Loading...
1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2/* Copyright (c) 2018 Facebook */
3
4#include <byteswap.h>
5#include <endian.h>
6#include <stdio.h>
7#include <stdlib.h>
8#include <string.h>
9#include <fcntl.h>
10#include <unistd.h>
11#include <errno.h>
12#include <sys/utsname.h>
13#include <sys/param.h>
14#include <sys/stat.h>
15#include <linux/kernel.h>
16#include <linux/err.h>
17#include <linux/btf.h>
18#include <gelf.h>
19#include "btf.h"
20#include "bpf.h"
21#include "libbpf.h"
22#include "libbpf_internal.h"
23#include "hashmap.h"
24#include "strset.h"
25
26#define BTF_MAX_NR_TYPES 0x7fffffffU
27#define BTF_MAX_STR_OFFSET 0x7fffffffU
28
29static struct btf_type btf_void;
30
31struct btf {
32 /* raw BTF data in native endianness */
33 void *raw_data;
34 /* raw BTF data in non-native endianness */
35 void *raw_data_swapped;
36 __u32 raw_size;
37 /* whether target endianness differs from the native one */
38 bool swapped_endian;
39
40 /*
41 * When BTF is loaded from an ELF or raw memory it is stored
42 * in a contiguous memory block. The hdr, type_data, and, strs_data
43 * point inside that memory region to their respective parts of BTF
44 * representation:
45 *
46 * +--------------------------------+
47 * | Header | Types | Strings |
48 * +--------------------------------+
49 * ^ ^ ^
50 * | | |
51 * hdr | |
52 * types_data-+ |
53 * strs_data------------+
54 *
55 * If BTF data is later modified, e.g., due to types added or
56 * removed, BTF deduplication performed, etc, this contiguous
57 * representation is broken up into three independently allocated
58 * memory regions to be able to modify them independently.
59 * raw_data is nulled out at that point, but can be later allocated
60 * and cached again if user calls btf__get_raw_data(), at which point
61 * raw_data will contain a contiguous copy of header, types, and
62 * strings:
63 *
64 * +----------+ +---------+ +-----------+
65 * | Header | | Types | | Strings |
66 * +----------+ +---------+ +-----------+
67 * ^ ^ ^
68 * | | |
69 * hdr | |
70 * types_data----+ |
71 * strset__data(strs_set)-----+
72 *
73 * +----------+---------+-----------+
74 * | Header | Types | Strings |
75 * raw_data----->+----------+---------+-----------+
76 */
77 struct btf_header *hdr;
78
79 void *types_data;
80 size_t types_data_cap; /* used size stored in hdr->type_len */
81
82 /* type ID to `struct btf_type *` lookup index
83 * type_offs[0] corresponds to the first non-VOID type:
84 * - for base BTF it's type [1];
85 * - for split BTF it's the first non-base BTF type.
86 */
87 __u32 *type_offs;
88 size_t type_offs_cap;
89 /* number of types in this BTF instance:
90 * - doesn't include special [0] void type;
91 * - for split BTF counts number of types added on top of base BTF.
92 */
93 __u32 nr_types;
94 /* if not NULL, points to the base BTF on top of which the current
95 * split BTF is based
96 */
97 struct btf *base_btf;
98 /* BTF type ID of the first type in this BTF instance:
99 * - for base BTF it's equal to 1;
100 * - for split BTF it's equal to biggest type ID of base BTF plus 1.
101 */
102 int start_id;
103 /* logical string offset of this BTF instance:
104 * - for base BTF it's equal to 0;
105 * - for split BTF it's equal to total size of base BTF's string section size.
106 */
107 int start_str_off;
108
109 /* only one of strs_data or strs_set can be non-NULL, depending on
110 * whether BTF is in a modifiable state (strs_set is used) or not
111 * (strs_data points inside raw_data)
112 */
113 void *strs_data;
114 /* a set of unique strings */
115 struct strset *strs_set;
116 /* whether strings are already deduplicated */
117 bool strs_deduped;
118
119 /* BTF object FD, if loaded into kernel */
120 int fd;
121
122 /* Pointer size (in bytes) for a target architecture of this BTF */
123 int ptr_sz;
124};
125
126static inline __u64 ptr_to_u64(const void *ptr)
127{
128 return (__u64) (unsigned long) ptr;
129}
130
131/* Ensure given dynamically allocated memory region pointed to by *data* with
132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
133 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
134 * are already used. At most *max_cnt* elements can be ever allocated.
135 * If necessary, memory is reallocated and all existing data is copied over,
136 * new pointer to the memory region is stored at *data, new memory region
137 * capacity (in number of elements) is stored in *cap.
138 * On success, memory pointer to the beginning of unused memory is returned.
139 * On error, NULL is returned.
140 */
141void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
142 size_t cur_cnt, size_t max_cnt, size_t add_cnt)
143{
144 size_t new_cnt;
145 void *new_data;
146
147 if (cur_cnt + add_cnt <= *cap_cnt)
148 return *data + cur_cnt * elem_sz;
149
150 /* requested more than the set limit */
151 if (cur_cnt + add_cnt > max_cnt)
152 return NULL;
153
154 new_cnt = *cap_cnt;
155 new_cnt += new_cnt / 4; /* expand by 25% */
156 if (new_cnt < 16) /* but at least 16 elements */
157 new_cnt = 16;
158 if (new_cnt > max_cnt) /* but not exceeding a set limit */
159 new_cnt = max_cnt;
160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */
161 new_cnt = cur_cnt + add_cnt;
162
163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
164 if (!new_data)
165 return NULL;
166
167 /* zero out newly allocated portion of memory */
168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
169
170 *data = new_data;
171 *cap_cnt = new_cnt;
172 return new_data + cur_cnt * elem_sz;
173}
174
175/* Ensure given dynamically allocated memory region has enough allocated space
176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
177 */
178int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
179{
180 void *p;
181
182 if (need_cnt <= *cap_cnt)
183 return 0;
184
185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
186 if (!p)
187 return -ENOMEM;
188
189 return 0;
190}
191
192static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
193{
194 __u32 *p;
195
196 p = libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
197 btf->nr_types, BTF_MAX_NR_TYPES, 1);
198 if (!p)
199 return -ENOMEM;
200
201 *p = type_off;
202 return 0;
203}
204
205static void btf_bswap_hdr(struct btf_header *h)
206{
207 h->magic = bswap_16(h->magic);
208 h->hdr_len = bswap_32(h->hdr_len);
209 h->type_off = bswap_32(h->type_off);
210 h->type_len = bswap_32(h->type_len);
211 h->str_off = bswap_32(h->str_off);
212 h->str_len = bswap_32(h->str_len);
213}
214
215static int btf_parse_hdr(struct btf *btf)
216{
217 struct btf_header *hdr = btf->hdr;
218 __u32 meta_left;
219
220 if (btf->raw_size < sizeof(struct btf_header)) {
221 pr_debug("BTF header not found\n");
222 return -EINVAL;
223 }
224
225 if (hdr->magic == bswap_16(BTF_MAGIC)) {
226 btf->swapped_endian = true;
227 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
228 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
229 bswap_32(hdr->hdr_len));
230 return -ENOTSUP;
231 }
232 btf_bswap_hdr(hdr);
233 } else if (hdr->magic != BTF_MAGIC) {
234 pr_debug("Invalid BTF magic:%x\n", hdr->magic);
235 return -EINVAL;
236 }
237
238 meta_left = btf->raw_size - sizeof(*hdr);
239 if (meta_left < hdr->str_off + hdr->str_len) {
240 pr_debug("Invalid BTF total size:%u\n", btf->raw_size);
241 return -EINVAL;
242 }
243
244 if (hdr->type_off + hdr->type_len > hdr->str_off) {
245 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
246 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
247 return -EINVAL;
248 }
249
250 if (hdr->type_off % 4) {
251 pr_debug("BTF type section is not aligned to 4 bytes\n");
252 return -EINVAL;
253 }
254
255 return 0;
256}
257
258static int btf_parse_str_sec(struct btf *btf)
259{
260 const struct btf_header *hdr = btf->hdr;
261 const char *start = btf->strs_data;
262 const char *end = start + btf->hdr->str_len;
263
264 if (btf->base_btf && hdr->str_len == 0)
265 return 0;
266 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
267 pr_debug("Invalid BTF string section\n");
268 return -EINVAL;
269 }
270 if (!btf->base_btf && start[0]) {
271 pr_debug("Invalid BTF string section\n");
272 return -EINVAL;
273 }
274 return 0;
275}
276
277static int btf_type_size(const struct btf_type *t)
278{
279 const int base_size = sizeof(struct btf_type);
280 __u16 vlen = btf_vlen(t);
281
282 switch (btf_kind(t)) {
283 case BTF_KIND_FWD:
284 case BTF_KIND_CONST:
285 case BTF_KIND_VOLATILE:
286 case BTF_KIND_RESTRICT:
287 case BTF_KIND_PTR:
288 case BTF_KIND_TYPEDEF:
289 case BTF_KIND_FUNC:
290 case BTF_KIND_FLOAT:
291 return base_size;
292 case BTF_KIND_INT:
293 return base_size + sizeof(__u32);
294 case BTF_KIND_ENUM:
295 return base_size + vlen * sizeof(struct btf_enum);
296 case BTF_KIND_ARRAY:
297 return base_size + sizeof(struct btf_array);
298 case BTF_KIND_STRUCT:
299 case BTF_KIND_UNION:
300 return base_size + vlen * sizeof(struct btf_member);
301 case BTF_KIND_FUNC_PROTO:
302 return base_size + vlen * sizeof(struct btf_param);
303 case BTF_KIND_VAR:
304 return base_size + sizeof(struct btf_var);
305 case BTF_KIND_DATASEC:
306 return base_size + vlen * sizeof(struct btf_var_secinfo);
307 default:
308 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
309 return -EINVAL;
310 }
311}
312
313static void btf_bswap_type_base(struct btf_type *t)
314{
315 t->name_off = bswap_32(t->name_off);
316 t->info = bswap_32(t->info);
317 t->type = bswap_32(t->type);
318}
319
320static int btf_bswap_type_rest(struct btf_type *t)
321{
322 struct btf_var_secinfo *v;
323 struct btf_member *m;
324 struct btf_array *a;
325 struct btf_param *p;
326 struct btf_enum *e;
327 __u16 vlen = btf_vlen(t);
328 int i;
329
330 switch (btf_kind(t)) {
331 case BTF_KIND_FWD:
332 case BTF_KIND_CONST:
333 case BTF_KIND_VOLATILE:
334 case BTF_KIND_RESTRICT:
335 case BTF_KIND_PTR:
336 case BTF_KIND_TYPEDEF:
337 case BTF_KIND_FUNC:
338 case BTF_KIND_FLOAT:
339 return 0;
340 case BTF_KIND_INT:
341 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
342 return 0;
343 case BTF_KIND_ENUM:
344 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
345 e->name_off = bswap_32(e->name_off);
346 e->val = bswap_32(e->val);
347 }
348 return 0;
349 case BTF_KIND_ARRAY:
350 a = btf_array(t);
351 a->type = bswap_32(a->type);
352 a->index_type = bswap_32(a->index_type);
353 a->nelems = bswap_32(a->nelems);
354 return 0;
355 case BTF_KIND_STRUCT:
356 case BTF_KIND_UNION:
357 for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
358 m->name_off = bswap_32(m->name_off);
359 m->type = bswap_32(m->type);
360 m->offset = bswap_32(m->offset);
361 }
362 return 0;
363 case BTF_KIND_FUNC_PROTO:
364 for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
365 p->name_off = bswap_32(p->name_off);
366 p->type = bswap_32(p->type);
367 }
368 return 0;
369 case BTF_KIND_VAR:
370 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
371 return 0;
372 case BTF_KIND_DATASEC:
373 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
374 v->type = bswap_32(v->type);
375 v->offset = bswap_32(v->offset);
376 v->size = bswap_32(v->size);
377 }
378 return 0;
379 default:
380 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
381 return -EINVAL;
382 }
383}
384
385static int btf_parse_type_sec(struct btf *btf)
386{
387 struct btf_header *hdr = btf->hdr;
388 void *next_type = btf->types_data;
389 void *end_type = next_type + hdr->type_len;
390 int err, type_size;
391
392 while (next_type + sizeof(struct btf_type) <= end_type) {
393 if (btf->swapped_endian)
394 btf_bswap_type_base(next_type);
395
396 type_size = btf_type_size(next_type);
397 if (type_size < 0)
398 return type_size;
399 if (next_type + type_size > end_type) {
400 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
401 return -EINVAL;
402 }
403
404 if (btf->swapped_endian && btf_bswap_type_rest(next_type))
405 return -EINVAL;
406
407 err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
408 if (err)
409 return err;
410
411 next_type += type_size;
412 btf->nr_types++;
413 }
414
415 if (next_type != end_type) {
416 pr_warn("BTF types data is malformed\n");
417 return -EINVAL;
418 }
419
420 return 0;
421}
422
423__u32 btf__get_nr_types(const struct btf *btf)
424{
425 return btf->start_id + btf->nr_types - 1;
426}
427
428const struct btf *btf__base_btf(const struct btf *btf)
429{
430 return btf->base_btf;
431}
432
433/* internal helper returning non-const pointer to a type */
434struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
435{
436 if (type_id == 0)
437 return &btf_void;
438 if (type_id < btf->start_id)
439 return btf_type_by_id(btf->base_btf, type_id);
440 return btf->types_data + btf->type_offs[type_id - btf->start_id];
441}
442
443const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
444{
445 if (type_id >= btf->start_id + btf->nr_types)
446 return errno = EINVAL, NULL;
447 return btf_type_by_id((struct btf *)btf, type_id);
448}
449
450static int determine_ptr_size(const struct btf *btf)
451{
452 const struct btf_type *t;
453 const char *name;
454 int i, n;
455
456 if (btf->base_btf && btf->base_btf->ptr_sz > 0)
457 return btf->base_btf->ptr_sz;
458
459 n = btf__get_nr_types(btf);
460 for (i = 1; i <= n; i++) {
461 t = btf__type_by_id(btf, i);
462 if (!btf_is_int(t))
463 continue;
464
465 name = btf__name_by_offset(btf, t->name_off);
466 if (!name)
467 continue;
468
469 if (strcmp(name, "long int") == 0 ||
470 strcmp(name, "long unsigned int") == 0) {
471 if (t->size != 4 && t->size != 8)
472 continue;
473 return t->size;
474 }
475 }
476
477 return -1;
478}
479
480static size_t btf_ptr_sz(const struct btf *btf)
481{
482 if (!btf->ptr_sz)
483 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
484 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
485}
486
487/* Return pointer size this BTF instance assumes. The size is heuristically
488 * determined by looking for 'long' or 'unsigned long' integer type and
489 * recording its size in bytes. If BTF type information doesn't have any such
490 * type, this function returns 0. In the latter case, native architecture's
491 * pointer size is assumed, so will be either 4 or 8, depending on
492 * architecture that libbpf was compiled for. It's possible to override
493 * guessed value by using btf__set_pointer_size() API.
494 */
495size_t btf__pointer_size(const struct btf *btf)
496{
497 if (!btf->ptr_sz)
498 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
499
500 if (btf->ptr_sz < 0)
501 /* not enough BTF type info to guess */
502 return 0;
503
504 return btf->ptr_sz;
505}
506
507/* Override or set pointer size in bytes. Only values of 4 and 8 are
508 * supported.
509 */
510int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
511{
512 if (ptr_sz != 4 && ptr_sz != 8)
513 return libbpf_err(-EINVAL);
514 btf->ptr_sz = ptr_sz;
515 return 0;
516}
517
518static bool is_host_big_endian(void)
519{
520#if __BYTE_ORDER == __LITTLE_ENDIAN
521 return false;
522#elif __BYTE_ORDER == __BIG_ENDIAN
523 return true;
524#else
525# error "Unrecognized __BYTE_ORDER__"
526#endif
527}
528
529enum btf_endianness btf__endianness(const struct btf *btf)
530{
531 if (is_host_big_endian())
532 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
533 else
534 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
535}
536
537int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
538{
539 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
540 return libbpf_err(-EINVAL);
541
542 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
543 if (!btf->swapped_endian) {
544 free(btf->raw_data_swapped);
545 btf->raw_data_swapped = NULL;
546 }
547 return 0;
548}
549
550static bool btf_type_is_void(const struct btf_type *t)
551{
552 return t == &btf_void || btf_is_fwd(t);
553}
554
555static bool btf_type_is_void_or_null(const struct btf_type *t)
556{
557 return !t || btf_type_is_void(t);
558}
559
560#define MAX_RESOLVE_DEPTH 32
561
562__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
563{
564 const struct btf_array *array;
565 const struct btf_type *t;
566 __u32 nelems = 1;
567 __s64 size = -1;
568 int i;
569
570 t = btf__type_by_id(btf, type_id);
571 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
572 switch (btf_kind(t)) {
573 case BTF_KIND_INT:
574 case BTF_KIND_STRUCT:
575 case BTF_KIND_UNION:
576 case BTF_KIND_ENUM:
577 case BTF_KIND_DATASEC:
578 case BTF_KIND_FLOAT:
579 size = t->size;
580 goto done;
581 case BTF_KIND_PTR:
582 size = btf_ptr_sz(btf);
583 goto done;
584 case BTF_KIND_TYPEDEF:
585 case BTF_KIND_VOLATILE:
586 case BTF_KIND_CONST:
587 case BTF_KIND_RESTRICT:
588 case BTF_KIND_VAR:
589 type_id = t->type;
590 break;
591 case BTF_KIND_ARRAY:
592 array = btf_array(t);
593 if (nelems && array->nelems > UINT32_MAX / nelems)
594 return libbpf_err(-E2BIG);
595 nelems *= array->nelems;
596 type_id = array->type;
597 break;
598 default:
599 return libbpf_err(-EINVAL);
600 }
601
602 t = btf__type_by_id(btf, type_id);
603 }
604
605done:
606 if (size < 0)
607 return libbpf_err(-EINVAL);
608 if (nelems && size > UINT32_MAX / nelems)
609 return libbpf_err(-E2BIG);
610
611 return nelems * size;
612}
613
614int btf__align_of(const struct btf *btf, __u32 id)
615{
616 const struct btf_type *t = btf__type_by_id(btf, id);
617 __u16 kind = btf_kind(t);
618
619 switch (kind) {
620 case BTF_KIND_INT:
621 case BTF_KIND_ENUM:
622 case BTF_KIND_FLOAT:
623 return min(btf_ptr_sz(btf), (size_t)t->size);
624 case BTF_KIND_PTR:
625 return btf_ptr_sz(btf);
626 case BTF_KIND_TYPEDEF:
627 case BTF_KIND_VOLATILE:
628 case BTF_KIND_CONST:
629 case BTF_KIND_RESTRICT:
630 return btf__align_of(btf, t->type);
631 case BTF_KIND_ARRAY:
632 return btf__align_of(btf, btf_array(t)->type);
633 case BTF_KIND_STRUCT:
634 case BTF_KIND_UNION: {
635 const struct btf_member *m = btf_members(t);
636 __u16 vlen = btf_vlen(t);
637 int i, max_align = 1, align;
638
639 for (i = 0; i < vlen; i++, m++) {
640 align = btf__align_of(btf, m->type);
641 if (align <= 0)
642 return libbpf_err(align);
643 max_align = max(max_align, align);
644 }
645
646 return max_align;
647 }
648 default:
649 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
650 return errno = EINVAL, 0;
651 }
652}
653
654int btf__resolve_type(const struct btf *btf, __u32 type_id)
655{
656 const struct btf_type *t;
657 int depth = 0;
658
659 t = btf__type_by_id(btf, type_id);
660 while (depth < MAX_RESOLVE_DEPTH &&
661 !btf_type_is_void_or_null(t) &&
662 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
663 type_id = t->type;
664 t = btf__type_by_id(btf, type_id);
665 depth++;
666 }
667
668 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
669 return libbpf_err(-EINVAL);
670
671 return type_id;
672}
673
674__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
675{
676 __u32 i, nr_types = btf__get_nr_types(btf);
677
678 if (!strcmp(type_name, "void"))
679 return 0;
680
681 for (i = 1; i <= nr_types; i++) {
682 const struct btf_type *t = btf__type_by_id(btf, i);
683 const char *name = btf__name_by_offset(btf, t->name_off);
684
685 if (name && !strcmp(type_name, name))
686 return i;
687 }
688
689 return libbpf_err(-ENOENT);
690}
691
692__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
693 __u32 kind)
694{
695 __u32 i, nr_types = btf__get_nr_types(btf);
696
697 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
698 return 0;
699
700 for (i = 1; i <= nr_types; i++) {
701 const struct btf_type *t = btf__type_by_id(btf, i);
702 const char *name;
703
704 if (btf_kind(t) != kind)
705 continue;
706 name = btf__name_by_offset(btf, t->name_off);
707 if (name && !strcmp(type_name, name))
708 return i;
709 }
710
711 return libbpf_err(-ENOENT);
712}
713
714static bool btf_is_modifiable(const struct btf *btf)
715{
716 return (void *)btf->hdr != btf->raw_data;
717}
718
719void btf__free(struct btf *btf)
720{
721 if (IS_ERR_OR_NULL(btf))
722 return;
723
724 if (btf->fd >= 0)
725 close(btf->fd);
726
727 if (btf_is_modifiable(btf)) {
728 /* if BTF was modified after loading, it will have a split
729 * in-memory representation for header, types, and strings
730 * sections, so we need to free all of them individually. It
731 * might still have a cached contiguous raw data present,
732 * which will be unconditionally freed below.
733 */
734 free(btf->hdr);
735 free(btf->types_data);
736 strset__free(btf->strs_set);
737 }
738 free(btf->raw_data);
739 free(btf->raw_data_swapped);
740 free(btf->type_offs);
741 free(btf);
742}
743
744static struct btf *btf_new_empty(struct btf *base_btf)
745{
746 struct btf *btf;
747
748 btf = calloc(1, sizeof(*btf));
749 if (!btf)
750 return ERR_PTR(-ENOMEM);
751
752 btf->nr_types = 0;
753 btf->start_id = 1;
754 btf->start_str_off = 0;
755 btf->fd = -1;
756 btf->ptr_sz = sizeof(void *);
757 btf->swapped_endian = false;
758
759 if (base_btf) {
760 btf->base_btf = base_btf;
761 btf->start_id = btf__get_nr_types(base_btf) + 1;
762 btf->start_str_off = base_btf->hdr->str_len;
763 }
764
765 /* +1 for empty string at offset 0 */
766 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
767 btf->raw_data = calloc(1, btf->raw_size);
768 if (!btf->raw_data) {
769 free(btf);
770 return ERR_PTR(-ENOMEM);
771 }
772
773 btf->hdr = btf->raw_data;
774 btf->hdr->hdr_len = sizeof(struct btf_header);
775 btf->hdr->magic = BTF_MAGIC;
776 btf->hdr->version = BTF_VERSION;
777
778 btf->types_data = btf->raw_data + btf->hdr->hdr_len;
779 btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
780 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
781
782 return btf;
783}
784
785struct btf *btf__new_empty(void)
786{
787 return libbpf_ptr(btf_new_empty(NULL));
788}
789
790struct btf *btf__new_empty_split(struct btf *base_btf)
791{
792 return libbpf_ptr(btf_new_empty(base_btf));
793}
794
795static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
796{
797 struct btf *btf;
798 int err;
799
800 btf = calloc(1, sizeof(struct btf));
801 if (!btf)
802 return ERR_PTR(-ENOMEM);
803
804 btf->nr_types = 0;
805 btf->start_id = 1;
806 btf->start_str_off = 0;
807 btf->fd = -1;
808
809 if (base_btf) {
810 btf->base_btf = base_btf;
811 btf->start_id = btf__get_nr_types(base_btf) + 1;
812 btf->start_str_off = base_btf->hdr->str_len;
813 }
814
815 btf->raw_data = malloc(size);
816 if (!btf->raw_data) {
817 err = -ENOMEM;
818 goto done;
819 }
820 memcpy(btf->raw_data, data, size);
821 btf->raw_size = size;
822
823 btf->hdr = btf->raw_data;
824 err = btf_parse_hdr(btf);
825 if (err)
826 goto done;
827
828 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
829 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
830
831 err = btf_parse_str_sec(btf);
832 err = err ?: btf_parse_type_sec(btf);
833 if (err)
834 goto done;
835
836done:
837 if (err) {
838 btf__free(btf);
839 return ERR_PTR(err);
840 }
841
842 return btf;
843}
844
845struct btf *btf__new(const void *data, __u32 size)
846{
847 return libbpf_ptr(btf_new(data, size, NULL));
848}
849
850static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
851 struct btf_ext **btf_ext)
852{
853 Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
854 int err = 0, fd = -1, idx = 0;
855 struct btf *btf = NULL;
856 Elf_Scn *scn = NULL;
857 Elf *elf = NULL;
858 GElf_Ehdr ehdr;
859 size_t shstrndx;
860
861 if (elf_version(EV_CURRENT) == EV_NONE) {
862 pr_warn("failed to init libelf for %s\n", path);
863 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
864 }
865
866 fd = open(path, O_RDONLY);
867 if (fd < 0) {
868 err = -errno;
869 pr_warn("failed to open %s: %s\n", path, strerror(errno));
870 return ERR_PTR(err);
871 }
872
873 err = -LIBBPF_ERRNO__FORMAT;
874
875 elf = elf_begin(fd, ELF_C_READ, NULL);
876 if (!elf) {
877 pr_warn("failed to open %s as ELF file\n", path);
878 goto done;
879 }
880 if (!gelf_getehdr(elf, &ehdr)) {
881 pr_warn("failed to get EHDR from %s\n", path);
882 goto done;
883 }
884
885 if (elf_getshdrstrndx(elf, &shstrndx)) {
886 pr_warn("failed to get section names section index for %s\n",
887 path);
888 goto done;
889 }
890
891 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
892 pr_warn("failed to get e_shstrndx from %s\n", path);
893 goto done;
894 }
895
896 while ((scn = elf_nextscn(elf, scn)) != NULL) {
897 GElf_Shdr sh;
898 char *name;
899
900 idx++;
901 if (gelf_getshdr(scn, &sh) != &sh) {
902 pr_warn("failed to get section(%d) header from %s\n",
903 idx, path);
904 goto done;
905 }
906 name = elf_strptr(elf, shstrndx, sh.sh_name);
907 if (!name) {
908 pr_warn("failed to get section(%d) name from %s\n",
909 idx, path);
910 goto done;
911 }
912 if (strcmp(name, BTF_ELF_SEC) == 0) {
913 btf_data = elf_getdata(scn, 0);
914 if (!btf_data) {
915 pr_warn("failed to get section(%d, %s) data from %s\n",
916 idx, name, path);
917 goto done;
918 }
919 continue;
920 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
921 btf_ext_data = elf_getdata(scn, 0);
922 if (!btf_ext_data) {
923 pr_warn("failed to get section(%d, %s) data from %s\n",
924 idx, name, path);
925 goto done;
926 }
927 continue;
928 }
929 }
930
931 err = 0;
932
933 if (!btf_data) {
934 err = -ENOENT;
935 goto done;
936 }
937 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
938 err = libbpf_get_error(btf);
939 if (err)
940 goto done;
941
942 switch (gelf_getclass(elf)) {
943 case ELFCLASS32:
944 btf__set_pointer_size(btf, 4);
945 break;
946 case ELFCLASS64:
947 btf__set_pointer_size(btf, 8);
948 break;
949 default:
950 pr_warn("failed to get ELF class (bitness) for %s\n", path);
951 break;
952 }
953
954 if (btf_ext && btf_ext_data) {
955 *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
956 err = libbpf_get_error(*btf_ext);
957 if (err)
958 goto done;
959 } else if (btf_ext) {
960 *btf_ext = NULL;
961 }
962done:
963 if (elf)
964 elf_end(elf);
965 close(fd);
966
967 if (!err)
968 return btf;
969
970 if (btf_ext)
971 btf_ext__free(*btf_ext);
972 btf__free(btf);
973
974 return ERR_PTR(err);
975}
976
977struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
978{
979 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
980}
981
982struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
983{
984 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
985}
986
987static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
988{
989 struct btf *btf = NULL;
990 void *data = NULL;
991 FILE *f = NULL;
992 __u16 magic;
993 int err = 0;
994 long sz;
995
996 f = fopen(path, "rb");
997 if (!f) {
998 err = -errno;
999 goto err_out;
1000 }
1001
1002 /* check BTF magic */
1003 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1004 err = -EIO;
1005 goto err_out;
1006 }
1007 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1008 /* definitely not a raw BTF */
1009 err = -EPROTO;
1010 goto err_out;
1011 }
1012
1013 /* get file size */
1014 if (fseek(f, 0, SEEK_END)) {
1015 err = -errno;
1016 goto err_out;
1017 }
1018 sz = ftell(f);
1019 if (sz < 0) {
1020 err = -errno;
1021 goto err_out;
1022 }
1023 /* rewind to the start */
1024 if (fseek(f, 0, SEEK_SET)) {
1025 err = -errno;
1026 goto err_out;
1027 }
1028
1029 /* pre-alloc memory and read all of BTF data */
1030 data = malloc(sz);
1031 if (!data) {
1032 err = -ENOMEM;
1033 goto err_out;
1034 }
1035 if (fread(data, 1, sz, f) < sz) {
1036 err = -EIO;
1037 goto err_out;
1038 }
1039
1040 /* finally parse BTF data */
1041 btf = btf_new(data, sz, base_btf);
1042
1043err_out:
1044 free(data);
1045 if (f)
1046 fclose(f);
1047 return err ? ERR_PTR(err) : btf;
1048}
1049
1050struct btf *btf__parse_raw(const char *path)
1051{
1052 return libbpf_ptr(btf_parse_raw(path, NULL));
1053}
1054
1055struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1056{
1057 return libbpf_ptr(btf_parse_raw(path, base_btf));
1058}
1059
1060static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1061{
1062 struct btf *btf;
1063 int err;
1064
1065 if (btf_ext)
1066 *btf_ext = NULL;
1067
1068 btf = btf_parse_raw(path, base_btf);
1069 err = libbpf_get_error(btf);
1070 if (!err)
1071 return btf;
1072 if (err != -EPROTO)
1073 return ERR_PTR(err);
1074 return btf_parse_elf(path, base_btf, btf_ext);
1075}
1076
1077struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1078{
1079 return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1080}
1081
1082struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1083{
1084 return libbpf_ptr(btf_parse(path, base_btf, NULL));
1085}
1086
1087static int compare_vsi_off(const void *_a, const void *_b)
1088{
1089 const struct btf_var_secinfo *a = _a;
1090 const struct btf_var_secinfo *b = _b;
1091
1092 return a->offset - b->offset;
1093}
1094
1095static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
1096 struct btf_type *t)
1097{
1098 __u32 size = 0, off = 0, i, vars = btf_vlen(t);
1099 const char *name = btf__name_by_offset(btf, t->name_off);
1100 const struct btf_type *t_var;
1101 struct btf_var_secinfo *vsi;
1102 const struct btf_var *var;
1103 int ret;
1104
1105 if (!name) {
1106 pr_debug("No name found in string section for DATASEC kind.\n");
1107 return -ENOENT;
1108 }
1109
1110 /* .extern datasec size and var offsets were set correctly during
1111 * extern collection step, so just skip straight to sorting variables
1112 */
1113 if (t->size)
1114 goto sort_vars;
1115
1116 ret = bpf_object__section_size(obj, name, &size);
1117 if (ret || !size || (t->size && t->size != size)) {
1118 pr_debug("Invalid size for section %s: %u bytes\n", name, size);
1119 return -ENOENT;
1120 }
1121
1122 t->size = size;
1123
1124 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
1125 t_var = btf__type_by_id(btf, vsi->type);
1126 var = btf_var(t_var);
1127
1128 if (!btf_is_var(t_var)) {
1129 pr_debug("Non-VAR type seen in section %s\n", name);
1130 return -EINVAL;
1131 }
1132
1133 if (var->linkage == BTF_VAR_STATIC)
1134 continue;
1135
1136 name = btf__name_by_offset(btf, t_var->name_off);
1137 if (!name) {
1138 pr_debug("No name found in string section for VAR kind\n");
1139 return -ENOENT;
1140 }
1141
1142 ret = bpf_object__variable_offset(obj, name, &off);
1143 if (ret) {
1144 pr_debug("No offset found in symbol table for VAR %s\n",
1145 name);
1146 return -ENOENT;
1147 }
1148
1149 vsi->offset = off;
1150 }
1151
1152sort_vars:
1153 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
1154 return 0;
1155}
1156
1157int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
1158{
1159 int err = 0;
1160 __u32 i;
1161
1162 for (i = 1; i <= btf->nr_types; i++) {
1163 struct btf_type *t = btf_type_by_id(btf, i);
1164
1165 /* Loader needs to fix up some of the things compiler
1166 * couldn't get its hands on while emitting BTF. This
1167 * is section size and global variable offset. We use
1168 * the info from the ELF itself for this purpose.
1169 */
1170 if (btf_is_datasec(t)) {
1171 err = btf_fixup_datasec(obj, btf, t);
1172 if (err)
1173 break;
1174 }
1175 }
1176
1177 return libbpf_err(err);
1178}
1179
1180static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1181
1182int btf__load(struct btf *btf)
1183{
1184 __u32 log_buf_size = 0, raw_size;
1185 char *log_buf = NULL;
1186 void *raw_data;
1187 int err = 0;
1188
1189 if (btf->fd >= 0)
1190 return libbpf_err(-EEXIST);
1191
1192retry_load:
1193 if (log_buf_size) {
1194 log_buf = malloc(log_buf_size);
1195 if (!log_buf)
1196 return libbpf_err(-ENOMEM);
1197
1198 *log_buf = 0;
1199 }
1200
1201 raw_data = btf_get_raw_data(btf, &raw_size, false);
1202 if (!raw_data) {
1203 err = -ENOMEM;
1204 goto done;
1205 }
1206 /* cache native raw data representation */
1207 btf->raw_size = raw_size;
1208 btf->raw_data = raw_data;
1209
1210 btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
1211 if (btf->fd < 0) {
1212 if (!log_buf || errno == ENOSPC) {
1213 log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1214 log_buf_size << 1);
1215 free(log_buf);
1216 goto retry_load;
1217 }
1218
1219 err = -errno;
1220 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1221 if (*log_buf)
1222 pr_warn("%s\n", log_buf);
1223 goto done;
1224 }
1225
1226done:
1227 free(log_buf);
1228 return libbpf_err(err);
1229}
1230
1231int btf__fd(const struct btf *btf)
1232{
1233 return btf->fd;
1234}
1235
1236void btf__set_fd(struct btf *btf, int fd)
1237{
1238 btf->fd = fd;
1239}
1240
1241static const void *btf_strs_data(const struct btf *btf)
1242{
1243 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1244}
1245
1246static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1247{
1248 struct btf_header *hdr = btf->hdr;
1249 struct btf_type *t;
1250 void *data, *p;
1251 __u32 data_sz;
1252 int i;
1253
1254 data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1255 if (data) {
1256 *size = btf->raw_size;
1257 return data;
1258 }
1259
1260 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1261 data = calloc(1, data_sz);
1262 if (!data)
1263 return NULL;
1264 p = data;
1265
1266 memcpy(p, hdr, hdr->hdr_len);
1267 if (swap_endian)
1268 btf_bswap_hdr(p);
1269 p += hdr->hdr_len;
1270
1271 memcpy(p, btf->types_data, hdr->type_len);
1272 if (swap_endian) {
1273 for (i = 0; i < btf->nr_types; i++) {
1274 t = p + btf->type_offs[i];
1275 /* btf_bswap_type_rest() relies on native t->info, so
1276 * we swap base type info after we swapped all the
1277 * additional information
1278 */
1279 if (btf_bswap_type_rest(t))
1280 goto err_out;
1281 btf_bswap_type_base(t);
1282 }
1283 }
1284 p += hdr->type_len;
1285
1286 memcpy(p, btf_strs_data(btf), hdr->str_len);
1287 p += hdr->str_len;
1288
1289 *size = data_sz;
1290 return data;
1291err_out:
1292 free(data);
1293 return NULL;
1294}
1295
1296const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
1297{
1298 struct btf *btf = (struct btf *)btf_ro;
1299 __u32 data_sz;
1300 void *data;
1301
1302 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1303 if (!data)
1304 return errno = -ENOMEM, NULL;
1305
1306 btf->raw_size = data_sz;
1307 if (btf->swapped_endian)
1308 btf->raw_data_swapped = data;
1309 else
1310 btf->raw_data = data;
1311 *size = data_sz;
1312 return data;
1313}
1314
1315const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1316{
1317 if (offset < btf->start_str_off)
1318 return btf__str_by_offset(btf->base_btf, offset);
1319 else if (offset - btf->start_str_off < btf->hdr->str_len)
1320 return btf_strs_data(btf) + (offset - btf->start_str_off);
1321 else
1322 return errno = EINVAL, NULL;
1323}
1324
1325const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1326{
1327 return btf__str_by_offset(btf, offset);
1328}
1329
1330struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1331{
1332 struct bpf_btf_info btf_info;
1333 __u32 len = sizeof(btf_info);
1334 __u32 last_size;
1335 struct btf *btf;
1336 void *ptr;
1337 int err;
1338
1339 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1340 * let's start with a sane default - 4KiB here - and resize it only if
1341 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1342 */
1343 last_size = 4096;
1344 ptr = malloc(last_size);
1345 if (!ptr)
1346 return ERR_PTR(-ENOMEM);
1347
1348 memset(&btf_info, 0, sizeof(btf_info));
1349 btf_info.btf = ptr_to_u64(ptr);
1350 btf_info.btf_size = last_size;
1351 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1352
1353 if (!err && btf_info.btf_size > last_size) {
1354 void *temp_ptr;
1355
1356 last_size = btf_info.btf_size;
1357 temp_ptr = realloc(ptr, last_size);
1358 if (!temp_ptr) {
1359 btf = ERR_PTR(-ENOMEM);
1360 goto exit_free;
1361 }
1362 ptr = temp_ptr;
1363
1364 len = sizeof(btf_info);
1365 memset(&btf_info, 0, sizeof(btf_info));
1366 btf_info.btf = ptr_to_u64(ptr);
1367 btf_info.btf_size = last_size;
1368
1369 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1370 }
1371
1372 if (err || btf_info.btf_size > last_size) {
1373 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1374 goto exit_free;
1375 }
1376
1377 btf = btf_new(ptr, btf_info.btf_size, base_btf);
1378
1379exit_free:
1380 free(ptr);
1381 return btf;
1382}
1383
1384int btf__get_from_id(__u32 id, struct btf **btf)
1385{
1386 struct btf *res;
1387 int err, btf_fd;
1388
1389 *btf = NULL;
1390 btf_fd = bpf_btf_get_fd_by_id(id);
1391 if (btf_fd < 0)
1392 return libbpf_err(-errno);
1393
1394 res = btf_get_from_fd(btf_fd, NULL);
1395 err = libbpf_get_error(res);
1396
1397 close(btf_fd);
1398
1399 if (err)
1400 return libbpf_err(err);
1401
1402 *btf = res;
1403 return 0;
1404}
1405
1406int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1407 __u32 expected_key_size, __u32 expected_value_size,
1408 __u32 *key_type_id, __u32 *value_type_id)
1409{
1410 const struct btf_type *container_type;
1411 const struct btf_member *key, *value;
1412 const size_t max_name = 256;
1413 char container_name[max_name];
1414 __s64 key_size, value_size;
1415 __s32 container_id;
1416
1417 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) {
1418 pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1419 map_name, map_name);
1420 return libbpf_err(-EINVAL);
1421 }
1422
1423 container_id = btf__find_by_name(btf, container_name);
1424 if (container_id < 0) {
1425 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1426 map_name, container_name);
1427 return libbpf_err(container_id);
1428 }
1429
1430 container_type = btf__type_by_id(btf, container_id);
1431 if (!container_type) {
1432 pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1433 map_name, container_id);
1434 return libbpf_err(-EINVAL);
1435 }
1436
1437 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1438 pr_warn("map:%s container_name:%s is an invalid container struct\n",
1439 map_name, container_name);
1440 return libbpf_err(-EINVAL);
1441 }
1442
1443 key = btf_members(container_type);
1444 value = key + 1;
1445
1446 key_size = btf__resolve_size(btf, key->type);
1447 if (key_size < 0) {
1448 pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1449 return libbpf_err(key_size);
1450 }
1451
1452 if (expected_key_size != key_size) {
1453 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1454 map_name, (__u32)key_size, expected_key_size);
1455 return libbpf_err(-EINVAL);
1456 }
1457
1458 value_size = btf__resolve_size(btf, value->type);
1459 if (value_size < 0) {
1460 pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1461 return libbpf_err(value_size);
1462 }
1463
1464 if (expected_value_size != value_size) {
1465 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1466 map_name, (__u32)value_size, expected_value_size);
1467 return libbpf_err(-EINVAL);
1468 }
1469
1470 *key_type_id = key->type;
1471 *value_type_id = value->type;
1472
1473 return 0;
1474}
1475
1476static void btf_invalidate_raw_data(struct btf *btf)
1477{
1478 if (btf->raw_data) {
1479 free(btf->raw_data);
1480 btf->raw_data = NULL;
1481 }
1482 if (btf->raw_data_swapped) {
1483 free(btf->raw_data_swapped);
1484 btf->raw_data_swapped = NULL;
1485 }
1486}
1487
1488/* Ensure BTF is ready to be modified (by splitting into a three memory
1489 * regions for header, types, and strings). Also invalidate cached
1490 * raw_data, if any.
1491 */
1492static int btf_ensure_modifiable(struct btf *btf)
1493{
1494 void *hdr, *types;
1495 struct strset *set = NULL;
1496 int err = -ENOMEM;
1497
1498 if (btf_is_modifiable(btf)) {
1499 /* any BTF modification invalidates raw_data */
1500 btf_invalidate_raw_data(btf);
1501 return 0;
1502 }
1503
1504 /* split raw data into three memory regions */
1505 hdr = malloc(btf->hdr->hdr_len);
1506 types = malloc(btf->hdr->type_len);
1507 if (!hdr || !types)
1508 goto err_out;
1509
1510 memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1511 memcpy(types, btf->types_data, btf->hdr->type_len);
1512
1513 /* build lookup index for all strings */
1514 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1515 if (IS_ERR(set)) {
1516 err = PTR_ERR(set);
1517 goto err_out;
1518 }
1519
1520 /* only when everything was successful, update internal state */
1521 btf->hdr = hdr;
1522 btf->types_data = types;
1523 btf->types_data_cap = btf->hdr->type_len;
1524 btf->strs_data = NULL;
1525 btf->strs_set = set;
1526 /* if BTF was created from scratch, all strings are guaranteed to be
1527 * unique and deduplicated
1528 */
1529 if (btf->hdr->str_len == 0)
1530 btf->strs_deduped = true;
1531 if (!btf->base_btf && btf->hdr->str_len == 1)
1532 btf->strs_deduped = true;
1533
1534 /* invalidate raw_data representation */
1535 btf_invalidate_raw_data(btf);
1536
1537 return 0;
1538
1539err_out:
1540 strset__free(set);
1541 free(hdr);
1542 free(types);
1543 return err;
1544}
1545
1546/* Find an offset in BTF string section that corresponds to a given string *s*.
1547 * Returns:
1548 * - >0 offset into string section, if string is found;
1549 * - -ENOENT, if string is not in the string section;
1550 * - <0, on any other error.
1551 */
1552int btf__find_str(struct btf *btf, const char *s)
1553{
1554 int off;
1555
1556 if (btf->base_btf) {
1557 off = btf__find_str(btf->base_btf, s);
1558 if (off != -ENOENT)
1559 return off;
1560 }
1561
1562 /* BTF needs to be in a modifiable state to build string lookup index */
1563 if (btf_ensure_modifiable(btf))
1564 return libbpf_err(-ENOMEM);
1565
1566 off = strset__find_str(btf->strs_set, s);
1567 if (off < 0)
1568 return libbpf_err(off);
1569
1570 return btf->start_str_off + off;
1571}
1572
1573/* Add a string s to the BTF string section.
1574 * Returns:
1575 * - > 0 offset into string section, on success;
1576 * - < 0, on error.
1577 */
1578int btf__add_str(struct btf *btf, const char *s)
1579{
1580 int off;
1581
1582 if (btf->base_btf) {
1583 off = btf__find_str(btf->base_btf, s);
1584 if (off != -ENOENT)
1585 return off;
1586 }
1587
1588 if (btf_ensure_modifiable(btf))
1589 return libbpf_err(-ENOMEM);
1590
1591 off = strset__add_str(btf->strs_set, s);
1592 if (off < 0)
1593 return libbpf_err(off);
1594
1595 btf->hdr->str_len = strset__data_size(btf->strs_set);
1596
1597 return btf->start_str_off + off;
1598}
1599
1600static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1601{
1602 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1603 btf->hdr->type_len, UINT_MAX, add_sz);
1604}
1605
1606static void btf_type_inc_vlen(struct btf_type *t)
1607{
1608 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1609}
1610
1611static int btf_commit_type(struct btf *btf, int data_sz)
1612{
1613 int err;
1614
1615 err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1616 if (err)
1617 return libbpf_err(err);
1618
1619 btf->hdr->type_len += data_sz;
1620 btf->hdr->str_off += data_sz;
1621 btf->nr_types++;
1622 return btf->start_id + btf->nr_types - 1;
1623}
1624
1625struct btf_pipe {
1626 const struct btf *src;
1627 struct btf *dst;
1628};
1629
1630static int btf_rewrite_str(__u32 *str_off, void *ctx)
1631{
1632 struct btf_pipe *p = ctx;
1633 int off;
1634
1635 if (!*str_off) /* nothing to do for empty strings */
1636 return 0;
1637
1638 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1639 if (off < 0)
1640 return off;
1641
1642 *str_off = off;
1643 return 0;
1644}
1645
1646int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1647{
1648 struct btf_pipe p = { .src = src_btf, .dst = btf };
1649 struct btf_type *t;
1650 int sz, err;
1651
1652 sz = btf_type_size(src_type);
1653 if (sz < 0)
1654 return libbpf_err(sz);
1655
1656 /* deconstruct BTF, if necessary, and invalidate raw_data */
1657 if (btf_ensure_modifiable(btf))
1658 return libbpf_err(-ENOMEM);
1659
1660 t = btf_add_type_mem(btf, sz);
1661 if (!t)
1662 return libbpf_err(-ENOMEM);
1663
1664 memcpy(t, src_type, sz);
1665
1666 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1667 if (err)
1668 return libbpf_err(err);
1669
1670 return btf_commit_type(btf, sz);
1671}
1672
1673/*
1674 * Append new BTF_KIND_INT type with:
1675 * - *name* - non-empty, non-NULL type name;
1676 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1677 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1678 * Returns:
1679 * - >0, type ID of newly added BTF type;
1680 * - <0, on error.
1681 */
1682int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1683{
1684 struct btf_type *t;
1685 int sz, name_off;
1686
1687 /* non-empty name */
1688 if (!name || !name[0])
1689 return libbpf_err(-EINVAL);
1690 /* byte_sz must be power of 2 */
1691 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1692 return libbpf_err(-EINVAL);
1693 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1694 return libbpf_err(-EINVAL);
1695
1696 /* deconstruct BTF, if necessary, and invalidate raw_data */
1697 if (btf_ensure_modifiable(btf))
1698 return libbpf_err(-ENOMEM);
1699
1700 sz = sizeof(struct btf_type) + sizeof(int);
1701 t = btf_add_type_mem(btf, sz);
1702 if (!t)
1703 return libbpf_err(-ENOMEM);
1704
1705 /* if something goes wrong later, we might end up with an extra string,
1706 * but that shouldn't be a problem, because BTF can't be constructed
1707 * completely anyway and will most probably be just discarded
1708 */
1709 name_off = btf__add_str(btf, name);
1710 if (name_off < 0)
1711 return name_off;
1712
1713 t->name_off = name_off;
1714 t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1715 t->size = byte_sz;
1716 /* set INT info, we don't allow setting legacy bit offset/size */
1717 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1718
1719 return btf_commit_type(btf, sz);
1720}
1721
1722/*
1723 * Append new BTF_KIND_FLOAT type with:
1724 * - *name* - non-empty, non-NULL type name;
1725 * - *sz* - size of the type, in bytes;
1726 * Returns:
1727 * - >0, type ID of newly added BTF type;
1728 * - <0, on error.
1729 */
1730int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1731{
1732 struct btf_type *t;
1733 int sz, name_off;
1734
1735 /* non-empty name */
1736 if (!name || !name[0])
1737 return libbpf_err(-EINVAL);
1738
1739 /* byte_sz must be one of the explicitly allowed values */
1740 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1741 byte_sz != 16)
1742 return libbpf_err(-EINVAL);
1743
1744 if (btf_ensure_modifiable(btf))
1745 return libbpf_err(-ENOMEM);
1746
1747 sz = sizeof(struct btf_type);
1748 t = btf_add_type_mem(btf, sz);
1749 if (!t)
1750 return libbpf_err(-ENOMEM);
1751
1752 name_off = btf__add_str(btf, name);
1753 if (name_off < 0)
1754 return name_off;
1755
1756 t->name_off = name_off;
1757 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1758 t->size = byte_sz;
1759
1760 return btf_commit_type(btf, sz);
1761}
1762
1763/* it's completely legal to append BTF types with type IDs pointing forward to
1764 * types that haven't been appended yet, so we only make sure that id looks
1765 * sane, we can't guarantee that ID will always be valid
1766 */
1767static int validate_type_id(int id)
1768{
1769 if (id < 0 || id > BTF_MAX_NR_TYPES)
1770 return -EINVAL;
1771 return 0;
1772}
1773
1774/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1775static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1776{
1777 struct btf_type *t;
1778 int sz, name_off = 0;
1779
1780 if (validate_type_id(ref_type_id))
1781 return libbpf_err(-EINVAL);
1782
1783 if (btf_ensure_modifiable(btf))
1784 return libbpf_err(-ENOMEM);
1785
1786 sz = sizeof(struct btf_type);
1787 t = btf_add_type_mem(btf, sz);
1788 if (!t)
1789 return libbpf_err(-ENOMEM);
1790
1791 if (name && name[0]) {
1792 name_off = btf__add_str(btf, name);
1793 if (name_off < 0)
1794 return name_off;
1795 }
1796
1797 t->name_off = name_off;
1798 t->info = btf_type_info(kind, 0, 0);
1799 t->type = ref_type_id;
1800
1801 return btf_commit_type(btf, sz);
1802}
1803
1804/*
1805 * Append new BTF_KIND_PTR type with:
1806 * - *ref_type_id* - referenced type ID, it might not exist yet;
1807 * Returns:
1808 * - >0, type ID of newly added BTF type;
1809 * - <0, on error.
1810 */
1811int btf__add_ptr(struct btf *btf, int ref_type_id)
1812{
1813 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1814}
1815
1816/*
1817 * Append new BTF_KIND_ARRAY type with:
1818 * - *index_type_id* - type ID of the type describing array index;
1819 * - *elem_type_id* - type ID of the type describing array element;
1820 * - *nr_elems* - the size of the array;
1821 * Returns:
1822 * - >0, type ID of newly added BTF type;
1823 * - <0, on error.
1824 */
1825int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1826{
1827 struct btf_type *t;
1828 struct btf_array *a;
1829 int sz;
1830
1831 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1832 return libbpf_err(-EINVAL);
1833
1834 if (btf_ensure_modifiable(btf))
1835 return libbpf_err(-ENOMEM);
1836
1837 sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1838 t = btf_add_type_mem(btf, sz);
1839 if (!t)
1840 return libbpf_err(-ENOMEM);
1841
1842 t->name_off = 0;
1843 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1844 t->size = 0;
1845
1846 a = btf_array(t);
1847 a->type = elem_type_id;
1848 a->index_type = index_type_id;
1849 a->nelems = nr_elems;
1850
1851 return btf_commit_type(btf, sz);
1852}
1853
1854/* generic STRUCT/UNION append function */
1855static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1856{
1857 struct btf_type *t;
1858 int sz, name_off = 0;
1859
1860 if (btf_ensure_modifiable(btf))
1861 return libbpf_err(-ENOMEM);
1862
1863 sz = sizeof(struct btf_type);
1864 t = btf_add_type_mem(btf, sz);
1865 if (!t)
1866 return libbpf_err(-ENOMEM);
1867
1868 if (name && name[0]) {
1869 name_off = btf__add_str(btf, name);
1870 if (name_off < 0)
1871 return name_off;
1872 }
1873
1874 /* start out with vlen=0 and no kflag; this will be adjusted when
1875 * adding each member
1876 */
1877 t->name_off = name_off;
1878 t->info = btf_type_info(kind, 0, 0);
1879 t->size = bytes_sz;
1880
1881 return btf_commit_type(btf, sz);
1882}
1883
1884/*
1885 * Append new BTF_KIND_STRUCT type with:
1886 * - *name* - name of the struct, can be NULL or empty for anonymous structs;
1887 * - *byte_sz* - size of the struct, in bytes;
1888 *
1889 * Struct initially has no fields in it. Fields can be added by
1890 * btf__add_field() right after btf__add_struct() succeeds.
1891 *
1892 * Returns:
1893 * - >0, type ID of newly added BTF type;
1894 * - <0, on error.
1895 */
1896int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1897{
1898 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1899}
1900
1901/*
1902 * Append new BTF_KIND_UNION type with:
1903 * - *name* - name of the union, can be NULL or empty for anonymous union;
1904 * - *byte_sz* - size of the union, in bytes;
1905 *
1906 * Union initially has no fields in it. Fields can be added by
1907 * btf__add_field() right after btf__add_union() succeeds. All fields
1908 * should have *bit_offset* of 0.
1909 *
1910 * Returns:
1911 * - >0, type ID of newly added BTF type;
1912 * - <0, on error.
1913 */
1914int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1915{
1916 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1917}
1918
1919static struct btf_type *btf_last_type(struct btf *btf)
1920{
1921 return btf_type_by_id(btf, btf__get_nr_types(btf));
1922}
1923
1924/*
1925 * Append new field for the current STRUCT/UNION type with:
1926 * - *name* - name of the field, can be NULL or empty for anonymous field;
1927 * - *type_id* - type ID for the type describing field type;
1928 * - *bit_offset* - bit offset of the start of the field within struct/union;
1929 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1930 * Returns:
1931 * - 0, on success;
1932 * - <0, on error.
1933 */
1934int btf__add_field(struct btf *btf, const char *name, int type_id,
1935 __u32 bit_offset, __u32 bit_size)
1936{
1937 struct btf_type *t;
1938 struct btf_member *m;
1939 bool is_bitfield;
1940 int sz, name_off = 0;
1941
1942 /* last type should be union/struct */
1943 if (btf->nr_types == 0)
1944 return libbpf_err(-EINVAL);
1945 t = btf_last_type(btf);
1946 if (!btf_is_composite(t))
1947 return libbpf_err(-EINVAL);
1948
1949 if (validate_type_id(type_id))
1950 return libbpf_err(-EINVAL);
1951 /* best-effort bit field offset/size enforcement */
1952 is_bitfield = bit_size || (bit_offset % 8 != 0);
1953 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
1954 return libbpf_err(-EINVAL);
1955
1956 /* only offset 0 is allowed for unions */
1957 if (btf_is_union(t) && bit_offset)
1958 return libbpf_err(-EINVAL);
1959
1960 /* decompose and invalidate raw data */
1961 if (btf_ensure_modifiable(btf))
1962 return libbpf_err(-ENOMEM);
1963
1964 sz = sizeof(struct btf_member);
1965 m = btf_add_type_mem(btf, sz);
1966 if (!m)
1967 return libbpf_err(-ENOMEM);
1968
1969 if (name && name[0]) {
1970 name_off = btf__add_str(btf, name);
1971 if (name_off < 0)
1972 return name_off;
1973 }
1974
1975 m->name_off = name_off;
1976 m->type = type_id;
1977 m->offset = bit_offset | (bit_size << 24);
1978
1979 /* btf_add_type_mem can invalidate t pointer */
1980 t = btf_last_type(btf);
1981 /* update parent type's vlen and kflag */
1982 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
1983
1984 btf->hdr->type_len += sz;
1985 btf->hdr->str_off += sz;
1986 return 0;
1987}
1988
1989/*
1990 * Append new BTF_KIND_ENUM type with:
1991 * - *name* - name of the enum, can be NULL or empty for anonymous enums;
1992 * - *byte_sz* - size of the enum, in bytes.
1993 *
1994 * Enum initially has no enum values in it (and corresponds to enum forward
1995 * declaration). Enumerator values can be added by btf__add_enum_value()
1996 * immediately after btf__add_enum() succeeds.
1997 *
1998 * Returns:
1999 * - >0, type ID of newly added BTF type;
2000 * - <0, on error.
2001 */
2002int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2003{
2004 struct btf_type *t;
2005 int sz, name_off = 0;
2006
2007 /* byte_sz must be power of 2 */
2008 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2009 return libbpf_err(-EINVAL);
2010
2011 if (btf_ensure_modifiable(btf))
2012 return libbpf_err(-ENOMEM);
2013
2014 sz = sizeof(struct btf_type);
2015 t = btf_add_type_mem(btf, sz);
2016 if (!t)
2017 return libbpf_err(-ENOMEM);
2018
2019 if (name && name[0]) {
2020 name_off = btf__add_str(btf, name);
2021 if (name_off < 0)
2022 return name_off;
2023 }
2024
2025 /* start out with vlen=0; it will be adjusted when adding enum values */
2026 t->name_off = name_off;
2027 t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2028 t->size = byte_sz;
2029
2030 return btf_commit_type(btf, sz);
2031}
2032
2033/*
2034 * Append new enum value for the current ENUM type with:
2035 * - *name* - name of the enumerator value, can't be NULL or empty;
2036 * - *value* - integer value corresponding to enum value *name*;
2037 * Returns:
2038 * - 0, on success;
2039 * - <0, on error.
2040 */
2041int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2042{
2043 struct btf_type *t;
2044 struct btf_enum *v;
2045 int sz, name_off;
2046
2047 /* last type should be BTF_KIND_ENUM */
2048 if (btf->nr_types == 0)
2049 return libbpf_err(-EINVAL);
2050 t = btf_last_type(btf);
2051 if (!btf_is_enum(t))
2052 return libbpf_err(-EINVAL);
2053
2054 /* non-empty name */
2055 if (!name || !name[0])
2056 return libbpf_err(-EINVAL);
2057 if (value < INT_MIN || value > UINT_MAX)
2058 return libbpf_err(-E2BIG);
2059
2060 /* decompose and invalidate raw data */
2061 if (btf_ensure_modifiable(btf))
2062 return libbpf_err(-ENOMEM);
2063
2064 sz = sizeof(struct btf_enum);
2065 v = btf_add_type_mem(btf, sz);
2066 if (!v)
2067 return libbpf_err(-ENOMEM);
2068
2069 name_off = btf__add_str(btf, name);
2070 if (name_off < 0)
2071 return name_off;
2072
2073 v->name_off = name_off;
2074 v->val = value;
2075
2076 /* update parent type's vlen */
2077 t = btf_last_type(btf);
2078 btf_type_inc_vlen(t);
2079
2080 btf->hdr->type_len += sz;
2081 btf->hdr->str_off += sz;
2082 return 0;
2083}
2084
2085/*
2086 * Append new BTF_KIND_FWD type with:
2087 * - *name*, non-empty/non-NULL name;
2088 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2089 * BTF_FWD_UNION, or BTF_FWD_ENUM;
2090 * Returns:
2091 * - >0, type ID of newly added BTF type;
2092 * - <0, on error.
2093 */
2094int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2095{
2096 if (!name || !name[0])
2097 return libbpf_err(-EINVAL);
2098
2099 switch (fwd_kind) {
2100 case BTF_FWD_STRUCT:
2101 case BTF_FWD_UNION: {
2102 struct btf_type *t;
2103 int id;
2104
2105 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2106 if (id <= 0)
2107 return id;
2108 t = btf_type_by_id(btf, id);
2109 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2110 return id;
2111 }
2112 case BTF_FWD_ENUM:
2113 /* enum forward in BTF currently is just an enum with no enum
2114 * values; we also assume a standard 4-byte size for it
2115 */
2116 return btf__add_enum(btf, name, sizeof(int));
2117 default:
2118 return libbpf_err(-EINVAL);
2119 }
2120}
2121
2122/*
2123 * Append new BTF_KING_TYPEDEF type with:
2124 * - *name*, non-empty/non-NULL name;
2125 * - *ref_type_id* - referenced type ID, it might not exist yet;
2126 * Returns:
2127 * - >0, type ID of newly added BTF type;
2128 * - <0, on error.
2129 */
2130int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2131{
2132 if (!name || !name[0])
2133 return libbpf_err(-EINVAL);
2134
2135 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2136}
2137
2138/*
2139 * Append new BTF_KIND_VOLATILE type with:
2140 * - *ref_type_id* - referenced type ID, it might not exist yet;
2141 * Returns:
2142 * - >0, type ID of newly added BTF type;
2143 * - <0, on error.
2144 */
2145int btf__add_volatile(struct btf *btf, int ref_type_id)
2146{
2147 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2148}
2149
2150/*
2151 * Append new BTF_KIND_CONST type with:
2152 * - *ref_type_id* - referenced type ID, it might not exist yet;
2153 * Returns:
2154 * - >0, type ID of newly added BTF type;
2155 * - <0, on error.
2156 */
2157int btf__add_const(struct btf *btf, int ref_type_id)
2158{
2159 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2160}
2161
2162/*
2163 * Append new BTF_KIND_RESTRICT type with:
2164 * - *ref_type_id* - referenced type ID, it might not exist yet;
2165 * Returns:
2166 * - >0, type ID of newly added BTF type;
2167 * - <0, on error.
2168 */
2169int btf__add_restrict(struct btf *btf, int ref_type_id)
2170{
2171 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2172}
2173
2174/*
2175 * Append new BTF_KIND_FUNC type with:
2176 * - *name*, non-empty/non-NULL name;
2177 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2178 * Returns:
2179 * - >0, type ID of newly added BTF type;
2180 * - <0, on error.
2181 */
2182int btf__add_func(struct btf *btf, const char *name,
2183 enum btf_func_linkage linkage, int proto_type_id)
2184{
2185 int id;
2186
2187 if (!name || !name[0])
2188 return libbpf_err(-EINVAL);
2189 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2190 linkage != BTF_FUNC_EXTERN)
2191 return libbpf_err(-EINVAL);
2192
2193 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2194 if (id > 0) {
2195 struct btf_type *t = btf_type_by_id(btf, id);
2196
2197 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2198 }
2199 return libbpf_err(id);
2200}
2201
2202/*
2203 * Append new BTF_KIND_FUNC_PROTO with:
2204 * - *ret_type_id* - type ID for return result of a function.
2205 *
2206 * Function prototype initially has no arguments, but they can be added by
2207 * btf__add_func_param() one by one, immediately after
2208 * btf__add_func_proto() succeeded.
2209 *
2210 * Returns:
2211 * - >0, type ID of newly added BTF type;
2212 * - <0, on error.
2213 */
2214int btf__add_func_proto(struct btf *btf, int ret_type_id)
2215{
2216 struct btf_type *t;
2217 int sz;
2218
2219 if (validate_type_id(ret_type_id))
2220 return libbpf_err(-EINVAL);
2221
2222 if (btf_ensure_modifiable(btf))
2223 return libbpf_err(-ENOMEM);
2224
2225 sz = sizeof(struct btf_type);
2226 t = btf_add_type_mem(btf, sz);
2227 if (!t)
2228 return libbpf_err(-ENOMEM);
2229
2230 /* start out with vlen=0; this will be adjusted when adding enum
2231 * values, if necessary
2232 */
2233 t->name_off = 0;
2234 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2235 t->type = ret_type_id;
2236
2237 return btf_commit_type(btf, sz);
2238}
2239
2240/*
2241 * Append new function parameter for current FUNC_PROTO type with:
2242 * - *name* - parameter name, can be NULL or empty;
2243 * - *type_id* - type ID describing the type of the parameter.
2244 * Returns:
2245 * - 0, on success;
2246 * - <0, on error.
2247 */
2248int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2249{
2250 struct btf_type *t;
2251 struct btf_param *p;
2252 int sz, name_off = 0;
2253
2254 if (validate_type_id(type_id))
2255 return libbpf_err(-EINVAL);
2256
2257 /* last type should be BTF_KIND_FUNC_PROTO */
2258 if (btf->nr_types == 0)
2259 return libbpf_err(-EINVAL);
2260 t = btf_last_type(btf);
2261 if (!btf_is_func_proto(t))
2262 return libbpf_err(-EINVAL);
2263
2264 /* decompose and invalidate raw data */
2265 if (btf_ensure_modifiable(btf))
2266 return libbpf_err(-ENOMEM);
2267
2268 sz = sizeof(struct btf_param);
2269 p = btf_add_type_mem(btf, sz);
2270 if (!p)
2271 return libbpf_err(-ENOMEM);
2272
2273 if (name && name[0]) {
2274 name_off = btf__add_str(btf, name);
2275 if (name_off < 0)
2276 return name_off;
2277 }
2278
2279 p->name_off = name_off;
2280 p->type = type_id;
2281
2282 /* update parent type's vlen */
2283 t = btf_last_type(btf);
2284 btf_type_inc_vlen(t);
2285
2286 btf->hdr->type_len += sz;
2287 btf->hdr->str_off += sz;
2288 return 0;
2289}
2290
2291/*
2292 * Append new BTF_KIND_VAR type with:
2293 * - *name* - non-empty/non-NULL name;
2294 * - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2295 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2296 * - *type_id* - type ID of the type describing the type of the variable.
2297 * Returns:
2298 * - >0, type ID of newly added BTF type;
2299 * - <0, on error.
2300 */
2301int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2302{
2303 struct btf_type *t;
2304 struct btf_var *v;
2305 int sz, name_off;
2306
2307 /* non-empty name */
2308 if (!name || !name[0])
2309 return libbpf_err(-EINVAL);
2310 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2311 linkage != BTF_VAR_GLOBAL_EXTERN)
2312 return libbpf_err(-EINVAL);
2313 if (validate_type_id(type_id))
2314 return libbpf_err(-EINVAL);
2315
2316 /* deconstruct BTF, if necessary, and invalidate raw_data */
2317 if (btf_ensure_modifiable(btf))
2318 return libbpf_err(-ENOMEM);
2319
2320 sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2321 t = btf_add_type_mem(btf, sz);
2322 if (!t)
2323 return libbpf_err(-ENOMEM);
2324
2325 name_off = btf__add_str(btf, name);
2326 if (name_off < 0)
2327 return name_off;
2328
2329 t->name_off = name_off;
2330 t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2331 t->type = type_id;
2332
2333 v = btf_var(t);
2334 v->linkage = linkage;
2335
2336 return btf_commit_type(btf, sz);
2337}
2338
2339/*
2340 * Append new BTF_KIND_DATASEC type with:
2341 * - *name* - non-empty/non-NULL name;
2342 * - *byte_sz* - data section size, in bytes.
2343 *
2344 * Data section is initially empty. Variables info can be added with
2345 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2346 *
2347 * Returns:
2348 * - >0, type ID of newly added BTF type;
2349 * - <0, on error.
2350 */
2351int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2352{
2353 struct btf_type *t;
2354 int sz, name_off;
2355
2356 /* non-empty name */
2357 if (!name || !name[0])
2358 return libbpf_err(-EINVAL);
2359
2360 if (btf_ensure_modifiable(btf))
2361 return libbpf_err(-ENOMEM);
2362
2363 sz = sizeof(struct btf_type);
2364 t = btf_add_type_mem(btf, sz);
2365 if (!t)
2366 return libbpf_err(-ENOMEM);
2367
2368 name_off = btf__add_str(btf, name);
2369 if (name_off < 0)
2370 return name_off;
2371
2372 /* start with vlen=0, which will be update as var_secinfos are added */
2373 t->name_off = name_off;
2374 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2375 t->size = byte_sz;
2376
2377 return btf_commit_type(btf, sz);
2378}
2379
2380/*
2381 * Append new data section variable information entry for current DATASEC type:
2382 * - *var_type_id* - type ID, describing type of the variable;
2383 * - *offset* - variable offset within data section, in bytes;
2384 * - *byte_sz* - variable size, in bytes.
2385 *
2386 * Returns:
2387 * - 0, on success;
2388 * - <0, on error.
2389 */
2390int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2391{
2392 struct btf_type *t;
2393 struct btf_var_secinfo *v;
2394 int sz;
2395
2396 /* last type should be BTF_KIND_DATASEC */
2397 if (btf->nr_types == 0)
2398 return libbpf_err(-EINVAL);
2399 t = btf_last_type(btf);
2400 if (!btf_is_datasec(t))
2401 return libbpf_err(-EINVAL);
2402
2403 if (validate_type_id(var_type_id))
2404 return libbpf_err(-EINVAL);
2405
2406 /* decompose and invalidate raw data */
2407 if (btf_ensure_modifiable(btf))
2408 return libbpf_err(-ENOMEM);
2409
2410 sz = sizeof(struct btf_var_secinfo);
2411 v = btf_add_type_mem(btf, sz);
2412 if (!v)
2413 return libbpf_err(-ENOMEM);
2414
2415 v->type = var_type_id;
2416 v->offset = offset;
2417 v->size = byte_sz;
2418
2419 /* update parent type's vlen */
2420 t = btf_last_type(btf);
2421 btf_type_inc_vlen(t);
2422
2423 btf->hdr->type_len += sz;
2424 btf->hdr->str_off += sz;
2425 return 0;
2426}
2427
2428struct btf_ext_sec_setup_param {
2429 __u32 off;
2430 __u32 len;
2431 __u32 min_rec_size;
2432 struct btf_ext_info *ext_info;
2433 const char *desc;
2434};
2435
2436static int btf_ext_setup_info(struct btf_ext *btf_ext,
2437 struct btf_ext_sec_setup_param *ext_sec)
2438{
2439 const struct btf_ext_info_sec *sinfo;
2440 struct btf_ext_info *ext_info;
2441 __u32 info_left, record_size;
2442 /* The start of the info sec (including the __u32 record_size). */
2443 void *info;
2444
2445 if (ext_sec->len == 0)
2446 return 0;
2447
2448 if (ext_sec->off & 0x03) {
2449 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2450 ext_sec->desc);
2451 return -EINVAL;
2452 }
2453
2454 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2455 info_left = ext_sec->len;
2456
2457 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2458 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2459 ext_sec->desc, ext_sec->off, ext_sec->len);
2460 return -EINVAL;
2461 }
2462
2463 /* At least a record size */
2464 if (info_left < sizeof(__u32)) {
2465 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2466 return -EINVAL;
2467 }
2468
2469 /* The record size needs to meet the minimum standard */
2470 record_size = *(__u32 *)info;
2471 if (record_size < ext_sec->min_rec_size ||
2472 record_size & 0x03) {
2473 pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2474 ext_sec->desc, record_size);
2475 return -EINVAL;
2476 }
2477
2478 sinfo = info + sizeof(__u32);
2479 info_left -= sizeof(__u32);
2480
2481 /* If no records, return failure now so .BTF.ext won't be used. */
2482 if (!info_left) {
2483 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2484 return -EINVAL;
2485 }
2486
2487 while (info_left) {
2488 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2489 __u64 total_record_size;
2490 __u32 num_records;
2491
2492 if (info_left < sec_hdrlen) {
2493 pr_debug("%s section header is not found in .BTF.ext\n",
2494 ext_sec->desc);
2495 return -EINVAL;
2496 }
2497
2498 num_records = sinfo->num_info;
2499 if (num_records == 0) {
2500 pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2501 ext_sec->desc);
2502 return -EINVAL;
2503 }
2504
2505 total_record_size = sec_hdrlen +
2506 (__u64)num_records * record_size;
2507 if (info_left < total_record_size) {
2508 pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2509 ext_sec->desc);
2510 return -EINVAL;
2511 }
2512
2513 info_left -= total_record_size;
2514 sinfo = (void *)sinfo + total_record_size;
2515 }
2516
2517 ext_info = ext_sec->ext_info;
2518 ext_info->len = ext_sec->len - sizeof(__u32);
2519 ext_info->rec_size = record_size;
2520 ext_info->info = info + sizeof(__u32);
2521
2522 return 0;
2523}
2524
2525static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2526{
2527 struct btf_ext_sec_setup_param param = {
2528 .off = btf_ext->hdr->func_info_off,
2529 .len = btf_ext->hdr->func_info_len,
2530 .min_rec_size = sizeof(struct bpf_func_info_min),
2531 .ext_info = &btf_ext->func_info,
2532 .desc = "func_info"
2533 };
2534
2535 return btf_ext_setup_info(btf_ext, ¶m);
2536}
2537
2538static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2539{
2540 struct btf_ext_sec_setup_param param = {
2541 .off = btf_ext->hdr->line_info_off,
2542 .len = btf_ext->hdr->line_info_len,
2543 .min_rec_size = sizeof(struct bpf_line_info_min),
2544 .ext_info = &btf_ext->line_info,
2545 .desc = "line_info",
2546 };
2547
2548 return btf_ext_setup_info(btf_ext, ¶m);
2549}
2550
2551static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2552{
2553 struct btf_ext_sec_setup_param param = {
2554 .off = btf_ext->hdr->core_relo_off,
2555 .len = btf_ext->hdr->core_relo_len,
2556 .min_rec_size = sizeof(struct bpf_core_relo),
2557 .ext_info = &btf_ext->core_relo_info,
2558 .desc = "core_relo",
2559 };
2560
2561 return btf_ext_setup_info(btf_ext, ¶m);
2562}
2563
2564static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2565{
2566 const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2567
2568 if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2569 data_size < hdr->hdr_len) {
2570 pr_debug("BTF.ext header not found");
2571 return -EINVAL;
2572 }
2573
2574 if (hdr->magic == bswap_16(BTF_MAGIC)) {
2575 pr_warn("BTF.ext in non-native endianness is not supported\n");
2576 return -ENOTSUP;
2577 } else if (hdr->magic != BTF_MAGIC) {
2578 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2579 return -EINVAL;
2580 }
2581
2582 if (hdr->version != BTF_VERSION) {
2583 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2584 return -ENOTSUP;
2585 }
2586
2587 if (hdr->flags) {
2588 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2589 return -ENOTSUP;
2590 }
2591
2592 if (data_size == hdr->hdr_len) {
2593 pr_debug("BTF.ext has no data\n");
2594 return -EINVAL;
2595 }
2596
2597 return 0;
2598}
2599
2600void btf_ext__free(struct btf_ext *btf_ext)
2601{
2602 if (IS_ERR_OR_NULL(btf_ext))
2603 return;
2604 free(btf_ext->data);
2605 free(btf_ext);
2606}
2607
2608struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
2609{
2610 struct btf_ext *btf_ext;
2611 int err;
2612
2613 err = btf_ext_parse_hdr(data, size);
2614 if (err)
2615 return libbpf_err_ptr(err);
2616
2617 btf_ext = calloc(1, sizeof(struct btf_ext));
2618 if (!btf_ext)
2619 return libbpf_err_ptr(-ENOMEM);
2620
2621 btf_ext->data_size = size;
2622 btf_ext->data = malloc(size);
2623 if (!btf_ext->data) {
2624 err = -ENOMEM;
2625 goto done;
2626 }
2627 memcpy(btf_ext->data, data, size);
2628
2629 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2630 err = -EINVAL;
2631 goto done;
2632 }
2633
2634 err = btf_ext_setup_func_info(btf_ext);
2635 if (err)
2636 goto done;
2637
2638 err = btf_ext_setup_line_info(btf_ext);
2639 if (err)
2640 goto done;
2641
2642 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) {
2643 err = -EINVAL;
2644 goto done;
2645 }
2646
2647 err = btf_ext_setup_core_relos(btf_ext);
2648 if (err)
2649 goto done;
2650
2651done:
2652 if (err) {
2653 btf_ext__free(btf_ext);
2654 return libbpf_err_ptr(err);
2655 }
2656
2657 return btf_ext;
2658}
2659
2660const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2661{
2662 *size = btf_ext->data_size;
2663 return btf_ext->data;
2664}
2665
2666static int btf_ext_reloc_info(const struct btf *btf,
2667 const struct btf_ext_info *ext_info,
2668 const char *sec_name, __u32 insns_cnt,
2669 void **info, __u32 *cnt)
2670{
2671 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2672 __u32 i, record_size, existing_len, records_len;
2673 struct btf_ext_info_sec *sinfo;
2674 const char *info_sec_name;
2675 __u64 remain_len;
2676 void *data;
2677
2678 record_size = ext_info->rec_size;
2679 sinfo = ext_info->info;
2680 remain_len = ext_info->len;
2681 while (remain_len > 0) {
2682 records_len = sinfo->num_info * record_size;
2683 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2684 if (strcmp(info_sec_name, sec_name)) {
2685 remain_len -= sec_hdrlen + records_len;
2686 sinfo = (void *)sinfo + sec_hdrlen + records_len;
2687 continue;
2688 }
2689
2690 existing_len = (*cnt) * record_size;
2691 data = realloc(*info, existing_len + records_len);
2692 if (!data)
2693 return libbpf_err(-ENOMEM);
2694
2695 memcpy(data + existing_len, sinfo->data, records_len);
2696 /* adjust insn_off only, the rest data will be passed
2697 * to the kernel.
2698 */
2699 for (i = 0; i < sinfo->num_info; i++) {
2700 __u32 *insn_off;
2701
2702 insn_off = data + existing_len + (i * record_size);
2703 *insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt;
2704 }
2705 *info = data;
2706 *cnt += sinfo->num_info;
2707 return 0;
2708 }
2709
2710 return libbpf_err(-ENOENT);
2711}
2712
2713int btf_ext__reloc_func_info(const struct btf *btf,
2714 const struct btf_ext *btf_ext,
2715 const char *sec_name, __u32 insns_cnt,
2716 void **func_info, __u32 *cnt)
2717{
2718 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2719 insns_cnt, func_info, cnt);
2720}
2721
2722int btf_ext__reloc_line_info(const struct btf *btf,
2723 const struct btf_ext *btf_ext,
2724 const char *sec_name, __u32 insns_cnt,
2725 void **line_info, __u32 *cnt)
2726{
2727 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2728 insns_cnt, line_info, cnt);
2729}
2730
2731__u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2732{
2733 return btf_ext->func_info.rec_size;
2734}
2735
2736__u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2737{
2738 return btf_ext->line_info.rec_size;
2739}
2740
2741struct btf_dedup;
2742
2743static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2744 const struct btf_dedup_opts *opts);
2745static void btf_dedup_free(struct btf_dedup *d);
2746static int btf_dedup_prep(struct btf_dedup *d);
2747static int btf_dedup_strings(struct btf_dedup *d);
2748static int btf_dedup_prim_types(struct btf_dedup *d);
2749static int btf_dedup_struct_types(struct btf_dedup *d);
2750static int btf_dedup_ref_types(struct btf_dedup *d);
2751static int btf_dedup_compact_types(struct btf_dedup *d);
2752static int btf_dedup_remap_types(struct btf_dedup *d);
2753
2754/*
2755 * Deduplicate BTF types and strings.
2756 *
2757 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2758 * section with all BTF type descriptors and string data. It overwrites that
2759 * memory in-place with deduplicated types and strings without any loss of
2760 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2761 * is provided, all the strings referenced from .BTF.ext section are honored
2762 * and updated to point to the right offsets after deduplication.
2763 *
2764 * If function returns with error, type/string data might be garbled and should
2765 * be discarded.
2766 *
2767 * More verbose and detailed description of both problem btf_dedup is solving,
2768 * as well as solution could be found at:
2769 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2770 *
2771 * Problem description and justification
2772 * =====================================
2773 *
2774 * BTF type information is typically emitted either as a result of conversion
2775 * from DWARF to BTF or directly by compiler. In both cases, each compilation
2776 * unit contains information about a subset of all the types that are used
2777 * in an application. These subsets are frequently overlapping and contain a lot
2778 * of duplicated information when later concatenated together into a single
2779 * binary. This algorithm ensures that each unique type is represented by single
2780 * BTF type descriptor, greatly reducing resulting size of BTF data.
2781 *
2782 * Compilation unit isolation and subsequent duplication of data is not the only
2783 * problem. The same type hierarchy (e.g., struct and all the type that struct
2784 * references) in different compilation units can be represented in BTF to
2785 * various degrees of completeness (or, rather, incompleteness) due to
2786 * struct/union forward declarations.
2787 *
2788 * Let's take a look at an example, that we'll use to better understand the
2789 * problem (and solution). Suppose we have two compilation units, each using
2790 * same `struct S`, but each of them having incomplete type information about
2791 * struct's fields:
2792 *
2793 * // CU #1:
2794 * struct S;
2795 * struct A {
2796 * int a;
2797 * struct A* self;
2798 * struct S* parent;
2799 * };
2800 * struct B;
2801 * struct S {
2802 * struct A* a_ptr;
2803 * struct B* b_ptr;
2804 * };
2805 *
2806 * // CU #2:
2807 * struct S;
2808 * struct A;
2809 * struct B {
2810 * int b;
2811 * struct B* self;
2812 * struct S* parent;
2813 * };
2814 * struct S {
2815 * struct A* a_ptr;
2816 * struct B* b_ptr;
2817 * };
2818 *
2819 * In case of CU #1, BTF data will know only that `struct B` exist (but no
2820 * more), but will know the complete type information about `struct A`. While
2821 * for CU #2, it will know full type information about `struct B`, but will
2822 * only know about forward declaration of `struct A` (in BTF terms, it will
2823 * have `BTF_KIND_FWD` type descriptor with name `B`).
2824 *
2825 * This compilation unit isolation means that it's possible that there is no
2826 * single CU with complete type information describing structs `S`, `A`, and
2827 * `B`. Also, we might get tons of duplicated and redundant type information.
2828 *
2829 * Additional complication we need to keep in mind comes from the fact that
2830 * types, in general, can form graphs containing cycles, not just DAGs.
2831 *
2832 * While algorithm does deduplication, it also merges and resolves type
2833 * information (unless disabled throught `struct btf_opts`), whenever possible.
2834 * E.g., in the example above with two compilation units having partial type
2835 * information for structs `A` and `B`, the output of algorithm will emit
2836 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2837 * (as well as type information for `int` and pointers), as if they were defined
2838 * in a single compilation unit as:
2839 *
2840 * struct A {
2841 * int a;
2842 * struct A* self;
2843 * struct S* parent;
2844 * };
2845 * struct B {
2846 * int b;
2847 * struct B* self;
2848 * struct S* parent;
2849 * };
2850 * struct S {
2851 * struct A* a_ptr;
2852 * struct B* b_ptr;
2853 * };
2854 *
2855 * Algorithm summary
2856 * =================
2857 *
2858 * Algorithm completes its work in 6 separate passes:
2859 *
2860 * 1. Strings deduplication.
2861 * 2. Primitive types deduplication (int, enum, fwd).
2862 * 3. Struct/union types deduplication.
2863 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2864 * protos, and const/volatile/restrict modifiers).
2865 * 5. Types compaction.
2866 * 6. Types remapping.
2867 *
2868 * Algorithm determines canonical type descriptor, which is a single
2869 * representative type for each truly unique type. This canonical type is the
2870 * one that will go into final deduplicated BTF type information. For
2871 * struct/unions, it is also the type that algorithm will merge additional type
2872 * information into (while resolving FWDs), as it discovers it from data in
2873 * other CUs. Each input BTF type eventually gets either mapped to itself, if
2874 * that type is canonical, or to some other type, if that type is equivalent
2875 * and was chosen as canonical representative. This mapping is stored in
2876 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2877 * FWD type got resolved to.
2878 *
2879 * To facilitate fast discovery of canonical types, we also maintain canonical
2880 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2881 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2882 * that match that signature. With sufficiently good choice of type signature
2883 * hashing function, we can limit number of canonical types for each unique type
2884 * signature to a very small number, allowing to find canonical type for any
2885 * duplicated type very quickly.
2886 *
2887 * Struct/union deduplication is the most critical part and algorithm for
2888 * deduplicating structs/unions is described in greater details in comments for
2889 * `btf_dedup_is_equiv` function.
2890 */
2891int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2892 const struct btf_dedup_opts *opts)
2893{
2894 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
2895 int err;
2896
2897 if (IS_ERR(d)) {
2898 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
2899 return libbpf_err(-EINVAL);
2900 }
2901
2902 if (btf_ensure_modifiable(btf))
2903 return libbpf_err(-ENOMEM);
2904
2905 err = btf_dedup_prep(d);
2906 if (err) {
2907 pr_debug("btf_dedup_prep failed:%d\n", err);
2908 goto done;
2909 }
2910 err = btf_dedup_strings(d);
2911 if (err < 0) {
2912 pr_debug("btf_dedup_strings failed:%d\n", err);
2913 goto done;
2914 }
2915 err = btf_dedup_prim_types(d);
2916 if (err < 0) {
2917 pr_debug("btf_dedup_prim_types failed:%d\n", err);
2918 goto done;
2919 }
2920 err = btf_dedup_struct_types(d);
2921 if (err < 0) {
2922 pr_debug("btf_dedup_struct_types failed:%d\n", err);
2923 goto done;
2924 }
2925 err = btf_dedup_ref_types(d);
2926 if (err < 0) {
2927 pr_debug("btf_dedup_ref_types failed:%d\n", err);
2928 goto done;
2929 }
2930 err = btf_dedup_compact_types(d);
2931 if (err < 0) {
2932 pr_debug("btf_dedup_compact_types failed:%d\n", err);
2933 goto done;
2934 }
2935 err = btf_dedup_remap_types(d);
2936 if (err < 0) {
2937 pr_debug("btf_dedup_remap_types failed:%d\n", err);
2938 goto done;
2939 }
2940
2941done:
2942 btf_dedup_free(d);
2943 return libbpf_err(err);
2944}
2945
2946#define BTF_UNPROCESSED_ID ((__u32)-1)
2947#define BTF_IN_PROGRESS_ID ((__u32)-2)
2948
2949struct btf_dedup {
2950 /* .BTF section to be deduped in-place */
2951 struct btf *btf;
2952 /*
2953 * Optional .BTF.ext section. When provided, any strings referenced
2954 * from it will be taken into account when deduping strings
2955 */
2956 struct btf_ext *btf_ext;
2957 /*
2958 * This is a map from any type's signature hash to a list of possible
2959 * canonical representative type candidates. Hash collisions are
2960 * ignored, so even types of various kinds can share same list of
2961 * candidates, which is fine because we rely on subsequent
2962 * btf_xxx_equal() checks to authoritatively verify type equality.
2963 */
2964 struct hashmap *dedup_table;
2965 /* Canonical types map */
2966 __u32 *map;
2967 /* Hypothetical mapping, used during type graph equivalence checks */
2968 __u32 *hypot_map;
2969 __u32 *hypot_list;
2970 size_t hypot_cnt;
2971 size_t hypot_cap;
2972 /* Whether hypothetical mapping, if successful, would need to adjust
2973 * already canonicalized types (due to a new forward declaration to
2974 * concrete type resolution). In such case, during split BTF dedup
2975 * candidate type would still be considered as different, because base
2976 * BTF is considered to be immutable.
2977 */
2978 bool hypot_adjust_canon;
2979 /* Various option modifying behavior of algorithm */
2980 struct btf_dedup_opts opts;
2981 /* temporary strings deduplication state */
2982 struct strset *strs_set;
2983};
2984
2985static long hash_combine(long h, long value)
2986{
2987 return h * 31 + value;
2988}
2989
2990#define for_each_dedup_cand(d, node, hash) \
2991 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
2992
2993static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
2994{
2995 return hashmap__append(d->dedup_table,
2996 (void *)hash, (void *)(long)type_id);
2997}
2998
2999static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3000 __u32 from_id, __u32 to_id)
3001{
3002 if (d->hypot_cnt == d->hypot_cap) {
3003 __u32 *new_list;
3004
3005 d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3006 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3007 if (!new_list)
3008 return -ENOMEM;
3009 d->hypot_list = new_list;
3010 }
3011 d->hypot_list[d->hypot_cnt++] = from_id;
3012 d->hypot_map[from_id] = to_id;
3013 return 0;
3014}
3015
3016static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3017{
3018 int i;
3019
3020 for (i = 0; i < d->hypot_cnt; i++)
3021 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3022 d->hypot_cnt = 0;
3023 d->hypot_adjust_canon = false;
3024}
3025
3026static void btf_dedup_free(struct btf_dedup *d)
3027{
3028 hashmap__free(d->dedup_table);
3029 d->dedup_table = NULL;
3030
3031 free(d->map);
3032 d->map = NULL;
3033
3034 free(d->hypot_map);
3035 d->hypot_map = NULL;
3036
3037 free(d->hypot_list);
3038 d->hypot_list = NULL;
3039
3040 free(d);
3041}
3042
3043static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3044{
3045 return (size_t)key;
3046}
3047
3048static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3049{
3050 return 0;
3051}
3052
3053static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3054{
3055 return k1 == k2;
3056}
3057
3058static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
3059 const struct btf_dedup_opts *opts)
3060{
3061 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3062 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3063 int i, err = 0, type_cnt;
3064
3065 if (!d)
3066 return ERR_PTR(-ENOMEM);
3067
3068 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
3069 /* dedup_table_size is now used only to force collisions in tests */
3070 if (opts && opts->dedup_table_size == 1)
3071 hash_fn = btf_dedup_collision_hash_fn;
3072
3073 d->btf = btf;
3074 d->btf_ext = btf_ext;
3075
3076 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3077 if (IS_ERR(d->dedup_table)) {
3078 err = PTR_ERR(d->dedup_table);
3079 d->dedup_table = NULL;
3080 goto done;
3081 }
3082
3083 type_cnt = btf__get_nr_types(btf) + 1;
3084 d->map = malloc(sizeof(__u32) * type_cnt);
3085 if (!d->map) {
3086 err = -ENOMEM;
3087 goto done;
3088 }
3089 /* special BTF "void" type is made canonical immediately */
3090 d->map[0] = 0;
3091 for (i = 1; i < type_cnt; i++) {
3092 struct btf_type *t = btf_type_by_id(d->btf, i);
3093
3094 /* VAR and DATASEC are never deduped and are self-canonical */
3095 if (btf_is_var(t) || btf_is_datasec(t))
3096 d->map[i] = i;
3097 else
3098 d->map[i] = BTF_UNPROCESSED_ID;
3099 }
3100
3101 d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3102 if (!d->hypot_map) {
3103 err = -ENOMEM;
3104 goto done;
3105 }
3106 for (i = 0; i < type_cnt; i++)
3107 d->hypot_map[i] = BTF_UNPROCESSED_ID;
3108
3109done:
3110 if (err) {
3111 btf_dedup_free(d);
3112 return ERR_PTR(err);
3113 }
3114
3115 return d;
3116}
3117
3118/*
3119 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3120 * string and pass pointer to it to a provided callback `fn`.
3121 */
3122static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3123{
3124 int i, r;
3125
3126 for (i = 0; i < d->btf->nr_types; i++) {
3127 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3128
3129 r = btf_type_visit_str_offs(t, fn, ctx);
3130 if (r)
3131 return r;
3132 }
3133
3134 if (!d->btf_ext)
3135 return 0;
3136
3137 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3138 if (r)
3139 return r;
3140
3141 return 0;
3142}
3143
3144static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3145{
3146 struct btf_dedup *d = ctx;
3147 __u32 str_off = *str_off_ptr;
3148 const char *s;
3149 int off, err;
3150
3151 /* don't touch empty string or string in main BTF */
3152 if (str_off == 0 || str_off < d->btf->start_str_off)
3153 return 0;
3154
3155 s = btf__str_by_offset(d->btf, str_off);
3156 if (d->btf->base_btf) {
3157 err = btf__find_str(d->btf->base_btf, s);
3158 if (err >= 0) {
3159 *str_off_ptr = err;
3160 return 0;
3161 }
3162 if (err != -ENOENT)
3163 return err;
3164 }
3165
3166 off = strset__add_str(d->strs_set, s);
3167 if (off < 0)
3168 return off;
3169
3170 *str_off_ptr = d->btf->start_str_off + off;
3171 return 0;
3172}
3173
3174/*
3175 * Dedup string and filter out those that are not referenced from either .BTF
3176 * or .BTF.ext (if provided) sections.
3177 *
3178 * This is done by building index of all strings in BTF's string section,
3179 * then iterating over all entities that can reference strings (e.g., type
3180 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3181 * strings as used. After that all used strings are deduped and compacted into
3182 * sequential blob of memory and new offsets are calculated. Then all the string
3183 * references are iterated again and rewritten using new offsets.
3184 */
3185static int btf_dedup_strings(struct btf_dedup *d)
3186{
3187 int err;
3188
3189 if (d->btf->strs_deduped)
3190 return 0;
3191
3192 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3193 if (IS_ERR(d->strs_set)) {
3194 err = PTR_ERR(d->strs_set);
3195 goto err_out;
3196 }
3197
3198 if (!d->btf->base_btf) {
3199 /* insert empty string; we won't be looking it up during strings
3200 * dedup, but it's good to have it for generic BTF string lookups
3201 */
3202 err = strset__add_str(d->strs_set, "");
3203 if (err < 0)
3204 goto err_out;
3205 }
3206
3207 /* remap string offsets */
3208 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3209 if (err)
3210 goto err_out;
3211
3212 /* replace BTF string data and hash with deduped ones */
3213 strset__free(d->btf->strs_set);
3214 d->btf->hdr->str_len = strset__data_size(d->strs_set);
3215 d->btf->strs_set = d->strs_set;
3216 d->strs_set = NULL;
3217 d->btf->strs_deduped = true;
3218 return 0;
3219
3220err_out:
3221 strset__free(d->strs_set);
3222 d->strs_set = NULL;
3223
3224 return err;
3225}
3226
3227static long btf_hash_common(struct btf_type *t)
3228{
3229 long h;
3230
3231 h = hash_combine(0, t->name_off);
3232 h = hash_combine(h, t->info);
3233 h = hash_combine(h, t->size);
3234 return h;
3235}
3236
3237static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3238{
3239 return t1->name_off == t2->name_off &&
3240 t1->info == t2->info &&
3241 t1->size == t2->size;
3242}
3243
3244/* Calculate type signature hash of INT. */
3245static long btf_hash_int(struct btf_type *t)
3246{
3247 __u32 info = *(__u32 *)(t + 1);
3248 long h;
3249
3250 h = btf_hash_common(t);
3251 h = hash_combine(h, info);
3252 return h;
3253}
3254
3255/* Check structural equality of two INTs. */
3256static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
3257{
3258 __u32 info1, info2;
3259
3260 if (!btf_equal_common(t1, t2))
3261 return false;
3262 info1 = *(__u32 *)(t1 + 1);
3263 info2 = *(__u32 *)(t2 + 1);
3264 return info1 == info2;
3265}
3266
3267/* Calculate type signature hash of ENUM. */
3268static long btf_hash_enum(struct btf_type *t)
3269{
3270 long h;
3271
3272 /* don't hash vlen and enum members to support enum fwd resolving */
3273 h = hash_combine(0, t->name_off);
3274 h = hash_combine(h, t->info & ~0xffff);
3275 h = hash_combine(h, t->size);
3276 return h;
3277}
3278
3279/* Check structural equality of two ENUMs. */
3280static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3281{
3282 const struct btf_enum *m1, *m2;
3283 __u16 vlen;
3284 int i;
3285
3286 if (!btf_equal_common(t1, t2))
3287 return false;
3288
3289 vlen = btf_vlen(t1);
3290 m1 = btf_enum(t1);
3291 m2 = btf_enum(t2);
3292 for (i = 0; i < vlen; i++) {
3293 if (m1->name_off != m2->name_off || m1->val != m2->val)
3294 return false;
3295 m1++;
3296 m2++;
3297 }
3298 return true;
3299}
3300
3301static inline bool btf_is_enum_fwd(struct btf_type *t)
3302{
3303 return btf_is_enum(t) && btf_vlen(t) == 0;
3304}
3305
3306static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3307{
3308 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3309 return btf_equal_enum(t1, t2);
3310 /* ignore vlen when comparing */
3311 return t1->name_off == t2->name_off &&
3312 (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3313 t1->size == t2->size;
3314}
3315
3316/*
3317 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3318 * as referenced type IDs equivalence is established separately during type
3319 * graph equivalence check algorithm.
3320 */
3321static long btf_hash_struct(struct btf_type *t)
3322{
3323 const struct btf_member *member = btf_members(t);
3324 __u32 vlen = btf_vlen(t);
3325 long h = btf_hash_common(t);
3326 int i;
3327
3328 for (i = 0; i < vlen; i++) {
3329 h = hash_combine(h, member->name_off);
3330 h = hash_combine(h, member->offset);
3331 /* no hashing of referenced type ID, it can be unresolved yet */
3332 member++;
3333 }
3334 return h;
3335}
3336
3337/*
3338 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3339 * IDs. This check is performed during type graph equivalence check and
3340 * referenced types equivalence is checked separately.
3341 */
3342static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3343{
3344 const struct btf_member *m1, *m2;
3345 __u16 vlen;
3346 int i;
3347
3348 if (!btf_equal_common(t1, t2))
3349 return false;
3350
3351 vlen = btf_vlen(t1);
3352 m1 = btf_members(t1);
3353 m2 = btf_members(t2);
3354 for (i = 0; i < vlen; i++) {
3355 if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3356 return false;
3357 m1++;
3358 m2++;
3359 }
3360 return true;
3361}
3362
3363/*
3364 * Calculate type signature hash of ARRAY, including referenced type IDs,
3365 * under assumption that they were already resolved to canonical type IDs and
3366 * are not going to change.
3367 */
3368static long btf_hash_array(struct btf_type *t)
3369{
3370 const struct btf_array *info = btf_array(t);
3371 long h = btf_hash_common(t);
3372
3373 h = hash_combine(h, info->type);
3374 h = hash_combine(h, info->index_type);
3375 h = hash_combine(h, info->nelems);
3376 return h;
3377}
3378
3379/*
3380 * Check exact equality of two ARRAYs, taking into account referenced
3381 * type IDs, under assumption that they were already resolved to canonical
3382 * type IDs and are not going to change.
3383 * This function is called during reference types deduplication to compare
3384 * ARRAY to potential canonical representative.
3385 */
3386static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3387{
3388 const struct btf_array *info1, *info2;
3389
3390 if (!btf_equal_common(t1, t2))
3391 return false;
3392
3393 info1 = btf_array(t1);
3394 info2 = btf_array(t2);
3395 return info1->type == info2->type &&
3396 info1->index_type == info2->index_type &&
3397 info1->nelems == info2->nelems;
3398}
3399
3400/*
3401 * Check structural compatibility of two ARRAYs, ignoring referenced type
3402 * IDs. This check is performed during type graph equivalence check and
3403 * referenced types equivalence is checked separately.
3404 */
3405static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3406{
3407 if (!btf_equal_common(t1, t2))
3408 return false;
3409
3410 return btf_array(t1)->nelems == btf_array(t2)->nelems;
3411}
3412
3413/*
3414 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3415 * under assumption that they were already resolved to canonical type IDs and
3416 * are not going to change.
3417 */
3418static long btf_hash_fnproto(struct btf_type *t)
3419{
3420 const struct btf_param *member = btf_params(t);
3421 __u16 vlen = btf_vlen(t);
3422 long h = btf_hash_common(t);
3423 int i;
3424
3425 for (i = 0; i < vlen; i++) {
3426 h = hash_combine(h, member->name_off);
3427 h = hash_combine(h, member->type);
3428 member++;
3429 }
3430 return h;
3431}
3432
3433/*
3434 * Check exact equality of two FUNC_PROTOs, taking into account referenced
3435 * type IDs, under assumption that they were already resolved to canonical
3436 * type IDs and are not going to change.
3437 * This function is called during reference types deduplication to compare
3438 * FUNC_PROTO to potential canonical representative.
3439 */
3440static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3441{
3442 const struct btf_param *m1, *m2;
3443 __u16 vlen;
3444 int i;
3445
3446 if (!btf_equal_common(t1, t2))
3447 return false;
3448
3449 vlen = btf_vlen(t1);
3450 m1 = btf_params(t1);
3451 m2 = btf_params(t2);
3452 for (i = 0; i < vlen; i++) {
3453 if (m1->name_off != m2->name_off || m1->type != m2->type)
3454 return false;
3455 m1++;
3456 m2++;
3457 }
3458 return true;
3459}
3460
3461/*
3462 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3463 * IDs. This check is performed during type graph equivalence check and
3464 * referenced types equivalence is checked separately.
3465 */
3466static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3467{
3468 const struct btf_param *m1, *m2;
3469 __u16 vlen;
3470 int i;
3471
3472 /* skip return type ID */
3473 if (t1->name_off != t2->name_off || t1->info != t2->info)
3474 return false;
3475
3476 vlen = btf_vlen(t1);
3477 m1 = btf_params(t1);
3478 m2 = btf_params(t2);
3479 for (i = 0; i < vlen; i++) {
3480 if (m1->name_off != m2->name_off)
3481 return false;
3482 m1++;
3483 m2++;
3484 }
3485 return true;
3486}
3487
3488/* Prepare split BTF for deduplication by calculating hashes of base BTF's
3489 * types and initializing the rest of the state (canonical type mapping) for
3490 * the fixed base BTF part.
3491 */
3492static int btf_dedup_prep(struct btf_dedup *d)
3493{
3494 struct btf_type *t;
3495 int type_id;
3496 long h;
3497
3498 if (!d->btf->base_btf)
3499 return 0;
3500
3501 for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3502 t = btf_type_by_id(d->btf, type_id);
3503
3504 /* all base BTF types are self-canonical by definition */
3505 d->map[type_id] = type_id;
3506
3507 switch (btf_kind(t)) {
3508 case BTF_KIND_VAR:
3509 case BTF_KIND_DATASEC:
3510 /* VAR and DATASEC are never hash/deduplicated */
3511 continue;
3512 case BTF_KIND_CONST:
3513 case BTF_KIND_VOLATILE:
3514 case BTF_KIND_RESTRICT:
3515 case BTF_KIND_PTR:
3516 case BTF_KIND_FWD:
3517 case BTF_KIND_TYPEDEF:
3518 case BTF_KIND_FUNC:
3519 case BTF_KIND_FLOAT:
3520 h = btf_hash_common(t);
3521 break;
3522 case BTF_KIND_INT:
3523 h = btf_hash_int(t);
3524 break;
3525 case BTF_KIND_ENUM:
3526 h = btf_hash_enum(t);
3527 break;
3528 case BTF_KIND_STRUCT:
3529 case BTF_KIND_UNION:
3530 h = btf_hash_struct(t);
3531 break;
3532 case BTF_KIND_ARRAY:
3533 h = btf_hash_array(t);
3534 break;
3535 case BTF_KIND_FUNC_PROTO:
3536 h = btf_hash_fnproto(t);
3537 break;
3538 default:
3539 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3540 return -EINVAL;
3541 }
3542 if (btf_dedup_table_add(d, h, type_id))
3543 return -ENOMEM;
3544 }
3545
3546 return 0;
3547}
3548
3549/*
3550 * Deduplicate primitive types, that can't reference other types, by calculating
3551 * their type signature hash and comparing them with any possible canonical
3552 * candidate. If no canonical candidate matches, type itself is marked as
3553 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3554 */
3555static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3556{
3557 struct btf_type *t = btf_type_by_id(d->btf, type_id);
3558 struct hashmap_entry *hash_entry;
3559 struct btf_type *cand;
3560 /* if we don't find equivalent type, then we are canonical */
3561 __u32 new_id = type_id;
3562 __u32 cand_id;
3563 long h;
3564
3565 switch (btf_kind(t)) {
3566 case BTF_KIND_CONST:
3567 case BTF_KIND_VOLATILE:
3568 case BTF_KIND_RESTRICT:
3569 case BTF_KIND_PTR:
3570 case BTF_KIND_TYPEDEF:
3571 case BTF_KIND_ARRAY:
3572 case BTF_KIND_STRUCT:
3573 case BTF_KIND_UNION:
3574 case BTF_KIND_FUNC:
3575 case BTF_KIND_FUNC_PROTO:
3576 case BTF_KIND_VAR:
3577 case BTF_KIND_DATASEC:
3578 return 0;
3579
3580 case BTF_KIND_INT:
3581 h = btf_hash_int(t);
3582 for_each_dedup_cand(d, hash_entry, h) {
3583 cand_id = (__u32)(long)hash_entry->value;
3584 cand = btf_type_by_id(d->btf, cand_id);
3585 if (btf_equal_int(t, cand)) {
3586 new_id = cand_id;
3587 break;
3588 }
3589 }
3590 break;
3591
3592 case BTF_KIND_ENUM:
3593 h = btf_hash_enum(t);
3594 for_each_dedup_cand(d, hash_entry, h) {
3595 cand_id = (__u32)(long)hash_entry->value;
3596 cand = btf_type_by_id(d->btf, cand_id);
3597 if (btf_equal_enum(t, cand)) {
3598 new_id = cand_id;
3599 break;
3600 }
3601 if (d->opts.dont_resolve_fwds)
3602 continue;
3603 if (btf_compat_enum(t, cand)) {
3604 if (btf_is_enum_fwd(t)) {
3605 /* resolve fwd to full enum */
3606 new_id = cand_id;
3607 break;
3608 }
3609 /* resolve canonical enum fwd to full enum */
3610 d->map[cand_id] = type_id;
3611 }
3612 }
3613 break;
3614
3615 case BTF_KIND_FWD:
3616 case BTF_KIND_FLOAT:
3617 h = btf_hash_common(t);
3618 for_each_dedup_cand(d, hash_entry, h) {
3619 cand_id = (__u32)(long)hash_entry->value;
3620 cand = btf_type_by_id(d->btf, cand_id);
3621 if (btf_equal_common(t, cand)) {
3622 new_id = cand_id;
3623 break;
3624 }
3625 }
3626 break;
3627
3628 default:
3629 return -EINVAL;
3630 }
3631
3632 d->map[type_id] = new_id;
3633 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3634 return -ENOMEM;
3635
3636 return 0;
3637}
3638
3639static int btf_dedup_prim_types(struct btf_dedup *d)
3640{
3641 int i, err;
3642
3643 for (i = 0; i < d->btf->nr_types; i++) {
3644 err = btf_dedup_prim_type(d, d->btf->start_id + i);
3645 if (err)
3646 return err;
3647 }
3648 return 0;
3649}
3650
3651/*
3652 * Check whether type is already mapped into canonical one (could be to itself).
3653 */
3654static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3655{
3656 return d->map[type_id] <= BTF_MAX_NR_TYPES;
3657}
3658
3659/*
3660 * Resolve type ID into its canonical type ID, if any; otherwise return original
3661 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3662 * STRUCT/UNION link and resolve it into canonical type ID as well.
3663 */
3664static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3665{
3666 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3667 type_id = d->map[type_id];
3668 return type_id;
3669}
3670
3671/*
3672 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3673 * type ID.
3674 */
3675static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3676{
3677 __u32 orig_type_id = type_id;
3678
3679 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3680 return type_id;
3681
3682 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3683 type_id = d->map[type_id];
3684
3685 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3686 return type_id;
3687
3688 return orig_type_id;
3689}
3690
3691
3692static inline __u16 btf_fwd_kind(struct btf_type *t)
3693{
3694 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3695}
3696
3697/* Check if given two types are identical ARRAY definitions */
3698static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3699{
3700 struct btf_type *t1, *t2;
3701
3702 t1 = btf_type_by_id(d->btf, id1);
3703 t2 = btf_type_by_id(d->btf, id2);
3704 if (!btf_is_array(t1) || !btf_is_array(t2))
3705 return 0;
3706
3707 return btf_equal_array(t1, t2);
3708}
3709
3710/*
3711 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3712 * call it "candidate graph" in this description for brevity) to a type graph
3713 * formed by (potential) canonical struct/union ("canonical graph" for brevity
3714 * here, though keep in mind that not all types in canonical graph are
3715 * necessarily canonical representatives themselves, some of them might be
3716 * duplicates or its uniqueness might not have been established yet).
3717 * Returns:
3718 * - >0, if type graphs are equivalent;
3719 * - 0, if not equivalent;
3720 * - <0, on error.
3721 *
3722 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3723 * equivalence of BTF types at each step. If at any point BTF types in candidate
3724 * and canonical graphs are not compatible structurally, whole graphs are
3725 * incompatible. If types are structurally equivalent (i.e., all information
3726 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3727 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3728 * If a type references other types, then those referenced types are checked
3729 * for equivalence recursively.
3730 *
3731 * During DFS traversal, if we find that for current `canon_id` type we
3732 * already have some mapping in hypothetical map, we check for two possible
3733 * situations:
3734 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3735 * happen when type graphs have cycles. In this case we assume those two
3736 * types are equivalent.
3737 * - `canon_id` is mapped to different type. This is contradiction in our
3738 * hypothetical mapping, because same graph in canonical graph corresponds
3739 * to two different types in candidate graph, which for equivalent type
3740 * graphs shouldn't happen. This condition terminates equivalence check
3741 * with negative result.
3742 *
3743 * If type graphs traversal exhausts types to check and find no contradiction,
3744 * then type graphs are equivalent.
3745 *
3746 * When checking types for equivalence, there is one special case: FWD types.
3747 * If FWD type resolution is allowed and one of the types (either from canonical
3748 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3749 * flag) and their names match, hypothetical mapping is updated to point from
3750 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3751 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3752 *
3753 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3754 * if there are two exactly named (or anonymous) structs/unions that are
3755 * compatible structurally, one of which has FWD field, while other is concrete
3756 * STRUCT/UNION, but according to C sources they are different structs/unions
3757 * that are referencing different types with the same name. This is extremely
3758 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3759 * this logic is causing problems.
3760 *
3761 * Doing FWD resolution means that both candidate and/or canonical graphs can
3762 * consists of portions of the graph that come from multiple compilation units.
3763 * This is due to the fact that types within single compilation unit are always
3764 * deduplicated and FWDs are already resolved, if referenced struct/union
3765 * definiton is available. So, if we had unresolved FWD and found corresponding
3766 * STRUCT/UNION, they will be from different compilation units. This
3767 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3768 * type graph will likely have at least two different BTF types that describe
3769 * same type (e.g., most probably there will be two different BTF types for the
3770 * same 'int' primitive type) and could even have "overlapping" parts of type
3771 * graph that describe same subset of types.
3772 *
3773 * This in turn means that our assumption that each type in canonical graph
3774 * must correspond to exactly one type in candidate graph might not hold
3775 * anymore and will make it harder to detect contradictions using hypothetical
3776 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3777 * resolution only in canonical graph. FWDs in candidate graphs are never
3778 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3779 * that can occur:
3780 * - Both types in canonical and candidate graphs are FWDs. If they are
3781 * structurally equivalent, then they can either be both resolved to the
3782 * same STRUCT/UNION or not resolved at all. In both cases they are
3783 * equivalent and there is no need to resolve FWD on candidate side.
3784 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3785 * so nothing to resolve as well, algorithm will check equivalence anyway.
3786 * - Type in canonical graph is FWD, while type in candidate is concrete
3787 * STRUCT/UNION. In this case candidate graph comes from single compilation
3788 * unit, so there is exactly one BTF type for each unique C type. After
3789 * resolving FWD into STRUCT/UNION, there might be more than one BTF type
3790 * in canonical graph mapping to single BTF type in candidate graph, but
3791 * because hypothetical mapping maps from canonical to candidate types, it's
3792 * alright, and we still maintain the property of having single `canon_id`
3793 * mapping to single `cand_id` (there could be two different `canon_id`
3794 * mapped to the same `cand_id`, but it's not contradictory).
3795 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3796 * graph is FWD. In this case we are just going to check compatibility of
3797 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3798 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3799 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3800 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3801 * canonical graph.
3802 */
3803static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3804 __u32 canon_id)
3805{
3806 struct btf_type *cand_type;
3807 struct btf_type *canon_type;
3808 __u32 hypot_type_id;
3809 __u16 cand_kind;
3810 __u16 canon_kind;
3811 int i, eq;
3812
3813 /* if both resolve to the same canonical, they must be equivalent */
3814 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3815 return 1;
3816
3817 canon_id = resolve_fwd_id(d, canon_id);
3818
3819 hypot_type_id = d->hypot_map[canon_id];
3820 if (hypot_type_id <= BTF_MAX_NR_TYPES) {
3821 /* In some cases compiler will generate different DWARF types
3822 * for *identical* array type definitions and use them for
3823 * different fields within the *same* struct. This breaks type
3824 * equivalence check, which makes an assumption that candidate
3825 * types sub-graph has a consistent and deduped-by-compiler
3826 * types within a single CU. So work around that by explicitly
3827 * allowing identical array types here.
3828 */
3829 return hypot_type_id == cand_id ||
3830 btf_dedup_identical_arrays(d, hypot_type_id, cand_id);
3831 }
3832
3833 if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3834 return -ENOMEM;
3835
3836 cand_type = btf_type_by_id(d->btf, cand_id);
3837 canon_type = btf_type_by_id(d->btf, canon_id);
3838 cand_kind = btf_kind(cand_type);
3839 canon_kind = btf_kind(canon_type);
3840
3841 if (cand_type->name_off != canon_type->name_off)
3842 return 0;
3843
3844 /* FWD <--> STRUCT/UNION equivalence check, if enabled */
3845 if (!d->opts.dont_resolve_fwds
3846 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
3847 && cand_kind != canon_kind) {
3848 __u16 real_kind;
3849 __u16 fwd_kind;
3850
3851 if (cand_kind == BTF_KIND_FWD) {
3852 real_kind = canon_kind;
3853 fwd_kind = btf_fwd_kind(cand_type);
3854 } else {
3855 real_kind = cand_kind;
3856 fwd_kind = btf_fwd_kind(canon_type);
3857 /* we'd need to resolve base FWD to STRUCT/UNION */
3858 if (fwd_kind == real_kind && canon_id < d->btf->start_id)
3859 d->hypot_adjust_canon = true;
3860 }
3861 return fwd_kind == real_kind;
3862 }
3863
3864 if (cand_kind != canon_kind)
3865 return 0;
3866
3867 switch (cand_kind) {
3868 case BTF_KIND_INT:
3869 return btf_equal_int(cand_type, canon_type);
3870
3871 case BTF_KIND_ENUM:
3872 if (d->opts.dont_resolve_fwds)
3873 return btf_equal_enum(cand_type, canon_type);
3874 else
3875 return btf_compat_enum(cand_type, canon_type);
3876
3877 case BTF_KIND_FWD:
3878 case BTF_KIND_FLOAT:
3879 return btf_equal_common(cand_type, canon_type);
3880
3881 case BTF_KIND_CONST:
3882 case BTF_KIND_VOLATILE:
3883 case BTF_KIND_RESTRICT:
3884 case BTF_KIND_PTR:
3885 case BTF_KIND_TYPEDEF:
3886 case BTF_KIND_FUNC:
3887 if (cand_type->info != canon_type->info)
3888 return 0;
3889 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3890
3891 case BTF_KIND_ARRAY: {
3892 const struct btf_array *cand_arr, *canon_arr;
3893
3894 if (!btf_compat_array(cand_type, canon_type))
3895 return 0;
3896 cand_arr = btf_array(cand_type);
3897 canon_arr = btf_array(canon_type);
3898 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
3899 if (eq <= 0)
3900 return eq;
3901 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
3902 }
3903
3904 case BTF_KIND_STRUCT:
3905 case BTF_KIND_UNION: {
3906 const struct btf_member *cand_m, *canon_m;
3907 __u16 vlen;
3908
3909 if (!btf_shallow_equal_struct(cand_type, canon_type))
3910 return 0;
3911 vlen = btf_vlen(cand_type);
3912 cand_m = btf_members(cand_type);
3913 canon_m = btf_members(canon_type);
3914 for (i = 0; i < vlen; i++) {
3915 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
3916 if (eq <= 0)
3917 return eq;
3918 cand_m++;
3919 canon_m++;
3920 }
3921
3922 return 1;
3923 }
3924
3925 case BTF_KIND_FUNC_PROTO: {
3926 const struct btf_param *cand_p, *canon_p;
3927 __u16 vlen;
3928
3929 if (!btf_compat_fnproto(cand_type, canon_type))
3930 return 0;
3931 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3932 if (eq <= 0)
3933 return eq;
3934 vlen = btf_vlen(cand_type);
3935 cand_p = btf_params(cand_type);
3936 canon_p = btf_params(canon_type);
3937 for (i = 0; i < vlen; i++) {
3938 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
3939 if (eq <= 0)
3940 return eq;
3941 cand_p++;
3942 canon_p++;
3943 }
3944 return 1;
3945 }
3946
3947 default:
3948 return -EINVAL;
3949 }
3950 return 0;
3951}
3952
3953/*
3954 * Use hypothetical mapping, produced by successful type graph equivalence
3955 * check, to augment existing struct/union canonical mapping, where possible.
3956 *
3957 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
3958 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
3959 * it doesn't matter if FWD type was part of canonical graph or candidate one,
3960 * we are recording the mapping anyway. As opposed to carefulness required
3961 * for struct/union correspondence mapping (described below), for FWD resolution
3962 * it's not important, as by the time that FWD type (reference type) will be
3963 * deduplicated all structs/unions will be deduped already anyway.
3964 *
3965 * Recording STRUCT/UNION mapping is purely a performance optimization and is
3966 * not required for correctness. It needs to be done carefully to ensure that
3967 * struct/union from candidate's type graph is not mapped into corresponding
3968 * struct/union from canonical type graph that itself hasn't been resolved into
3969 * canonical representative. The only guarantee we have is that canonical
3970 * struct/union was determined as canonical and that won't change. But any
3971 * types referenced through that struct/union fields could have been not yet
3972 * resolved, so in case like that it's too early to establish any kind of
3973 * correspondence between structs/unions.
3974 *
3975 * No canonical correspondence is derived for primitive types (they are already
3976 * deduplicated completely already anyway) or reference types (they rely on
3977 * stability of struct/union canonical relationship for equivalence checks).
3978 */
3979static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
3980{
3981 __u32 canon_type_id, targ_type_id;
3982 __u16 t_kind, c_kind;
3983 __u32 t_id, c_id;
3984 int i;
3985
3986 for (i = 0; i < d->hypot_cnt; i++) {
3987 canon_type_id = d->hypot_list[i];
3988 targ_type_id = d->hypot_map[canon_type_id];
3989 t_id = resolve_type_id(d, targ_type_id);
3990 c_id = resolve_type_id(d, canon_type_id);
3991 t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
3992 c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
3993 /*
3994 * Resolve FWD into STRUCT/UNION.
3995 * It's ok to resolve FWD into STRUCT/UNION that's not yet
3996 * mapped to canonical representative (as opposed to
3997 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
3998 * eventually that struct is going to be mapped and all resolved
3999 * FWDs will automatically resolve to correct canonical
4000 * representative. This will happen before ref type deduping,
4001 * which critically depends on stability of these mapping. This
4002 * stability is not a requirement for STRUCT/UNION equivalence
4003 * checks, though.
4004 */
4005
4006 /* if it's the split BTF case, we still need to point base FWD
4007 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4008 * will be resolved against base FWD. If we don't point base
4009 * canonical FWD to the resolved STRUCT/UNION, then all the
4010 * FWDs in split BTF won't be correctly resolved to a proper
4011 * STRUCT/UNION.
4012 */
4013 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4014 d->map[c_id] = t_id;
4015
4016 /* if graph equivalence determined that we'd need to adjust
4017 * base canonical types, then we need to only point base FWDs
4018 * to STRUCTs/UNIONs and do no more modifications. For all
4019 * other purposes the type graphs were not equivalent.
4020 */
4021 if (d->hypot_adjust_canon)
4022 continue;
4023
4024 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4025 d->map[t_id] = c_id;
4026
4027 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4028 c_kind != BTF_KIND_FWD &&
4029 is_type_mapped(d, c_id) &&
4030 !is_type_mapped(d, t_id)) {
4031 /*
4032 * as a perf optimization, we can map struct/union
4033 * that's part of type graph we just verified for
4034 * equivalence. We can do that for struct/union that has
4035 * canonical representative only, though.
4036 */
4037 d->map[t_id] = c_id;
4038 }
4039 }
4040}
4041
4042/*
4043 * Deduplicate struct/union types.
4044 *
4045 * For each struct/union type its type signature hash is calculated, taking
4046 * into account type's name, size, number, order and names of fields, but
4047 * ignoring type ID's referenced from fields, because they might not be deduped
4048 * completely until after reference types deduplication phase. This type hash
4049 * is used to iterate over all potential canonical types, sharing same hash.
4050 * For each canonical candidate we check whether type graphs that they form
4051 * (through referenced types in fields and so on) are equivalent using algorithm
4052 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4053 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4054 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4055 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4056 * potentially map other structs/unions to their canonical representatives,
4057 * if such relationship hasn't yet been established. This speeds up algorithm
4058 * by eliminating some of the duplicate work.
4059 *
4060 * If no matching canonical representative was found, struct/union is marked
4061 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4062 * for further look ups.
4063 */
4064static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4065{
4066 struct btf_type *cand_type, *t;
4067 struct hashmap_entry *hash_entry;
4068 /* if we don't find equivalent type, then we are canonical */
4069 __u32 new_id = type_id;
4070 __u16 kind;
4071 long h;
4072
4073 /* already deduped or is in process of deduping (loop detected) */
4074 if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4075 return 0;
4076
4077 t = btf_type_by_id(d->btf, type_id);
4078 kind = btf_kind(t);
4079
4080 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4081 return 0;
4082
4083 h = btf_hash_struct(t);
4084 for_each_dedup_cand(d, hash_entry, h) {
4085 __u32 cand_id = (__u32)(long)hash_entry->value;
4086 int eq;
4087
4088 /*
4089 * Even though btf_dedup_is_equiv() checks for
4090 * btf_shallow_equal_struct() internally when checking two
4091 * structs (unions) for equivalence, we need to guard here
4092 * from picking matching FWD type as a dedup candidate.
4093 * This can happen due to hash collision. In such case just
4094 * relying on btf_dedup_is_equiv() would lead to potentially
4095 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4096 * FWD and compatible STRUCT/UNION are considered equivalent.
4097 */
4098 cand_type = btf_type_by_id(d->btf, cand_id);
4099 if (!btf_shallow_equal_struct(t, cand_type))
4100 continue;
4101
4102 btf_dedup_clear_hypot_map(d);
4103 eq = btf_dedup_is_equiv(d, type_id, cand_id);
4104 if (eq < 0)
4105 return eq;
4106 if (!eq)
4107 continue;
4108 btf_dedup_merge_hypot_map(d);
4109 if (d->hypot_adjust_canon) /* not really equivalent */
4110 continue;
4111 new_id = cand_id;
4112 break;
4113 }
4114
4115 d->map[type_id] = new_id;
4116 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4117 return -ENOMEM;
4118
4119 return 0;
4120}
4121
4122static int btf_dedup_struct_types(struct btf_dedup *d)
4123{
4124 int i, err;
4125
4126 for (i = 0; i < d->btf->nr_types; i++) {
4127 err = btf_dedup_struct_type(d, d->btf->start_id + i);
4128 if (err)
4129 return err;
4130 }
4131 return 0;
4132}
4133
4134/*
4135 * Deduplicate reference type.
4136 *
4137 * Once all primitive and struct/union types got deduplicated, we can easily
4138 * deduplicate all other (reference) BTF types. This is done in two steps:
4139 *
4140 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4141 * resolution can be done either immediately for primitive or struct/union types
4142 * (because they were deduped in previous two phases) or recursively for
4143 * reference types. Recursion will always terminate at either primitive or
4144 * struct/union type, at which point we can "unwind" chain of reference types
4145 * one by one. There is no danger of encountering cycles because in C type
4146 * system the only way to form type cycle is through struct/union, so any chain
4147 * of reference types, even those taking part in a type cycle, will inevitably
4148 * reach struct/union at some point.
4149 *
4150 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4151 * becomes "stable", in the sense that no further deduplication will cause
4152 * any changes to it. With that, it's now possible to calculate type's signature
4153 * hash (this time taking into account referenced type IDs) and loop over all
4154 * potential canonical representatives. If no match was found, current type
4155 * will become canonical representative of itself and will be added into
4156 * btf_dedup->dedup_table as another possible canonical representative.
4157 */
4158static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4159{
4160 struct hashmap_entry *hash_entry;
4161 __u32 new_id = type_id, cand_id;
4162 struct btf_type *t, *cand;
4163 /* if we don't find equivalent type, then we are representative type */
4164 int ref_type_id;
4165 long h;
4166
4167 if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4168 return -ELOOP;
4169 if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4170 return resolve_type_id(d, type_id);
4171
4172 t = btf_type_by_id(d->btf, type_id);
4173 d->map[type_id] = BTF_IN_PROGRESS_ID;
4174
4175 switch (btf_kind(t)) {
4176 case BTF_KIND_CONST:
4177 case BTF_KIND_VOLATILE:
4178 case BTF_KIND_RESTRICT:
4179 case BTF_KIND_PTR:
4180 case BTF_KIND_TYPEDEF:
4181 case BTF_KIND_FUNC:
4182 ref_type_id = btf_dedup_ref_type(d, t->type);
4183 if (ref_type_id < 0)
4184 return ref_type_id;
4185 t->type = ref_type_id;
4186
4187 h = btf_hash_common(t);
4188 for_each_dedup_cand(d, hash_entry, h) {
4189 cand_id = (__u32)(long)hash_entry->value;
4190 cand = btf_type_by_id(d->btf, cand_id);
4191 if (btf_equal_common(t, cand)) {
4192 new_id = cand_id;
4193 break;
4194 }
4195 }
4196 break;
4197
4198 case BTF_KIND_ARRAY: {
4199 struct btf_array *info = btf_array(t);
4200
4201 ref_type_id = btf_dedup_ref_type(d, info->type);
4202 if (ref_type_id < 0)
4203 return ref_type_id;
4204 info->type = ref_type_id;
4205
4206 ref_type_id = btf_dedup_ref_type(d, info->index_type);
4207 if (ref_type_id < 0)
4208 return ref_type_id;
4209 info->index_type = ref_type_id;
4210
4211 h = btf_hash_array(t);
4212 for_each_dedup_cand(d, hash_entry, h) {
4213 cand_id = (__u32)(long)hash_entry->value;
4214 cand = btf_type_by_id(d->btf, cand_id);
4215 if (btf_equal_array(t, cand)) {
4216 new_id = cand_id;
4217 break;
4218 }
4219 }
4220 break;
4221 }
4222
4223 case BTF_KIND_FUNC_PROTO: {
4224 struct btf_param *param;
4225 __u16 vlen;
4226 int i;
4227
4228 ref_type_id = btf_dedup_ref_type(d, t->type);
4229 if (ref_type_id < 0)
4230 return ref_type_id;
4231 t->type = ref_type_id;
4232
4233 vlen = btf_vlen(t);
4234 param = btf_params(t);
4235 for (i = 0; i < vlen; i++) {
4236 ref_type_id = btf_dedup_ref_type(d, param->type);
4237 if (ref_type_id < 0)
4238 return ref_type_id;
4239 param->type = ref_type_id;
4240 param++;
4241 }
4242
4243 h = btf_hash_fnproto(t);
4244 for_each_dedup_cand(d, hash_entry, h) {
4245 cand_id = (__u32)(long)hash_entry->value;
4246 cand = btf_type_by_id(d->btf, cand_id);
4247 if (btf_equal_fnproto(t, cand)) {
4248 new_id = cand_id;
4249 break;
4250 }
4251 }
4252 break;
4253 }
4254
4255 default:
4256 return -EINVAL;
4257 }
4258
4259 d->map[type_id] = new_id;
4260 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4261 return -ENOMEM;
4262
4263 return new_id;
4264}
4265
4266static int btf_dedup_ref_types(struct btf_dedup *d)
4267{
4268 int i, err;
4269
4270 for (i = 0; i < d->btf->nr_types; i++) {
4271 err = btf_dedup_ref_type(d, d->btf->start_id + i);
4272 if (err < 0)
4273 return err;
4274 }
4275 /* we won't need d->dedup_table anymore */
4276 hashmap__free(d->dedup_table);
4277 d->dedup_table = NULL;
4278 return 0;
4279}
4280
4281/*
4282 * Compact types.
4283 *
4284 * After we established for each type its corresponding canonical representative
4285 * type, we now can eliminate types that are not canonical and leave only
4286 * canonical ones layed out sequentially in memory by copying them over
4287 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4288 * a map from original type ID to a new compacted type ID, which will be used
4289 * during next phase to "fix up" type IDs, referenced from struct/union and
4290 * reference types.
4291 */
4292static int btf_dedup_compact_types(struct btf_dedup *d)
4293{
4294 __u32 *new_offs;
4295 __u32 next_type_id = d->btf->start_id;
4296 const struct btf_type *t;
4297 void *p;
4298 int i, id, len;
4299
4300 /* we are going to reuse hypot_map to store compaction remapping */
4301 d->hypot_map[0] = 0;
4302 /* base BTF types are not renumbered */
4303 for (id = 1; id < d->btf->start_id; id++)
4304 d->hypot_map[id] = id;
4305 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4306 d->hypot_map[id] = BTF_UNPROCESSED_ID;
4307
4308 p = d->btf->types_data;
4309
4310 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4311 if (d->map[id] != id)
4312 continue;
4313
4314 t = btf__type_by_id(d->btf, id);
4315 len = btf_type_size(t);
4316 if (len < 0)
4317 return len;
4318
4319 memmove(p, t, len);
4320 d->hypot_map[id] = next_type_id;
4321 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4322 p += len;
4323 next_type_id++;
4324 }
4325
4326 /* shrink struct btf's internal types index and update btf_header */
4327 d->btf->nr_types = next_type_id - d->btf->start_id;
4328 d->btf->type_offs_cap = d->btf->nr_types;
4329 d->btf->hdr->type_len = p - d->btf->types_data;
4330 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4331 sizeof(*new_offs));
4332 if (d->btf->type_offs_cap && !new_offs)
4333 return -ENOMEM;
4334 d->btf->type_offs = new_offs;
4335 d->btf->hdr->str_off = d->btf->hdr->type_len;
4336 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4337 return 0;
4338}
4339
4340/*
4341 * Figure out final (deduplicated and compacted) type ID for provided original
4342 * `type_id` by first resolving it into corresponding canonical type ID and
4343 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4344 * which is populated during compaction phase.
4345 */
4346static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4347{
4348 struct btf_dedup *d = ctx;
4349 __u32 resolved_type_id, new_type_id;
4350
4351 resolved_type_id = resolve_type_id(d, *type_id);
4352 new_type_id = d->hypot_map[resolved_type_id];
4353 if (new_type_id > BTF_MAX_NR_TYPES)
4354 return -EINVAL;
4355
4356 *type_id = new_type_id;
4357 return 0;
4358}
4359
4360/*
4361 * Remap referenced type IDs into deduped type IDs.
4362 *
4363 * After BTF types are deduplicated and compacted, their final type IDs may
4364 * differ from original ones. The map from original to a corresponding
4365 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4366 * compaction phase. During remapping phase we are rewriting all type IDs
4367 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4368 * their final deduped type IDs.
4369 */
4370static int btf_dedup_remap_types(struct btf_dedup *d)
4371{
4372 int i, r;
4373
4374 for (i = 0; i < d->btf->nr_types; i++) {
4375 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4376
4377 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4378 if (r)
4379 return r;
4380 }
4381
4382 if (!d->btf_ext)
4383 return 0;
4384
4385 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4386 if (r)
4387 return r;
4388
4389 return 0;
4390}
4391
4392/*
4393 * Probe few well-known locations for vmlinux kernel image and try to load BTF
4394 * data out of it to use for target BTF.
4395 */
4396struct btf *libbpf_find_kernel_btf(void)
4397{
4398 struct {
4399 const char *path_fmt;
4400 bool raw_btf;
4401 } locations[] = {
4402 /* try canonical vmlinux BTF through sysfs first */
4403 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4404 /* fall back to trying to find vmlinux ELF on disk otherwise */
4405 { "/boot/vmlinux-%1$s" },
4406 { "/lib/modules/%1$s/vmlinux-%1$s" },
4407 { "/lib/modules/%1$s/build/vmlinux" },
4408 { "/usr/lib/modules/%1$s/kernel/vmlinux" },
4409 { "/usr/lib/debug/boot/vmlinux-%1$s" },
4410 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4411 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4412 };
4413 char path[PATH_MAX + 1];
4414 struct utsname buf;
4415 struct btf *btf;
4416 int i, err;
4417
4418 uname(&buf);
4419
4420 for (i = 0; i < ARRAY_SIZE(locations); i++) {
4421 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4422
4423 if (access(path, R_OK))
4424 continue;
4425
4426 if (locations[i].raw_btf)
4427 btf = btf__parse_raw(path);
4428 else
4429 btf = btf__parse_elf(path, NULL);
4430 err = libbpf_get_error(btf);
4431 pr_debug("loading kernel BTF '%s': %d\n", path, err);
4432 if (err)
4433 continue;
4434
4435 return btf;
4436 }
4437
4438 pr_warn("failed to find valid kernel BTF\n");
4439 return libbpf_err_ptr(-ESRCH);
4440}
4441
4442int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4443{
4444 int i, n, err;
4445
4446 switch (btf_kind(t)) {
4447 case BTF_KIND_INT:
4448 case BTF_KIND_FLOAT:
4449 case BTF_KIND_ENUM:
4450 return 0;
4451
4452 case BTF_KIND_FWD:
4453 case BTF_KIND_CONST:
4454 case BTF_KIND_VOLATILE:
4455 case BTF_KIND_RESTRICT:
4456 case BTF_KIND_PTR:
4457 case BTF_KIND_TYPEDEF:
4458 case BTF_KIND_FUNC:
4459 case BTF_KIND_VAR:
4460 return visit(&t->type, ctx);
4461
4462 case BTF_KIND_ARRAY: {
4463 struct btf_array *a = btf_array(t);
4464
4465 err = visit(&a->type, ctx);
4466 err = err ?: visit(&a->index_type, ctx);
4467 return err;
4468 }
4469
4470 case BTF_KIND_STRUCT:
4471 case BTF_KIND_UNION: {
4472 struct btf_member *m = btf_members(t);
4473
4474 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4475 err = visit(&m->type, ctx);
4476 if (err)
4477 return err;
4478 }
4479 return 0;
4480 }
4481
4482 case BTF_KIND_FUNC_PROTO: {
4483 struct btf_param *m = btf_params(t);
4484
4485 err = visit(&t->type, ctx);
4486 if (err)
4487 return err;
4488 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4489 err = visit(&m->type, ctx);
4490 if (err)
4491 return err;
4492 }
4493 return 0;
4494 }
4495
4496 case BTF_KIND_DATASEC: {
4497 struct btf_var_secinfo *m = btf_var_secinfos(t);
4498
4499 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4500 err = visit(&m->type, ctx);
4501 if (err)
4502 return err;
4503 }
4504 return 0;
4505 }
4506
4507 default:
4508 return -EINVAL;
4509 }
4510}
4511
4512int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4513{
4514 int i, n, err;
4515
4516 err = visit(&t->name_off, ctx);
4517 if (err)
4518 return err;
4519
4520 switch (btf_kind(t)) {
4521 case BTF_KIND_STRUCT:
4522 case BTF_KIND_UNION: {
4523 struct btf_member *m = btf_members(t);
4524
4525 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4526 err = visit(&m->name_off, ctx);
4527 if (err)
4528 return err;
4529 }
4530 break;
4531 }
4532 case BTF_KIND_ENUM: {
4533 struct btf_enum *m = btf_enum(t);
4534
4535 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4536 err = visit(&m->name_off, ctx);
4537 if (err)
4538 return err;
4539 }
4540 break;
4541 }
4542 case BTF_KIND_FUNC_PROTO: {
4543 struct btf_param *m = btf_params(t);
4544
4545 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4546 err = visit(&m->name_off, ctx);
4547 if (err)
4548 return err;
4549 }
4550 break;
4551 }
4552 default:
4553 break;
4554 }
4555
4556 return 0;
4557}
4558
4559int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4560{
4561 const struct btf_ext_info *seg;
4562 struct btf_ext_info_sec *sec;
4563 int i, err;
4564
4565 seg = &btf_ext->func_info;
4566 for_each_btf_ext_sec(seg, sec) {
4567 struct bpf_func_info_min *rec;
4568
4569 for_each_btf_ext_rec(seg, sec, i, rec) {
4570 err = visit(&rec->type_id, ctx);
4571 if (err < 0)
4572 return err;
4573 }
4574 }
4575
4576 seg = &btf_ext->core_relo_info;
4577 for_each_btf_ext_sec(seg, sec) {
4578 struct bpf_core_relo *rec;
4579
4580 for_each_btf_ext_rec(seg, sec, i, rec) {
4581 err = visit(&rec->type_id, ctx);
4582 if (err < 0)
4583 return err;
4584 }
4585 }
4586
4587 return 0;
4588}
4589
4590int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4591{
4592 const struct btf_ext_info *seg;
4593 struct btf_ext_info_sec *sec;
4594 int i, err;
4595
4596 seg = &btf_ext->func_info;
4597 for_each_btf_ext_sec(seg, sec) {
4598 err = visit(&sec->sec_name_off, ctx);
4599 if (err)
4600 return err;
4601 }
4602
4603 seg = &btf_ext->line_info;
4604 for_each_btf_ext_sec(seg, sec) {
4605 struct bpf_line_info_min *rec;
4606
4607 err = visit(&sec->sec_name_off, ctx);
4608 if (err)
4609 return err;
4610
4611 for_each_btf_ext_rec(seg, sec, i, rec) {
4612 err = visit(&rec->file_name_off, ctx);
4613 if (err)
4614 return err;
4615 err = visit(&rec->line_off, ctx);
4616 if (err)
4617 return err;
4618 }
4619 }
4620
4621 seg = &btf_ext->core_relo_info;
4622 for_each_btf_ext_sec(seg, sec) {
4623 struct bpf_core_relo *rec;
4624
4625 err = visit(&sec->sec_name_off, ctx);
4626 if (err)
4627 return err;
4628
4629 for_each_btf_ext_rec(seg, sec, i, rec) {
4630 err = visit(&rec->access_str_off, ctx);
4631 if (err)
4632 return err;
4633 }
4634 }
4635
4636 return 0;
4637}
1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2/* Copyright (c) 2018 Facebook */
3
4#include <byteswap.h>
5#include <endian.h>
6#include <stdio.h>
7#include <stdlib.h>
8#include <string.h>
9#include <fcntl.h>
10#include <unistd.h>
11#include <errno.h>
12#include <sys/utsname.h>
13#include <sys/param.h>
14#include <sys/stat.h>
15#include <linux/kernel.h>
16#include <linux/err.h>
17#include <linux/btf.h>
18#include <gelf.h>
19#include "btf.h"
20#include "bpf.h"
21#include "libbpf.h"
22#include "libbpf_internal.h"
23#include "hashmap.h"
24#include "strset.h"
25#include "str_error.h"
26
27#define BTF_MAX_NR_TYPES 0x7fffffffU
28#define BTF_MAX_STR_OFFSET 0x7fffffffU
29
30static struct btf_type btf_void;
31
32struct btf {
33 /* raw BTF data in native endianness */
34 void *raw_data;
35 /* raw BTF data in non-native endianness */
36 void *raw_data_swapped;
37 __u32 raw_size;
38 /* whether target endianness differs from the native one */
39 bool swapped_endian;
40
41 /*
42 * When BTF is loaded from an ELF or raw memory it is stored
43 * in a contiguous memory block. The hdr, type_data, and, strs_data
44 * point inside that memory region to their respective parts of BTF
45 * representation:
46 *
47 * +--------------------------------+
48 * | Header | Types | Strings |
49 * +--------------------------------+
50 * ^ ^ ^
51 * | | |
52 * hdr | |
53 * types_data-+ |
54 * strs_data------------+
55 *
56 * If BTF data is later modified, e.g., due to types added or
57 * removed, BTF deduplication performed, etc, this contiguous
58 * representation is broken up into three independently allocated
59 * memory regions to be able to modify them independently.
60 * raw_data is nulled out at that point, but can be later allocated
61 * and cached again if user calls btf__raw_data(), at which point
62 * raw_data will contain a contiguous copy of header, types, and
63 * strings:
64 *
65 * +----------+ +---------+ +-----------+
66 * | Header | | Types | | Strings |
67 * +----------+ +---------+ +-----------+
68 * ^ ^ ^
69 * | | |
70 * hdr | |
71 * types_data----+ |
72 * strset__data(strs_set)-----+
73 *
74 * +----------+---------+-----------+
75 * | Header | Types | Strings |
76 * raw_data----->+----------+---------+-----------+
77 */
78 struct btf_header *hdr;
79
80 void *types_data;
81 size_t types_data_cap; /* used size stored in hdr->type_len */
82
83 /* type ID to `struct btf_type *` lookup index
84 * type_offs[0] corresponds to the first non-VOID type:
85 * - for base BTF it's type [1];
86 * - for split BTF it's the first non-base BTF type.
87 */
88 __u32 *type_offs;
89 size_t type_offs_cap;
90 /* number of types in this BTF instance:
91 * - doesn't include special [0] void type;
92 * - for split BTF counts number of types added on top of base BTF.
93 */
94 __u32 nr_types;
95 /* if not NULL, points to the base BTF on top of which the current
96 * split BTF is based
97 */
98 struct btf *base_btf;
99 /* BTF type ID of the first type in this BTF instance:
100 * - for base BTF it's equal to 1;
101 * - for split BTF it's equal to biggest type ID of base BTF plus 1.
102 */
103 int start_id;
104 /* logical string offset of this BTF instance:
105 * - for base BTF it's equal to 0;
106 * - for split BTF it's equal to total size of base BTF's string section size.
107 */
108 int start_str_off;
109
110 /* only one of strs_data or strs_set can be non-NULL, depending on
111 * whether BTF is in a modifiable state (strs_set is used) or not
112 * (strs_data points inside raw_data)
113 */
114 void *strs_data;
115 /* a set of unique strings */
116 struct strset *strs_set;
117 /* whether strings are already deduplicated */
118 bool strs_deduped;
119
120 /* whether base_btf should be freed in btf_free for this instance */
121 bool owns_base;
122
123 /* BTF object FD, if loaded into kernel */
124 int fd;
125
126 /* Pointer size (in bytes) for a target architecture of this BTF */
127 int ptr_sz;
128};
129
130static inline __u64 ptr_to_u64(const void *ptr)
131{
132 return (__u64) (unsigned long) ptr;
133}
134
135/* Ensure given dynamically allocated memory region pointed to by *data* with
136 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
137 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements
138 * are already used. At most *max_cnt* elements can be ever allocated.
139 * If necessary, memory is reallocated and all existing data is copied over,
140 * new pointer to the memory region is stored at *data, new memory region
141 * capacity (in number of elements) is stored in *cap.
142 * On success, memory pointer to the beginning of unused memory is returned.
143 * On error, NULL is returned.
144 */
145void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
146 size_t cur_cnt, size_t max_cnt, size_t add_cnt)
147{
148 size_t new_cnt;
149 void *new_data;
150
151 if (cur_cnt + add_cnt <= *cap_cnt)
152 return *data + cur_cnt * elem_sz;
153
154 /* requested more than the set limit */
155 if (cur_cnt + add_cnt > max_cnt)
156 return NULL;
157
158 new_cnt = *cap_cnt;
159 new_cnt += new_cnt / 4; /* expand by 25% */
160 if (new_cnt < 16) /* but at least 16 elements */
161 new_cnt = 16;
162 if (new_cnt > max_cnt) /* but not exceeding a set limit */
163 new_cnt = max_cnt;
164 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */
165 new_cnt = cur_cnt + add_cnt;
166
167 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
168 if (!new_data)
169 return NULL;
170
171 /* zero out newly allocated portion of memory */
172 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
173
174 *data = new_data;
175 *cap_cnt = new_cnt;
176 return new_data + cur_cnt * elem_sz;
177}
178
179/* Ensure given dynamically allocated memory region has enough allocated space
180 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
181 */
182int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
183{
184 void *p;
185
186 if (need_cnt <= *cap_cnt)
187 return 0;
188
189 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
190 if (!p)
191 return -ENOMEM;
192
193 return 0;
194}
195
196static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
197{
198 return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
199 btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
200}
201
202static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
203{
204 __u32 *p;
205
206 p = btf_add_type_offs_mem(btf, 1);
207 if (!p)
208 return -ENOMEM;
209
210 *p = type_off;
211 return 0;
212}
213
214static void btf_bswap_hdr(struct btf_header *h)
215{
216 h->magic = bswap_16(h->magic);
217 h->hdr_len = bswap_32(h->hdr_len);
218 h->type_off = bswap_32(h->type_off);
219 h->type_len = bswap_32(h->type_len);
220 h->str_off = bswap_32(h->str_off);
221 h->str_len = bswap_32(h->str_len);
222}
223
224static int btf_parse_hdr(struct btf *btf)
225{
226 struct btf_header *hdr = btf->hdr;
227 __u32 meta_left;
228
229 if (btf->raw_size < sizeof(struct btf_header)) {
230 pr_debug("BTF header not found\n");
231 return -EINVAL;
232 }
233
234 if (hdr->magic == bswap_16(BTF_MAGIC)) {
235 btf->swapped_endian = true;
236 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
237 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
238 bswap_32(hdr->hdr_len));
239 return -ENOTSUP;
240 }
241 btf_bswap_hdr(hdr);
242 } else if (hdr->magic != BTF_MAGIC) {
243 pr_debug("Invalid BTF magic: %x\n", hdr->magic);
244 return -EINVAL;
245 }
246
247 if (btf->raw_size < hdr->hdr_len) {
248 pr_debug("BTF header len %u larger than data size %u\n",
249 hdr->hdr_len, btf->raw_size);
250 return -EINVAL;
251 }
252
253 meta_left = btf->raw_size - hdr->hdr_len;
254 if (meta_left < (long long)hdr->str_off + hdr->str_len) {
255 pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
256 return -EINVAL;
257 }
258
259 if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
260 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
261 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
262 return -EINVAL;
263 }
264
265 if (hdr->type_off % 4) {
266 pr_debug("BTF type section is not aligned to 4 bytes\n");
267 return -EINVAL;
268 }
269
270 return 0;
271}
272
273static int btf_parse_str_sec(struct btf *btf)
274{
275 const struct btf_header *hdr = btf->hdr;
276 const char *start = btf->strs_data;
277 const char *end = start + btf->hdr->str_len;
278
279 if (btf->base_btf && hdr->str_len == 0)
280 return 0;
281 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
282 pr_debug("Invalid BTF string section\n");
283 return -EINVAL;
284 }
285 if (!btf->base_btf && start[0]) {
286 pr_debug("Invalid BTF string section\n");
287 return -EINVAL;
288 }
289 return 0;
290}
291
292static int btf_type_size(const struct btf_type *t)
293{
294 const int base_size = sizeof(struct btf_type);
295 __u16 vlen = btf_vlen(t);
296
297 switch (btf_kind(t)) {
298 case BTF_KIND_FWD:
299 case BTF_KIND_CONST:
300 case BTF_KIND_VOLATILE:
301 case BTF_KIND_RESTRICT:
302 case BTF_KIND_PTR:
303 case BTF_KIND_TYPEDEF:
304 case BTF_KIND_FUNC:
305 case BTF_KIND_FLOAT:
306 case BTF_KIND_TYPE_TAG:
307 return base_size;
308 case BTF_KIND_INT:
309 return base_size + sizeof(__u32);
310 case BTF_KIND_ENUM:
311 return base_size + vlen * sizeof(struct btf_enum);
312 case BTF_KIND_ENUM64:
313 return base_size + vlen * sizeof(struct btf_enum64);
314 case BTF_KIND_ARRAY:
315 return base_size + sizeof(struct btf_array);
316 case BTF_KIND_STRUCT:
317 case BTF_KIND_UNION:
318 return base_size + vlen * sizeof(struct btf_member);
319 case BTF_KIND_FUNC_PROTO:
320 return base_size + vlen * sizeof(struct btf_param);
321 case BTF_KIND_VAR:
322 return base_size + sizeof(struct btf_var);
323 case BTF_KIND_DATASEC:
324 return base_size + vlen * sizeof(struct btf_var_secinfo);
325 case BTF_KIND_DECL_TAG:
326 return base_size + sizeof(struct btf_decl_tag);
327 default:
328 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
329 return -EINVAL;
330 }
331}
332
333static void btf_bswap_type_base(struct btf_type *t)
334{
335 t->name_off = bswap_32(t->name_off);
336 t->info = bswap_32(t->info);
337 t->type = bswap_32(t->type);
338}
339
340static int btf_bswap_type_rest(struct btf_type *t)
341{
342 struct btf_var_secinfo *v;
343 struct btf_enum64 *e64;
344 struct btf_member *m;
345 struct btf_array *a;
346 struct btf_param *p;
347 struct btf_enum *e;
348 __u16 vlen = btf_vlen(t);
349 int i;
350
351 switch (btf_kind(t)) {
352 case BTF_KIND_FWD:
353 case BTF_KIND_CONST:
354 case BTF_KIND_VOLATILE:
355 case BTF_KIND_RESTRICT:
356 case BTF_KIND_PTR:
357 case BTF_KIND_TYPEDEF:
358 case BTF_KIND_FUNC:
359 case BTF_KIND_FLOAT:
360 case BTF_KIND_TYPE_TAG:
361 return 0;
362 case BTF_KIND_INT:
363 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
364 return 0;
365 case BTF_KIND_ENUM:
366 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
367 e->name_off = bswap_32(e->name_off);
368 e->val = bswap_32(e->val);
369 }
370 return 0;
371 case BTF_KIND_ENUM64:
372 for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) {
373 e64->name_off = bswap_32(e64->name_off);
374 e64->val_lo32 = bswap_32(e64->val_lo32);
375 e64->val_hi32 = bswap_32(e64->val_hi32);
376 }
377 return 0;
378 case BTF_KIND_ARRAY:
379 a = btf_array(t);
380 a->type = bswap_32(a->type);
381 a->index_type = bswap_32(a->index_type);
382 a->nelems = bswap_32(a->nelems);
383 return 0;
384 case BTF_KIND_STRUCT:
385 case BTF_KIND_UNION:
386 for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
387 m->name_off = bswap_32(m->name_off);
388 m->type = bswap_32(m->type);
389 m->offset = bswap_32(m->offset);
390 }
391 return 0;
392 case BTF_KIND_FUNC_PROTO:
393 for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
394 p->name_off = bswap_32(p->name_off);
395 p->type = bswap_32(p->type);
396 }
397 return 0;
398 case BTF_KIND_VAR:
399 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
400 return 0;
401 case BTF_KIND_DATASEC:
402 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
403 v->type = bswap_32(v->type);
404 v->offset = bswap_32(v->offset);
405 v->size = bswap_32(v->size);
406 }
407 return 0;
408 case BTF_KIND_DECL_TAG:
409 btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
410 return 0;
411 default:
412 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
413 return -EINVAL;
414 }
415}
416
417static int btf_parse_type_sec(struct btf *btf)
418{
419 struct btf_header *hdr = btf->hdr;
420 void *next_type = btf->types_data;
421 void *end_type = next_type + hdr->type_len;
422 int err, type_size;
423
424 while (next_type + sizeof(struct btf_type) <= end_type) {
425 if (btf->swapped_endian)
426 btf_bswap_type_base(next_type);
427
428 type_size = btf_type_size(next_type);
429 if (type_size < 0)
430 return type_size;
431 if (next_type + type_size > end_type) {
432 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
433 return -EINVAL;
434 }
435
436 if (btf->swapped_endian && btf_bswap_type_rest(next_type))
437 return -EINVAL;
438
439 err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
440 if (err)
441 return err;
442
443 next_type += type_size;
444 btf->nr_types++;
445 }
446
447 if (next_type != end_type) {
448 pr_warn("BTF types data is malformed\n");
449 return -EINVAL;
450 }
451
452 return 0;
453}
454
455static int btf_validate_str(const struct btf *btf, __u32 str_off, const char *what, __u32 type_id)
456{
457 const char *s;
458
459 s = btf__str_by_offset(btf, str_off);
460 if (!s) {
461 pr_warn("btf: type [%u]: invalid %s (string offset %u)\n", type_id, what, str_off);
462 return -EINVAL;
463 }
464
465 return 0;
466}
467
468static int btf_validate_id(const struct btf *btf, __u32 id, __u32 ctx_id)
469{
470 const struct btf_type *t;
471
472 t = btf__type_by_id(btf, id);
473 if (!t) {
474 pr_warn("btf: type [%u]: invalid referenced type ID %u\n", ctx_id, id);
475 return -EINVAL;
476 }
477
478 return 0;
479}
480
481static int btf_validate_type(const struct btf *btf, const struct btf_type *t, __u32 id)
482{
483 __u32 kind = btf_kind(t);
484 int err, i, n;
485
486 err = btf_validate_str(btf, t->name_off, "type name", id);
487 if (err)
488 return err;
489
490 switch (kind) {
491 case BTF_KIND_UNKN:
492 case BTF_KIND_INT:
493 case BTF_KIND_FWD:
494 case BTF_KIND_FLOAT:
495 break;
496 case BTF_KIND_PTR:
497 case BTF_KIND_TYPEDEF:
498 case BTF_KIND_VOLATILE:
499 case BTF_KIND_CONST:
500 case BTF_KIND_RESTRICT:
501 case BTF_KIND_VAR:
502 case BTF_KIND_DECL_TAG:
503 case BTF_KIND_TYPE_TAG:
504 err = btf_validate_id(btf, t->type, id);
505 if (err)
506 return err;
507 break;
508 case BTF_KIND_ARRAY: {
509 const struct btf_array *a = btf_array(t);
510
511 err = btf_validate_id(btf, a->type, id);
512 err = err ?: btf_validate_id(btf, a->index_type, id);
513 if (err)
514 return err;
515 break;
516 }
517 case BTF_KIND_STRUCT:
518 case BTF_KIND_UNION: {
519 const struct btf_member *m = btf_members(t);
520
521 n = btf_vlen(t);
522 for (i = 0; i < n; i++, m++) {
523 err = btf_validate_str(btf, m->name_off, "field name", id);
524 err = err ?: btf_validate_id(btf, m->type, id);
525 if (err)
526 return err;
527 }
528 break;
529 }
530 case BTF_KIND_ENUM: {
531 const struct btf_enum *m = btf_enum(t);
532
533 n = btf_vlen(t);
534 for (i = 0; i < n; i++, m++) {
535 err = btf_validate_str(btf, m->name_off, "enum name", id);
536 if (err)
537 return err;
538 }
539 break;
540 }
541 case BTF_KIND_ENUM64: {
542 const struct btf_enum64 *m = btf_enum64(t);
543
544 n = btf_vlen(t);
545 for (i = 0; i < n; i++, m++) {
546 err = btf_validate_str(btf, m->name_off, "enum name", id);
547 if (err)
548 return err;
549 }
550 break;
551 }
552 case BTF_KIND_FUNC: {
553 const struct btf_type *ft;
554
555 err = btf_validate_id(btf, t->type, id);
556 if (err)
557 return err;
558 ft = btf__type_by_id(btf, t->type);
559 if (btf_kind(ft) != BTF_KIND_FUNC_PROTO) {
560 pr_warn("btf: type [%u]: referenced type [%u] is not FUNC_PROTO\n", id, t->type);
561 return -EINVAL;
562 }
563 break;
564 }
565 case BTF_KIND_FUNC_PROTO: {
566 const struct btf_param *m = btf_params(t);
567
568 n = btf_vlen(t);
569 for (i = 0; i < n; i++, m++) {
570 err = btf_validate_str(btf, m->name_off, "param name", id);
571 err = err ?: btf_validate_id(btf, m->type, id);
572 if (err)
573 return err;
574 }
575 break;
576 }
577 case BTF_KIND_DATASEC: {
578 const struct btf_var_secinfo *m = btf_var_secinfos(t);
579
580 n = btf_vlen(t);
581 for (i = 0; i < n; i++, m++) {
582 err = btf_validate_id(btf, m->type, id);
583 if (err)
584 return err;
585 }
586 break;
587 }
588 default:
589 pr_warn("btf: type [%u]: unrecognized kind %u\n", id, kind);
590 return -EINVAL;
591 }
592 return 0;
593}
594
595/* Validate basic sanity of BTF. It's intentionally less thorough than
596 * kernel's validation and validates only properties of BTF that libbpf relies
597 * on to be correct (e.g., valid type IDs, valid string offsets, etc)
598 */
599static int btf_sanity_check(const struct btf *btf)
600{
601 const struct btf_type *t;
602 __u32 i, n = btf__type_cnt(btf);
603 int err;
604
605 for (i = btf->start_id; i < n; i++) {
606 t = btf_type_by_id(btf, i);
607 err = btf_validate_type(btf, t, i);
608 if (err)
609 return err;
610 }
611 return 0;
612}
613
614__u32 btf__type_cnt(const struct btf *btf)
615{
616 return btf->start_id + btf->nr_types;
617}
618
619const struct btf *btf__base_btf(const struct btf *btf)
620{
621 return btf->base_btf;
622}
623
624/* internal helper returning non-const pointer to a type */
625struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
626{
627 if (type_id == 0)
628 return &btf_void;
629 if (type_id < btf->start_id)
630 return btf_type_by_id(btf->base_btf, type_id);
631 return btf->types_data + btf->type_offs[type_id - btf->start_id];
632}
633
634const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
635{
636 if (type_id >= btf->start_id + btf->nr_types)
637 return errno = EINVAL, NULL;
638 return btf_type_by_id((struct btf *)btf, type_id);
639}
640
641static int determine_ptr_size(const struct btf *btf)
642{
643 static const char * const long_aliases[] = {
644 "long",
645 "long int",
646 "int long",
647 "unsigned long",
648 "long unsigned",
649 "unsigned long int",
650 "unsigned int long",
651 "long unsigned int",
652 "long int unsigned",
653 "int unsigned long",
654 "int long unsigned",
655 };
656 const struct btf_type *t;
657 const char *name;
658 int i, j, n;
659
660 if (btf->base_btf && btf->base_btf->ptr_sz > 0)
661 return btf->base_btf->ptr_sz;
662
663 n = btf__type_cnt(btf);
664 for (i = 1; i < n; i++) {
665 t = btf__type_by_id(btf, i);
666 if (!btf_is_int(t))
667 continue;
668
669 if (t->size != 4 && t->size != 8)
670 continue;
671
672 name = btf__name_by_offset(btf, t->name_off);
673 if (!name)
674 continue;
675
676 for (j = 0; j < ARRAY_SIZE(long_aliases); j++) {
677 if (strcmp(name, long_aliases[j]) == 0)
678 return t->size;
679 }
680 }
681
682 return -1;
683}
684
685static size_t btf_ptr_sz(const struct btf *btf)
686{
687 if (!btf->ptr_sz)
688 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
689 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
690}
691
692/* Return pointer size this BTF instance assumes. The size is heuristically
693 * determined by looking for 'long' or 'unsigned long' integer type and
694 * recording its size in bytes. If BTF type information doesn't have any such
695 * type, this function returns 0. In the latter case, native architecture's
696 * pointer size is assumed, so will be either 4 or 8, depending on
697 * architecture that libbpf was compiled for. It's possible to override
698 * guessed value by using btf__set_pointer_size() API.
699 */
700size_t btf__pointer_size(const struct btf *btf)
701{
702 if (!btf->ptr_sz)
703 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
704
705 if (btf->ptr_sz < 0)
706 /* not enough BTF type info to guess */
707 return 0;
708
709 return btf->ptr_sz;
710}
711
712/* Override or set pointer size in bytes. Only values of 4 and 8 are
713 * supported.
714 */
715int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
716{
717 if (ptr_sz != 4 && ptr_sz != 8)
718 return libbpf_err(-EINVAL);
719 btf->ptr_sz = ptr_sz;
720 return 0;
721}
722
723static bool is_host_big_endian(void)
724{
725#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
726 return false;
727#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
728 return true;
729#else
730# error "Unrecognized __BYTE_ORDER__"
731#endif
732}
733
734enum btf_endianness btf__endianness(const struct btf *btf)
735{
736 if (is_host_big_endian())
737 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
738 else
739 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
740}
741
742int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
743{
744 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
745 return libbpf_err(-EINVAL);
746
747 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
748 if (!btf->swapped_endian) {
749 free(btf->raw_data_swapped);
750 btf->raw_data_swapped = NULL;
751 }
752 return 0;
753}
754
755static bool btf_type_is_void(const struct btf_type *t)
756{
757 return t == &btf_void || btf_is_fwd(t);
758}
759
760static bool btf_type_is_void_or_null(const struct btf_type *t)
761{
762 return !t || btf_type_is_void(t);
763}
764
765#define MAX_RESOLVE_DEPTH 32
766
767__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
768{
769 const struct btf_array *array;
770 const struct btf_type *t;
771 __u32 nelems = 1;
772 __s64 size = -1;
773 int i;
774
775 t = btf__type_by_id(btf, type_id);
776 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
777 switch (btf_kind(t)) {
778 case BTF_KIND_INT:
779 case BTF_KIND_STRUCT:
780 case BTF_KIND_UNION:
781 case BTF_KIND_ENUM:
782 case BTF_KIND_ENUM64:
783 case BTF_KIND_DATASEC:
784 case BTF_KIND_FLOAT:
785 size = t->size;
786 goto done;
787 case BTF_KIND_PTR:
788 size = btf_ptr_sz(btf);
789 goto done;
790 case BTF_KIND_TYPEDEF:
791 case BTF_KIND_VOLATILE:
792 case BTF_KIND_CONST:
793 case BTF_KIND_RESTRICT:
794 case BTF_KIND_VAR:
795 case BTF_KIND_DECL_TAG:
796 case BTF_KIND_TYPE_TAG:
797 type_id = t->type;
798 break;
799 case BTF_KIND_ARRAY:
800 array = btf_array(t);
801 if (nelems && array->nelems > UINT32_MAX / nelems)
802 return libbpf_err(-E2BIG);
803 nelems *= array->nelems;
804 type_id = array->type;
805 break;
806 default:
807 return libbpf_err(-EINVAL);
808 }
809
810 t = btf__type_by_id(btf, type_id);
811 }
812
813done:
814 if (size < 0)
815 return libbpf_err(-EINVAL);
816 if (nelems && size > UINT32_MAX / nelems)
817 return libbpf_err(-E2BIG);
818
819 return nelems * size;
820}
821
822int btf__align_of(const struct btf *btf, __u32 id)
823{
824 const struct btf_type *t = btf__type_by_id(btf, id);
825 __u16 kind = btf_kind(t);
826
827 switch (kind) {
828 case BTF_KIND_INT:
829 case BTF_KIND_ENUM:
830 case BTF_KIND_ENUM64:
831 case BTF_KIND_FLOAT:
832 return min(btf_ptr_sz(btf), (size_t)t->size);
833 case BTF_KIND_PTR:
834 return btf_ptr_sz(btf);
835 case BTF_KIND_TYPEDEF:
836 case BTF_KIND_VOLATILE:
837 case BTF_KIND_CONST:
838 case BTF_KIND_RESTRICT:
839 case BTF_KIND_TYPE_TAG:
840 return btf__align_of(btf, t->type);
841 case BTF_KIND_ARRAY:
842 return btf__align_of(btf, btf_array(t)->type);
843 case BTF_KIND_STRUCT:
844 case BTF_KIND_UNION: {
845 const struct btf_member *m = btf_members(t);
846 __u16 vlen = btf_vlen(t);
847 int i, max_align = 1, align;
848
849 for (i = 0; i < vlen; i++, m++) {
850 align = btf__align_of(btf, m->type);
851 if (align <= 0)
852 return libbpf_err(align);
853 max_align = max(max_align, align);
854
855 /* if field offset isn't aligned according to field
856 * type's alignment, then struct must be packed
857 */
858 if (btf_member_bitfield_size(t, i) == 0 &&
859 (m->offset % (8 * align)) != 0)
860 return 1;
861 }
862
863 /* if struct/union size isn't a multiple of its alignment,
864 * then struct must be packed
865 */
866 if ((t->size % max_align) != 0)
867 return 1;
868
869 return max_align;
870 }
871 default:
872 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
873 return errno = EINVAL, 0;
874 }
875}
876
877int btf__resolve_type(const struct btf *btf, __u32 type_id)
878{
879 const struct btf_type *t;
880 int depth = 0;
881
882 t = btf__type_by_id(btf, type_id);
883 while (depth < MAX_RESOLVE_DEPTH &&
884 !btf_type_is_void_or_null(t) &&
885 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
886 type_id = t->type;
887 t = btf__type_by_id(btf, type_id);
888 depth++;
889 }
890
891 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
892 return libbpf_err(-EINVAL);
893
894 return type_id;
895}
896
897__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
898{
899 __u32 i, nr_types = btf__type_cnt(btf);
900
901 if (!strcmp(type_name, "void"))
902 return 0;
903
904 for (i = 1; i < nr_types; i++) {
905 const struct btf_type *t = btf__type_by_id(btf, i);
906 const char *name = btf__name_by_offset(btf, t->name_off);
907
908 if (name && !strcmp(type_name, name))
909 return i;
910 }
911
912 return libbpf_err(-ENOENT);
913}
914
915static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
916 const char *type_name, __u32 kind)
917{
918 __u32 i, nr_types = btf__type_cnt(btf);
919
920 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
921 return 0;
922
923 for (i = start_id; i < nr_types; i++) {
924 const struct btf_type *t = btf__type_by_id(btf, i);
925 const char *name;
926
927 if (btf_kind(t) != kind)
928 continue;
929 name = btf__name_by_offset(btf, t->name_off);
930 if (name && !strcmp(type_name, name))
931 return i;
932 }
933
934 return libbpf_err(-ENOENT);
935}
936
937__s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
938 __u32 kind)
939{
940 return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
941}
942
943__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
944 __u32 kind)
945{
946 return btf_find_by_name_kind(btf, 1, type_name, kind);
947}
948
949static bool btf_is_modifiable(const struct btf *btf)
950{
951 return (void *)btf->hdr != btf->raw_data;
952}
953
954void btf__free(struct btf *btf)
955{
956 if (IS_ERR_OR_NULL(btf))
957 return;
958
959 if (btf->fd >= 0)
960 close(btf->fd);
961
962 if (btf_is_modifiable(btf)) {
963 /* if BTF was modified after loading, it will have a split
964 * in-memory representation for header, types, and strings
965 * sections, so we need to free all of them individually. It
966 * might still have a cached contiguous raw data present,
967 * which will be unconditionally freed below.
968 */
969 free(btf->hdr);
970 free(btf->types_data);
971 strset__free(btf->strs_set);
972 }
973 free(btf->raw_data);
974 free(btf->raw_data_swapped);
975 free(btf->type_offs);
976 if (btf->owns_base)
977 btf__free(btf->base_btf);
978 free(btf);
979}
980
981static struct btf *btf_new_empty(struct btf *base_btf)
982{
983 struct btf *btf;
984
985 btf = calloc(1, sizeof(*btf));
986 if (!btf)
987 return ERR_PTR(-ENOMEM);
988
989 btf->nr_types = 0;
990 btf->start_id = 1;
991 btf->start_str_off = 0;
992 btf->fd = -1;
993 btf->ptr_sz = sizeof(void *);
994 btf->swapped_endian = false;
995
996 if (base_btf) {
997 btf->base_btf = base_btf;
998 btf->start_id = btf__type_cnt(base_btf);
999 btf->start_str_off = base_btf->hdr->str_len;
1000 btf->swapped_endian = base_btf->swapped_endian;
1001 }
1002
1003 /* +1 for empty string at offset 0 */
1004 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
1005 btf->raw_data = calloc(1, btf->raw_size);
1006 if (!btf->raw_data) {
1007 free(btf);
1008 return ERR_PTR(-ENOMEM);
1009 }
1010
1011 btf->hdr = btf->raw_data;
1012 btf->hdr->hdr_len = sizeof(struct btf_header);
1013 btf->hdr->magic = BTF_MAGIC;
1014 btf->hdr->version = BTF_VERSION;
1015
1016 btf->types_data = btf->raw_data + btf->hdr->hdr_len;
1017 btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
1018 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
1019
1020 return btf;
1021}
1022
1023struct btf *btf__new_empty(void)
1024{
1025 return libbpf_ptr(btf_new_empty(NULL));
1026}
1027
1028struct btf *btf__new_empty_split(struct btf *base_btf)
1029{
1030 return libbpf_ptr(btf_new_empty(base_btf));
1031}
1032
1033static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
1034{
1035 struct btf *btf;
1036 int err;
1037
1038 btf = calloc(1, sizeof(struct btf));
1039 if (!btf)
1040 return ERR_PTR(-ENOMEM);
1041
1042 btf->nr_types = 0;
1043 btf->start_id = 1;
1044 btf->start_str_off = 0;
1045 btf->fd = -1;
1046
1047 if (base_btf) {
1048 btf->base_btf = base_btf;
1049 btf->start_id = btf__type_cnt(base_btf);
1050 btf->start_str_off = base_btf->hdr->str_len;
1051 }
1052
1053 btf->raw_data = malloc(size);
1054 if (!btf->raw_data) {
1055 err = -ENOMEM;
1056 goto done;
1057 }
1058 memcpy(btf->raw_data, data, size);
1059 btf->raw_size = size;
1060
1061 btf->hdr = btf->raw_data;
1062 err = btf_parse_hdr(btf);
1063 if (err)
1064 goto done;
1065
1066 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
1067 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
1068
1069 err = btf_parse_str_sec(btf);
1070 err = err ?: btf_parse_type_sec(btf);
1071 err = err ?: btf_sanity_check(btf);
1072 if (err)
1073 goto done;
1074
1075done:
1076 if (err) {
1077 btf__free(btf);
1078 return ERR_PTR(err);
1079 }
1080
1081 return btf;
1082}
1083
1084struct btf *btf__new(const void *data, __u32 size)
1085{
1086 return libbpf_ptr(btf_new(data, size, NULL));
1087}
1088
1089struct btf *btf__new_split(const void *data, __u32 size, struct btf *base_btf)
1090{
1091 return libbpf_ptr(btf_new(data, size, base_btf));
1092}
1093
1094struct btf_elf_secs {
1095 Elf_Data *btf_data;
1096 Elf_Data *btf_ext_data;
1097 Elf_Data *btf_base_data;
1098};
1099
1100static int btf_find_elf_sections(Elf *elf, const char *path, struct btf_elf_secs *secs)
1101{
1102 Elf_Scn *scn = NULL;
1103 Elf_Data *data;
1104 GElf_Ehdr ehdr;
1105 size_t shstrndx;
1106 int idx = 0;
1107
1108 if (!gelf_getehdr(elf, &ehdr)) {
1109 pr_warn("failed to get EHDR from %s\n", path);
1110 goto err;
1111 }
1112
1113 if (elf_getshdrstrndx(elf, &shstrndx)) {
1114 pr_warn("failed to get section names section index for %s\n",
1115 path);
1116 goto err;
1117 }
1118
1119 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
1120 pr_warn("failed to get e_shstrndx from %s\n", path);
1121 goto err;
1122 }
1123
1124 while ((scn = elf_nextscn(elf, scn)) != NULL) {
1125 Elf_Data **field;
1126 GElf_Shdr sh;
1127 char *name;
1128
1129 idx++;
1130 if (gelf_getshdr(scn, &sh) != &sh) {
1131 pr_warn("failed to get section(%d) header from %s\n",
1132 idx, path);
1133 goto err;
1134 }
1135 name = elf_strptr(elf, shstrndx, sh.sh_name);
1136 if (!name) {
1137 pr_warn("failed to get section(%d) name from %s\n",
1138 idx, path);
1139 goto err;
1140 }
1141
1142 if (strcmp(name, BTF_ELF_SEC) == 0)
1143 field = &secs->btf_data;
1144 else if (strcmp(name, BTF_EXT_ELF_SEC) == 0)
1145 field = &secs->btf_ext_data;
1146 else if (strcmp(name, BTF_BASE_ELF_SEC) == 0)
1147 field = &secs->btf_base_data;
1148 else
1149 continue;
1150
1151 data = elf_getdata(scn, 0);
1152 if (!data) {
1153 pr_warn("failed to get section(%d, %s) data from %s\n",
1154 idx, name, path);
1155 goto err;
1156 }
1157 *field = data;
1158 }
1159
1160 return 0;
1161
1162err:
1163 return -LIBBPF_ERRNO__FORMAT;
1164}
1165
1166static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
1167 struct btf_ext **btf_ext)
1168{
1169 struct btf_elf_secs secs = {};
1170 struct btf *dist_base_btf = NULL;
1171 struct btf *btf = NULL;
1172 int err = 0, fd = -1;
1173 Elf *elf = NULL;
1174
1175 if (elf_version(EV_CURRENT) == EV_NONE) {
1176 pr_warn("failed to init libelf for %s\n", path);
1177 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
1178 }
1179
1180 fd = open(path, O_RDONLY | O_CLOEXEC);
1181 if (fd < 0) {
1182 err = -errno;
1183 pr_warn("failed to open %s: %s\n", path, errstr(err));
1184 return ERR_PTR(err);
1185 }
1186
1187 elf = elf_begin(fd, ELF_C_READ, NULL);
1188 if (!elf) {
1189 err = -LIBBPF_ERRNO__FORMAT;
1190 pr_warn("failed to open %s as ELF file\n", path);
1191 goto done;
1192 }
1193
1194 err = btf_find_elf_sections(elf, path, &secs);
1195 if (err)
1196 goto done;
1197
1198 if (!secs.btf_data) {
1199 pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path);
1200 err = -ENODATA;
1201 goto done;
1202 }
1203
1204 if (secs.btf_base_data) {
1205 dist_base_btf = btf_new(secs.btf_base_data->d_buf, secs.btf_base_data->d_size,
1206 NULL);
1207 if (IS_ERR(dist_base_btf)) {
1208 err = PTR_ERR(dist_base_btf);
1209 dist_base_btf = NULL;
1210 goto done;
1211 }
1212 }
1213
1214 btf = btf_new(secs.btf_data->d_buf, secs.btf_data->d_size,
1215 dist_base_btf ?: base_btf);
1216 if (IS_ERR(btf)) {
1217 err = PTR_ERR(btf);
1218 goto done;
1219 }
1220 if (dist_base_btf && base_btf) {
1221 err = btf__relocate(btf, base_btf);
1222 if (err)
1223 goto done;
1224 btf__free(dist_base_btf);
1225 dist_base_btf = NULL;
1226 }
1227
1228 if (dist_base_btf)
1229 btf->owns_base = true;
1230
1231 switch (gelf_getclass(elf)) {
1232 case ELFCLASS32:
1233 btf__set_pointer_size(btf, 4);
1234 break;
1235 case ELFCLASS64:
1236 btf__set_pointer_size(btf, 8);
1237 break;
1238 default:
1239 pr_warn("failed to get ELF class (bitness) for %s\n", path);
1240 break;
1241 }
1242
1243 if (btf_ext && secs.btf_ext_data) {
1244 *btf_ext = btf_ext__new(secs.btf_ext_data->d_buf, secs.btf_ext_data->d_size);
1245 if (IS_ERR(*btf_ext)) {
1246 err = PTR_ERR(*btf_ext);
1247 goto done;
1248 }
1249 } else if (btf_ext) {
1250 *btf_ext = NULL;
1251 }
1252done:
1253 if (elf)
1254 elf_end(elf);
1255 close(fd);
1256
1257 if (!err)
1258 return btf;
1259
1260 if (btf_ext)
1261 btf_ext__free(*btf_ext);
1262 btf__free(dist_base_btf);
1263 btf__free(btf);
1264
1265 return ERR_PTR(err);
1266}
1267
1268struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1269{
1270 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1271}
1272
1273struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1274{
1275 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1276}
1277
1278static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1279{
1280 struct btf *btf = NULL;
1281 void *data = NULL;
1282 FILE *f = NULL;
1283 __u16 magic;
1284 int err = 0;
1285 long sz;
1286
1287 f = fopen(path, "rbe");
1288 if (!f) {
1289 err = -errno;
1290 goto err_out;
1291 }
1292
1293 /* check BTF magic */
1294 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1295 err = -EIO;
1296 goto err_out;
1297 }
1298 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1299 /* definitely not a raw BTF */
1300 err = -EPROTO;
1301 goto err_out;
1302 }
1303
1304 /* get file size */
1305 if (fseek(f, 0, SEEK_END)) {
1306 err = -errno;
1307 goto err_out;
1308 }
1309 sz = ftell(f);
1310 if (sz < 0) {
1311 err = -errno;
1312 goto err_out;
1313 }
1314 /* rewind to the start */
1315 if (fseek(f, 0, SEEK_SET)) {
1316 err = -errno;
1317 goto err_out;
1318 }
1319
1320 /* pre-alloc memory and read all of BTF data */
1321 data = malloc(sz);
1322 if (!data) {
1323 err = -ENOMEM;
1324 goto err_out;
1325 }
1326 if (fread(data, 1, sz, f) < sz) {
1327 err = -EIO;
1328 goto err_out;
1329 }
1330
1331 /* finally parse BTF data */
1332 btf = btf_new(data, sz, base_btf);
1333
1334err_out:
1335 free(data);
1336 if (f)
1337 fclose(f);
1338 return err ? ERR_PTR(err) : btf;
1339}
1340
1341struct btf *btf__parse_raw(const char *path)
1342{
1343 return libbpf_ptr(btf_parse_raw(path, NULL));
1344}
1345
1346struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1347{
1348 return libbpf_ptr(btf_parse_raw(path, base_btf));
1349}
1350
1351static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1352{
1353 struct btf *btf;
1354 int err;
1355
1356 if (btf_ext)
1357 *btf_ext = NULL;
1358
1359 btf = btf_parse_raw(path, base_btf);
1360 err = libbpf_get_error(btf);
1361 if (!err)
1362 return btf;
1363 if (err != -EPROTO)
1364 return ERR_PTR(err);
1365 return btf_parse_elf(path, base_btf, btf_ext);
1366}
1367
1368struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1369{
1370 return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1371}
1372
1373struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1374{
1375 return libbpf_ptr(btf_parse(path, base_btf, NULL));
1376}
1377
1378static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1379
1380int btf_load_into_kernel(struct btf *btf,
1381 char *log_buf, size_t log_sz, __u32 log_level,
1382 int token_fd)
1383{
1384 LIBBPF_OPTS(bpf_btf_load_opts, opts);
1385 __u32 buf_sz = 0, raw_size;
1386 char *buf = NULL, *tmp;
1387 void *raw_data;
1388 int err = 0;
1389
1390 if (btf->fd >= 0)
1391 return libbpf_err(-EEXIST);
1392 if (log_sz && !log_buf)
1393 return libbpf_err(-EINVAL);
1394
1395 /* cache native raw data representation */
1396 raw_data = btf_get_raw_data(btf, &raw_size, false);
1397 if (!raw_data) {
1398 err = -ENOMEM;
1399 goto done;
1400 }
1401 btf->raw_size = raw_size;
1402 btf->raw_data = raw_data;
1403
1404retry_load:
1405 /* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1406 * initially. Only if BTF loading fails, we bump log_level to 1 and
1407 * retry, using either auto-allocated or custom log_buf. This way
1408 * non-NULL custom log_buf provides a buffer just in case, but hopes
1409 * for successful load and no need for log_buf.
1410 */
1411 if (log_level) {
1412 /* if caller didn't provide custom log_buf, we'll keep
1413 * allocating our own progressively bigger buffers for BTF
1414 * verification log
1415 */
1416 if (!log_buf) {
1417 buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1418 tmp = realloc(buf, buf_sz);
1419 if (!tmp) {
1420 err = -ENOMEM;
1421 goto done;
1422 }
1423 buf = tmp;
1424 buf[0] = '\0';
1425 }
1426
1427 opts.log_buf = log_buf ? log_buf : buf;
1428 opts.log_size = log_buf ? log_sz : buf_sz;
1429 opts.log_level = log_level;
1430 }
1431
1432 opts.token_fd = token_fd;
1433 if (token_fd)
1434 opts.btf_flags |= BPF_F_TOKEN_FD;
1435
1436 btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1437 if (btf->fd < 0) {
1438 /* time to turn on verbose mode and try again */
1439 if (log_level == 0) {
1440 log_level = 1;
1441 goto retry_load;
1442 }
1443 /* only retry if caller didn't provide custom log_buf, but
1444 * make sure we can never overflow buf_sz
1445 */
1446 if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1447 goto retry_load;
1448
1449 err = -errno;
1450 pr_warn("BTF loading error: %s\n", errstr(err));
1451 /* don't print out contents of custom log_buf */
1452 if (!log_buf && buf[0])
1453 pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
1454 }
1455
1456done:
1457 free(buf);
1458 return libbpf_err(err);
1459}
1460
1461int btf__load_into_kernel(struct btf *btf)
1462{
1463 return btf_load_into_kernel(btf, NULL, 0, 0, 0);
1464}
1465
1466int btf__fd(const struct btf *btf)
1467{
1468 return btf->fd;
1469}
1470
1471void btf__set_fd(struct btf *btf, int fd)
1472{
1473 btf->fd = fd;
1474}
1475
1476static const void *btf_strs_data(const struct btf *btf)
1477{
1478 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1479}
1480
1481static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1482{
1483 struct btf_header *hdr = btf->hdr;
1484 struct btf_type *t;
1485 void *data, *p;
1486 __u32 data_sz;
1487 int i;
1488
1489 data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1490 if (data) {
1491 *size = btf->raw_size;
1492 return data;
1493 }
1494
1495 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1496 data = calloc(1, data_sz);
1497 if (!data)
1498 return NULL;
1499 p = data;
1500
1501 memcpy(p, hdr, hdr->hdr_len);
1502 if (swap_endian)
1503 btf_bswap_hdr(p);
1504 p += hdr->hdr_len;
1505
1506 memcpy(p, btf->types_data, hdr->type_len);
1507 if (swap_endian) {
1508 for (i = 0; i < btf->nr_types; i++) {
1509 t = p + btf->type_offs[i];
1510 /* btf_bswap_type_rest() relies on native t->info, so
1511 * we swap base type info after we swapped all the
1512 * additional information
1513 */
1514 if (btf_bswap_type_rest(t))
1515 goto err_out;
1516 btf_bswap_type_base(t);
1517 }
1518 }
1519 p += hdr->type_len;
1520
1521 memcpy(p, btf_strs_data(btf), hdr->str_len);
1522 p += hdr->str_len;
1523
1524 *size = data_sz;
1525 return data;
1526err_out:
1527 free(data);
1528 return NULL;
1529}
1530
1531const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1532{
1533 struct btf *btf = (struct btf *)btf_ro;
1534 __u32 data_sz;
1535 void *data;
1536
1537 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1538 if (!data)
1539 return errno = ENOMEM, NULL;
1540
1541 btf->raw_size = data_sz;
1542 if (btf->swapped_endian)
1543 btf->raw_data_swapped = data;
1544 else
1545 btf->raw_data = data;
1546 *size = data_sz;
1547 return data;
1548}
1549
1550__attribute__((alias("btf__raw_data")))
1551const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1552
1553const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1554{
1555 if (offset < btf->start_str_off)
1556 return btf__str_by_offset(btf->base_btf, offset);
1557 else if (offset - btf->start_str_off < btf->hdr->str_len)
1558 return btf_strs_data(btf) + (offset - btf->start_str_off);
1559 else
1560 return errno = EINVAL, NULL;
1561}
1562
1563const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1564{
1565 return btf__str_by_offset(btf, offset);
1566}
1567
1568struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1569{
1570 struct bpf_btf_info btf_info;
1571 __u32 len = sizeof(btf_info);
1572 __u32 last_size;
1573 struct btf *btf;
1574 void *ptr;
1575 int err;
1576
1577 /* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so
1578 * let's start with a sane default - 4KiB here - and resize it only if
1579 * bpf_btf_get_info_by_fd() needs a bigger buffer.
1580 */
1581 last_size = 4096;
1582 ptr = malloc(last_size);
1583 if (!ptr)
1584 return ERR_PTR(-ENOMEM);
1585
1586 memset(&btf_info, 0, sizeof(btf_info));
1587 btf_info.btf = ptr_to_u64(ptr);
1588 btf_info.btf_size = last_size;
1589 err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1590
1591 if (!err && btf_info.btf_size > last_size) {
1592 void *temp_ptr;
1593
1594 last_size = btf_info.btf_size;
1595 temp_ptr = realloc(ptr, last_size);
1596 if (!temp_ptr) {
1597 btf = ERR_PTR(-ENOMEM);
1598 goto exit_free;
1599 }
1600 ptr = temp_ptr;
1601
1602 len = sizeof(btf_info);
1603 memset(&btf_info, 0, sizeof(btf_info));
1604 btf_info.btf = ptr_to_u64(ptr);
1605 btf_info.btf_size = last_size;
1606
1607 err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1608 }
1609
1610 if (err || btf_info.btf_size > last_size) {
1611 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1612 goto exit_free;
1613 }
1614
1615 btf = btf_new(ptr, btf_info.btf_size, base_btf);
1616
1617exit_free:
1618 free(ptr);
1619 return btf;
1620}
1621
1622struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1623{
1624 struct btf *btf;
1625 int btf_fd;
1626
1627 btf_fd = bpf_btf_get_fd_by_id(id);
1628 if (btf_fd < 0)
1629 return libbpf_err_ptr(-errno);
1630
1631 btf = btf_get_from_fd(btf_fd, base_btf);
1632 close(btf_fd);
1633
1634 return libbpf_ptr(btf);
1635}
1636
1637struct btf *btf__load_from_kernel_by_id(__u32 id)
1638{
1639 return btf__load_from_kernel_by_id_split(id, NULL);
1640}
1641
1642static void btf_invalidate_raw_data(struct btf *btf)
1643{
1644 if (btf->raw_data) {
1645 free(btf->raw_data);
1646 btf->raw_data = NULL;
1647 }
1648 if (btf->raw_data_swapped) {
1649 free(btf->raw_data_swapped);
1650 btf->raw_data_swapped = NULL;
1651 }
1652}
1653
1654/* Ensure BTF is ready to be modified (by splitting into a three memory
1655 * regions for header, types, and strings). Also invalidate cached
1656 * raw_data, if any.
1657 */
1658static int btf_ensure_modifiable(struct btf *btf)
1659{
1660 void *hdr, *types;
1661 struct strset *set = NULL;
1662 int err = -ENOMEM;
1663
1664 if (btf_is_modifiable(btf)) {
1665 /* any BTF modification invalidates raw_data */
1666 btf_invalidate_raw_data(btf);
1667 return 0;
1668 }
1669
1670 /* split raw data into three memory regions */
1671 hdr = malloc(btf->hdr->hdr_len);
1672 types = malloc(btf->hdr->type_len);
1673 if (!hdr || !types)
1674 goto err_out;
1675
1676 memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1677 memcpy(types, btf->types_data, btf->hdr->type_len);
1678
1679 /* build lookup index for all strings */
1680 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1681 if (IS_ERR(set)) {
1682 err = PTR_ERR(set);
1683 goto err_out;
1684 }
1685
1686 /* only when everything was successful, update internal state */
1687 btf->hdr = hdr;
1688 btf->types_data = types;
1689 btf->types_data_cap = btf->hdr->type_len;
1690 btf->strs_data = NULL;
1691 btf->strs_set = set;
1692 /* if BTF was created from scratch, all strings are guaranteed to be
1693 * unique and deduplicated
1694 */
1695 if (btf->hdr->str_len == 0)
1696 btf->strs_deduped = true;
1697 if (!btf->base_btf && btf->hdr->str_len == 1)
1698 btf->strs_deduped = true;
1699
1700 /* invalidate raw_data representation */
1701 btf_invalidate_raw_data(btf);
1702
1703 return 0;
1704
1705err_out:
1706 strset__free(set);
1707 free(hdr);
1708 free(types);
1709 return err;
1710}
1711
1712/* Find an offset in BTF string section that corresponds to a given string *s*.
1713 * Returns:
1714 * - >0 offset into string section, if string is found;
1715 * - -ENOENT, if string is not in the string section;
1716 * - <0, on any other error.
1717 */
1718int btf__find_str(struct btf *btf, const char *s)
1719{
1720 int off;
1721
1722 if (btf->base_btf) {
1723 off = btf__find_str(btf->base_btf, s);
1724 if (off != -ENOENT)
1725 return off;
1726 }
1727
1728 /* BTF needs to be in a modifiable state to build string lookup index */
1729 if (btf_ensure_modifiable(btf))
1730 return libbpf_err(-ENOMEM);
1731
1732 off = strset__find_str(btf->strs_set, s);
1733 if (off < 0)
1734 return libbpf_err(off);
1735
1736 return btf->start_str_off + off;
1737}
1738
1739/* Add a string s to the BTF string section.
1740 * Returns:
1741 * - > 0 offset into string section, on success;
1742 * - < 0, on error.
1743 */
1744int btf__add_str(struct btf *btf, const char *s)
1745{
1746 int off;
1747
1748 if (btf->base_btf) {
1749 off = btf__find_str(btf->base_btf, s);
1750 if (off != -ENOENT)
1751 return off;
1752 }
1753
1754 if (btf_ensure_modifiable(btf))
1755 return libbpf_err(-ENOMEM);
1756
1757 off = strset__add_str(btf->strs_set, s);
1758 if (off < 0)
1759 return libbpf_err(off);
1760
1761 btf->hdr->str_len = strset__data_size(btf->strs_set);
1762
1763 return btf->start_str_off + off;
1764}
1765
1766static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1767{
1768 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1769 btf->hdr->type_len, UINT_MAX, add_sz);
1770}
1771
1772static void btf_type_inc_vlen(struct btf_type *t)
1773{
1774 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1775}
1776
1777static int btf_commit_type(struct btf *btf, int data_sz)
1778{
1779 int err;
1780
1781 err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1782 if (err)
1783 return libbpf_err(err);
1784
1785 btf->hdr->type_len += data_sz;
1786 btf->hdr->str_off += data_sz;
1787 btf->nr_types++;
1788 return btf->start_id + btf->nr_types - 1;
1789}
1790
1791struct btf_pipe {
1792 const struct btf *src;
1793 struct btf *dst;
1794 struct hashmap *str_off_map; /* map string offsets from src to dst */
1795};
1796
1797static int btf_rewrite_str(struct btf_pipe *p, __u32 *str_off)
1798{
1799 long mapped_off;
1800 int off, err;
1801
1802 if (!*str_off) /* nothing to do for empty strings */
1803 return 0;
1804
1805 if (p->str_off_map &&
1806 hashmap__find(p->str_off_map, *str_off, &mapped_off)) {
1807 *str_off = mapped_off;
1808 return 0;
1809 }
1810
1811 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1812 if (off < 0)
1813 return off;
1814
1815 /* Remember string mapping from src to dst. It avoids
1816 * performing expensive string comparisons.
1817 */
1818 if (p->str_off_map) {
1819 err = hashmap__append(p->str_off_map, *str_off, off);
1820 if (err)
1821 return err;
1822 }
1823
1824 *str_off = off;
1825 return 0;
1826}
1827
1828static int btf_add_type(struct btf_pipe *p, const struct btf_type *src_type)
1829{
1830 struct btf_field_iter it;
1831 struct btf_type *t;
1832 __u32 *str_off;
1833 int sz, err;
1834
1835 sz = btf_type_size(src_type);
1836 if (sz < 0)
1837 return libbpf_err(sz);
1838
1839 /* deconstruct BTF, if necessary, and invalidate raw_data */
1840 if (btf_ensure_modifiable(p->dst))
1841 return libbpf_err(-ENOMEM);
1842
1843 t = btf_add_type_mem(p->dst, sz);
1844 if (!t)
1845 return libbpf_err(-ENOMEM);
1846
1847 memcpy(t, src_type, sz);
1848
1849 err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS);
1850 if (err)
1851 return libbpf_err(err);
1852
1853 while ((str_off = btf_field_iter_next(&it))) {
1854 err = btf_rewrite_str(p, str_off);
1855 if (err)
1856 return libbpf_err(err);
1857 }
1858
1859 return btf_commit_type(p->dst, sz);
1860}
1861
1862int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1863{
1864 struct btf_pipe p = { .src = src_btf, .dst = btf };
1865
1866 return btf_add_type(&p, src_type);
1867}
1868
1869static size_t btf_dedup_identity_hash_fn(long key, void *ctx);
1870static bool btf_dedup_equal_fn(long k1, long k2, void *ctx);
1871
1872int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1873{
1874 struct btf_pipe p = { .src = src_btf, .dst = btf };
1875 int data_sz, sz, cnt, i, err, old_strs_len;
1876 __u32 *off;
1877 void *t;
1878
1879 /* appending split BTF isn't supported yet */
1880 if (src_btf->base_btf)
1881 return libbpf_err(-ENOTSUP);
1882
1883 /* deconstruct BTF, if necessary, and invalidate raw_data */
1884 if (btf_ensure_modifiable(btf))
1885 return libbpf_err(-ENOMEM);
1886
1887 /* remember original strings section size if we have to roll back
1888 * partial strings section changes
1889 */
1890 old_strs_len = btf->hdr->str_len;
1891
1892 data_sz = src_btf->hdr->type_len;
1893 cnt = btf__type_cnt(src_btf) - 1;
1894
1895 /* pre-allocate enough memory for new types */
1896 t = btf_add_type_mem(btf, data_sz);
1897 if (!t)
1898 return libbpf_err(-ENOMEM);
1899
1900 /* pre-allocate enough memory for type offset index for new types */
1901 off = btf_add_type_offs_mem(btf, cnt);
1902 if (!off)
1903 return libbpf_err(-ENOMEM);
1904
1905 /* Map the string offsets from src_btf to the offsets from btf to improve performance */
1906 p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1907 if (IS_ERR(p.str_off_map))
1908 return libbpf_err(-ENOMEM);
1909
1910 /* bulk copy types data for all types from src_btf */
1911 memcpy(t, src_btf->types_data, data_sz);
1912
1913 for (i = 0; i < cnt; i++) {
1914 struct btf_field_iter it;
1915 __u32 *type_id, *str_off;
1916
1917 sz = btf_type_size(t);
1918 if (sz < 0) {
1919 /* unlikely, has to be corrupted src_btf */
1920 err = sz;
1921 goto err_out;
1922 }
1923
1924 /* fill out type ID to type offset mapping for lookups by type ID */
1925 *off = t - btf->types_data;
1926
1927 /* add, dedup, and remap strings referenced by this BTF type */
1928 err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS);
1929 if (err)
1930 goto err_out;
1931 while ((str_off = btf_field_iter_next(&it))) {
1932 err = btf_rewrite_str(&p, str_off);
1933 if (err)
1934 goto err_out;
1935 }
1936
1937 /* remap all type IDs referenced from this BTF type */
1938 err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS);
1939 if (err)
1940 goto err_out;
1941
1942 while ((type_id = btf_field_iter_next(&it))) {
1943 if (!*type_id) /* nothing to do for VOID references */
1944 continue;
1945
1946 /* we haven't updated btf's type count yet, so
1947 * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1948 * add to all newly added BTF types
1949 */
1950 *type_id += btf->start_id + btf->nr_types - 1;
1951 }
1952
1953 /* go to next type data and type offset index entry */
1954 t += sz;
1955 off++;
1956 }
1957
1958 /* Up until now any of the copied type data was effectively invisible,
1959 * so if we exited early before this point due to error, BTF would be
1960 * effectively unmodified. There would be extra internal memory
1961 * pre-allocated, but it would not be available for querying. But now
1962 * that we've copied and rewritten all the data successfully, we can
1963 * update type count and various internal offsets and sizes to
1964 * "commit" the changes and made them visible to the outside world.
1965 */
1966 btf->hdr->type_len += data_sz;
1967 btf->hdr->str_off += data_sz;
1968 btf->nr_types += cnt;
1969
1970 hashmap__free(p.str_off_map);
1971
1972 /* return type ID of the first added BTF type */
1973 return btf->start_id + btf->nr_types - cnt;
1974err_out:
1975 /* zero out preallocated memory as if it was just allocated with
1976 * libbpf_add_mem()
1977 */
1978 memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1979 memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1980
1981 /* and now restore original strings section size; types data size
1982 * wasn't modified, so doesn't need restoring, see big comment above
1983 */
1984 btf->hdr->str_len = old_strs_len;
1985
1986 hashmap__free(p.str_off_map);
1987
1988 return libbpf_err(err);
1989}
1990
1991/*
1992 * Append new BTF_KIND_INT type with:
1993 * - *name* - non-empty, non-NULL type name;
1994 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1995 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1996 * Returns:
1997 * - >0, type ID of newly added BTF type;
1998 * - <0, on error.
1999 */
2000int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
2001{
2002 struct btf_type *t;
2003 int sz, name_off;
2004
2005 /* non-empty name */
2006 if (!name || !name[0])
2007 return libbpf_err(-EINVAL);
2008 /* byte_sz must be power of 2 */
2009 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
2010 return libbpf_err(-EINVAL);
2011 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
2012 return libbpf_err(-EINVAL);
2013
2014 /* deconstruct BTF, if necessary, and invalidate raw_data */
2015 if (btf_ensure_modifiable(btf))
2016 return libbpf_err(-ENOMEM);
2017
2018 sz = sizeof(struct btf_type) + sizeof(int);
2019 t = btf_add_type_mem(btf, sz);
2020 if (!t)
2021 return libbpf_err(-ENOMEM);
2022
2023 /* if something goes wrong later, we might end up with an extra string,
2024 * but that shouldn't be a problem, because BTF can't be constructed
2025 * completely anyway and will most probably be just discarded
2026 */
2027 name_off = btf__add_str(btf, name);
2028 if (name_off < 0)
2029 return name_off;
2030
2031 t->name_off = name_off;
2032 t->info = btf_type_info(BTF_KIND_INT, 0, 0);
2033 t->size = byte_sz;
2034 /* set INT info, we don't allow setting legacy bit offset/size */
2035 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
2036
2037 return btf_commit_type(btf, sz);
2038}
2039
2040/*
2041 * Append new BTF_KIND_FLOAT type with:
2042 * - *name* - non-empty, non-NULL type name;
2043 * - *sz* - size of the type, in bytes;
2044 * Returns:
2045 * - >0, type ID of newly added BTF type;
2046 * - <0, on error.
2047 */
2048int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
2049{
2050 struct btf_type *t;
2051 int sz, name_off;
2052
2053 /* non-empty name */
2054 if (!name || !name[0])
2055 return libbpf_err(-EINVAL);
2056
2057 /* byte_sz must be one of the explicitly allowed values */
2058 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
2059 byte_sz != 16)
2060 return libbpf_err(-EINVAL);
2061
2062 if (btf_ensure_modifiable(btf))
2063 return libbpf_err(-ENOMEM);
2064
2065 sz = sizeof(struct btf_type);
2066 t = btf_add_type_mem(btf, sz);
2067 if (!t)
2068 return libbpf_err(-ENOMEM);
2069
2070 name_off = btf__add_str(btf, name);
2071 if (name_off < 0)
2072 return name_off;
2073
2074 t->name_off = name_off;
2075 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
2076 t->size = byte_sz;
2077
2078 return btf_commit_type(btf, sz);
2079}
2080
2081/* it's completely legal to append BTF types with type IDs pointing forward to
2082 * types that haven't been appended yet, so we only make sure that id looks
2083 * sane, we can't guarantee that ID will always be valid
2084 */
2085static int validate_type_id(int id)
2086{
2087 if (id < 0 || id > BTF_MAX_NR_TYPES)
2088 return -EINVAL;
2089 return 0;
2090}
2091
2092/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
2093static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
2094{
2095 struct btf_type *t;
2096 int sz, name_off = 0;
2097
2098 if (validate_type_id(ref_type_id))
2099 return libbpf_err(-EINVAL);
2100
2101 if (btf_ensure_modifiable(btf))
2102 return libbpf_err(-ENOMEM);
2103
2104 sz = sizeof(struct btf_type);
2105 t = btf_add_type_mem(btf, sz);
2106 if (!t)
2107 return libbpf_err(-ENOMEM);
2108
2109 if (name && name[0]) {
2110 name_off = btf__add_str(btf, name);
2111 if (name_off < 0)
2112 return name_off;
2113 }
2114
2115 t->name_off = name_off;
2116 t->info = btf_type_info(kind, 0, 0);
2117 t->type = ref_type_id;
2118
2119 return btf_commit_type(btf, sz);
2120}
2121
2122/*
2123 * Append new BTF_KIND_PTR type with:
2124 * - *ref_type_id* - referenced type ID, it might not exist yet;
2125 * Returns:
2126 * - >0, type ID of newly added BTF type;
2127 * - <0, on error.
2128 */
2129int btf__add_ptr(struct btf *btf, int ref_type_id)
2130{
2131 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
2132}
2133
2134/*
2135 * Append new BTF_KIND_ARRAY type with:
2136 * - *index_type_id* - type ID of the type describing array index;
2137 * - *elem_type_id* - type ID of the type describing array element;
2138 * - *nr_elems* - the size of the array;
2139 * Returns:
2140 * - >0, type ID of newly added BTF type;
2141 * - <0, on error.
2142 */
2143int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
2144{
2145 struct btf_type *t;
2146 struct btf_array *a;
2147 int sz;
2148
2149 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
2150 return libbpf_err(-EINVAL);
2151
2152 if (btf_ensure_modifiable(btf))
2153 return libbpf_err(-ENOMEM);
2154
2155 sz = sizeof(struct btf_type) + sizeof(struct btf_array);
2156 t = btf_add_type_mem(btf, sz);
2157 if (!t)
2158 return libbpf_err(-ENOMEM);
2159
2160 t->name_off = 0;
2161 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
2162 t->size = 0;
2163
2164 a = btf_array(t);
2165 a->type = elem_type_id;
2166 a->index_type = index_type_id;
2167 a->nelems = nr_elems;
2168
2169 return btf_commit_type(btf, sz);
2170}
2171
2172/* generic STRUCT/UNION append function */
2173static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
2174{
2175 struct btf_type *t;
2176 int sz, name_off = 0;
2177
2178 if (btf_ensure_modifiable(btf))
2179 return libbpf_err(-ENOMEM);
2180
2181 sz = sizeof(struct btf_type);
2182 t = btf_add_type_mem(btf, sz);
2183 if (!t)
2184 return libbpf_err(-ENOMEM);
2185
2186 if (name && name[0]) {
2187 name_off = btf__add_str(btf, name);
2188 if (name_off < 0)
2189 return name_off;
2190 }
2191
2192 /* start out with vlen=0 and no kflag; this will be adjusted when
2193 * adding each member
2194 */
2195 t->name_off = name_off;
2196 t->info = btf_type_info(kind, 0, 0);
2197 t->size = bytes_sz;
2198
2199 return btf_commit_type(btf, sz);
2200}
2201
2202/*
2203 * Append new BTF_KIND_STRUCT type with:
2204 * - *name* - name of the struct, can be NULL or empty for anonymous structs;
2205 * - *byte_sz* - size of the struct, in bytes;
2206 *
2207 * Struct initially has no fields in it. Fields can be added by
2208 * btf__add_field() right after btf__add_struct() succeeds.
2209 *
2210 * Returns:
2211 * - >0, type ID of newly added BTF type;
2212 * - <0, on error.
2213 */
2214int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
2215{
2216 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
2217}
2218
2219/*
2220 * Append new BTF_KIND_UNION type with:
2221 * - *name* - name of the union, can be NULL or empty for anonymous union;
2222 * - *byte_sz* - size of the union, in bytes;
2223 *
2224 * Union initially has no fields in it. Fields can be added by
2225 * btf__add_field() right after btf__add_union() succeeds. All fields
2226 * should have *bit_offset* of 0.
2227 *
2228 * Returns:
2229 * - >0, type ID of newly added BTF type;
2230 * - <0, on error.
2231 */
2232int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
2233{
2234 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
2235}
2236
2237static struct btf_type *btf_last_type(struct btf *btf)
2238{
2239 return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
2240}
2241
2242/*
2243 * Append new field for the current STRUCT/UNION type with:
2244 * - *name* - name of the field, can be NULL or empty for anonymous field;
2245 * - *type_id* - type ID for the type describing field type;
2246 * - *bit_offset* - bit offset of the start of the field within struct/union;
2247 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
2248 * Returns:
2249 * - 0, on success;
2250 * - <0, on error.
2251 */
2252int btf__add_field(struct btf *btf, const char *name, int type_id,
2253 __u32 bit_offset, __u32 bit_size)
2254{
2255 struct btf_type *t;
2256 struct btf_member *m;
2257 bool is_bitfield;
2258 int sz, name_off = 0;
2259
2260 /* last type should be union/struct */
2261 if (btf->nr_types == 0)
2262 return libbpf_err(-EINVAL);
2263 t = btf_last_type(btf);
2264 if (!btf_is_composite(t))
2265 return libbpf_err(-EINVAL);
2266
2267 if (validate_type_id(type_id))
2268 return libbpf_err(-EINVAL);
2269 /* best-effort bit field offset/size enforcement */
2270 is_bitfield = bit_size || (bit_offset % 8 != 0);
2271 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2272 return libbpf_err(-EINVAL);
2273
2274 /* only offset 0 is allowed for unions */
2275 if (btf_is_union(t) && bit_offset)
2276 return libbpf_err(-EINVAL);
2277
2278 /* decompose and invalidate raw data */
2279 if (btf_ensure_modifiable(btf))
2280 return libbpf_err(-ENOMEM);
2281
2282 sz = sizeof(struct btf_member);
2283 m = btf_add_type_mem(btf, sz);
2284 if (!m)
2285 return libbpf_err(-ENOMEM);
2286
2287 if (name && name[0]) {
2288 name_off = btf__add_str(btf, name);
2289 if (name_off < 0)
2290 return name_off;
2291 }
2292
2293 m->name_off = name_off;
2294 m->type = type_id;
2295 m->offset = bit_offset | (bit_size << 24);
2296
2297 /* btf_add_type_mem can invalidate t pointer */
2298 t = btf_last_type(btf);
2299 /* update parent type's vlen and kflag */
2300 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2301
2302 btf->hdr->type_len += sz;
2303 btf->hdr->str_off += sz;
2304 return 0;
2305}
2306
2307static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz,
2308 bool is_signed, __u8 kind)
2309{
2310 struct btf_type *t;
2311 int sz, name_off = 0;
2312
2313 /* byte_sz must be power of 2 */
2314 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2315 return libbpf_err(-EINVAL);
2316
2317 if (btf_ensure_modifiable(btf))
2318 return libbpf_err(-ENOMEM);
2319
2320 sz = sizeof(struct btf_type);
2321 t = btf_add_type_mem(btf, sz);
2322 if (!t)
2323 return libbpf_err(-ENOMEM);
2324
2325 if (name && name[0]) {
2326 name_off = btf__add_str(btf, name);
2327 if (name_off < 0)
2328 return name_off;
2329 }
2330
2331 /* start out with vlen=0; it will be adjusted when adding enum values */
2332 t->name_off = name_off;
2333 t->info = btf_type_info(kind, 0, is_signed);
2334 t->size = byte_sz;
2335
2336 return btf_commit_type(btf, sz);
2337}
2338
2339/*
2340 * Append new BTF_KIND_ENUM type with:
2341 * - *name* - name of the enum, can be NULL or empty for anonymous enums;
2342 * - *byte_sz* - size of the enum, in bytes.
2343 *
2344 * Enum initially has no enum values in it (and corresponds to enum forward
2345 * declaration). Enumerator values can be added by btf__add_enum_value()
2346 * immediately after btf__add_enum() succeeds.
2347 *
2348 * Returns:
2349 * - >0, type ID of newly added BTF type;
2350 * - <0, on error.
2351 */
2352int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2353{
2354 /*
2355 * set the signedness to be unsigned, it will change to signed
2356 * if any later enumerator is negative.
2357 */
2358 return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM);
2359}
2360
2361/*
2362 * Append new enum value for the current ENUM type with:
2363 * - *name* - name of the enumerator value, can't be NULL or empty;
2364 * - *value* - integer value corresponding to enum value *name*;
2365 * Returns:
2366 * - 0, on success;
2367 * - <0, on error.
2368 */
2369int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2370{
2371 struct btf_type *t;
2372 struct btf_enum *v;
2373 int sz, name_off;
2374
2375 /* last type should be BTF_KIND_ENUM */
2376 if (btf->nr_types == 0)
2377 return libbpf_err(-EINVAL);
2378 t = btf_last_type(btf);
2379 if (!btf_is_enum(t))
2380 return libbpf_err(-EINVAL);
2381
2382 /* non-empty name */
2383 if (!name || !name[0])
2384 return libbpf_err(-EINVAL);
2385 if (value < INT_MIN || value > UINT_MAX)
2386 return libbpf_err(-E2BIG);
2387
2388 /* decompose and invalidate raw data */
2389 if (btf_ensure_modifiable(btf))
2390 return libbpf_err(-ENOMEM);
2391
2392 sz = sizeof(struct btf_enum);
2393 v = btf_add_type_mem(btf, sz);
2394 if (!v)
2395 return libbpf_err(-ENOMEM);
2396
2397 name_off = btf__add_str(btf, name);
2398 if (name_off < 0)
2399 return name_off;
2400
2401 v->name_off = name_off;
2402 v->val = value;
2403
2404 /* update parent type's vlen */
2405 t = btf_last_type(btf);
2406 btf_type_inc_vlen(t);
2407
2408 /* if negative value, set signedness to signed */
2409 if (value < 0)
2410 t->info = btf_type_info(btf_kind(t), btf_vlen(t), true);
2411
2412 btf->hdr->type_len += sz;
2413 btf->hdr->str_off += sz;
2414 return 0;
2415}
2416
2417/*
2418 * Append new BTF_KIND_ENUM64 type with:
2419 * - *name* - name of the enum, can be NULL or empty for anonymous enums;
2420 * - *byte_sz* - size of the enum, in bytes.
2421 * - *is_signed* - whether the enum values are signed or not;
2422 *
2423 * Enum initially has no enum values in it (and corresponds to enum forward
2424 * declaration). Enumerator values can be added by btf__add_enum64_value()
2425 * immediately after btf__add_enum64() succeeds.
2426 *
2427 * Returns:
2428 * - >0, type ID of newly added BTF type;
2429 * - <0, on error.
2430 */
2431int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz,
2432 bool is_signed)
2433{
2434 return btf_add_enum_common(btf, name, byte_sz, is_signed,
2435 BTF_KIND_ENUM64);
2436}
2437
2438/*
2439 * Append new enum value for the current ENUM64 type with:
2440 * - *name* - name of the enumerator value, can't be NULL or empty;
2441 * - *value* - integer value corresponding to enum value *name*;
2442 * Returns:
2443 * - 0, on success;
2444 * - <0, on error.
2445 */
2446int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value)
2447{
2448 struct btf_enum64 *v;
2449 struct btf_type *t;
2450 int sz, name_off;
2451
2452 /* last type should be BTF_KIND_ENUM64 */
2453 if (btf->nr_types == 0)
2454 return libbpf_err(-EINVAL);
2455 t = btf_last_type(btf);
2456 if (!btf_is_enum64(t))
2457 return libbpf_err(-EINVAL);
2458
2459 /* non-empty name */
2460 if (!name || !name[0])
2461 return libbpf_err(-EINVAL);
2462
2463 /* decompose and invalidate raw data */
2464 if (btf_ensure_modifiable(btf))
2465 return libbpf_err(-ENOMEM);
2466
2467 sz = sizeof(struct btf_enum64);
2468 v = btf_add_type_mem(btf, sz);
2469 if (!v)
2470 return libbpf_err(-ENOMEM);
2471
2472 name_off = btf__add_str(btf, name);
2473 if (name_off < 0)
2474 return name_off;
2475
2476 v->name_off = name_off;
2477 v->val_lo32 = (__u32)value;
2478 v->val_hi32 = value >> 32;
2479
2480 /* update parent type's vlen */
2481 t = btf_last_type(btf);
2482 btf_type_inc_vlen(t);
2483
2484 btf->hdr->type_len += sz;
2485 btf->hdr->str_off += sz;
2486 return 0;
2487}
2488
2489/*
2490 * Append new BTF_KIND_FWD type with:
2491 * - *name*, non-empty/non-NULL name;
2492 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2493 * BTF_FWD_UNION, or BTF_FWD_ENUM;
2494 * Returns:
2495 * - >0, type ID of newly added BTF type;
2496 * - <0, on error.
2497 */
2498int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2499{
2500 if (!name || !name[0])
2501 return libbpf_err(-EINVAL);
2502
2503 switch (fwd_kind) {
2504 case BTF_FWD_STRUCT:
2505 case BTF_FWD_UNION: {
2506 struct btf_type *t;
2507 int id;
2508
2509 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2510 if (id <= 0)
2511 return id;
2512 t = btf_type_by_id(btf, id);
2513 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2514 return id;
2515 }
2516 case BTF_FWD_ENUM:
2517 /* enum forward in BTF currently is just an enum with no enum
2518 * values; we also assume a standard 4-byte size for it
2519 */
2520 return btf__add_enum(btf, name, sizeof(int));
2521 default:
2522 return libbpf_err(-EINVAL);
2523 }
2524}
2525
2526/*
2527 * Append new BTF_KING_TYPEDEF type with:
2528 * - *name*, non-empty/non-NULL name;
2529 * - *ref_type_id* - referenced type ID, it might not exist yet;
2530 * Returns:
2531 * - >0, type ID of newly added BTF type;
2532 * - <0, on error.
2533 */
2534int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2535{
2536 if (!name || !name[0])
2537 return libbpf_err(-EINVAL);
2538
2539 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2540}
2541
2542/*
2543 * Append new BTF_KIND_VOLATILE type with:
2544 * - *ref_type_id* - referenced type ID, it might not exist yet;
2545 * Returns:
2546 * - >0, type ID of newly added BTF type;
2547 * - <0, on error.
2548 */
2549int btf__add_volatile(struct btf *btf, int ref_type_id)
2550{
2551 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2552}
2553
2554/*
2555 * Append new BTF_KIND_CONST type with:
2556 * - *ref_type_id* - referenced type ID, it might not exist yet;
2557 * Returns:
2558 * - >0, type ID of newly added BTF type;
2559 * - <0, on error.
2560 */
2561int btf__add_const(struct btf *btf, int ref_type_id)
2562{
2563 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2564}
2565
2566/*
2567 * Append new BTF_KIND_RESTRICT type with:
2568 * - *ref_type_id* - referenced type ID, it might not exist yet;
2569 * Returns:
2570 * - >0, type ID of newly added BTF type;
2571 * - <0, on error.
2572 */
2573int btf__add_restrict(struct btf *btf, int ref_type_id)
2574{
2575 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2576}
2577
2578/*
2579 * Append new BTF_KIND_TYPE_TAG type with:
2580 * - *value*, non-empty/non-NULL tag value;
2581 * - *ref_type_id* - referenced type ID, it might not exist yet;
2582 * Returns:
2583 * - >0, type ID of newly added BTF type;
2584 * - <0, on error.
2585 */
2586int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2587{
2588 if (!value || !value[0])
2589 return libbpf_err(-EINVAL);
2590
2591 return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2592}
2593
2594/*
2595 * Append new BTF_KIND_FUNC type with:
2596 * - *name*, non-empty/non-NULL name;
2597 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2598 * Returns:
2599 * - >0, type ID of newly added BTF type;
2600 * - <0, on error.
2601 */
2602int btf__add_func(struct btf *btf, const char *name,
2603 enum btf_func_linkage linkage, int proto_type_id)
2604{
2605 int id;
2606
2607 if (!name || !name[0])
2608 return libbpf_err(-EINVAL);
2609 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2610 linkage != BTF_FUNC_EXTERN)
2611 return libbpf_err(-EINVAL);
2612
2613 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2614 if (id > 0) {
2615 struct btf_type *t = btf_type_by_id(btf, id);
2616
2617 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2618 }
2619 return libbpf_err(id);
2620}
2621
2622/*
2623 * Append new BTF_KIND_FUNC_PROTO with:
2624 * - *ret_type_id* - type ID for return result of a function.
2625 *
2626 * Function prototype initially has no arguments, but they can be added by
2627 * btf__add_func_param() one by one, immediately after
2628 * btf__add_func_proto() succeeded.
2629 *
2630 * Returns:
2631 * - >0, type ID of newly added BTF type;
2632 * - <0, on error.
2633 */
2634int btf__add_func_proto(struct btf *btf, int ret_type_id)
2635{
2636 struct btf_type *t;
2637 int sz;
2638
2639 if (validate_type_id(ret_type_id))
2640 return libbpf_err(-EINVAL);
2641
2642 if (btf_ensure_modifiable(btf))
2643 return libbpf_err(-ENOMEM);
2644
2645 sz = sizeof(struct btf_type);
2646 t = btf_add_type_mem(btf, sz);
2647 if (!t)
2648 return libbpf_err(-ENOMEM);
2649
2650 /* start out with vlen=0; this will be adjusted when adding enum
2651 * values, if necessary
2652 */
2653 t->name_off = 0;
2654 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2655 t->type = ret_type_id;
2656
2657 return btf_commit_type(btf, sz);
2658}
2659
2660/*
2661 * Append new function parameter for current FUNC_PROTO type with:
2662 * - *name* - parameter name, can be NULL or empty;
2663 * - *type_id* - type ID describing the type of the parameter.
2664 * Returns:
2665 * - 0, on success;
2666 * - <0, on error.
2667 */
2668int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2669{
2670 struct btf_type *t;
2671 struct btf_param *p;
2672 int sz, name_off = 0;
2673
2674 if (validate_type_id(type_id))
2675 return libbpf_err(-EINVAL);
2676
2677 /* last type should be BTF_KIND_FUNC_PROTO */
2678 if (btf->nr_types == 0)
2679 return libbpf_err(-EINVAL);
2680 t = btf_last_type(btf);
2681 if (!btf_is_func_proto(t))
2682 return libbpf_err(-EINVAL);
2683
2684 /* decompose and invalidate raw data */
2685 if (btf_ensure_modifiable(btf))
2686 return libbpf_err(-ENOMEM);
2687
2688 sz = sizeof(struct btf_param);
2689 p = btf_add_type_mem(btf, sz);
2690 if (!p)
2691 return libbpf_err(-ENOMEM);
2692
2693 if (name && name[0]) {
2694 name_off = btf__add_str(btf, name);
2695 if (name_off < 0)
2696 return name_off;
2697 }
2698
2699 p->name_off = name_off;
2700 p->type = type_id;
2701
2702 /* update parent type's vlen */
2703 t = btf_last_type(btf);
2704 btf_type_inc_vlen(t);
2705
2706 btf->hdr->type_len += sz;
2707 btf->hdr->str_off += sz;
2708 return 0;
2709}
2710
2711/*
2712 * Append new BTF_KIND_VAR type with:
2713 * - *name* - non-empty/non-NULL name;
2714 * - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2715 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2716 * - *type_id* - type ID of the type describing the type of the variable.
2717 * Returns:
2718 * - >0, type ID of newly added BTF type;
2719 * - <0, on error.
2720 */
2721int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2722{
2723 struct btf_type *t;
2724 struct btf_var *v;
2725 int sz, name_off;
2726
2727 /* non-empty name */
2728 if (!name || !name[0])
2729 return libbpf_err(-EINVAL);
2730 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2731 linkage != BTF_VAR_GLOBAL_EXTERN)
2732 return libbpf_err(-EINVAL);
2733 if (validate_type_id(type_id))
2734 return libbpf_err(-EINVAL);
2735
2736 /* deconstruct BTF, if necessary, and invalidate raw_data */
2737 if (btf_ensure_modifiable(btf))
2738 return libbpf_err(-ENOMEM);
2739
2740 sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2741 t = btf_add_type_mem(btf, sz);
2742 if (!t)
2743 return libbpf_err(-ENOMEM);
2744
2745 name_off = btf__add_str(btf, name);
2746 if (name_off < 0)
2747 return name_off;
2748
2749 t->name_off = name_off;
2750 t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2751 t->type = type_id;
2752
2753 v = btf_var(t);
2754 v->linkage = linkage;
2755
2756 return btf_commit_type(btf, sz);
2757}
2758
2759/*
2760 * Append new BTF_KIND_DATASEC type with:
2761 * - *name* - non-empty/non-NULL name;
2762 * - *byte_sz* - data section size, in bytes.
2763 *
2764 * Data section is initially empty. Variables info can be added with
2765 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2766 *
2767 * Returns:
2768 * - >0, type ID of newly added BTF type;
2769 * - <0, on error.
2770 */
2771int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2772{
2773 struct btf_type *t;
2774 int sz, name_off;
2775
2776 /* non-empty name */
2777 if (!name || !name[0])
2778 return libbpf_err(-EINVAL);
2779
2780 if (btf_ensure_modifiable(btf))
2781 return libbpf_err(-ENOMEM);
2782
2783 sz = sizeof(struct btf_type);
2784 t = btf_add_type_mem(btf, sz);
2785 if (!t)
2786 return libbpf_err(-ENOMEM);
2787
2788 name_off = btf__add_str(btf, name);
2789 if (name_off < 0)
2790 return name_off;
2791
2792 /* start with vlen=0, which will be update as var_secinfos are added */
2793 t->name_off = name_off;
2794 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2795 t->size = byte_sz;
2796
2797 return btf_commit_type(btf, sz);
2798}
2799
2800/*
2801 * Append new data section variable information entry for current DATASEC type:
2802 * - *var_type_id* - type ID, describing type of the variable;
2803 * - *offset* - variable offset within data section, in bytes;
2804 * - *byte_sz* - variable size, in bytes.
2805 *
2806 * Returns:
2807 * - 0, on success;
2808 * - <0, on error.
2809 */
2810int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2811{
2812 struct btf_type *t;
2813 struct btf_var_secinfo *v;
2814 int sz;
2815
2816 /* last type should be BTF_KIND_DATASEC */
2817 if (btf->nr_types == 0)
2818 return libbpf_err(-EINVAL);
2819 t = btf_last_type(btf);
2820 if (!btf_is_datasec(t))
2821 return libbpf_err(-EINVAL);
2822
2823 if (validate_type_id(var_type_id))
2824 return libbpf_err(-EINVAL);
2825
2826 /* decompose and invalidate raw data */
2827 if (btf_ensure_modifiable(btf))
2828 return libbpf_err(-ENOMEM);
2829
2830 sz = sizeof(struct btf_var_secinfo);
2831 v = btf_add_type_mem(btf, sz);
2832 if (!v)
2833 return libbpf_err(-ENOMEM);
2834
2835 v->type = var_type_id;
2836 v->offset = offset;
2837 v->size = byte_sz;
2838
2839 /* update parent type's vlen */
2840 t = btf_last_type(btf);
2841 btf_type_inc_vlen(t);
2842
2843 btf->hdr->type_len += sz;
2844 btf->hdr->str_off += sz;
2845 return 0;
2846}
2847
2848/*
2849 * Append new BTF_KIND_DECL_TAG type with:
2850 * - *value* - non-empty/non-NULL string;
2851 * - *ref_type_id* - referenced type ID, it might not exist yet;
2852 * - *component_idx* - -1 for tagging reference type, otherwise struct/union
2853 * member or function argument index;
2854 * Returns:
2855 * - >0, type ID of newly added BTF type;
2856 * - <0, on error.
2857 */
2858int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2859 int component_idx)
2860{
2861 struct btf_type *t;
2862 int sz, value_off;
2863
2864 if (!value || !value[0] || component_idx < -1)
2865 return libbpf_err(-EINVAL);
2866
2867 if (validate_type_id(ref_type_id))
2868 return libbpf_err(-EINVAL);
2869
2870 if (btf_ensure_modifiable(btf))
2871 return libbpf_err(-ENOMEM);
2872
2873 sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2874 t = btf_add_type_mem(btf, sz);
2875 if (!t)
2876 return libbpf_err(-ENOMEM);
2877
2878 value_off = btf__add_str(btf, value);
2879 if (value_off < 0)
2880 return value_off;
2881
2882 t->name_off = value_off;
2883 t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2884 t->type = ref_type_id;
2885 btf_decl_tag(t)->component_idx = component_idx;
2886
2887 return btf_commit_type(btf, sz);
2888}
2889
2890struct btf_ext_sec_info_param {
2891 __u32 off;
2892 __u32 len;
2893 __u32 min_rec_size;
2894 struct btf_ext_info *ext_info;
2895 const char *desc;
2896};
2897
2898/*
2899 * Parse a single info subsection of the BTF.ext info data:
2900 * - validate subsection structure and elements
2901 * - save info subsection start and sizing details in struct btf_ext
2902 * - endian-independent operation, for calling before byte-swapping
2903 */
2904static int btf_ext_parse_sec_info(struct btf_ext *btf_ext,
2905 struct btf_ext_sec_info_param *ext_sec,
2906 bool is_native)
2907{
2908 const struct btf_ext_info_sec *sinfo;
2909 struct btf_ext_info *ext_info;
2910 __u32 info_left, record_size;
2911 size_t sec_cnt = 0;
2912 void *info;
2913
2914 if (ext_sec->len == 0)
2915 return 0;
2916
2917 if (ext_sec->off & 0x03) {
2918 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2919 ext_sec->desc);
2920 return -EINVAL;
2921 }
2922
2923 /* The start of the info sec (including the __u32 record_size). */
2924 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2925 info_left = ext_sec->len;
2926
2927 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2928 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2929 ext_sec->desc, ext_sec->off, ext_sec->len);
2930 return -EINVAL;
2931 }
2932
2933 /* At least a record size */
2934 if (info_left < sizeof(__u32)) {
2935 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2936 return -EINVAL;
2937 }
2938
2939 /* The record size needs to meet either the minimum standard or, when
2940 * handling non-native endianness data, the exact standard so as
2941 * to allow safe byte-swapping.
2942 */
2943 record_size = is_native ? *(__u32 *)info : bswap_32(*(__u32 *)info);
2944 if (record_size < ext_sec->min_rec_size ||
2945 (!is_native && record_size != ext_sec->min_rec_size) ||
2946 record_size & 0x03) {
2947 pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2948 ext_sec->desc, record_size);
2949 return -EINVAL;
2950 }
2951
2952 sinfo = info + sizeof(__u32);
2953 info_left -= sizeof(__u32);
2954
2955 /* If no records, return failure now so .BTF.ext won't be used. */
2956 if (!info_left) {
2957 pr_debug("%s section in .BTF.ext has no records\n", ext_sec->desc);
2958 return -EINVAL;
2959 }
2960
2961 while (info_left) {
2962 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2963 __u64 total_record_size;
2964 __u32 num_records;
2965
2966 if (info_left < sec_hdrlen) {
2967 pr_debug("%s section header is not found in .BTF.ext\n",
2968 ext_sec->desc);
2969 return -EINVAL;
2970 }
2971
2972 num_records = is_native ? sinfo->num_info : bswap_32(sinfo->num_info);
2973 if (num_records == 0) {
2974 pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2975 ext_sec->desc);
2976 return -EINVAL;
2977 }
2978
2979 total_record_size = sec_hdrlen + (__u64)num_records * record_size;
2980 if (info_left < total_record_size) {
2981 pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2982 ext_sec->desc);
2983 return -EINVAL;
2984 }
2985
2986 info_left -= total_record_size;
2987 sinfo = (void *)sinfo + total_record_size;
2988 sec_cnt++;
2989 }
2990
2991 ext_info = ext_sec->ext_info;
2992 ext_info->len = ext_sec->len - sizeof(__u32);
2993 ext_info->rec_size = record_size;
2994 ext_info->info = info + sizeof(__u32);
2995 ext_info->sec_cnt = sec_cnt;
2996
2997 return 0;
2998}
2999
3000/* Parse all info secs in the BTF.ext info data */
3001static int btf_ext_parse_info(struct btf_ext *btf_ext, bool is_native)
3002{
3003 struct btf_ext_sec_info_param func_info = {
3004 .off = btf_ext->hdr->func_info_off,
3005 .len = btf_ext->hdr->func_info_len,
3006 .min_rec_size = sizeof(struct bpf_func_info_min),
3007 .ext_info = &btf_ext->func_info,
3008 .desc = "func_info"
3009 };
3010 struct btf_ext_sec_info_param line_info = {
3011 .off = btf_ext->hdr->line_info_off,
3012 .len = btf_ext->hdr->line_info_len,
3013 .min_rec_size = sizeof(struct bpf_line_info_min),
3014 .ext_info = &btf_ext->line_info,
3015 .desc = "line_info",
3016 };
3017 struct btf_ext_sec_info_param core_relo = {
3018 .off = btf_ext->hdr->core_relo_off,
3019 .len = btf_ext->hdr->core_relo_len,
3020 .min_rec_size = sizeof(struct bpf_core_relo),
3021 .ext_info = &btf_ext->core_relo_info,
3022 .desc = "core_relo",
3023 };
3024 int err;
3025
3026 err = btf_ext_parse_sec_info(btf_ext, &func_info, is_native);
3027 if (err)
3028 return err;
3029
3030 err = btf_ext_parse_sec_info(btf_ext, &line_info, is_native);
3031 if (err)
3032 return err;
3033
3034 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3035 return 0; /* skip core relos parsing */
3036
3037 err = btf_ext_parse_sec_info(btf_ext, &core_relo, is_native);
3038 if (err)
3039 return err;
3040
3041 return 0;
3042}
3043
3044/* Swap byte-order of BTF.ext header with any endianness */
3045static void btf_ext_bswap_hdr(struct btf_ext_header *h)
3046{
3047 bool is_native = h->magic == BTF_MAGIC;
3048 __u32 hdr_len;
3049
3050 hdr_len = is_native ? h->hdr_len : bswap_32(h->hdr_len);
3051
3052 h->magic = bswap_16(h->magic);
3053 h->hdr_len = bswap_32(h->hdr_len);
3054 h->func_info_off = bswap_32(h->func_info_off);
3055 h->func_info_len = bswap_32(h->func_info_len);
3056 h->line_info_off = bswap_32(h->line_info_off);
3057 h->line_info_len = bswap_32(h->line_info_len);
3058
3059 if (hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3060 return;
3061
3062 h->core_relo_off = bswap_32(h->core_relo_off);
3063 h->core_relo_len = bswap_32(h->core_relo_len);
3064}
3065
3066/* Swap byte-order of generic info subsection */
3067static void btf_ext_bswap_info_sec(void *info, __u32 len, bool is_native,
3068 info_rec_bswap_fn bswap_fn)
3069{
3070 struct btf_ext_info_sec *sec;
3071 __u32 info_left, rec_size, *rs;
3072
3073 if (len == 0)
3074 return;
3075
3076 rs = info; /* info record size */
3077 rec_size = is_native ? *rs : bswap_32(*rs);
3078 *rs = bswap_32(*rs);
3079
3080 sec = info + sizeof(__u32); /* info sec #1 */
3081 info_left = len - sizeof(__u32);
3082 while (info_left) {
3083 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
3084 __u32 i, num_recs;
3085 void *p;
3086
3087 num_recs = is_native ? sec->num_info : bswap_32(sec->num_info);
3088 sec->sec_name_off = bswap_32(sec->sec_name_off);
3089 sec->num_info = bswap_32(sec->num_info);
3090 p = sec->data; /* info rec #1 */
3091 for (i = 0; i < num_recs; i++, p += rec_size)
3092 bswap_fn(p);
3093 sec = p;
3094 info_left -= sec_hdrlen + (__u64)rec_size * num_recs;
3095 }
3096}
3097
3098/*
3099 * Swap byte-order of all info data in a BTF.ext section
3100 * - requires BTF.ext hdr in native endianness
3101 */
3102static void btf_ext_bswap_info(struct btf_ext *btf_ext, void *data)
3103{
3104 const bool is_native = btf_ext->swapped_endian;
3105 const struct btf_ext_header *h = data;
3106 void *info;
3107
3108 /* Swap func_info subsection byte-order */
3109 info = data + h->hdr_len + h->func_info_off;
3110 btf_ext_bswap_info_sec(info, h->func_info_len, is_native,
3111 (info_rec_bswap_fn)bpf_func_info_bswap);
3112
3113 /* Swap line_info subsection byte-order */
3114 info = data + h->hdr_len + h->line_info_off;
3115 btf_ext_bswap_info_sec(info, h->line_info_len, is_native,
3116 (info_rec_bswap_fn)bpf_line_info_bswap);
3117
3118 /* Swap core_relo subsection byte-order (if present) */
3119 if (h->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3120 return;
3121
3122 info = data + h->hdr_len + h->core_relo_off;
3123 btf_ext_bswap_info_sec(info, h->core_relo_len, is_native,
3124 (info_rec_bswap_fn)bpf_core_relo_bswap);
3125}
3126
3127/* Parse hdr data and info sections: check and convert to native endianness */
3128static int btf_ext_parse(struct btf_ext *btf_ext)
3129{
3130 __u32 hdr_len, data_size = btf_ext->data_size;
3131 struct btf_ext_header *hdr = btf_ext->hdr;
3132 bool swapped_endian = false;
3133 int err;
3134
3135 if (data_size < offsetofend(struct btf_ext_header, hdr_len)) {
3136 pr_debug("BTF.ext header too short\n");
3137 return -EINVAL;
3138 }
3139
3140 hdr_len = hdr->hdr_len;
3141 if (hdr->magic == bswap_16(BTF_MAGIC)) {
3142 swapped_endian = true;
3143 hdr_len = bswap_32(hdr_len);
3144 } else if (hdr->magic != BTF_MAGIC) {
3145 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
3146 return -EINVAL;
3147 }
3148
3149 /* Ensure known version of structs, current BTF_VERSION == 1 */
3150 if (hdr->version != 1) {
3151 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
3152 return -ENOTSUP;
3153 }
3154
3155 if (hdr->flags) {
3156 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
3157 return -ENOTSUP;
3158 }
3159
3160 if (data_size < hdr_len) {
3161 pr_debug("BTF.ext header not found\n");
3162 return -EINVAL;
3163 } else if (data_size == hdr_len) {
3164 pr_debug("BTF.ext has no data\n");
3165 return -EINVAL;
3166 }
3167
3168 /* Verify mandatory hdr info details present */
3169 if (hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
3170 pr_warn("BTF.ext header missing func_info, line_info\n");
3171 return -EINVAL;
3172 }
3173
3174 /* Keep hdr native byte-order in memory for introspection */
3175 if (swapped_endian)
3176 btf_ext_bswap_hdr(btf_ext->hdr);
3177
3178 /* Validate info subsections and cache key metadata */
3179 err = btf_ext_parse_info(btf_ext, !swapped_endian);
3180 if (err)
3181 return err;
3182
3183 /* Keep infos native byte-order in memory for introspection */
3184 if (swapped_endian)
3185 btf_ext_bswap_info(btf_ext, btf_ext->data);
3186
3187 /*
3188 * Set btf_ext->swapped_endian only after all header and info data has
3189 * been swapped, helping bswap functions determine if their data are
3190 * in native byte-order when called.
3191 */
3192 btf_ext->swapped_endian = swapped_endian;
3193 return 0;
3194}
3195
3196void btf_ext__free(struct btf_ext *btf_ext)
3197{
3198 if (IS_ERR_OR_NULL(btf_ext))
3199 return;
3200 free(btf_ext->func_info.sec_idxs);
3201 free(btf_ext->line_info.sec_idxs);
3202 free(btf_ext->core_relo_info.sec_idxs);
3203 free(btf_ext->data);
3204 free(btf_ext->data_swapped);
3205 free(btf_ext);
3206}
3207
3208struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
3209{
3210 struct btf_ext *btf_ext;
3211 int err;
3212
3213 btf_ext = calloc(1, sizeof(struct btf_ext));
3214 if (!btf_ext)
3215 return libbpf_err_ptr(-ENOMEM);
3216
3217 btf_ext->data_size = size;
3218 btf_ext->data = malloc(size);
3219 if (!btf_ext->data) {
3220 err = -ENOMEM;
3221 goto done;
3222 }
3223 memcpy(btf_ext->data, data, size);
3224
3225 err = btf_ext_parse(btf_ext);
3226
3227done:
3228 if (err) {
3229 btf_ext__free(btf_ext);
3230 return libbpf_err_ptr(err);
3231 }
3232
3233 return btf_ext;
3234}
3235
3236static void *btf_ext_raw_data(const struct btf_ext *btf_ext_ro, bool swap_endian)
3237{
3238 struct btf_ext *btf_ext = (struct btf_ext *)btf_ext_ro;
3239 const __u32 data_sz = btf_ext->data_size;
3240 void *data;
3241
3242 /* Return native data (always present) or swapped data if present */
3243 if (!swap_endian)
3244 return btf_ext->data;
3245 else if (btf_ext->data_swapped)
3246 return btf_ext->data_swapped;
3247
3248 /* Recreate missing swapped data, then cache and return */
3249 data = calloc(1, data_sz);
3250 if (!data)
3251 return NULL;
3252 memcpy(data, btf_ext->data, data_sz);
3253
3254 btf_ext_bswap_info(btf_ext, data);
3255 btf_ext_bswap_hdr(data);
3256 btf_ext->data_swapped = data;
3257 return data;
3258}
3259
3260const void *btf_ext__raw_data(const struct btf_ext *btf_ext, __u32 *size)
3261{
3262 void *data;
3263
3264 data = btf_ext_raw_data(btf_ext, btf_ext->swapped_endian);
3265 if (!data)
3266 return errno = ENOMEM, NULL;
3267
3268 *size = btf_ext->data_size;
3269 return data;
3270}
3271
3272__attribute__((alias("btf_ext__raw_data")))
3273const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size);
3274
3275enum btf_endianness btf_ext__endianness(const struct btf_ext *btf_ext)
3276{
3277 if (is_host_big_endian())
3278 return btf_ext->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
3279 else
3280 return btf_ext->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
3281}
3282
3283int btf_ext__set_endianness(struct btf_ext *btf_ext, enum btf_endianness endian)
3284{
3285 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
3286 return libbpf_err(-EINVAL);
3287
3288 btf_ext->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
3289
3290 if (!btf_ext->swapped_endian) {
3291 free(btf_ext->data_swapped);
3292 btf_ext->data_swapped = NULL;
3293 }
3294 return 0;
3295}
3296
3297struct btf_dedup;
3298
3299static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
3300static void btf_dedup_free(struct btf_dedup *d);
3301static int btf_dedup_prep(struct btf_dedup *d);
3302static int btf_dedup_strings(struct btf_dedup *d);
3303static int btf_dedup_prim_types(struct btf_dedup *d);
3304static int btf_dedup_struct_types(struct btf_dedup *d);
3305static int btf_dedup_ref_types(struct btf_dedup *d);
3306static int btf_dedup_resolve_fwds(struct btf_dedup *d);
3307static int btf_dedup_compact_types(struct btf_dedup *d);
3308static int btf_dedup_remap_types(struct btf_dedup *d);
3309
3310/*
3311 * Deduplicate BTF types and strings.
3312 *
3313 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
3314 * section with all BTF type descriptors and string data. It overwrites that
3315 * memory in-place with deduplicated types and strings without any loss of
3316 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
3317 * is provided, all the strings referenced from .BTF.ext section are honored
3318 * and updated to point to the right offsets after deduplication.
3319 *
3320 * If function returns with error, type/string data might be garbled and should
3321 * be discarded.
3322 *
3323 * More verbose and detailed description of both problem btf_dedup is solving,
3324 * as well as solution could be found at:
3325 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
3326 *
3327 * Problem description and justification
3328 * =====================================
3329 *
3330 * BTF type information is typically emitted either as a result of conversion
3331 * from DWARF to BTF or directly by compiler. In both cases, each compilation
3332 * unit contains information about a subset of all the types that are used
3333 * in an application. These subsets are frequently overlapping and contain a lot
3334 * of duplicated information when later concatenated together into a single
3335 * binary. This algorithm ensures that each unique type is represented by single
3336 * BTF type descriptor, greatly reducing resulting size of BTF data.
3337 *
3338 * Compilation unit isolation and subsequent duplication of data is not the only
3339 * problem. The same type hierarchy (e.g., struct and all the type that struct
3340 * references) in different compilation units can be represented in BTF to
3341 * various degrees of completeness (or, rather, incompleteness) due to
3342 * struct/union forward declarations.
3343 *
3344 * Let's take a look at an example, that we'll use to better understand the
3345 * problem (and solution). Suppose we have two compilation units, each using
3346 * same `struct S`, but each of them having incomplete type information about
3347 * struct's fields:
3348 *
3349 * // CU #1:
3350 * struct S;
3351 * struct A {
3352 * int a;
3353 * struct A* self;
3354 * struct S* parent;
3355 * };
3356 * struct B;
3357 * struct S {
3358 * struct A* a_ptr;
3359 * struct B* b_ptr;
3360 * };
3361 *
3362 * // CU #2:
3363 * struct S;
3364 * struct A;
3365 * struct B {
3366 * int b;
3367 * struct B* self;
3368 * struct S* parent;
3369 * };
3370 * struct S {
3371 * struct A* a_ptr;
3372 * struct B* b_ptr;
3373 * };
3374 *
3375 * In case of CU #1, BTF data will know only that `struct B` exist (but no
3376 * more), but will know the complete type information about `struct A`. While
3377 * for CU #2, it will know full type information about `struct B`, but will
3378 * only know about forward declaration of `struct A` (in BTF terms, it will
3379 * have `BTF_KIND_FWD` type descriptor with name `B`).
3380 *
3381 * This compilation unit isolation means that it's possible that there is no
3382 * single CU with complete type information describing structs `S`, `A`, and
3383 * `B`. Also, we might get tons of duplicated and redundant type information.
3384 *
3385 * Additional complication we need to keep in mind comes from the fact that
3386 * types, in general, can form graphs containing cycles, not just DAGs.
3387 *
3388 * While algorithm does deduplication, it also merges and resolves type
3389 * information (unless disabled throught `struct btf_opts`), whenever possible.
3390 * E.g., in the example above with two compilation units having partial type
3391 * information for structs `A` and `B`, the output of algorithm will emit
3392 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
3393 * (as well as type information for `int` and pointers), as if they were defined
3394 * in a single compilation unit as:
3395 *
3396 * struct A {
3397 * int a;
3398 * struct A* self;
3399 * struct S* parent;
3400 * };
3401 * struct B {
3402 * int b;
3403 * struct B* self;
3404 * struct S* parent;
3405 * };
3406 * struct S {
3407 * struct A* a_ptr;
3408 * struct B* b_ptr;
3409 * };
3410 *
3411 * Algorithm summary
3412 * =================
3413 *
3414 * Algorithm completes its work in 7 separate passes:
3415 *
3416 * 1. Strings deduplication.
3417 * 2. Primitive types deduplication (int, enum, fwd).
3418 * 3. Struct/union types deduplication.
3419 * 4. Resolve unambiguous forward declarations.
3420 * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3421 * protos, and const/volatile/restrict modifiers).
3422 * 6. Types compaction.
3423 * 7. Types remapping.
3424 *
3425 * Algorithm determines canonical type descriptor, which is a single
3426 * representative type for each truly unique type. This canonical type is the
3427 * one that will go into final deduplicated BTF type information. For
3428 * struct/unions, it is also the type that algorithm will merge additional type
3429 * information into (while resolving FWDs), as it discovers it from data in
3430 * other CUs. Each input BTF type eventually gets either mapped to itself, if
3431 * that type is canonical, or to some other type, if that type is equivalent
3432 * and was chosen as canonical representative. This mapping is stored in
3433 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3434 * FWD type got resolved to.
3435 *
3436 * To facilitate fast discovery of canonical types, we also maintain canonical
3437 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3438 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3439 * that match that signature. With sufficiently good choice of type signature
3440 * hashing function, we can limit number of canonical types for each unique type
3441 * signature to a very small number, allowing to find canonical type for any
3442 * duplicated type very quickly.
3443 *
3444 * Struct/union deduplication is the most critical part and algorithm for
3445 * deduplicating structs/unions is described in greater details in comments for
3446 * `btf_dedup_is_equiv` function.
3447 */
3448int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts)
3449{
3450 struct btf_dedup *d;
3451 int err;
3452
3453 if (!OPTS_VALID(opts, btf_dedup_opts))
3454 return libbpf_err(-EINVAL);
3455
3456 d = btf_dedup_new(btf, opts);
3457 if (IS_ERR(d)) {
3458 pr_debug("btf_dedup_new failed: %ld\n", PTR_ERR(d));
3459 return libbpf_err(-EINVAL);
3460 }
3461
3462 if (btf_ensure_modifiable(btf)) {
3463 err = -ENOMEM;
3464 goto done;
3465 }
3466
3467 err = btf_dedup_prep(d);
3468 if (err) {
3469 pr_debug("btf_dedup_prep failed: %s\n", errstr(err));
3470 goto done;
3471 }
3472 err = btf_dedup_strings(d);
3473 if (err < 0) {
3474 pr_debug("btf_dedup_strings failed: %s\n", errstr(err));
3475 goto done;
3476 }
3477 err = btf_dedup_prim_types(d);
3478 if (err < 0) {
3479 pr_debug("btf_dedup_prim_types failed: %s\n", errstr(err));
3480 goto done;
3481 }
3482 err = btf_dedup_struct_types(d);
3483 if (err < 0) {
3484 pr_debug("btf_dedup_struct_types failed: %s\n", errstr(err));
3485 goto done;
3486 }
3487 err = btf_dedup_resolve_fwds(d);
3488 if (err < 0) {
3489 pr_debug("btf_dedup_resolve_fwds failed: %s\n", errstr(err));
3490 goto done;
3491 }
3492 err = btf_dedup_ref_types(d);
3493 if (err < 0) {
3494 pr_debug("btf_dedup_ref_types failed: %s\n", errstr(err));
3495 goto done;
3496 }
3497 err = btf_dedup_compact_types(d);
3498 if (err < 0) {
3499 pr_debug("btf_dedup_compact_types failed: %s\n", errstr(err));
3500 goto done;
3501 }
3502 err = btf_dedup_remap_types(d);
3503 if (err < 0) {
3504 pr_debug("btf_dedup_remap_types failed: %s\n", errstr(err));
3505 goto done;
3506 }
3507
3508done:
3509 btf_dedup_free(d);
3510 return libbpf_err(err);
3511}
3512
3513#define BTF_UNPROCESSED_ID ((__u32)-1)
3514#define BTF_IN_PROGRESS_ID ((__u32)-2)
3515
3516struct btf_dedup {
3517 /* .BTF section to be deduped in-place */
3518 struct btf *btf;
3519 /*
3520 * Optional .BTF.ext section. When provided, any strings referenced
3521 * from it will be taken into account when deduping strings
3522 */
3523 struct btf_ext *btf_ext;
3524 /*
3525 * This is a map from any type's signature hash to a list of possible
3526 * canonical representative type candidates. Hash collisions are
3527 * ignored, so even types of various kinds can share same list of
3528 * candidates, which is fine because we rely on subsequent
3529 * btf_xxx_equal() checks to authoritatively verify type equality.
3530 */
3531 struct hashmap *dedup_table;
3532 /* Canonical types map */
3533 __u32 *map;
3534 /* Hypothetical mapping, used during type graph equivalence checks */
3535 __u32 *hypot_map;
3536 __u32 *hypot_list;
3537 size_t hypot_cnt;
3538 size_t hypot_cap;
3539 /* Whether hypothetical mapping, if successful, would need to adjust
3540 * already canonicalized types (due to a new forward declaration to
3541 * concrete type resolution). In such case, during split BTF dedup
3542 * candidate type would still be considered as different, because base
3543 * BTF is considered to be immutable.
3544 */
3545 bool hypot_adjust_canon;
3546 /* Various option modifying behavior of algorithm */
3547 struct btf_dedup_opts opts;
3548 /* temporary strings deduplication state */
3549 struct strset *strs_set;
3550};
3551
3552static unsigned long hash_combine(unsigned long h, unsigned long value)
3553{
3554 return h * 31 + value;
3555}
3556
3557#define for_each_dedup_cand(d, node, hash) \
3558 hashmap__for_each_key_entry(d->dedup_table, node, hash)
3559
3560static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3561{
3562 return hashmap__append(d->dedup_table, hash, type_id);
3563}
3564
3565static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3566 __u32 from_id, __u32 to_id)
3567{
3568 if (d->hypot_cnt == d->hypot_cap) {
3569 __u32 *new_list;
3570
3571 d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3572 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3573 if (!new_list)
3574 return -ENOMEM;
3575 d->hypot_list = new_list;
3576 }
3577 d->hypot_list[d->hypot_cnt++] = from_id;
3578 d->hypot_map[from_id] = to_id;
3579 return 0;
3580}
3581
3582static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3583{
3584 int i;
3585
3586 for (i = 0; i < d->hypot_cnt; i++)
3587 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3588 d->hypot_cnt = 0;
3589 d->hypot_adjust_canon = false;
3590}
3591
3592static void btf_dedup_free(struct btf_dedup *d)
3593{
3594 hashmap__free(d->dedup_table);
3595 d->dedup_table = NULL;
3596
3597 free(d->map);
3598 d->map = NULL;
3599
3600 free(d->hypot_map);
3601 d->hypot_map = NULL;
3602
3603 free(d->hypot_list);
3604 d->hypot_list = NULL;
3605
3606 free(d);
3607}
3608
3609static size_t btf_dedup_identity_hash_fn(long key, void *ctx)
3610{
3611 return key;
3612}
3613
3614static size_t btf_dedup_collision_hash_fn(long key, void *ctx)
3615{
3616 return 0;
3617}
3618
3619static bool btf_dedup_equal_fn(long k1, long k2, void *ctx)
3620{
3621 return k1 == k2;
3622}
3623
3624static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
3625{
3626 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3627 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3628 int i, err = 0, type_cnt;
3629
3630 if (!d)
3631 return ERR_PTR(-ENOMEM);
3632
3633 if (OPTS_GET(opts, force_collisions, false))
3634 hash_fn = btf_dedup_collision_hash_fn;
3635
3636 d->btf = btf;
3637 d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3638
3639 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3640 if (IS_ERR(d->dedup_table)) {
3641 err = PTR_ERR(d->dedup_table);
3642 d->dedup_table = NULL;
3643 goto done;
3644 }
3645
3646 type_cnt = btf__type_cnt(btf);
3647 d->map = malloc(sizeof(__u32) * type_cnt);
3648 if (!d->map) {
3649 err = -ENOMEM;
3650 goto done;
3651 }
3652 /* special BTF "void" type is made canonical immediately */
3653 d->map[0] = 0;
3654 for (i = 1; i < type_cnt; i++) {
3655 struct btf_type *t = btf_type_by_id(d->btf, i);
3656
3657 /* VAR and DATASEC are never deduped and are self-canonical */
3658 if (btf_is_var(t) || btf_is_datasec(t))
3659 d->map[i] = i;
3660 else
3661 d->map[i] = BTF_UNPROCESSED_ID;
3662 }
3663
3664 d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3665 if (!d->hypot_map) {
3666 err = -ENOMEM;
3667 goto done;
3668 }
3669 for (i = 0; i < type_cnt; i++)
3670 d->hypot_map[i] = BTF_UNPROCESSED_ID;
3671
3672done:
3673 if (err) {
3674 btf_dedup_free(d);
3675 return ERR_PTR(err);
3676 }
3677
3678 return d;
3679}
3680
3681/*
3682 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3683 * string and pass pointer to it to a provided callback `fn`.
3684 */
3685static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3686{
3687 int i, r;
3688
3689 for (i = 0; i < d->btf->nr_types; i++) {
3690 struct btf_field_iter it;
3691 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3692 __u32 *str_off;
3693
3694 r = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS);
3695 if (r)
3696 return r;
3697
3698 while ((str_off = btf_field_iter_next(&it))) {
3699 r = fn(str_off, ctx);
3700 if (r)
3701 return r;
3702 }
3703 }
3704
3705 if (!d->btf_ext)
3706 return 0;
3707
3708 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3709 if (r)
3710 return r;
3711
3712 return 0;
3713}
3714
3715static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3716{
3717 struct btf_dedup *d = ctx;
3718 __u32 str_off = *str_off_ptr;
3719 const char *s;
3720 int off, err;
3721
3722 /* don't touch empty string or string in main BTF */
3723 if (str_off == 0 || str_off < d->btf->start_str_off)
3724 return 0;
3725
3726 s = btf__str_by_offset(d->btf, str_off);
3727 if (d->btf->base_btf) {
3728 err = btf__find_str(d->btf->base_btf, s);
3729 if (err >= 0) {
3730 *str_off_ptr = err;
3731 return 0;
3732 }
3733 if (err != -ENOENT)
3734 return err;
3735 }
3736
3737 off = strset__add_str(d->strs_set, s);
3738 if (off < 0)
3739 return off;
3740
3741 *str_off_ptr = d->btf->start_str_off + off;
3742 return 0;
3743}
3744
3745/*
3746 * Dedup string and filter out those that are not referenced from either .BTF
3747 * or .BTF.ext (if provided) sections.
3748 *
3749 * This is done by building index of all strings in BTF's string section,
3750 * then iterating over all entities that can reference strings (e.g., type
3751 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3752 * strings as used. After that all used strings are deduped and compacted into
3753 * sequential blob of memory and new offsets are calculated. Then all the string
3754 * references are iterated again and rewritten using new offsets.
3755 */
3756static int btf_dedup_strings(struct btf_dedup *d)
3757{
3758 int err;
3759
3760 if (d->btf->strs_deduped)
3761 return 0;
3762
3763 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3764 if (IS_ERR(d->strs_set)) {
3765 err = PTR_ERR(d->strs_set);
3766 goto err_out;
3767 }
3768
3769 if (!d->btf->base_btf) {
3770 /* insert empty string; we won't be looking it up during strings
3771 * dedup, but it's good to have it for generic BTF string lookups
3772 */
3773 err = strset__add_str(d->strs_set, "");
3774 if (err < 0)
3775 goto err_out;
3776 }
3777
3778 /* remap string offsets */
3779 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3780 if (err)
3781 goto err_out;
3782
3783 /* replace BTF string data and hash with deduped ones */
3784 strset__free(d->btf->strs_set);
3785 d->btf->hdr->str_len = strset__data_size(d->strs_set);
3786 d->btf->strs_set = d->strs_set;
3787 d->strs_set = NULL;
3788 d->btf->strs_deduped = true;
3789 return 0;
3790
3791err_out:
3792 strset__free(d->strs_set);
3793 d->strs_set = NULL;
3794
3795 return err;
3796}
3797
3798static long btf_hash_common(struct btf_type *t)
3799{
3800 long h;
3801
3802 h = hash_combine(0, t->name_off);
3803 h = hash_combine(h, t->info);
3804 h = hash_combine(h, t->size);
3805 return h;
3806}
3807
3808static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3809{
3810 return t1->name_off == t2->name_off &&
3811 t1->info == t2->info &&
3812 t1->size == t2->size;
3813}
3814
3815/* Calculate type signature hash of INT or TAG. */
3816static long btf_hash_int_decl_tag(struct btf_type *t)
3817{
3818 __u32 info = *(__u32 *)(t + 1);
3819 long h;
3820
3821 h = btf_hash_common(t);
3822 h = hash_combine(h, info);
3823 return h;
3824}
3825
3826/* Check structural equality of two INTs or TAGs. */
3827static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3828{
3829 __u32 info1, info2;
3830
3831 if (!btf_equal_common(t1, t2))
3832 return false;
3833 info1 = *(__u32 *)(t1 + 1);
3834 info2 = *(__u32 *)(t2 + 1);
3835 return info1 == info2;
3836}
3837
3838/* Calculate type signature hash of ENUM/ENUM64. */
3839static long btf_hash_enum(struct btf_type *t)
3840{
3841 long h;
3842
3843 /* don't hash vlen, enum members and size to support enum fwd resolving */
3844 h = hash_combine(0, t->name_off);
3845 return h;
3846}
3847
3848static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2)
3849{
3850 const struct btf_enum *m1, *m2;
3851 __u16 vlen;
3852 int i;
3853
3854 vlen = btf_vlen(t1);
3855 m1 = btf_enum(t1);
3856 m2 = btf_enum(t2);
3857 for (i = 0; i < vlen; i++) {
3858 if (m1->name_off != m2->name_off || m1->val != m2->val)
3859 return false;
3860 m1++;
3861 m2++;
3862 }
3863 return true;
3864}
3865
3866static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2)
3867{
3868 const struct btf_enum64 *m1, *m2;
3869 __u16 vlen;
3870 int i;
3871
3872 vlen = btf_vlen(t1);
3873 m1 = btf_enum64(t1);
3874 m2 = btf_enum64(t2);
3875 for (i = 0; i < vlen; i++) {
3876 if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 ||
3877 m1->val_hi32 != m2->val_hi32)
3878 return false;
3879 m1++;
3880 m2++;
3881 }
3882 return true;
3883}
3884
3885/* Check structural equality of two ENUMs or ENUM64s. */
3886static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3887{
3888 if (!btf_equal_common(t1, t2))
3889 return false;
3890
3891 /* t1 & t2 kinds are identical because of btf_equal_common */
3892 if (btf_kind(t1) == BTF_KIND_ENUM)
3893 return btf_equal_enum_members(t1, t2);
3894 else
3895 return btf_equal_enum64_members(t1, t2);
3896}
3897
3898static inline bool btf_is_enum_fwd(struct btf_type *t)
3899{
3900 return btf_is_any_enum(t) && btf_vlen(t) == 0;
3901}
3902
3903static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3904{
3905 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3906 return btf_equal_enum(t1, t2);
3907 /* At this point either t1 or t2 or both are forward declarations, thus:
3908 * - skip comparing vlen because it is zero for forward declarations;
3909 * - skip comparing size to allow enum forward declarations
3910 * to be compatible with enum64 full declarations;
3911 * - skip comparing kind for the same reason.
3912 */
3913 return t1->name_off == t2->name_off &&
3914 btf_is_any_enum(t1) && btf_is_any_enum(t2);
3915}
3916
3917/*
3918 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3919 * as referenced type IDs equivalence is established separately during type
3920 * graph equivalence check algorithm.
3921 */
3922static long btf_hash_struct(struct btf_type *t)
3923{
3924 const struct btf_member *member = btf_members(t);
3925 __u32 vlen = btf_vlen(t);
3926 long h = btf_hash_common(t);
3927 int i;
3928
3929 for (i = 0; i < vlen; i++) {
3930 h = hash_combine(h, member->name_off);
3931 h = hash_combine(h, member->offset);
3932 /* no hashing of referenced type ID, it can be unresolved yet */
3933 member++;
3934 }
3935 return h;
3936}
3937
3938/*
3939 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3940 * type IDs. This check is performed during type graph equivalence check and
3941 * referenced types equivalence is checked separately.
3942 */
3943static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3944{
3945 const struct btf_member *m1, *m2;
3946 __u16 vlen;
3947 int i;
3948
3949 if (!btf_equal_common(t1, t2))
3950 return false;
3951
3952 vlen = btf_vlen(t1);
3953 m1 = btf_members(t1);
3954 m2 = btf_members(t2);
3955 for (i = 0; i < vlen; i++) {
3956 if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3957 return false;
3958 m1++;
3959 m2++;
3960 }
3961 return true;
3962}
3963
3964/*
3965 * Calculate type signature hash of ARRAY, including referenced type IDs,
3966 * under assumption that they were already resolved to canonical type IDs and
3967 * are not going to change.
3968 */
3969static long btf_hash_array(struct btf_type *t)
3970{
3971 const struct btf_array *info = btf_array(t);
3972 long h = btf_hash_common(t);
3973
3974 h = hash_combine(h, info->type);
3975 h = hash_combine(h, info->index_type);
3976 h = hash_combine(h, info->nelems);
3977 return h;
3978}
3979
3980/*
3981 * Check exact equality of two ARRAYs, taking into account referenced
3982 * type IDs, under assumption that they were already resolved to canonical
3983 * type IDs and are not going to change.
3984 * This function is called during reference types deduplication to compare
3985 * ARRAY to potential canonical representative.
3986 */
3987static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3988{
3989 const struct btf_array *info1, *info2;
3990
3991 if (!btf_equal_common(t1, t2))
3992 return false;
3993
3994 info1 = btf_array(t1);
3995 info2 = btf_array(t2);
3996 return info1->type == info2->type &&
3997 info1->index_type == info2->index_type &&
3998 info1->nelems == info2->nelems;
3999}
4000
4001/*
4002 * Check structural compatibility of two ARRAYs, ignoring referenced type
4003 * IDs. This check is performed during type graph equivalence check and
4004 * referenced types equivalence is checked separately.
4005 */
4006static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
4007{
4008 if (!btf_equal_common(t1, t2))
4009 return false;
4010
4011 return btf_array(t1)->nelems == btf_array(t2)->nelems;
4012}
4013
4014/*
4015 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
4016 * under assumption that they were already resolved to canonical type IDs and
4017 * are not going to change.
4018 */
4019static long btf_hash_fnproto(struct btf_type *t)
4020{
4021 const struct btf_param *member = btf_params(t);
4022 __u16 vlen = btf_vlen(t);
4023 long h = btf_hash_common(t);
4024 int i;
4025
4026 for (i = 0; i < vlen; i++) {
4027 h = hash_combine(h, member->name_off);
4028 h = hash_combine(h, member->type);
4029 member++;
4030 }
4031 return h;
4032}
4033
4034/*
4035 * Check exact equality of two FUNC_PROTOs, taking into account referenced
4036 * type IDs, under assumption that they were already resolved to canonical
4037 * type IDs and are not going to change.
4038 * This function is called during reference types deduplication to compare
4039 * FUNC_PROTO to potential canonical representative.
4040 */
4041static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
4042{
4043 const struct btf_param *m1, *m2;
4044 __u16 vlen;
4045 int i;
4046
4047 if (!btf_equal_common(t1, t2))
4048 return false;
4049
4050 vlen = btf_vlen(t1);
4051 m1 = btf_params(t1);
4052 m2 = btf_params(t2);
4053 for (i = 0; i < vlen; i++) {
4054 if (m1->name_off != m2->name_off || m1->type != m2->type)
4055 return false;
4056 m1++;
4057 m2++;
4058 }
4059 return true;
4060}
4061
4062/*
4063 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
4064 * IDs. This check is performed during type graph equivalence check and
4065 * referenced types equivalence is checked separately.
4066 */
4067static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
4068{
4069 const struct btf_param *m1, *m2;
4070 __u16 vlen;
4071 int i;
4072
4073 /* skip return type ID */
4074 if (t1->name_off != t2->name_off || t1->info != t2->info)
4075 return false;
4076
4077 vlen = btf_vlen(t1);
4078 m1 = btf_params(t1);
4079 m2 = btf_params(t2);
4080 for (i = 0; i < vlen; i++) {
4081 if (m1->name_off != m2->name_off)
4082 return false;
4083 m1++;
4084 m2++;
4085 }
4086 return true;
4087}
4088
4089/* Prepare split BTF for deduplication by calculating hashes of base BTF's
4090 * types and initializing the rest of the state (canonical type mapping) for
4091 * the fixed base BTF part.
4092 */
4093static int btf_dedup_prep(struct btf_dedup *d)
4094{
4095 struct btf_type *t;
4096 int type_id;
4097 long h;
4098
4099 if (!d->btf->base_btf)
4100 return 0;
4101
4102 for (type_id = 1; type_id < d->btf->start_id; type_id++) {
4103 t = btf_type_by_id(d->btf, type_id);
4104
4105 /* all base BTF types are self-canonical by definition */
4106 d->map[type_id] = type_id;
4107
4108 switch (btf_kind(t)) {
4109 case BTF_KIND_VAR:
4110 case BTF_KIND_DATASEC:
4111 /* VAR and DATASEC are never hash/deduplicated */
4112 continue;
4113 case BTF_KIND_CONST:
4114 case BTF_KIND_VOLATILE:
4115 case BTF_KIND_RESTRICT:
4116 case BTF_KIND_PTR:
4117 case BTF_KIND_FWD:
4118 case BTF_KIND_TYPEDEF:
4119 case BTF_KIND_FUNC:
4120 case BTF_KIND_FLOAT:
4121 case BTF_KIND_TYPE_TAG:
4122 h = btf_hash_common(t);
4123 break;
4124 case BTF_KIND_INT:
4125 case BTF_KIND_DECL_TAG:
4126 h = btf_hash_int_decl_tag(t);
4127 break;
4128 case BTF_KIND_ENUM:
4129 case BTF_KIND_ENUM64:
4130 h = btf_hash_enum(t);
4131 break;
4132 case BTF_KIND_STRUCT:
4133 case BTF_KIND_UNION:
4134 h = btf_hash_struct(t);
4135 break;
4136 case BTF_KIND_ARRAY:
4137 h = btf_hash_array(t);
4138 break;
4139 case BTF_KIND_FUNC_PROTO:
4140 h = btf_hash_fnproto(t);
4141 break;
4142 default:
4143 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
4144 return -EINVAL;
4145 }
4146 if (btf_dedup_table_add(d, h, type_id))
4147 return -ENOMEM;
4148 }
4149
4150 return 0;
4151}
4152
4153/*
4154 * Deduplicate primitive types, that can't reference other types, by calculating
4155 * their type signature hash and comparing them with any possible canonical
4156 * candidate. If no canonical candidate matches, type itself is marked as
4157 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
4158 */
4159static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
4160{
4161 struct btf_type *t = btf_type_by_id(d->btf, type_id);
4162 struct hashmap_entry *hash_entry;
4163 struct btf_type *cand;
4164 /* if we don't find equivalent type, then we are canonical */
4165 __u32 new_id = type_id;
4166 __u32 cand_id;
4167 long h;
4168
4169 switch (btf_kind(t)) {
4170 case BTF_KIND_CONST:
4171 case BTF_KIND_VOLATILE:
4172 case BTF_KIND_RESTRICT:
4173 case BTF_KIND_PTR:
4174 case BTF_KIND_TYPEDEF:
4175 case BTF_KIND_ARRAY:
4176 case BTF_KIND_STRUCT:
4177 case BTF_KIND_UNION:
4178 case BTF_KIND_FUNC:
4179 case BTF_KIND_FUNC_PROTO:
4180 case BTF_KIND_VAR:
4181 case BTF_KIND_DATASEC:
4182 case BTF_KIND_DECL_TAG:
4183 case BTF_KIND_TYPE_TAG:
4184 return 0;
4185
4186 case BTF_KIND_INT:
4187 h = btf_hash_int_decl_tag(t);
4188 for_each_dedup_cand(d, hash_entry, h) {
4189 cand_id = hash_entry->value;
4190 cand = btf_type_by_id(d->btf, cand_id);
4191 if (btf_equal_int_tag(t, cand)) {
4192 new_id = cand_id;
4193 break;
4194 }
4195 }
4196 break;
4197
4198 case BTF_KIND_ENUM:
4199 case BTF_KIND_ENUM64:
4200 h = btf_hash_enum(t);
4201 for_each_dedup_cand(d, hash_entry, h) {
4202 cand_id = hash_entry->value;
4203 cand = btf_type_by_id(d->btf, cand_id);
4204 if (btf_equal_enum(t, cand)) {
4205 new_id = cand_id;
4206 break;
4207 }
4208 if (btf_compat_enum(t, cand)) {
4209 if (btf_is_enum_fwd(t)) {
4210 /* resolve fwd to full enum */
4211 new_id = cand_id;
4212 break;
4213 }
4214 /* resolve canonical enum fwd to full enum */
4215 d->map[cand_id] = type_id;
4216 }
4217 }
4218 break;
4219
4220 case BTF_KIND_FWD:
4221 case BTF_KIND_FLOAT:
4222 h = btf_hash_common(t);
4223 for_each_dedup_cand(d, hash_entry, h) {
4224 cand_id = hash_entry->value;
4225 cand = btf_type_by_id(d->btf, cand_id);
4226 if (btf_equal_common(t, cand)) {
4227 new_id = cand_id;
4228 break;
4229 }
4230 }
4231 break;
4232
4233 default:
4234 return -EINVAL;
4235 }
4236
4237 d->map[type_id] = new_id;
4238 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4239 return -ENOMEM;
4240
4241 return 0;
4242}
4243
4244static int btf_dedup_prim_types(struct btf_dedup *d)
4245{
4246 int i, err;
4247
4248 for (i = 0; i < d->btf->nr_types; i++) {
4249 err = btf_dedup_prim_type(d, d->btf->start_id + i);
4250 if (err)
4251 return err;
4252 }
4253 return 0;
4254}
4255
4256/*
4257 * Check whether type is already mapped into canonical one (could be to itself).
4258 */
4259static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
4260{
4261 return d->map[type_id] <= BTF_MAX_NR_TYPES;
4262}
4263
4264/*
4265 * Resolve type ID into its canonical type ID, if any; otherwise return original
4266 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
4267 * STRUCT/UNION link and resolve it into canonical type ID as well.
4268 */
4269static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
4270{
4271 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
4272 type_id = d->map[type_id];
4273 return type_id;
4274}
4275
4276/*
4277 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
4278 * type ID.
4279 */
4280static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
4281{
4282 __u32 orig_type_id = type_id;
4283
4284 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
4285 return type_id;
4286
4287 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
4288 type_id = d->map[type_id];
4289
4290 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
4291 return type_id;
4292
4293 return orig_type_id;
4294}
4295
4296
4297static inline __u16 btf_fwd_kind(struct btf_type *t)
4298{
4299 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
4300}
4301
4302/* Check if given two types are identical ARRAY definitions */
4303static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
4304{
4305 struct btf_type *t1, *t2;
4306
4307 t1 = btf_type_by_id(d->btf, id1);
4308 t2 = btf_type_by_id(d->btf, id2);
4309 if (!btf_is_array(t1) || !btf_is_array(t2))
4310 return false;
4311
4312 return btf_equal_array(t1, t2);
4313}
4314
4315/* Check if given two types are identical STRUCT/UNION definitions */
4316static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
4317{
4318 const struct btf_member *m1, *m2;
4319 struct btf_type *t1, *t2;
4320 int n, i;
4321
4322 t1 = btf_type_by_id(d->btf, id1);
4323 t2 = btf_type_by_id(d->btf, id2);
4324
4325 if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
4326 return false;
4327
4328 if (!btf_shallow_equal_struct(t1, t2))
4329 return false;
4330
4331 m1 = btf_members(t1);
4332 m2 = btf_members(t2);
4333 for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
4334 if (m1->type != m2->type &&
4335 !btf_dedup_identical_arrays(d, m1->type, m2->type) &&
4336 !btf_dedup_identical_structs(d, m1->type, m2->type))
4337 return false;
4338 }
4339 return true;
4340}
4341
4342/*
4343 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
4344 * call it "candidate graph" in this description for brevity) to a type graph
4345 * formed by (potential) canonical struct/union ("canonical graph" for brevity
4346 * here, though keep in mind that not all types in canonical graph are
4347 * necessarily canonical representatives themselves, some of them might be
4348 * duplicates or its uniqueness might not have been established yet).
4349 * Returns:
4350 * - >0, if type graphs are equivalent;
4351 * - 0, if not equivalent;
4352 * - <0, on error.
4353 *
4354 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
4355 * equivalence of BTF types at each step. If at any point BTF types in candidate
4356 * and canonical graphs are not compatible structurally, whole graphs are
4357 * incompatible. If types are structurally equivalent (i.e., all information
4358 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
4359 * a `cand_id` is recoded in hypothetical mapping (`btf_dedup->hypot_map`).
4360 * If a type references other types, then those referenced types are checked
4361 * for equivalence recursively.
4362 *
4363 * During DFS traversal, if we find that for current `canon_id` type we
4364 * already have some mapping in hypothetical map, we check for two possible
4365 * situations:
4366 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will
4367 * happen when type graphs have cycles. In this case we assume those two
4368 * types are equivalent.
4369 * - `canon_id` is mapped to different type. This is contradiction in our
4370 * hypothetical mapping, because same graph in canonical graph corresponds
4371 * to two different types in candidate graph, which for equivalent type
4372 * graphs shouldn't happen. This condition terminates equivalence check
4373 * with negative result.
4374 *
4375 * If type graphs traversal exhausts types to check and find no contradiction,
4376 * then type graphs are equivalent.
4377 *
4378 * When checking types for equivalence, there is one special case: FWD types.
4379 * If FWD type resolution is allowed and one of the types (either from canonical
4380 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
4381 * flag) and their names match, hypothetical mapping is updated to point from
4382 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
4383 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
4384 *
4385 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
4386 * if there are two exactly named (or anonymous) structs/unions that are
4387 * compatible structurally, one of which has FWD field, while other is concrete
4388 * STRUCT/UNION, but according to C sources they are different structs/unions
4389 * that are referencing different types with the same name. This is extremely
4390 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
4391 * this logic is causing problems.
4392 *
4393 * Doing FWD resolution means that both candidate and/or canonical graphs can
4394 * consists of portions of the graph that come from multiple compilation units.
4395 * This is due to the fact that types within single compilation unit are always
4396 * deduplicated and FWDs are already resolved, if referenced struct/union
4397 * definition is available. So, if we had unresolved FWD and found corresponding
4398 * STRUCT/UNION, they will be from different compilation units. This
4399 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
4400 * type graph will likely have at least two different BTF types that describe
4401 * same type (e.g., most probably there will be two different BTF types for the
4402 * same 'int' primitive type) and could even have "overlapping" parts of type
4403 * graph that describe same subset of types.
4404 *
4405 * This in turn means that our assumption that each type in canonical graph
4406 * must correspond to exactly one type in candidate graph might not hold
4407 * anymore and will make it harder to detect contradictions using hypothetical
4408 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
4409 * resolution only in canonical graph. FWDs in candidate graphs are never
4410 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
4411 * that can occur:
4412 * - Both types in canonical and candidate graphs are FWDs. If they are
4413 * structurally equivalent, then they can either be both resolved to the
4414 * same STRUCT/UNION or not resolved at all. In both cases they are
4415 * equivalent and there is no need to resolve FWD on candidate side.
4416 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
4417 * so nothing to resolve as well, algorithm will check equivalence anyway.
4418 * - Type in canonical graph is FWD, while type in candidate is concrete
4419 * STRUCT/UNION. In this case candidate graph comes from single compilation
4420 * unit, so there is exactly one BTF type for each unique C type. After
4421 * resolving FWD into STRUCT/UNION, there might be more than one BTF type
4422 * in canonical graph mapping to single BTF type in candidate graph, but
4423 * because hypothetical mapping maps from canonical to candidate types, it's
4424 * alright, and we still maintain the property of having single `canon_id`
4425 * mapping to single `cand_id` (there could be two different `canon_id`
4426 * mapped to the same `cand_id`, but it's not contradictory).
4427 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
4428 * graph is FWD. In this case we are just going to check compatibility of
4429 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4430 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4431 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4432 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4433 * canonical graph.
4434 */
4435static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4436 __u32 canon_id)
4437{
4438 struct btf_type *cand_type;
4439 struct btf_type *canon_type;
4440 __u32 hypot_type_id;
4441 __u16 cand_kind;
4442 __u16 canon_kind;
4443 int i, eq;
4444
4445 /* if both resolve to the same canonical, they must be equivalent */
4446 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4447 return 1;
4448
4449 canon_id = resolve_fwd_id(d, canon_id);
4450
4451 hypot_type_id = d->hypot_map[canon_id];
4452 if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4453 if (hypot_type_id == cand_id)
4454 return 1;
4455 /* In some cases compiler will generate different DWARF types
4456 * for *identical* array type definitions and use them for
4457 * different fields within the *same* struct. This breaks type
4458 * equivalence check, which makes an assumption that candidate
4459 * types sub-graph has a consistent and deduped-by-compiler
4460 * types within a single CU. So work around that by explicitly
4461 * allowing identical array types here.
4462 */
4463 if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4464 return 1;
4465 /* It turns out that similar situation can happen with
4466 * struct/union sometimes, sigh... Handle the case where
4467 * structs/unions are exactly the same, down to the referenced
4468 * type IDs. Anything more complicated (e.g., if referenced
4469 * types are different, but equivalent) is *way more*
4470 * complicated and requires a many-to-many equivalence mapping.
4471 */
4472 if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4473 return 1;
4474 return 0;
4475 }
4476
4477 if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4478 return -ENOMEM;
4479
4480 cand_type = btf_type_by_id(d->btf, cand_id);
4481 canon_type = btf_type_by_id(d->btf, canon_id);
4482 cand_kind = btf_kind(cand_type);
4483 canon_kind = btf_kind(canon_type);
4484
4485 if (cand_type->name_off != canon_type->name_off)
4486 return 0;
4487
4488 /* FWD <--> STRUCT/UNION equivalence check, if enabled */
4489 if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
4490 && cand_kind != canon_kind) {
4491 __u16 real_kind;
4492 __u16 fwd_kind;
4493
4494 if (cand_kind == BTF_KIND_FWD) {
4495 real_kind = canon_kind;
4496 fwd_kind = btf_fwd_kind(cand_type);
4497 } else {
4498 real_kind = cand_kind;
4499 fwd_kind = btf_fwd_kind(canon_type);
4500 /* we'd need to resolve base FWD to STRUCT/UNION */
4501 if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4502 d->hypot_adjust_canon = true;
4503 }
4504 return fwd_kind == real_kind;
4505 }
4506
4507 if (cand_kind != canon_kind)
4508 return 0;
4509
4510 switch (cand_kind) {
4511 case BTF_KIND_INT:
4512 return btf_equal_int_tag(cand_type, canon_type);
4513
4514 case BTF_KIND_ENUM:
4515 case BTF_KIND_ENUM64:
4516 return btf_compat_enum(cand_type, canon_type);
4517
4518 case BTF_KIND_FWD:
4519 case BTF_KIND_FLOAT:
4520 return btf_equal_common(cand_type, canon_type);
4521
4522 case BTF_KIND_CONST:
4523 case BTF_KIND_VOLATILE:
4524 case BTF_KIND_RESTRICT:
4525 case BTF_KIND_PTR:
4526 case BTF_KIND_TYPEDEF:
4527 case BTF_KIND_FUNC:
4528 case BTF_KIND_TYPE_TAG:
4529 if (cand_type->info != canon_type->info)
4530 return 0;
4531 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4532
4533 case BTF_KIND_ARRAY: {
4534 const struct btf_array *cand_arr, *canon_arr;
4535
4536 if (!btf_compat_array(cand_type, canon_type))
4537 return 0;
4538 cand_arr = btf_array(cand_type);
4539 canon_arr = btf_array(canon_type);
4540 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4541 if (eq <= 0)
4542 return eq;
4543 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4544 }
4545
4546 case BTF_KIND_STRUCT:
4547 case BTF_KIND_UNION: {
4548 const struct btf_member *cand_m, *canon_m;
4549 __u16 vlen;
4550
4551 if (!btf_shallow_equal_struct(cand_type, canon_type))
4552 return 0;
4553 vlen = btf_vlen(cand_type);
4554 cand_m = btf_members(cand_type);
4555 canon_m = btf_members(canon_type);
4556 for (i = 0; i < vlen; i++) {
4557 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4558 if (eq <= 0)
4559 return eq;
4560 cand_m++;
4561 canon_m++;
4562 }
4563
4564 return 1;
4565 }
4566
4567 case BTF_KIND_FUNC_PROTO: {
4568 const struct btf_param *cand_p, *canon_p;
4569 __u16 vlen;
4570
4571 if (!btf_compat_fnproto(cand_type, canon_type))
4572 return 0;
4573 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4574 if (eq <= 0)
4575 return eq;
4576 vlen = btf_vlen(cand_type);
4577 cand_p = btf_params(cand_type);
4578 canon_p = btf_params(canon_type);
4579 for (i = 0; i < vlen; i++) {
4580 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4581 if (eq <= 0)
4582 return eq;
4583 cand_p++;
4584 canon_p++;
4585 }
4586 return 1;
4587 }
4588
4589 default:
4590 return -EINVAL;
4591 }
4592 return 0;
4593}
4594
4595/*
4596 * Use hypothetical mapping, produced by successful type graph equivalence
4597 * check, to augment existing struct/union canonical mapping, where possible.
4598 *
4599 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4600 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4601 * it doesn't matter if FWD type was part of canonical graph or candidate one,
4602 * we are recording the mapping anyway. As opposed to carefulness required
4603 * for struct/union correspondence mapping (described below), for FWD resolution
4604 * it's not important, as by the time that FWD type (reference type) will be
4605 * deduplicated all structs/unions will be deduped already anyway.
4606 *
4607 * Recording STRUCT/UNION mapping is purely a performance optimization and is
4608 * not required for correctness. It needs to be done carefully to ensure that
4609 * struct/union from candidate's type graph is not mapped into corresponding
4610 * struct/union from canonical type graph that itself hasn't been resolved into
4611 * canonical representative. The only guarantee we have is that canonical
4612 * struct/union was determined as canonical and that won't change. But any
4613 * types referenced through that struct/union fields could have been not yet
4614 * resolved, so in case like that it's too early to establish any kind of
4615 * correspondence between structs/unions.
4616 *
4617 * No canonical correspondence is derived for primitive types (they are already
4618 * deduplicated completely already anyway) or reference types (they rely on
4619 * stability of struct/union canonical relationship for equivalence checks).
4620 */
4621static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4622{
4623 __u32 canon_type_id, targ_type_id;
4624 __u16 t_kind, c_kind;
4625 __u32 t_id, c_id;
4626 int i;
4627
4628 for (i = 0; i < d->hypot_cnt; i++) {
4629 canon_type_id = d->hypot_list[i];
4630 targ_type_id = d->hypot_map[canon_type_id];
4631 t_id = resolve_type_id(d, targ_type_id);
4632 c_id = resolve_type_id(d, canon_type_id);
4633 t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4634 c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4635 /*
4636 * Resolve FWD into STRUCT/UNION.
4637 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4638 * mapped to canonical representative (as opposed to
4639 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4640 * eventually that struct is going to be mapped and all resolved
4641 * FWDs will automatically resolve to correct canonical
4642 * representative. This will happen before ref type deduping,
4643 * which critically depends on stability of these mapping. This
4644 * stability is not a requirement for STRUCT/UNION equivalence
4645 * checks, though.
4646 */
4647
4648 /* if it's the split BTF case, we still need to point base FWD
4649 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4650 * will be resolved against base FWD. If we don't point base
4651 * canonical FWD to the resolved STRUCT/UNION, then all the
4652 * FWDs in split BTF won't be correctly resolved to a proper
4653 * STRUCT/UNION.
4654 */
4655 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4656 d->map[c_id] = t_id;
4657
4658 /* if graph equivalence determined that we'd need to adjust
4659 * base canonical types, then we need to only point base FWDs
4660 * to STRUCTs/UNIONs and do no more modifications. For all
4661 * other purposes the type graphs were not equivalent.
4662 */
4663 if (d->hypot_adjust_canon)
4664 continue;
4665
4666 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4667 d->map[t_id] = c_id;
4668
4669 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4670 c_kind != BTF_KIND_FWD &&
4671 is_type_mapped(d, c_id) &&
4672 !is_type_mapped(d, t_id)) {
4673 /*
4674 * as a perf optimization, we can map struct/union
4675 * that's part of type graph we just verified for
4676 * equivalence. We can do that for struct/union that has
4677 * canonical representative only, though.
4678 */
4679 d->map[t_id] = c_id;
4680 }
4681 }
4682}
4683
4684/*
4685 * Deduplicate struct/union types.
4686 *
4687 * For each struct/union type its type signature hash is calculated, taking
4688 * into account type's name, size, number, order and names of fields, but
4689 * ignoring type ID's referenced from fields, because they might not be deduped
4690 * completely until after reference types deduplication phase. This type hash
4691 * is used to iterate over all potential canonical types, sharing same hash.
4692 * For each canonical candidate we check whether type graphs that they form
4693 * (through referenced types in fields and so on) are equivalent using algorithm
4694 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4695 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4696 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4697 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4698 * potentially map other structs/unions to their canonical representatives,
4699 * if such relationship hasn't yet been established. This speeds up algorithm
4700 * by eliminating some of the duplicate work.
4701 *
4702 * If no matching canonical representative was found, struct/union is marked
4703 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4704 * for further look ups.
4705 */
4706static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4707{
4708 struct btf_type *cand_type, *t;
4709 struct hashmap_entry *hash_entry;
4710 /* if we don't find equivalent type, then we are canonical */
4711 __u32 new_id = type_id;
4712 __u16 kind;
4713 long h;
4714
4715 /* already deduped or is in process of deduping (loop detected) */
4716 if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4717 return 0;
4718
4719 t = btf_type_by_id(d->btf, type_id);
4720 kind = btf_kind(t);
4721
4722 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4723 return 0;
4724
4725 h = btf_hash_struct(t);
4726 for_each_dedup_cand(d, hash_entry, h) {
4727 __u32 cand_id = hash_entry->value;
4728 int eq;
4729
4730 /*
4731 * Even though btf_dedup_is_equiv() checks for
4732 * btf_shallow_equal_struct() internally when checking two
4733 * structs (unions) for equivalence, we need to guard here
4734 * from picking matching FWD type as a dedup candidate.
4735 * This can happen due to hash collision. In such case just
4736 * relying on btf_dedup_is_equiv() would lead to potentially
4737 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4738 * FWD and compatible STRUCT/UNION are considered equivalent.
4739 */
4740 cand_type = btf_type_by_id(d->btf, cand_id);
4741 if (!btf_shallow_equal_struct(t, cand_type))
4742 continue;
4743
4744 btf_dedup_clear_hypot_map(d);
4745 eq = btf_dedup_is_equiv(d, type_id, cand_id);
4746 if (eq < 0)
4747 return eq;
4748 if (!eq)
4749 continue;
4750 btf_dedup_merge_hypot_map(d);
4751 if (d->hypot_adjust_canon) /* not really equivalent */
4752 continue;
4753 new_id = cand_id;
4754 break;
4755 }
4756
4757 d->map[type_id] = new_id;
4758 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4759 return -ENOMEM;
4760
4761 return 0;
4762}
4763
4764static int btf_dedup_struct_types(struct btf_dedup *d)
4765{
4766 int i, err;
4767
4768 for (i = 0; i < d->btf->nr_types; i++) {
4769 err = btf_dedup_struct_type(d, d->btf->start_id + i);
4770 if (err)
4771 return err;
4772 }
4773 return 0;
4774}
4775
4776/*
4777 * Deduplicate reference type.
4778 *
4779 * Once all primitive and struct/union types got deduplicated, we can easily
4780 * deduplicate all other (reference) BTF types. This is done in two steps:
4781 *
4782 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4783 * resolution can be done either immediately for primitive or struct/union types
4784 * (because they were deduped in previous two phases) or recursively for
4785 * reference types. Recursion will always terminate at either primitive or
4786 * struct/union type, at which point we can "unwind" chain of reference types
4787 * one by one. There is no danger of encountering cycles because in C type
4788 * system the only way to form type cycle is through struct/union, so any chain
4789 * of reference types, even those taking part in a type cycle, will inevitably
4790 * reach struct/union at some point.
4791 *
4792 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4793 * becomes "stable", in the sense that no further deduplication will cause
4794 * any changes to it. With that, it's now possible to calculate type's signature
4795 * hash (this time taking into account referenced type IDs) and loop over all
4796 * potential canonical representatives. If no match was found, current type
4797 * will become canonical representative of itself and will be added into
4798 * btf_dedup->dedup_table as another possible canonical representative.
4799 */
4800static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4801{
4802 struct hashmap_entry *hash_entry;
4803 __u32 new_id = type_id, cand_id;
4804 struct btf_type *t, *cand;
4805 /* if we don't find equivalent type, then we are representative type */
4806 int ref_type_id;
4807 long h;
4808
4809 if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4810 return -ELOOP;
4811 if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4812 return resolve_type_id(d, type_id);
4813
4814 t = btf_type_by_id(d->btf, type_id);
4815 d->map[type_id] = BTF_IN_PROGRESS_ID;
4816
4817 switch (btf_kind(t)) {
4818 case BTF_KIND_CONST:
4819 case BTF_KIND_VOLATILE:
4820 case BTF_KIND_RESTRICT:
4821 case BTF_KIND_PTR:
4822 case BTF_KIND_TYPEDEF:
4823 case BTF_KIND_FUNC:
4824 case BTF_KIND_TYPE_TAG:
4825 ref_type_id = btf_dedup_ref_type(d, t->type);
4826 if (ref_type_id < 0)
4827 return ref_type_id;
4828 t->type = ref_type_id;
4829
4830 h = btf_hash_common(t);
4831 for_each_dedup_cand(d, hash_entry, h) {
4832 cand_id = hash_entry->value;
4833 cand = btf_type_by_id(d->btf, cand_id);
4834 if (btf_equal_common(t, cand)) {
4835 new_id = cand_id;
4836 break;
4837 }
4838 }
4839 break;
4840
4841 case BTF_KIND_DECL_TAG:
4842 ref_type_id = btf_dedup_ref_type(d, t->type);
4843 if (ref_type_id < 0)
4844 return ref_type_id;
4845 t->type = ref_type_id;
4846
4847 h = btf_hash_int_decl_tag(t);
4848 for_each_dedup_cand(d, hash_entry, h) {
4849 cand_id = hash_entry->value;
4850 cand = btf_type_by_id(d->btf, cand_id);
4851 if (btf_equal_int_tag(t, cand)) {
4852 new_id = cand_id;
4853 break;
4854 }
4855 }
4856 break;
4857
4858 case BTF_KIND_ARRAY: {
4859 struct btf_array *info = btf_array(t);
4860
4861 ref_type_id = btf_dedup_ref_type(d, info->type);
4862 if (ref_type_id < 0)
4863 return ref_type_id;
4864 info->type = ref_type_id;
4865
4866 ref_type_id = btf_dedup_ref_type(d, info->index_type);
4867 if (ref_type_id < 0)
4868 return ref_type_id;
4869 info->index_type = ref_type_id;
4870
4871 h = btf_hash_array(t);
4872 for_each_dedup_cand(d, hash_entry, h) {
4873 cand_id = hash_entry->value;
4874 cand = btf_type_by_id(d->btf, cand_id);
4875 if (btf_equal_array(t, cand)) {
4876 new_id = cand_id;
4877 break;
4878 }
4879 }
4880 break;
4881 }
4882
4883 case BTF_KIND_FUNC_PROTO: {
4884 struct btf_param *param;
4885 __u16 vlen;
4886 int i;
4887
4888 ref_type_id = btf_dedup_ref_type(d, t->type);
4889 if (ref_type_id < 0)
4890 return ref_type_id;
4891 t->type = ref_type_id;
4892
4893 vlen = btf_vlen(t);
4894 param = btf_params(t);
4895 for (i = 0; i < vlen; i++) {
4896 ref_type_id = btf_dedup_ref_type(d, param->type);
4897 if (ref_type_id < 0)
4898 return ref_type_id;
4899 param->type = ref_type_id;
4900 param++;
4901 }
4902
4903 h = btf_hash_fnproto(t);
4904 for_each_dedup_cand(d, hash_entry, h) {
4905 cand_id = hash_entry->value;
4906 cand = btf_type_by_id(d->btf, cand_id);
4907 if (btf_equal_fnproto(t, cand)) {
4908 new_id = cand_id;
4909 break;
4910 }
4911 }
4912 break;
4913 }
4914
4915 default:
4916 return -EINVAL;
4917 }
4918
4919 d->map[type_id] = new_id;
4920 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4921 return -ENOMEM;
4922
4923 return new_id;
4924}
4925
4926static int btf_dedup_ref_types(struct btf_dedup *d)
4927{
4928 int i, err;
4929
4930 for (i = 0; i < d->btf->nr_types; i++) {
4931 err = btf_dedup_ref_type(d, d->btf->start_id + i);
4932 if (err < 0)
4933 return err;
4934 }
4935 /* we won't need d->dedup_table anymore */
4936 hashmap__free(d->dedup_table);
4937 d->dedup_table = NULL;
4938 return 0;
4939}
4940
4941/*
4942 * Collect a map from type names to type ids for all canonical structs
4943 * and unions. If the same name is shared by several canonical types
4944 * use a special value 0 to indicate this fact.
4945 */
4946static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map)
4947{
4948 __u32 nr_types = btf__type_cnt(d->btf);
4949 struct btf_type *t;
4950 __u32 type_id;
4951 __u16 kind;
4952 int err;
4953
4954 /*
4955 * Iterate over base and split module ids in order to get all
4956 * available structs in the map.
4957 */
4958 for (type_id = 1; type_id < nr_types; ++type_id) {
4959 t = btf_type_by_id(d->btf, type_id);
4960 kind = btf_kind(t);
4961
4962 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4963 continue;
4964
4965 /* Skip non-canonical types */
4966 if (type_id != d->map[type_id])
4967 continue;
4968
4969 err = hashmap__add(names_map, t->name_off, type_id);
4970 if (err == -EEXIST)
4971 err = hashmap__set(names_map, t->name_off, 0, NULL, NULL);
4972
4973 if (err)
4974 return err;
4975 }
4976
4977 return 0;
4978}
4979
4980static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id)
4981{
4982 struct btf_type *t = btf_type_by_id(d->btf, type_id);
4983 enum btf_fwd_kind fwd_kind = btf_kflag(t);
4984 __u16 cand_kind, kind = btf_kind(t);
4985 struct btf_type *cand_t;
4986 uintptr_t cand_id;
4987
4988 if (kind != BTF_KIND_FWD)
4989 return 0;
4990
4991 /* Skip if this FWD already has a mapping */
4992 if (type_id != d->map[type_id])
4993 return 0;
4994
4995 if (!hashmap__find(names_map, t->name_off, &cand_id))
4996 return 0;
4997
4998 /* Zero is a special value indicating that name is not unique */
4999 if (!cand_id)
5000 return 0;
5001
5002 cand_t = btf_type_by_id(d->btf, cand_id);
5003 cand_kind = btf_kind(cand_t);
5004 if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) ||
5005 (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION))
5006 return 0;
5007
5008 d->map[type_id] = cand_id;
5009
5010 return 0;
5011}
5012
5013/*
5014 * Resolve unambiguous forward declarations.
5015 *
5016 * The lion's share of all FWD declarations is resolved during
5017 * `btf_dedup_struct_types` phase when different type graphs are
5018 * compared against each other. However, if in some compilation unit a
5019 * FWD declaration is not a part of a type graph compared against
5020 * another type graph that declaration's canonical type would not be
5021 * changed. Example:
5022 *
5023 * CU #1:
5024 *
5025 * struct foo;
5026 * struct foo *some_global;
5027 *
5028 * CU #2:
5029 *
5030 * struct foo { int u; };
5031 * struct foo *another_global;
5032 *
5033 * After `btf_dedup_struct_types` the BTF looks as follows:
5034 *
5035 * [1] STRUCT 'foo' size=4 vlen=1 ...
5036 * [2] INT 'int' size=4 ...
5037 * [3] PTR '(anon)' type_id=1
5038 * [4] FWD 'foo' fwd_kind=struct
5039 * [5] PTR '(anon)' type_id=4
5040 *
5041 * This pass assumes that such FWD declarations should be mapped to
5042 * structs or unions with identical name in case if the name is not
5043 * ambiguous.
5044 */
5045static int btf_dedup_resolve_fwds(struct btf_dedup *d)
5046{
5047 int i, err;
5048 struct hashmap *names_map;
5049
5050 names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
5051 if (IS_ERR(names_map))
5052 return PTR_ERR(names_map);
5053
5054 err = btf_dedup_fill_unique_names_map(d, names_map);
5055 if (err < 0)
5056 goto exit;
5057
5058 for (i = 0; i < d->btf->nr_types; i++) {
5059 err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i);
5060 if (err < 0)
5061 break;
5062 }
5063
5064exit:
5065 hashmap__free(names_map);
5066 return err;
5067}
5068
5069/*
5070 * Compact types.
5071 *
5072 * After we established for each type its corresponding canonical representative
5073 * type, we now can eliminate types that are not canonical and leave only
5074 * canonical ones layed out sequentially in memory by copying them over
5075 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
5076 * a map from original type ID to a new compacted type ID, which will be used
5077 * during next phase to "fix up" type IDs, referenced from struct/union and
5078 * reference types.
5079 */
5080static int btf_dedup_compact_types(struct btf_dedup *d)
5081{
5082 __u32 *new_offs;
5083 __u32 next_type_id = d->btf->start_id;
5084 const struct btf_type *t;
5085 void *p;
5086 int i, id, len;
5087
5088 /* we are going to reuse hypot_map to store compaction remapping */
5089 d->hypot_map[0] = 0;
5090 /* base BTF types are not renumbered */
5091 for (id = 1; id < d->btf->start_id; id++)
5092 d->hypot_map[id] = id;
5093 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
5094 d->hypot_map[id] = BTF_UNPROCESSED_ID;
5095
5096 p = d->btf->types_data;
5097
5098 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
5099 if (d->map[id] != id)
5100 continue;
5101
5102 t = btf__type_by_id(d->btf, id);
5103 len = btf_type_size(t);
5104 if (len < 0)
5105 return len;
5106
5107 memmove(p, t, len);
5108 d->hypot_map[id] = next_type_id;
5109 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
5110 p += len;
5111 next_type_id++;
5112 }
5113
5114 /* shrink struct btf's internal types index and update btf_header */
5115 d->btf->nr_types = next_type_id - d->btf->start_id;
5116 d->btf->type_offs_cap = d->btf->nr_types;
5117 d->btf->hdr->type_len = p - d->btf->types_data;
5118 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
5119 sizeof(*new_offs));
5120 if (d->btf->type_offs_cap && !new_offs)
5121 return -ENOMEM;
5122 d->btf->type_offs = new_offs;
5123 d->btf->hdr->str_off = d->btf->hdr->type_len;
5124 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
5125 return 0;
5126}
5127
5128/*
5129 * Figure out final (deduplicated and compacted) type ID for provided original
5130 * `type_id` by first resolving it into corresponding canonical type ID and
5131 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
5132 * which is populated during compaction phase.
5133 */
5134static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
5135{
5136 struct btf_dedup *d = ctx;
5137 __u32 resolved_type_id, new_type_id;
5138
5139 resolved_type_id = resolve_type_id(d, *type_id);
5140 new_type_id = d->hypot_map[resolved_type_id];
5141 if (new_type_id > BTF_MAX_NR_TYPES)
5142 return -EINVAL;
5143
5144 *type_id = new_type_id;
5145 return 0;
5146}
5147
5148/*
5149 * Remap referenced type IDs into deduped type IDs.
5150 *
5151 * After BTF types are deduplicated and compacted, their final type IDs may
5152 * differ from original ones. The map from original to a corresponding
5153 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
5154 * compaction phase. During remapping phase we are rewriting all type IDs
5155 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
5156 * their final deduped type IDs.
5157 */
5158static int btf_dedup_remap_types(struct btf_dedup *d)
5159{
5160 int i, r;
5161
5162 for (i = 0; i < d->btf->nr_types; i++) {
5163 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
5164 struct btf_field_iter it;
5165 __u32 *type_id;
5166
5167 r = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS);
5168 if (r)
5169 return r;
5170
5171 while ((type_id = btf_field_iter_next(&it))) {
5172 __u32 resolved_id, new_id;
5173
5174 resolved_id = resolve_type_id(d, *type_id);
5175 new_id = d->hypot_map[resolved_id];
5176 if (new_id > BTF_MAX_NR_TYPES)
5177 return -EINVAL;
5178
5179 *type_id = new_id;
5180 }
5181 }
5182
5183 if (!d->btf_ext)
5184 return 0;
5185
5186 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
5187 if (r)
5188 return r;
5189
5190 return 0;
5191}
5192
5193/*
5194 * Probe few well-known locations for vmlinux kernel image and try to load BTF
5195 * data out of it to use for target BTF.
5196 */
5197struct btf *btf__load_vmlinux_btf(void)
5198{
5199 const char *sysfs_btf_path = "/sys/kernel/btf/vmlinux";
5200 /* fall back locations, trying to find vmlinux on disk */
5201 const char *locations[] = {
5202 "/boot/vmlinux-%1$s",
5203 "/lib/modules/%1$s/vmlinux-%1$s",
5204 "/lib/modules/%1$s/build/vmlinux",
5205 "/usr/lib/modules/%1$s/kernel/vmlinux",
5206 "/usr/lib/debug/boot/vmlinux-%1$s",
5207 "/usr/lib/debug/boot/vmlinux-%1$s.debug",
5208 "/usr/lib/debug/lib/modules/%1$s/vmlinux",
5209 };
5210 char path[PATH_MAX + 1];
5211 struct utsname buf;
5212 struct btf *btf;
5213 int i, err;
5214
5215 /* is canonical sysfs location accessible? */
5216 if (faccessat(AT_FDCWD, sysfs_btf_path, F_OK, AT_EACCESS) < 0) {
5217 pr_warn("kernel BTF is missing at '%s', was CONFIG_DEBUG_INFO_BTF enabled?\n",
5218 sysfs_btf_path);
5219 } else {
5220 btf = btf__parse(sysfs_btf_path, NULL);
5221 if (!btf) {
5222 err = -errno;
5223 pr_warn("failed to read kernel BTF from '%s': %s\n",
5224 sysfs_btf_path, errstr(err));
5225 return libbpf_err_ptr(err);
5226 }
5227 pr_debug("loaded kernel BTF from '%s'\n", sysfs_btf_path);
5228 return btf;
5229 }
5230
5231 /* try fallback locations */
5232 uname(&buf);
5233 for (i = 0; i < ARRAY_SIZE(locations); i++) {
5234 snprintf(path, PATH_MAX, locations[i], buf.release);
5235
5236 if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS))
5237 continue;
5238
5239 btf = btf__parse(path, NULL);
5240 err = libbpf_get_error(btf);
5241 pr_debug("loading kernel BTF '%s': %s\n", path, errstr(err));
5242 if (err)
5243 continue;
5244
5245 return btf;
5246 }
5247
5248 pr_warn("failed to find valid kernel BTF\n");
5249 return libbpf_err_ptr(-ESRCH);
5250}
5251
5252struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
5253
5254struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
5255{
5256 char path[80];
5257
5258 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
5259 return btf__parse_split(path, vmlinux_btf);
5260}
5261
5262int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
5263{
5264 const struct btf_ext_info *seg;
5265 struct btf_ext_info_sec *sec;
5266 int i, err;
5267
5268 seg = &btf_ext->func_info;
5269 for_each_btf_ext_sec(seg, sec) {
5270 struct bpf_func_info_min *rec;
5271
5272 for_each_btf_ext_rec(seg, sec, i, rec) {
5273 err = visit(&rec->type_id, ctx);
5274 if (err < 0)
5275 return err;
5276 }
5277 }
5278
5279 seg = &btf_ext->core_relo_info;
5280 for_each_btf_ext_sec(seg, sec) {
5281 struct bpf_core_relo *rec;
5282
5283 for_each_btf_ext_rec(seg, sec, i, rec) {
5284 err = visit(&rec->type_id, ctx);
5285 if (err < 0)
5286 return err;
5287 }
5288 }
5289
5290 return 0;
5291}
5292
5293int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
5294{
5295 const struct btf_ext_info *seg;
5296 struct btf_ext_info_sec *sec;
5297 int i, err;
5298
5299 seg = &btf_ext->func_info;
5300 for_each_btf_ext_sec(seg, sec) {
5301 err = visit(&sec->sec_name_off, ctx);
5302 if (err)
5303 return err;
5304 }
5305
5306 seg = &btf_ext->line_info;
5307 for_each_btf_ext_sec(seg, sec) {
5308 struct bpf_line_info_min *rec;
5309
5310 err = visit(&sec->sec_name_off, ctx);
5311 if (err)
5312 return err;
5313
5314 for_each_btf_ext_rec(seg, sec, i, rec) {
5315 err = visit(&rec->file_name_off, ctx);
5316 if (err)
5317 return err;
5318 err = visit(&rec->line_off, ctx);
5319 if (err)
5320 return err;
5321 }
5322 }
5323
5324 seg = &btf_ext->core_relo_info;
5325 for_each_btf_ext_sec(seg, sec) {
5326 struct bpf_core_relo *rec;
5327
5328 err = visit(&sec->sec_name_off, ctx);
5329 if (err)
5330 return err;
5331
5332 for_each_btf_ext_rec(seg, sec, i, rec) {
5333 err = visit(&rec->access_str_off, ctx);
5334 if (err)
5335 return err;
5336 }
5337 }
5338
5339 return 0;
5340}
5341
5342struct btf_distill {
5343 struct btf_pipe pipe;
5344 int *id_map;
5345 unsigned int split_start_id;
5346 unsigned int split_start_str;
5347 int diff_id;
5348};
5349
5350static int btf_add_distilled_type_ids(struct btf_distill *dist, __u32 i)
5351{
5352 struct btf_type *split_t = btf_type_by_id(dist->pipe.src, i);
5353 struct btf_field_iter it;
5354 __u32 *id;
5355 int err;
5356
5357 err = btf_field_iter_init(&it, split_t, BTF_FIELD_ITER_IDS);
5358 if (err)
5359 return err;
5360 while ((id = btf_field_iter_next(&it))) {
5361 struct btf_type *base_t;
5362
5363 if (!*id)
5364 continue;
5365 /* split BTF id, not needed */
5366 if (*id >= dist->split_start_id)
5367 continue;
5368 /* already added ? */
5369 if (dist->id_map[*id] > 0)
5370 continue;
5371
5372 /* only a subset of base BTF types should be referenced from
5373 * split BTF; ensure nothing unexpected is referenced.
5374 */
5375 base_t = btf_type_by_id(dist->pipe.src, *id);
5376 switch (btf_kind(base_t)) {
5377 case BTF_KIND_INT:
5378 case BTF_KIND_FLOAT:
5379 case BTF_KIND_FWD:
5380 case BTF_KIND_ARRAY:
5381 case BTF_KIND_STRUCT:
5382 case BTF_KIND_UNION:
5383 case BTF_KIND_TYPEDEF:
5384 case BTF_KIND_ENUM:
5385 case BTF_KIND_ENUM64:
5386 case BTF_KIND_PTR:
5387 case BTF_KIND_CONST:
5388 case BTF_KIND_RESTRICT:
5389 case BTF_KIND_VOLATILE:
5390 case BTF_KIND_FUNC_PROTO:
5391 case BTF_KIND_TYPE_TAG:
5392 dist->id_map[*id] = *id;
5393 break;
5394 default:
5395 pr_warn("unexpected reference to base type[%u] of kind [%u] when creating distilled base BTF.\n",
5396 *id, btf_kind(base_t));
5397 return -EINVAL;
5398 }
5399 /* If a base type is used, ensure types it refers to are
5400 * marked as used also; so for example if we find a PTR to INT
5401 * we need both the PTR and INT.
5402 *
5403 * The only exception is named struct/unions, since distilled
5404 * base BTF composite types have no members.
5405 */
5406 if (btf_is_composite(base_t) && base_t->name_off)
5407 continue;
5408 err = btf_add_distilled_type_ids(dist, *id);
5409 if (err)
5410 return err;
5411 }
5412 return 0;
5413}
5414
5415static int btf_add_distilled_types(struct btf_distill *dist)
5416{
5417 bool adding_to_base = dist->pipe.dst->start_id == 1;
5418 int id = btf__type_cnt(dist->pipe.dst);
5419 struct btf_type *t;
5420 int i, err = 0;
5421
5422
5423 /* Add types for each of the required references to either distilled
5424 * base or split BTF, depending on type characteristics.
5425 */
5426 for (i = 1; i < dist->split_start_id; i++) {
5427 const char *name;
5428 int kind;
5429
5430 if (!dist->id_map[i])
5431 continue;
5432 t = btf_type_by_id(dist->pipe.src, i);
5433 kind = btf_kind(t);
5434 name = btf__name_by_offset(dist->pipe.src, t->name_off);
5435
5436 switch (kind) {
5437 case BTF_KIND_INT:
5438 case BTF_KIND_FLOAT:
5439 case BTF_KIND_FWD:
5440 /* Named int, float, fwd are added to base. */
5441 if (!adding_to_base)
5442 continue;
5443 err = btf_add_type(&dist->pipe, t);
5444 break;
5445 case BTF_KIND_STRUCT:
5446 case BTF_KIND_UNION:
5447 /* Named struct/union are added to base as 0-vlen
5448 * struct/union of same size. Anonymous struct/unions
5449 * are added to split BTF as-is.
5450 */
5451 if (adding_to_base) {
5452 if (!t->name_off)
5453 continue;
5454 err = btf_add_composite(dist->pipe.dst, kind, name, t->size);
5455 } else {
5456 if (t->name_off)
5457 continue;
5458 err = btf_add_type(&dist->pipe, t);
5459 }
5460 break;
5461 case BTF_KIND_ENUM:
5462 case BTF_KIND_ENUM64:
5463 /* Named enum[64]s are added to base as a sized
5464 * enum; relocation will match with appropriately-named
5465 * and sized enum or enum64.
5466 *
5467 * Anonymous enums are added to split BTF as-is.
5468 */
5469 if (adding_to_base) {
5470 if (!t->name_off)
5471 continue;
5472 err = btf__add_enum(dist->pipe.dst, name, t->size);
5473 } else {
5474 if (t->name_off)
5475 continue;
5476 err = btf_add_type(&dist->pipe, t);
5477 }
5478 break;
5479 case BTF_KIND_ARRAY:
5480 case BTF_KIND_TYPEDEF:
5481 case BTF_KIND_PTR:
5482 case BTF_KIND_CONST:
5483 case BTF_KIND_RESTRICT:
5484 case BTF_KIND_VOLATILE:
5485 case BTF_KIND_FUNC_PROTO:
5486 case BTF_KIND_TYPE_TAG:
5487 /* All other types are added to split BTF. */
5488 if (adding_to_base)
5489 continue;
5490 err = btf_add_type(&dist->pipe, t);
5491 break;
5492 default:
5493 pr_warn("unexpected kind when adding base type '%s'[%u] of kind [%u] to distilled base BTF.\n",
5494 name, i, kind);
5495 return -EINVAL;
5496
5497 }
5498 if (err < 0)
5499 break;
5500 dist->id_map[i] = id++;
5501 }
5502 return err;
5503}
5504
5505/* Split BTF ids without a mapping will be shifted downwards since distilled
5506 * base BTF is smaller than the original base BTF. For those that have a
5507 * mapping (either to base or updated split BTF), update the id based on
5508 * that mapping.
5509 */
5510static int btf_update_distilled_type_ids(struct btf_distill *dist, __u32 i)
5511{
5512 struct btf_type *t = btf_type_by_id(dist->pipe.dst, i);
5513 struct btf_field_iter it;
5514 __u32 *id;
5515 int err;
5516
5517 err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS);
5518 if (err)
5519 return err;
5520 while ((id = btf_field_iter_next(&it))) {
5521 if (dist->id_map[*id])
5522 *id = dist->id_map[*id];
5523 else if (*id >= dist->split_start_id)
5524 *id -= dist->diff_id;
5525 }
5526 return 0;
5527}
5528
5529/* Create updated split BTF with distilled base BTF; distilled base BTF
5530 * consists of BTF information required to clarify the types that split
5531 * BTF refers to, omitting unneeded details. Specifically it will contain
5532 * base types and memberless definitions of named structs, unions and enumerated
5533 * types. Associated reference types like pointers, arrays and anonymous
5534 * structs, unions and enumerated types will be added to split BTF.
5535 * Size is recorded for named struct/unions to help guide matching to the
5536 * target base BTF during later relocation.
5537 *
5538 * The only case where structs, unions or enumerated types are fully represented
5539 * is when they are anonymous; in such cases, the anonymous type is added to
5540 * split BTF in full.
5541 *
5542 * We return newly-created split BTF where the split BTF refers to a newly-created
5543 * distilled base BTF. Both must be freed separately by the caller.
5544 */
5545int btf__distill_base(const struct btf *src_btf, struct btf **new_base_btf,
5546 struct btf **new_split_btf)
5547{
5548 struct btf *new_base = NULL, *new_split = NULL;
5549 const struct btf *old_base;
5550 unsigned int n = btf__type_cnt(src_btf);
5551 struct btf_distill dist = {};
5552 struct btf_type *t;
5553 int i, err = 0;
5554
5555 /* src BTF must be split BTF. */
5556 old_base = btf__base_btf(src_btf);
5557 if (!new_base_btf || !new_split_btf || !old_base)
5558 return libbpf_err(-EINVAL);
5559
5560 new_base = btf__new_empty();
5561 if (!new_base)
5562 return libbpf_err(-ENOMEM);
5563
5564 btf__set_endianness(new_base, btf__endianness(src_btf));
5565
5566 dist.id_map = calloc(n, sizeof(*dist.id_map));
5567 if (!dist.id_map) {
5568 err = -ENOMEM;
5569 goto done;
5570 }
5571 dist.pipe.src = src_btf;
5572 dist.pipe.dst = new_base;
5573 dist.pipe.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
5574 if (IS_ERR(dist.pipe.str_off_map)) {
5575 err = -ENOMEM;
5576 goto done;
5577 }
5578 dist.split_start_id = btf__type_cnt(old_base);
5579 dist.split_start_str = old_base->hdr->str_len;
5580
5581 /* Pass over src split BTF; generate the list of base BTF type ids it
5582 * references; these will constitute our distilled BTF set to be
5583 * distributed over base and split BTF as appropriate.
5584 */
5585 for (i = src_btf->start_id; i < n; i++) {
5586 err = btf_add_distilled_type_ids(&dist, i);
5587 if (err < 0)
5588 goto done;
5589 }
5590 /* Next add types for each of the required references to base BTF and split BTF
5591 * in turn.
5592 */
5593 err = btf_add_distilled_types(&dist);
5594 if (err < 0)
5595 goto done;
5596
5597 /* Create new split BTF with distilled base BTF as its base; the final
5598 * state is split BTF with distilled base BTF that represents enough
5599 * about its base references to allow it to be relocated with the base
5600 * BTF available.
5601 */
5602 new_split = btf__new_empty_split(new_base);
5603 if (!new_split) {
5604 err = -errno;
5605 goto done;
5606 }
5607 dist.pipe.dst = new_split;
5608 /* First add all split types */
5609 for (i = src_btf->start_id; i < n; i++) {
5610 t = btf_type_by_id(src_btf, i);
5611 err = btf_add_type(&dist.pipe, t);
5612 if (err < 0)
5613 goto done;
5614 }
5615 /* Now add distilled types to split BTF that are not added to base. */
5616 err = btf_add_distilled_types(&dist);
5617 if (err < 0)
5618 goto done;
5619
5620 /* All split BTF ids will be shifted downwards since there are less base
5621 * BTF ids in distilled base BTF.
5622 */
5623 dist.diff_id = dist.split_start_id - btf__type_cnt(new_base);
5624
5625 n = btf__type_cnt(new_split);
5626 /* Now update base/split BTF ids. */
5627 for (i = 1; i < n; i++) {
5628 err = btf_update_distilled_type_ids(&dist, i);
5629 if (err < 0)
5630 break;
5631 }
5632done:
5633 free(dist.id_map);
5634 hashmap__free(dist.pipe.str_off_map);
5635 if (err) {
5636 btf__free(new_split);
5637 btf__free(new_base);
5638 return libbpf_err(err);
5639 }
5640 *new_base_btf = new_base;
5641 *new_split_btf = new_split;
5642
5643 return 0;
5644}
5645
5646const struct btf_header *btf_header(const struct btf *btf)
5647{
5648 return btf->hdr;
5649}
5650
5651void btf_set_base_btf(struct btf *btf, const struct btf *base_btf)
5652{
5653 btf->base_btf = (struct btf *)base_btf;
5654 btf->start_id = btf__type_cnt(base_btf);
5655 btf->start_str_off = base_btf->hdr->str_len;
5656}
5657
5658int btf__relocate(struct btf *btf, const struct btf *base_btf)
5659{
5660 int err = btf_relocate(btf, base_btf, NULL);
5661
5662 if (!err)
5663 btf->owns_base = false;
5664 return libbpf_err(err);
5665}