_btf);
5551	struct btf_distill dist = {};
5552	struct btf_type *t;
5553	int i, err = 0;
5554
5555	/* src BTF must be split BTF. */
5556	old_base = btf__base_btf(src_btf);
5557	if (!new_base_btf || !new_split_btf || !old_base)
5558		return libbpf_err(-EINVAL);
5559
5560	new_base = btf__new_empty();
5561	if (!new_base)
5562		return libbpf_err(-ENOMEM);
5563
5564	btf__set_endianness(new_base, btf__endianness(src_btf));
5565
5566	dist.id_map = calloc(n, sizeof(*dist.id_map));
5567	if (!dist.id_map) {
5568		err = -ENOMEM;
5569		goto done;
5570	}
5571	dist.pipe.src = src_btf;
5572	dist.pipe.dst = new_base;
5573	dist.pipe.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
5574	if (IS_ERR(dist.pipe.str_off_map)) {
5575		err = -ENOMEM;
5576		goto done;
5577	}
5578	dist.split_start_id = btf__type_cnt(old_base);
5579	dist.split_start_str = old_base->hdr->str_len;
5580
5581	/* Pass over src split BTF; generate the list of base BTF type ids it
5582	 * references; these will constitute our distilled BTF set to be
5583	 * distributed over base and split BTF as appropriate.
5584	 */
5585	for (i = src_btf->start_id; i < n; i++) {
5586		err = btf_add_distilled_type_ids(&dist, i);
5587		if (err < 0)
5588			goto done;
5589	}
5590	/* Next add types for each of the required references to base BTF and split BTF
5591	 * in turn.
5592	 */
5593	err = btf_add_distilled_types(&dist);
5594	if (err < 0)
5595		goto done;
5596
5597	/* Create new split BTF with distilled base BTF as its base; the final
5598	 * state is split BTF with distilled base BTF that represents enough
5599	 * about its base references to allow it to be relocated with the base
5600	 * BTF available.
5601	 */
5602	new_split = btf__new_empty_split(new_base);
5603	if (!new_split) {
5604		err = -errno;
5605		goto done;
5606	}
5607	dist.pipe.dst = new_split;
5608	/* First add all split types */
5609	for (i = src_btf->start_id; i < n; i++) {
5610		t = btf_type_by_id(src_btf, i);
5611		err = btf_add_type(&dist.pipe, t);
5612		if (err < 0)
5613			goto done;
5614	}
5615	/* Now add distilled types to split BTF that are not added to base. */
5616	err = btf_add_distilled_types(&dist);
5617	if (err < 0)
5618		goto done;
5619
5620	/* All split BTF ids will be shifted downwards since there are less base
5621	 * BTF ids in distilled base BTF.
5622	 */
5623	dist.diff_id = dist.split_start_id - btf__type_cnt(new_base);
5624
5625	n = btf__type_cnt(new_split);
5626	/* Now update base/split BTF ids. */
5627	for (i = 1; i < n; i++) {
5628		err = btf_update_distilled_type_ids(&dist, i);
5629		if (err < 0)
5630			break;
5631	}
5632done:
5633	free(dist.id_map);
5634	hashmap__free(dist.pipe.str_off_map);
5635	if (err) {
5636		btf__free(new_split);
5637		btf__free(new_base);
5638		return libbpf_err(err);
5639	}
5640	*new_base_btf = new_base;
5641	*new_split_btf = new_split;
5642
5643	return 0;
5644}
5645
5646const struct btf_header *btf_header(const struct btf *btf)
5647{
5648	return btf->hdr;
5649}
5650
5651void btf_set_base_btf(struct btf *btf, const struct btf *base_btf)
5652{
5653	btf->base_btf = (struct btf *)base_btf;
5654	btf->start_id = btf__type_cnt(base_btf);
5655	btf->start_str_off = base_btf->hdr->str_len;
5656}
5657
5658int btf__relocate(struct btf *btf, const struct btf *base_btf)
5659{
5660	int err = btf_relocate(btf, base_btf, NULL);
5661
5662	if (!err)
5663		btf->owns_base = false;
5664	return libbpf_err(err);
5665}