Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include <linux/psi.h>
 
  26#include "internal.h"
  27
  28#ifdef CONFIG_COMPACTION
 
 
 
 
 
  29static inline void count_compact_event(enum vm_event_item item)
  30{
  31	count_vm_event(item);
  32}
  33
  34static inline void count_compact_events(enum vm_event_item item, long delta)
  35{
  36	count_vm_events(item, delta);
  37}
 
 
 
 
 
 
 
 
 
 
 
 
  38#else
  39#define count_compact_event(item) do { } while (0)
  40#define count_compact_events(item, delta) do { } while (0)
 
  41#endif
  42
  43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/compaction.h>
  47
  48#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
  49#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
  50#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
  51#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
  52
  53/*
  54 * Fragmentation score check interval for proactive compaction purposes.
  55 */
  56static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
  57
  58/*
  59 * Page order with-respect-to which proactive compaction
  60 * calculates external fragmentation, which is used as
  61 * the "fragmentation score" of a node/zone.
  62 */
  63#if defined CONFIG_TRANSPARENT_HUGEPAGE
  64#define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
  65#elif defined CONFIG_HUGETLBFS
  66#define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
  67#else
  68#define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
  69#endif
  70
  71static unsigned long release_freepages(struct list_head *freelist)
  72{
  73	struct page *page, *next;
  74	unsigned long high_pfn = 0;
  75
  76	list_for_each_entry_safe(page, next, freelist, lru) {
  77		unsigned long pfn = page_to_pfn(page);
  78		list_del(&page->lru);
  79		__free_page(page);
  80		if (pfn > high_pfn)
  81			high_pfn = pfn;
  82	}
  83
  84	return high_pfn;
  85}
 
  86
  87static void split_map_pages(struct list_head *list)
  88{
  89	unsigned int i, order, nr_pages;
  90	struct page *page, *next;
  91	LIST_HEAD(tmp_list);
  92
  93	list_for_each_entry_safe(page, next, list, lru) {
  94		list_del(&page->lru);
  95
  96		order = page_private(page);
  97		nr_pages = 1 << order;
  98
  99		post_alloc_hook(page, order, __GFP_MOVABLE);
 100		if (order)
 101			split_page(page, order);
 102
 103		for (i = 0; i < nr_pages; i++) {
 104			list_add(&page->lru, &tmp_list);
 105			page++;
 
 
 
 
 
 
 106		}
 107	}
 108
 109	list_splice(&tmp_list, list);
 110}
 111
 112#ifdef CONFIG_COMPACTION
 113
 114int PageMovable(struct page *page)
 115{
 116	struct address_space *mapping;
 117
 118	VM_BUG_ON_PAGE(!PageLocked(page), page);
 119	if (!__PageMovable(page))
 120		return 0;
 121
 122	mapping = page_mapping(page);
 123	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
 124		return 1;
 125
 126	return 0;
 127}
 128EXPORT_SYMBOL(PageMovable);
 129
 130void __SetPageMovable(struct page *page, struct address_space *mapping)
 131{
 132	VM_BUG_ON_PAGE(!PageLocked(page), page);
 133	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
 134	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
 135}
 136EXPORT_SYMBOL(__SetPageMovable);
 137
 138void __ClearPageMovable(struct page *page)
 139{
 140	VM_BUG_ON_PAGE(!PageMovable(page), page);
 141	/*
 142	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
 143	 * flag so that VM can catch up released page by driver after isolation.
 144	 * With it, VM migration doesn't try to put it back.
 145	 */
 146	page->mapping = (void *)((unsigned long)page->mapping &
 147				PAGE_MAPPING_MOVABLE);
 148}
 149EXPORT_SYMBOL(__ClearPageMovable);
 150
 151/* Do not skip compaction more than 64 times */
 152#define COMPACT_MAX_DEFER_SHIFT 6
 153
 154/*
 155 * Compaction is deferred when compaction fails to result in a page
 156 * allocation success. 1 << compact_defer_shift, compactions are skipped up
 157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 158 */
 159static void defer_compaction(struct zone *zone, int order)
 160{
 161	zone->compact_considered = 0;
 162	zone->compact_defer_shift++;
 163
 164	if (order < zone->compact_order_failed)
 165		zone->compact_order_failed = order;
 166
 167	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 168		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 169
 170	trace_mm_compaction_defer_compaction(zone, order);
 171}
 172
 173/* Returns true if compaction should be skipped this time */
 174static bool compaction_deferred(struct zone *zone, int order)
 175{
 176	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 177
 178	if (order < zone->compact_order_failed)
 179		return false;
 180
 181	/* Avoid possible overflow */
 182	if (++zone->compact_considered >= defer_limit) {
 183		zone->compact_considered = defer_limit;
 184		return false;
 185	}
 186
 187	trace_mm_compaction_deferred(zone, order);
 188
 189	return true;
 190}
 191
 192/*
 193 * Update defer tracking counters after successful compaction of given order,
 194 * which means an allocation either succeeded (alloc_success == true) or is
 195 * expected to succeed.
 196 */
 197void compaction_defer_reset(struct zone *zone, int order,
 198		bool alloc_success)
 199{
 200	if (alloc_success) {
 201		zone->compact_considered = 0;
 202		zone->compact_defer_shift = 0;
 203	}
 204	if (order >= zone->compact_order_failed)
 205		zone->compact_order_failed = order + 1;
 206
 207	trace_mm_compaction_defer_reset(zone, order);
 208}
 209
 210/* Returns true if restarting compaction after many failures */
 211static bool compaction_restarting(struct zone *zone, int order)
 212{
 213	if (order < zone->compact_order_failed)
 214		return false;
 215
 216	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 217		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 218}
 219
 220/* Returns true if the pageblock should be scanned for pages to isolate. */
 221static inline bool isolation_suitable(struct compact_control *cc,
 222					struct page *page)
 223{
 224	if (cc->ignore_skip_hint)
 225		return true;
 226
 227	return !get_pageblock_skip(page);
 228}
 229
 230static void reset_cached_positions(struct zone *zone)
 231{
 232	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 233	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 234	zone->compact_cached_free_pfn =
 235				pageblock_start_pfn(zone_end_pfn(zone) - 1);
 236}
 237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238/*
 239 * Compound pages of >= pageblock_order should consistently be skipped until
 240 * released. It is always pointless to compact pages of such order (if they are
 241 * migratable), and the pageblocks they occupy cannot contain any free pages.
 242 */
 243static bool pageblock_skip_persistent(struct page *page)
 244{
 245	if (!PageCompound(page))
 246		return false;
 247
 248	page = compound_head(page);
 249
 250	if (compound_order(page) >= pageblock_order)
 251		return true;
 252
 253	return false;
 254}
 255
 256static bool
 257__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
 258							bool check_target)
 259{
 260	struct page *page = pfn_to_online_page(pfn);
 261	struct page *block_page;
 262	struct page *end_page;
 263	unsigned long block_pfn;
 264
 265	if (!page)
 266		return false;
 267	if (zone != page_zone(page))
 268		return false;
 269	if (pageblock_skip_persistent(page))
 270		return false;
 271
 272	/*
 273	 * If skip is already cleared do no further checking once the
 274	 * restart points have been set.
 275	 */
 276	if (check_source && check_target && !get_pageblock_skip(page))
 277		return true;
 278
 279	/*
 280	 * If clearing skip for the target scanner, do not select a
 281	 * non-movable pageblock as the starting point.
 282	 */
 283	if (!check_source && check_target &&
 284	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
 285		return false;
 286
 287	/* Ensure the start of the pageblock or zone is online and valid */
 288	block_pfn = pageblock_start_pfn(pfn);
 289	block_pfn = max(block_pfn, zone->zone_start_pfn);
 290	block_page = pfn_to_online_page(block_pfn);
 291	if (block_page) {
 292		page = block_page;
 293		pfn = block_pfn;
 294	}
 295
 296	/* Ensure the end of the pageblock or zone is online and valid */
 297	block_pfn = pageblock_end_pfn(pfn) - 1;
 298	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
 299	end_page = pfn_to_online_page(block_pfn);
 300	if (!end_page)
 301		return false;
 302
 303	/*
 304	 * Only clear the hint if a sample indicates there is either a
 305	 * free page or an LRU page in the block. One or other condition
 306	 * is necessary for the block to be a migration source/target.
 307	 */
 308	do {
 309		if (pfn_valid_within(pfn)) {
 310			if (check_source && PageLRU(page)) {
 311				clear_pageblock_skip(page);
 312				return true;
 313			}
 314
 315			if (check_target && PageBuddy(page)) {
 316				clear_pageblock_skip(page);
 317				return true;
 318			}
 319		}
 320
 321		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
 322		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
 323	} while (page <= end_page);
 324
 325	return false;
 326}
 327
 328/*
 329 * This function is called to clear all cached information on pageblocks that
 330 * should be skipped for page isolation when the migrate and free page scanner
 331 * meet.
 332 */
 333static void __reset_isolation_suitable(struct zone *zone)
 334{
 335	unsigned long migrate_pfn = zone->zone_start_pfn;
 336	unsigned long free_pfn = zone_end_pfn(zone) - 1;
 337	unsigned long reset_migrate = free_pfn;
 338	unsigned long reset_free = migrate_pfn;
 339	bool source_set = false;
 340	bool free_set = false;
 341
 
 342	if (!zone->compact_blockskip_flush)
 343		return;
 344
 345	zone->compact_blockskip_flush = false;
 346
 347	/*
 348	 * Walk the zone and update pageblock skip information. Source looks
 349	 * for PageLRU while target looks for PageBuddy. When the scanner
 350	 * is found, both PageBuddy and PageLRU are checked as the pageblock
 351	 * is suitable as both source and target.
 352	 */
 353	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
 354					free_pfn -= pageblock_nr_pages) {
 355		cond_resched();
 356
 357		/* Update the migrate PFN */
 358		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
 359		    migrate_pfn < reset_migrate) {
 360			source_set = true;
 361			reset_migrate = migrate_pfn;
 362			zone->compact_init_migrate_pfn = reset_migrate;
 363			zone->compact_cached_migrate_pfn[0] = reset_migrate;
 364			zone->compact_cached_migrate_pfn[1] = reset_migrate;
 365		}
 366
 367		/* Update the free PFN */
 368		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
 369		    free_pfn > reset_free) {
 370			free_set = true;
 371			reset_free = free_pfn;
 372			zone->compact_init_free_pfn = reset_free;
 373			zone->compact_cached_free_pfn = reset_free;
 374		}
 375	}
 376
 377	/* Leave no distance if no suitable block was reset */
 378	if (reset_migrate >= reset_free) {
 379		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
 380		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
 381		zone->compact_cached_free_pfn = free_pfn;
 382	}
 383}
 384
 385void reset_isolation_suitable(pg_data_t *pgdat)
 386{
 387	int zoneid;
 388
 389	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 390		struct zone *zone = &pgdat->node_zones[zoneid];
 391		if (!populated_zone(zone))
 392			continue;
 393
 394		/* Only flush if a full compaction finished recently */
 395		if (zone->compact_blockskip_flush)
 396			__reset_isolation_suitable(zone);
 397	}
 398}
 399
 400/*
 401 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 402 * locks are not required for read/writers. Returns true if it was already set.
 403 */
 404static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 405							unsigned long pfn)
 406{
 407	bool skip;
 408
 409	/* Do no update if skip hint is being ignored */
 410	if (cc->ignore_skip_hint)
 411		return false;
 412
 413	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
 414		return false;
 415
 416	skip = get_pageblock_skip(page);
 417	if (!skip && !cc->no_set_skip_hint)
 418		set_pageblock_skip(page);
 419
 420	return skip;
 421}
 422
 423static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 424{
 425	struct zone *zone = cc->zone;
 426
 427	pfn = pageblock_end_pfn(pfn);
 428
 429	/* Set for isolation rather than compaction */
 430	if (cc->no_set_skip_hint)
 431		return;
 432
 
 
 
 433	if (pfn > zone->compact_cached_migrate_pfn[0])
 434		zone->compact_cached_migrate_pfn[0] = pfn;
 435	if (cc->mode != MIGRATE_ASYNC &&
 436	    pfn > zone->compact_cached_migrate_pfn[1])
 437		zone->compact_cached_migrate_pfn[1] = pfn;
 438}
 439
 440/*
 441 * If no pages were isolated then mark this pageblock to be skipped in the
 442 * future. The information is later cleared by __reset_isolation_suitable().
 443 */
 444static void update_pageblock_skip(struct compact_control *cc,
 445			struct page *page, unsigned long pfn)
 446{
 447	struct zone *zone = cc->zone;
 448
 449	if (cc->no_set_skip_hint)
 450		return;
 451
 452	if (!page)
 453		return;
 454
 455	set_pageblock_skip(page);
 456
 457	/* Update where async and sync compaction should restart */
 458	if (pfn < zone->compact_cached_free_pfn)
 459		zone->compact_cached_free_pfn = pfn;
 460}
 461#else
 462static inline bool isolation_suitable(struct compact_control *cc,
 463					struct page *page)
 464{
 465	return true;
 466}
 467
 468static inline bool pageblock_skip_persistent(struct page *page)
 469{
 470	return false;
 471}
 472
 473static inline void update_pageblock_skip(struct compact_control *cc,
 474			struct page *page, unsigned long pfn)
 475{
 476}
 477
 478static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 479{
 480}
 481
 482static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 483							unsigned long pfn)
 484{
 485	return false;
 486}
 487#endif /* CONFIG_COMPACTION */
 488
 489/*
 490 * Compaction requires the taking of some coarse locks that are potentially
 491 * very heavily contended. For async compaction, trylock and record if the
 492 * lock is contended. The lock will still be acquired but compaction will
 493 * abort when the current block is finished regardless of success rate.
 494 * Sync compaction acquires the lock.
 495 *
 496 * Always returns true which makes it easier to track lock state in callers.
 497 */
 498static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
 499						struct compact_control *cc)
 500	__acquires(lock)
 501{
 502	/* Track if the lock is contended in async mode */
 503	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
 504		if (spin_trylock_irqsave(lock, *flags))
 505			return true;
 506
 507		cc->contended = true;
 508	}
 509
 510	spin_lock_irqsave(lock, *flags);
 511	return true;
 512}
 513
 514/*
 515 * Compaction requires the taking of some coarse locks that are potentially
 516 * very heavily contended. The lock should be periodically unlocked to avoid
 517 * having disabled IRQs for a long time, even when there is nobody waiting on
 518 * the lock. It might also be that allowing the IRQs will result in
 519 * need_resched() becoming true. If scheduling is needed, async compaction
 520 * aborts. Sync compaction schedules.
 521 * Either compaction type will also abort if a fatal signal is pending.
 522 * In either case if the lock was locked, it is dropped and not regained.
 523 *
 524 * Returns true if compaction should abort due to fatal signal pending, or
 525 *		async compaction due to need_resched()
 526 * Returns false when compaction can continue (sync compaction might have
 527 *		scheduled)
 528 */
 529static bool compact_unlock_should_abort(spinlock_t *lock,
 530		unsigned long flags, bool *locked, struct compact_control *cc)
 531{
 532	if (*locked) {
 533		spin_unlock_irqrestore(lock, flags);
 534		*locked = false;
 535	}
 536
 537	if (fatal_signal_pending(current)) {
 538		cc->contended = true;
 539		return true;
 540	}
 541
 542	cond_resched();
 543
 544	return false;
 545}
 546
 547/*
 548 * Isolate free pages onto a private freelist. If @strict is true, will abort
 549 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 550 * (even though it may still end up isolating some pages).
 551 */
 552static unsigned long isolate_freepages_block(struct compact_control *cc,
 553				unsigned long *start_pfn,
 554				unsigned long end_pfn,
 555				struct list_head *freelist,
 556				unsigned int stride,
 557				bool strict)
 558{
 559	int nr_scanned = 0, total_isolated = 0;
 560	struct page *cursor;
 561	unsigned long flags = 0;
 562	bool locked = false;
 563	unsigned long blockpfn = *start_pfn;
 564	unsigned int order;
 565
 566	/* Strict mode is for isolation, speed is secondary */
 567	if (strict)
 568		stride = 1;
 569
 570	cursor = pfn_to_page(blockpfn);
 571
 572	/* Isolate free pages. */
 573	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
 574		int isolated;
 575		struct page *page = cursor;
 576
 577		/*
 578		 * Periodically drop the lock (if held) regardless of its
 579		 * contention, to give chance to IRQs. Abort if fatal signal
 580		 * pending or async compaction detects need_resched()
 581		 */
 582		if (!(blockpfn % SWAP_CLUSTER_MAX)
 583		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 584								&locked, cc))
 585			break;
 586
 587		nr_scanned++;
 588		if (!pfn_valid_within(blockpfn))
 589			goto isolate_fail;
 590
 591		/*
 592		 * For compound pages such as THP and hugetlbfs, we can save
 593		 * potentially a lot of iterations if we skip them at once.
 594		 * The check is racy, but we can consider only valid values
 595		 * and the only danger is skipping too much.
 596		 */
 597		if (PageCompound(page)) {
 598			const unsigned int order = compound_order(page);
 599
 600			if (likely(order < MAX_ORDER)) {
 
 601				blockpfn += (1UL << order) - 1;
 602				cursor += (1UL << order) - 1;
 
 603			}
 
 604			goto isolate_fail;
 605		}
 606
 607		if (!PageBuddy(page))
 608			goto isolate_fail;
 609
 610		/*
 611		 * If we already hold the lock, we can skip some rechecking.
 612		 * Note that if we hold the lock now, checked_pageblock was
 613		 * already set in some previous iteration (or strict is true),
 614		 * so it is correct to skip the suitable migration target
 615		 * recheck as well.
 616		 */
 617		if (!locked) {
 618			locked = compact_lock_irqsave(&cc->zone->lock,
 619								&flags, cc);
 620
 621			/* Recheck this is a buddy page under lock */
 622			if (!PageBuddy(page))
 623				goto isolate_fail;
 624		}
 625
 626		/* Found a free page, will break it into order-0 pages */
 627		order = buddy_order(page);
 628		isolated = __isolate_free_page(page, order);
 629		if (!isolated)
 630			break;
 631		set_page_private(page, order);
 632
 
 633		total_isolated += isolated;
 634		cc->nr_freepages += isolated;
 635		list_add_tail(&page->lru, freelist);
 636
 637		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 638			blockpfn += isolated;
 639			break;
 640		}
 641		/* Advance to the end of split page */
 642		blockpfn += isolated - 1;
 643		cursor += isolated - 1;
 644		continue;
 645
 646isolate_fail:
 647		if (strict)
 648			break;
 649		else
 650			continue;
 651
 652	}
 653
 654	if (locked)
 655		spin_unlock_irqrestore(&cc->zone->lock, flags);
 656
 657	/*
 658	 * There is a tiny chance that we have read bogus compound_order(),
 659	 * so be careful to not go outside of the pageblock.
 660	 */
 661	if (unlikely(blockpfn > end_pfn))
 662		blockpfn = end_pfn;
 663
 664	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 665					nr_scanned, total_isolated);
 666
 667	/* Record how far we have got within the block */
 668	*start_pfn = blockpfn;
 669
 670	/*
 671	 * If strict isolation is requested by CMA then check that all the
 672	 * pages requested were isolated. If there were any failures, 0 is
 673	 * returned and CMA will fail.
 674	 */
 675	if (strict && blockpfn < end_pfn)
 676		total_isolated = 0;
 677
 678	cc->total_free_scanned += nr_scanned;
 679	if (total_isolated)
 680		count_compact_events(COMPACTISOLATED, total_isolated);
 681	return total_isolated;
 682}
 683
 684/**
 685 * isolate_freepages_range() - isolate free pages.
 686 * @cc:        Compaction control structure.
 687 * @start_pfn: The first PFN to start isolating.
 688 * @end_pfn:   The one-past-last PFN.
 689 *
 690 * Non-free pages, invalid PFNs, or zone boundaries within the
 691 * [start_pfn, end_pfn) range are considered errors, cause function to
 692 * undo its actions and return zero.
 693 *
 694 * Otherwise, function returns one-past-the-last PFN of isolated page
 695 * (which may be greater then end_pfn if end fell in a middle of
 696 * a free page).
 697 */
 698unsigned long
 699isolate_freepages_range(struct compact_control *cc,
 700			unsigned long start_pfn, unsigned long end_pfn)
 701{
 702	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 703	LIST_HEAD(freelist);
 
 
 
 704
 705	pfn = start_pfn;
 706	block_start_pfn = pageblock_start_pfn(pfn);
 707	if (block_start_pfn < cc->zone->zone_start_pfn)
 708		block_start_pfn = cc->zone->zone_start_pfn;
 709	block_end_pfn = pageblock_end_pfn(pfn);
 710
 711	for (; pfn < end_pfn; pfn += isolated,
 712				block_start_pfn = block_end_pfn,
 713				block_end_pfn += pageblock_nr_pages) {
 714		/* Protect pfn from changing by isolate_freepages_block */
 715		unsigned long isolate_start_pfn = pfn;
 716
 717		block_end_pfn = min(block_end_pfn, end_pfn);
 718
 719		/*
 720		 * pfn could pass the block_end_pfn if isolated freepage
 721		 * is more than pageblock order. In this case, we adjust
 722		 * scanning range to right one.
 723		 */
 724		if (pfn >= block_end_pfn) {
 725			block_start_pfn = pageblock_start_pfn(pfn);
 726			block_end_pfn = pageblock_end_pfn(pfn);
 727			block_end_pfn = min(block_end_pfn, end_pfn);
 728		}
 729
 
 
 730		if (!pageblock_pfn_to_page(block_start_pfn,
 731					block_end_pfn, cc->zone))
 732			break;
 733
 734		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 735					block_end_pfn, &freelist, 0, true);
 736
 737		/*
 738		 * In strict mode, isolate_freepages_block() returns 0 if
 739		 * there are any holes in the block (ie. invalid PFNs or
 740		 * non-free pages).
 741		 */
 742		if (!isolated)
 743			break;
 744
 745		/*
 746		 * If we managed to isolate pages, it is always (1 << n) *
 747		 * pageblock_nr_pages for some non-negative n.  (Max order
 748		 * page may span two pageblocks).
 749		 */
 750	}
 751
 752	/* __isolate_free_page() does not map the pages */
 753	split_map_pages(&freelist);
 754
 755	if (pfn < end_pfn) {
 756		/* Loop terminated early, cleanup. */
 757		release_freepages(&freelist);
 758		return 0;
 759	}
 760
 761	/* We don't use freelists for anything. */
 762	return pfn;
 763}
 764
 765/* Similar to reclaim, but different enough that they don't share logic */
 766static bool too_many_isolated(pg_data_t *pgdat)
 767{
 
 
 
 768	unsigned long active, inactive, isolated;
 769
 770	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
 771			node_page_state(pgdat, NR_INACTIVE_ANON);
 772	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
 773			node_page_state(pgdat, NR_ACTIVE_ANON);
 774	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
 775			node_page_state(pgdat, NR_ISOLATED_ANON);
 776
 777	return isolated > (inactive + active) / 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778}
 779
 780/**
 781 * isolate_migratepages_block() - isolate all migrate-able pages within
 782 *				  a single pageblock
 783 * @cc:		Compaction control structure.
 784 * @low_pfn:	The first PFN to isolate
 785 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 786 * @isolate_mode: Isolation mode to be used.
 787 *
 788 * Isolate all pages that can be migrated from the range specified by
 789 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 790 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
 791 * -ENOMEM in case we could not allocate a page, or 0.
 792 * cc->migrate_pfn will contain the next pfn to scan.
 793 *
 794 * The pages are isolated on cc->migratepages list (not required to be empty),
 795 * and cc->nr_migratepages is updated accordingly.
 796 */
 797static int
 798isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 799			unsigned long end_pfn, isolate_mode_t isolate_mode)
 800{
 801	pg_data_t *pgdat = cc->zone->zone_pgdat;
 802	unsigned long nr_scanned = 0, nr_isolated = 0;
 803	struct lruvec *lruvec;
 804	unsigned long flags = 0;
 805	struct lruvec *locked = NULL;
 
 806	struct page *page = NULL, *valid_page = NULL;
 
 807	unsigned long start_pfn = low_pfn;
 808	bool skip_on_failure = false;
 809	unsigned long next_skip_pfn = 0;
 810	bool skip_updated = false;
 811	int ret = 0;
 812
 813	cc->migrate_pfn = low_pfn;
 814
 815	/*
 816	 * Ensure that there are not too many pages isolated from the LRU
 817	 * list by either parallel reclaimers or compaction. If there are,
 818	 * delay for some time until fewer pages are isolated
 819	 */
 820	while (unlikely(too_many_isolated(pgdat))) {
 821		/* stop isolation if there are still pages not migrated */
 822		if (cc->nr_migratepages)
 823			return -EAGAIN;
 824
 825		/* async migration should just abort */
 826		if (cc->mode == MIGRATE_ASYNC)
 827			return -EAGAIN;
 828
 829		congestion_wait(BLK_RW_ASYNC, HZ/10);
 830
 831		if (fatal_signal_pending(current))
 832			return -EINTR;
 833	}
 834
 835	cond_resched();
 836
 837	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 838		skip_on_failure = true;
 839		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 840	}
 841
 842	/* Time to isolate some pages for migration */
 843	for (; low_pfn < end_pfn; low_pfn++) {
 
 844
 845		if (skip_on_failure && low_pfn >= next_skip_pfn) {
 846			/*
 847			 * We have isolated all migration candidates in the
 848			 * previous order-aligned block, and did not skip it due
 849			 * to failure. We should migrate the pages now and
 850			 * hopefully succeed compaction.
 851			 */
 852			if (nr_isolated)
 853				break;
 854
 855			/*
 856			 * We failed to isolate in the previous order-aligned
 857			 * block. Set the new boundary to the end of the
 858			 * current block. Note we can't simply increase
 859			 * next_skip_pfn by 1 << order, as low_pfn might have
 860			 * been incremented by a higher number due to skipping
 861			 * a compound or a high-order buddy page in the
 862			 * previous loop iteration.
 863			 */
 864			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 865		}
 866
 867		/*
 868		 * Periodically drop the lock (if held) regardless of its
 869		 * contention, to give chance to IRQs. Abort completely if
 870		 * a fatal signal is pending.
 871		 */
 872		if (!(low_pfn % SWAP_CLUSTER_MAX)) {
 873			if (locked) {
 874				unlock_page_lruvec_irqrestore(locked, flags);
 875				locked = NULL;
 876			}
 877
 878			if (fatal_signal_pending(current)) {
 879				cc->contended = true;
 880				ret = -EINTR;
 881
 882				goto fatal_pending;
 883			}
 884
 885			cond_resched();
 886		}
 887
 888		if (!pfn_valid_within(low_pfn))
 889			goto isolate_fail;
 890		nr_scanned++;
 891
 892		page = pfn_to_page(low_pfn);
 893
 894		/*
 895		 * Check if the pageblock has already been marked skipped.
 896		 * Only the aligned PFN is checked as the caller isolates
 897		 * COMPACT_CLUSTER_MAX at a time so the second call must
 898		 * not falsely conclude that the block should be skipped.
 899		 */
 900		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
 901			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
 
 902				low_pfn = end_pfn;
 903				page = NULL;
 904				goto isolate_abort;
 905			}
 906			valid_page = page;
 907		}
 908
 909		if (PageHuge(page) && cc->alloc_contig) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 910			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
 911
 912			/*
 913			 * Fail isolation in case isolate_or_dissolve_huge_page()
 914			 * reports an error. In case of -ENOMEM, abort right away.
 915			 */
 916			if (ret < 0) {
 917				 /* Do not report -EBUSY down the chain */
 918				if (ret == -EBUSY)
 919					ret = 0;
 920				low_pfn += (1UL << compound_order(page)) - 1;
 
 921				goto isolate_fail;
 922			}
 923
 924			if (PageHuge(page)) {
 925				/*
 926				 * Hugepage was successfully isolated and placed
 927				 * on the cc->migratepages list.
 928				 */
 929				low_pfn += compound_nr(page) - 1;
 
 930				goto isolate_success_no_list;
 931			}
 932
 933			/*
 934			 * Ok, the hugepage was dissolved. Now these pages are
 935			 * Buddy and cannot be re-allocated because they are
 936			 * isolated. Fall-through as the check below handles
 937			 * Buddy pages.
 938			 */
 939		}
 940
 941		/*
 942		 * Skip if free. We read page order here without zone lock
 943		 * which is generally unsafe, but the race window is small and
 944		 * the worst thing that can happen is that we skip some
 945		 * potential isolation targets.
 946		 */
 947		if (PageBuddy(page)) {
 948			unsigned long freepage_order = buddy_order_unsafe(page);
 949
 950			/*
 951			 * Without lock, we cannot be sure that what we got is
 952			 * a valid page order. Consider only values in the
 953			 * valid order range to prevent low_pfn overflow.
 954			 */
 955			if (freepage_order > 0 && freepage_order < MAX_ORDER)
 956				low_pfn += (1UL << freepage_order) - 1;
 
 
 957			continue;
 958		}
 959
 960		/*
 961		 * Regardless of being on LRU, compound pages such as THP and
 962		 * hugetlbfs are not to be compacted unless we are attempting
 963		 * an allocation much larger than the huge page size (eg CMA).
 964		 * We can potentially save a lot of iterations if we skip them
 965		 * at once. The check is racy, but we can consider only valid
 966		 * values and the only danger is skipping too much.
 967		 */
 968		if (PageCompound(page) && !cc->alloc_contig) {
 969			const unsigned int order = compound_order(page);
 970
 971			if (likely(order < MAX_ORDER))
 972				low_pfn += (1UL << order) - 1;
 973			goto isolate_fail;
 
 
 
 
 
 974		}
 975
 976		/*
 977		 * Check may be lockless but that's ok as we recheck later.
 978		 * It's possible to migrate LRU and non-lru movable pages.
 979		 * Skip any other type of page
 980		 */
 981		if (!PageLRU(page)) {
 982			/*
 983			 * __PageMovable can return false positive so we need
 984			 * to verify it under page_lock.
 985			 */
 986			if (unlikely(__PageMovable(page)) &&
 987					!PageIsolated(page)) {
 988				if (locked) {
 989					unlock_page_lruvec_irqrestore(locked, flags);
 990					locked = NULL;
 991				}
 992
 993				if (!isolate_movable_page(page, isolate_mode))
 
 994					goto isolate_success;
 
 995			}
 996
 997			goto isolate_fail;
 998		}
 999
1000		/*
 
 
 
 
 
 
 
 
 
1001		 * Migration will fail if an anonymous page is pinned in memory,
1002		 * so avoid taking lru_lock and isolating it unnecessarily in an
1003		 * admittedly racy check.
1004		 */
1005		if (!page_mapping(page) &&
1006		    page_count(page) > page_mapcount(page))
1007			goto isolate_fail;
1008
1009		/*
1010		 * Only allow to migrate anonymous pages in GFP_NOFS context
1011		 * because those do not depend on fs locks.
1012		 */
1013		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
1014			goto isolate_fail;
 
 
 
 
 
 
 
 
 
 
1015
1016		/*
1017		 * Be careful not to clear PageLRU until after we're
1018		 * sure the page is not being freed elsewhere -- the
1019		 * page release code relies on it.
 
1020		 */
1021		if (unlikely(!get_page_unless_zero(page)))
1022			goto isolate_fail;
1023
1024		if (!__isolate_lru_page_prepare(page, isolate_mode))
1025			goto isolate_fail_put;
1026
1027		/* Try isolate the page */
1028		if (!TestClearPageLRU(page))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029			goto isolate_fail_put;
1030
1031		lruvec = mem_cgroup_page_lruvec(page);
1032
1033		/* If we already hold the lock, we can skip some rechecking */
1034		if (lruvec != locked) {
1035			if (locked)
1036				unlock_page_lruvec_irqrestore(locked, flags);
1037
1038			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1039			locked = lruvec;
1040
1041			lruvec_memcg_debug(lruvec, page);
1042
1043			/* Try get exclusive access under lock */
1044			if (!skip_updated) {
 
 
 
 
1045				skip_updated = true;
1046				if (test_and_set_skip(cc, page, low_pfn))
 
 
1047					goto isolate_abort;
 
1048			}
1049
1050			/*
1051			 * Page become compound since the non-locked check,
1052			 * and it's on LRU. It can only be a THP so the order
1053			 * is safe to read and it's 0 for tail pages.
1054			 */
1055			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1056				low_pfn += compound_nr(page) - 1;
1057				SetPageLRU(page);
 
 
 
1058				goto isolate_fail_put;
1059			}
1060		}
1061
1062		/* The whole page is taken off the LRU; skip the tail pages. */
1063		if (PageCompound(page))
1064			low_pfn += compound_nr(page) - 1;
1065
1066		/* Successfully isolated */
1067		del_page_from_lru_list(page, lruvec);
1068		mod_node_page_state(page_pgdat(page),
1069				NR_ISOLATED_ANON + page_is_file_lru(page),
1070				thp_nr_pages(page));
1071
1072isolate_success:
1073		list_add(&page->lru, &cc->migratepages);
1074isolate_success_no_list:
1075		cc->nr_migratepages += compound_nr(page);
1076		nr_isolated += compound_nr(page);
 
1077
1078		/*
1079		 * Avoid isolating too much unless this block is being
1080		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1081		 * or a lock is contended. For contention, isolate quickly to
1082		 * potentially remove one source of contention.
1083		 */
1084		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1085		    !cc->rescan && !cc->contended) {
1086			++low_pfn;
1087			break;
1088		}
1089
1090		continue;
1091
1092isolate_fail_put:
1093		/* Avoid potential deadlock in freeing page under lru_lock */
1094		if (locked) {
1095			unlock_page_lruvec_irqrestore(locked, flags);
1096			locked = NULL;
1097		}
1098		put_page(page);
1099
1100isolate_fail:
1101		if (!skip_on_failure && ret != -ENOMEM)
1102			continue;
1103
1104		/*
1105		 * We have isolated some pages, but then failed. Release them
1106		 * instead of migrating, as we cannot form the cc->order buddy
1107		 * page anyway.
1108		 */
1109		if (nr_isolated) {
1110			if (locked) {
1111				unlock_page_lruvec_irqrestore(locked, flags);
1112				locked = NULL;
1113			}
1114			putback_movable_pages(&cc->migratepages);
1115			cc->nr_migratepages = 0;
1116			nr_isolated = 0;
1117		}
1118
1119		if (low_pfn < next_skip_pfn) {
1120			low_pfn = next_skip_pfn - 1;
1121			/*
1122			 * The check near the loop beginning would have updated
1123			 * next_skip_pfn too, but this is a bit simpler.
1124			 */
1125			next_skip_pfn += 1UL << cc->order;
1126		}
1127
1128		if (ret == -ENOMEM)
1129			break;
1130	}
1131
1132	/*
1133	 * The PageBuddy() check could have potentially brought us outside
1134	 * the range to be scanned.
1135	 */
1136	if (unlikely(low_pfn > end_pfn))
1137		low_pfn = end_pfn;
1138
1139	page = NULL;
1140
1141isolate_abort:
1142	if (locked)
1143		unlock_page_lruvec_irqrestore(locked, flags);
1144	if (page) {
1145		SetPageLRU(page);
1146		put_page(page);
1147	}
1148
1149	/*
1150	 * Updated the cached scanner pfn once the pageblock has been scanned
1151	 * Pages will either be migrated in which case there is no point
1152	 * scanning in the near future or migration failed in which case the
1153	 * failure reason may persist. The block is marked for skipping if
1154	 * there were no pages isolated in the block or if the block is
1155	 * rescanned twice in a row.
1156	 */
1157	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1158		if (valid_page && !skip_updated)
1159			set_pageblock_skip(valid_page);
1160		update_cached_migrate(cc, low_pfn);
1161	}
1162
1163	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1164						nr_scanned, nr_isolated);
1165
1166fatal_pending:
1167	cc->total_migrate_scanned += nr_scanned;
1168	if (nr_isolated)
1169		count_compact_events(COMPACTISOLATED, nr_isolated);
1170
1171	cc->migrate_pfn = low_pfn;
1172
1173	return ret;
1174}
1175
1176/**
1177 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1178 * @cc:        Compaction control structure.
1179 * @start_pfn: The first PFN to start isolating.
1180 * @end_pfn:   The one-past-last PFN.
1181 *
1182 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1183 * in case we could not allocate a page, or 0.
1184 */
1185int
1186isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1187							unsigned long end_pfn)
1188{
1189	unsigned long pfn, block_start_pfn, block_end_pfn;
1190	int ret = 0;
1191
1192	/* Scan block by block. First and last block may be incomplete */
1193	pfn = start_pfn;
1194	block_start_pfn = pageblock_start_pfn(pfn);
1195	if (block_start_pfn < cc->zone->zone_start_pfn)
1196		block_start_pfn = cc->zone->zone_start_pfn;
1197	block_end_pfn = pageblock_end_pfn(pfn);
1198
1199	for (; pfn < end_pfn; pfn = block_end_pfn,
1200				block_start_pfn = block_end_pfn,
1201				block_end_pfn += pageblock_nr_pages) {
1202
1203		block_end_pfn = min(block_end_pfn, end_pfn);
1204
1205		if (!pageblock_pfn_to_page(block_start_pfn,
1206					block_end_pfn, cc->zone))
1207			continue;
1208
1209		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1210						 ISOLATE_UNEVICTABLE);
1211
1212		if (ret)
1213			break;
1214
1215		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1216			break;
1217	}
1218
1219	return ret;
1220}
1221
1222#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1223#ifdef CONFIG_COMPACTION
1224
1225static bool suitable_migration_source(struct compact_control *cc,
1226							struct page *page)
1227{
1228	int block_mt;
1229
1230	if (pageblock_skip_persistent(page))
1231		return false;
1232
1233	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1234		return true;
1235
1236	block_mt = get_pageblock_migratetype(page);
1237
1238	if (cc->migratetype == MIGRATE_MOVABLE)
1239		return is_migrate_movable(block_mt);
1240	else
1241		return block_mt == cc->migratetype;
1242}
1243
1244/* Returns true if the page is within a block suitable for migration to */
1245static bool suitable_migration_target(struct compact_control *cc,
1246							struct page *page)
1247{
1248	/* If the page is a large free page, then disallow migration */
1249	if (PageBuddy(page)) {
 
 
1250		/*
1251		 * We are checking page_order without zone->lock taken. But
1252		 * the only small danger is that we skip a potentially suitable
1253		 * pageblock, so it's not worth to check order for valid range.
1254		 */
1255		if (buddy_order_unsafe(page) >= pageblock_order)
1256			return false;
1257	}
1258
1259	if (cc->ignore_block_suitable)
1260		return true;
1261
1262	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1263	if (is_migrate_movable(get_pageblock_migratetype(page)))
1264		return true;
1265
1266	/* Otherwise skip the block */
1267	return false;
1268}
1269
1270static inline unsigned int
1271freelist_scan_limit(struct compact_control *cc)
1272{
1273	unsigned short shift = BITS_PER_LONG - 1;
1274
1275	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1276}
1277
1278/*
1279 * Test whether the free scanner has reached the same or lower pageblock than
1280 * the migration scanner, and compaction should thus terminate.
1281 */
1282static inline bool compact_scanners_met(struct compact_control *cc)
1283{
1284	return (cc->free_pfn >> pageblock_order)
1285		<= (cc->migrate_pfn >> pageblock_order);
1286}
1287
1288/*
1289 * Used when scanning for a suitable migration target which scans freelists
1290 * in reverse. Reorders the list such as the unscanned pages are scanned
1291 * first on the next iteration of the free scanner
1292 */
1293static void
1294move_freelist_head(struct list_head *freelist, struct page *freepage)
1295{
1296	LIST_HEAD(sublist);
1297
1298	if (!list_is_last(freelist, &freepage->lru)) {
1299		list_cut_before(&sublist, freelist, &freepage->lru);
1300		list_splice_tail(&sublist, freelist);
1301	}
1302}
1303
1304/*
1305 * Similar to move_freelist_head except used by the migration scanner
1306 * when scanning forward. It's possible for these list operations to
1307 * move against each other if they search the free list exactly in
1308 * lockstep.
1309 */
1310static void
1311move_freelist_tail(struct list_head *freelist, struct page *freepage)
1312{
1313	LIST_HEAD(sublist);
1314
1315	if (!list_is_first(freelist, &freepage->lru)) {
1316		list_cut_position(&sublist, freelist, &freepage->lru);
1317		list_splice_tail(&sublist, freelist);
1318	}
1319}
1320
1321static void
1322fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1323{
1324	unsigned long start_pfn, end_pfn;
1325	struct page *page;
1326
1327	/* Do not search around if there are enough pages already */
1328	if (cc->nr_freepages >= cc->nr_migratepages)
1329		return;
1330
1331	/* Minimise scanning during async compaction */
1332	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1333		return;
1334
1335	/* Pageblock boundaries */
1336	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1337	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1338
1339	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1340	if (!page)
1341		return;
1342
1343	/* Scan before */
1344	if (start_pfn != pfn) {
1345		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1346		if (cc->nr_freepages >= cc->nr_migratepages)
1347			return;
1348	}
1349
1350	/* Scan after */
1351	start_pfn = pfn + nr_isolated;
1352	if (start_pfn < end_pfn)
1353		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1354
1355	/* Skip this pageblock in the future as it's full or nearly full */
1356	if (cc->nr_freepages < cc->nr_migratepages)
1357		set_pageblock_skip(page);
1358}
1359
1360/* Search orders in round-robin fashion */
1361static int next_search_order(struct compact_control *cc, int order)
1362{
1363	order--;
1364	if (order < 0)
1365		order = cc->order - 1;
1366
1367	/* Search wrapped around? */
1368	if (order == cc->search_order) {
1369		cc->search_order--;
1370		if (cc->search_order < 0)
1371			cc->search_order = cc->order - 1;
1372		return -1;
1373	}
1374
1375	return order;
1376}
1377
1378static unsigned long
1379fast_isolate_freepages(struct compact_control *cc)
1380{
1381	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1382	unsigned int nr_scanned = 0;
1383	unsigned long low_pfn, min_pfn, highest = 0;
1384	unsigned long nr_isolated = 0;
1385	unsigned long distance;
1386	struct page *page = NULL;
1387	bool scan_start = false;
1388	int order;
1389
1390	/* Full compaction passes in a negative order */
1391	if (cc->order <= 0)
1392		return cc->free_pfn;
1393
1394	/*
1395	 * If starting the scan, use a deeper search and use the highest
1396	 * PFN found if a suitable one is not found.
1397	 */
1398	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1399		limit = pageblock_nr_pages >> 1;
1400		scan_start = true;
1401	}
1402
1403	/*
1404	 * Preferred point is in the top quarter of the scan space but take
1405	 * a pfn from the top half if the search is problematic.
1406	 */
1407	distance = (cc->free_pfn - cc->migrate_pfn);
1408	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1409	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1410
1411	if (WARN_ON_ONCE(min_pfn > low_pfn))
1412		low_pfn = min_pfn;
1413
1414	/*
1415	 * Search starts from the last successful isolation order or the next
1416	 * order to search after a previous failure
1417	 */
1418	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1419
1420	for (order = cc->search_order;
1421	     !page && order >= 0;
1422	     order = next_search_order(cc, order)) {
1423		struct free_area *area = &cc->zone->free_area[order];
1424		struct list_head *freelist;
1425		struct page *freepage;
1426		unsigned long flags;
1427		unsigned int order_scanned = 0;
1428		unsigned long high_pfn = 0;
1429
1430		if (!area->nr_free)
1431			continue;
1432
1433		spin_lock_irqsave(&cc->zone->lock, flags);
1434		freelist = &area->free_list[MIGRATE_MOVABLE];
1435		list_for_each_entry_reverse(freepage, freelist, lru) {
1436			unsigned long pfn;
1437
1438			order_scanned++;
1439			nr_scanned++;
1440			pfn = page_to_pfn(freepage);
1441
1442			if (pfn >= highest)
1443				highest = max(pageblock_start_pfn(pfn),
1444					      cc->zone->zone_start_pfn);
1445
1446			if (pfn >= low_pfn) {
1447				cc->fast_search_fail = 0;
1448				cc->search_order = order;
1449				page = freepage;
1450				break;
1451			}
1452
1453			if (pfn >= min_pfn && pfn > high_pfn) {
1454				high_pfn = pfn;
1455
1456				/* Shorten the scan if a candidate is found */
1457				limit >>= 1;
1458			}
1459
1460			if (order_scanned >= limit)
1461				break;
1462		}
1463
1464		/* Use a minimum pfn if a preferred one was not found */
1465		if (!page && high_pfn) {
1466			page = pfn_to_page(high_pfn);
1467
1468			/* Update freepage for the list reorder below */
1469			freepage = page;
1470		}
1471
1472		/* Reorder to so a future search skips recent pages */
1473		move_freelist_head(freelist, freepage);
1474
1475		/* Isolate the page if available */
1476		if (page) {
1477			if (__isolate_free_page(page, order)) {
1478				set_page_private(page, order);
1479				nr_isolated = 1 << order;
 
 
1480				cc->nr_freepages += nr_isolated;
1481				list_add_tail(&page->lru, &cc->freepages);
1482				count_compact_events(COMPACTISOLATED, nr_isolated);
1483			} else {
1484				/* If isolation fails, abort the search */
1485				order = cc->search_order + 1;
1486				page = NULL;
1487			}
1488		}
1489
1490		spin_unlock_irqrestore(&cc->zone->lock, flags);
1491
 
 
 
 
1492		/*
1493		 * Smaller scan on next order so the total scan is related
1494		 * to freelist_scan_limit.
1495		 */
1496		if (order_scanned >= limit)
1497			limit = max(1U, limit >> 1);
1498	}
1499
 
 
 
1500	if (!page) {
1501		cc->fast_search_fail++;
1502		if (scan_start) {
1503			/*
1504			 * Use the highest PFN found above min. If one was
1505			 * not found, be pessimistic for direct compaction
1506			 * and use the min mark.
1507			 */
1508			if (highest) {
1509				page = pfn_to_page(highest);
1510				cc->free_pfn = highest;
1511			} else {
1512				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1513					page = pageblock_pfn_to_page(min_pfn,
1514						min(pageblock_end_pfn(min_pfn),
1515						    zone_end_pfn(cc->zone)),
1516						cc->zone);
 
 
 
1517					cc->free_pfn = min_pfn;
1518				}
1519			}
1520		}
1521	}
1522
1523	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1524		highest -= pageblock_nr_pages;
1525		cc->zone->compact_cached_free_pfn = highest;
1526	}
1527
1528	cc->total_free_scanned += nr_scanned;
1529	if (!page)
1530		return cc->free_pfn;
1531
1532	low_pfn = page_to_pfn(page);
1533	fast_isolate_around(cc, low_pfn, nr_isolated);
1534	return low_pfn;
1535}
1536
1537/*
1538 * Based on information in the current compact_control, find blocks
1539 * suitable for isolating free pages from and then isolate them.
1540 */
1541static void isolate_freepages(struct compact_control *cc)
1542{
1543	struct zone *zone = cc->zone;
1544	struct page *page;
1545	unsigned long block_start_pfn;	/* start of current pageblock */
1546	unsigned long isolate_start_pfn; /* exact pfn we start at */
1547	unsigned long block_end_pfn;	/* end of current pageblock */
1548	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1549	struct list_head *freelist = &cc->freepages;
1550	unsigned int stride;
1551
1552	/* Try a small search of the free lists for a candidate */
1553	isolate_start_pfn = fast_isolate_freepages(cc);
1554	if (cc->nr_freepages)
1555		goto splitmap;
1556
1557	/*
1558	 * Initialise the free scanner. The starting point is where we last
1559	 * successfully isolated from, zone-cached value, or the end of the
1560	 * zone when isolating for the first time. For looping we also need
1561	 * this pfn aligned down to the pageblock boundary, because we do
1562	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1563	 * For ending point, take care when isolating in last pageblock of a
1564	 * zone which ends in the middle of a pageblock.
1565	 * The low boundary is the end of the pageblock the migration scanner
1566	 * is using.
1567	 */
1568	isolate_start_pfn = cc->free_pfn;
1569	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1570	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1571						zone_end_pfn(zone));
1572	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1573	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1574
1575	/*
1576	 * Isolate free pages until enough are available to migrate the
1577	 * pages on cc->migratepages. We stop searching if the migrate
1578	 * and free page scanners meet or enough free pages are isolated.
1579	 */
1580	for (; block_start_pfn >= low_pfn;
1581				block_end_pfn = block_start_pfn,
1582				block_start_pfn -= pageblock_nr_pages,
1583				isolate_start_pfn = block_start_pfn) {
1584		unsigned long nr_isolated;
1585
1586		/*
1587		 * This can iterate a massively long zone without finding any
1588		 * suitable migration targets, so periodically check resched.
1589		 */
1590		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1591			cond_resched();
1592
1593		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1594									zone);
1595		if (!page)
 
 
 
 
 
 
1596			continue;
 
1597
1598		/* Check the block is suitable for migration */
1599		if (!suitable_migration_target(cc, page))
1600			continue;
1601
1602		/* If isolation recently failed, do not retry */
1603		if (!isolation_suitable(cc, page))
1604			continue;
1605
1606		/* Found a block suitable for isolating free pages from. */
1607		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1608					block_end_pfn, freelist, stride, false);
1609
1610		/* Update the skip hint if the full pageblock was scanned */
1611		if (isolate_start_pfn == block_end_pfn)
1612			update_pageblock_skip(cc, page, block_start_pfn);
 
1613
1614		/* Are enough freepages isolated? */
1615		if (cc->nr_freepages >= cc->nr_migratepages) {
1616			if (isolate_start_pfn >= block_end_pfn) {
1617				/*
1618				 * Restart at previous pageblock if more
1619				 * freepages can be isolated next time.
1620				 */
1621				isolate_start_pfn =
1622					block_start_pfn - pageblock_nr_pages;
1623			}
1624			break;
1625		} else if (isolate_start_pfn < block_end_pfn) {
1626			/*
1627			 * If isolation failed early, do not continue
1628			 * needlessly.
1629			 */
1630			break;
1631		}
1632
1633		/* Adjust stride depending on isolation */
1634		if (nr_isolated) {
1635			stride = 1;
1636			continue;
1637		}
1638		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1639	}
1640
1641	/*
1642	 * Record where the free scanner will restart next time. Either we
1643	 * broke from the loop and set isolate_start_pfn based on the last
1644	 * call to isolate_freepages_block(), or we met the migration scanner
1645	 * and the loop terminated due to isolate_start_pfn < low_pfn
1646	 */
1647	cc->free_pfn = isolate_start_pfn;
1648
1649splitmap:
1650	/* __isolate_free_page() does not map the pages */
1651	split_map_pages(freelist);
1652}
1653
1654/*
1655 * This is a migrate-callback that "allocates" freepages by taking pages
1656 * from the isolated freelists in the block we are migrating to.
1657 */
1658static struct page *compaction_alloc(struct page *migratepage,
1659					unsigned long data)
1660{
1661	struct compact_control *cc = (struct compact_control *)data;
 
 
 
 
1662	struct page *freepage;
 
1663
1664	if (list_empty(&cc->freepages)) {
1665		isolate_freepages(cc);
 
 
1666
1667		if (list_empty(&cc->freepages))
 
 
1668			return NULL;
 
 
 
1669	}
1670
1671	freepage = list_entry(cc->freepages.next, struct page, lru);
 
 
 
1672	list_del(&freepage->lru);
1673	cc->nr_freepages--;
1674
1675	return freepage;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1676}
1677
1678/*
1679 * This is a migrate-callback that "frees" freepages back to the isolated
1680 * freelist.  All pages on the freelist are from the same zone, so there is no
1681 * special handling needed for NUMA.
1682 */
1683static void compaction_free(struct page *page, unsigned long data)
1684{
1685	struct compact_control *cc = (struct compact_control *)data;
 
 
1686
1687	list_add(&page->lru, &cc->freepages);
1688	cc->nr_freepages++;
 
 
 
 
 
 
 
 
1689}
1690
1691/* possible outcome of isolate_migratepages */
1692typedef enum {
1693	ISOLATE_ABORT,		/* Abort compaction now */
1694	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1695	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1696} isolate_migrate_t;
1697
1698/*
1699 * Allow userspace to control policy on scanning the unevictable LRU for
1700 * compactable pages.
1701 */
1702#ifdef CONFIG_PREEMPT_RT
1703int sysctl_compact_unevictable_allowed __read_mostly = 0;
1704#else
1705int sysctl_compact_unevictable_allowed __read_mostly = 1;
1706#endif
 
 
 
 
1707
1708static inline void
1709update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1710{
1711	if (cc->fast_start_pfn == ULONG_MAX)
1712		return;
1713
1714	if (!cc->fast_start_pfn)
1715		cc->fast_start_pfn = pfn;
1716
1717	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1718}
1719
1720static inline unsigned long
1721reinit_migrate_pfn(struct compact_control *cc)
1722{
1723	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1724		return cc->migrate_pfn;
1725
1726	cc->migrate_pfn = cc->fast_start_pfn;
1727	cc->fast_start_pfn = ULONG_MAX;
1728
1729	return cc->migrate_pfn;
1730}
1731
1732/*
1733 * Briefly search the free lists for a migration source that already has
1734 * some free pages to reduce the number of pages that need migration
1735 * before a pageblock is free.
1736 */
1737static unsigned long fast_find_migrateblock(struct compact_control *cc)
1738{
1739	unsigned int limit = freelist_scan_limit(cc);
1740	unsigned int nr_scanned = 0;
1741	unsigned long distance;
1742	unsigned long pfn = cc->migrate_pfn;
1743	unsigned long high_pfn;
1744	int order;
1745	bool found_block = false;
1746
1747	/* Skip hints are relied on to avoid repeats on the fast search */
1748	if (cc->ignore_skip_hint)
1749		return pfn;
1750
1751	/*
 
 
 
 
 
 
 
1752	 * If the migrate_pfn is not at the start of a zone or the start
1753	 * of a pageblock then assume this is a continuation of a previous
1754	 * scan restarted due to COMPACT_CLUSTER_MAX.
1755	 */
1756	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1757		return pfn;
1758
1759	/*
1760	 * For smaller orders, just linearly scan as the number of pages
1761	 * to migrate should be relatively small and does not necessarily
1762	 * justify freeing up a large block for a small allocation.
1763	 */
1764	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1765		return pfn;
1766
1767	/*
1768	 * Only allow kcompactd and direct requests for movable pages to
1769	 * quickly clear out a MOVABLE pageblock for allocation. This
1770	 * reduces the risk that a large movable pageblock is freed for
1771	 * an unmovable/reclaimable small allocation.
1772	 */
1773	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1774		return pfn;
1775
1776	/*
1777	 * When starting the migration scanner, pick any pageblock within the
1778	 * first half of the search space. Otherwise try and pick a pageblock
1779	 * within the first eighth to reduce the chances that a migration
1780	 * target later becomes a source.
1781	 */
1782	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1783	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1784		distance >>= 2;
1785	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1786
1787	for (order = cc->order - 1;
1788	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1789	     order--) {
1790		struct free_area *area = &cc->zone->free_area[order];
1791		struct list_head *freelist;
1792		unsigned long flags;
1793		struct page *freepage;
1794
1795		if (!area->nr_free)
1796			continue;
1797
1798		spin_lock_irqsave(&cc->zone->lock, flags);
1799		freelist = &area->free_list[MIGRATE_MOVABLE];
1800		list_for_each_entry(freepage, freelist, lru) {
1801			unsigned long free_pfn;
1802
1803			if (nr_scanned++ >= limit) {
1804				move_freelist_tail(freelist, freepage);
1805				break;
1806			}
1807
1808			free_pfn = page_to_pfn(freepage);
1809			if (free_pfn < high_pfn) {
1810				/*
1811				 * Avoid if skipped recently. Ideally it would
1812				 * move to the tail but even safe iteration of
1813				 * the list assumes an entry is deleted, not
1814				 * reordered.
1815				 */
1816				if (get_pageblock_skip(freepage))
1817					continue;
1818
1819				/* Reorder to so a future search skips recent pages */
1820				move_freelist_tail(freelist, freepage);
1821
1822				update_fast_start_pfn(cc, free_pfn);
1823				pfn = pageblock_start_pfn(free_pfn);
 
 
1824				cc->fast_search_fail = 0;
1825				found_block = true;
1826				set_pageblock_skip(freepage);
1827				break;
1828			}
1829		}
1830		spin_unlock_irqrestore(&cc->zone->lock, flags);
1831	}
1832
1833	cc->total_migrate_scanned += nr_scanned;
1834
1835	/*
1836	 * If fast scanning failed then use a cached entry for a page block
1837	 * that had free pages as the basis for starting a linear scan.
1838	 */
1839	if (!found_block) {
1840		cc->fast_search_fail++;
1841		pfn = reinit_migrate_pfn(cc);
1842	}
1843	return pfn;
1844}
1845
1846/*
1847 * Isolate all pages that can be migrated from the first suitable block,
1848 * starting at the block pointed to by the migrate scanner pfn within
1849 * compact_control.
1850 */
1851static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1852{
1853	unsigned long block_start_pfn;
1854	unsigned long block_end_pfn;
1855	unsigned long low_pfn;
1856	struct page *page;
1857	const isolate_mode_t isolate_mode =
1858		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1859		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1860	bool fast_find_block;
1861
1862	/*
1863	 * Start at where we last stopped, or beginning of the zone as
1864	 * initialized by compact_zone(). The first failure will use
1865	 * the lowest PFN as the starting point for linear scanning.
1866	 */
1867	low_pfn = fast_find_migrateblock(cc);
1868	block_start_pfn = pageblock_start_pfn(low_pfn);
1869	if (block_start_pfn < cc->zone->zone_start_pfn)
1870		block_start_pfn = cc->zone->zone_start_pfn;
1871
1872	/*
1873	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1874	 * the isolation_suitable check below, check whether the fast
1875	 * search was successful.
1876	 */
1877	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1878
1879	/* Only scan within a pageblock boundary */
1880	block_end_pfn = pageblock_end_pfn(low_pfn);
1881
1882	/*
1883	 * Iterate over whole pageblocks until we find the first suitable.
1884	 * Do not cross the free scanner.
1885	 */
1886	for (; block_end_pfn <= cc->free_pfn;
1887			fast_find_block = false,
1888			cc->migrate_pfn = low_pfn = block_end_pfn,
1889			block_start_pfn = block_end_pfn,
1890			block_end_pfn += pageblock_nr_pages) {
1891
1892		/*
1893		 * This can potentially iterate a massively long zone with
1894		 * many pageblocks unsuitable, so periodically check if we
1895		 * need to schedule.
1896		 */
1897		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1898			cond_resched();
1899
1900		page = pageblock_pfn_to_page(block_start_pfn,
1901						block_end_pfn, cc->zone);
1902		if (!page)
 
 
 
 
 
1903			continue;
 
1904
1905		/*
1906		 * If isolation recently failed, do not retry. Only check the
1907		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1908		 * to be visited multiple times. Assume skip was checked
1909		 * before making it "skip" so other compaction instances do
1910		 * not scan the same block.
1911		 */
1912		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
 
1913		    !fast_find_block && !isolation_suitable(cc, page))
1914			continue;
1915
1916		/*
1917		 * For async compaction, also only scan in MOVABLE blocks
1918		 * without huge pages. Async compaction is optimistic to see
1919		 * if the minimum amount of work satisfies the allocation.
1920		 * The cached PFN is updated as it's possible that all
1921		 * remaining blocks between source and target are unsuitable
1922		 * and the compaction scanners fail to meet.
1923		 */
1924		if (!suitable_migration_source(cc, page)) {
1925			update_cached_migrate(cc, block_end_pfn);
1926			continue;
1927		}
1928
1929		/* Perform the isolation */
1930		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1931						isolate_mode))
1932			return ISOLATE_ABORT;
1933
1934		/*
1935		 * Either we isolated something and proceed with migration. Or
1936		 * we failed and compact_zone should decide if we should
1937		 * continue or not.
1938		 */
1939		break;
1940	}
1941
1942	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1943}
1944
1945/*
1946 * order == -1 is expected when compacting via
1947 * /proc/sys/vm/compact_memory
 
 
1948 */
1949static inline bool is_via_compact_memory(int order)
1950{
1951	return order == -1;
1952}
1953
1954static bool kswapd_is_running(pg_data_t *pgdat)
1955{
1956	return pgdat->kswapd && task_is_running(pgdat->kswapd);
 
 
 
 
 
 
1957}
1958
1959/*
1960 * A zone's fragmentation score is the external fragmentation wrt to the
1961 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1962 */
1963static unsigned int fragmentation_score_zone(struct zone *zone)
1964{
1965	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1966}
1967
1968/*
1969 * A weighted zone's fragmentation score is the external fragmentation
1970 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1971 * returns a value in the range [0, 100].
1972 *
1973 * The scaling factor ensures that proactive compaction focuses on larger
1974 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1975 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1976 * and thus never exceeds the high threshold for proactive compaction.
1977 */
1978static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
1979{
1980	unsigned long score;
1981
1982	score = zone->present_pages * fragmentation_score_zone(zone);
1983	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1984}
1985
1986/*
1987 * The per-node proactive (background) compaction process is started by its
1988 * corresponding kcompactd thread when the node's fragmentation score
1989 * exceeds the high threshold. The compaction process remains active till
1990 * the node's score falls below the low threshold, or one of the back-off
1991 * conditions is met.
1992 */
1993static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1994{
1995	unsigned int score = 0;
1996	int zoneid;
1997
1998	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1999		struct zone *zone;
2000
2001		zone = &pgdat->node_zones[zoneid];
 
 
2002		score += fragmentation_score_zone_weighted(zone);
2003	}
2004
2005	return score;
2006}
2007
2008static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2009{
2010	unsigned int wmark_low;
2011
2012	/*
2013	 * Cap the low watermark to avoid excessive compaction
2014	 * activity in case a user sets the proactiveness tunable
2015	 * close to 100 (maximum).
2016	 */
2017	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2018	return low ? wmark_low : min(wmark_low + 10, 100U);
2019}
2020
2021static bool should_proactive_compact_node(pg_data_t *pgdat)
2022{
2023	int wmark_high;
2024
2025	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2026		return false;
2027
2028	wmark_high = fragmentation_score_wmark(pgdat, false);
2029	return fragmentation_score_node(pgdat) > wmark_high;
2030}
2031
2032static enum compact_result __compact_finished(struct compact_control *cc)
2033{
2034	unsigned int order;
2035	const int migratetype = cc->migratetype;
2036	int ret;
2037
2038	/* Compaction run completes if the migrate and free scanner meet */
2039	if (compact_scanners_met(cc)) {
2040		/* Let the next compaction start anew. */
2041		reset_cached_positions(cc->zone);
2042
2043		/*
2044		 * Mark that the PG_migrate_skip information should be cleared
2045		 * by kswapd when it goes to sleep. kcompactd does not set the
2046		 * flag itself as the decision to be clear should be directly
2047		 * based on an allocation request.
2048		 */
2049		if (cc->direct_compaction)
2050			cc->zone->compact_blockskip_flush = true;
2051
2052		if (cc->whole_zone)
2053			return COMPACT_COMPLETE;
2054		else
2055			return COMPACT_PARTIAL_SKIPPED;
2056	}
2057
2058	if (cc->proactive_compaction) {
2059		int score, wmark_low;
2060		pg_data_t *pgdat;
2061
2062		pgdat = cc->zone->zone_pgdat;
2063		if (kswapd_is_running(pgdat))
2064			return COMPACT_PARTIAL_SKIPPED;
2065
2066		score = fragmentation_score_zone(cc->zone);
2067		wmark_low = fragmentation_score_wmark(pgdat, true);
2068
2069		if (score > wmark_low)
2070			ret = COMPACT_CONTINUE;
2071		else
2072			ret = COMPACT_SUCCESS;
2073
2074		goto out;
2075	}
2076
2077	if (is_via_compact_memory(cc->order))
2078		return COMPACT_CONTINUE;
2079
2080	/*
2081	 * Always finish scanning a pageblock to reduce the possibility of
2082	 * fallbacks in the future. This is particularly important when
2083	 * migration source is unmovable/reclaimable but it's not worth
2084	 * special casing.
2085	 */
2086	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2087		return COMPACT_CONTINUE;
2088
2089	/* Direct compactor: Is a suitable page free? */
2090	ret = COMPACT_NO_SUITABLE_PAGE;
2091	for (order = cc->order; order < MAX_ORDER; order++) {
2092		struct free_area *area = &cc->zone->free_area[order];
2093		bool can_steal;
2094
2095		/* Job done if page is free of the right migratetype */
2096		if (!free_area_empty(area, migratetype))
2097			return COMPACT_SUCCESS;
2098
2099#ifdef CONFIG_CMA
2100		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2101		if (migratetype == MIGRATE_MOVABLE &&
2102			!free_area_empty(area, MIGRATE_CMA))
2103			return COMPACT_SUCCESS;
2104#endif
2105		/*
2106		 * Job done if allocation would steal freepages from
2107		 * other migratetype buddy lists.
2108		 */
2109		if (find_suitable_fallback(area, order, migratetype,
2110						true, &can_steal) != -1) {
2111
2112			/* movable pages are OK in any pageblock */
2113			if (migratetype == MIGRATE_MOVABLE)
2114				return COMPACT_SUCCESS;
2115
2116			/*
2117			 * We are stealing for a non-movable allocation. Make
2118			 * sure we finish compacting the current pageblock
2119			 * first so it is as free as possible and we won't
2120			 * have to steal another one soon. This only applies
2121			 * to sync compaction, as async compaction operates
2122			 * on pageblocks of the same migratetype.
2123			 */
2124			if (cc->mode == MIGRATE_ASYNC ||
2125					IS_ALIGNED(cc->migrate_pfn,
2126							pageblock_nr_pages)) {
2127				return COMPACT_SUCCESS;
2128			}
2129
2130			ret = COMPACT_CONTINUE;
2131			break;
2132		}
2133	}
2134
2135out:
2136	if (cc->contended || fatal_signal_pending(current))
2137		ret = COMPACT_CONTENDED;
2138
2139	return ret;
2140}
2141
2142static enum compact_result compact_finished(struct compact_control *cc)
2143{
2144	int ret;
2145
2146	ret = __compact_finished(cc);
2147	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2148	if (ret == COMPACT_NO_SUITABLE_PAGE)
2149		ret = COMPACT_CONTINUE;
2150
2151	return ret;
2152}
2153
2154static enum compact_result __compaction_suitable(struct zone *zone, int order,
2155					unsigned int alloc_flags,
2156					int highest_zoneidx,
2157					unsigned long wmark_target)
2158{
2159	unsigned long watermark;
2160
2161	if (is_via_compact_memory(order))
2162		return COMPACT_CONTINUE;
2163
2164	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2165	/*
2166	 * If watermarks for high-order allocation are already met, there
2167	 * should be no need for compaction at all.
2168	 */
2169	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2170								alloc_flags))
2171		return COMPACT_SUCCESS;
2172
2173	/*
2174	 * Watermarks for order-0 must be met for compaction to be able to
2175	 * isolate free pages for migration targets. This means that the
2176	 * watermark and alloc_flags have to match, or be more pessimistic than
2177	 * the check in __isolate_free_page(). We don't use the direct
2178	 * compactor's alloc_flags, as they are not relevant for freepage
2179	 * isolation. We however do use the direct compactor's highest_zoneidx
2180	 * to skip over zones where lowmem reserves would prevent allocation
2181	 * even if compaction succeeds.
2182	 * For costly orders, we require low watermark instead of min for
2183	 * compaction to proceed to increase its chances.
2184	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2185	 * suitable migration targets
2186	 */
2187	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2188				low_wmark_pages(zone) : min_wmark_pages(zone);
2189	watermark += compact_gap(order);
2190	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2191						ALLOC_CMA, wmark_target))
2192		return COMPACT_SKIPPED;
2193
2194	return COMPACT_CONTINUE;
2195}
2196
2197/*
2198 * compaction_suitable: Is this suitable to run compaction on this zone now?
2199 * Returns
2200 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2201 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2202 *   COMPACT_CONTINUE - If compaction should run now
2203 */
2204enum compact_result compaction_suitable(struct zone *zone, int order,
2205					unsigned int alloc_flags,
2206					int highest_zoneidx)
2207{
2208	enum compact_result ret;
2209	int fragindex;
2210
2211	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2212				    zone_page_state(zone, NR_FREE_PAGES));
2213	/*
2214	 * fragmentation index determines if allocation failures are due to
2215	 * low memory or external fragmentation
2216	 *
2217	 * index of -1000 would imply allocations might succeed depending on
2218	 * watermarks, but we already failed the high-order watermark check
2219	 * index towards 0 implies failure is due to lack of memory
2220	 * index towards 1000 implies failure is due to fragmentation
2221	 *
2222	 * Only compact if a failure would be due to fragmentation. Also
2223	 * ignore fragindex for non-costly orders where the alternative to
2224	 * a successful reclaim/compaction is OOM. Fragindex and the
2225	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2226	 * excessive compaction for costly orders, but it should not be at the
2227	 * expense of system stability.
2228	 */
2229	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2230		fragindex = fragmentation_index(zone, order);
2231		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2232			ret = COMPACT_NOT_SUITABLE_ZONE;
 
 
 
 
 
 
 
 
 
2233	}
2234
2235	trace_mm_compaction_suitable(zone, order, ret);
2236	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2237		ret = COMPACT_SKIPPED;
2238
2239	return ret;
2240}
2241
2242bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2243		int alloc_flags)
2244{
2245	struct zone *zone;
2246	struct zoneref *z;
2247
2248	/*
2249	 * Make sure at least one zone would pass __compaction_suitable if we continue
2250	 * retrying the reclaim.
2251	 */
2252	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2253				ac->highest_zoneidx, ac->nodemask) {
2254		unsigned long available;
2255		enum compact_result compact_result;
2256
2257		/*
2258		 * Do not consider all the reclaimable memory because we do not
2259		 * want to trash just for a single high order allocation which
2260		 * is even not guaranteed to appear even if __compaction_suitable
2261		 * is happy about the watermark check.
2262		 */
2263		available = zone_reclaimable_pages(zone) / order;
2264		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2265		compact_result = __compaction_suitable(zone, order, alloc_flags,
2266				ac->highest_zoneidx, available);
2267		if (compact_result != COMPACT_SKIPPED)
2268			return true;
2269	}
2270
2271	return false;
2272}
2273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2274static enum compact_result
2275compact_zone(struct compact_control *cc, struct capture_control *capc)
2276{
2277	enum compact_result ret;
2278	unsigned long start_pfn = cc->zone->zone_start_pfn;
2279	unsigned long end_pfn = zone_end_pfn(cc->zone);
2280	unsigned long last_migrated_pfn;
2281	const bool sync = cc->mode != MIGRATE_ASYNC;
2282	bool update_cached;
 
 
2283
2284	/*
2285	 * These counters track activities during zone compaction.  Initialize
2286	 * them before compacting a new zone.
2287	 */
2288	cc->total_migrate_scanned = 0;
2289	cc->total_free_scanned = 0;
2290	cc->nr_migratepages = 0;
2291	cc->nr_freepages = 0;
2292	INIT_LIST_HEAD(&cc->freepages);
 
2293	INIT_LIST_HEAD(&cc->migratepages);
2294
2295	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2296	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2297							cc->highest_zoneidx);
2298	/* Compaction is likely to fail */
2299	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2300		return ret;
2301
2302	/* huh, compaction_suitable is returning something unexpected */
2303	VM_BUG_ON(ret != COMPACT_CONTINUE);
 
 
 
 
 
2304
2305	/*
2306	 * Clear pageblock skip if there were failures recently and compaction
2307	 * is about to be retried after being deferred.
2308	 */
2309	if (compaction_restarting(cc->zone, cc->order))
2310		__reset_isolation_suitable(cc->zone);
2311
2312	/*
2313	 * Setup to move all movable pages to the end of the zone. Used cached
2314	 * information on where the scanners should start (unless we explicitly
2315	 * want to compact the whole zone), but check that it is initialised
2316	 * by ensuring the values are within zone boundaries.
2317	 */
2318	cc->fast_start_pfn = 0;
2319	if (cc->whole_zone) {
2320		cc->migrate_pfn = start_pfn;
2321		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2322	} else {
2323		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2324		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2325		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2326			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2327			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2328		}
2329		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2330			cc->migrate_pfn = start_pfn;
2331			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2332			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2333		}
2334
2335		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2336			cc->whole_zone = true;
2337	}
2338
2339	last_migrated_pfn = 0;
2340
2341	/*
2342	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2343	 * the basis that some migrations will fail in ASYNC mode. However,
2344	 * if the cached PFNs match and pageblocks are skipped due to having
2345	 * no isolation candidates, then the sync state does not matter.
2346	 * Until a pageblock with isolation candidates is found, keep the
2347	 * cached PFNs in sync to avoid revisiting the same blocks.
2348	 */
2349	update_cached = !sync &&
2350		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2351
2352	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2353				cc->free_pfn, end_pfn, sync);
2354
2355	/* lru_add_drain_all could be expensive with involving other CPUs */
2356	lru_add_drain();
2357
2358	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2359		int err;
2360		unsigned long iteration_start_pfn = cc->migrate_pfn;
2361
2362		/*
2363		 * Avoid multiple rescans which can happen if a page cannot be
2364		 * isolated (dirty/writeback in async mode) or if the migrated
2365		 * pages are being allocated before the pageblock is cleared.
2366		 * The first rescan will capture the entire pageblock for
2367		 * migration. If it fails, it'll be marked skip and scanning
2368		 * will proceed as normal.
2369		 */
2370		cc->rescan = false;
2371		if (pageblock_start_pfn(last_migrated_pfn) ==
2372		    pageblock_start_pfn(iteration_start_pfn)) {
2373			cc->rescan = true;
2374		}
2375
 
2376		switch (isolate_migratepages(cc)) {
2377		case ISOLATE_ABORT:
2378			ret = COMPACT_CONTENDED;
2379			putback_movable_pages(&cc->migratepages);
2380			cc->nr_migratepages = 0;
2381			goto out;
2382		case ISOLATE_NONE:
2383			if (update_cached) {
2384				cc->zone->compact_cached_migrate_pfn[1] =
2385					cc->zone->compact_cached_migrate_pfn[0];
2386			}
2387
2388			/*
2389			 * We haven't isolated and migrated anything, but
2390			 * there might still be unflushed migrations from
2391			 * previous cc->order aligned block.
2392			 */
2393			goto check_drain;
2394		case ISOLATE_SUCCESS:
2395			update_cached = false;
2396			last_migrated_pfn = iteration_start_pfn;
 
2397		}
2398
 
 
 
 
 
 
2399		err = migrate_pages(&cc->migratepages, compaction_alloc,
2400				compaction_free, (unsigned long)cc, cc->mode,
2401				MR_COMPACTION);
2402
2403		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2404							&cc->migratepages);
2405
2406		/* All pages were either migrated or will be released */
2407		cc->nr_migratepages = 0;
2408		if (err) {
2409			putback_movable_pages(&cc->migratepages);
2410			/*
2411			 * migrate_pages() may return -ENOMEM when scanners meet
2412			 * and we want compact_finished() to detect it
2413			 */
2414			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2415				ret = COMPACT_CONTENDED;
2416				goto out;
2417			}
2418			/*
2419			 * We failed to migrate at least one page in the current
2420			 * order-aligned block, so skip the rest of it.
 
 
 
 
 
 
 
2421			 */
2422			if (cc->direct_compaction &&
2423						(cc->mode == MIGRATE_ASYNC)) {
2424				cc->migrate_pfn = block_end_pfn(
2425						cc->migrate_pfn - 1, cc->order);
2426				/* Draining pcplists is useless in this case */
2427				last_migrated_pfn = 0;
 
 
 
 
 
 
 
 
2428			}
2429		}
2430
 
 
 
 
 
 
2431check_drain:
2432		/*
2433		 * Has the migration scanner moved away from the previous
2434		 * cc->order aligned block where we migrated from? If yes,
2435		 * flush the pages that were freed, so that they can merge and
2436		 * compact_finished() can detect immediately if allocation
2437		 * would succeed.
2438		 */
2439		if (cc->order > 0 && last_migrated_pfn) {
2440			unsigned long current_block_start =
2441				block_start_pfn(cc->migrate_pfn, cc->order);
2442
2443			if (last_migrated_pfn < current_block_start) {
2444				lru_add_drain_cpu_zone(cc->zone);
2445				/* No more flushing until we migrate again */
2446				last_migrated_pfn = 0;
2447			}
2448		}
2449
2450		/* Stop if a page has been captured */
2451		if (capc && capc->page) {
2452			ret = COMPACT_SUCCESS;
2453			break;
2454		}
2455	}
2456
2457out:
2458	/*
2459	 * Release free pages and update where the free scanner should restart,
2460	 * so we don't leave any returned pages behind in the next attempt.
2461	 */
2462	if (cc->nr_freepages > 0) {
2463		unsigned long free_pfn = release_freepages(&cc->freepages);
2464
2465		cc->nr_freepages = 0;
2466		VM_BUG_ON(free_pfn == 0);
2467		/* The cached pfn is always the first in a pageblock */
2468		free_pfn = pageblock_start_pfn(free_pfn);
2469		/*
2470		 * Only go back, not forward. The cached pfn might have been
2471		 * already reset to zone end in compact_finished()
2472		 */
2473		if (free_pfn > cc->zone->compact_cached_free_pfn)
2474			cc->zone->compact_cached_free_pfn = free_pfn;
2475	}
2476
2477	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2478	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2479
2480	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2481				cc->free_pfn, end_pfn, sync, ret);
 
2482
2483	return ret;
2484}
2485
2486static enum compact_result compact_zone_order(struct zone *zone, int order,
2487		gfp_t gfp_mask, enum compact_priority prio,
2488		unsigned int alloc_flags, int highest_zoneidx,
2489		struct page **capture)
2490{
2491	enum compact_result ret;
2492	struct compact_control cc = {
2493		.order = order,
2494		.search_order = order,
2495		.gfp_mask = gfp_mask,
2496		.zone = zone,
2497		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2498					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2499		.alloc_flags = alloc_flags,
2500		.highest_zoneidx = highest_zoneidx,
2501		.direct_compaction = true,
2502		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2503		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2504		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2505	};
2506	struct capture_control capc = {
2507		.cc = &cc,
2508		.page = NULL,
2509	};
2510
2511	/*
2512	 * Make sure the structs are really initialized before we expose the
2513	 * capture control, in case we are interrupted and the interrupt handler
2514	 * frees a page.
2515	 */
2516	barrier();
2517	WRITE_ONCE(current->capture_control, &capc);
2518
2519	ret = compact_zone(&cc, &capc);
2520
2521	VM_BUG_ON(!list_empty(&cc.freepages));
2522	VM_BUG_ON(!list_empty(&cc.migratepages));
2523
2524	/*
2525	 * Make sure we hide capture control first before we read the captured
2526	 * page pointer, otherwise an interrupt could free and capture a page
2527	 * and we would leak it.
2528	 */
2529	WRITE_ONCE(current->capture_control, NULL);
2530	*capture = READ_ONCE(capc.page);
2531	/*
2532	 * Technically, it is also possible that compaction is skipped but
2533	 * the page is still captured out of luck(IRQ came and freed the page).
2534	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2535	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2536	 */
2537	if (*capture)
2538		ret = COMPACT_SUCCESS;
2539
2540	return ret;
2541}
2542
2543int sysctl_extfrag_threshold = 500;
2544
2545/**
2546 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2547 * @gfp_mask: The GFP mask of the current allocation
2548 * @order: The order of the current allocation
2549 * @alloc_flags: The allocation flags of the current allocation
2550 * @ac: The context of current allocation
2551 * @prio: Determines how hard direct compaction should try to succeed
2552 * @capture: Pointer to free page created by compaction will be stored here
2553 *
2554 * This is the main entry point for direct page compaction.
2555 */
2556enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2557		unsigned int alloc_flags, const struct alloc_context *ac,
2558		enum compact_priority prio, struct page **capture)
2559{
2560	int may_perform_io = gfp_mask & __GFP_IO;
2561	struct zoneref *z;
2562	struct zone *zone;
2563	enum compact_result rc = COMPACT_SKIPPED;
2564
2565	/*
2566	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2567	 * tricky context because the migration might require IO
2568	 */
2569	if (!may_perform_io)
2570		return COMPACT_SKIPPED;
2571
2572	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2573
2574	/* Compact each zone in the list */
2575	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2576					ac->highest_zoneidx, ac->nodemask) {
2577		enum compact_result status;
2578
 
 
 
 
 
2579		if (prio > MIN_COMPACT_PRIORITY
2580					&& compaction_deferred(zone, order)) {
2581			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2582			continue;
2583		}
2584
2585		status = compact_zone_order(zone, order, gfp_mask, prio,
2586				alloc_flags, ac->highest_zoneidx, capture);
2587		rc = max(status, rc);
2588
2589		/* The allocation should succeed, stop compacting */
2590		if (status == COMPACT_SUCCESS) {
2591			/*
2592			 * We think the allocation will succeed in this zone,
2593			 * but it is not certain, hence the false. The caller
2594			 * will repeat this with true if allocation indeed
2595			 * succeeds in this zone.
2596			 */
2597			compaction_defer_reset(zone, order, false);
2598
2599			break;
2600		}
2601
2602		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2603					status == COMPACT_PARTIAL_SKIPPED))
2604			/*
2605			 * We think that allocation won't succeed in this zone
2606			 * so we defer compaction there. If it ends up
2607			 * succeeding after all, it will be reset.
2608			 */
2609			defer_compaction(zone, order);
2610
2611		/*
2612		 * We might have stopped compacting due to need_resched() in
2613		 * async compaction, or due to a fatal signal detected. In that
2614		 * case do not try further zones
2615		 */
2616		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2617					|| fatal_signal_pending(current))
2618			break;
2619	}
2620
2621	return rc;
2622}
2623
2624/*
2625 * Compact all zones within a node till each zone's fragmentation score
2626 * reaches within proactive compaction thresholds (as determined by the
2627 * proactiveness tunable).
2628 *
2629 * It is possible that the function returns before reaching score targets
2630 * due to various back-off conditions, such as, contention on per-node or
2631 * per-zone locks.
 
 
2632 */
2633static void proactive_compact_node(pg_data_t *pgdat)
2634{
2635	int zoneid;
2636	struct zone *zone;
2637	struct compact_control cc = {
2638		.order = -1,
2639		.mode = MIGRATE_SYNC_LIGHT,
2640		.ignore_skip_hint = true,
2641		.whole_zone = true,
2642		.gfp_mask = GFP_KERNEL,
2643		.proactive_compaction = true,
2644	};
2645
2646	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2647		zone = &pgdat->node_zones[zoneid];
2648		if (!populated_zone(zone))
2649			continue;
2650
 
 
 
2651		cc.zone = zone;
2652
2653		compact_zone(&cc, NULL);
2654
2655		VM_BUG_ON(!list_empty(&cc.freepages));
2656		VM_BUG_ON(!list_empty(&cc.migratepages));
 
 
 
 
2657	}
 
 
2658}
2659
2660/* Compact all zones within a node */
2661static void compact_node(int nid)
2662{
2663	pg_data_t *pgdat = NODE_DATA(nid);
2664	int zoneid;
2665	struct zone *zone;
2666	struct compact_control cc = {
2667		.order = -1,
2668		.mode = MIGRATE_SYNC,
2669		.ignore_skip_hint = true,
2670		.whole_zone = true,
2671		.gfp_mask = GFP_KERNEL,
2672	};
2673
 
 
2674
2675	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 
 
 
 
2676
2677		zone = &pgdat->node_zones[zoneid];
2678		if (!populated_zone(zone))
2679			continue;
2680
2681		cc.zone = zone;
 
 
 
2682
2683		compact_zone(&cc, NULL);
 
 
2684
2685		VM_BUG_ON(!list_empty(&cc.freepages));
2686		VM_BUG_ON(!list_empty(&cc.migratepages));
2687	}
2688}
2689
2690/* Compact all nodes in the system */
2691static void compact_nodes(void)
2692{
2693	int nid;
2694
2695	/* Flush pending updates to the LRU lists */
2696	lru_add_drain_all();
 
 
 
 
2697
2698	for_each_online_node(nid)
2699		compact_node(nid);
2700}
2701
2702/*
2703 * Tunable for proactive compaction. It determines how
2704 * aggressively the kernel should compact memory in the
2705 * background. It takes values in the range [0, 100].
2706 */
2707unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2708
2709/*
2710 * This is the entry point for compacting all nodes via
2711 * /proc/sys/vm/compact_memory
2712 */
2713int sysctl_compaction_handler(struct ctl_table *table, int write,
2714			void *buffer, size_t *length, loff_t *ppos)
2715{
 
 
 
 
 
 
 
 
 
2716	if (write)
2717		compact_nodes();
2718
2719	return 0;
2720}
2721
2722#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2723static ssize_t compact_store(struct device *dev,
2724			     struct device_attribute *attr,
2725			     const char *buf, size_t count)
2726{
2727	int nid = dev->id;
2728
2729	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2730		/* Flush pending updates to the LRU lists */
2731		lru_add_drain_all();
2732
2733		compact_node(nid);
2734	}
2735
2736	return count;
2737}
2738static DEVICE_ATTR_WO(compact);
2739
2740int compaction_register_node(struct node *node)
2741{
2742	return device_create_file(&node->dev, &dev_attr_compact);
2743}
2744
2745void compaction_unregister_node(struct node *node)
2746{
2747	return device_remove_file(&node->dev, &dev_attr_compact);
2748}
2749#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2750
2751static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2752{
2753	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
 
2754}
2755
2756static bool kcompactd_node_suitable(pg_data_t *pgdat)
2757{
2758	int zoneid;
2759	struct zone *zone;
2760	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
 
2761
2762	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2763		zone = &pgdat->node_zones[zoneid];
2764
2765		if (!populated_zone(zone))
2766			continue;
2767
2768		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2769					highest_zoneidx) == COMPACT_CONTINUE)
 
 
2770			return true;
2771	}
2772
2773	return false;
2774}
2775
2776static void kcompactd_do_work(pg_data_t *pgdat)
2777{
2778	/*
2779	 * With no special task, compact all zones so that a page of requested
2780	 * order is allocatable.
2781	 */
2782	int zoneid;
2783	struct zone *zone;
2784	struct compact_control cc = {
2785		.order = pgdat->kcompactd_max_order,
2786		.search_order = pgdat->kcompactd_max_order,
2787		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2788		.mode = MIGRATE_SYNC_LIGHT,
2789		.ignore_skip_hint = false,
2790		.gfp_mask = GFP_KERNEL,
2791	};
 
 
2792	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2793							cc.highest_zoneidx);
2794	count_compact_event(KCOMPACTD_WAKE);
2795
2796	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2797		int status;
2798
2799		zone = &pgdat->node_zones[zoneid];
2800		if (!populated_zone(zone))
2801			continue;
2802
2803		if (compaction_deferred(zone, cc.order))
2804			continue;
2805
2806		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2807							COMPACT_CONTINUE)
 
2808			continue;
2809
2810		if (kthread_should_stop())
2811			return;
2812
2813		cc.zone = zone;
2814		status = compact_zone(&cc, NULL);
2815
2816		if (status == COMPACT_SUCCESS) {
2817			compaction_defer_reset(zone, cc.order, false);
2818		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2819			/*
2820			 * Buddy pages may become stranded on pcps that could
2821			 * otherwise coalesce on the zone's free area for
2822			 * order >= cc.order.  This is ratelimited by the
2823			 * upcoming deferral.
2824			 */
2825			drain_all_pages(zone);
2826
2827			/*
2828			 * We use sync migration mode here, so we defer like
2829			 * sync direct compaction does.
2830			 */
2831			defer_compaction(zone, cc.order);
2832		}
2833
2834		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2835				     cc.total_migrate_scanned);
2836		count_compact_events(KCOMPACTD_FREE_SCANNED,
2837				     cc.total_free_scanned);
2838
2839		VM_BUG_ON(!list_empty(&cc.freepages));
2840		VM_BUG_ON(!list_empty(&cc.migratepages));
2841	}
2842
2843	/*
2844	 * Regardless of success, we are done until woken up next. But remember
2845	 * the requested order/highest_zoneidx in case it was higher/tighter
2846	 * than our current ones
2847	 */
2848	if (pgdat->kcompactd_max_order <= cc.order)
2849		pgdat->kcompactd_max_order = 0;
2850	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2851		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2852}
2853
2854void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2855{
2856	if (!order)
2857		return;
2858
2859	if (pgdat->kcompactd_max_order < order)
2860		pgdat->kcompactd_max_order = order;
2861
2862	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2863		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2864
2865	/*
2866	 * Pairs with implicit barrier in wait_event_freezable()
2867	 * such that wakeups are not missed.
2868	 */
2869	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2870		return;
2871
2872	if (!kcompactd_node_suitable(pgdat))
2873		return;
2874
2875	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2876							highest_zoneidx);
2877	wake_up_interruptible(&pgdat->kcompactd_wait);
2878}
2879
2880/*
2881 * The background compaction daemon, started as a kernel thread
2882 * from the init process.
2883 */
2884static int kcompactd(void *p)
2885{
2886	pg_data_t *pgdat = (pg_data_t *)p;
2887	struct task_struct *tsk = current;
2888	unsigned int proactive_defer = 0;
 
2889
2890	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2891
2892	if (!cpumask_empty(cpumask))
2893		set_cpus_allowed_ptr(tsk, cpumask);
2894
 
2895	set_freezable();
2896
2897	pgdat->kcompactd_max_order = 0;
2898	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2899
2900	while (!kthread_should_stop()) {
2901		unsigned long pflags;
2902
 
 
 
 
 
 
2903		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2904		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2905			kcompactd_work_requested(pgdat),
2906			msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2907
2908			psi_memstall_enter(&pflags);
2909			kcompactd_do_work(pgdat);
2910			psi_memstall_leave(&pflags);
 
 
 
 
 
 
 
 
2911			continue;
2912		}
2913
2914		/* kcompactd wait timeout */
 
 
 
 
2915		if (should_proactive_compact_node(pgdat)) {
2916			unsigned int prev_score, score;
2917
2918			if (proactive_defer) {
2919				proactive_defer--;
2920				continue;
2921			}
2922			prev_score = fragmentation_score_node(pgdat);
2923			proactive_compact_node(pgdat);
2924			score = fragmentation_score_node(pgdat);
2925			/*
2926			 * Defer proactive compaction if the fragmentation
2927			 * score did not go down i.e. no progress made.
2928			 */
2929			proactive_defer = score < prev_score ?
2930					0 : 1 << COMPACT_MAX_DEFER_SHIFT;
 
2931		}
 
 
2932	}
2933
 
 
2934	return 0;
2935}
2936
2937/*
2938 * This kcompactd start function will be called by init and node-hot-add.
2939 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2940 */
2941int kcompactd_run(int nid)
2942{
2943	pg_data_t *pgdat = NODE_DATA(nid);
2944	int ret = 0;
2945
2946	if (pgdat->kcompactd)
2947		return 0;
2948
2949	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2950	if (IS_ERR(pgdat->kcompactd)) {
2951		pr_err("Failed to start kcompactd on node %d\n", nid);
2952		ret = PTR_ERR(pgdat->kcompactd);
2953		pgdat->kcompactd = NULL;
2954	}
2955	return ret;
2956}
2957
2958/*
2959 * Called by memory hotplug when all memory in a node is offlined. Caller must
2960 * hold mem_hotplug_begin/end().
2961 */
2962void kcompactd_stop(int nid)
2963{
2964	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2965
2966	if (kcompactd) {
2967		kthread_stop(kcompactd);
2968		NODE_DATA(nid)->kcompactd = NULL;
2969	}
2970}
2971
2972/*
2973 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2974 * not required for correctness. So if the last cpu in a node goes
2975 * away, we get changed to run anywhere: as the first one comes back,
2976 * restore their cpu bindings.
2977 */
2978static int kcompactd_cpu_online(unsigned int cpu)
2979{
2980	int nid;
2981
2982	for_each_node_state(nid, N_MEMORY) {
2983		pg_data_t *pgdat = NODE_DATA(nid);
2984		const struct cpumask *mask;
2985
2986		mask = cpumask_of_node(pgdat->node_id);
2987
2988		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2989			/* One of our CPUs online: restore mask */
2990			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
 
2991	}
2992	return 0;
2993}
2994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2995static int __init kcompactd_init(void)
2996{
2997	int nid;
2998	int ret;
2999
3000	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3001					"mm/compaction:online",
3002					kcompactd_cpu_online, NULL);
3003	if (ret < 0) {
3004		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3005		return ret;
3006	}
3007
3008	for_each_node_state(nid, N_MEMORY)
3009		kcompactd_run(nid);
 
3010	return 0;
3011}
3012subsys_initcall(kcompactd_init)
3013
3014#endif /* CONFIG_COMPACTION */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include <linux/psi.h>
  26#include <linux/cpuset.h>
  27#include "internal.h"
  28
  29#ifdef CONFIG_COMPACTION
  30/*
  31 * Fragmentation score check interval for proactive compaction purposes.
  32 */
  33#define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
  34
  35static inline void count_compact_event(enum vm_event_item item)
  36{
  37	count_vm_event(item);
  38}
  39
  40static inline void count_compact_events(enum vm_event_item item, long delta)
  41{
  42	count_vm_events(item, delta);
  43}
  44
  45/*
  46 * order == -1 is expected when compacting proactively via
  47 * 1. /proc/sys/vm/compact_memory
  48 * 2. /sys/devices/system/node/nodex/compact
  49 * 3. /proc/sys/vm/compaction_proactiveness
  50 */
  51static inline bool is_via_compact_memory(int order)
  52{
  53	return order == -1;
  54}
  55
  56#else
  57#define count_compact_event(item) do { } while (0)
  58#define count_compact_events(item, delta) do { } while (0)
  59static inline bool is_via_compact_memory(int order) { return false; }
  60#endif
  61
  62#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  63
  64#define CREATE_TRACE_POINTS
  65#include <trace/events/compaction.h>
  66
  67#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
  68#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
 
 
 
 
 
 
 
  69
  70/*
  71 * Page order with-respect-to which proactive compaction
  72 * calculates external fragmentation, which is used as
  73 * the "fragmentation score" of a node/zone.
  74 */
  75#if defined CONFIG_TRANSPARENT_HUGEPAGE
  76#define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
  77#elif defined CONFIG_HUGETLBFS
  78#define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
  79#else
  80#define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
  81#endif
  82
  83static struct page *mark_allocated_noprof(struct page *page, unsigned int order, gfp_t gfp_flags)
  84{
  85	post_alloc_hook(page, order, __GFP_MOVABLE);
  86	return page;
 
 
 
 
 
 
 
 
 
 
  87}
  88#define mark_allocated(...)	alloc_hooks(mark_allocated_noprof(__VA_ARGS__))
  89
  90static unsigned long release_free_list(struct list_head *freepages)
  91{
  92	int order;
  93	unsigned long high_pfn = 0;
 
 
 
 
  94
  95	for (order = 0; order < NR_PAGE_ORDERS; order++) {
  96		struct page *page, *next;
  97
  98		list_for_each_entry_safe(page, next, &freepages[order], lru) {
  99			unsigned long pfn = page_to_pfn(page);
 
 100
 101			list_del(&page->lru);
 102			/*
 103			 * Convert free pages into post allocation pages, so
 104			 * that we can free them via __free_page.
 105			 */
 106			mark_allocated(page, order, __GFP_MOVABLE);
 107			__free_pages(page, order);
 108			if (pfn > high_pfn)
 109				high_pfn = pfn;
 110		}
 111	}
 112	return high_pfn;
 
 113}
 114
 115#ifdef CONFIG_COMPACTION
 116bool PageMovable(struct page *page)
 
 117{
 118	const struct movable_operations *mops;
 119
 120	VM_BUG_ON_PAGE(!PageLocked(page), page);
 121	if (!__PageMovable(page))
 122		return false;
 123
 124	mops = page_movable_ops(page);
 125	if (mops)
 126		return true;
 127
 128	return false;
 129}
 
 130
 131void __SetPageMovable(struct page *page, const struct movable_operations *mops)
 132{
 133	VM_BUG_ON_PAGE(!PageLocked(page), page);
 134	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
 135	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
 136}
 137EXPORT_SYMBOL(__SetPageMovable);
 138
 139void __ClearPageMovable(struct page *page)
 140{
 141	VM_BUG_ON_PAGE(!PageMovable(page), page);
 142	/*
 143	 * This page still has the type of a movable page, but it's
 144	 * actually not movable any more.
 
 145	 */
 146	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
 
 147}
 148EXPORT_SYMBOL(__ClearPageMovable);
 149
 150/* Do not skip compaction more than 64 times */
 151#define COMPACT_MAX_DEFER_SHIFT 6
 152
 153/*
 154 * Compaction is deferred when compaction fails to result in a page
 155 * allocation success. 1 << compact_defer_shift, compactions are skipped up
 156 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 157 */
 158static void defer_compaction(struct zone *zone, int order)
 159{
 160	zone->compact_considered = 0;
 161	zone->compact_defer_shift++;
 162
 163	if (order < zone->compact_order_failed)
 164		zone->compact_order_failed = order;
 165
 166	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 167		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 168
 169	trace_mm_compaction_defer_compaction(zone, order);
 170}
 171
 172/* Returns true if compaction should be skipped this time */
 173static bool compaction_deferred(struct zone *zone, int order)
 174{
 175	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 176
 177	if (order < zone->compact_order_failed)
 178		return false;
 179
 180	/* Avoid possible overflow */
 181	if (++zone->compact_considered >= defer_limit) {
 182		zone->compact_considered = defer_limit;
 183		return false;
 184	}
 185
 186	trace_mm_compaction_deferred(zone, order);
 187
 188	return true;
 189}
 190
 191/*
 192 * Update defer tracking counters after successful compaction of given order,
 193 * which means an allocation either succeeded (alloc_success == true) or is
 194 * expected to succeed.
 195 */
 196void compaction_defer_reset(struct zone *zone, int order,
 197		bool alloc_success)
 198{
 199	if (alloc_success) {
 200		zone->compact_considered = 0;
 201		zone->compact_defer_shift = 0;
 202	}
 203	if (order >= zone->compact_order_failed)
 204		zone->compact_order_failed = order + 1;
 205
 206	trace_mm_compaction_defer_reset(zone, order);
 207}
 208
 209/* Returns true if restarting compaction after many failures */
 210static bool compaction_restarting(struct zone *zone, int order)
 211{
 212	if (order < zone->compact_order_failed)
 213		return false;
 214
 215	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 216		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 217}
 218
 219/* Returns true if the pageblock should be scanned for pages to isolate. */
 220static inline bool isolation_suitable(struct compact_control *cc,
 221					struct page *page)
 222{
 223	if (cc->ignore_skip_hint)
 224		return true;
 225
 226	return !get_pageblock_skip(page);
 227}
 228
 229static void reset_cached_positions(struct zone *zone)
 230{
 231	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 232	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 233	zone->compact_cached_free_pfn =
 234				pageblock_start_pfn(zone_end_pfn(zone) - 1);
 235}
 236
 237#ifdef CONFIG_SPARSEMEM
 238/*
 239 * If the PFN falls into an offline section, return the start PFN of the
 240 * next online section. If the PFN falls into an online section or if
 241 * there is no next online section, return 0.
 242 */
 243static unsigned long skip_offline_sections(unsigned long start_pfn)
 244{
 245	unsigned long start_nr = pfn_to_section_nr(start_pfn);
 246
 247	if (online_section_nr(start_nr))
 248		return 0;
 249
 250	while (++start_nr <= __highest_present_section_nr) {
 251		if (online_section_nr(start_nr))
 252			return section_nr_to_pfn(start_nr);
 253	}
 254
 255	return 0;
 256}
 257
 258/*
 259 * If the PFN falls into an offline section, return the end PFN of the
 260 * next online section in reverse. If the PFN falls into an online section
 261 * or if there is no next online section in reverse, return 0.
 262 */
 263static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
 264{
 265	unsigned long start_nr = pfn_to_section_nr(start_pfn);
 266
 267	if (!start_nr || online_section_nr(start_nr))
 268		return 0;
 269
 270	while (start_nr-- > 0) {
 271		if (online_section_nr(start_nr))
 272			return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
 273	}
 274
 275	return 0;
 276}
 277#else
 278static unsigned long skip_offline_sections(unsigned long start_pfn)
 279{
 280	return 0;
 281}
 282
 283static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
 284{
 285	return 0;
 286}
 287#endif
 288
 289/*
 290 * Compound pages of >= pageblock_order should consistently be skipped until
 291 * released. It is always pointless to compact pages of such order (if they are
 292 * migratable), and the pageblocks they occupy cannot contain any free pages.
 293 */
 294static bool pageblock_skip_persistent(struct page *page)
 295{
 296	if (!PageCompound(page))
 297		return false;
 298
 299	page = compound_head(page);
 300
 301	if (compound_order(page) >= pageblock_order)
 302		return true;
 303
 304	return false;
 305}
 306
 307static bool
 308__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
 309							bool check_target)
 310{
 311	struct page *page = pfn_to_online_page(pfn);
 312	struct page *block_page;
 313	struct page *end_page;
 314	unsigned long block_pfn;
 315
 316	if (!page)
 317		return false;
 318	if (zone != page_zone(page))
 319		return false;
 320	if (pageblock_skip_persistent(page))
 321		return false;
 322
 323	/*
 324	 * If skip is already cleared do no further checking once the
 325	 * restart points have been set.
 326	 */
 327	if (check_source && check_target && !get_pageblock_skip(page))
 328		return true;
 329
 330	/*
 331	 * If clearing skip for the target scanner, do not select a
 332	 * non-movable pageblock as the starting point.
 333	 */
 334	if (!check_source && check_target &&
 335	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
 336		return false;
 337
 338	/* Ensure the start of the pageblock or zone is online and valid */
 339	block_pfn = pageblock_start_pfn(pfn);
 340	block_pfn = max(block_pfn, zone->zone_start_pfn);
 341	block_page = pfn_to_online_page(block_pfn);
 342	if (block_page) {
 343		page = block_page;
 344		pfn = block_pfn;
 345	}
 346
 347	/* Ensure the end of the pageblock or zone is online and valid */
 348	block_pfn = pageblock_end_pfn(pfn) - 1;
 349	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
 350	end_page = pfn_to_online_page(block_pfn);
 351	if (!end_page)
 352		return false;
 353
 354	/*
 355	 * Only clear the hint if a sample indicates there is either a
 356	 * free page or an LRU page in the block. One or other condition
 357	 * is necessary for the block to be a migration source/target.
 358	 */
 359	do {
 360		if (check_source && PageLRU(page)) {
 361			clear_pageblock_skip(page);
 362			return true;
 363		}
 
 364
 365		if (check_target && PageBuddy(page)) {
 366			clear_pageblock_skip(page);
 367			return true;
 
 368		}
 369
 370		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
 
 371	} while (page <= end_page);
 372
 373	return false;
 374}
 375
 376/*
 377 * This function is called to clear all cached information on pageblocks that
 378 * should be skipped for page isolation when the migrate and free page scanner
 379 * meet.
 380 */
 381static void __reset_isolation_suitable(struct zone *zone)
 382{
 383	unsigned long migrate_pfn = zone->zone_start_pfn;
 384	unsigned long free_pfn = zone_end_pfn(zone) - 1;
 385	unsigned long reset_migrate = free_pfn;
 386	unsigned long reset_free = migrate_pfn;
 387	bool source_set = false;
 388	bool free_set = false;
 389
 390	/* Only flush if a full compaction finished recently */
 391	if (!zone->compact_blockskip_flush)
 392		return;
 393
 394	zone->compact_blockskip_flush = false;
 395
 396	/*
 397	 * Walk the zone and update pageblock skip information. Source looks
 398	 * for PageLRU while target looks for PageBuddy. When the scanner
 399	 * is found, both PageBuddy and PageLRU are checked as the pageblock
 400	 * is suitable as both source and target.
 401	 */
 402	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
 403					free_pfn -= pageblock_nr_pages) {
 404		cond_resched();
 405
 406		/* Update the migrate PFN */
 407		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
 408		    migrate_pfn < reset_migrate) {
 409			source_set = true;
 410			reset_migrate = migrate_pfn;
 411			zone->compact_init_migrate_pfn = reset_migrate;
 412			zone->compact_cached_migrate_pfn[0] = reset_migrate;
 413			zone->compact_cached_migrate_pfn[1] = reset_migrate;
 414		}
 415
 416		/* Update the free PFN */
 417		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
 418		    free_pfn > reset_free) {
 419			free_set = true;
 420			reset_free = free_pfn;
 421			zone->compact_init_free_pfn = reset_free;
 422			zone->compact_cached_free_pfn = reset_free;
 423		}
 424	}
 425
 426	/* Leave no distance if no suitable block was reset */
 427	if (reset_migrate >= reset_free) {
 428		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
 429		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
 430		zone->compact_cached_free_pfn = free_pfn;
 431	}
 432}
 433
 434void reset_isolation_suitable(pg_data_t *pgdat)
 435{
 436	int zoneid;
 437
 438	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 439		struct zone *zone = &pgdat->node_zones[zoneid];
 440		if (!populated_zone(zone))
 441			continue;
 442
 443		__reset_isolation_suitable(zone);
 
 
 444	}
 445}
 446
 447/*
 448 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 449 * locks are not required for read/writers. Returns true if it was already set.
 450 */
 451static bool test_and_set_skip(struct compact_control *cc, struct page *page)
 
 452{
 453	bool skip;
 454
 455	/* Do not update if skip hint is being ignored */
 456	if (cc->ignore_skip_hint)
 457		return false;
 458
 
 
 
 459	skip = get_pageblock_skip(page);
 460	if (!skip && !cc->no_set_skip_hint)
 461		set_pageblock_skip(page);
 462
 463	return skip;
 464}
 465
 466static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 467{
 468	struct zone *zone = cc->zone;
 469
 
 
 470	/* Set for isolation rather than compaction */
 471	if (cc->no_set_skip_hint)
 472		return;
 473
 474	pfn = pageblock_end_pfn(pfn);
 475
 476	/* Update where async and sync compaction should restart */
 477	if (pfn > zone->compact_cached_migrate_pfn[0])
 478		zone->compact_cached_migrate_pfn[0] = pfn;
 479	if (cc->mode != MIGRATE_ASYNC &&
 480	    pfn > zone->compact_cached_migrate_pfn[1])
 481		zone->compact_cached_migrate_pfn[1] = pfn;
 482}
 483
 484/*
 485 * If no pages were isolated then mark this pageblock to be skipped in the
 486 * future. The information is later cleared by __reset_isolation_suitable().
 487 */
 488static void update_pageblock_skip(struct compact_control *cc,
 489			struct page *page, unsigned long pfn)
 490{
 491	struct zone *zone = cc->zone;
 492
 493	if (cc->no_set_skip_hint)
 494		return;
 495
 
 
 
 496	set_pageblock_skip(page);
 497
 
 498	if (pfn < zone->compact_cached_free_pfn)
 499		zone->compact_cached_free_pfn = pfn;
 500}
 501#else
 502static inline bool isolation_suitable(struct compact_control *cc,
 503					struct page *page)
 504{
 505	return true;
 506}
 507
 508static inline bool pageblock_skip_persistent(struct page *page)
 509{
 510	return false;
 511}
 512
 513static inline void update_pageblock_skip(struct compact_control *cc,
 514			struct page *page, unsigned long pfn)
 515{
 516}
 517
 518static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 519{
 520}
 521
 522static bool test_and_set_skip(struct compact_control *cc, struct page *page)
 
 523{
 524	return false;
 525}
 526#endif /* CONFIG_COMPACTION */
 527
 528/*
 529 * Compaction requires the taking of some coarse locks that are potentially
 530 * very heavily contended. For async compaction, trylock and record if the
 531 * lock is contended. The lock will still be acquired but compaction will
 532 * abort when the current block is finished regardless of success rate.
 533 * Sync compaction acquires the lock.
 534 *
 535 * Always returns true which makes it easier to track lock state in callers.
 536 */
 537static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
 538						struct compact_control *cc)
 539	__acquires(lock)
 540{
 541	/* Track if the lock is contended in async mode */
 542	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
 543		if (spin_trylock_irqsave(lock, *flags))
 544			return true;
 545
 546		cc->contended = true;
 547	}
 548
 549	spin_lock_irqsave(lock, *flags);
 550	return true;
 551}
 552
 553/*
 554 * Compaction requires the taking of some coarse locks that are potentially
 555 * very heavily contended. The lock should be periodically unlocked to avoid
 556 * having disabled IRQs for a long time, even when there is nobody waiting on
 557 * the lock. It might also be that allowing the IRQs will result in
 558 * need_resched() becoming true. If scheduling is needed, compaction schedules.
 
 559 * Either compaction type will also abort if a fatal signal is pending.
 560 * In either case if the lock was locked, it is dropped and not regained.
 561 *
 562 * Returns true if compaction should abort due to fatal signal pending.
 563 * Returns false when compaction can continue.
 
 
 564 */
 565static bool compact_unlock_should_abort(spinlock_t *lock,
 566		unsigned long flags, bool *locked, struct compact_control *cc)
 567{
 568	if (*locked) {
 569		spin_unlock_irqrestore(lock, flags);
 570		*locked = false;
 571	}
 572
 573	if (fatal_signal_pending(current)) {
 574		cc->contended = true;
 575		return true;
 576	}
 577
 578	cond_resched();
 579
 580	return false;
 581}
 582
 583/*
 584 * Isolate free pages onto a private freelist. If @strict is true, will abort
 585 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 586 * (even though it may still end up isolating some pages).
 587 */
 588static unsigned long isolate_freepages_block(struct compact_control *cc,
 589				unsigned long *start_pfn,
 590				unsigned long end_pfn,
 591				struct list_head *freelist,
 592				unsigned int stride,
 593				bool strict)
 594{
 595	int nr_scanned = 0, total_isolated = 0;
 596	struct page *page;
 597	unsigned long flags = 0;
 598	bool locked = false;
 599	unsigned long blockpfn = *start_pfn;
 600	unsigned int order;
 601
 602	/* Strict mode is for isolation, speed is secondary */
 603	if (strict)
 604		stride = 1;
 605
 606	page = pfn_to_page(blockpfn);
 607
 608	/* Isolate free pages. */
 609	for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
 610		int isolated;
 
 611
 612		/*
 613		 * Periodically drop the lock (if held) regardless of its
 614		 * contention, to give chance to IRQs. Abort if fatal signal
 615		 * pending.
 616		 */
 617		if (!(blockpfn % COMPACT_CLUSTER_MAX)
 618		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 619								&locked, cc))
 620			break;
 621
 622		nr_scanned++;
 
 
 623
 624		/*
 625		 * For compound pages such as THP and hugetlbfs, we can save
 626		 * potentially a lot of iterations if we skip them at once.
 627		 * The check is racy, but we can consider only valid values
 628		 * and the only danger is skipping too much.
 629		 */
 630		if (PageCompound(page)) {
 631			const unsigned int order = compound_order(page);
 632
 633			if ((order <= MAX_PAGE_ORDER) &&
 634			    (blockpfn + (1UL << order) <= end_pfn)) {
 635				blockpfn += (1UL << order) - 1;
 636				page += (1UL << order) - 1;
 637				nr_scanned += (1UL << order) - 1;
 638			}
 639
 640			goto isolate_fail;
 641		}
 642
 643		if (!PageBuddy(page))
 644			goto isolate_fail;
 645
 646		/* If we already hold the lock, we can skip some rechecking. */
 
 
 
 
 
 
 647		if (!locked) {
 648			locked = compact_lock_irqsave(&cc->zone->lock,
 649								&flags, cc);
 650
 651			/* Recheck this is a buddy page under lock */
 652			if (!PageBuddy(page))
 653				goto isolate_fail;
 654		}
 655
 656		/* Found a free page, will break it into order-0 pages */
 657		order = buddy_order(page);
 658		isolated = __isolate_free_page(page, order);
 659		if (!isolated)
 660			break;
 661		set_page_private(page, order);
 662
 663		nr_scanned += isolated - 1;
 664		total_isolated += isolated;
 665		cc->nr_freepages += isolated;
 666		list_add_tail(&page->lru, &freelist[order]);
 667
 668		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 669			blockpfn += isolated;
 670			break;
 671		}
 672		/* Advance to the end of split page */
 673		blockpfn += isolated - 1;
 674		page += isolated - 1;
 675		continue;
 676
 677isolate_fail:
 678		if (strict)
 679			break;
 
 
 680
 681	}
 682
 683	if (locked)
 684		spin_unlock_irqrestore(&cc->zone->lock, flags);
 685
 686	/*
 687	 * Be careful to not go outside of the pageblock.
 
 688	 */
 689	if (unlikely(blockpfn > end_pfn))
 690		blockpfn = end_pfn;
 691
 692	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 693					nr_scanned, total_isolated);
 694
 695	/* Record how far we have got within the block */
 696	*start_pfn = blockpfn;
 697
 698	/*
 699	 * If strict isolation is requested by CMA then check that all the
 700	 * pages requested were isolated. If there were any failures, 0 is
 701	 * returned and CMA will fail.
 702	 */
 703	if (strict && blockpfn < end_pfn)
 704		total_isolated = 0;
 705
 706	cc->total_free_scanned += nr_scanned;
 707	if (total_isolated)
 708		count_compact_events(COMPACTISOLATED, total_isolated);
 709	return total_isolated;
 710}
 711
 712/**
 713 * isolate_freepages_range() - isolate free pages.
 714 * @cc:        Compaction control structure.
 715 * @start_pfn: The first PFN to start isolating.
 716 * @end_pfn:   The one-past-last PFN.
 717 *
 718 * Non-free pages, invalid PFNs, or zone boundaries within the
 719 * [start_pfn, end_pfn) range are considered errors, cause function to
 720 * undo its actions and return zero. cc->freepages[] are empty.
 721 *
 722 * Otherwise, function returns one-past-the-last PFN of isolated page
 723 * (which may be greater then end_pfn if end fell in a middle of
 724 * a free page). cc->freepages[] contain free pages isolated.
 725 */
 726unsigned long
 727isolate_freepages_range(struct compact_control *cc,
 728			unsigned long start_pfn, unsigned long end_pfn)
 729{
 730	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 731	int order;
 732
 733	for (order = 0; order < NR_PAGE_ORDERS; order++)
 734		INIT_LIST_HEAD(&cc->freepages[order]);
 735
 736	pfn = start_pfn;
 737	block_start_pfn = pageblock_start_pfn(pfn);
 738	if (block_start_pfn < cc->zone->zone_start_pfn)
 739		block_start_pfn = cc->zone->zone_start_pfn;
 740	block_end_pfn = pageblock_end_pfn(pfn);
 741
 742	for (; pfn < end_pfn; pfn += isolated,
 743				block_start_pfn = block_end_pfn,
 744				block_end_pfn += pageblock_nr_pages) {
 745		/* Protect pfn from changing by isolate_freepages_block */
 746		unsigned long isolate_start_pfn = pfn;
 747
 
 
 748		/*
 749		 * pfn could pass the block_end_pfn if isolated freepage
 750		 * is more than pageblock order. In this case, we adjust
 751		 * scanning range to right one.
 752		 */
 753		if (pfn >= block_end_pfn) {
 754			block_start_pfn = pageblock_start_pfn(pfn);
 755			block_end_pfn = pageblock_end_pfn(pfn);
 
 756		}
 757
 758		block_end_pfn = min(block_end_pfn, end_pfn);
 759
 760		if (!pageblock_pfn_to_page(block_start_pfn,
 761					block_end_pfn, cc->zone))
 762			break;
 763
 764		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 765					block_end_pfn, cc->freepages, 0, true);
 766
 767		/*
 768		 * In strict mode, isolate_freepages_block() returns 0 if
 769		 * there are any holes in the block (ie. invalid PFNs or
 770		 * non-free pages).
 771		 */
 772		if (!isolated)
 773			break;
 774
 775		/*
 776		 * If we managed to isolate pages, it is always (1 << n) *
 777		 * pageblock_nr_pages for some non-negative n.  (Max order
 778		 * page may span two pageblocks).
 779		 */
 780	}
 781
 
 
 
 782	if (pfn < end_pfn) {
 783		/* Loop terminated early, cleanup. */
 784		release_free_list(cc->freepages);
 785		return 0;
 786	}
 787
 788	/* We don't use freelists for anything. */
 789	return pfn;
 790}
 791
 792/* Similar to reclaim, but different enough that they don't share logic */
 793static bool too_many_isolated(struct compact_control *cc)
 794{
 795	pg_data_t *pgdat = cc->zone->zone_pgdat;
 796	bool too_many;
 797
 798	unsigned long active, inactive, isolated;
 799
 800	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
 801			node_page_state(pgdat, NR_INACTIVE_ANON);
 802	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
 803			node_page_state(pgdat, NR_ACTIVE_ANON);
 804	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
 805			node_page_state(pgdat, NR_ISOLATED_ANON);
 806
 807	/*
 808	 * Allow GFP_NOFS to isolate past the limit set for regular
 809	 * compaction runs. This prevents an ABBA deadlock when other
 810	 * compactors have already isolated to the limit, but are
 811	 * blocked on filesystem locks held by the GFP_NOFS thread.
 812	 */
 813	if (cc->gfp_mask & __GFP_FS) {
 814		inactive >>= 3;
 815		active >>= 3;
 816	}
 817
 818	too_many = isolated > (inactive + active) / 2;
 819	if (!too_many)
 820		wake_throttle_isolated(pgdat);
 821
 822	return too_many;
 823}
 824
 825/**
 826 * skip_isolation_on_order() - determine when to skip folio isolation based on
 827 *			       folio order and compaction target order
 828 * @order:		to-be-isolated folio order
 829 * @target_order:	compaction target order
 830 *
 831 * This avoids unnecessary folio isolations during compaction.
 832 */
 833static bool skip_isolation_on_order(int order, int target_order)
 834{
 835	/*
 836	 * Unless we are performing global compaction (i.e.,
 837	 * is_via_compact_memory), skip any folios that are larger than the
 838	 * target order: we wouldn't be here if we'd have a free folio with
 839	 * the desired target_order, so migrating this folio would likely fail
 840	 * later.
 841	 */
 842	if (!is_via_compact_memory(target_order) && order >= target_order)
 843		return true;
 844	/*
 845	 * We limit memory compaction to pageblocks and won't try
 846	 * creating free blocks of memory that are larger than that.
 847	 */
 848	return order >= pageblock_order;
 849}
 850
 851/**
 852 * isolate_migratepages_block() - isolate all migrate-able pages within
 853 *				  a single pageblock
 854 * @cc:		Compaction control structure.
 855 * @low_pfn:	The first PFN to isolate
 856 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 857 * @mode:	Isolation mode to be used.
 858 *
 859 * Isolate all pages that can be migrated from the range specified by
 860 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 861 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
 862 * -ENOMEM in case we could not allocate a page, or 0.
 863 * cc->migrate_pfn will contain the next pfn to scan.
 864 *
 865 * The pages are isolated on cc->migratepages list (not required to be empty),
 866 * and cc->nr_migratepages is updated accordingly.
 867 */
 868static int
 869isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 870			unsigned long end_pfn, isolate_mode_t mode)
 871{
 872	pg_data_t *pgdat = cc->zone->zone_pgdat;
 873	unsigned long nr_scanned = 0, nr_isolated = 0;
 874	struct lruvec *lruvec;
 875	unsigned long flags = 0;
 876	struct lruvec *locked = NULL;
 877	struct folio *folio = NULL;
 878	struct page *page = NULL, *valid_page = NULL;
 879	struct address_space *mapping;
 880	unsigned long start_pfn = low_pfn;
 881	bool skip_on_failure = false;
 882	unsigned long next_skip_pfn = 0;
 883	bool skip_updated = false;
 884	int ret = 0;
 885
 886	cc->migrate_pfn = low_pfn;
 887
 888	/*
 889	 * Ensure that there are not too many pages isolated from the LRU
 890	 * list by either parallel reclaimers or compaction. If there are,
 891	 * delay for some time until fewer pages are isolated
 892	 */
 893	while (unlikely(too_many_isolated(cc))) {
 894		/* stop isolation if there are still pages not migrated */
 895		if (cc->nr_migratepages)
 896			return -EAGAIN;
 897
 898		/* async migration should just abort */
 899		if (cc->mode == MIGRATE_ASYNC)
 900			return -EAGAIN;
 901
 902		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
 903
 904		if (fatal_signal_pending(current))
 905			return -EINTR;
 906	}
 907
 908	cond_resched();
 909
 910	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 911		skip_on_failure = true;
 912		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 913	}
 914
 915	/* Time to isolate some pages for migration */
 916	for (; low_pfn < end_pfn; low_pfn++) {
 917		bool is_dirty, is_unevictable;
 918
 919		if (skip_on_failure && low_pfn >= next_skip_pfn) {
 920			/*
 921			 * We have isolated all migration candidates in the
 922			 * previous order-aligned block, and did not skip it due
 923			 * to failure. We should migrate the pages now and
 924			 * hopefully succeed compaction.
 925			 */
 926			if (nr_isolated)
 927				break;
 928
 929			/*
 930			 * We failed to isolate in the previous order-aligned
 931			 * block. Set the new boundary to the end of the
 932			 * current block. Note we can't simply increase
 933			 * next_skip_pfn by 1 << order, as low_pfn might have
 934			 * been incremented by a higher number due to skipping
 935			 * a compound or a high-order buddy page in the
 936			 * previous loop iteration.
 937			 */
 938			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 939		}
 940
 941		/*
 942		 * Periodically drop the lock (if held) regardless of its
 943		 * contention, to give chance to IRQs. Abort completely if
 944		 * a fatal signal is pending.
 945		 */
 946		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
 947			if (locked) {
 948				unlock_page_lruvec_irqrestore(locked, flags);
 949				locked = NULL;
 950			}
 951
 952			if (fatal_signal_pending(current)) {
 953				cc->contended = true;
 954				ret = -EINTR;
 955
 956				goto fatal_pending;
 957			}
 958
 959			cond_resched();
 960		}
 961
 
 
 962		nr_scanned++;
 963
 964		page = pfn_to_page(low_pfn);
 965
 966		/*
 967		 * Check if the pageblock has already been marked skipped.
 968		 * Only the first PFN is checked as the caller isolates
 969		 * COMPACT_CLUSTER_MAX at a time so the second call must
 970		 * not falsely conclude that the block should be skipped.
 971		 */
 972		if (!valid_page && (pageblock_aligned(low_pfn) ||
 973				    low_pfn == cc->zone->zone_start_pfn)) {
 974			if (!isolation_suitable(cc, page)) {
 975				low_pfn = end_pfn;
 976				folio = NULL;
 977				goto isolate_abort;
 978			}
 979			valid_page = page;
 980		}
 981
 982		if (PageHuge(page)) {
 983			/*
 984			 * skip hugetlbfs if we are not compacting for pages
 985			 * bigger than its order. THPs and other compound pages
 986			 * are handled below.
 987			 */
 988			if (!cc->alloc_contig) {
 989				const unsigned int order = compound_order(page);
 990
 991				if (order <= MAX_PAGE_ORDER) {
 992					low_pfn += (1UL << order) - 1;
 993					nr_scanned += (1UL << order) - 1;
 994				}
 995				goto isolate_fail;
 996			}
 997			/* for alloc_contig case */
 998			if (locked) {
 999				unlock_page_lruvec_irqrestore(locked, flags);
1000				locked = NULL;
1001			}
1002
1003			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
1004
1005			/*
1006			 * Fail isolation in case isolate_or_dissolve_huge_page()
1007			 * reports an error. In case of -ENOMEM, abort right away.
1008			 */
1009			if (ret < 0) {
1010				 /* Do not report -EBUSY down the chain */
1011				if (ret == -EBUSY)
1012					ret = 0;
1013				low_pfn += compound_nr(page) - 1;
1014				nr_scanned += compound_nr(page) - 1;
1015				goto isolate_fail;
1016			}
1017
1018			if (PageHuge(page)) {
1019				/*
1020				 * Hugepage was successfully isolated and placed
1021				 * on the cc->migratepages list.
1022				 */
1023				folio = page_folio(page);
1024				low_pfn += folio_nr_pages(folio) - 1;
1025				goto isolate_success_no_list;
1026			}
1027
1028			/*
1029			 * Ok, the hugepage was dissolved. Now these pages are
1030			 * Buddy and cannot be re-allocated because they are
1031			 * isolated. Fall-through as the check below handles
1032			 * Buddy pages.
1033			 */
1034		}
1035
1036		/*
1037		 * Skip if free. We read page order here without zone lock
1038		 * which is generally unsafe, but the race window is small and
1039		 * the worst thing that can happen is that we skip some
1040		 * potential isolation targets.
1041		 */
1042		if (PageBuddy(page)) {
1043			unsigned long freepage_order = buddy_order_unsafe(page);
1044
1045			/*
1046			 * Without lock, we cannot be sure that what we got is
1047			 * a valid page order. Consider only values in the
1048			 * valid order range to prevent low_pfn overflow.
1049			 */
1050			if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1051				low_pfn += (1UL << freepage_order) - 1;
1052				nr_scanned += (1UL << freepage_order) - 1;
1053			}
1054			continue;
1055		}
1056
1057		/*
1058		 * Regardless of being on LRU, compound pages such as THP
1059		 * (hugetlbfs is handled above) are not to be compacted unless
1060		 * we are attempting an allocation larger than the compound
1061		 * page size. We can potentially save a lot of iterations if we
1062		 * skip them at once. The check is racy, but we can consider
1063		 * only valid values and the only danger is skipping too much.
1064		 */
1065		if (PageCompound(page) && !cc->alloc_contig) {
1066			const unsigned int order = compound_order(page);
1067
1068			/* Skip based on page order and compaction target order. */
1069			if (skip_isolation_on_order(order, cc->order)) {
1070				if (order <= MAX_PAGE_ORDER) {
1071					low_pfn += (1UL << order) - 1;
1072					nr_scanned += (1UL << order) - 1;
1073				}
1074				goto isolate_fail;
1075			}
1076		}
1077
1078		/*
1079		 * Check may be lockless but that's ok as we recheck later.
1080		 * It's possible to migrate LRU and non-lru movable pages.
1081		 * Skip any other type of page
1082		 */
1083		if (!PageLRU(page)) {
1084			/*
1085			 * __PageMovable can return false positive so we need
1086			 * to verify it under page_lock.
1087			 */
1088			if (unlikely(__PageMovable(page)) &&
1089					!PageIsolated(page)) {
1090				if (locked) {
1091					unlock_page_lruvec_irqrestore(locked, flags);
1092					locked = NULL;
1093				}
1094
1095				if (isolate_movable_page(page, mode)) {
1096					folio = page_folio(page);
1097					goto isolate_success;
1098				}
1099			}
1100
1101			goto isolate_fail;
1102		}
1103
1104		/*
1105		 * Be careful not to clear PageLRU until after we're
1106		 * sure the page is not being freed elsewhere -- the
1107		 * page release code relies on it.
1108		 */
1109		folio = folio_get_nontail_page(page);
1110		if (unlikely(!folio))
1111			goto isolate_fail;
1112
1113		/*
1114		 * Migration will fail if an anonymous page is pinned in memory,
1115		 * so avoid taking lru_lock and isolating it unnecessarily in an
1116		 * admittedly racy check.
1117		 */
1118		mapping = folio_mapping(folio);
1119		if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1120			goto isolate_fail_put;
1121
1122		/*
1123		 * Only allow to migrate anonymous pages in GFP_NOFS context
1124		 * because those do not depend on fs locks.
1125		 */
1126		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1127			goto isolate_fail_put;
1128
1129		/* Only take pages on LRU: a check now makes later tests safe */
1130		if (!folio_test_lru(folio))
1131			goto isolate_fail_put;
1132
1133		is_unevictable = folio_test_unevictable(folio);
1134
1135		/* Compaction might skip unevictable pages but CMA takes them */
1136		if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1137			goto isolate_fail_put;
1138
1139		/*
1140		 * To minimise LRU disruption, the caller can indicate with
1141		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1142		 * it will be able to migrate without blocking - clean pages
1143		 * for the most part.  PageWriteback would require blocking.
1144		 */
1145		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
 
 
 
1146			goto isolate_fail_put;
1147
1148		is_dirty = folio_test_dirty(folio);
1149
1150		if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1151		    (mapping && is_unevictable)) {
1152			bool migrate_dirty = true;
1153			bool is_inaccessible;
1154
1155			/*
1156			 * Only folios without mappings or that have
1157			 * a ->migrate_folio callback are possible to migrate
1158			 * without blocking.
1159			 *
1160			 * Folios from inaccessible mappings are not migratable.
1161			 *
1162			 * However, we can be racing with truncation, which can
1163			 * free the mapping that we need to check. Truncation
1164			 * holds the folio lock until after the folio is removed
1165			 * from the page so holding it ourselves is sufficient.
1166			 *
1167			 * To avoid locking the folio just to check inaccessible,
1168			 * assume every inaccessible folio is also unevictable,
1169			 * which is a cheaper test.  If our assumption goes
1170			 * wrong, it's not a correctness bug, just potentially
1171			 * wasted cycles.
1172			 */
1173			if (!folio_trylock(folio))
1174				goto isolate_fail_put;
1175
1176			mapping = folio_mapping(folio);
1177			if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1178				migrate_dirty = !mapping ||
1179						mapping->a_ops->migrate_folio;
1180			}
1181			is_inaccessible = mapping && mapping_inaccessible(mapping);
1182			folio_unlock(folio);
1183			if (!migrate_dirty || is_inaccessible)
1184				goto isolate_fail_put;
1185		}
1186
1187		/* Try isolate the folio */
1188		if (!folio_test_clear_lru(folio))
1189			goto isolate_fail_put;
1190
1191		lruvec = folio_lruvec(folio);
1192
1193		/* If we already hold the lock, we can skip some rechecking */
1194		if (lruvec != locked) {
1195			if (locked)
1196				unlock_page_lruvec_irqrestore(locked, flags);
1197
1198			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1199			locked = lruvec;
1200
1201			lruvec_memcg_debug(lruvec, folio);
1202
1203			/*
1204			 * Try get exclusive access under lock. If marked for
1205			 * skip, the scan is aborted unless the current context
1206			 * is a rescan to reach the end of the pageblock.
1207			 */
1208			if (!skip_updated && valid_page) {
1209				skip_updated = true;
1210				if (test_and_set_skip(cc, valid_page) &&
1211				    !cc->finish_pageblock) {
1212					low_pfn = end_pfn;
1213					goto isolate_abort;
1214				}
1215			}
1216
1217			/*
1218			 * Check LRU folio order under the lock
 
 
1219			 */
1220			if (unlikely(skip_isolation_on_order(folio_order(folio),
1221							     cc->order) &&
1222				     !cc->alloc_contig)) {
1223				low_pfn += folio_nr_pages(folio) - 1;
1224				nr_scanned += folio_nr_pages(folio) - 1;
1225				folio_set_lru(folio);
1226				goto isolate_fail_put;
1227			}
1228		}
1229
1230		/* The folio is taken off the LRU */
1231		if (folio_test_large(folio))
1232			low_pfn += folio_nr_pages(folio) - 1;
1233
1234		/* Successfully isolated */
1235		lruvec_del_folio(lruvec, folio);
1236		node_stat_mod_folio(folio,
1237				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1238				folio_nr_pages(folio));
1239
1240isolate_success:
1241		list_add(&folio->lru, &cc->migratepages);
1242isolate_success_no_list:
1243		cc->nr_migratepages += folio_nr_pages(folio);
1244		nr_isolated += folio_nr_pages(folio);
1245		nr_scanned += folio_nr_pages(folio) - 1;
1246
1247		/*
1248		 * Avoid isolating too much unless this block is being
1249		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1250		 * or a lock is contended. For contention, isolate quickly to
1251		 * potentially remove one source of contention.
1252		 */
1253		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1254		    !cc->finish_pageblock && !cc->contended) {
1255			++low_pfn;
1256			break;
1257		}
1258
1259		continue;
1260
1261isolate_fail_put:
1262		/* Avoid potential deadlock in freeing page under lru_lock */
1263		if (locked) {
1264			unlock_page_lruvec_irqrestore(locked, flags);
1265			locked = NULL;
1266		}
1267		folio_put(folio);
1268
1269isolate_fail:
1270		if (!skip_on_failure && ret != -ENOMEM)
1271			continue;
1272
1273		/*
1274		 * We have isolated some pages, but then failed. Release them
1275		 * instead of migrating, as we cannot form the cc->order buddy
1276		 * page anyway.
1277		 */
1278		if (nr_isolated) {
1279			if (locked) {
1280				unlock_page_lruvec_irqrestore(locked, flags);
1281				locked = NULL;
1282			}
1283			putback_movable_pages(&cc->migratepages);
1284			cc->nr_migratepages = 0;
1285			nr_isolated = 0;
1286		}
1287
1288		if (low_pfn < next_skip_pfn) {
1289			low_pfn = next_skip_pfn - 1;
1290			/*
1291			 * The check near the loop beginning would have updated
1292			 * next_skip_pfn too, but this is a bit simpler.
1293			 */
1294			next_skip_pfn += 1UL << cc->order;
1295		}
1296
1297		if (ret == -ENOMEM)
1298			break;
1299	}
1300
1301	/*
1302	 * The PageBuddy() check could have potentially brought us outside
1303	 * the range to be scanned.
1304	 */
1305	if (unlikely(low_pfn > end_pfn))
1306		low_pfn = end_pfn;
1307
1308	folio = NULL;
1309
1310isolate_abort:
1311	if (locked)
1312		unlock_page_lruvec_irqrestore(locked, flags);
1313	if (folio) {
1314		folio_set_lru(folio);
1315		folio_put(folio);
1316	}
1317
1318	/*
1319	 * Update the cached scanner pfn once the pageblock has been scanned.
1320	 * Pages will either be migrated in which case there is no point
1321	 * scanning in the near future or migration failed in which case the
1322	 * failure reason may persist. The block is marked for skipping if
1323	 * there were no pages isolated in the block or if the block is
1324	 * rescanned twice in a row.
1325	 */
1326	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1327		if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1328			set_pageblock_skip(valid_page);
1329		update_cached_migrate(cc, low_pfn);
1330	}
1331
1332	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1333						nr_scanned, nr_isolated);
1334
1335fatal_pending:
1336	cc->total_migrate_scanned += nr_scanned;
1337	if (nr_isolated)
1338		count_compact_events(COMPACTISOLATED, nr_isolated);
1339
1340	cc->migrate_pfn = low_pfn;
1341
1342	return ret;
1343}
1344
1345/**
1346 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1347 * @cc:        Compaction control structure.
1348 * @start_pfn: The first PFN to start isolating.
1349 * @end_pfn:   The one-past-last PFN.
1350 *
1351 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1352 * in case we could not allocate a page, or 0.
1353 */
1354int
1355isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1356							unsigned long end_pfn)
1357{
1358	unsigned long pfn, block_start_pfn, block_end_pfn;
1359	int ret = 0;
1360
1361	/* Scan block by block. First and last block may be incomplete */
1362	pfn = start_pfn;
1363	block_start_pfn = pageblock_start_pfn(pfn);
1364	if (block_start_pfn < cc->zone->zone_start_pfn)
1365		block_start_pfn = cc->zone->zone_start_pfn;
1366	block_end_pfn = pageblock_end_pfn(pfn);
1367
1368	for (; pfn < end_pfn; pfn = block_end_pfn,
1369				block_start_pfn = block_end_pfn,
1370				block_end_pfn += pageblock_nr_pages) {
1371
1372		block_end_pfn = min(block_end_pfn, end_pfn);
1373
1374		if (!pageblock_pfn_to_page(block_start_pfn,
1375					block_end_pfn, cc->zone))
1376			continue;
1377
1378		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1379						 ISOLATE_UNEVICTABLE);
1380
1381		if (ret)
1382			break;
1383
1384		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1385			break;
1386	}
1387
1388	return ret;
1389}
1390
1391#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1392#ifdef CONFIG_COMPACTION
1393
1394static bool suitable_migration_source(struct compact_control *cc,
1395							struct page *page)
1396{
1397	int block_mt;
1398
1399	if (pageblock_skip_persistent(page))
1400		return false;
1401
1402	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1403		return true;
1404
1405	block_mt = get_pageblock_migratetype(page);
1406
1407	if (cc->migratetype == MIGRATE_MOVABLE)
1408		return is_migrate_movable(block_mt);
1409	else
1410		return block_mt == cc->migratetype;
1411}
1412
1413/* Returns true if the page is within a block suitable for migration to */
1414static bool suitable_migration_target(struct compact_control *cc,
1415							struct page *page)
1416{
1417	/* If the page is a large free page, then disallow migration */
1418	if (PageBuddy(page)) {
1419		int order = cc->order > 0 ? cc->order : pageblock_order;
1420
1421		/*
1422		 * We are checking page_order without zone->lock taken. But
1423		 * the only small danger is that we skip a potentially suitable
1424		 * pageblock, so it's not worth to check order for valid range.
1425		 */
1426		if (buddy_order_unsafe(page) >= order)
1427			return false;
1428	}
1429
1430	if (cc->ignore_block_suitable)
1431		return true;
1432
1433	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1434	if (is_migrate_movable(get_pageblock_migratetype(page)))
1435		return true;
1436
1437	/* Otherwise skip the block */
1438	return false;
1439}
1440
1441static inline unsigned int
1442freelist_scan_limit(struct compact_control *cc)
1443{
1444	unsigned short shift = BITS_PER_LONG - 1;
1445
1446	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1447}
1448
1449/*
1450 * Test whether the free scanner has reached the same or lower pageblock than
1451 * the migration scanner, and compaction should thus terminate.
1452 */
1453static inline bool compact_scanners_met(struct compact_control *cc)
1454{
1455	return (cc->free_pfn >> pageblock_order)
1456		<= (cc->migrate_pfn >> pageblock_order);
1457}
1458
1459/*
1460 * Used when scanning for a suitable migration target which scans freelists
1461 * in reverse. Reorders the list such as the unscanned pages are scanned
1462 * first on the next iteration of the free scanner
1463 */
1464static void
1465move_freelist_head(struct list_head *freelist, struct page *freepage)
1466{
1467	LIST_HEAD(sublist);
1468
1469	if (!list_is_first(&freepage->buddy_list, freelist)) {
1470		list_cut_before(&sublist, freelist, &freepage->buddy_list);
1471		list_splice_tail(&sublist, freelist);
1472	}
1473}
1474
1475/*
1476 * Similar to move_freelist_head except used by the migration scanner
1477 * when scanning forward. It's possible for these list operations to
1478 * move against each other if they search the free list exactly in
1479 * lockstep.
1480 */
1481static void
1482move_freelist_tail(struct list_head *freelist, struct page *freepage)
1483{
1484	LIST_HEAD(sublist);
1485
1486	if (!list_is_last(&freepage->buddy_list, freelist)) {
1487		list_cut_position(&sublist, freelist, &freepage->buddy_list);
1488		list_splice_tail(&sublist, freelist);
1489	}
1490}
1491
1492static void
1493fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1494{
1495	unsigned long start_pfn, end_pfn;
1496	struct page *page;
1497
1498	/* Do not search around if there are enough pages already */
1499	if (cc->nr_freepages >= cc->nr_migratepages)
1500		return;
1501
1502	/* Minimise scanning during async compaction */
1503	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1504		return;
1505
1506	/* Pageblock boundaries */
1507	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1508	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1509
1510	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1511	if (!page)
1512		return;
1513
1514	isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false);
 
 
 
 
 
 
 
 
 
 
1515
1516	/* Skip this pageblock in the future as it's full or nearly full */
1517	if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1518		set_pageblock_skip(page);
1519}
1520
1521/* Search orders in round-robin fashion */
1522static int next_search_order(struct compact_control *cc, int order)
1523{
1524	order--;
1525	if (order < 0)
1526		order = cc->order - 1;
1527
1528	/* Search wrapped around? */
1529	if (order == cc->search_order) {
1530		cc->search_order--;
1531		if (cc->search_order < 0)
1532			cc->search_order = cc->order - 1;
1533		return -1;
1534	}
1535
1536	return order;
1537}
1538
1539static void fast_isolate_freepages(struct compact_control *cc)
 
1540{
1541	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1542	unsigned int nr_scanned = 0, total_isolated = 0;
1543	unsigned long low_pfn, min_pfn, highest = 0;
1544	unsigned long nr_isolated = 0;
1545	unsigned long distance;
1546	struct page *page = NULL;
1547	bool scan_start = false;
1548	int order;
1549
1550	/* Full compaction passes in a negative order */
1551	if (cc->order <= 0)
1552		return;
1553
1554	/*
1555	 * If starting the scan, use a deeper search and use the highest
1556	 * PFN found if a suitable one is not found.
1557	 */
1558	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1559		limit = pageblock_nr_pages >> 1;
1560		scan_start = true;
1561	}
1562
1563	/*
1564	 * Preferred point is in the top quarter of the scan space but take
1565	 * a pfn from the top half if the search is problematic.
1566	 */
1567	distance = (cc->free_pfn - cc->migrate_pfn);
1568	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1569	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1570
1571	if (WARN_ON_ONCE(min_pfn > low_pfn))
1572		low_pfn = min_pfn;
1573
1574	/*
1575	 * Search starts from the last successful isolation order or the next
1576	 * order to search after a previous failure
1577	 */
1578	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1579
1580	for (order = cc->search_order;
1581	     !page && order >= 0;
1582	     order = next_search_order(cc, order)) {
1583		struct free_area *area = &cc->zone->free_area[order];
1584		struct list_head *freelist;
1585		struct page *freepage;
1586		unsigned long flags;
1587		unsigned int order_scanned = 0;
1588		unsigned long high_pfn = 0;
1589
1590		if (!area->nr_free)
1591			continue;
1592
1593		spin_lock_irqsave(&cc->zone->lock, flags);
1594		freelist = &area->free_list[MIGRATE_MOVABLE];
1595		list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1596			unsigned long pfn;
1597
1598			order_scanned++;
1599			nr_scanned++;
1600			pfn = page_to_pfn(freepage);
1601
1602			if (pfn >= highest)
1603				highest = max(pageblock_start_pfn(pfn),
1604					      cc->zone->zone_start_pfn);
1605
1606			if (pfn >= low_pfn) {
1607				cc->fast_search_fail = 0;
1608				cc->search_order = order;
1609				page = freepage;
1610				break;
1611			}
1612
1613			if (pfn >= min_pfn && pfn > high_pfn) {
1614				high_pfn = pfn;
1615
1616				/* Shorten the scan if a candidate is found */
1617				limit >>= 1;
1618			}
1619
1620			if (order_scanned >= limit)
1621				break;
1622		}
1623
1624		/* Use a maximum candidate pfn if a preferred one was not found */
1625		if (!page && high_pfn) {
1626			page = pfn_to_page(high_pfn);
1627
1628			/* Update freepage for the list reorder below */
1629			freepage = page;
1630		}
1631
1632		/* Reorder to so a future search skips recent pages */
1633		move_freelist_head(freelist, freepage);
1634
1635		/* Isolate the page if available */
1636		if (page) {
1637			if (__isolate_free_page(page, order)) {
1638				set_page_private(page, order);
1639				nr_isolated = 1 << order;
1640				nr_scanned += nr_isolated - 1;
1641				total_isolated += nr_isolated;
1642				cc->nr_freepages += nr_isolated;
1643				list_add_tail(&page->lru, &cc->freepages[order]);
1644				count_compact_events(COMPACTISOLATED, nr_isolated);
1645			} else {
1646				/* If isolation fails, abort the search */
1647				order = cc->search_order + 1;
1648				page = NULL;
1649			}
1650		}
1651
1652		spin_unlock_irqrestore(&cc->zone->lock, flags);
1653
1654		/* Skip fast search if enough freepages isolated */
1655		if (cc->nr_freepages >= cc->nr_migratepages)
1656			break;
1657
1658		/*
1659		 * Smaller scan on next order so the total scan is related
1660		 * to freelist_scan_limit.
1661		 */
1662		if (order_scanned >= limit)
1663			limit = max(1U, limit >> 1);
1664	}
1665
1666	trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1667						   nr_scanned, total_isolated);
1668
1669	if (!page) {
1670		cc->fast_search_fail++;
1671		if (scan_start) {
1672			/*
1673			 * Use the highest PFN found above min. If one was
1674			 * not found, be pessimistic for direct compaction
1675			 * and use the min mark.
1676			 */
1677			if (highest >= min_pfn) {
1678				page = pfn_to_page(highest);
1679				cc->free_pfn = highest;
1680			} else {
1681				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1682					page = pageblock_pfn_to_page(min_pfn,
1683						min(pageblock_end_pfn(min_pfn),
1684						    zone_end_pfn(cc->zone)),
1685						cc->zone);
1686					if (page && !suitable_migration_target(cc, page))
1687						page = NULL;
1688
1689					cc->free_pfn = min_pfn;
1690				}
1691			}
1692		}
1693	}
1694
1695	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1696		highest -= pageblock_nr_pages;
1697		cc->zone->compact_cached_free_pfn = highest;
1698	}
1699
1700	cc->total_free_scanned += nr_scanned;
1701	if (!page)
1702		return;
1703
1704	low_pfn = page_to_pfn(page);
1705	fast_isolate_around(cc, low_pfn);
 
1706}
1707
1708/*
1709 * Based on information in the current compact_control, find blocks
1710 * suitable for isolating free pages from and then isolate them.
1711 */
1712static void isolate_freepages(struct compact_control *cc)
1713{
1714	struct zone *zone = cc->zone;
1715	struct page *page;
1716	unsigned long block_start_pfn;	/* start of current pageblock */
1717	unsigned long isolate_start_pfn; /* exact pfn we start at */
1718	unsigned long block_end_pfn;	/* end of current pageblock */
1719	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
 
1720	unsigned int stride;
1721
1722	/* Try a small search of the free lists for a candidate */
1723	fast_isolate_freepages(cc);
1724	if (cc->nr_freepages)
1725		return;
1726
1727	/*
1728	 * Initialise the free scanner. The starting point is where we last
1729	 * successfully isolated from, zone-cached value, or the end of the
1730	 * zone when isolating for the first time. For looping we also need
1731	 * this pfn aligned down to the pageblock boundary, because we do
1732	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1733	 * For ending point, take care when isolating in last pageblock of a
1734	 * zone which ends in the middle of a pageblock.
1735	 * The low boundary is the end of the pageblock the migration scanner
1736	 * is using.
1737	 */
1738	isolate_start_pfn = cc->free_pfn;
1739	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1740	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1741						zone_end_pfn(zone));
1742	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1743	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1744
1745	/*
1746	 * Isolate free pages until enough are available to migrate the
1747	 * pages on cc->migratepages. We stop searching if the migrate
1748	 * and free page scanners meet or enough free pages are isolated.
1749	 */
1750	for (; block_start_pfn >= low_pfn;
1751				block_end_pfn = block_start_pfn,
1752				block_start_pfn -= pageblock_nr_pages,
1753				isolate_start_pfn = block_start_pfn) {
1754		unsigned long nr_isolated;
1755
1756		/*
1757		 * This can iterate a massively long zone without finding any
1758		 * suitable migration targets, so periodically check resched.
1759		 */
1760		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1761			cond_resched();
1762
1763		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1764									zone);
1765		if (!page) {
1766			unsigned long next_pfn;
1767
1768			next_pfn = skip_offline_sections_reverse(block_start_pfn);
1769			if (next_pfn)
1770				block_start_pfn = max(next_pfn, low_pfn);
1771
1772			continue;
1773		}
1774
1775		/* Check the block is suitable for migration */
1776		if (!suitable_migration_target(cc, page))
1777			continue;
1778
1779		/* If isolation recently failed, do not retry */
1780		if (!isolation_suitable(cc, page))
1781			continue;
1782
1783		/* Found a block suitable for isolating free pages from. */
1784		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1785					block_end_pfn, cc->freepages, stride, false);
1786
1787		/* Update the skip hint if the full pageblock was scanned */
1788		if (isolate_start_pfn == block_end_pfn)
1789			update_pageblock_skip(cc, page, block_start_pfn -
1790					      pageblock_nr_pages);
1791
1792		/* Are enough freepages isolated? */
1793		if (cc->nr_freepages >= cc->nr_migratepages) {
1794			if (isolate_start_pfn >= block_end_pfn) {
1795				/*
1796				 * Restart at previous pageblock if more
1797				 * freepages can be isolated next time.
1798				 */
1799				isolate_start_pfn =
1800					block_start_pfn - pageblock_nr_pages;
1801			}
1802			break;
1803		} else if (isolate_start_pfn < block_end_pfn) {
1804			/*
1805			 * If isolation failed early, do not continue
1806			 * needlessly.
1807			 */
1808			break;
1809		}
1810
1811		/* Adjust stride depending on isolation */
1812		if (nr_isolated) {
1813			stride = 1;
1814			continue;
1815		}
1816		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1817	}
1818
1819	/*
1820	 * Record where the free scanner will restart next time. Either we
1821	 * broke from the loop and set isolate_start_pfn based on the last
1822	 * call to isolate_freepages_block(), or we met the migration scanner
1823	 * and the loop terminated due to isolate_start_pfn < low_pfn
1824	 */
1825	cc->free_pfn = isolate_start_pfn;
 
 
 
 
1826}
1827
1828/*
1829 * This is a migrate-callback that "allocates" freepages by taking pages
1830 * from the isolated freelists in the block we are migrating to.
1831 */
1832static struct folio *compaction_alloc_noprof(struct folio *src, unsigned long data)
 
1833{
1834	struct compact_control *cc = (struct compact_control *)data;
1835	struct folio *dst;
1836	int order = folio_order(src);
1837	bool has_isolated_pages = false;
1838	int start_order;
1839	struct page *freepage;
1840	unsigned long size;
1841
1842again:
1843	for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++)
1844		if (!list_empty(&cc->freepages[start_order]))
1845			break;
1846
1847	/* no free pages in the list */
1848	if (start_order == NR_PAGE_ORDERS) {
1849		if (has_isolated_pages)
1850			return NULL;
1851		isolate_freepages(cc);
1852		has_isolated_pages = true;
1853		goto again;
1854	}
1855
1856	freepage = list_first_entry(&cc->freepages[start_order], struct page,
1857				lru);
1858	size = 1 << start_order;
1859
1860	list_del(&freepage->lru);
 
1861
1862	while (start_order > order) {
1863		start_order--;
1864		size >>= 1;
1865
1866		list_add(&freepage[size].lru, &cc->freepages[start_order]);
1867		set_page_private(&freepage[size], start_order);
1868	}
1869	dst = (struct folio *)freepage;
1870
1871	post_alloc_hook(&dst->page, order, __GFP_MOVABLE);
1872	if (order)
1873		prep_compound_page(&dst->page, order);
1874	cc->nr_freepages -= 1 << order;
1875	cc->nr_migratepages -= 1 << order;
1876	return page_rmappable_folio(&dst->page);
1877}
1878
1879static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1880{
1881	return alloc_hooks(compaction_alloc_noprof(src, data));
1882}
1883
1884/*
1885 * This is a migrate-callback that "frees" freepages back to the isolated
1886 * freelist.  All pages on the freelist are from the same zone, so there is no
1887 * special handling needed for NUMA.
1888 */
1889static void compaction_free(struct folio *dst, unsigned long data)
1890{
1891	struct compact_control *cc = (struct compact_control *)data;
1892	int order = folio_order(dst);
1893	struct page *page = &dst->page;
1894
1895	if (folio_put_testzero(dst)) {
1896		free_pages_prepare(page, order);
1897		list_add(&dst->lru, &cc->freepages[order]);
1898		cc->nr_freepages += 1 << order;
1899	}
1900	cc->nr_migratepages += 1 << order;
1901	/*
1902	 * someone else has referenced the page, we cannot take it back to our
1903	 * free list.
1904	 */
1905}
1906
1907/* possible outcome of isolate_migratepages */
1908typedef enum {
1909	ISOLATE_ABORT,		/* Abort compaction now */
1910	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1911	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1912} isolate_migrate_t;
1913
1914/*
1915 * Allow userspace to control policy on scanning the unevictable LRU for
1916 * compactable pages.
1917 */
1918static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1919/*
1920 * Tunable for proactive compaction. It determines how
1921 * aggressively the kernel should compact memory in the
1922 * background. It takes values in the range [0, 100].
1923 */
1924static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1925static int sysctl_extfrag_threshold = 500;
1926static int __read_mostly sysctl_compact_memory;
1927
1928static inline void
1929update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1930{
1931	if (cc->fast_start_pfn == ULONG_MAX)
1932		return;
1933
1934	if (!cc->fast_start_pfn)
1935		cc->fast_start_pfn = pfn;
1936
1937	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1938}
1939
1940static inline unsigned long
1941reinit_migrate_pfn(struct compact_control *cc)
1942{
1943	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1944		return cc->migrate_pfn;
1945
1946	cc->migrate_pfn = cc->fast_start_pfn;
1947	cc->fast_start_pfn = ULONG_MAX;
1948
1949	return cc->migrate_pfn;
1950}
1951
1952/*
1953 * Briefly search the free lists for a migration source that already has
1954 * some free pages to reduce the number of pages that need migration
1955 * before a pageblock is free.
1956 */
1957static unsigned long fast_find_migrateblock(struct compact_control *cc)
1958{
1959	unsigned int limit = freelist_scan_limit(cc);
1960	unsigned int nr_scanned = 0;
1961	unsigned long distance;
1962	unsigned long pfn = cc->migrate_pfn;
1963	unsigned long high_pfn;
1964	int order;
1965	bool found_block = false;
1966
1967	/* Skip hints are relied on to avoid repeats on the fast search */
1968	if (cc->ignore_skip_hint)
1969		return pfn;
1970
1971	/*
1972	 * If the pageblock should be finished then do not select a different
1973	 * pageblock.
1974	 */
1975	if (cc->finish_pageblock)
1976		return pfn;
1977
1978	/*
1979	 * If the migrate_pfn is not at the start of a zone or the start
1980	 * of a pageblock then assume this is a continuation of a previous
1981	 * scan restarted due to COMPACT_CLUSTER_MAX.
1982	 */
1983	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1984		return pfn;
1985
1986	/*
1987	 * For smaller orders, just linearly scan as the number of pages
1988	 * to migrate should be relatively small and does not necessarily
1989	 * justify freeing up a large block for a small allocation.
1990	 */
1991	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1992		return pfn;
1993
1994	/*
1995	 * Only allow kcompactd and direct requests for movable pages to
1996	 * quickly clear out a MOVABLE pageblock for allocation. This
1997	 * reduces the risk that a large movable pageblock is freed for
1998	 * an unmovable/reclaimable small allocation.
1999	 */
2000	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
2001		return pfn;
2002
2003	/*
2004	 * When starting the migration scanner, pick any pageblock within the
2005	 * first half of the search space. Otherwise try and pick a pageblock
2006	 * within the first eighth to reduce the chances that a migration
2007	 * target later becomes a source.
2008	 */
2009	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
2010	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
2011		distance >>= 2;
2012	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
2013
2014	for (order = cc->order - 1;
2015	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
2016	     order--) {
2017		struct free_area *area = &cc->zone->free_area[order];
2018		struct list_head *freelist;
2019		unsigned long flags;
2020		struct page *freepage;
2021
2022		if (!area->nr_free)
2023			continue;
2024
2025		spin_lock_irqsave(&cc->zone->lock, flags);
2026		freelist = &area->free_list[MIGRATE_MOVABLE];
2027		list_for_each_entry(freepage, freelist, buddy_list) {
2028			unsigned long free_pfn;
2029
2030			if (nr_scanned++ >= limit) {
2031				move_freelist_tail(freelist, freepage);
2032				break;
2033			}
2034
2035			free_pfn = page_to_pfn(freepage);
2036			if (free_pfn < high_pfn) {
2037				/*
2038				 * Avoid if skipped recently. Ideally it would
2039				 * move to the tail but even safe iteration of
2040				 * the list assumes an entry is deleted, not
2041				 * reordered.
2042				 */
2043				if (get_pageblock_skip(freepage))
2044					continue;
2045
2046				/* Reorder to so a future search skips recent pages */
2047				move_freelist_tail(freelist, freepage);
2048
2049				update_fast_start_pfn(cc, free_pfn);
2050				pfn = pageblock_start_pfn(free_pfn);
2051				if (pfn < cc->zone->zone_start_pfn)
2052					pfn = cc->zone->zone_start_pfn;
2053				cc->fast_search_fail = 0;
2054				found_block = true;
 
2055				break;
2056			}
2057		}
2058		spin_unlock_irqrestore(&cc->zone->lock, flags);
2059	}
2060
2061	cc->total_migrate_scanned += nr_scanned;
2062
2063	/*
2064	 * If fast scanning failed then use a cached entry for a page block
2065	 * that had free pages as the basis for starting a linear scan.
2066	 */
2067	if (!found_block) {
2068		cc->fast_search_fail++;
2069		pfn = reinit_migrate_pfn(cc);
2070	}
2071	return pfn;
2072}
2073
2074/*
2075 * Isolate all pages that can be migrated from the first suitable block,
2076 * starting at the block pointed to by the migrate scanner pfn within
2077 * compact_control.
2078 */
2079static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
2080{
2081	unsigned long block_start_pfn;
2082	unsigned long block_end_pfn;
2083	unsigned long low_pfn;
2084	struct page *page;
2085	const isolate_mode_t isolate_mode =
2086		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
2087		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
2088	bool fast_find_block;
2089
2090	/*
2091	 * Start at where we last stopped, or beginning of the zone as
2092	 * initialized by compact_zone(). The first failure will use
2093	 * the lowest PFN as the starting point for linear scanning.
2094	 */
2095	low_pfn = fast_find_migrateblock(cc);
2096	block_start_pfn = pageblock_start_pfn(low_pfn);
2097	if (block_start_pfn < cc->zone->zone_start_pfn)
2098		block_start_pfn = cc->zone->zone_start_pfn;
2099
2100	/*
2101	 * fast_find_migrateblock() has already ensured the pageblock is not
2102	 * set with a skipped flag, so to avoid the isolation_suitable check
2103	 * below again, check whether the fast search was successful.
2104	 */
2105	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2106
2107	/* Only scan within a pageblock boundary */
2108	block_end_pfn = pageblock_end_pfn(low_pfn);
2109
2110	/*
2111	 * Iterate over whole pageblocks until we find the first suitable.
2112	 * Do not cross the free scanner.
2113	 */
2114	for (; block_end_pfn <= cc->free_pfn;
2115			fast_find_block = false,
2116			cc->migrate_pfn = low_pfn = block_end_pfn,
2117			block_start_pfn = block_end_pfn,
2118			block_end_pfn += pageblock_nr_pages) {
2119
2120		/*
2121		 * This can potentially iterate a massively long zone with
2122		 * many pageblocks unsuitable, so periodically check if we
2123		 * need to schedule.
2124		 */
2125		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2126			cond_resched();
2127
2128		page = pageblock_pfn_to_page(block_start_pfn,
2129						block_end_pfn, cc->zone);
2130		if (!page) {
2131			unsigned long next_pfn;
2132
2133			next_pfn = skip_offline_sections(block_start_pfn);
2134			if (next_pfn)
2135				block_end_pfn = min(next_pfn, cc->free_pfn);
2136			continue;
2137		}
2138
2139		/*
2140		 * If isolation recently failed, do not retry. Only check the
2141		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2142		 * to be visited multiple times. Assume skip was checked
2143		 * before making it "skip" so other compaction instances do
2144		 * not scan the same block.
2145		 */
2146		if ((pageblock_aligned(low_pfn) ||
2147		     low_pfn == cc->zone->zone_start_pfn) &&
2148		    !fast_find_block && !isolation_suitable(cc, page))
2149			continue;
2150
2151		/*
2152		 * For async direct compaction, only scan the pageblocks of the
2153		 * same migratetype without huge pages. Async direct compaction
2154		 * is optimistic to see if the minimum amount of work satisfies
2155		 * the allocation. The cached PFN is updated as it's possible
2156		 * that all remaining blocks between source and target are
2157		 * unsuitable and the compaction scanners fail to meet.
2158		 */
2159		if (!suitable_migration_source(cc, page)) {
2160			update_cached_migrate(cc, block_end_pfn);
2161			continue;
2162		}
2163
2164		/* Perform the isolation */
2165		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2166						isolate_mode))
2167			return ISOLATE_ABORT;
2168
2169		/*
2170		 * Either we isolated something and proceed with migration. Or
2171		 * we failed and compact_zone should decide if we should
2172		 * continue or not.
2173		 */
2174		break;
2175	}
2176
2177	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2178}
2179
2180/*
2181 * Determine whether kswapd is (or recently was!) running on this node.
2182 *
2183 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2184 * zero it.
2185 */
 
 
 
 
 
2186static bool kswapd_is_running(pg_data_t *pgdat)
2187{
2188	bool running;
2189
2190	pgdat_kswapd_lock(pgdat);
2191	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2192	pgdat_kswapd_unlock(pgdat);
2193
2194	return running;
2195}
2196
2197/*
2198 * A zone's fragmentation score is the external fragmentation wrt to the
2199 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2200 */
2201static unsigned int fragmentation_score_zone(struct zone *zone)
2202{
2203	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2204}
2205
2206/*
2207 * A weighted zone's fragmentation score is the external fragmentation
2208 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2209 * returns a value in the range [0, 100].
2210 *
2211 * The scaling factor ensures that proactive compaction focuses on larger
2212 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2213 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2214 * and thus never exceeds the high threshold for proactive compaction.
2215 */
2216static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2217{
2218	unsigned long score;
2219
2220	score = zone->present_pages * fragmentation_score_zone(zone);
2221	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2222}
2223
2224/*
2225 * The per-node proactive (background) compaction process is started by its
2226 * corresponding kcompactd thread when the node's fragmentation score
2227 * exceeds the high threshold. The compaction process remains active till
2228 * the node's score falls below the low threshold, or one of the back-off
2229 * conditions is met.
2230 */
2231static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2232{
2233	unsigned int score = 0;
2234	int zoneid;
2235
2236	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2237		struct zone *zone;
2238
2239		zone = &pgdat->node_zones[zoneid];
2240		if (!populated_zone(zone))
2241			continue;
2242		score += fragmentation_score_zone_weighted(zone);
2243	}
2244
2245	return score;
2246}
2247
2248static unsigned int fragmentation_score_wmark(bool low)
2249{
2250	unsigned int wmark_low;
2251
2252	/*
2253	 * Cap the low watermark to avoid excessive compaction
2254	 * activity in case a user sets the proactiveness tunable
2255	 * close to 100 (maximum).
2256	 */
2257	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2258	return low ? wmark_low : min(wmark_low + 10, 100U);
2259}
2260
2261static bool should_proactive_compact_node(pg_data_t *pgdat)
2262{
2263	int wmark_high;
2264
2265	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2266		return false;
2267
2268	wmark_high = fragmentation_score_wmark(false);
2269	return fragmentation_score_node(pgdat) > wmark_high;
2270}
2271
2272static enum compact_result __compact_finished(struct compact_control *cc)
2273{
2274	unsigned int order;
2275	const int migratetype = cc->migratetype;
2276	int ret;
2277
2278	/* Compaction run completes if the migrate and free scanner meet */
2279	if (compact_scanners_met(cc)) {
2280		/* Let the next compaction start anew. */
2281		reset_cached_positions(cc->zone);
2282
2283		/*
2284		 * Mark that the PG_migrate_skip information should be cleared
2285		 * by kswapd when it goes to sleep. kcompactd does not set the
2286		 * flag itself as the decision to be clear should be directly
2287		 * based on an allocation request.
2288		 */
2289		if (cc->direct_compaction)
2290			cc->zone->compact_blockskip_flush = true;
2291
2292		if (cc->whole_zone)
2293			return COMPACT_COMPLETE;
2294		else
2295			return COMPACT_PARTIAL_SKIPPED;
2296	}
2297
2298	if (cc->proactive_compaction) {
2299		int score, wmark_low;
2300		pg_data_t *pgdat;
2301
2302		pgdat = cc->zone->zone_pgdat;
2303		if (kswapd_is_running(pgdat))
2304			return COMPACT_PARTIAL_SKIPPED;
2305
2306		score = fragmentation_score_zone(cc->zone);
2307		wmark_low = fragmentation_score_wmark(true);
2308
2309		if (score > wmark_low)
2310			ret = COMPACT_CONTINUE;
2311		else
2312			ret = COMPACT_SUCCESS;
2313
2314		goto out;
2315	}
2316
2317	if (is_via_compact_memory(cc->order))
2318		return COMPACT_CONTINUE;
2319
2320	/*
2321	 * Always finish scanning a pageblock to reduce the possibility of
2322	 * fallbacks in the future. This is particularly important when
2323	 * migration source is unmovable/reclaimable but it's not worth
2324	 * special casing.
2325	 */
2326	if (!pageblock_aligned(cc->migrate_pfn))
2327		return COMPACT_CONTINUE;
2328
2329	/* Direct compactor: Is a suitable page free? */
2330	ret = COMPACT_NO_SUITABLE_PAGE;
2331	for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2332		struct free_area *area = &cc->zone->free_area[order];
2333		bool can_steal;
2334
2335		/* Job done if page is free of the right migratetype */
2336		if (!free_area_empty(area, migratetype))
2337			return COMPACT_SUCCESS;
2338
2339#ifdef CONFIG_CMA
2340		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2341		if (migratetype == MIGRATE_MOVABLE &&
2342			!free_area_empty(area, MIGRATE_CMA))
2343			return COMPACT_SUCCESS;
2344#endif
2345		/*
2346		 * Job done if allocation would steal freepages from
2347		 * other migratetype buddy lists.
2348		 */
2349		if (find_suitable_fallback(area, order, migratetype,
2350						true, &can_steal) != -1)
2351			/*
2352			 * Movable pages are OK in any pageblock. If we are
2353			 * stealing for a non-movable allocation, make sure
2354			 * we finish compacting the current pageblock first
2355			 * (which is assured by the above migrate_pfn align
2356			 * check) so it is as free as possible and we won't
2357			 * have to steal another one soon.
2358			 */
2359			return COMPACT_SUCCESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
2360	}
2361
2362out:
2363	if (cc->contended || fatal_signal_pending(current))
2364		ret = COMPACT_CONTENDED;
2365
2366	return ret;
2367}
2368
2369static enum compact_result compact_finished(struct compact_control *cc)
2370{
2371	int ret;
2372
2373	ret = __compact_finished(cc);
2374	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2375	if (ret == COMPACT_NO_SUITABLE_PAGE)
2376		ret = COMPACT_CONTINUE;
2377
2378	return ret;
2379}
2380
2381static bool __compaction_suitable(struct zone *zone, int order,
2382				  int highest_zoneidx,
2383				  unsigned long wmark_target)
 
2384{
2385	unsigned long watermark;
 
 
 
 
 
 
 
 
 
 
 
 
 
2386	/*
2387	 * Watermarks for order-0 must be met for compaction to be able to
2388	 * isolate free pages for migration targets. This means that the
2389	 * watermark and alloc_flags have to match, or be more pessimistic than
2390	 * the check in __isolate_free_page(). We don't use the direct
2391	 * compactor's alloc_flags, as they are not relevant for freepage
2392	 * isolation. We however do use the direct compactor's highest_zoneidx
2393	 * to skip over zones where lowmem reserves would prevent allocation
2394	 * even if compaction succeeds.
2395	 * For costly orders, we require low watermark instead of min for
2396	 * compaction to proceed to increase its chances.
2397	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2398	 * suitable migration targets
2399	 */
2400	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2401				low_wmark_pages(zone) : min_wmark_pages(zone);
2402	watermark += compact_gap(order);
2403	return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2404				   ALLOC_CMA, wmark_target);
 
 
 
2405}
2406
2407/*
2408 * compaction_suitable: Is this suitable to run compaction on this zone now?
2409 */
2410bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
 
 
 
 
 
 
2411{
2412	enum compact_result compact_result;
2413	bool suitable;
2414
2415	suitable = __compaction_suitable(zone, order, highest_zoneidx,
2416					 zone_page_state(zone, NR_FREE_PAGES));
2417	/*
2418	 * fragmentation index determines if allocation failures are due to
2419	 * low memory or external fragmentation
2420	 *
2421	 * index of -1000 would imply allocations might succeed depending on
2422	 * watermarks, but we already failed the high-order watermark check
2423	 * index towards 0 implies failure is due to lack of memory
2424	 * index towards 1000 implies failure is due to fragmentation
2425	 *
2426	 * Only compact if a failure would be due to fragmentation. Also
2427	 * ignore fragindex for non-costly orders where the alternative to
2428	 * a successful reclaim/compaction is OOM. Fragindex and the
2429	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2430	 * excessive compaction for costly orders, but it should not be at the
2431	 * expense of system stability.
2432	 */
2433	if (suitable) {
2434		compact_result = COMPACT_CONTINUE;
2435		if (order > PAGE_ALLOC_COSTLY_ORDER) {
2436			int fragindex = fragmentation_index(zone, order);
2437
2438			if (fragindex >= 0 &&
2439			    fragindex <= sysctl_extfrag_threshold) {
2440				suitable = false;
2441				compact_result = COMPACT_NOT_SUITABLE_ZONE;
2442			}
2443		}
2444	} else {
2445		compact_result = COMPACT_SKIPPED;
2446	}
2447
2448	trace_mm_compaction_suitable(zone, order, compact_result);
 
 
2449
2450	return suitable;
2451}
2452
2453bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2454		int alloc_flags)
2455{
2456	struct zone *zone;
2457	struct zoneref *z;
2458
2459	/*
2460	 * Make sure at least one zone would pass __compaction_suitable if we continue
2461	 * retrying the reclaim.
2462	 */
2463	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2464				ac->highest_zoneidx, ac->nodemask) {
2465		unsigned long available;
 
2466
2467		/*
2468		 * Do not consider all the reclaimable memory because we do not
2469		 * want to trash just for a single high order allocation which
2470		 * is even not guaranteed to appear even if __compaction_suitable
2471		 * is happy about the watermark check.
2472		 */
2473		available = zone_reclaimable_pages(zone) / order;
2474		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2475		if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2476					  available))
 
2477			return true;
2478	}
2479
2480	return false;
2481}
2482
2483/*
2484 * Should we do compaction for target allocation order.
2485 * Return COMPACT_SUCCESS if allocation for target order can be already
2486 * satisfied
2487 * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2488 * Return COMPACT_CONTINUE if compaction for target order should be ran
2489 */
2490static enum compact_result
2491compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2492				 int highest_zoneidx, unsigned int alloc_flags)
2493{
2494	unsigned long watermark;
2495
2496	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2497	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2498			      alloc_flags))
2499		return COMPACT_SUCCESS;
2500
2501	if (!compaction_suitable(zone, order, highest_zoneidx))
2502		return COMPACT_SKIPPED;
2503
2504	return COMPACT_CONTINUE;
2505}
2506
2507static enum compact_result
2508compact_zone(struct compact_control *cc, struct capture_control *capc)
2509{
2510	enum compact_result ret;
2511	unsigned long start_pfn = cc->zone->zone_start_pfn;
2512	unsigned long end_pfn = zone_end_pfn(cc->zone);
2513	unsigned long last_migrated_pfn;
2514	const bool sync = cc->mode != MIGRATE_ASYNC;
2515	bool update_cached;
2516	unsigned int nr_succeeded = 0, nr_migratepages;
2517	int order;
2518
2519	/*
2520	 * These counters track activities during zone compaction.  Initialize
2521	 * them before compacting a new zone.
2522	 */
2523	cc->total_migrate_scanned = 0;
2524	cc->total_free_scanned = 0;
2525	cc->nr_migratepages = 0;
2526	cc->nr_freepages = 0;
2527	for (order = 0; order < NR_PAGE_ORDERS; order++)
2528		INIT_LIST_HEAD(&cc->freepages[order]);
2529	INIT_LIST_HEAD(&cc->migratepages);
2530
2531	cc->migratetype = gfp_migratetype(cc->gfp_mask);
 
 
 
 
 
2532
2533	if (!is_via_compact_memory(cc->order)) {
2534		ret = compaction_suit_allocation_order(cc->zone, cc->order,
2535						       cc->highest_zoneidx,
2536						       cc->alloc_flags);
2537		if (ret != COMPACT_CONTINUE)
2538			return ret;
2539	}
2540
2541	/*
2542	 * Clear pageblock skip if there were failures recently and compaction
2543	 * is about to be retried after being deferred.
2544	 */
2545	if (compaction_restarting(cc->zone, cc->order))
2546		__reset_isolation_suitable(cc->zone);
2547
2548	/*
2549	 * Setup to move all movable pages to the end of the zone. Used cached
2550	 * information on where the scanners should start (unless we explicitly
2551	 * want to compact the whole zone), but check that it is initialised
2552	 * by ensuring the values are within zone boundaries.
2553	 */
2554	cc->fast_start_pfn = 0;
2555	if (cc->whole_zone) {
2556		cc->migrate_pfn = start_pfn;
2557		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2558	} else {
2559		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2560		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2561		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2562			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2563			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2564		}
2565		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2566			cc->migrate_pfn = start_pfn;
2567			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2568			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2569		}
2570
2571		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2572			cc->whole_zone = true;
2573	}
2574
2575	last_migrated_pfn = 0;
2576
2577	/*
2578	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2579	 * the basis that some migrations will fail in ASYNC mode. However,
2580	 * if the cached PFNs match and pageblocks are skipped due to having
2581	 * no isolation candidates, then the sync state does not matter.
2582	 * Until a pageblock with isolation candidates is found, keep the
2583	 * cached PFNs in sync to avoid revisiting the same blocks.
2584	 */
2585	update_cached = !sync &&
2586		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2587
2588	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
 
2589
2590	/* lru_add_drain_all could be expensive with involving other CPUs */
2591	lru_add_drain();
2592
2593	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2594		int err;
2595		unsigned long iteration_start_pfn = cc->migrate_pfn;
2596
2597		/*
2598		 * Avoid multiple rescans of the same pageblock which can
2599		 * happen if a page cannot be isolated (dirty/writeback in
2600		 * async mode) or if the migrated pages are being allocated
2601		 * before the pageblock is cleared.  The first rescan will
2602		 * capture the entire pageblock for migration. If it fails,
2603		 * it'll be marked skip and scanning will proceed as normal.
2604		 */
2605		cc->finish_pageblock = false;
2606		if (pageblock_start_pfn(last_migrated_pfn) ==
2607		    pageblock_start_pfn(iteration_start_pfn)) {
2608			cc->finish_pageblock = true;
2609		}
2610
2611rescan:
2612		switch (isolate_migratepages(cc)) {
2613		case ISOLATE_ABORT:
2614			ret = COMPACT_CONTENDED;
2615			putback_movable_pages(&cc->migratepages);
2616			cc->nr_migratepages = 0;
2617			goto out;
2618		case ISOLATE_NONE:
2619			if (update_cached) {
2620				cc->zone->compact_cached_migrate_pfn[1] =
2621					cc->zone->compact_cached_migrate_pfn[0];
2622			}
2623
2624			/*
2625			 * We haven't isolated and migrated anything, but
2626			 * there might still be unflushed migrations from
2627			 * previous cc->order aligned block.
2628			 */
2629			goto check_drain;
2630		case ISOLATE_SUCCESS:
2631			update_cached = false;
2632			last_migrated_pfn = max(cc->zone->zone_start_pfn,
2633				pageblock_start_pfn(cc->migrate_pfn - 1));
2634		}
2635
2636		/*
2637		 * Record the number of pages to migrate since the
2638		 * compaction_alloc/free() will update cc->nr_migratepages
2639		 * properly.
2640		 */
2641		nr_migratepages = cc->nr_migratepages;
2642		err = migrate_pages(&cc->migratepages, compaction_alloc,
2643				compaction_free, (unsigned long)cc, cc->mode,
2644				MR_COMPACTION, &nr_succeeded);
2645
2646		trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded);
 
2647
2648		/* All pages were either migrated or will be released */
2649		cc->nr_migratepages = 0;
2650		if (err) {
2651			putback_movable_pages(&cc->migratepages);
2652			/*
2653			 * migrate_pages() may return -ENOMEM when scanners meet
2654			 * and we want compact_finished() to detect it
2655			 */
2656			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2657				ret = COMPACT_CONTENDED;
2658				goto out;
2659			}
2660			/*
2661			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2662			 * within the pageblock_order-aligned block and
2663			 * fast_find_migrateblock may be used then scan the
2664			 * remainder of the pageblock. This will mark the
2665			 * pageblock "skip" to avoid rescanning in the near
2666			 * future. This will isolate more pages than necessary
2667			 * for the request but avoid loops due to
2668			 * fast_find_migrateblock revisiting blocks that were
2669			 * recently partially scanned.
2670			 */
2671			if (!pageblock_aligned(cc->migrate_pfn) &&
2672			    !cc->ignore_skip_hint && !cc->finish_pageblock &&
2673			    (cc->mode < MIGRATE_SYNC)) {
2674				cc->finish_pageblock = true;
2675
2676				/*
2677				 * Draining pcplists does not help THP if
2678				 * any page failed to migrate. Even after
2679				 * drain, the pageblock will not be free.
2680				 */
2681				if (cc->order == COMPACTION_HPAGE_ORDER)
2682					last_migrated_pfn = 0;
2683
2684				goto rescan;
2685			}
2686		}
2687
2688		/* Stop if a page has been captured */
2689		if (capc && capc->page) {
2690			ret = COMPACT_SUCCESS;
2691			break;
2692		}
2693
2694check_drain:
2695		/*
2696		 * Has the migration scanner moved away from the previous
2697		 * cc->order aligned block where we migrated from? If yes,
2698		 * flush the pages that were freed, so that they can merge and
2699		 * compact_finished() can detect immediately if allocation
2700		 * would succeed.
2701		 */
2702		if (cc->order > 0 && last_migrated_pfn) {
2703			unsigned long current_block_start =
2704				block_start_pfn(cc->migrate_pfn, cc->order);
2705
2706			if (last_migrated_pfn < current_block_start) {
2707				lru_add_drain_cpu_zone(cc->zone);
2708				/* No more flushing until we migrate again */
2709				last_migrated_pfn = 0;
2710			}
2711		}
 
 
 
 
 
 
2712	}
2713
2714out:
2715	/*
2716	 * Release free pages and update where the free scanner should restart,
2717	 * so we don't leave any returned pages behind in the next attempt.
2718	 */
2719	if (cc->nr_freepages > 0) {
2720		unsigned long free_pfn = release_free_list(cc->freepages);
2721
2722		cc->nr_freepages = 0;
2723		VM_BUG_ON(free_pfn == 0);
2724		/* The cached pfn is always the first in a pageblock */
2725		free_pfn = pageblock_start_pfn(free_pfn);
2726		/*
2727		 * Only go back, not forward. The cached pfn might have been
2728		 * already reset to zone end in compact_finished()
2729		 */
2730		if (free_pfn > cc->zone->compact_cached_free_pfn)
2731			cc->zone->compact_cached_free_pfn = free_pfn;
2732	}
2733
2734	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2735	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2736
2737	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2738
2739	VM_BUG_ON(!list_empty(&cc->migratepages));
2740
2741	return ret;
2742}
2743
2744static enum compact_result compact_zone_order(struct zone *zone, int order,
2745		gfp_t gfp_mask, enum compact_priority prio,
2746		unsigned int alloc_flags, int highest_zoneidx,
2747		struct page **capture)
2748{
2749	enum compact_result ret;
2750	struct compact_control cc = {
2751		.order = order,
2752		.search_order = order,
2753		.gfp_mask = gfp_mask,
2754		.zone = zone,
2755		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2756					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2757		.alloc_flags = alloc_flags,
2758		.highest_zoneidx = highest_zoneidx,
2759		.direct_compaction = true,
2760		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2761		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2762		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2763	};
2764	struct capture_control capc = {
2765		.cc = &cc,
2766		.page = NULL,
2767	};
2768
2769	/*
2770	 * Make sure the structs are really initialized before we expose the
2771	 * capture control, in case we are interrupted and the interrupt handler
2772	 * frees a page.
2773	 */
2774	barrier();
2775	WRITE_ONCE(current->capture_control, &capc);
2776
2777	ret = compact_zone(&cc, &capc);
2778
 
 
 
2779	/*
2780	 * Make sure we hide capture control first before we read the captured
2781	 * page pointer, otherwise an interrupt could free and capture a page
2782	 * and we would leak it.
2783	 */
2784	WRITE_ONCE(current->capture_control, NULL);
2785	*capture = READ_ONCE(capc.page);
2786	/*
2787	 * Technically, it is also possible that compaction is skipped but
2788	 * the page is still captured out of luck(IRQ came and freed the page).
2789	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2790	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2791	 */
2792	if (*capture)
2793		ret = COMPACT_SUCCESS;
2794
2795	return ret;
2796}
2797
 
 
2798/**
2799 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2800 * @gfp_mask: The GFP mask of the current allocation
2801 * @order: The order of the current allocation
2802 * @alloc_flags: The allocation flags of the current allocation
2803 * @ac: The context of current allocation
2804 * @prio: Determines how hard direct compaction should try to succeed
2805 * @capture: Pointer to free page created by compaction will be stored here
2806 *
2807 * This is the main entry point for direct page compaction.
2808 */
2809enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2810		unsigned int alloc_flags, const struct alloc_context *ac,
2811		enum compact_priority prio, struct page **capture)
2812{
 
2813	struct zoneref *z;
2814	struct zone *zone;
2815	enum compact_result rc = COMPACT_SKIPPED;
2816
2817	if (!gfp_compaction_allowed(gfp_mask))
 
 
 
 
2818		return COMPACT_SKIPPED;
2819
2820	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2821
2822	/* Compact each zone in the list */
2823	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2824					ac->highest_zoneidx, ac->nodemask) {
2825		enum compact_result status;
2826
2827		if (cpusets_enabled() &&
2828			(alloc_flags & ALLOC_CPUSET) &&
2829			!__cpuset_zone_allowed(zone, gfp_mask))
2830				continue;
2831
2832		if (prio > MIN_COMPACT_PRIORITY
2833					&& compaction_deferred(zone, order)) {
2834			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2835			continue;
2836		}
2837
2838		status = compact_zone_order(zone, order, gfp_mask, prio,
2839				alloc_flags, ac->highest_zoneidx, capture);
2840		rc = max(status, rc);
2841
2842		/* The allocation should succeed, stop compacting */
2843		if (status == COMPACT_SUCCESS) {
2844			/*
2845			 * We think the allocation will succeed in this zone,
2846			 * but it is not certain, hence the false. The caller
2847			 * will repeat this with true if allocation indeed
2848			 * succeeds in this zone.
2849			 */
2850			compaction_defer_reset(zone, order, false);
2851
2852			break;
2853		}
2854
2855		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2856					status == COMPACT_PARTIAL_SKIPPED))
2857			/*
2858			 * We think that allocation won't succeed in this zone
2859			 * so we defer compaction there. If it ends up
2860			 * succeeding after all, it will be reset.
2861			 */
2862			defer_compaction(zone, order);
2863
2864		/*
2865		 * We might have stopped compacting due to need_resched() in
2866		 * async compaction, or due to a fatal signal detected. In that
2867		 * case do not try further zones
2868		 */
2869		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2870					|| fatal_signal_pending(current))
2871			break;
2872	}
2873
2874	return rc;
2875}
2876
2877/*
2878 * compact_node() - compact all zones within a node
2879 * @pgdat: The node page data
2880 * @proactive: Whether the compaction is proactive
2881 *
2882 * For proactive compaction, compact till each zone's fragmentation score
2883 * reaches within proactive compaction thresholds (as determined by the
2884 * proactiveness tunable), it is possible that the function returns before
2885 * reaching score targets due to various back-off conditions, such as,
2886 * contention on per-node or per-zone locks.
2887 */
2888static int compact_node(pg_data_t *pgdat, bool proactive)
2889{
2890	int zoneid;
2891	struct zone *zone;
2892	struct compact_control cc = {
2893		.order = -1,
2894		.mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC,
2895		.ignore_skip_hint = true,
2896		.whole_zone = true,
2897		.gfp_mask = GFP_KERNEL,
2898		.proactive_compaction = proactive,
2899	};
2900
2901	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2902		zone = &pgdat->node_zones[zoneid];
2903		if (!populated_zone(zone))
2904			continue;
2905
2906		if (fatal_signal_pending(current))
2907			return -EINTR;
2908
2909		cc.zone = zone;
2910
2911		compact_zone(&cc, NULL);
2912
2913		if (proactive) {
2914			count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2915					     cc.total_migrate_scanned);
2916			count_compact_events(KCOMPACTD_FREE_SCANNED,
2917					     cc.total_free_scanned);
2918		}
2919	}
2920
2921	return 0;
2922}
2923
2924/* Compact all zones of all nodes in the system */
2925static int compact_nodes(void)
2926{
2927	int ret, nid;
 
 
 
 
 
 
 
 
 
2928
2929	/* Flush pending updates to the LRU lists */
2930	lru_add_drain_all();
2931
2932	for_each_online_node(nid) {
2933		ret = compact_node(NODE_DATA(nid), false);
2934		if (ret)
2935			return ret;
2936	}
2937
2938	return 0;
2939}
 
2940
2941static int compaction_proactiveness_sysctl_handler(const struct ctl_table *table, int write,
2942		void *buffer, size_t *length, loff_t *ppos)
2943{
2944	int rc, nid;
2945
2946	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2947	if (rc)
2948		return rc;
2949
2950	if (write && sysctl_compaction_proactiveness) {
2951		for_each_online_node(nid) {
2952			pg_data_t *pgdat = NODE_DATA(nid);
 
2953
2954			if (pgdat->proactive_compact_trigger)
2955				continue;
 
 
2956
2957			pgdat->proactive_compact_trigger = true;
2958			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2959							     pgdat->nr_zones - 1);
2960			wake_up_interruptible(&pgdat->kcompactd_wait);
2961		}
2962	}
2963
2964	return 0;
 
2965}
2966
2967/*
 
 
 
 
 
 
 
2968 * This is the entry point for compacting all nodes via
2969 * /proc/sys/vm/compact_memory
2970 */
2971static int sysctl_compaction_handler(const struct ctl_table *table, int write,
2972			void *buffer, size_t *length, loff_t *ppos)
2973{
2974	int ret;
2975
2976	ret = proc_dointvec(table, write, buffer, length, ppos);
2977	if (ret)
2978		return ret;
2979
2980	if (sysctl_compact_memory != 1)
2981		return -EINVAL;
2982
2983	if (write)
2984		ret = compact_nodes();
2985
2986	return ret;
2987}
2988
2989#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2990static ssize_t compact_store(struct device *dev,
2991			     struct device_attribute *attr,
2992			     const char *buf, size_t count)
2993{
2994	int nid = dev->id;
2995
2996	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2997		/* Flush pending updates to the LRU lists */
2998		lru_add_drain_all();
2999
3000		compact_node(NODE_DATA(nid), false);
3001	}
3002
3003	return count;
3004}
3005static DEVICE_ATTR_WO(compact);
3006
3007int compaction_register_node(struct node *node)
3008{
3009	return device_create_file(&node->dev, &dev_attr_compact);
3010}
3011
3012void compaction_unregister_node(struct node *node)
3013{
3014	device_remove_file(&node->dev, &dev_attr_compact);
3015}
3016#endif /* CONFIG_SYSFS && CONFIG_NUMA */
3017
3018static inline bool kcompactd_work_requested(pg_data_t *pgdat)
3019{
3020	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
3021		pgdat->proactive_compact_trigger;
3022}
3023
3024static bool kcompactd_node_suitable(pg_data_t *pgdat)
3025{
3026	int zoneid;
3027	struct zone *zone;
3028	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
3029	enum compact_result ret;
3030
3031	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
3032		zone = &pgdat->node_zones[zoneid];
3033
3034		if (!populated_zone(zone))
3035			continue;
3036
3037		ret = compaction_suit_allocation_order(zone,
3038				pgdat->kcompactd_max_order,
3039				highest_zoneidx, ALLOC_WMARK_MIN);
3040		if (ret == COMPACT_CONTINUE)
3041			return true;
3042	}
3043
3044	return false;
3045}
3046
3047static void kcompactd_do_work(pg_data_t *pgdat)
3048{
3049	/*
3050	 * With no special task, compact all zones so that a page of requested
3051	 * order is allocatable.
3052	 */
3053	int zoneid;
3054	struct zone *zone;
3055	struct compact_control cc = {
3056		.order = pgdat->kcompactd_max_order,
3057		.search_order = pgdat->kcompactd_max_order,
3058		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
3059		.mode = MIGRATE_SYNC_LIGHT,
3060		.ignore_skip_hint = false,
3061		.gfp_mask = GFP_KERNEL,
3062	};
3063	enum compact_result ret;
3064
3065	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
3066							cc.highest_zoneidx);
3067	count_compact_event(KCOMPACTD_WAKE);
3068
3069	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
3070		int status;
3071
3072		zone = &pgdat->node_zones[zoneid];
3073		if (!populated_zone(zone))
3074			continue;
3075
3076		if (compaction_deferred(zone, cc.order))
3077			continue;
3078
3079		ret = compaction_suit_allocation_order(zone,
3080				cc.order, zoneid, ALLOC_WMARK_MIN);
3081		if (ret != COMPACT_CONTINUE)
3082			continue;
3083
3084		if (kthread_should_stop())
3085			return;
3086
3087		cc.zone = zone;
3088		status = compact_zone(&cc, NULL);
3089
3090		if (status == COMPACT_SUCCESS) {
3091			compaction_defer_reset(zone, cc.order, false);
3092		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3093			/*
3094			 * Buddy pages may become stranded on pcps that could
3095			 * otherwise coalesce on the zone's free area for
3096			 * order >= cc.order.  This is ratelimited by the
3097			 * upcoming deferral.
3098			 */
3099			drain_all_pages(zone);
3100
3101			/*
3102			 * We use sync migration mode here, so we defer like
3103			 * sync direct compaction does.
3104			 */
3105			defer_compaction(zone, cc.order);
3106		}
3107
3108		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3109				     cc.total_migrate_scanned);
3110		count_compact_events(KCOMPACTD_FREE_SCANNED,
3111				     cc.total_free_scanned);
 
 
 
3112	}
3113
3114	/*
3115	 * Regardless of success, we are done until woken up next. But remember
3116	 * the requested order/highest_zoneidx in case it was higher/tighter
3117	 * than our current ones
3118	 */
3119	if (pgdat->kcompactd_max_order <= cc.order)
3120		pgdat->kcompactd_max_order = 0;
3121	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3122		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3123}
3124
3125void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3126{
3127	if (!order)
3128		return;
3129
3130	if (pgdat->kcompactd_max_order < order)
3131		pgdat->kcompactd_max_order = order;
3132
3133	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3134		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3135
3136	/*
3137	 * Pairs with implicit barrier in wait_event_freezable()
3138	 * such that wakeups are not missed.
3139	 */
3140	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3141		return;
3142
3143	if (!kcompactd_node_suitable(pgdat))
3144		return;
3145
3146	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3147							highest_zoneidx);
3148	wake_up_interruptible(&pgdat->kcompactd_wait);
3149}
3150
3151/*
3152 * The background compaction daemon, started as a kernel thread
3153 * from the init process.
3154 */
3155static int kcompactd(void *p)
3156{
3157	pg_data_t *pgdat = (pg_data_t *)p;
3158	struct task_struct *tsk = current;
3159	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3160	long timeout = default_timeout;
3161
3162	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3163
3164	if (!cpumask_empty(cpumask))
3165		set_cpus_allowed_ptr(tsk, cpumask);
3166
3167	current->flags |= PF_KCOMPACTD;
3168	set_freezable();
3169
3170	pgdat->kcompactd_max_order = 0;
3171	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3172
3173	while (!kthread_should_stop()) {
3174		unsigned long pflags;
3175
3176		/*
3177		 * Avoid the unnecessary wakeup for proactive compaction
3178		 * when it is disabled.
3179		 */
3180		if (!sysctl_compaction_proactiveness)
3181			timeout = MAX_SCHEDULE_TIMEOUT;
3182		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3183		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3184			kcompactd_work_requested(pgdat), timeout) &&
3185			!pgdat->proactive_compact_trigger) {
3186
3187			psi_memstall_enter(&pflags);
3188			kcompactd_do_work(pgdat);
3189			psi_memstall_leave(&pflags);
3190			/*
3191			 * Reset the timeout value. The defer timeout from
3192			 * proactive compaction is lost here but that is fine
3193			 * as the condition of the zone changing substantionally
3194			 * then carrying on with the previous defer interval is
3195			 * not useful.
3196			 */
3197			timeout = default_timeout;
3198			continue;
3199		}
3200
3201		/*
3202		 * Start the proactive work with default timeout. Based
3203		 * on the fragmentation score, this timeout is updated.
3204		 */
3205		timeout = default_timeout;
3206		if (should_proactive_compact_node(pgdat)) {
3207			unsigned int prev_score, score;
3208
 
 
 
 
3209			prev_score = fragmentation_score_node(pgdat);
3210			compact_node(pgdat, true);
3211			score = fragmentation_score_node(pgdat);
3212			/*
3213			 * Defer proactive compaction if the fragmentation
3214			 * score did not go down i.e. no progress made.
3215			 */
3216			if (unlikely(score >= prev_score))
3217				timeout =
3218				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3219		}
3220		if (unlikely(pgdat->proactive_compact_trigger))
3221			pgdat->proactive_compact_trigger = false;
3222	}
3223
3224	current->flags &= ~PF_KCOMPACTD;
3225
3226	return 0;
3227}
3228
3229/*
3230 * This kcompactd start function will be called by init and node-hot-add.
3231 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3232 */
3233void __meminit kcompactd_run(int nid)
3234{
3235	pg_data_t *pgdat = NODE_DATA(nid);
 
3236
3237	if (pgdat->kcompactd)
3238		return;
3239
3240	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3241	if (IS_ERR(pgdat->kcompactd)) {
3242		pr_err("Failed to start kcompactd on node %d\n", nid);
 
3243		pgdat->kcompactd = NULL;
3244	}
 
3245}
3246
3247/*
3248 * Called by memory hotplug when all memory in a node is offlined. Caller must
3249 * be holding mem_hotplug_begin/done().
3250 */
3251void __meminit kcompactd_stop(int nid)
3252{
3253	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3254
3255	if (kcompactd) {
3256		kthread_stop(kcompactd);
3257		NODE_DATA(nid)->kcompactd = NULL;
3258	}
3259}
3260
3261/*
3262 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3263 * not required for correctness. So if the last cpu in a node goes
3264 * away, we get changed to run anywhere: as the first one comes back,
3265 * restore their cpu bindings.
3266 */
3267static int kcompactd_cpu_online(unsigned int cpu)
3268{
3269	int nid;
3270
3271	for_each_node_state(nid, N_MEMORY) {
3272		pg_data_t *pgdat = NODE_DATA(nid);
3273		const struct cpumask *mask;
3274
3275		mask = cpumask_of_node(pgdat->node_id);
3276
3277		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3278			/* One of our CPUs online: restore mask */
3279			if (pgdat->kcompactd)
3280				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3281	}
3282	return 0;
3283}
3284
3285static int proc_dointvec_minmax_warn_RT_change(const struct ctl_table *table,
3286		int write, void *buffer, size_t *lenp, loff_t *ppos)
3287{
3288	int ret, old;
3289
3290	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3291		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3292
3293	old = *(int *)table->data;
3294	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3295	if (ret)
3296		return ret;
3297	if (old != *(int *)table->data)
3298		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3299			     table->procname, current->comm,
3300			     task_pid_nr(current));
3301	return ret;
3302}
3303
3304static struct ctl_table vm_compaction[] = {
3305	{
3306		.procname	= "compact_memory",
3307		.data		= &sysctl_compact_memory,
3308		.maxlen		= sizeof(int),
3309		.mode		= 0200,
3310		.proc_handler	= sysctl_compaction_handler,
3311	},
3312	{
3313		.procname	= "compaction_proactiveness",
3314		.data		= &sysctl_compaction_proactiveness,
3315		.maxlen		= sizeof(sysctl_compaction_proactiveness),
3316		.mode		= 0644,
3317		.proc_handler	= compaction_proactiveness_sysctl_handler,
3318		.extra1		= SYSCTL_ZERO,
3319		.extra2		= SYSCTL_ONE_HUNDRED,
3320	},
3321	{
3322		.procname	= "extfrag_threshold",
3323		.data		= &sysctl_extfrag_threshold,
3324		.maxlen		= sizeof(int),
3325		.mode		= 0644,
3326		.proc_handler	= proc_dointvec_minmax,
3327		.extra1		= SYSCTL_ZERO,
3328		.extra2		= SYSCTL_ONE_THOUSAND,
3329	},
3330	{
3331		.procname	= "compact_unevictable_allowed",
3332		.data		= &sysctl_compact_unevictable_allowed,
3333		.maxlen		= sizeof(int),
3334		.mode		= 0644,
3335		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
3336		.extra1		= SYSCTL_ZERO,
3337		.extra2		= SYSCTL_ONE,
3338	},
3339};
3340
3341static int __init kcompactd_init(void)
3342{
3343	int nid;
3344	int ret;
3345
3346	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3347					"mm/compaction:online",
3348					kcompactd_cpu_online, NULL);
3349	if (ret < 0) {
3350		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3351		return ret;
3352	}
3353
3354	for_each_node_state(nid, N_MEMORY)
3355		kcompactd_run(nid);
3356	register_sysctl_init("vm", vm_compaction);
3357	return 0;
3358}
3359subsys_initcall(kcompactd_init)
3360
3361#endif /* CONFIG_COMPACTION */