Linux Audio

Check our new training course

Loading...
v5.14.15
   1/*
   2 * Copyright 2008 Advanced Micro Devices, Inc.
   3 * Copyright 2008 Red Hat Inc.
   4 * Copyright 2009 Jerome Glisse.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the "Software"),
   8 * to deal in the Software without restriction, including without limitation
   9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10 * and/or sell copies of the Software, and to permit persons to whom the
  11 * Software is furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  22 * OTHER DEALINGS IN THE SOFTWARE.
  23 *
  24 * Authors: Dave Airlie
  25 *          Alex Deucher
  26 *          Jerome Glisse
  27 */
  28
  29#include <linux/dma-fence-array.h>
  30#include <linux/interval_tree_generic.h>
  31#include <linux/idr.h>
  32#include <linux/dma-buf.h>
  33
  34#include <drm/amdgpu_drm.h>
  35#include <drm/drm_drv.h>
 
 
  36#include "amdgpu.h"
  37#include "amdgpu_trace.h"
  38#include "amdgpu_amdkfd.h"
  39#include "amdgpu_gmc.h"
  40#include "amdgpu_xgmi.h"
  41#include "amdgpu_dma_buf.h"
  42#include "amdgpu_res_cursor.h"
  43#include "kfd_svm.h"
  44
  45/**
  46 * DOC: GPUVM
  47 *
  48 * GPUVM is similar to the legacy gart on older asics, however
  49 * rather than there being a single global gart table
  50 * for the entire GPU, there are multiple VM page tables active
  51 * at any given time.  The VM page tables can contain a mix
  52 * vram pages and system memory pages and system memory pages
 
  53 * can be mapped as snooped (cached system pages) or unsnooped
  54 * (uncached system pages).
  55 * Each VM has an ID associated with it and there is a page table
  56 * associated with each VMID.  When execting a command buffer,
  57 * the kernel tells the the ring what VMID to use for that command
 
  58 * buffer.  VMIDs are allocated dynamically as commands are submitted.
  59 * The userspace drivers maintain their own address space and the kernel
  60 * sets up their pages tables accordingly when they submit their
  61 * command buffers and a VMID is assigned.
  62 * Cayman/Trinity support up to 8 active VMs at any given time;
  63 * SI supports 16.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64 */
  65
  66#define START(node) ((node)->start)
  67#define LAST(node) ((node)->last)
  68
  69INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
  70		     START, LAST, static, amdgpu_vm_it)
  71
  72#undef START
  73#undef LAST
  74
  75/**
  76 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
  77 */
  78struct amdgpu_prt_cb {
  79
  80	/**
  81	 * @adev: amdgpu device
  82	 */
  83	struct amdgpu_device *adev;
  84
  85	/**
  86	 * @cb: callback
  87	 */
  88	struct dma_fence_cb cb;
  89};
  90
  91/*
  92 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
  93 * happens while holding this lock anywhere to prevent deadlocks when
  94 * an MMU notifier runs in reclaim-FS context.
  95 */
  96static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
  97{
  98	mutex_lock(&vm->eviction_lock);
  99	vm->saved_flags = memalloc_noreclaim_save();
 100}
 101
 102static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
 103{
 104	if (mutex_trylock(&vm->eviction_lock)) {
 105		vm->saved_flags = memalloc_noreclaim_save();
 106		return 1;
 107	}
 108	return 0;
 109}
 110
 111static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
 112{
 113	memalloc_noreclaim_restore(vm->saved_flags);
 114	mutex_unlock(&vm->eviction_lock);
 115}
 116
 117/**
 118 * amdgpu_vm_level_shift - return the addr shift for each level
 119 *
 120 * @adev: amdgpu_device pointer
 121 * @level: VMPT level
 
 
 
 
 122 *
 123 * Returns:
 124 * The number of bits the pfn needs to be right shifted for a level.
 125 */
 126static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
 127				      unsigned level)
 128{
 129	switch (level) {
 130	case AMDGPU_VM_PDB2:
 131	case AMDGPU_VM_PDB1:
 132	case AMDGPU_VM_PDB0:
 133		return 9 * (AMDGPU_VM_PDB0 - level) +
 134			adev->vm_manager.block_size;
 135	case AMDGPU_VM_PTB:
 136		return 0;
 137	default:
 138		return ~0;
 139	}
 140}
 141
 142/**
 143 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
 144 *
 145 * @adev: amdgpu_device pointer
 146 * @level: VMPT level
 147 *
 148 * Returns:
 149 * The number of entries in a page directory or page table.
 150 */
 151static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
 152				      unsigned level)
 153{
 154	unsigned shift = amdgpu_vm_level_shift(adev,
 155					       adev->vm_manager.root_level);
 156
 157	if (level == adev->vm_manager.root_level)
 158		/* For the root directory */
 159		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
 160			>> shift;
 161	else if (level != AMDGPU_VM_PTB)
 162		/* Everything in between */
 163		return 512;
 164	else
 165		/* For the page tables on the leaves */
 166		return AMDGPU_VM_PTE_COUNT(adev);
 167}
 168
 169/**
 170 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
 171 *
 172 * @adev: amdgpu_device pointer
 173 *
 174 * Returns:
 175 * The number of entries in the root page directory which needs the ATS setting.
 176 */
 177static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
 178{
 179	unsigned shift;
 180
 181	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
 182	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
 183}
 184
 185/**
 186 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
 187 *
 188 * @adev: amdgpu_device pointer
 189 * @level: VMPT level
 190 *
 191 * Returns:
 192 * The mask to extract the entry number of a PD/PT from an address.
 193 */
 194static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
 195				       unsigned int level)
 196{
 197	if (level <= adev->vm_manager.root_level)
 198		return 0xffffffff;
 199	else if (level != AMDGPU_VM_PTB)
 200		return 0x1ff;
 201	else
 202		return AMDGPU_VM_PTE_COUNT(adev) - 1;
 203}
 204
 205/**
 206 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
 207 *
 208 * @adev: amdgpu_device pointer
 209 * @level: VMPT level
 210 *
 211 * Returns:
 212 * The size of the BO for a page directory or page table in bytes.
 213 */
 214static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
 215{
 216	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
 217}
 218
 219/**
 220 * amdgpu_vm_bo_evicted - vm_bo is evicted
 221 *
 222 * @vm_bo: vm_bo which is evicted
 223 *
 224 * State for PDs/PTs and per VM BOs which are not at the location they should
 225 * be.
 226 */
 227static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
 228{
 229	struct amdgpu_vm *vm = vm_bo->vm;
 230	struct amdgpu_bo *bo = vm_bo->bo;
 231
 232	vm_bo->moved = true;
 
 233	if (bo->tbo.type == ttm_bo_type_kernel)
 234		list_move(&vm_bo->vm_status, &vm->evicted);
 235	else
 236		list_move_tail(&vm_bo->vm_status, &vm->evicted);
 
 237}
 238/**
 239 * amdgpu_vm_bo_moved - vm_bo is moved
 240 *
 241 * @vm_bo: vm_bo which is moved
 242 *
 243 * State for per VM BOs which are moved, but that change is not yet reflected
 244 * in the page tables.
 245 */
 246static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
 247{
 
 248	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
 
 249}
 250
 251/**
 252 * amdgpu_vm_bo_idle - vm_bo is idle
 253 *
 254 * @vm_bo: vm_bo which is now idle
 255 *
 256 * State for PDs/PTs and per VM BOs which have gone through the state machine
 257 * and are now idle.
 258 */
 259static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
 260{
 
 261	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
 
 262	vm_bo->moved = false;
 263}
 264
 265/**
 266 * amdgpu_vm_bo_invalidated - vm_bo is invalidated
 267 *
 268 * @vm_bo: vm_bo which is now invalidated
 269 *
 270 * State for normal BOs which are invalidated and that change not yet reflected
 271 * in the PTs.
 272 */
 273static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
 274{
 275	spin_lock(&vm_bo->vm->invalidated_lock);
 276	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
 277	spin_unlock(&vm_bo->vm->invalidated_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278}
 279
 280/**
 281 * amdgpu_vm_bo_relocated - vm_bo is reloacted
 282 *
 283 * @vm_bo: vm_bo which is relocated
 284 *
 285 * State for PDs/PTs which needs to update their parent PD.
 286 * For the root PD, just move to idle state.
 287 */
 288static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
 289{
 290	if (vm_bo->bo->parent)
 
 291		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
 292	else
 
 293		amdgpu_vm_bo_idle(vm_bo);
 
 294}
 295
 296/**
 297 * amdgpu_vm_bo_done - vm_bo is done
 298 *
 299 * @vm_bo: vm_bo which is now done
 300 *
 301 * State for normal BOs which are invalidated and that change has been updated
 302 * in the PTs.
 303 */
 304static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
 305{
 306	spin_lock(&vm_bo->vm->invalidated_lock);
 307	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
 308	spin_unlock(&vm_bo->vm->invalidated_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 309}
 310
 311/**
 312 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
 313 *
 314 * @base: base structure for tracking BO usage in a VM
 315 * @vm: vm to which bo is to be added
 316 * @bo: amdgpu buffer object
 317 *
 318 * Initialize a bo_va_base structure and add it to the appropriate lists
 319 *
 320 */
 321static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
 322				   struct amdgpu_vm *vm,
 323				   struct amdgpu_bo *bo)
 324{
 325	base->vm = vm;
 326	base->bo = bo;
 327	base->next = NULL;
 328	INIT_LIST_HEAD(&base->vm_status);
 329
 330	if (!bo)
 331		return;
 332	base->next = bo->vm_bo;
 333	bo->vm_bo = base;
 334
 335	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
 336		return;
 337
 338	vm->bulk_moveable = false;
 
 
 339	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
 340		amdgpu_vm_bo_relocated(base);
 341	else
 342		amdgpu_vm_bo_idle(base);
 343
 344	if (bo->preferred_domains &
 345	    amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
 346		return;
 347
 348	/*
 349	 * we checked all the prerequisites, but it looks like this per vm bo
 350	 * is currently evicted. add the bo to the evicted list to make sure it
 351	 * is validated on next vm use to avoid fault.
 352	 * */
 353	amdgpu_vm_bo_evicted(base);
 354}
 355
 356/**
 357 * amdgpu_vm_pt_parent - get the parent page directory
 358 *
 359 * @pt: child page table
 360 *
 361 * Helper to get the parent entry for the child page table. NULL if we are at
 362 * the root page directory.
 363 */
 364static struct amdgpu_vm_bo_base *amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt)
 365{
 366	struct amdgpu_bo *parent = pt->bo->parent;
 367
 368	if (!parent)
 369		return NULL;
 370
 371	return parent->vm_bo;
 372}
 373
 374/*
 375 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
 376 */
 377struct amdgpu_vm_pt_cursor {
 378	uint64_t pfn;
 379	struct amdgpu_vm_bo_base *parent;
 380	struct amdgpu_vm_bo_base *entry;
 381	unsigned level;
 382};
 383
 384/**
 385 * amdgpu_vm_pt_start - start PD/PT walk
 386 *
 387 * @adev: amdgpu_device pointer
 388 * @vm: amdgpu_vm structure
 389 * @start: start address of the walk
 390 * @cursor: state to initialize
 391 *
 392 * Initialize a amdgpu_vm_pt_cursor to start a walk.
 393 */
 394static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
 395			       struct amdgpu_vm *vm, uint64_t start,
 396			       struct amdgpu_vm_pt_cursor *cursor)
 397{
 398	cursor->pfn = start;
 399	cursor->parent = NULL;
 400	cursor->entry = &vm->root;
 401	cursor->level = adev->vm_manager.root_level;
 402}
 403
 404/**
 405 * amdgpu_vm_pt_descendant - go to child node
 406 *
 407 * @adev: amdgpu_device pointer
 408 * @cursor: current state
 409 *
 410 * Walk to the child node of the current node.
 411 * Returns:
 412 * True if the walk was possible, false otherwise.
 413 */
 414static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
 415				    struct amdgpu_vm_pt_cursor *cursor)
 416{
 417	unsigned mask, shift, idx;
 418
 419	if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry ||
 420	    !cursor->entry->bo)
 421		return false;
 422
 423	mask = amdgpu_vm_entries_mask(adev, cursor->level);
 424	shift = amdgpu_vm_level_shift(adev, cursor->level);
 425
 426	++cursor->level;
 427	idx = (cursor->pfn >> shift) & mask;
 428	cursor->parent = cursor->entry;
 429	cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx];
 430	return true;
 431}
 432
 433/**
 434 * amdgpu_vm_pt_sibling - go to sibling node
 435 *
 436 * @adev: amdgpu_device pointer
 437 * @cursor: current state
 438 *
 439 * Walk to the sibling node of the current node.
 440 * Returns:
 441 * True if the walk was possible, false otherwise.
 442 */
 443static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
 444				 struct amdgpu_vm_pt_cursor *cursor)
 445{
 446	unsigned shift, num_entries;
 447
 448	/* Root doesn't have a sibling */
 449	if (!cursor->parent)
 450		return false;
 451
 452	/* Go to our parents and see if we got a sibling */
 453	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
 454	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
 455
 456	if (cursor->entry == &to_amdgpu_bo_vm(cursor->parent->bo)->entries[num_entries - 1])
 457		return false;
 458
 459	cursor->pfn += 1ULL << shift;
 460	cursor->pfn &= ~((1ULL << shift) - 1);
 461	++cursor->entry;
 462	return true;
 463}
 464
 465/**
 466 * amdgpu_vm_pt_ancestor - go to parent node
 467 *
 468 * @cursor: current state
 
 469 *
 470 * Walk to the parent node of the current node.
 471 * Returns:
 472 * True if the walk was possible, false otherwise.
 473 */
 474static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
 
 475{
 476	if (!cursor->parent)
 477		return false;
 478
 479	--cursor->level;
 480	cursor->entry = cursor->parent;
 481	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
 482	return true;
 483}
 484
 485/**
 486 * amdgpu_vm_pt_next - get next PD/PT in hieratchy
 487 *
 488 * @adev: amdgpu_device pointer
 489 * @cursor: current state
 490 *
 491 * Walk the PD/PT tree to the next node.
 492 */
 493static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
 494			      struct amdgpu_vm_pt_cursor *cursor)
 495{
 496	/* First try a newborn child */
 497	if (amdgpu_vm_pt_descendant(adev, cursor))
 498		return;
 499
 500	/* If that didn't worked try to find a sibling */
 501	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
 502		/* No sibling, go to our parents and grandparents */
 503		if (!amdgpu_vm_pt_ancestor(cursor)) {
 504			cursor->pfn = ~0ll;
 505			return;
 506		}
 507	}
 508}
 509
 510/**
 511 * amdgpu_vm_pt_first_dfs - start a deep first search
 512 *
 513 * @adev: amdgpu_device structure
 514 * @vm: amdgpu_vm structure
 515 * @start: optional cursor to start with
 516 * @cursor: state to initialize
 517 *
 518 * Starts a deep first traversal of the PD/PT tree.
 519 */
 520static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
 521				   struct amdgpu_vm *vm,
 522				   struct amdgpu_vm_pt_cursor *start,
 523				   struct amdgpu_vm_pt_cursor *cursor)
 524{
 525	if (start)
 526		*cursor = *start;
 527	else
 528		amdgpu_vm_pt_start(adev, vm, 0, cursor);
 529	while (amdgpu_vm_pt_descendant(adev, cursor));
 530}
 531
 532/**
 533 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
 534 *
 535 * @start: starting point for the search
 536 * @entry: current entry
 537 *
 538 * Returns:
 539 * True when the search should continue, false otherwise.
 540 */
 541static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
 542				      struct amdgpu_vm_bo_base *entry)
 543{
 544	return entry && (!start || entry != start->entry);
 545}
 546
 547/**
 548 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
 549 *
 550 * @adev: amdgpu_device structure
 551 * @cursor: current state
 552 *
 553 * Move the cursor to the next node in a deep first search.
 554 */
 555static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
 556				  struct amdgpu_vm_pt_cursor *cursor)
 557{
 558	if (!cursor->entry)
 559		return;
 560
 561	if (!cursor->parent)
 562		cursor->entry = NULL;
 563	else if (amdgpu_vm_pt_sibling(adev, cursor))
 564		while (amdgpu_vm_pt_descendant(adev, cursor));
 565	else
 566		amdgpu_vm_pt_ancestor(cursor);
 567}
 568
 569/*
 570 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
 571 */
 572#define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
 573	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
 574	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
 575	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
 576	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
 577
 578/**
 579 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
 580 *
 581 * @vm: vm providing the BOs
 582 * @validated: head of validation list
 583 * @entry: entry to add
 584 *
 585 * Add the page directory to the list of BOs to
 586 * validate for command submission.
 587 */
 588void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
 589			 struct list_head *validated,
 590			 struct amdgpu_bo_list_entry *entry)
 591{
 592	entry->priority = 0;
 593	entry->tv.bo = &vm->root.bo->tbo;
 594	/* Two for VM updates, one for TTM and one for the CS job */
 595	entry->tv.num_shared = 4;
 596	entry->user_pages = NULL;
 597	list_add(&entry->tv.head, validated);
 598}
 599
 600/**
 601 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
 602 *
 603 * @bo: BO which was removed from the LRU
 604 *
 605 * Make sure the bulk_moveable flag is updated when a BO is removed from the
 606 * LRU.
 607 */
 608void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
 609{
 610	struct amdgpu_bo *abo;
 611	struct amdgpu_vm_bo_base *bo_base;
 612
 613	if (!amdgpu_bo_is_amdgpu_bo(bo))
 614		return;
 615
 616	if (bo->pin_count)
 617		return;
 618
 619	abo = ttm_to_amdgpu_bo(bo);
 620	if (!abo->parent)
 621		return;
 622	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
 623		struct amdgpu_vm *vm = bo_base->vm;
 624
 625		if (abo->tbo.base.resv == vm->root.bo->tbo.base.resv)
 626			vm->bulk_moveable = false;
 627	}
 628
 629}
 630/**
 631 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
 632 *
 633 * @adev: amdgpu device pointer
 634 * @vm: vm providing the BOs
 635 *
 636 * Move all BOs to the end of LRU and remember their positions to put them
 637 * together.
 
 638 */
 639void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
 640				struct amdgpu_vm *vm)
 641{
 642	struct amdgpu_vm_bo_base *bo_base;
 643
 644	if (vm->bulk_moveable) {
 645		spin_lock(&adev->mman.bdev.lru_lock);
 646		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
 647		spin_unlock(&adev->mman.bdev.lru_lock);
 648		return;
 649	}
 650
 651	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
 652
 653	spin_lock(&adev->mman.bdev.lru_lock);
 654	list_for_each_entry(bo_base, &vm->idle, vm_status) {
 655		struct amdgpu_bo *bo = bo_base->bo;
 656		struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
 657
 658		if (!bo->parent)
 659			continue;
 660
 661		ttm_bo_move_to_lru_tail(&bo->tbo, bo->tbo.resource,
 662					&vm->lru_bulk_move);
 663		if (shadow)
 664			ttm_bo_move_to_lru_tail(&shadow->tbo,
 665						shadow->tbo.resource,
 666						&vm->lru_bulk_move);
 667	}
 668	spin_unlock(&adev->mman.bdev.lru_lock);
 669
 670	vm->bulk_moveable = true;
 671}
 672
 673/**
 674 * amdgpu_vm_validate_pt_bos - validate the page table BOs
 675 *
 676 * @adev: amdgpu device pointer
 677 * @vm: vm providing the BOs
 
 678 * @validate: callback to do the validation
 679 * @param: parameter for the validation callback
 680 *
 681 * Validate the page table BOs on command submission if neccessary.
 
 
 682 *
 683 * Returns:
 684 * Validation result.
 685 */
 686int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 687			      int (*validate)(void *p, struct amdgpu_bo *bo),
 688			      void *param)
 
 689{
 690	struct amdgpu_vm_bo_base *bo_base, *tmp;
 
 
 691	int r;
 692
 693	vm->bulk_moveable &= list_empty(&vm->evicted);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 694
 695	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
 696		struct amdgpu_bo *bo = bo_base->bo;
 697		struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
 698
 699		r = validate(param, bo);
 700		if (r)
 701			return r;
 702		if (shadow) {
 703			r = validate(param, shadow);
 704			if (r)
 705				return r;
 706		}
 707
 708		if (bo->tbo.type != ttm_bo_type_kernel) {
 709			amdgpu_vm_bo_moved(bo_base);
 710		} else {
 711			vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
 712			amdgpu_vm_bo_relocated(bo_base);
 713		}
 
 714	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 715
 716	amdgpu_vm_eviction_lock(vm);
 717	vm->evicting = false;
 718	amdgpu_vm_eviction_unlock(vm);
 719
 720	return 0;
 721}
 722
 723/**
 724 * amdgpu_vm_ready - check VM is ready for updates
 725 *
 726 * @vm: VM to check
 727 *
 728 * Check if all VM PDs/PTs are ready for updates
 729 *
 730 * Returns:
 731 * True if eviction list is empty.
 732 */
 733bool amdgpu_vm_ready(struct amdgpu_vm *vm)
 734{
 735	return list_empty(&vm->evicted);
 736}
 737
 738/**
 739 * amdgpu_vm_clear_bo - initially clear the PDs/PTs
 740 *
 741 * @adev: amdgpu_device pointer
 742 * @vm: VM to clear BO from
 743 * @vmbo: BO to clear
 744 * @immediate: use an immediate update
 745 *
 746 * Root PD needs to be reserved when calling this.
 747 *
 748 * Returns:
 749 * 0 on success, errno otherwise.
 750 */
 751static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
 752			      struct amdgpu_vm *vm,
 753			      struct amdgpu_bo_vm *vmbo,
 754			      bool immediate)
 755{
 756	struct ttm_operation_ctx ctx = { true, false };
 757	unsigned level = adev->vm_manager.root_level;
 758	struct amdgpu_vm_update_params params;
 759	struct amdgpu_bo *ancestor = &vmbo->bo;
 760	struct amdgpu_bo *bo = &vmbo->bo;
 761	unsigned entries, ats_entries;
 762	uint64_t addr;
 763	int r;
 764
 765	/* Figure out our place in the hierarchy */
 766	if (ancestor->parent) {
 767		++level;
 768		while (ancestor->parent->parent) {
 769			++level;
 770			ancestor = ancestor->parent;
 771		}
 772	}
 773
 774	entries = amdgpu_bo_size(bo) / 8;
 775	if (!vm->pte_support_ats) {
 776		ats_entries = 0;
 777
 778	} else if (!bo->parent) {
 779		ats_entries = amdgpu_vm_num_ats_entries(adev);
 780		ats_entries = min(ats_entries, entries);
 781		entries -= ats_entries;
 782
 783	} else {
 784		struct amdgpu_vm_bo_base *pt;
 785
 786		pt = ancestor->vm_bo;
 787		ats_entries = amdgpu_vm_num_ats_entries(adev);
 788		if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) {
 789			ats_entries = 0;
 790		} else {
 791			ats_entries = entries;
 792			entries = 0;
 793		}
 794	}
 795
 796	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
 797	if (r)
 798		return r;
 799
 800	if (vmbo->shadow) {
 801		struct amdgpu_bo *shadow = vmbo->shadow;
 802
 803		r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx);
 804		if (r)
 805			return r;
 806	}
 807
 808	r = vm->update_funcs->map_table(vmbo);
 809	if (r)
 810		return r;
 811
 812	memset(&params, 0, sizeof(params));
 813	params.adev = adev;
 814	params.vm = vm;
 815	params.immediate = immediate;
 816
 817	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
 818	if (r)
 819		return r;
 820
 821	addr = 0;
 822	if (ats_entries) {
 823		uint64_t value = 0, flags;
 824
 825		flags = AMDGPU_PTE_DEFAULT_ATC;
 826		if (level != AMDGPU_VM_PTB) {
 827			/* Handle leaf PDEs as PTEs */
 828			flags |= AMDGPU_PDE_PTE;
 829			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
 830		}
 831
 832		r = vm->update_funcs->update(&params, vmbo, addr, 0, ats_entries,
 833					     value, flags);
 834		if (r)
 835			return r;
 836
 837		addr += ats_entries * 8;
 838	}
 839
 840	if (entries) {
 841		uint64_t value = 0, flags = 0;
 842
 843		if (adev->asic_type >= CHIP_VEGA10) {
 844			if (level != AMDGPU_VM_PTB) {
 845				/* Handle leaf PDEs as PTEs */
 846				flags |= AMDGPU_PDE_PTE;
 847				amdgpu_gmc_get_vm_pde(adev, level,
 848						      &value, &flags);
 849			} else {
 850				/* Workaround for fault priority problem on GMC9 */
 851				flags = AMDGPU_PTE_EXECUTABLE;
 852			}
 853		}
 854
 855		r = vm->update_funcs->update(&params, vmbo, addr, 0, entries,
 856					     value, flags);
 857		if (r)
 858			return r;
 859	}
 
 860
 861	return vm->update_funcs->commit(&params, NULL);
 862}
 863
 864/**
 865 * amdgpu_vm_pt_create - create bo for PD/PT
 866 *
 867 * @adev: amdgpu_device pointer
 868 * @vm: requesting vm
 869 * @level: the page table level
 870 * @immediate: use a immediate update
 871 * @vmbo: pointer to the buffer object pointer
 872 */
 873static int amdgpu_vm_pt_create(struct amdgpu_device *adev,
 874			       struct amdgpu_vm *vm,
 875			       int level, bool immediate,
 876			       struct amdgpu_bo_vm **vmbo)
 877{
 878	struct amdgpu_bo_param bp;
 879	struct amdgpu_bo *bo;
 880	struct dma_resv *resv;
 881	unsigned int num_entries;
 882	int r;
 883
 884	memset(&bp, 0, sizeof(bp));
 885
 886	bp.size = amdgpu_vm_bo_size(adev, level);
 887	bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
 888	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
 889	bp.domain = amdgpu_bo_get_preferred_pin_domain(adev, bp.domain);
 890	bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
 891		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
 892
 893	if (level < AMDGPU_VM_PTB)
 894		num_entries = amdgpu_vm_num_entries(adev, level);
 895	else
 896		num_entries = 0;
 897
 898	bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries);
 899
 900	if (vm->use_cpu_for_update)
 901		bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 902
 903	bp.type = ttm_bo_type_kernel;
 904	bp.no_wait_gpu = immediate;
 905	if (vm->root.bo)
 906		bp.resv = vm->root.bo->tbo.base.resv;
 907
 908	r = amdgpu_bo_create_vm(adev, &bp, vmbo);
 909	if (r)
 910		return r;
 911
 912	bo = &(*vmbo)->bo;
 913	if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) {
 914		(*vmbo)->shadow = NULL;
 915		return 0;
 916	}
 917
 918	if (!bp.resv)
 919		WARN_ON(dma_resv_lock(bo->tbo.base.resv,
 920				      NULL));
 921	resv = bp.resv;
 922	memset(&bp, 0, sizeof(bp));
 923	bp.size = amdgpu_vm_bo_size(adev, level);
 924	bp.domain = AMDGPU_GEM_DOMAIN_GTT;
 925	bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
 926	bp.type = ttm_bo_type_kernel;
 927	bp.resv = bo->tbo.base.resv;
 928	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
 929
 930	r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow);
 931
 932	if (!resv)
 933		dma_resv_unlock(bo->tbo.base.resv);
 934
 935	if (r) {
 936		amdgpu_bo_unref(&bo);
 937		return r;
 938	}
 939
 940	(*vmbo)->shadow->parent = amdgpu_bo_ref(bo);
 941	amdgpu_bo_add_to_shadow_list(*vmbo);
 942
 943	return 0;
 944}
 945
 946/**
 947 * amdgpu_vm_alloc_pts - Allocate a specific page table
 948 *
 949 * @adev: amdgpu_device pointer
 950 * @vm: VM to allocate page tables for
 951 * @cursor: Which page table to allocate
 952 * @immediate: use an immediate update
 953 *
 954 * Make sure a specific page table or directory is allocated.
 955 *
 956 * Returns:
 957 * 1 if page table needed to be allocated, 0 if page table was already
 958 * allocated, negative errno if an error occurred.
 959 */
 960static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
 961			       struct amdgpu_vm *vm,
 962			       struct amdgpu_vm_pt_cursor *cursor,
 963			       bool immediate)
 964{
 965	struct amdgpu_vm_bo_base *entry = cursor->entry;
 966	struct amdgpu_bo *pt_bo;
 967	struct amdgpu_bo_vm *pt;
 968	int r;
 969
 970	if (entry->bo)
 971		return 0;
 972
 973	r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt);
 974	if (r)
 975		return r;
 976
 977	/* Keep a reference to the root directory to avoid
 978	 * freeing them up in the wrong order.
 979	 */
 980	pt_bo = &pt->bo;
 981	pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo);
 982	amdgpu_vm_bo_base_init(entry, vm, pt_bo);
 983	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
 984	if (r)
 985		goto error_free_pt;
 986
 987	return 0;
 988
 989error_free_pt:
 990	amdgpu_bo_unref(&pt->shadow);
 991	amdgpu_bo_unref(&pt_bo);
 992	return r;
 993}
 994
 995/**
 996 * amdgpu_vm_free_table - fre one PD/PT
 997 *
 998 * @entry: PDE to free
 999 */
1000static void amdgpu_vm_free_table(struct amdgpu_vm_bo_base *entry)
1001{
1002	struct amdgpu_bo *shadow;
1003
1004	if (!entry->bo)
1005		return;
1006	shadow = amdgpu_bo_shadowed(entry->bo);
1007	entry->bo->vm_bo = NULL;
1008	list_del(&entry->vm_status);
1009	amdgpu_bo_unref(&shadow);
1010	amdgpu_bo_unref(&entry->bo);
1011}
1012
1013/**
1014 * amdgpu_vm_free_pts - free PD/PT levels
1015 *
1016 * @adev: amdgpu device structure
1017 * @vm: amdgpu vm structure
1018 * @start: optional cursor where to start freeing PDs/PTs
1019 *
1020 * Free the page directory or page table level and all sub levels.
1021 */
1022static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
1023			       struct amdgpu_vm *vm,
1024			       struct amdgpu_vm_pt_cursor *start)
1025{
1026	struct amdgpu_vm_pt_cursor cursor;
1027	struct amdgpu_vm_bo_base *entry;
1028
1029	vm->bulk_moveable = false;
 
 
1030
1031	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
1032		amdgpu_vm_free_table(entry);
 
1033
1034	if (start)
1035		amdgpu_vm_free_table(start->entry);
1036}
1037
1038/**
1039 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
1040 *
1041 * @adev: amdgpu_device pointer
1042 */
1043void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
1044{
1045	const struct amdgpu_ip_block *ip_block;
1046	bool has_compute_vm_bug;
1047	struct amdgpu_ring *ring;
1048	int i;
1049
1050	has_compute_vm_bug = false;
1051
1052	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1053	if (ip_block) {
1054		/* Compute has a VM bug for GFX version < 7.
1055		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1056		if (ip_block->version->major <= 7)
1057			has_compute_vm_bug = true;
1058		else if (ip_block->version->major == 8)
1059			if (adev->gfx.mec_fw_version < 673)
1060				has_compute_vm_bug = true;
1061	}
1062
1063	for (i = 0; i < adev->num_rings; i++) {
1064		ring = adev->rings[i];
1065		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1066			/* only compute rings */
1067			ring->has_compute_vm_bug = has_compute_vm_bug;
1068		else
1069			ring->has_compute_vm_bug = false;
1070	}
1071}
1072
1073/**
1074 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1075 *
1076 * @ring: ring on which the job will be submitted
1077 * @job: job to submit
1078 *
1079 * Returns:
1080 * True if sync is needed.
1081 */
1082bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1083				  struct amdgpu_job *job)
1084{
1085	struct amdgpu_device *adev = ring->adev;
1086	unsigned vmhub = ring->funcs->vmhub;
1087	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1088	struct amdgpu_vmid *id;
1089	bool gds_switch_needed;
1090	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1091
1092	if (job->vmid == 0)
1093		return false;
1094	id = &id_mgr->ids[job->vmid];
1095	gds_switch_needed = ring->funcs->emit_gds_switch && (
1096		id->gds_base != job->gds_base ||
1097		id->gds_size != job->gds_size ||
1098		id->gws_base != job->gws_base ||
1099		id->gws_size != job->gws_size ||
1100		id->oa_base != job->oa_base ||
1101		id->oa_size != job->oa_size);
1102
1103	if (amdgpu_vmid_had_gpu_reset(adev, id))
 
 
 
1104		return true;
1105
1106	return vm_flush_needed || gds_switch_needed;
 
 
 
1107}
1108
1109/**
1110 * amdgpu_vm_flush - hardware flush the vm
1111 *
1112 * @ring: ring to use for flush
1113 * @job:  related job
1114 * @need_pipe_sync: is pipe sync needed
1115 *
1116 * Emit a VM flush when it is necessary.
1117 *
1118 * Returns:
1119 * 0 on success, errno otherwise.
1120 */
1121int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1122		    bool need_pipe_sync)
1123{
1124	struct amdgpu_device *adev = ring->adev;
1125	unsigned vmhub = ring->funcs->vmhub;
1126	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1127	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1128	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1129		id->gds_base != job->gds_base ||
1130		id->gds_size != job->gds_size ||
1131		id->gws_base != job->gws_base ||
1132		id->gws_size != job->gws_size ||
1133		id->oa_base != job->oa_base ||
1134		id->oa_size != job->oa_size);
1135	bool vm_flush_needed = job->vm_needs_flush;
1136	struct dma_fence *fence = NULL;
1137	bool pasid_mapping_needed = false;
1138	unsigned patch_offset = 0;
1139	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1140	int r;
1141
1142	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1143		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1144
1145	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1146		gds_switch_needed = true;
1147		vm_flush_needed = true;
1148		pasid_mapping_needed = true;
 
1149	}
1150
1151	mutex_lock(&id_mgr->lock);
1152	if (id->pasid != job->pasid || !id->pasid_mapping ||
1153	    !dma_fence_is_signaled(id->pasid_mapping))
1154		pasid_mapping_needed = true;
1155	mutex_unlock(&id_mgr->lock);
1156
1157	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1158	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1159			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1160	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1161		ring->funcs->emit_wreg;
1162
1163	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
 
1164		return 0;
1165
 
1166	if (ring->funcs->init_cond_exec)
1167		patch_offset = amdgpu_ring_init_cond_exec(ring);
 
1168
1169	if (need_pipe_sync)
1170		amdgpu_ring_emit_pipeline_sync(ring);
1171
 
 
 
 
 
1172	if (vm_flush_needed) {
1173		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1174		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1175	}
1176
1177	if (pasid_mapping_needed)
1178		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1179
 
 
 
 
 
 
 
 
 
 
 
1180	if (vm_flush_needed || pasid_mapping_needed) {
1181		r = amdgpu_fence_emit(ring, &fence, 0);
1182		if (r)
1183			return r;
1184	}
1185
1186	if (vm_flush_needed) {
1187		mutex_lock(&id_mgr->lock);
1188		dma_fence_put(id->last_flush);
1189		id->last_flush = dma_fence_get(fence);
1190		id->current_gpu_reset_count =
1191			atomic_read(&adev->gpu_reset_counter);
1192		mutex_unlock(&id_mgr->lock);
1193	}
1194
1195	if (pasid_mapping_needed) {
1196		mutex_lock(&id_mgr->lock);
1197		id->pasid = job->pasid;
1198		dma_fence_put(id->pasid_mapping);
1199		id->pasid_mapping = dma_fence_get(fence);
1200		mutex_unlock(&id_mgr->lock);
1201	}
1202	dma_fence_put(fence);
1203
1204	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1205		id->gds_base = job->gds_base;
1206		id->gds_size = job->gds_size;
1207		id->gws_base = job->gws_base;
1208		id->gws_size = job->gws_size;
1209		id->oa_base = job->oa_base;
1210		id->oa_size = job->oa_size;
1211		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1212					    job->gds_size, job->gws_base,
1213					    job->gws_size, job->oa_base,
1214					    job->oa_size);
1215	}
1216
1217	if (ring->funcs->patch_cond_exec)
1218		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1219
1220	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1221	if (ring->funcs->emit_switch_buffer) {
1222		amdgpu_ring_emit_switch_buffer(ring);
1223		amdgpu_ring_emit_switch_buffer(ring);
1224	}
 
 
1225	return 0;
1226}
1227
1228/**
1229 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1230 *
1231 * @vm: requested vm
1232 * @bo: requested buffer object
1233 *
1234 * Find @bo inside the requested vm.
1235 * Search inside the @bos vm list for the requested vm
1236 * Returns the found bo_va or NULL if none is found
1237 *
1238 * Object has to be reserved!
1239 *
1240 * Returns:
1241 * Found bo_va or NULL.
1242 */
1243struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1244				       struct amdgpu_bo *bo)
1245{
1246	struct amdgpu_vm_bo_base *base;
1247
1248	for (base = bo->vm_bo; base; base = base->next) {
1249		if (base->vm != vm)
1250			continue;
1251
1252		return container_of(base, struct amdgpu_bo_va, base);
1253	}
1254	return NULL;
1255}
1256
1257/**
1258 * amdgpu_vm_map_gart - Resolve gart mapping of addr
1259 *
1260 * @pages_addr: optional DMA address to use for lookup
1261 * @addr: the unmapped addr
1262 *
1263 * Look up the physical address of the page that the pte resolves
1264 * to.
1265 *
1266 * Returns:
1267 * The pointer for the page table entry.
1268 */
1269uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1270{
1271	uint64_t result;
1272
1273	/* page table offset */
1274	result = pages_addr[addr >> PAGE_SHIFT];
1275
1276	/* in case cpu page size != gpu page size*/
1277	result |= addr & (~PAGE_MASK);
1278
1279	result &= 0xFFFFFFFFFFFFF000ULL;
1280
1281	return result;
1282}
1283
1284/**
1285 * amdgpu_vm_update_pde - update a single level in the hierarchy
1286 *
1287 * @params: parameters for the update
1288 * @vm: requested vm
1289 * @entry: entry to update
1290 *
1291 * Makes sure the requested entry in parent is up to date.
1292 */
1293static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1294				struct amdgpu_vm *vm,
1295				struct amdgpu_vm_bo_base *entry)
1296{
1297	struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry);
1298	struct amdgpu_bo *bo = parent->bo, *pbo;
1299	uint64_t pde, pt, flags;
1300	unsigned level;
1301
1302	for (level = 0, pbo = bo->parent; pbo; ++level)
1303		pbo = pbo->parent;
1304
1305	level += params->adev->vm_manager.root_level;
1306	amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags);
1307	pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8;
1308	return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt,
1309					1, 0, flags);
1310}
1311
1312/**
1313 * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1314 *
1315 * @adev: amdgpu_device pointer
1316 * @vm: related vm
1317 *
1318 * Mark all PD level as invalid after an error.
1319 */
1320static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1321				     struct amdgpu_vm *vm)
1322{
1323	struct amdgpu_vm_pt_cursor cursor;
1324	struct amdgpu_vm_bo_base *entry;
1325
1326	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1327		if (entry->bo && !entry->moved)
1328			amdgpu_vm_bo_relocated(entry);
1329}
1330
1331/**
1332 * amdgpu_vm_update_pdes - make sure that all directories are valid
1333 *
1334 * @adev: amdgpu_device pointer
1335 * @vm: requested vm
1336 * @immediate: submit immediately to the paging queue
1337 *
1338 * Makes sure all directories are up to date.
1339 *
1340 * Returns:
1341 * 0 for success, error for failure.
1342 */
1343int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1344			  struct amdgpu_vm *vm, bool immediate)
1345{
1346	struct amdgpu_vm_update_params params;
1347	int r;
 
 
 
 
 
 
 
1348
1349	if (list_empty(&vm->relocated))
1350		return 0;
1351
 
 
 
1352	memset(&params, 0, sizeof(params));
1353	params.adev = adev;
1354	params.vm = vm;
1355	params.immediate = immediate;
1356
1357	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1358	if (r)
1359		return r;
1360
1361	while (!list_empty(&vm->relocated)) {
1362		struct amdgpu_vm_bo_base *entry;
1363
1364		entry = list_first_entry(&vm->relocated,
1365					 struct amdgpu_vm_bo_base,
1366					 vm_status);
1367		amdgpu_vm_bo_idle(entry);
1368
1369		r = amdgpu_vm_update_pde(&params, vm, entry);
1370		if (r)
1371			goto error;
1372	}
1373
1374	r = vm->update_funcs->commit(&params, &vm->last_update);
1375	if (r)
1376		goto error;
1377	return 0;
 
 
 
 
 
 
 
 
1378
1379error:
1380	amdgpu_vm_invalidate_pds(adev, vm);
1381	return r;
1382}
1383
1384/*
1385 * amdgpu_vm_update_flags - figure out flags for PTE updates
 
 
1386 *
1387 * Make sure to set the right flags for the PTEs at the desired level.
1388 */
1389static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1390				   struct amdgpu_bo_vm *pt, unsigned int level,
1391				   uint64_t pe, uint64_t addr,
1392				   unsigned int count, uint32_t incr,
1393				   uint64_t flags)
1394
1395{
1396	if (level != AMDGPU_VM_PTB) {
1397		flags |= AMDGPU_PDE_PTE;
1398		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1399
1400	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1401		   !(flags & AMDGPU_PTE_VALID) &&
1402		   !(flags & AMDGPU_PTE_PRT)) {
1403
1404		/* Workaround for fault priority problem on GMC9 */
1405		flags |= AMDGPU_PTE_EXECUTABLE;
1406	}
1407
1408	params->vm->update_funcs->update(params, pt, pe, addr, count, incr,
1409					 flags);
1410}
1411
1412/**
1413 * amdgpu_vm_fragment - get fragment for PTEs
1414 *
1415 * @params: see amdgpu_vm_update_params definition
1416 * @start: first PTE to handle
1417 * @end: last PTE to handle
1418 * @flags: hw mapping flags
1419 * @frag: resulting fragment size
1420 * @frag_end: end of this fragment
1421 *
1422 * Returns the first possible fragment for the start and end address.
1423 */
1424static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1425			       uint64_t start, uint64_t end, uint64_t flags,
1426			       unsigned int *frag, uint64_t *frag_end)
 
1427{
1428	/**
1429	 * The MC L1 TLB supports variable sized pages, based on a fragment
1430	 * field in the PTE. When this field is set to a non-zero value, page
1431	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1432	 * flags are considered valid for all PTEs within the fragment range
1433	 * and corresponding mappings are assumed to be physically contiguous.
1434	 *
1435	 * The L1 TLB can store a single PTE for the whole fragment,
1436	 * significantly increasing the space available for translation
1437	 * caching. This leads to large improvements in throughput when the
1438	 * TLB is under pressure.
1439	 *
1440	 * The L2 TLB distributes small and large fragments into two
1441	 * asymmetric partitions. The large fragment cache is significantly
1442	 * larger. Thus, we try to use large fragments wherever possible.
1443	 * Userspace can support this by aligning virtual base address and
1444	 * allocation size to the fragment size.
1445	 *
1446	 * Starting with Vega10 the fragment size only controls the L1. The L2
1447	 * is now directly feed with small/huge/giant pages from the walker.
1448	 */
1449	unsigned max_frag;
1450
1451	if (params->adev->asic_type < CHIP_VEGA10)
1452		max_frag = params->adev->vm_manager.fragment_size;
1453	else
1454		max_frag = 31;
1455
1456	/* system pages are non continuously */
1457	if (params->pages_addr) {
1458		*frag = 0;
1459		*frag_end = end;
1460		return;
1461	}
1462
1463	/* This intentionally wraps around if no bit is set */
1464	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1465	if (*frag >= max_frag) {
1466		*frag = max_frag;
1467		*frag_end = end & ~((1ULL << max_frag) - 1);
1468	} else {
1469		*frag_end = start + (1 << *frag);
1470	}
1471}
1472
1473/**
1474 * amdgpu_vm_update_ptes - make sure that page tables are valid
1475 *
1476 * @params: see amdgpu_vm_update_params definition
1477 * @start: start of GPU address range
1478 * @end: end of GPU address range
1479 * @dst: destination address to map to, the next dst inside the function
1480 * @flags: mapping flags
1481 *
1482 * Update the page tables in the range @start - @end.
1483 *
1484 * Returns:
1485 * 0 for success, -EINVAL for failure.
1486 */
1487static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1488				 uint64_t start, uint64_t end,
1489				 uint64_t dst, uint64_t flags)
1490{
1491	struct amdgpu_device *adev = params->adev;
1492	struct amdgpu_vm_pt_cursor cursor;
1493	uint64_t frag_start = start, frag_end;
1494	unsigned int frag;
1495	int r;
1496
1497	/* figure out the initial fragment */
1498	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1499
1500	/* walk over the address space and update the PTs */
1501	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1502	while (cursor.pfn < end) {
1503		unsigned shift, parent_shift, mask;
1504		uint64_t incr, entry_end, pe_start;
1505		struct amdgpu_bo *pt;
1506
1507		if (!params->unlocked) {
1508			/* make sure that the page tables covering the
1509			 * address range are actually allocated
1510			 */
1511			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1512						&cursor, params->immediate);
1513			if (r)
1514				return r;
1515		}
1516
1517		shift = amdgpu_vm_level_shift(adev, cursor.level);
1518		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1519		if (params->unlocked) {
1520			/* Unlocked updates are only allowed on the leaves */
1521			if (amdgpu_vm_pt_descendant(adev, &cursor))
1522				continue;
1523		} else if (adev->asic_type < CHIP_VEGA10 &&
1524			   (flags & AMDGPU_PTE_VALID)) {
1525			/* No huge page support before GMC v9 */
1526			if (cursor.level != AMDGPU_VM_PTB) {
1527				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1528					return -ENOENT;
1529				continue;
1530			}
1531		} else if (frag < shift) {
1532			/* We can't use this level when the fragment size is
1533			 * smaller than the address shift. Go to the next
1534			 * child entry and try again.
1535			 */
1536			if (amdgpu_vm_pt_descendant(adev, &cursor))
1537				continue;
1538		} else if (frag >= parent_shift) {
1539			/* If the fragment size is even larger than the parent
1540			 * shift we should go up one level and check it again.
1541			 */
1542			if (!amdgpu_vm_pt_ancestor(&cursor))
1543				return -EINVAL;
1544			continue;
1545		}
1546
1547		pt = cursor.entry->bo;
1548		if (!pt) {
1549			/* We need all PDs and PTs for mapping something, */
1550			if (flags & AMDGPU_PTE_VALID)
1551				return -ENOENT;
1552
1553			/* but unmapping something can happen at a higher
1554			 * level.
1555			 */
1556			if (!amdgpu_vm_pt_ancestor(&cursor))
1557				return -EINVAL;
1558
1559			pt = cursor.entry->bo;
1560			shift = parent_shift;
1561			frag_end = max(frag_end, ALIGN(frag_start + 1,
1562				   1ULL << shift));
1563		}
1564
1565		/* Looks good so far, calculate parameters for the update */
1566		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1567		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1568		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1569		entry_end = ((uint64_t)mask + 1) << shift;
1570		entry_end += cursor.pfn & ~(entry_end - 1);
1571		entry_end = min(entry_end, end);
1572
1573		do {
1574			struct amdgpu_vm *vm = params->vm;
1575			uint64_t upd_end = min(entry_end, frag_end);
1576			unsigned nptes = (upd_end - frag_start) >> shift;
1577			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1578
1579			/* This can happen when we set higher level PDs to
1580			 * silent to stop fault floods.
1581			 */
1582			nptes = max(nptes, 1u);
1583
1584			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1585						    nptes, dst, incr, upd_flags,
1586						    vm->task_info.pid,
1587						    vm->immediate.fence_context);
1588			amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt),
1589					       cursor.level, pe_start, dst,
1590					       nptes, incr, upd_flags);
1591
1592			pe_start += nptes * 8;
1593			dst += nptes * incr;
1594
1595			frag_start = upd_end;
1596			if (frag_start >= frag_end) {
1597				/* figure out the next fragment */
1598				amdgpu_vm_fragment(params, frag_start, end,
1599						   flags, &frag, &frag_end);
1600				if (frag < shift)
1601					break;
1602			}
1603		} while (frag_start < entry_end);
1604
1605		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1606			/* Free all child entries.
1607			 * Update the tables with the flags and addresses and free up subsequent
1608			 * tables in the case of huge pages or freed up areas.
1609			 * This is the maximum you can free, because all other page tables are not
1610			 * completely covered by the range and so potentially still in use.
1611			 */
1612			while (cursor.pfn < frag_start) {
1613				/* Make sure previous mapping is freed */
1614				if (cursor.entry->bo) {
1615					params->table_freed = true;
1616					amdgpu_vm_free_pts(adev, params->vm, &cursor);
1617				}
1618				amdgpu_vm_pt_next(adev, &cursor);
1619			}
1620
1621		} else if (frag >= shift) {
1622			/* or just move on to the next on the same level. */
1623			amdgpu_vm_pt_next(adev, &cursor);
1624		}
1625	}
1626
1627	return 0;
1628}
1629
1630/**
1631 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1632 *
1633 * @adev: amdgpu_device pointer of the VM
1634 * @bo_adev: amdgpu_device pointer of the mapped BO
1635 * @vm: requested vm
1636 * @immediate: immediate submission in a page fault
1637 * @unlocked: unlocked invalidation during MM callback
1638 * @resv: fences we need to sync to
 
 
1639 * @start: start of mapped range
1640 * @last: last mapped entry
1641 * @flags: flags for the entries
1642 * @offset: offset into nodes and pages_addr
 
1643 * @res: ttm_resource to map
1644 * @pages_addr: DMA addresses to use for mapping
1645 * @fence: optional resulting fence
1646 * @table_freed: return true if page table is freed
1647 *
1648 * Fill in the page table entries between @start and @last.
1649 *
1650 * Returns:
1651 * 0 for success, -EINVAL for failure.
1652 */
1653int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1654				struct amdgpu_device *bo_adev,
1655				struct amdgpu_vm *vm, bool immediate,
1656				bool unlocked, struct dma_resv *resv,
1657				uint64_t start, uint64_t last,
1658				uint64_t flags, uint64_t offset,
1659				struct ttm_resource *res,
1660				dma_addr_t *pages_addr,
1661				struct dma_fence **fence,
1662				bool *table_freed)
1663{
 
1664	struct amdgpu_vm_update_params params;
1665	struct amdgpu_res_cursor cursor;
1666	enum amdgpu_sync_mode sync_mode;
1667	int r, idx;
1668
1669	if (!drm_dev_enter(&adev->ddev, &idx))
1670		return -ENODEV;
1671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1672	memset(&params, 0, sizeof(params));
1673	params.adev = adev;
1674	params.vm = vm;
1675	params.immediate = immediate;
1676	params.pages_addr = pages_addr;
1677	params.unlocked = unlocked;
1678
1679	/* Implicitly sync to command submissions in the same VM before
1680	 * unmapping. Sync to moving fences before mapping.
1681	 */
1682	if (!(flags & AMDGPU_PTE_VALID))
1683		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1684	else
1685		sync_mode = AMDGPU_SYNC_EXPLICIT;
1686
1687	amdgpu_vm_eviction_lock(vm);
1688	if (vm->evicting) {
1689		r = -EBUSY;
1690		goto error_unlock;
1691	}
1692
1693	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1694		struct dma_fence *tmp = dma_fence_get_stub();
1695
1696		amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true);
1697		swap(vm->last_unlocked, tmp);
1698		dma_fence_put(tmp);
1699	}
1700
1701	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1702	if (r)
1703		goto error_unlock;
1704
1705	amdgpu_res_first(pages_addr ? NULL : res, offset,
1706			 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
1707	while (cursor.remaining) {
1708		uint64_t tmp, num_entries, addr;
1709
1710		num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
1711		if (pages_addr) {
1712			bool contiguous = true;
1713
1714			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1715				uint64_t pfn = cursor.start >> PAGE_SHIFT;
1716				uint64_t count;
1717
1718				contiguous = pages_addr[pfn + 1] ==
1719					pages_addr[pfn] + PAGE_SIZE;
1720
1721				tmp = num_entries /
1722					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1723				for (count = 2; count < tmp; ++count) {
1724					uint64_t idx = pfn + count;
1725
1726					if (contiguous != (pages_addr[idx] ==
1727					    pages_addr[idx - 1] + PAGE_SIZE))
1728						break;
1729				}
 
 
1730				num_entries = count *
1731					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1732			}
1733
1734			if (!contiguous) {
1735				addr = cursor.start;
1736				params.pages_addr = pages_addr;
1737			} else {
1738				addr = pages_addr[cursor.start >> PAGE_SHIFT];
1739				params.pages_addr = NULL;
1740			}
1741
1742		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1743			addr = bo_adev->vm_manager.vram_base_offset +
1744				cursor.start;
1745		} else {
1746			addr = 0;
1747		}
1748
1749		tmp = start + num_entries;
1750		r = amdgpu_vm_update_ptes(&params, start, tmp, addr, flags);
1751		if (r)
1752			goto error_unlock;
1753
1754		amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
1755		start = tmp;
1756	}
1757
1758	r = vm->update_funcs->commit(&params, fence);
 
 
 
 
 
 
 
1759
1760	if (table_freed)
1761		*table_freed = params.table_freed;
1762
1763error_unlock:
 
1764	amdgpu_vm_eviction_unlock(vm);
1765	drm_dev_exit(idx);
1766	return r;
1767}
1768
1769void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem,
1770				uint64_t *gtt_mem, uint64_t *cpu_mem)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1771{
1772	struct amdgpu_bo_va *bo_va, *tmp;
1773
1774	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
1775		if (!bo_va->base.bo)
1776			continue;
1777		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1778				gtt_mem, cpu_mem);
1779	}
1780	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
1781		if (!bo_va->base.bo)
1782			continue;
1783		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1784				gtt_mem, cpu_mem);
1785	}
1786	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
1787		if (!bo_va->base.bo)
1788			continue;
1789		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1790				gtt_mem, cpu_mem);
1791	}
1792	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
1793		if (!bo_va->base.bo)
1794			continue;
1795		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1796				gtt_mem, cpu_mem);
1797	}
1798	spin_lock(&vm->invalidated_lock);
1799	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
1800		if (!bo_va->base.bo)
1801			continue;
1802		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1803				gtt_mem, cpu_mem);
1804	}
1805	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
1806		if (!bo_va->base.bo)
1807			continue;
1808		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1809				gtt_mem, cpu_mem);
1810	}
1811	spin_unlock(&vm->invalidated_lock);
1812}
 
1813/**
1814 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1815 *
1816 * @adev: amdgpu_device pointer
1817 * @bo_va: requested BO and VM object
1818 * @clear: if true clear the entries
1819 *
1820 * Fill in the page table entries for @bo_va.
1821 *
1822 * Returns:
1823 * 0 for success, -EINVAL for failure.
1824 */
1825int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1826			bool clear)
1827{
1828	struct amdgpu_bo *bo = bo_va->base.bo;
1829	struct amdgpu_vm *vm = bo_va->base.vm;
1830	struct amdgpu_bo_va_mapping *mapping;
 
1831	dma_addr_t *pages_addr = NULL;
1832	struct ttm_resource *mem;
1833	struct dma_fence **last_update;
1834	struct dma_resv *resv;
 
1835	uint64_t flags;
1836	struct amdgpu_device *bo_adev = adev;
1837	int r;
1838
1839	if (clear || !bo) {
 
1840		mem = NULL;
1841		resv = vm->root.bo->tbo.base.resv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1842	} else {
1843		struct drm_gem_object *obj = &bo->tbo.base;
1844
1845		resv = bo->tbo.base.resv;
1846		if (obj->import_attach && bo_va->is_xgmi) {
1847			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1848			struct drm_gem_object *gobj = dma_buf->priv;
1849			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1850
1851			if (abo->tbo.resource->mem_type == TTM_PL_VRAM)
 
1852				bo = gem_to_amdgpu_bo(gobj);
1853		}
1854		mem = bo->tbo.resource;
1855		if (mem->mem_type == TTM_PL_TT ||
1856		    mem->mem_type == AMDGPU_PL_PREEMPT)
1857			pages_addr = bo->tbo.ttm->dma_address;
 
 
 
 
 
 
1858	}
1859
1860	if (bo) {
 
 
1861		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1862
1863		if (amdgpu_bo_encrypted(bo))
1864			flags |= AMDGPU_PTE_TMZ;
1865
1866		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
 
 
1867	} else {
1868		flags = 0x0;
 
 
1869	}
1870
1871	if (clear || (bo && bo->tbo.base.resv ==
1872		      vm->root.bo->tbo.base.resv))
1873		last_update = &vm->last_update;
1874	else
1875		last_update = &bo_va->last_pt_update;
1876
1877	if (!clear && bo_va->base.moved) {
1878		bo_va->base.moved = false;
1879		list_splice_init(&bo_va->valids, &bo_va->invalids);
1880
1881	} else if (bo_va->cleared != clear) {
1882		list_splice_init(&bo_va->valids, &bo_va->invalids);
1883	}
1884
1885	list_for_each_entry(mapping, &bo_va->invalids, list) {
1886		uint64_t update_flags = flags;
1887
1888		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1889		 * but in case of something, we filter the flags in first place
1890		 */
1891		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1892			update_flags &= ~AMDGPU_PTE_READABLE;
1893		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1894			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1895
1896		/* Apply ASIC specific mapping flags */
1897		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1898
1899		trace_amdgpu_vm_bo_update(mapping);
1900
1901		r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false,
1902						resv, mapping->start,
1903						mapping->last, update_flags,
1904						mapping->offset, mem,
1905						pages_addr, last_update, NULL);
1906		if (r)
1907			return r;
1908	}
1909
1910	/* If the BO is not in its preferred location add it back to
1911	 * the evicted list so that it gets validated again on the
1912	 * next command submission.
1913	 */
1914	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
1915		uint32_t mem_type = bo->tbo.resource->mem_type;
1916
1917		if (!(bo->preferred_domains &
1918		      amdgpu_mem_type_to_domain(mem_type)))
1919			amdgpu_vm_bo_evicted(&bo_va->base);
1920		else
1921			amdgpu_vm_bo_idle(&bo_va->base);
1922	} else {
1923		amdgpu_vm_bo_done(&bo_va->base);
1924	}
1925
1926	list_splice_init(&bo_va->invalids, &bo_va->valids);
1927	bo_va->cleared = clear;
 
1928
1929	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1930		list_for_each_entry(mapping, &bo_va->valids, list)
1931			trace_amdgpu_vm_bo_mapping(mapping);
1932	}
1933
1934	return 0;
 
 
1935}
1936
1937/**
1938 * amdgpu_vm_update_prt_state - update the global PRT state
1939 *
1940 * @adev: amdgpu_device pointer
1941 */
1942static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1943{
1944	unsigned long flags;
1945	bool enable;
1946
1947	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1948	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1949	adev->gmc.gmc_funcs->set_prt(adev, enable);
1950	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1951}
1952
1953/**
1954 * amdgpu_vm_prt_get - add a PRT user
1955 *
1956 * @adev: amdgpu_device pointer
1957 */
1958static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1959{
1960	if (!adev->gmc.gmc_funcs->set_prt)
1961		return;
1962
1963	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1964		amdgpu_vm_update_prt_state(adev);
1965}
1966
1967/**
1968 * amdgpu_vm_prt_put - drop a PRT user
1969 *
1970 * @adev: amdgpu_device pointer
1971 */
1972static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1973{
1974	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1975		amdgpu_vm_update_prt_state(adev);
1976}
1977
1978/**
1979 * amdgpu_vm_prt_cb - callback for updating the PRT status
1980 *
1981 * @fence: fence for the callback
1982 * @_cb: the callback function
1983 */
1984static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1985{
1986	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1987
1988	amdgpu_vm_prt_put(cb->adev);
1989	kfree(cb);
1990}
1991
1992/**
1993 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1994 *
1995 * @adev: amdgpu_device pointer
1996 * @fence: fence for the callback
1997 */
1998static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1999				 struct dma_fence *fence)
2000{
2001	struct amdgpu_prt_cb *cb;
2002
2003	if (!adev->gmc.gmc_funcs->set_prt)
2004		return;
2005
2006	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
2007	if (!cb) {
2008		/* Last resort when we are OOM */
2009		if (fence)
2010			dma_fence_wait(fence, false);
2011
2012		amdgpu_vm_prt_put(adev);
2013	} else {
2014		cb->adev = adev;
2015		if (!fence || dma_fence_add_callback(fence, &cb->cb,
2016						     amdgpu_vm_prt_cb))
2017			amdgpu_vm_prt_cb(fence, &cb->cb);
2018	}
2019}
2020
2021/**
2022 * amdgpu_vm_free_mapping - free a mapping
2023 *
2024 * @adev: amdgpu_device pointer
2025 * @vm: requested vm
2026 * @mapping: mapping to be freed
2027 * @fence: fence of the unmap operation
2028 *
2029 * Free a mapping and make sure we decrease the PRT usage count if applicable.
2030 */
2031static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
2032				   struct amdgpu_vm *vm,
2033				   struct amdgpu_bo_va_mapping *mapping,
2034				   struct dma_fence *fence)
2035{
2036	if (mapping->flags & AMDGPU_PTE_PRT)
2037		amdgpu_vm_add_prt_cb(adev, fence);
2038	kfree(mapping);
2039}
2040
2041/**
2042 * amdgpu_vm_prt_fini - finish all prt mappings
2043 *
2044 * @adev: amdgpu_device pointer
2045 * @vm: requested vm
2046 *
2047 * Register a cleanup callback to disable PRT support after VM dies.
2048 */
2049static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2050{
2051	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2052	struct dma_fence *excl, **shared;
2053	unsigned i, shared_count;
2054	int r;
2055
2056	r = dma_resv_get_fences(resv, &excl, &shared_count, &shared);
2057	if (r) {
2058		/* Not enough memory to grab the fence list, as last resort
2059		 * block for all the fences to complete.
2060		 */
2061		dma_resv_wait_timeout(resv, true, false,
2062						    MAX_SCHEDULE_TIMEOUT);
2063		return;
2064	}
2065
2066	/* Add a callback for each fence in the reservation object */
2067	amdgpu_vm_prt_get(adev);
2068	amdgpu_vm_add_prt_cb(adev, excl);
2069
2070	for (i = 0; i < shared_count; ++i) {
2071		amdgpu_vm_prt_get(adev);
2072		amdgpu_vm_add_prt_cb(adev, shared[i]);
2073	}
2074
2075	kfree(shared);
2076}
2077
2078/**
2079 * amdgpu_vm_clear_freed - clear freed BOs in the PT
2080 *
2081 * @adev: amdgpu_device pointer
2082 * @vm: requested vm
2083 * @fence: optional resulting fence (unchanged if no work needed to be done
2084 * or if an error occurred)
2085 *
2086 * Make sure all freed BOs are cleared in the PT.
2087 * PTs have to be reserved and mutex must be locked!
2088 *
2089 * Returns:
2090 * 0 for success.
2091 *
2092 */
2093int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2094			  struct amdgpu_vm *vm,
2095			  struct dma_fence **fence)
2096{
2097	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2098	struct amdgpu_bo_va_mapping *mapping;
2099	uint64_t init_pte_value = 0;
2100	struct dma_fence *f = NULL;
 
2101	int r;
2102
 
 
 
 
 
 
 
 
 
 
 
2103	while (!list_empty(&vm->freed)) {
2104		mapping = list_first_entry(&vm->freed,
2105			struct amdgpu_bo_va_mapping, list);
2106		list_del(&mapping->list);
2107
2108		if (vm->pte_support_ats &&
2109		    mapping->start < AMDGPU_GMC_HOLE_START)
2110			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2111
2112		r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false,
2113						resv, mapping->start,
2114						mapping->last, init_pte_value,
2115						0, NULL, NULL, &f, NULL);
2116		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2117		if (r) {
2118			dma_fence_put(f);
2119			return r;
2120		}
2121	}
2122
2123	if (fence && f) {
2124		dma_fence_put(*fence);
2125		*fence = f;
2126	} else {
2127		dma_fence_put(f);
2128	}
2129
2130	return 0;
 
 
2131
2132}
2133
2134/**
2135 * amdgpu_vm_handle_moved - handle moved BOs in the PT
2136 *
2137 * @adev: amdgpu_device pointer
2138 * @vm: requested vm
 
2139 *
2140 * Make sure all BOs which are moved are updated in the PTs.
2141 *
2142 * Returns:
2143 * 0 for success.
2144 *
2145 * PTs have to be reserved!
2146 */
2147int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2148			   struct amdgpu_vm *vm)
 
2149{
2150	struct amdgpu_bo_va *bo_va, *tmp;
2151	struct dma_resv *resv;
2152	bool clear;
2153	int r;
2154
2155	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
 
 
 
 
 
2156		/* Per VM BOs never need to bo cleared in the page tables */
2157		r = amdgpu_vm_bo_update(adev, bo_va, false);
2158		if (r)
2159			return r;
 
2160	}
2161
2162	spin_lock(&vm->invalidated_lock);
2163	while (!list_empty(&vm->invalidated)) {
2164		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2165					 base.vm_status);
2166		resv = bo_va->base.bo->tbo.base.resv;
2167		spin_unlock(&vm->invalidated_lock);
2168
2169		/* Try to reserve the BO to avoid clearing its ptes */
2170		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
 
 
 
 
2171			clear = false;
 
2172		/* Somebody else is using the BO right now */
2173		else
2174			clear = true;
 
 
2175
2176		r = amdgpu_vm_bo_update(adev, bo_va, clear);
 
 
 
2177		if (r)
2178			return r;
2179
2180		if (!clear)
2181			dma_resv_unlock(resv);
2182		spin_lock(&vm->invalidated_lock);
 
 
 
 
 
 
 
2183	}
2184	spin_unlock(&vm->invalidated_lock);
2185
2186	return 0;
2187}
2188
2189/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2190 * amdgpu_vm_bo_add - add a bo to a specific vm
2191 *
2192 * @adev: amdgpu_device pointer
2193 * @vm: requested vm
2194 * @bo: amdgpu buffer object
2195 *
2196 * Add @bo into the requested vm.
2197 * Add @bo to the list of bos associated with the vm
2198 *
2199 * Returns:
2200 * Newly added bo_va or NULL for failure
2201 *
2202 * Object has to be reserved!
2203 */
2204struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2205				      struct amdgpu_vm *vm,
2206				      struct amdgpu_bo *bo)
2207{
2208	struct amdgpu_bo_va *bo_va;
2209
2210	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2211	if (bo_va == NULL) {
2212		return NULL;
2213	}
2214	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2215
2216	bo_va->ref_count = 1;
 
2217	INIT_LIST_HEAD(&bo_va->valids);
2218	INIT_LIST_HEAD(&bo_va->invalids);
2219
2220	if (!bo)
2221		return bo_va;
2222
 
2223	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2224		bo_va->is_xgmi = true;
2225		/* Power up XGMI if it can be potentially used */
2226		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2227	}
2228
2229	return bo_va;
2230}
2231
2232
2233/**
2234 * amdgpu_vm_bo_insert_map - insert a new mapping
2235 *
2236 * @adev: amdgpu_device pointer
2237 * @bo_va: bo_va to store the address
2238 * @mapping: the mapping to insert
2239 *
2240 * Insert a new mapping into all structures.
2241 */
2242static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2243				    struct amdgpu_bo_va *bo_va,
2244				    struct amdgpu_bo_va_mapping *mapping)
2245{
2246	struct amdgpu_vm *vm = bo_va->base.vm;
2247	struct amdgpu_bo *bo = bo_va->base.bo;
2248
2249	mapping->bo_va = bo_va;
2250	list_add(&mapping->list, &bo_va->invalids);
2251	amdgpu_vm_it_insert(mapping, &vm->va);
2252
2253	if (mapping->flags & AMDGPU_PTE_PRT)
2254		amdgpu_vm_prt_get(adev);
2255
2256	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
2257	    !bo_va->base.moved) {
2258		list_move(&bo_va->base.vm_status, &vm->moved);
2259	}
2260	trace_amdgpu_vm_bo_map(bo_va, mapping);
2261}
2262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2263/**
2264 * amdgpu_vm_bo_map - map bo inside a vm
2265 *
2266 * @adev: amdgpu_device pointer
2267 * @bo_va: bo_va to store the address
2268 * @saddr: where to map the BO
2269 * @offset: requested offset in the BO
2270 * @size: BO size in bytes
2271 * @flags: attributes of pages (read/write/valid/etc.)
2272 *
2273 * Add a mapping of the BO at the specefied addr into the VM.
2274 *
2275 * Returns:
2276 * 0 for success, error for failure.
2277 *
2278 * Object has to be reserved and unreserved outside!
2279 */
2280int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2281		     struct amdgpu_bo_va *bo_va,
2282		     uint64_t saddr, uint64_t offset,
2283		     uint64_t size, uint64_t flags)
2284{
2285	struct amdgpu_bo_va_mapping *mapping, *tmp;
2286	struct amdgpu_bo *bo = bo_va->base.bo;
2287	struct amdgpu_vm *vm = bo_va->base.vm;
2288	uint64_t eaddr;
 
2289
2290	/* validate the parameters */
2291	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2292	    size == 0 || size & ~PAGE_MASK)
2293		return -EINVAL;
2294
2295	/* make sure object fit at this offset */
2296	eaddr = saddr + size - 1;
2297	if (saddr >= eaddr ||
2298	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2299	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2300		return -EINVAL;
2301
2302	saddr /= AMDGPU_GPU_PAGE_SIZE;
2303	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2304
2305	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2306	if (tmp) {
2307		/* bo and tmp overlap, invalid addr */
2308		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2309			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2310			tmp->start, tmp->last + 1);
2311		return -EINVAL;
2312	}
2313
2314	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2315	if (!mapping)
2316		return -ENOMEM;
2317
2318	mapping->start = saddr;
2319	mapping->last = eaddr;
2320	mapping->offset = offset;
2321	mapping->flags = flags;
2322
2323	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2324
2325	return 0;
2326}
2327
2328/**
2329 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2330 *
2331 * @adev: amdgpu_device pointer
2332 * @bo_va: bo_va to store the address
2333 * @saddr: where to map the BO
2334 * @offset: requested offset in the BO
2335 * @size: BO size in bytes
2336 * @flags: attributes of pages (read/write/valid/etc.)
2337 *
2338 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2339 * mappings as we do so.
2340 *
2341 * Returns:
2342 * 0 for success, error for failure.
2343 *
2344 * Object has to be reserved and unreserved outside!
2345 */
2346int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2347			     struct amdgpu_bo_va *bo_va,
2348			     uint64_t saddr, uint64_t offset,
2349			     uint64_t size, uint64_t flags)
2350{
2351	struct amdgpu_bo_va_mapping *mapping;
2352	struct amdgpu_bo *bo = bo_va->base.bo;
2353	uint64_t eaddr;
2354	int r;
2355
2356	/* validate the parameters */
2357	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2358	    size == 0 || size & ~PAGE_MASK)
2359		return -EINVAL;
2360
2361	/* make sure object fit at this offset */
2362	eaddr = saddr + size - 1;
2363	if (saddr >= eaddr ||
2364	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2365	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2366		return -EINVAL;
2367
2368	/* Allocate all the needed memory */
2369	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2370	if (!mapping)
2371		return -ENOMEM;
2372
2373	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2374	if (r) {
2375		kfree(mapping);
2376		return r;
2377	}
2378
2379	saddr /= AMDGPU_GPU_PAGE_SIZE;
2380	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2381
2382	mapping->start = saddr;
2383	mapping->last = eaddr;
2384	mapping->offset = offset;
2385	mapping->flags = flags;
2386
2387	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2388
2389	return 0;
2390}
2391
2392/**
2393 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2394 *
2395 * @adev: amdgpu_device pointer
2396 * @bo_va: bo_va to remove the address from
2397 * @saddr: where to the BO is mapped
2398 *
2399 * Remove a mapping of the BO at the specefied addr from the VM.
2400 *
2401 * Returns:
2402 * 0 for success, error for failure.
2403 *
2404 * Object has to be reserved and unreserved outside!
2405 */
2406int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2407		       struct amdgpu_bo_va *bo_va,
2408		       uint64_t saddr)
2409{
2410	struct amdgpu_bo_va_mapping *mapping;
2411	struct amdgpu_vm *vm = bo_va->base.vm;
2412	bool valid = true;
2413
2414	saddr /= AMDGPU_GPU_PAGE_SIZE;
2415
2416	list_for_each_entry(mapping, &bo_va->valids, list) {
2417		if (mapping->start == saddr)
2418			break;
2419	}
2420
2421	if (&mapping->list == &bo_va->valids) {
2422		valid = false;
2423
2424		list_for_each_entry(mapping, &bo_va->invalids, list) {
2425			if (mapping->start == saddr)
2426				break;
2427		}
2428
2429		if (&mapping->list == &bo_va->invalids)
2430			return -ENOENT;
2431	}
2432
2433	list_del(&mapping->list);
2434	amdgpu_vm_it_remove(mapping, &vm->va);
2435	mapping->bo_va = NULL;
2436	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2437
2438	if (valid)
2439		list_add(&mapping->list, &vm->freed);
2440	else
2441		amdgpu_vm_free_mapping(adev, vm, mapping,
2442				       bo_va->last_pt_update);
2443
2444	return 0;
2445}
2446
2447/**
2448 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2449 *
2450 * @adev: amdgpu_device pointer
2451 * @vm: VM structure to use
2452 * @saddr: start of the range
2453 * @size: size of the range
2454 *
2455 * Remove all mappings in a range, split them as appropriate.
2456 *
2457 * Returns:
2458 * 0 for success, error for failure.
2459 */
2460int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2461				struct amdgpu_vm *vm,
2462				uint64_t saddr, uint64_t size)
2463{
2464	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2465	LIST_HEAD(removed);
2466	uint64_t eaddr;
 
 
 
 
 
2467
2468	eaddr = saddr + size - 1;
2469	saddr /= AMDGPU_GPU_PAGE_SIZE;
2470	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2471
2472	/* Allocate all the needed memory */
2473	before = kzalloc(sizeof(*before), GFP_KERNEL);
2474	if (!before)
2475		return -ENOMEM;
2476	INIT_LIST_HEAD(&before->list);
2477
2478	after = kzalloc(sizeof(*after), GFP_KERNEL);
2479	if (!after) {
2480		kfree(before);
2481		return -ENOMEM;
2482	}
2483	INIT_LIST_HEAD(&after->list);
2484
2485	/* Now gather all removed mappings */
2486	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2487	while (tmp) {
2488		/* Remember mapping split at the start */
2489		if (tmp->start < saddr) {
2490			before->start = tmp->start;
2491			before->last = saddr - 1;
2492			before->offset = tmp->offset;
2493			before->flags = tmp->flags;
2494			before->bo_va = tmp->bo_va;
2495			list_add(&before->list, &tmp->bo_va->invalids);
2496		}
2497
2498		/* Remember mapping split at the end */
2499		if (tmp->last > eaddr) {
2500			after->start = eaddr + 1;
2501			after->last = tmp->last;
2502			after->offset = tmp->offset;
2503			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2504			after->flags = tmp->flags;
2505			after->bo_va = tmp->bo_va;
2506			list_add(&after->list, &tmp->bo_va->invalids);
2507		}
2508
2509		list_del(&tmp->list);
2510		list_add(&tmp->list, &removed);
2511
2512		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2513	}
2514
2515	/* And free them up */
2516	list_for_each_entry_safe(tmp, next, &removed, list) {
2517		amdgpu_vm_it_remove(tmp, &vm->va);
2518		list_del(&tmp->list);
2519
2520		if (tmp->start < saddr)
2521		    tmp->start = saddr;
2522		if (tmp->last > eaddr)
2523		    tmp->last = eaddr;
2524
2525		tmp->bo_va = NULL;
2526		list_add(&tmp->list, &vm->freed);
2527		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2528	}
2529
2530	/* Insert partial mapping before the range */
2531	if (!list_empty(&before->list)) {
 
 
2532		amdgpu_vm_it_insert(before, &vm->va);
2533		if (before->flags & AMDGPU_PTE_PRT)
2534			amdgpu_vm_prt_get(adev);
 
 
 
 
2535	} else {
2536		kfree(before);
2537	}
2538
2539	/* Insert partial mapping after the range */
2540	if (!list_empty(&after->list)) {
 
 
2541		amdgpu_vm_it_insert(after, &vm->va);
2542		if (after->flags & AMDGPU_PTE_PRT)
2543			amdgpu_vm_prt_get(adev);
 
 
 
 
2544	} else {
2545		kfree(after);
2546	}
2547
2548	return 0;
2549}
2550
2551/**
2552 * amdgpu_vm_bo_lookup_mapping - find mapping by address
2553 *
2554 * @vm: the requested VM
2555 * @addr: the address
2556 *
2557 * Find a mapping by it's address.
2558 *
2559 * Returns:
2560 * The amdgpu_bo_va_mapping matching for addr or NULL
2561 *
2562 */
2563struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2564							 uint64_t addr)
2565{
2566	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2567}
2568
2569/**
2570 * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2571 *
2572 * @vm: the requested vm
2573 * @ticket: CS ticket
2574 *
2575 * Trace all mappings of BOs reserved during a command submission.
2576 */
2577void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2578{
2579	struct amdgpu_bo_va_mapping *mapping;
2580
2581	if (!trace_amdgpu_vm_bo_cs_enabled())
2582		return;
2583
2584	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2585	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2586		if (mapping->bo_va && mapping->bo_va->base.bo) {
2587			struct amdgpu_bo *bo;
2588
2589			bo = mapping->bo_va->base.bo;
2590			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2591			    ticket)
2592				continue;
2593		}
2594
2595		trace_amdgpu_vm_bo_cs(mapping);
2596	}
2597}
2598
2599/**
2600 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2601 *
2602 * @adev: amdgpu_device pointer
2603 * @bo_va: requested bo_va
2604 *
2605 * Remove @bo_va->bo from the requested vm.
2606 *
2607 * Object have to be reserved!
2608 */
2609void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2610		      struct amdgpu_bo_va *bo_va)
2611{
2612	struct amdgpu_bo_va_mapping *mapping, *next;
2613	struct amdgpu_bo *bo = bo_va->base.bo;
2614	struct amdgpu_vm *vm = bo_va->base.vm;
2615	struct amdgpu_vm_bo_base **base;
2616
 
 
2617	if (bo) {
2618		if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2619			vm->bulk_moveable = false;
 
2620
2621		for (base = &bo_va->base.bo->vm_bo; *base;
2622		     base = &(*base)->next) {
2623			if (*base != &bo_va->base)
2624				continue;
2625
2626			*base = bo_va->base.next;
2627			break;
2628		}
2629	}
2630
2631	spin_lock(&vm->invalidated_lock);
2632	list_del(&bo_va->base.vm_status);
2633	spin_unlock(&vm->invalidated_lock);
2634
2635	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2636		list_del(&mapping->list);
2637		amdgpu_vm_it_remove(mapping, &vm->va);
2638		mapping->bo_va = NULL;
2639		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2640		list_add(&mapping->list, &vm->freed);
2641	}
2642	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2643		list_del(&mapping->list);
2644		amdgpu_vm_it_remove(mapping, &vm->va);
2645		amdgpu_vm_free_mapping(adev, vm, mapping,
2646				       bo_va->last_pt_update);
2647	}
2648
2649	dma_fence_put(bo_va->last_pt_update);
2650
2651	if (bo && bo_va->is_xgmi)
2652		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2653
2654	kfree(bo_va);
2655}
2656
2657/**
2658 * amdgpu_vm_evictable - check if we can evict a VM
2659 *
2660 * @bo: A page table of the VM.
2661 *
2662 * Check if it is possible to evict a VM.
2663 */
2664bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2665{
2666	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2667
2668	/* Page tables of a destroyed VM can go away immediately */
2669	if (!bo_base || !bo_base->vm)
2670		return true;
2671
2672	/* Don't evict VM page tables while they are busy */
2673	if (!dma_resv_test_signaled(bo->tbo.base.resv, true))
2674		return false;
2675
2676	/* Try to block ongoing updates */
2677	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2678		return false;
2679
2680	/* Don't evict VM page tables while they are updated */
2681	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2682		amdgpu_vm_eviction_unlock(bo_base->vm);
2683		return false;
2684	}
2685
2686	bo_base->vm->evicting = true;
2687	amdgpu_vm_eviction_unlock(bo_base->vm);
2688	return true;
2689}
2690
2691/**
2692 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2693 *
2694 * @adev: amdgpu_device pointer
2695 * @bo: amdgpu buffer object
2696 * @evicted: is the BO evicted
2697 *
2698 * Mark @bo as invalid.
2699 */
2700void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2701			     struct amdgpu_bo *bo, bool evicted)
2702{
2703	struct amdgpu_vm_bo_base *bo_base;
2704
2705	/* shadow bo doesn't have bo base, its validation needs its parent */
2706	if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
2707		bo = bo->parent;
2708
2709	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2710		struct amdgpu_vm *vm = bo_base->vm;
2711
2712		if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
2713			amdgpu_vm_bo_evicted(bo_base);
2714			continue;
2715		}
2716
2717		if (bo_base->moved)
2718			continue;
2719		bo_base->moved = true;
2720
2721		if (bo->tbo.type == ttm_bo_type_kernel)
2722			amdgpu_vm_bo_relocated(bo_base);
2723		else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2724			amdgpu_vm_bo_moved(bo_base);
2725		else
2726			amdgpu_vm_bo_invalidated(bo_base);
2727	}
2728}
2729
2730/**
2731 * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2732 *
2733 * @vm_size: VM size
2734 *
2735 * Returns:
2736 * VM page table as power of two
2737 */
2738static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2739{
2740	/* Total bits covered by PD + PTs */
2741	unsigned bits = ilog2(vm_size) + 18;
2742
2743	/* Make sure the PD is 4K in size up to 8GB address space.
2744	   Above that split equal between PD and PTs */
2745	if (vm_size <= 8)
2746		return (bits - 9);
2747	else
2748		return ((bits + 3) / 2);
2749}
2750
2751/**
2752 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2753 *
2754 * @adev: amdgpu_device pointer
2755 * @min_vm_size: the minimum vm size in GB if it's set auto
2756 * @fragment_size_default: Default PTE fragment size
2757 * @max_level: max VMPT level
2758 * @max_bits: max address space size in bits
2759 *
2760 */
2761void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2762			   uint32_t fragment_size_default, unsigned max_level,
2763			   unsigned max_bits)
2764{
2765	unsigned int max_size = 1 << (max_bits - 30);
2766	unsigned int vm_size;
2767	uint64_t tmp;
2768
2769	/* adjust vm size first */
2770	if (amdgpu_vm_size != -1) {
2771		vm_size = amdgpu_vm_size;
2772		if (vm_size > max_size) {
2773			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2774				 amdgpu_vm_size, max_size);
2775			vm_size = max_size;
2776		}
2777	} else {
2778		struct sysinfo si;
2779		unsigned int phys_ram_gb;
2780
2781		/* Optimal VM size depends on the amount of physical
2782		 * RAM available. Underlying requirements and
2783		 * assumptions:
2784		 *
2785		 *  - Need to map system memory and VRAM from all GPUs
2786		 *     - VRAM from other GPUs not known here
2787		 *     - Assume VRAM <= system memory
2788		 *  - On GFX8 and older, VM space can be segmented for
2789		 *    different MTYPEs
2790		 *  - Need to allow room for fragmentation, guard pages etc.
2791		 *
2792		 * This adds up to a rough guess of system memory x3.
2793		 * Round up to power of two to maximize the available
2794		 * VM size with the given page table size.
2795		 */
2796		si_meminfo(&si);
2797		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2798			       (1 << 30) - 1) >> 30;
2799		vm_size = roundup_pow_of_two(
2800			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2801	}
2802
2803	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2804
2805	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2806	if (amdgpu_vm_block_size != -1)
2807		tmp >>= amdgpu_vm_block_size - 9;
2808	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2809	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2810	switch (adev->vm_manager.num_level) {
2811	case 3:
2812		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2813		break;
2814	case 2:
2815		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2816		break;
2817	case 1:
2818		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2819		break;
2820	default:
2821		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2822	}
2823	/* block size depends on vm size and hw setup*/
2824	if (amdgpu_vm_block_size != -1)
2825		adev->vm_manager.block_size =
2826			min((unsigned)amdgpu_vm_block_size, max_bits
2827			    - AMDGPU_GPU_PAGE_SHIFT
2828			    - 9 * adev->vm_manager.num_level);
2829	else if (adev->vm_manager.num_level > 1)
2830		adev->vm_manager.block_size = 9;
2831	else
2832		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2833
2834	if (amdgpu_vm_fragment_size == -1)
2835		adev->vm_manager.fragment_size = fragment_size_default;
2836	else
2837		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2838
2839	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2840		 vm_size, adev->vm_manager.num_level + 1,
2841		 adev->vm_manager.block_size,
2842		 adev->vm_manager.fragment_size);
2843}
2844
2845/**
2846 * amdgpu_vm_wait_idle - wait for the VM to become idle
2847 *
2848 * @vm: VM object to wait for
2849 * @timeout: timeout to wait for VM to become idle
2850 */
2851long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2852{
2853	timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, true,
 
2854					true, timeout);
2855	if (timeout <= 0)
2856		return timeout;
2857
2858	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2859}
2860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2861/**
2862 * amdgpu_vm_init - initialize a vm instance
2863 *
2864 * @adev: amdgpu_device pointer
2865 * @vm: requested vm
2866 * @pasid: Process address space identifier
2867 *
2868 * Init @vm fields.
2869 *
2870 * Returns:
2871 * 0 for success, error for failure.
2872 */
2873int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, u32 pasid)
 
2874{
2875	struct amdgpu_bo *root_bo;
2876	struct amdgpu_bo_vm *root;
2877	int r, i;
2878
2879	vm->va = RB_ROOT_CACHED;
2880	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2881		vm->reserved_vmid[i] = NULL;
2882	INIT_LIST_HEAD(&vm->evicted);
 
2883	INIT_LIST_HEAD(&vm->relocated);
2884	INIT_LIST_HEAD(&vm->moved);
2885	INIT_LIST_HEAD(&vm->idle);
2886	INIT_LIST_HEAD(&vm->invalidated);
2887	spin_lock_init(&vm->invalidated_lock);
2888	INIT_LIST_HEAD(&vm->freed);
2889	INIT_LIST_HEAD(&vm->done);
 
 
 
2890
2891	/* create scheduler entities for page table updates */
2892	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2893				  adev->vm_manager.vm_pte_scheds,
2894				  adev->vm_manager.vm_pte_num_scheds, NULL);
2895	if (r)
2896		return r;
2897
2898	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2899				  adev->vm_manager.vm_pte_scheds,
2900				  adev->vm_manager.vm_pte_num_scheds, NULL);
2901	if (r)
2902		goto error_free_immediate;
2903
2904	vm->pte_support_ats = false;
2905	vm->is_compute_context = false;
2906
2907	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2908				    AMDGPU_VM_USE_CPU_FOR_GFX);
2909
2910	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2911			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2912	WARN_ONCE((vm->use_cpu_for_update &&
2913		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2914		  "CPU update of VM recommended only for large BAR system\n");
2915
2916	if (vm->use_cpu_for_update)
2917		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2918	else
2919		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2920	vm->last_update = NULL;
 
2921	vm->last_unlocked = dma_fence_get_stub();
 
 
2922
2923	mutex_init(&vm->eviction_lock);
2924	vm->evicting = false;
 
2925
2926	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2927				false, &root);
2928	if (r)
2929		goto error_free_delayed;
2930	root_bo = &root->bo;
 
2931	r = amdgpu_bo_reserve(root_bo, true);
 
 
 
 
 
 
 
2932	if (r)
2933		goto error_free_root;
2934
2935	r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1);
2936	if (r)
2937		goto error_unreserve;
2938
2939	amdgpu_vm_bo_base_init(&vm->root, vm, root_bo);
2940
2941	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2942	if (r)
2943		goto error_unreserve;
2944
2945	amdgpu_bo_unreserve(vm->root.bo);
2946
2947	if (pasid) {
2948		unsigned long flags;
2949
2950		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2951		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2952			      GFP_ATOMIC);
2953		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2954		if (r < 0)
2955			goto error_free_root;
2956
2957		vm->pasid = pasid;
2958	}
2959
2960	INIT_KFIFO(vm->faults);
2961
2962	return 0;
2963
2964error_unreserve:
2965	amdgpu_bo_unreserve(vm->root.bo);
2966
2967error_free_root:
2968	amdgpu_bo_unref(&root->shadow);
 
2969	amdgpu_bo_unref(&root_bo);
2970	vm->root.bo = NULL;
2971
2972error_free_delayed:
 
2973	dma_fence_put(vm->last_unlocked);
2974	drm_sched_entity_destroy(&vm->delayed);
2975
2976error_free_immediate:
2977	drm_sched_entity_destroy(&vm->immediate);
2978
2979	return r;
2980}
2981
2982/**
2983 * amdgpu_vm_check_clean_reserved - check if a VM is clean
2984 *
2985 * @adev: amdgpu_device pointer
2986 * @vm: the VM to check
2987 *
2988 * check all entries of the root PD, if any subsequent PDs are allocated,
2989 * it means there are page table creating and filling, and is no a clean
2990 * VM
2991 *
2992 * Returns:
2993 *	0 if this VM is clean
2994 */
2995static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2996					  struct amdgpu_vm *vm)
2997{
2998	enum amdgpu_vm_level root = adev->vm_manager.root_level;
2999	unsigned int entries = amdgpu_vm_num_entries(adev, root);
3000	unsigned int i = 0;
3001
3002	for (i = 0; i < entries; i++) {
3003		if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo)
3004			return -EINVAL;
3005	}
3006
3007	return 0;
3008}
3009
3010/**
3011 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
3012 *
3013 * @adev: amdgpu_device pointer
3014 * @vm: requested vm
3015 * @pasid: pasid to use
3016 *
3017 * This only works on GFX VMs that don't have any BOs added and no
3018 * page tables allocated yet.
3019 *
3020 * Changes the following VM parameters:
3021 * - use_cpu_for_update
3022 * - pte_supports_ats
3023 * - pasid (old PASID is released, because compute manages its own PASIDs)
3024 *
3025 * Reinitializes the page directory to reflect the changed ATS
3026 * setting.
3027 *
3028 * Returns:
3029 * 0 for success, -errno for errors.
3030 */
3031int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
3032			   u32 pasid)
3033{
3034	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
3035	int r;
3036
3037	r = amdgpu_bo_reserve(vm->root.bo, true);
3038	if (r)
3039		return r;
3040
3041	/* Sanity checks */
3042	r = amdgpu_vm_check_clean_reserved(adev, vm);
3043	if (r)
3044		goto unreserve_bo;
3045
3046	if (pasid) {
3047		unsigned long flags;
3048
3049		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3050		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
3051			      GFP_ATOMIC);
3052		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3053
3054		if (r == -ENOSPC)
3055			goto unreserve_bo;
3056		r = 0;
3057	}
3058
3059	/* Check if PD needs to be reinitialized and do it before
3060	 * changing any other state, in case it fails.
3061	 */
3062	if (pte_support_ats != vm->pte_support_ats) {
3063		vm->pte_support_ats = pte_support_ats;
3064		r = amdgpu_vm_clear_bo(adev, vm,
3065				       to_amdgpu_bo_vm(vm->root.bo),
3066				       false);
3067		if (r)
3068			goto free_idr;
3069	}
3070
3071	/* Update VM state */
3072	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3073				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3074	DRM_DEBUG_DRIVER("VM update mode is %s\n",
3075			 vm->use_cpu_for_update ? "CPU" : "SDMA");
3076	WARN_ONCE((vm->use_cpu_for_update &&
3077		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3078		  "CPU update of VM recommended only for large BAR system\n");
3079
3080	if (vm->use_cpu_for_update) {
3081		/* Sync with last SDMA update/clear before switching to CPU */
3082		r = amdgpu_bo_sync_wait(vm->root.bo,
3083					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3084		if (r)
3085			goto free_idr;
3086
3087		vm->update_funcs = &amdgpu_vm_cpu_funcs;
 
 
 
 
3088	} else {
3089		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3090	}
 
3091	dma_fence_put(vm->last_update);
3092	vm->last_update = NULL;
3093	vm->is_compute_context = true;
3094
3095	if (vm->pasid) {
3096		unsigned long flags;
3097
3098		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3099		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3100		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3101
3102		/* Free the original amdgpu allocated pasid
3103		 * Will be replaced with kfd allocated pasid
3104		 */
3105		amdgpu_pasid_free(vm->pasid);
3106		vm->pasid = 0;
3107	}
3108
3109	/* Free the shadow bo for compute VM */
3110	amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow);
3111
3112	if (pasid)
3113		vm->pasid = pasid;
3114
3115	goto unreserve_bo;
3116
3117free_idr:
3118	if (pasid) {
3119		unsigned long flags;
3120
3121		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3122		idr_remove(&adev->vm_manager.pasid_idr, pasid);
3123		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3124	}
3125unreserve_bo:
3126	amdgpu_bo_unreserve(vm->root.bo);
3127	return r;
3128}
3129
3130/**
3131 * amdgpu_vm_release_compute - release a compute vm
3132 * @adev: amdgpu_device pointer
3133 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3134 *
3135 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3136 * pasid from vm. Compute should stop use of vm after this call.
3137 */
3138void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3139{
3140	if (vm->pasid) {
3141		unsigned long flags;
3142
3143		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3144		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3145		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3146	}
3147	vm->pasid = 0;
3148	vm->is_compute_context = false;
3149}
3150
3151/**
3152 * amdgpu_vm_fini - tear down a vm instance
3153 *
3154 * @adev: amdgpu_device pointer
3155 * @vm: requested vm
3156 *
3157 * Tear down @vm.
3158 * Unbind the VM and remove all bos from the vm bo list
3159 */
3160void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3161{
3162	struct amdgpu_bo_va_mapping *mapping, *tmp;
3163	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3164	struct amdgpu_bo *root;
 
3165	int i;
3166
3167	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3168
 
 
3169	root = amdgpu_bo_ref(vm->root.bo);
3170	amdgpu_bo_reserve(root, true);
3171	if (vm->pasid) {
3172		unsigned long flags;
3173
3174		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3175		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3176		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3177		vm->pasid = 0;
3178	}
3179
3180	dma_fence_wait(vm->last_unlocked, false);
3181	dma_fence_put(vm->last_unlocked);
 
 
 
 
 
3182
3183	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3184		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3185			amdgpu_vm_prt_fini(adev, vm);
3186			prt_fini_needed = false;
3187		}
3188
3189		list_del(&mapping->list);
3190		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3191	}
3192
3193	amdgpu_vm_free_pts(adev, vm, NULL);
3194	amdgpu_bo_unreserve(root);
3195	amdgpu_bo_unref(&root);
3196	WARN_ON(vm->root.bo);
3197
3198	drm_sched_entity_destroy(&vm->immediate);
3199	drm_sched_entity_destroy(&vm->delayed);
3200
3201	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3202		dev_err(adev->dev, "still active bo inside vm\n");
3203	}
3204	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3205					     &vm->va.rb_root, rb) {
3206		/* Don't remove the mapping here, we don't want to trigger a
3207		 * rebalance and the tree is about to be destroyed anyway.
3208		 */
3209		list_del(&mapping->list);
3210		kfree(mapping);
3211	}
3212
3213	dma_fence_put(vm->last_update);
3214	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3215		amdgpu_vmid_free_reserved(adev, vm, i);
 
 
 
 
 
 
 
3216}
3217
3218/**
3219 * amdgpu_vm_manager_init - init the VM manager
3220 *
3221 * @adev: amdgpu_device pointer
3222 *
3223 * Initialize the VM manager structures
3224 */
3225void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3226{
3227	unsigned i;
3228
3229	/* Concurrent flushes are only possible starting with Vega10 and
3230	 * are broken on Navi10 and Navi14.
3231	 */
3232	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3233					      adev->asic_type == CHIP_NAVI10 ||
3234					      adev->asic_type == CHIP_NAVI14);
3235	amdgpu_vmid_mgr_init(adev);
3236
3237	adev->vm_manager.fence_context =
3238		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3239	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3240		adev->vm_manager.seqno[i] = 0;
3241
3242	spin_lock_init(&adev->vm_manager.prt_lock);
3243	atomic_set(&adev->vm_manager.num_prt_users, 0);
3244
3245	/* If not overridden by the user, by default, only in large BAR systems
3246	 * Compute VM tables will be updated by CPU
3247	 */
3248#ifdef CONFIG_X86_64
3249	if (amdgpu_vm_update_mode == -1) {
3250		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
 
 
 
 
3251			adev->vm_manager.vm_update_mode =
3252				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3253		else
3254			adev->vm_manager.vm_update_mode = 0;
3255	} else
3256		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3257#else
3258	adev->vm_manager.vm_update_mode = 0;
3259#endif
3260
3261	idr_init(&adev->vm_manager.pasid_idr);
3262	spin_lock_init(&adev->vm_manager.pasid_lock);
3263}
3264
3265/**
3266 * amdgpu_vm_manager_fini - cleanup VM manager
3267 *
3268 * @adev: amdgpu_device pointer
3269 *
3270 * Cleanup the VM manager and free resources.
3271 */
3272void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3273{
3274	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3275	idr_destroy(&adev->vm_manager.pasid_idr);
3276
3277	amdgpu_vmid_mgr_fini(adev);
3278}
3279
3280/**
3281 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3282 *
3283 * @dev: drm device pointer
3284 * @data: drm_amdgpu_vm
3285 * @filp: drm file pointer
3286 *
3287 * Returns:
3288 * 0 for success, -errno for errors.
3289 */
3290int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3291{
3292	union drm_amdgpu_vm *args = data;
3293	struct amdgpu_device *adev = drm_to_adev(dev);
3294	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3295	long timeout = msecs_to_jiffies(2000);
3296	int r;
 
 
3297
3298	switch (args->in.op) {
3299	case AMDGPU_VM_OP_RESERVE_VMID:
3300		/* We only have requirement to reserve vmid from gfxhub */
3301		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3302					       AMDGPU_GFXHUB_0);
3303		if (r)
3304			return r;
 
3305		break;
3306	case AMDGPU_VM_OP_UNRESERVE_VMID:
3307		if (amdgpu_sriov_runtime(adev))
3308			timeout = 8 * timeout;
3309
3310		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3311		 * not referenced anymore.
3312		 */
3313		r = amdgpu_bo_reserve(fpriv->vm.root.bo, true);
3314		if (r)
3315			return r;
3316
3317		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3318		if (r < 0)
3319			return r;
3320
3321		amdgpu_bo_unreserve(fpriv->vm.root.bo);
3322		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3323		break;
3324	default:
3325		return -EINVAL;
3326	}
3327
3328	return 0;
3329}
3330
3331/**
3332 * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3333 *
3334 * @adev: drm device pointer
3335 * @pasid: PASID identifier for VM
3336 * @task_info: task_info to fill.
3337 */
3338void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3339			 struct amdgpu_task_info *task_info)
3340{
3341	struct amdgpu_vm *vm;
3342	unsigned long flags;
3343
3344	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3345
3346	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3347	if (vm)
3348		*task_info = vm->task_info;
3349
3350	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3351}
3352
3353/**
3354 * amdgpu_vm_set_task_info - Sets VMs task info.
3355 *
3356 * @vm: vm for which to set the info
3357 */
3358void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3359{
3360	if (vm->task_info.pid)
3361		return;
3362
3363	vm->task_info.pid = current->pid;
3364	get_task_comm(vm->task_info.task_name, current);
3365
3366	if (current->group_leader->mm != current->mm)
3367		return;
3368
3369	vm->task_info.tgid = current->group_leader->pid;
3370	get_task_comm(vm->task_info.process_name, current->group_leader);
3371}
3372
3373/**
3374 * amdgpu_vm_handle_fault - graceful handling of VM faults.
3375 * @adev: amdgpu device pointer
3376 * @pasid: PASID of the VM
 
 
 
 
3377 * @addr: Address of the fault
 
3378 *
3379 * Try to gracefully handle a VM fault. Return true if the fault was handled and
3380 * shouldn't be reported any more.
3381 */
3382bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3383			    uint64_t addr)
 
3384{
3385	bool is_compute_context = false;
3386	struct amdgpu_bo *root;
3387	unsigned long irqflags;
3388	uint64_t value, flags;
3389	struct amdgpu_vm *vm;
3390	int r;
3391
3392	spin_lock_irqsave(&adev->vm_manager.pasid_lock, irqflags);
3393	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3394	if (vm) {
3395		root = amdgpu_bo_ref(vm->root.bo);
3396		is_compute_context = vm->is_compute_context;
3397	} else {
3398		root = NULL;
3399	}
3400	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, irqflags);
3401
3402	if (!root)
3403		return false;
3404
3405	addr /= AMDGPU_GPU_PAGE_SIZE;
3406
3407	if (is_compute_context &&
3408	    !svm_range_restore_pages(adev, pasid, addr)) {
3409		amdgpu_bo_unref(&root);
3410		return true;
3411	}
3412
3413	r = amdgpu_bo_reserve(root, true);
3414	if (r)
3415		goto error_unref;
3416
3417	/* Double check that the VM still exists */
3418	spin_lock_irqsave(&adev->vm_manager.pasid_lock, irqflags);
3419	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3420	if (vm && vm->root.bo != root)
3421		vm = NULL;
3422	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, irqflags);
3423	if (!vm)
3424		goto error_unlock;
3425
3426	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3427		AMDGPU_PTE_SYSTEM;
3428
3429	if (is_compute_context) {
3430		/* Intentionally setting invalid PTE flag
3431		 * combination to force a no-retry-fault
3432		 */
3433		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3434			AMDGPU_PTE_TF;
3435		value = 0;
3436	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3437		/* Redirect the access to the dummy page */
3438		value = adev->dummy_page_addr;
3439		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3440			AMDGPU_PTE_WRITEABLE;
3441
3442	} else {
3443		/* Let the hw retry silently on the PTE */
3444		value = 0;
3445	}
3446
3447	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
3448	if (r) {
3449		pr_debug("failed %d to reserve fence slot\n", r);
3450		goto error_unlock;
3451	}
3452
3453	r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr,
3454					addr, flags, value, NULL, NULL, NULL,
3455					NULL);
3456	if (r)
3457		goto error_unlock;
3458
3459	r = amdgpu_vm_update_pdes(adev, vm, true);
3460
3461error_unlock:
3462	amdgpu_bo_unreserve(root);
3463	if (r < 0)
3464		DRM_ERROR("Can't handle page fault (%d)\n", r);
3465
3466error_unref:
3467	amdgpu_bo_unref(&root);
3468
3469	return false;
3470}
3471
3472#if defined(CONFIG_DEBUG_FS)
3473/**
3474 * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
3475 *
3476 * @vm: Requested VM for printing BO info
3477 * @m: debugfs file
3478 *
3479 * Print BO information in debugfs file for the VM
3480 */
3481void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
3482{
3483	struct amdgpu_bo_va *bo_va, *tmp;
3484	u64 total_idle = 0;
3485	u64 total_evicted = 0;
3486	u64 total_relocated = 0;
3487	u64 total_moved = 0;
3488	u64 total_invalidated = 0;
3489	u64 total_done = 0;
3490	unsigned int total_idle_objs = 0;
3491	unsigned int total_evicted_objs = 0;
3492	unsigned int total_relocated_objs = 0;
3493	unsigned int total_moved_objs = 0;
3494	unsigned int total_invalidated_objs = 0;
3495	unsigned int total_done_objs = 0;
3496	unsigned int id = 0;
3497
 
3498	seq_puts(m, "\tIdle BOs:\n");
3499	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
3500		if (!bo_va->base.bo)
3501			continue;
3502		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3503	}
3504	total_idle_objs = id;
3505	id = 0;
3506
3507	seq_puts(m, "\tEvicted BOs:\n");
3508	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
3509		if (!bo_va->base.bo)
3510			continue;
3511		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3512	}
3513	total_evicted_objs = id;
3514	id = 0;
3515
3516	seq_puts(m, "\tRelocated BOs:\n");
3517	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
3518		if (!bo_va->base.bo)
3519			continue;
3520		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3521	}
3522	total_relocated_objs = id;
3523	id = 0;
3524
3525	seq_puts(m, "\tMoved BOs:\n");
3526	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
3527		if (!bo_va->base.bo)
3528			continue;
3529		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3530	}
3531	total_moved_objs = id;
3532	id = 0;
3533
3534	seq_puts(m, "\tInvalidated BOs:\n");
3535	spin_lock(&vm->invalidated_lock);
3536	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
3537		if (!bo_va->base.bo)
3538			continue;
3539		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
3540	}
3541	total_invalidated_objs = id;
3542	id = 0;
3543
3544	seq_puts(m, "\tDone BOs:\n");
3545	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
3546		if (!bo_va->base.bo)
3547			continue;
3548		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3549	}
3550	spin_unlock(&vm->invalidated_lock);
3551	total_done_objs = id;
3552
3553	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
3554		   total_idle_objs);
3555	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
3556		   total_evicted_objs);
3557	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
3558		   total_relocated_objs);
3559	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
3560		   total_moved_objs);
3561	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
3562		   total_invalidated_objs);
3563	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
3564		   total_done_objs);
3565}
3566#endif
v6.13.7
   1/*
   2 * Copyright 2008 Advanced Micro Devices, Inc.
   3 * Copyright 2008 Red Hat Inc.
   4 * Copyright 2009 Jerome Glisse.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the "Software"),
   8 * to deal in the Software without restriction, including without limitation
   9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10 * and/or sell copies of the Software, and to permit persons to whom the
  11 * Software is furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  22 * OTHER DEALINGS IN THE SOFTWARE.
  23 *
  24 * Authors: Dave Airlie
  25 *          Alex Deucher
  26 *          Jerome Glisse
  27 */
  28
  29#include <linux/dma-fence-array.h>
  30#include <linux/interval_tree_generic.h>
  31#include <linux/idr.h>
  32#include <linux/dma-buf.h>
  33
  34#include <drm/amdgpu_drm.h>
  35#include <drm/drm_drv.h>
  36#include <drm/ttm/ttm_tt.h>
  37#include <drm/drm_exec.h>
  38#include "amdgpu.h"
  39#include "amdgpu_trace.h"
  40#include "amdgpu_amdkfd.h"
  41#include "amdgpu_gmc.h"
  42#include "amdgpu_xgmi.h"
  43#include "amdgpu_dma_buf.h"
  44#include "amdgpu_res_cursor.h"
  45#include "kfd_svm.h"
  46
  47/**
  48 * DOC: GPUVM
  49 *
  50 * GPUVM is the MMU functionality provided on the GPU.
  51 * GPUVM is similar to the legacy GART on older asics, however
  52 * rather than there being a single global GART table
  53 * for the entire GPU, there can be multiple GPUVM page tables active
  54 * at any given time.  The GPUVM page tables can contain a mix
  55 * VRAM pages and system pages (both memory and MMIO) and system pages
  56 * can be mapped as snooped (cached system pages) or unsnooped
  57 * (uncached system pages).
  58 *
  59 * Each active GPUVM has an ID associated with it and there is a page table
  60 * linked with each VMID.  When executing a command buffer,
  61 * the kernel tells the engine what VMID to use for that command
  62 * buffer.  VMIDs are allocated dynamically as commands are submitted.
  63 * The userspace drivers maintain their own address space and the kernel
  64 * sets up their pages tables accordingly when they submit their
  65 * command buffers and a VMID is assigned.
  66 * The hardware supports up to 16 active GPUVMs at any given time.
  67 *
  68 * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending
  69 * on the ASIC family.  GPUVM supports RWX attributes on each page as well
  70 * as other features such as encryption and caching attributes.
  71 *
  72 * VMID 0 is special.  It is the GPUVM used for the kernel driver.  In
  73 * addition to an aperture managed by a page table, VMID 0 also has
  74 * several other apertures.  There is an aperture for direct access to VRAM
  75 * and there is a legacy AGP aperture which just forwards accesses directly
  76 * to the matching system physical addresses (or IOVAs when an IOMMU is
  77 * present).  These apertures provide direct access to these memories without
  78 * incurring the overhead of a page table.  VMID 0 is used by the kernel
  79 * driver for tasks like memory management.
  80 *
  81 * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory.
  82 * For user applications, each application can have their own unique GPUVM
  83 * address space.  The application manages the address space and the kernel
  84 * driver manages the GPUVM page tables for each process.  If an GPU client
  85 * accesses an invalid page, it will generate a GPU page fault, similar to
  86 * accessing an invalid page on a CPU.
  87 */
  88
  89#define START(node) ((node)->start)
  90#define LAST(node) ((node)->last)
  91
  92INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
  93		     START, LAST, static, amdgpu_vm_it)
  94
  95#undef START
  96#undef LAST
  97
  98/**
  99 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
 100 */
 101struct amdgpu_prt_cb {
 102
 103	/**
 104	 * @adev: amdgpu device
 105	 */
 106	struct amdgpu_device *adev;
 107
 108	/**
 109	 * @cb: callback
 110	 */
 111	struct dma_fence_cb cb;
 112};
 113
 114/**
 115 * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence
 
 
 116 */
 117struct amdgpu_vm_tlb_seq_struct {
 118	/**
 119	 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on
 120	 */
 121	struct amdgpu_vm *vm;
 
 
 
 
 
 
 
 
 
 122
 123	/**
 124	 * @cb: callback
 125	 */
 126	struct dma_fence_cb cb;
 127};
 128
 129/**
 130 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping
 131 *
 132 * @adev: amdgpu_device pointer
 133 * @vm: amdgpu_vm pointer
 134 * @pasid: the pasid the VM is using on this GPU
 135 *
 136 * Set the pasid this VM is using on this GPU, can also be used to remove the
 137 * pasid by passing in zero.
 138 *
 
 
 139 */
 140int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 141			u32 pasid)
 142{
 143	int r;
 144
 145	if (vm->pasid == pasid)
 
 
 
 
 146		return 0;
 
 
 
 
 147
 148	if (vm->pasid) {
 149		r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid));
 150		if (r < 0)
 151			return r;
 
 
 
 
 
 
 
 
 
 
 152
 153		vm->pasid = 0;
 154	}
 
 
 
 
 
 
 
 
 
 155
 156	if (pasid) {
 157		r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm,
 158					GFP_KERNEL));
 159		if (r < 0)
 160			return r;
 
 
 
 
 
 
 161
 162		vm->pasid = pasid;
 163	}
 
 164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165
 166	return 0;
 
 
 
 
 
 
 
 
 
 
 
 167}
 168
 169/**
 170 * amdgpu_vm_bo_evicted - vm_bo is evicted
 171 *
 172 * @vm_bo: vm_bo which is evicted
 173 *
 174 * State for PDs/PTs and per VM BOs which are not at the location they should
 175 * be.
 176 */
 177static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
 178{
 179	struct amdgpu_vm *vm = vm_bo->vm;
 180	struct amdgpu_bo *bo = vm_bo->bo;
 181
 182	vm_bo->moved = true;
 183	spin_lock(&vm_bo->vm->status_lock);
 184	if (bo->tbo.type == ttm_bo_type_kernel)
 185		list_move(&vm_bo->vm_status, &vm->evicted);
 186	else
 187		list_move_tail(&vm_bo->vm_status, &vm->evicted);
 188	spin_unlock(&vm_bo->vm->status_lock);
 189}
 190/**
 191 * amdgpu_vm_bo_moved - vm_bo is moved
 192 *
 193 * @vm_bo: vm_bo which is moved
 194 *
 195 * State for per VM BOs which are moved, but that change is not yet reflected
 196 * in the page tables.
 197 */
 198static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
 199{
 200	spin_lock(&vm_bo->vm->status_lock);
 201	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
 202	spin_unlock(&vm_bo->vm->status_lock);
 203}
 204
 205/**
 206 * amdgpu_vm_bo_idle - vm_bo is idle
 207 *
 208 * @vm_bo: vm_bo which is now idle
 209 *
 210 * State for PDs/PTs and per VM BOs which have gone through the state machine
 211 * and are now idle.
 212 */
 213static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
 214{
 215	spin_lock(&vm_bo->vm->status_lock);
 216	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
 217	spin_unlock(&vm_bo->vm->status_lock);
 218	vm_bo->moved = false;
 219}
 220
 221/**
 222 * amdgpu_vm_bo_invalidated - vm_bo is invalidated
 223 *
 224 * @vm_bo: vm_bo which is now invalidated
 225 *
 226 * State for normal BOs which are invalidated and that change not yet reflected
 227 * in the PTs.
 228 */
 229static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
 230{
 231	spin_lock(&vm_bo->vm->status_lock);
 232	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
 233	spin_unlock(&vm_bo->vm->status_lock);
 234}
 235
 236/**
 237 * amdgpu_vm_bo_evicted_user - vm_bo is evicted
 238 *
 239 * @vm_bo: vm_bo which is evicted
 240 *
 241 * State for BOs used by user mode queues which are not at the location they
 242 * should be.
 243 */
 244static void amdgpu_vm_bo_evicted_user(struct amdgpu_vm_bo_base *vm_bo)
 245{
 246	vm_bo->moved = true;
 247	spin_lock(&vm_bo->vm->status_lock);
 248	list_move(&vm_bo->vm_status, &vm_bo->vm->evicted_user);
 249	spin_unlock(&vm_bo->vm->status_lock);
 250}
 251
 252/**
 253 * amdgpu_vm_bo_relocated - vm_bo is reloacted
 254 *
 255 * @vm_bo: vm_bo which is relocated
 256 *
 257 * State for PDs/PTs which needs to update their parent PD.
 258 * For the root PD, just move to idle state.
 259 */
 260static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
 261{
 262	if (vm_bo->bo->parent) {
 263		spin_lock(&vm_bo->vm->status_lock);
 264		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
 265		spin_unlock(&vm_bo->vm->status_lock);
 266	} else {
 267		amdgpu_vm_bo_idle(vm_bo);
 268	}
 269}
 270
 271/**
 272 * amdgpu_vm_bo_done - vm_bo is done
 273 *
 274 * @vm_bo: vm_bo which is now done
 275 *
 276 * State for normal BOs which are invalidated and that change has been updated
 277 * in the PTs.
 278 */
 279static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
 280{
 281	spin_lock(&vm_bo->vm->status_lock);
 282	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
 283	spin_unlock(&vm_bo->vm->status_lock);
 284}
 285
 286/**
 287 * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine
 288 * @vm: the VM which state machine to reset
 289 *
 290 * Move all vm_bo object in the VM into a state where they will be updated
 291 * again during validation.
 292 */
 293static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm)
 294{
 295	struct amdgpu_vm_bo_base *vm_bo, *tmp;
 296
 297	spin_lock(&vm->status_lock);
 298	list_splice_init(&vm->done, &vm->invalidated);
 299	list_for_each_entry(vm_bo, &vm->invalidated, vm_status)
 300		vm_bo->moved = true;
 301	list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) {
 302		struct amdgpu_bo *bo = vm_bo->bo;
 303
 304		vm_bo->moved = true;
 305		if (!bo || bo->tbo.type != ttm_bo_type_kernel)
 306			list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
 307		else if (bo->parent)
 308			list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
 309	}
 310	spin_unlock(&vm->status_lock);
 311}
 312
 313/**
 314 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
 315 *
 316 * @base: base structure for tracking BO usage in a VM
 317 * @vm: vm to which bo is to be added
 318 * @bo: amdgpu buffer object
 319 *
 320 * Initialize a bo_va_base structure and add it to the appropriate lists
 321 *
 322 */
 323void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
 324			    struct amdgpu_vm *vm, struct amdgpu_bo *bo)
 
 325{
 326	base->vm = vm;
 327	base->bo = bo;
 328	base->next = NULL;
 329	INIT_LIST_HEAD(&base->vm_status);
 330
 331	if (!bo)
 332		return;
 333	base->next = bo->vm_bo;
 334	bo->vm_bo = base;
 335
 336	if (!amdgpu_vm_is_bo_always_valid(vm, bo))
 337		return;
 338
 339	dma_resv_assert_held(vm->root.bo->tbo.base.resv);
 340
 341	ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move);
 342	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
 343		amdgpu_vm_bo_relocated(base);
 344	else
 345		amdgpu_vm_bo_idle(base);
 346
 347	if (bo->preferred_domains &
 348	    amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
 349		return;
 350
 351	/*
 352	 * we checked all the prerequisites, but it looks like this per vm bo
 353	 * is currently evicted. add the bo to the evicted list to make sure it
 354	 * is validated on next vm use to avoid fault.
 355	 * */
 356	amdgpu_vm_bo_evicted(base);
 357}
 358
 359/**
 360 * amdgpu_vm_lock_pd - lock PD in drm_exec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 361 *
 362 * @vm: vm providing the BOs
 363 * @exec: drm execution context
 364 * @num_fences: number of extra fences to reserve
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 365 *
 366 * Lock the VM root PD in the DRM execution context.
 
 
 367 */
 368int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec,
 369		      unsigned int num_fences)
 370{
 371	/* We need at least two fences for the VM PD/PT updates */
 372	return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base,
 373				    2 + num_fences);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 374}
 375
 376/**
 377 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
 378 *
 379 * @adev: amdgpu device pointer
 380 * @vm: vm providing the BOs
 381 *
 382 * Move all BOs to the end of LRU and remember their positions to put them
 383 * together.
 
 384 */
 385void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
 386				struct amdgpu_vm *vm)
 387{
 388	spin_lock(&adev->mman.bdev.lru_lock);
 389	ttm_lru_bulk_move_tail(&vm->lru_bulk_move);
 390	spin_unlock(&adev->mman.bdev.lru_lock);
 
 
 
 
 391}
 392
 393/* Create scheduler entities for page table updates */
 394static int amdgpu_vm_init_entities(struct amdgpu_device *adev,
 395				   struct amdgpu_vm *vm)
 
 
 
 
 
 
 
 396{
 397	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398
 399	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
 400				  adev->vm_manager.vm_pte_scheds,
 401				  adev->vm_manager.vm_pte_num_scheds, NULL);
 402	if (r)
 403		goto error;
 
 
 
 
 
 
 
 
 
 404
 405	return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
 406				     adev->vm_manager.vm_pte_scheds,
 407				     adev->vm_manager.vm_pte_num_scheds, NULL);
 
 
 
 
 
 
 
 
 
 
 408
 409error:
 410	drm_sched_entity_destroy(&vm->immediate);
 411	return r;
 
 
 
 412}
 413
 414/* Destroy the entities for page table updates again */
 415static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 416{
 417	drm_sched_entity_destroy(&vm->immediate);
 418	drm_sched_entity_destroy(&vm->delayed);
 
 
 
 
 419}
 420
 421/**
 422 * amdgpu_vm_generation - return the page table re-generation counter
 423 * @adev: the amdgpu_device
 424 * @vm: optional VM to check, might be NULL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 425 *
 426 * Returns a page table re-generation token to allow checking if submissions
 427 * are still valid to use this VM. The VM parameter might be NULL in which case
 428 * just the VRAM lost counter will be used.
 429 */
 430uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm)
 
 431{
 432	uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32;
 433
 434	if (!vm)
 435		return result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436
 437	result += lower_32_bits(vm->generation);
 438	/* Add one if the page tables will be re-generated on next CS */
 439	if (drm_sched_entity_error(&vm->delayed))
 440		++result;
 
 
 
 
 441
 442	return result;
 443}
 444
 445/**
 446 * amdgpu_vm_validate - validate evicted BOs tracked in the VM
 447 *
 448 * @adev: amdgpu device pointer
 449 * @vm: vm providing the BOs
 450 * @ticket: optional reservation ticket used to reserve the VM
 451 * @validate: callback to do the validation
 452 * @param: parameter for the validation callback
 453 *
 454 * Validate the page table BOs and per-VM BOs on command submission if
 455 * necessary. If a ticket is given, also try to validate evicted user queue
 456 * BOs. They must already be reserved with the given ticket.
 457 *
 458 * Returns:
 459 * Validation result.
 460 */
 461int amdgpu_vm_validate(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 462		       struct ww_acquire_ctx *ticket,
 463		       int (*validate)(void *p, struct amdgpu_bo *bo),
 464		       void *param)
 465{
 466	uint64_t new_vm_generation = amdgpu_vm_generation(adev, vm);
 467	struct amdgpu_vm_bo_base *bo_base;
 468	struct amdgpu_bo *bo;
 469	int r;
 470
 471	if (vm->generation != new_vm_generation) {
 472		vm->generation = new_vm_generation;
 473		amdgpu_vm_bo_reset_state_machine(vm);
 474		amdgpu_vm_fini_entities(vm);
 475		r = amdgpu_vm_init_entities(adev, vm);
 476		if (r)
 477			return r;
 478	}
 479
 480	spin_lock(&vm->status_lock);
 481	while (!list_empty(&vm->evicted)) {
 482		bo_base = list_first_entry(&vm->evicted,
 483					   struct amdgpu_vm_bo_base,
 484					   vm_status);
 485		spin_unlock(&vm->status_lock);
 486
 487		bo = bo_base->bo;
 
 
 488
 489		r = validate(param, bo);
 490		if (r)
 491			return r;
 
 
 
 
 
 492
 493		if (bo->tbo.type != ttm_bo_type_kernel) {
 494			amdgpu_vm_bo_moved(bo_base);
 495		} else {
 496			vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
 497			amdgpu_vm_bo_relocated(bo_base);
 498		}
 499		spin_lock(&vm->status_lock);
 500	}
 501	while (ticket && !list_empty(&vm->evicted_user)) {
 502		bo_base = list_first_entry(&vm->evicted_user,
 503					   struct amdgpu_vm_bo_base,
 504					   vm_status);
 505		spin_unlock(&vm->status_lock);
 506
 507		bo = bo_base->bo;
 508
 509		if (dma_resv_locking_ctx(bo->tbo.base.resv) != ticket) {
 510			struct amdgpu_task_info *ti = amdgpu_vm_get_task_info_vm(vm);
 511
 512			pr_warn_ratelimited("Evicted user BO is not reserved\n");
 513			if (ti) {
 514				pr_warn_ratelimited("pid %d\n", ti->pid);
 515				amdgpu_vm_put_task_info(ti);
 516			}
 517
 518			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 519		}
 520
 521		r = validate(param, bo);
 
 522		if (r)
 523			return r;
 524
 525		amdgpu_vm_bo_invalidated(bo_base);
 
 
 
 
 526
 527		spin_lock(&vm->status_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528	}
 529	spin_unlock(&vm->status_lock);
 530
 531	amdgpu_vm_eviction_lock(vm);
 532	vm->evicting = false;
 533	amdgpu_vm_eviction_unlock(vm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534
 535	return 0;
 536}
 537
 538/**
 539 * amdgpu_vm_ready - check VM is ready for updates
 540 *
 541 * @vm: VM to check
 
 
 
 542 *
 543 * Check if all VM PDs/PTs are ready for updates
 544 *
 545 * Returns:
 546 * True if VM is not evicting.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547 */
 548bool amdgpu_vm_ready(struct amdgpu_vm *vm)
 
 
 549{
 550	bool empty;
 551	bool ret;
 552
 553	amdgpu_vm_eviction_lock(vm);
 554	ret = !vm->evicting;
 555	amdgpu_vm_eviction_unlock(vm);
 556
 557	spin_lock(&vm->status_lock);
 558	empty = list_empty(&vm->evicted);
 559	spin_unlock(&vm->status_lock);
 560
 561	return ret && empty;
 
 562}
 563
 564/**
 565 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
 566 *
 567 * @adev: amdgpu_device pointer
 568 */
 569void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
 570{
 571	const struct amdgpu_ip_block *ip_block;
 572	bool has_compute_vm_bug;
 573	struct amdgpu_ring *ring;
 574	int i;
 575
 576	has_compute_vm_bug = false;
 577
 578	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
 579	if (ip_block) {
 580		/* Compute has a VM bug for GFX version < 7.
 581		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
 582		if (ip_block->version->major <= 7)
 583			has_compute_vm_bug = true;
 584		else if (ip_block->version->major == 8)
 585			if (adev->gfx.mec_fw_version < 673)
 586				has_compute_vm_bug = true;
 587	}
 588
 589	for (i = 0; i < adev->num_rings; i++) {
 590		ring = adev->rings[i];
 591		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
 592			/* only compute rings */
 593			ring->has_compute_vm_bug = has_compute_vm_bug;
 594		else
 595			ring->has_compute_vm_bug = false;
 596	}
 597}
 598
 599/**
 600 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
 601 *
 602 * @ring: ring on which the job will be submitted
 603 * @job: job to submit
 604 *
 605 * Returns:
 606 * True if sync is needed.
 607 */
 608bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
 609				  struct amdgpu_job *job)
 610{
 611	struct amdgpu_device *adev = ring->adev;
 612	unsigned vmhub = ring->vm_hub;
 613	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
 
 
 
 614
 615	if (job->vmid == 0)
 616		return false;
 
 
 
 
 
 
 
 
 617
 618	if (job->vm_needs_flush || ring->has_compute_vm_bug)
 619		return true;
 620
 621	if (ring->funcs->emit_gds_switch && job->gds_switch_needed)
 622		return true;
 623
 624	if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid]))
 625		return true;
 626
 627	return false;
 628}
 629
 630/**
 631 * amdgpu_vm_flush - hardware flush the vm
 632 *
 633 * @ring: ring to use for flush
 634 * @job:  related job
 635 * @need_pipe_sync: is pipe sync needed
 636 *
 637 * Emit a VM flush when it is necessary.
 638 *
 639 * Returns:
 640 * 0 on success, errno otherwise.
 641 */
 642int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
 643		    bool need_pipe_sync)
 644{
 645	struct amdgpu_device *adev = ring->adev;
 646	unsigned vmhub = ring->vm_hub;
 647	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
 648	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
 649	bool spm_update_needed = job->spm_update_needed;
 650	bool gds_switch_needed = ring->funcs->emit_gds_switch &&
 651		job->gds_switch_needed;
 
 
 
 
 652	bool vm_flush_needed = job->vm_needs_flush;
 653	struct dma_fence *fence = NULL;
 654	bool pasid_mapping_needed = false;
 655	unsigned int patch;
 
 656	int r;
 657
 
 
 
 658	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
 659		gds_switch_needed = true;
 660		vm_flush_needed = true;
 661		pasid_mapping_needed = true;
 662		spm_update_needed = true;
 663	}
 664
 665	mutex_lock(&id_mgr->lock);
 666	if (id->pasid != job->pasid || !id->pasid_mapping ||
 667	    !dma_fence_is_signaled(id->pasid_mapping))
 668		pasid_mapping_needed = true;
 669	mutex_unlock(&id_mgr->lock);
 670
 671	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
 672	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
 673			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
 674	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
 675		ring->funcs->emit_wreg;
 676
 677	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync &&
 678	    !(job->enforce_isolation && !job->vmid))
 679		return 0;
 680
 681	amdgpu_ring_ib_begin(ring);
 682	if (ring->funcs->init_cond_exec)
 683		patch = amdgpu_ring_init_cond_exec(ring,
 684						   ring->cond_exe_gpu_addr);
 685
 686	if (need_pipe_sync)
 687		amdgpu_ring_emit_pipeline_sync(ring);
 688
 689	if (adev->gfx.enable_cleaner_shader &&
 690	    ring->funcs->emit_cleaner_shader &&
 691	    job->enforce_isolation)
 692		ring->funcs->emit_cleaner_shader(ring);
 693
 694	if (vm_flush_needed) {
 695		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
 696		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
 697	}
 698
 699	if (pasid_mapping_needed)
 700		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
 701
 702	if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid)
 703		adev->gfx.rlc.funcs->update_spm_vmid(adev, ring, job->vmid);
 704
 705	if (!ring->is_mes_queue && ring->funcs->emit_gds_switch &&
 706	    gds_switch_needed) {
 707		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
 708					    job->gds_size, job->gws_base,
 709					    job->gws_size, job->oa_base,
 710					    job->oa_size);
 711	}
 712
 713	if (vm_flush_needed || pasid_mapping_needed) {
 714		r = amdgpu_fence_emit(ring, &fence, NULL, 0);
 715		if (r)
 716			return r;
 717	}
 718
 719	if (vm_flush_needed) {
 720		mutex_lock(&id_mgr->lock);
 721		dma_fence_put(id->last_flush);
 722		id->last_flush = dma_fence_get(fence);
 723		id->current_gpu_reset_count =
 724			atomic_read(&adev->gpu_reset_counter);
 725		mutex_unlock(&id_mgr->lock);
 726	}
 727
 728	if (pasid_mapping_needed) {
 729		mutex_lock(&id_mgr->lock);
 730		id->pasid = job->pasid;
 731		dma_fence_put(id->pasid_mapping);
 732		id->pasid_mapping = dma_fence_get(fence);
 733		mutex_unlock(&id_mgr->lock);
 734	}
 735	dma_fence_put(fence);
 736
 737	amdgpu_ring_patch_cond_exec(ring, patch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738
 739	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
 740	if (ring->funcs->emit_switch_buffer) {
 741		amdgpu_ring_emit_switch_buffer(ring);
 742		amdgpu_ring_emit_switch_buffer(ring);
 743	}
 744
 745	amdgpu_ring_ib_end(ring);
 746	return 0;
 747}
 748
 749/**
 750 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
 751 *
 752 * @vm: requested vm
 753 * @bo: requested buffer object
 754 *
 755 * Find @bo inside the requested vm.
 756 * Search inside the @bos vm list for the requested vm
 757 * Returns the found bo_va or NULL if none is found
 758 *
 759 * Object has to be reserved!
 760 *
 761 * Returns:
 762 * Found bo_va or NULL.
 763 */
 764struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
 765				       struct amdgpu_bo *bo)
 766{
 767	struct amdgpu_vm_bo_base *base;
 768
 769	for (base = bo->vm_bo; base; base = base->next) {
 770		if (base->vm != vm)
 771			continue;
 772
 773		return container_of(base, struct amdgpu_bo_va, base);
 774	}
 775	return NULL;
 776}
 777
 778/**
 779 * amdgpu_vm_map_gart - Resolve gart mapping of addr
 780 *
 781 * @pages_addr: optional DMA address to use for lookup
 782 * @addr: the unmapped addr
 783 *
 784 * Look up the physical address of the page that the pte resolves
 785 * to.
 786 *
 787 * Returns:
 788 * The pointer for the page table entry.
 789 */
 790uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
 791{
 792	uint64_t result;
 793
 794	/* page table offset */
 795	result = pages_addr[addr >> PAGE_SHIFT];
 796
 797	/* in case cpu page size != gpu page size*/
 798	result |= addr & (~PAGE_MASK);
 799
 800	result &= 0xFFFFFFFFFFFFF000ULL;
 801
 802	return result;
 803}
 804
 805/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806 * amdgpu_vm_update_pdes - make sure that all directories are valid
 807 *
 808 * @adev: amdgpu_device pointer
 809 * @vm: requested vm
 810 * @immediate: submit immediately to the paging queue
 811 *
 812 * Makes sure all directories are up to date.
 813 *
 814 * Returns:
 815 * 0 for success, error for failure.
 816 */
 817int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
 818			  struct amdgpu_vm *vm, bool immediate)
 819{
 820	struct amdgpu_vm_update_params params;
 821	struct amdgpu_vm_bo_base *entry;
 822	bool flush_tlb_needed = false;
 823	LIST_HEAD(relocated);
 824	int r, idx;
 825
 826	spin_lock(&vm->status_lock);
 827	list_splice_init(&vm->relocated, &relocated);
 828	spin_unlock(&vm->status_lock);
 829
 830	if (list_empty(&relocated))
 831		return 0;
 832
 833	if (!drm_dev_enter(adev_to_drm(adev), &idx))
 834		return -ENODEV;
 835
 836	memset(&params, 0, sizeof(params));
 837	params.adev = adev;
 838	params.vm = vm;
 839	params.immediate = immediate;
 840
 841	r = vm->update_funcs->prepare(&params, NULL);
 842	if (r)
 843		goto error;
 
 
 
 844
 845	list_for_each_entry(entry, &relocated, vm_status) {
 846		/* vm_flush_needed after updating moved PDEs */
 847		flush_tlb_needed |= entry->moved;
 
 848
 849		r = amdgpu_vm_pde_update(&params, entry);
 850		if (r)
 851			goto error;
 852	}
 853
 854	r = vm->update_funcs->commit(&params, &vm->last_update);
 855	if (r)
 856		goto error;
 857
 858	if (flush_tlb_needed)
 859		atomic64_inc(&vm->tlb_seq);
 860
 861	while (!list_empty(&relocated)) {
 862		entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base,
 863					 vm_status);
 864		amdgpu_vm_bo_idle(entry);
 865	}
 866
 867error:
 868	drm_dev_exit(idx);
 869	return r;
 870}
 871
 872/**
 873 * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence
 874 * @fence: unused
 875 * @cb: the callback structure
 876 *
 877 * Increments the tlb sequence to make sure that future CS execute a VM flush.
 878 */
 879static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence,
 880				 struct dma_fence_cb *cb)
 
 
 
 
 881{
 882	struct amdgpu_vm_tlb_seq_struct *tlb_cb;
 
 
 883
 884	tlb_cb = container_of(cb, typeof(*tlb_cb), cb);
 885	atomic64_inc(&tlb_cb->vm->tlb_seq);
 886	kfree(tlb_cb);
 
 
 
 
 
 
 
 887}
 888
 889/**
 890 * amdgpu_vm_tlb_flush - prepare TLB flush
 891 *
 892 * @params: parameters for update
 893 * @fence: input fence to sync TLB flush with
 894 * @tlb_cb: the callback structure
 
 
 
 895 *
 896 * Increments the tlb sequence to make sure that future CS execute a VM flush.
 897 */
 898static void
 899amdgpu_vm_tlb_flush(struct amdgpu_vm_update_params *params,
 900		    struct dma_fence **fence,
 901		    struct amdgpu_vm_tlb_seq_struct *tlb_cb)
 902{
 903	struct amdgpu_vm *vm = params->vm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 904
 905	tlb_cb->vm = vm;
 906	if (!fence || !*fence) {
 907		amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb);
 
 
 
 
 
 
 908		return;
 909	}
 910
 911	if (!dma_fence_add_callback(*fence, &tlb_cb->cb,
 912				    amdgpu_vm_tlb_seq_cb)) {
 913		dma_fence_put(vm->last_tlb_flush);
 914		vm->last_tlb_flush = dma_fence_get(*fence);
 
 915	} else {
 916		amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb);
 917	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918
 919	/* Prepare a TLB flush fence to be attached to PTs */
 920	if (!params->unlocked && vm->is_compute_context) {
 921		amdgpu_vm_tlb_fence_create(params->adev, vm, fence);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922
 923		/* Makes sure no PD/PT is freed before the flush */
 924		dma_resv_add_fence(vm->root.bo->tbo.base.resv, *fence,
 925				   DMA_RESV_USAGE_BOOKKEEP);
 
 926	}
 
 
 927}
 928
 929/**
 930 * amdgpu_vm_update_range - update a range in the vm page table
 931 *
 932 * @adev: amdgpu_device pointer to use for commands
 933 * @vm: the VM to update the range
 
 934 * @immediate: immediate submission in a page fault
 935 * @unlocked: unlocked invalidation during MM callback
 936 * @flush_tlb: trigger tlb invalidation after update completed
 937 * @allow_override: change MTYPE for local NUMA nodes
 938 * @sync: fences we need to sync to
 939 * @start: start of mapped range
 940 * @last: last mapped entry
 941 * @flags: flags for the entries
 942 * @offset: offset into nodes and pages_addr
 943 * @vram_base: base for vram mappings
 944 * @res: ttm_resource to map
 945 * @pages_addr: DMA addresses to use for mapping
 946 * @fence: optional resulting fence
 
 947 *
 948 * Fill in the page table entries between @start and @last.
 949 *
 950 * Returns:
 951 * 0 for success, negative erro code for failure.
 952 */
 953int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm,
 954			   bool immediate, bool unlocked, bool flush_tlb,
 955			   bool allow_override, struct amdgpu_sync *sync,
 956			   uint64_t start, uint64_t last, uint64_t flags,
 957			   uint64_t offset, uint64_t vram_base,
 958			   struct ttm_resource *res, dma_addr_t *pages_addr,
 959			   struct dma_fence **fence)
 
 
 
 960{
 961	struct amdgpu_vm_tlb_seq_struct *tlb_cb;
 962	struct amdgpu_vm_update_params params;
 963	struct amdgpu_res_cursor cursor;
 
 964	int r, idx;
 965
 966	if (!drm_dev_enter(adev_to_drm(adev), &idx))
 967		return -ENODEV;
 968
 969	tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL);
 970	if (!tlb_cb) {
 971		drm_dev_exit(idx);
 972		return -ENOMEM;
 973	}
 974
 975	/* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache,
 976	 * heavy-weight flush TLB unconditionally.
 977	 */
 978	flush_tlb |= adev->gmc.xgmi.num_physical_nodes &&
 979		     amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 0);
 980
 981	/*
 982	 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB
 983	 */
 984	flush_tlb |= amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 0);
 985
 986	memset(&params, 0, sizeof(params));
 987	params.adev = adev;
 988	params.vm = vm;
 989	params.immediate = immediate;
 990	params.pages_addr = pages_addr;
 991	params.unlocked = unlocked;
 992	params.needs_flush = flush_tlb;
 993	params.allow_override = allow_override;
 994	INIT_LIST_HEAD(&params.tlb_flush_waitlist);
 
 
 
 
 
 995
 996	amdgpu_vm_eviction_lock(vm);
 997	if (vm->evicting) {
 998		r = -EBUSY;
 999		goto error_free;
1000	}
1001
1002	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1003		struct dma_fence *tmp = dma_fence_get_stub();
1004
1005		amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true);
1006		swap(vm->last_unlocked, tmp);
1007		dma_fence_put(tmp);
1008	}
1009
1010	r = vm->update_funcs->prepare(&params, sync);
1011	if (r)
1012		goto error_free;
1013
1014	amdgpu_res_first(pages_addr ? NULL : res, offset,
1015			 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
1016	while (cursor.remaining) {
1017		uint64_t tmp, num_entries, addr;
1018
1019		num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
1020		if (pages_addr) {
1021			bool contiguous = true;
1022
1023			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1024				uint64_t pfn = cursor.start >> PAGE_SHIFT;
1025				uint64_t count;
1026
1027				contiguous = pages_addr[pfn + 1] ==
1028					pages_addr[pfn] + PAGE_SIZE;
1029
1030				tmp = num_entries /
1031					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1032				for (count = 2; count < tmp; ++count) {
1033					uint64_t idx = pfn + count;
1034
1035					if (contiguous != (pages_addr[idx] ==
1036					    pages_addr[idx - 1] + PAGE_SIZE))
1037						break;
1038				}
1039				if (!contiguous)
1040					count--;
1041				num_entries = count *
1042					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1043			}
1044
1045			if (!contiguous) {
1046				addr = cursor.start;
1047				params.pages_addr = pages_addr;
1048			} else {
1049				addr = pages_addr[cursor.start >> PAGE_SHIFT];
1050				params.pages_addr = NULL;
1051			}
1052
1053		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT_FLAG(adev))) {
1054			addr = vram_base + cursor.start;
 
1055		} else {
1056			addr = 0;
1057		}
1058
1059		tmp = start + num_entries;
1060		r = amdgpu_vm_ptes_update(&params, start, tmp, addr, flags);
1061		if (r)
1062			goto error_free;
1063
1064		amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
1065		start = tmp;
1066	}
1067
1068	r = vm->update_funcs->commit(&params, fence);
1069	if (r)
1070		goto error_free;
1071
1072	if (params.needs_flush) {
1073		amdgpu_vm_tlb_flush(&params, fence, tlb_cb);
1074		tlb_cb = NULL;
1075	}
1076
1077	amdgpu_vm_pt_free_list(adev, &params);
 
1078
1079error_free:
1080	kfree(tlb_cb);
1081	amdgpu_vm_eviction_unlock(vm);
1082	drm_dev_exit(idx);
1083	return r;
1084}
1085
1086static void amdgpu_vm_bo_get_memory(struct amdgpu_bo_va *bo_va,
1087				    struct amdgpu_mem_stats *stats,
1088				    unsigned int size)
1089{
1090	struct amdgpu_vm *vm = bo_va->base.vm;
1091	struct amdgpu_bo *bo = bo_va->base.bo;
1092
1093	if (!bo)
1094		return;
1095
1096	/*
1097	 * For now ignore BOs which are currently locked and potentially
1098	 * changing their location.
1099	 */
1100	if (!amdgpu_vm_is_bo_always_valid(vm, bo) &&
1101	    !dma_resv_trylock(bo->tbo.base.resv))
1102		return;
1103
1104	amdgpu_bo_get_memory(bo, stats, size);
1105	if (!amdgpu_vm_is_bo_always_valid(vm, bo))
1106		dma_resv_unlock(bo->tbo.base.resv);
1107}
1108
1109void amdgpu_vm_get_memory(struct amdgpu_vm *vm,
1110			  struct amdgpu_mem_stats *stats,
1111			  unsigned int size)
1112{
1113	struct amdgpu_bo_va *bo_va, *tmp;
1114
1115	spin_lock(&vm->status_lock);
1116	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status)
1117		amdgpu_vm_bo_get_memory(bo_va, stats, size);
1118
1119	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status)
1120		amdgpu_vm_bo_get_memory(bo_va, stats, size);
1121
1122	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status)
1123		amdgpu_vm_bo_get_memory(bo_va, stats, size);
1124
1125	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status)
1126		amdgpu_vm_bo_get_memory(bo_va, stats, size);
1127
1128	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status)
1129		amdgpu_vm_bo_get_memory(bo_va, stats, size);
1130
1131	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status)
1132		amdgpu_vm_bo_get_memory(bo_va, stats, size);
1133	spin_unlock(&vm->status_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1134}
1135
1136/**
1137 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1138 *
1139 * @adev: amdgpu_device pointer
1140 * @bo_va: requested BO and VM object
1141 * @clear: if true clear the entries
1142 *
1143 * Fill in the page table entries for @bo_va.
1144 *
1145 * Returns:
1146 * 0 for success, -EINVAL for failure.
1147 */
1148int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1149			bool clear)
1150{
1151	struct amdgpu_bo *bo = bo_va->base.bo;
1152	struct amdgpu_vm *vm = bo_va->base.vm;
1153	struct amdgpu_bo_va_mapping *mapping;
1154	struct dma_fence **last_update;
1155	dma_addr_t *pages_addr = NULL;
1156	struct ttm_resource *mem;
1157	struct amdgpu_sync sync;
1158	bool flush_tlb = clear;
1159	uint64_t vram_base;
1160	uint64_t flags;
1161	bool uncached;
1162	int r;
1163
1164	amdgpu_sync_create(&sync);
1165	if (clear) {
1166		mem = NULL;
1167
1168		/* Implicitly sync to command submissions in the same VM before
1169		 * unmapping.
1170		 */
1171		r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv,
1172				     AMDGPU_SYNC_EQ_OWNER, vm);
1173		if (r)
1174			goto error_free;
1175		if (bo) {
1176			r = amdgpu_sync_kfd(&sync, bo->tbo.base.resv);
1177			if (r)
1178				goto error_free;
1179		}
1180	} else if (!bo) {
1181		mem = NULL;
1182
1183		/* PRT map operations don't need to sync to anything. */
1184
1185	} else {
1186		struct drm_gem_object *obj = &bo->tbo.base;
1187
 
1188		if (obj->import_attach && bo_va->is_xgmi) {
1189			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1190			struct drm_gem_object *gobj = dma_buf->priv;
1191			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1192
1193			if (abo->tbo.resource &&
1194			    abo->tbo.resource->mem_type == TTM_PL_VRAM)
1195				bo = gem_to_amdgpu_bo(gobj);
1196		}
1197		mem = bo->tbo.resource;
1198		if (mem && (mem->mem_type == TTM_PL_TT ||
1199			    mem->mem_type == AMDGPU_PL_PREEMPT))
1200			pages_addr = bo->tbo.ttm->dma_address;
1201
1202		/* Implicitly sync to moving fences before mapping anything */
1203		r = amdgpu_sync_resv(adev, &sync, bo->tbo.base.resv,
1204				     AMDGPU_SYNC_EXPLICIT, vm);
1205		if (r)
1206			goto error_free;
1207	}
1208
1209	if (bo) {
1210		struct amdgpu_device *bo_adev;
1211
1212		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1213
1214		if (amdgpu_bo_encrypted(bo))
1215			flags |= AMDGPU_PTE_TMZ;
1216
1217		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1218		vram_base = bo_adev->vm_manager.vram_base_offset;
1219		uncached = (bo->flags & AMDGPU_GEM_CREATE_UNCACHED) != 0;
1220	} else {
1221		flags = 0x0;
1222		vram_base = 0;
1223		uncached = false;
1224	}
1225
1226	if (clear || amdgpu_vm_is_bo_always_valid(vm, bo))
 
1227		last_update = &vm->last_update;
1228	else
1229		last_update = &bo_va->last_pt_update;
1230
1231	if (!clear && bo_va->base.moved) {
1232		flush_tlb = true;
1233		list_splice_init(&bo_va->valids, &bo_va->invalids);
1234
1235	} else if (bo_va->cleared != clear) {
1236		list_splice_init(&bo_va->valids, &bo_va->invalids);
1237	}
1238
1239	list_for_each_entry(mapping, &bo_va->invalids, list) {
1240		uint64_t update_flags = flags;
1241
1242		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1243		 * but in case of something, we filter the flags in first place
1244		 */
1245		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1246			update_flags &= ~AMDGPU_PTE_READABLE;
1247		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1248			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1249
1250		/* Apply ASIC specific mapping flags */
1251		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1252
1253		trace_amdgpu_vm_bo_update(mapping);
1254
1255		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb,
1256					   !uncached, &sync, mapping->start,
1257					   mapping->last, update_flags,
1258					   mapping->offset, vram_base, mem,
1259					   pages_addr, last_update);
1260		if (r)
1261			goto error_free;
1262	}
1263
1264	/* If the BO is not in its preferred location add it back to
1265	 * the evicted list so that it gets validated again on the
1266	 * next command submission.
1267	 */
1268	if (amdgpu_vm_is_bo_always_valid(vm, bo)) {
1269		if (bo->tbo.resource &&
1270		    !(bo->preferred_domains &
1271		      amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)))
 
1272			amdgpu_vm_bo_evicted(&bo_va->base);
1273		else
1274			amdgpu_vm_bo_idle(&bo_va->base);
1275	} else {
1276		amdgpu_vm_bo_done(&bo_va->base);
1277	}
1278
1279	list_splice_init(&bo_va->invalids, &bo_va->valids);
1280	bo_va->cleared = clear;
1281	bo_va->base.moved = false;
1282
1283	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1284		list_for_each_entry(mapping, &bo_va->valids, list)
1285			trace_amdgpu_vm_bo_mapping(mapping);
1286	}
1287
1288error_free:
1289	amdgpu_sync_free(&sync);
1290	return r;
1291}
1292
1293/**
1294 * amdgpu_vm_update_prt_state - update the global PRT state
1295 *
1296 * @adev: amdgpu_device pointer
1297 */
1298static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1299{
1300	unsigned long flags;
1301	bool enable;
1302
1303	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1304	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1305	adev->gmc.gmc_funcs->set_prt(adev, enable);
1306	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1307}
1308
1309/**
1310 * amdgpu_vm_prt_get - add a PRT user
1311 *
1312 * @adev: amdgpu_device pointer
1313 */
1314static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1315{
1316	if (!adev->gmc.gmc_funcs->set_prt)
1317		return;
1318
1319	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1320		amdgpu_vm_update_prt_state(adev);
1321}
1322
1323/**
1324 * amdgpu_vm_prt_put - drop a PRT user
1325 *
1326 * @adev: amdgpu_device pointer
1327 */
1328static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1329{
1330	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1331		amdgpu_vm_update_prt_state(adev);
1332}
1333
1334/**
1335 * amdgpu_vm_prt_cb - callback for updating the PRT status
1336 *
1337 * @fence: fence for the callback
1338 * @_cb: the callback function
1339 */
1340static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1341{
1342	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1343
1344	amdgpu_vm_prt_put(cb->adev);
1345	kfree(cb);
1346}
1347
1348/**
1349 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1350 *
1351 * @adev: amdgpu_device pointer
1352 * @fence: fence for the callback
1353 */
1354static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1355				 struct dma_fence *fence)
1356{
1357	struct amdgpu_prt_cb *cb;
1358
1359	if (!adev->gmc.gmc_funcs->set_prt)
1360		return;
1361
1362	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1363	if (!cb) {
1364		/* Last resort when we are OOM */
1365		if (fence)
1366			dma_fence_wait(fence, false);
1367
1368		amdgpu_vm_prt_put(adev);
1369	} else {
1370		cb->adev = adev;
1371		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1372						     amdgpu_vm_prt_cb))
1373			amdgpu_vm_prt_cb(fence, &cb->cb);
1374	}
1375}
1376
1377/**
1378 * amdgpu_vm_free_mapping - free a mapping
1379 *
1380 * @adev: amdgpu_device pointer
1381 * @vm: requested vm
1382 * @mapping: mapping to be freed
1383 * @fence: fence of the unmap operation
1384 *
1385 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1386 */
1387static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1388				   struct amdgpu_vm *vm,
1389				   struct amdgpu_bo_va_mapping *mapping,
1390				   struct dma_fence *fence)
1391{
1392	if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev))
1393		amdgpu_vm_add_prt_cb(adev, fence);
1394	kfree(mapping);
1395}
1396
1397/**
1398 * amdgpu_vm_prt_fini - finish all prt mappings
1399 *
1400 * @adev: amdgpu_device pointer
1401 * @vm: requested vm
1402 *
1403 * Register a cleanup callback to disable PRT support after VM dies.
1404 */
1405static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1406{
1407	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
1408	struct dma_resv_iter cursor;
1409	struct dma_fence *fence;
 
 
 
 
 
 
 
 
 
 
 
1410
1411	dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) {
1412		/* Add a callback for each fence in the reservation object */
 
 
 
1413		amdgpu_vm_prt_get(adev);
1414		amdgpu_vm_add_prt_cb(adev, fence);
1415	}
 
 
1416}
1417
1418/**
1419 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1420 *
1421 * @adev: amdgpu_device pointer
1422 * @vm: requested vm
1423 * @fence: optional resulting fence (unchanged if no work needed to be done
1424 * or if an error occurred)
1425 *
1426 * Make sure all freed BOs are cleared in the PT.
1427 * PTs have to be reserved and mutex must be locked!
1428 *
1429 * Returns:
1430 * 0 for success.
1431 *
1432 */
1433int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1434			  struct amdgpu_vm *vm,
1435			  struct dma_fence **fence)
1436{
 
1437	struct amdgpu_bo_va_mapping *mapping;
 
1438	struct dma_fence *f = NULL;
1439	struct amdgpu_sync sync;
1440	int r;
1441
1442
1443	/*
1444	 * Implicitly sync to command submissions in the same VM before
1445	 * unmapping.
1446	 */
1447	amdgpu_sync_create(&sync);
1448	r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv,
1449			     AMDGPU_SYNC_EQ_OWNER, vm);
1450	if (r)
1451		goto error_free;
1452
1453	while (!list_empty(&vm->freed)) {
1454		mapping = list_first_entry(&vm->freed,
1455			struct amdgpu_bo_va_mapping, list);
1456		list_del(&mapping->list);
1457
1458		r = amdgpu_vm_update_range(adev, vm, false, false, true, false,
1459					   &sync, mapping->start, mapping->last,
1460					   0, 0, 0, NULL, NULL, &f);
 
 
 
 
 
1461		amdgpu_vm_free_mapping(adev, vm, mapping, f);
1462		if (r) {
1463			dma_fence_put(f);
1464			goto error_free;
1465		}
1466	}
1467
1468	if (fence && f) {
1469		dma_fence_put(*fence);
1470		*fence = f;
1471	} else {
1472		dma_fence_put(f);
1473	}
1474
1475error_free:
1476	amdgpu_sync_free(&sync);
1477	return r;
1478
1479}
1480
1481/**
1482 * amdgpu_vm_handle_moved - handle moved BOs in the PT
1483 *
1484 * @adev: amdgpu_device pointer
1485 * @vm: requested vm
1486 * @ticket: optional reservation ticket used to reserve the VM
1487 *
1488 * Make sure all BOs which are moved are updated in the PTs.
1489 *
1490 * Returns:
1491 * 0 for success.
1492 *
1493 * PTs have to be reserved!
1494 */
1495int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
1496			   struct amdgpu_vm *vm,
1497			   struct ww_acquire_ctx *ticket)
1498{
1499	struct amdgpu_bo_va *bo_va;
1500	struct dma_resv *resv;
1501	bool clear, unlock;
1502	int r;
1503
1504	spin_lock(&vm->status_lock);
1505	while (!list_empty(&vm->moved)) {
1506		bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va,
1507					 base.vm_status);
1508		spin_unlock(&vm->status_lock);
1509
1510		/* Per VM BOs never need to bo cleared in the page tables */
1511		r = amdgpu_vm_bo_update(adev, bo_va, false);
1512		if (r)
1513			return r;
1514		spin_lock(&vm->status_lock);
1515	}
1516
 
1517	while (!list_empty(&vm->invalidated)) {
1518		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
1519					 base.vm_status);
1520		resv = bo_va->base.bo->tbo.base.resv;
1521		spin_unlock(&vm->status_lock);
1522
1523		/* Try to reserve the BO to avoid clearing its ptes */
1524		if (!adev->debug_vm && dma_resv_trylock(resv)) {
1525			clear = false;
1526			unlock = true;
1527		/* The caller is already holding the reservation lock */
1528		} else if (ticket && dma_resv_locking_ctx(resv) == ticket) {
1529			clear = false;
1530			unlock = false;
1531		/* Somebody else is using the BO right now */
1532		} else {
1533			clear = true;
1534			unlock = false;
1535		}
1536
1537		r = amdgpu_vm_bo_update(adev, bo_va, clear);
1538
1539		if (unlock)
1540			dma_resv_unlock(resv);
1541		if (r)
1542			return r;
1543
1544		/* Remember evicted DMABuf imports in compute VMs for later
1545		 * validation
1546		 */
1547		if (vm->is_compute_context &&
1548		    bo_va->base.bo->tbo.base.import_attach &&
1549		    (!bo_va->base.bo->tbo.resource ||
1550		     bo_va->base.bo->tbo.resource->mem_type == TTM_PL_SYSTEM))
1551			amdgpu_vm_bo_evicted_user(&bo_va->base);
1552
1553		spin_lock(&vm->status_lock);
1554	}
1555	spin_unlock(&vm->status_lock);
1556
1557	return 0;
1558}
1559
1560/**
1561 * amdgpu_vm_flush_compute_tlb - Flush TLB on compute VM
1562 *
1563 * @adev: amdgpu_device pointer
1564 * @vm: requested vm
1565 * @flush_type: flush type
1566 * @xcc_mask: mask of XCCs that belong to the compute partition in need of a TLB flush.
1567 *
1568 * Flush TLB if needed for a compute VM.
1569 *
1570 * Returns:
1571 * 0 for success.
1572 */
1573int amdgpu_vm_flush_compute_tlb(struct amdgpu_device *adev,
1574				struct amdgpu_vm *vm,
1575				uint32_t flush_type,
1576				uint32_t xcc_mask)
1577{
1578	uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm);
1579	bool all_hub = false;
1580	int xcc = 0, r = 0;
1581
1582	WARN_ON_ONCE(!vm->is_compute_context);
1583
1584	/*
1585	 * It can be that we race and lose here, but that is extremely unlikely
1586	 * and the worst thing which could happen is that we flush the changes
1587	 * into the TLB once more which is harmless.
1588	 */
1589	if (atomic64_xchg(&vm->kfd_last_flushed_seq, tlb_seq) == tlb_seq)
1590		return 0;
1591
1592	if (adev->family == AMDGPU_FAMILY_AI ||
1593	    adev->family == AMDGPU_FAMILY_RV)
1594		all_hub = true;
1595
1596	for_each_inst(xcc, xcc_mask) {
1597		r = amdgpu_gmc_flush_gpu_tlb_pasid(adev, vm->pasid, flush_type,
1598						   all_hub, xcc);
1599		if (r)
1600			break;
1601	}
1602	return r;
1603}
1604
1605/**
1606 * amdgpu_vm_bo_add - add a bo to a specific vm
1607 *
1608 * @adev: amdgpu_device pointer
1609 * @vm: requested vm
1610 * @bo: amdgpu buffer object
1611 *
1612 * Add @bo into the requested vm.
1613 * Add @bo to the list of bos associated with the vm
1614 *
1615 * Returns:
1616 * Newly added bo_va or NULL for failure
1617 *
1618 * Object has to be reserved!
1619 */
1620struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1621				      struct amdgpu_vm *vm,
1622				      struct amdgpu_bo *bo)
1623{
1624	struct amdgpu_bo_va *bo_va;
1625
1626	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1627	if (bo_va == NULL) {
1628		return NULL;
1629	}
1630	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
1631
1632	bo_va->ref_count = 1;
1633	bo_va->last_pt_update = dma_fence_get_stub();
1634	INIT_LIST_HEAD(&bo_va->valids);
1635	INIT_LIST_HEAD(&bo_va->invalids);
1636
1637	if (!bo)
1638		return bo_va;
1639
1640	dma_resv_assert_held(bo->tbo.base.resv);
1641	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
1642		bo_va->is_xgmi = true;
1643		/* Power up XGMI if it can be potentially used */
1644		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
1645	}
1646
1647	return bo_va;
1648}
1649
1650
1651/**
1652 * amdgpu_vm_bo_insert_map - insert a new mapping
1653 *
1654 * @adev: amdgpu_device pointer
1655 * @bo_va: bo_va to store the address
1656 * @mapping: the mapping to insert
1657 *
1658 * Insert a new mapping into all structures.
1659 */
1660static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
1661				    struct amdgpu_bo_va *bo_va,
1662				    struct amdgpu_bo_va_mapping *mapping)
1663{
1664	struct amdgpu_vm *vm = bo_va->base.vm;
1665	struct amdgpu_bo *bo = bo_va->base.bo;
1666
1667	mapping->bo_va = bo_va;
1668	list_add(&mapping->list, &bo_va->invalids);
1669	amdgpu_vm_it_insert(mapping, &vm->va);
1670
1671	if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev))
1672		amdgpu_vm_prt_get(adev);
1673
1674	if (amdgpu_vm_is_bo_always_valid(vm, bo) && !bo_va->base.moved)
1675		amdgpu_vm_bo_moved(&bo_va->base);
1676
 
1677	trace_amdgpu_vm_bo_map(bo_va, mapping);
1678}
1679
1680/* Validate operation parameters to prevent potential abuse */
1681static int amdgpu_vm_verify_parameters(struct amdgpu_device *adev,
1682					  struct amdgpu_bo *bo,
1683					  uint64_t saddr,
1684					  uint64_t offset,
1685					  uint64_t size)
1686{
1687	uint64_t tmp, lpfn;
1688
1689	if (saddr & AMDGPU_GPU_PAGE_MASK
1690	    || offset & AMDGPU_GPU_PAGE_MASK
1691	    || size & AMDGPU_GPU_PAGE_MASK)
1692		return -EINVAL;
1693
1694	if (check_add_overflow(saddr, size, &tmp)
1695	    || check_add_overflow(offset, size, &tmp)
1696	    || size == 0 /* which also leads to end < begin */)
1697		return -EINVAL;
1698
1699	/* make sure object fit at this offset */
1700	if (bo && offset + size > amdgpu_bo_size(bo))
1701		return -EINVAL;
1702
1703	/* Ensure last pfn not exceed max_pfn */
1704	lpfn = (saddr + size - 1) >> AMDGPU_GPU_PAGE_SHIFT;
1705	if (lpfn >= adev->vm_manager.max_pfn)
1706		return -EINVAL;
1707
1708	return 0;
1709}
1710
1711/**
1712 * amdgpu_vm_bo_map - map bo inside a vm
1713 *
1714 * @adev: amdgpu_device pointer
1715 * @bo_va: bo_va to store the address
1716 * @saddr: where to map the BO
1717 * @offset: requested offset in the BO
1718 * @size: BO size in bytes
1719 * @flags: attributes of pages (read/write/valid/etc.)
1720 *
1721 * Add a mapping of the BO at the specefied addr into the VM.
1722 *
1723 * Returns:
1724 * 0 for success, error for failure.
1725 *
1726 * Object has to be reserved and unreserved outside!
1727 */
1728int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1729		     struct amdgpu_bo_va *bo_va,
1730		     uint64_t saddr, uint64_t offset,
1731		     uint64_t size, uint64_t flags)
1732{
1733	struct amdgpu_bo_va_mapping *mapping, *tmp;
1734	struct amdgpu_bo *bo = bo_va->base.bo;
1735	struct amdgpu_vm *vm = bo_va->base.vm;
1736	uint64_t eaddr;
1737	int r;
1738
1739	r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size);
1740	if (r)
1741		return r;
 
 
 
 
 
 
 
 
1742
1743	saddr /= AMDGPU_GPU_PAGE_SIZE;
1744	eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE;
1745
1746	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1747	if (tmp) {
1748		/* bo and tmp overlap, invalid addr */
1749		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1750			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
1751			tmp->start, tmp->last + 1);
1752		return -EINVAL;
1753	}
1754
1755	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1756	if (!mapping)
1757		return -ENOMEM;
1758
1759	mapping->start = saddr;
1760	mapping->last = eaddr;
1761	mapping->offset = offset;
1762	mapping->flags = flags;
1763
1764	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1765
1766	return 0;
1767}
1768
1769/**
1770 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
1771 *
1772 * @adev: amdgpu_device pointer
1773 * @bo_va: bo_va to store the address
1774 * @saddr: where to map the BO
1775 * @offset: requested offset in the BO
1776 * @size: BO size in bytes
1777 * @flags: attributes of pages (read/write/valid/etc.)
1778 *
1779 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
1780 * mappings as we do so.
1781 *
1782 * Returns:
1783 * 0 for success, error for failure.
1784 *
1785 * Object has to be reserved and unreserved outside!
1786 */
1787int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
1788			     struct amdgpu_bo_va *bo_va,
1789			     uint64_t saddr, uint64_t offset,
1790			     uint64_t size, uint64_t flags)
1791{
1792	struct amdgpu_bo_va_mapping *mapping;
1793	struct amdgpu_bo *bo = bo_va->base.bo;
1794	uint64_t eaddr;
1795	int r;
1796
1797	r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size);
1798	if (r)
1799		return r;
 
 
 
 
 
 
 
 
1800
1801	/* Allocate all the needed memory */
1802	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1803	if (!mapping)
1804		return -ENOMEM;
1805
1806	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
1807	if (r) {
1808		kfree(mapping);
1809		return r;
1810	}
1811
1812	saddr /= AMDGPU_GPU_PAGE_SIZE;
1813	eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE;
1814
1815	mapping->start = saddr;
1816	mapping->last = eaddr;
1817	mapping->offset = offset;
1818	mapping->flags = flags;
1819
1820	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1821
1822	return 0;
1823}
1824
1825/**
1826 * amdgpu_vm_bo_unmap - remove bo mapping from vm
1827 *
1828 * @adev: amdgpu_device pointer
1829 * @bo_va: bo_va to remove the address from
1830 * @saddr: where to the BO is mapped
1831 *
1832 * Remove a mapping of the BO at the specefied addr from the VM.
1833 *
1834 * Returns:
1835 * 0 for success, error for failure.
1836 *
1837 * Object has to be reserved and unreserved outside!
1838 */
1839int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1840		       struct amdgpu_bo_va *bo_va,
1841		       uint64_t saddr)
1842{
1843	struct amdgpu_bo_va_mapping *mapping;
1844	struct amdgpu_vm *vm = bo_va->base.vm;
1845	bool valid = true;
1846
1847	saddr /= AMDGPU_GPU_PAGE_SIZE;
1848
1849	list_for_each_entry(mapping, &bo_va->valids, list) {
1850		if (mapping->start == saddr)
1851			break;
1852	}
1853
1854	if (&mapping->list == &bo_va->valids) {
1855		valid = false;
1856
1857		list_for_each_entry(mapping, &bo_va->invalids, list) {
1858			if (mapping->start == saddr)
1859				break;
1860		}
1861
1862		if (&mapping->list == &bo_va->invalids)
1863			return -ENOENT;
1864	}
1865
1866	list_del(&mapping->list);
1867	amdgpu_vm_it_remove(mapping, &vm->va);
1868	mapping->bo_va = NULL;
1869	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1870
1871	if (valid)
1872		list_add(&mapping->list, &vm->freed);
1873	else
1874		amdgpu_vm_free_mapping(adev, vm, mapping,
1875				       bo_va->last_pt_update);
1876
1877	return 0;
1878}
1879
1880/**
1881 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
1882 *
1883 * @adev: amdgpu_device pointer
1884 * @vm: VM structure to use
1885 * @saddr: start of the range
1886 * @size: size of the range
1887 *
1888 * Remove all mappings in a range, split them as appropriate.
1889 *
1890 * Returns:
1891 * 0 for success, error for failure.
1892 */
1893int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
1894				struct amdgpu_vm *vm,
1895				uint64_t saddr, uint64_t size)
1896{
1897	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
1898	LIST_HEAD(removed);
1899	uint64_t eaddr;
1900	int r;
1901
1902	r = amdgpu_vm_verify_parameters(adev, NULL, saddr, 0, size);
1903	if (r)
1904		return r;
1905
 
1906	saddr /= AMDGPU_GPU_PAGE_SIZE;
1907	eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE;
1908
1909	/* Allocate all the needed memory */
1910	before = kzalloc(sizeof(*before), GFP_KERNEL);
1911	if (!before)
1912		return -ENOMEM;
1913	INIT_LIST_HEAD(&before->list);
1914
1915	after = kzalloc(sizeof(*after), GFP_KERNEL);
1916	if (!after) {
1917		kfree(before);
1918		return -ENOMEM;
1919	}
1920	INIT_LIST_HEAD(&after->list);
1921
1922	/* Now gather all removed mappings */
1923	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1924	while (tmp) {
1925		/* Remember mapping split at the start */
1926		if (tmp->start < saddr) {
1927			before->start = tmp->start;
1928			before->last = saddr - 1;
1929			before->offset = tmp->offset;
1930			before->flags = tmp->flags;
1931			before->bo_va = tmp->bo_va;
1932			list_add(&before->list, &tmp->bo_va->invalids);
1933		}
1934
1935		/* Remember mapping split at the end */
1936		if (tmp->last > eaddr) {
1937			after->start = eaddr + 1;
1938			after->last = tmp->last;
1939			after->offset = tmp->offset;
1940			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
1941			after->flags = tmp->flags;
1942			after->bo_va = tmp->bo_va;
1943			list_add(&after->list, &tmp->bo_va->invalids);
1944		}
1945
1946		list_del(&tmp->list);
1947		list_add(&tmp->list, &removed);
1948
1949		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
1950	}
1951
1952	/* And free them up */
1953	list_for_each_entry_safe(tmp, next, &removed, list) {
1954		amdgpu_vm_it_remove(tmp, &vm->va);
1955		list_del(&tmp->list);
1956
1957		if (tmp->start < saddr)
1958		    tmp->start = saddr;
1959		if (tmp->last > eaddr)
1960		    tmp->last = eaddr;
1961
1962		tmp->bo_va = NULL;
1963		list_add(&tmp->list, &vm->freed);
1964		trace_amdgpu_vm_bo_unmap(NULL, tmp);
1965	}
1966
1967	/* Insert partial mapping before the range */
1968	if (!list_empty(&before->list)) {
1969		struct amdgpu_bo *bo = before->bo_va->base.bo;
1970
1971		amdgpu_vm_it_insert(before, &vm->va);
1972		if (before->flags & AMDGPU_PTE_PRT_FLAG(adev))
1973			amdgpu_vm_prt_get(adev);
1974
1975		if (amdgpu_vm_is_bo_always_valid(vm, bo) &&
1976		    !before->bo_va->base.moved)
1977			amdgpu_vm_bo_moved(&before->bo_va->base);
1978	} else {
1979		kfree(before);
1980	}
1981
1982	/* Insert partial mapping after the range */
1983	if (!list_empty(&after->list)) {
1984		struct amdgpu_bo *bo = after->bo_va->base.bo;
1985
1986		amdgpu_vm_it_insert(after, &vm->va);
1987		if (after->flags & AMDGPU_PTE_PRT_FLAG(adev))
1988			amdgpu_vm_prt_get(adev);
1989
1990		if (amdgpu_vm_is_bo_always_valid(vm, bo) &&
1991		    !after->bo_va->base.moved)
1992			amdgpu_vm_bo_moved(&after->bo_va->base);
1993	} else {
1994		kfree(after);
1995	}
1996
1997	return 0;
1998}
1999
2000/**
2001 * amdgpu_vm_bo_lookup_mapping - find mapping by address
2002 *
2003 * @vm: the requested VM
2004 * @addr: the address
2005 *
2006 * Find a mapping by it's address.
2007 *
2008 * Returns:
2009 * The amdgpu_bo_va_mapping matching for addr or NULL
2010 *
2011 */
2012struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2013							 uint64_t addr)
2014{
2015	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2016}
2017
2018/**
2019 * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2020 *
2021 * @vm: the requested vm
2022 * @ticket: CS ticket
2023 *
2024 * Trace all mappings of BOs reserved during a command submission.
2025 */
2026void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2027{
2028	struct amdgpu_bo_va_mapping *mapping;
2029
2030	if (!trace_amdgpu_vm_bo_cs_enabled())
2031		return;
2032
2033	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2034	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2035		if (mapping->bo_va && mapping->bo_va->base.bo) {
2036			struct amdgpu_bo *bo;
2037
2038			bo = mapping->bo_va->base.bo;
2039			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2040			    ticket)
2041				continue;
2042		}
2043
2044		trace_amdgpu_vm_bo_cs(mapping);
2045	}
2046}
2047
2048/**
2049 * amdgpu_vm_bo_del - remove a bo from a specific vm
2050 *
2051 * @adev: amdgpu_device pointer
2052 * @bo_va: requested bo_va
2053 *
2054 * Remove @bo_va->bo from the requested vm.
2055 *
2056 * Object have to be reserved!
2057 */
2058void amdgpu_vm_bo_del(struct amdgpu_device *adev,
2059		      struct amdgpu_bo_va *bo_va)
2060{
2061	struct amdgpu_bo_va_mapping *mapping, *next;
2062	struct amdgpu_bo *bo = bo_va->base.bo;
2063	struct amdgpu_vm *vm = bo_va->base.vm;
2064	struct amdgpu_vm_bo_base **base;
2065
2066	dma_resv_assert_held(vm->root.bo->tbo.base.resv);
2067
2068	if (bo) {
2069		dma_resv_assert_held(bo->tbo.base.resv);
2070		if (amdgpu_vm_is_bo_always_valid(vm, bo))
2071			ttm_bo_set_bulk_move(&bo->tbo, NULL);
2072
2073		for (base = &bo_va->base.bo->vm_bo; *base;
2074		     base = &(*base)->next) {
2075			if (*base != &bo_va->base)
2076				continue;
2077
2078			*base = bo_va->base.next;
2079			break;
2080		}
2081	}
2082
2083	spin_lock(&vm->status_lock);
2084	list_del(&bo_va->base.vm_status);
2085	spin_unlock(&vm->status_lock);
2086
2087	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2088		list_del(&mapping->list);
2089		amdgpu_vm_it_remove(mapping, &vm->va);
2090		mapping->bo_va = NULL;
2091		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2092		list_add(&mapping->list, &vm->freed);
2093	}
2094	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2095		list_del(&mapping->list);
2096		amdgpu_vm_it_remove(mapping, &vm->va);
2097		amdgpu_vm_free_mapping(adev, vm, mapping,
2098				       bo_va->last_pt_update);
2099	}
2100
2101	dma_fence_put(bo_va->last_pt_update);
2102
2103	if (bo && bo_va->is_xgmi)
2104		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2105
2106	kfree(bo_va);
2107}
2108
2109/**
2110 * amdgpu_vm_evictable - check if we can evict a VM
2111 *
2112 * @bo: A page table of the VM.
2113 *
2114 * Check if it is possible to evict a VM.
2115 */
2116bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2117{
2118	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2119
2120	/* Page tables of a destroyed VM can go away immediately */
2121	if (!bo_base || !bo_base->vm)
2122		return true;
2123
2124	/* Don't evict VM page tables while they are busy */
2125	if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP))
2126		return false;
2127
2128	/* Try to block ongoing updates */
2129	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2130		return false;
2131
2132	/* Don't evict VM page tables while they are updated */
2133	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2134		amdgpu_vm_eviction_unlock(bo_base->vm);
2135		return false;
2136	}
2137
2138	bo_base->vm->evicting = true;
2139	amdgpu_vm_eviction_unlock(bo_base->vm);
2140	return true;
2141}
2142
2143/**
2144 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2145 *
2146 * @adev: amdgpu_device pointer
2147 * @bo: amdgpu buffer object
2148 * @evicted: is the BO evicted
2149 *
2150 * Mark @bo as invalid.
2151 */
2152void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2153			     struct amdgpu_bo *bo, bool evicted)
2154{
2155	struct amdgpu_vm_bo_base *bo_base;
2156
 
 
 
 
2157	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2158		struct amdgpu_vm *vm = bo_base->vm;
2159
2160		if (evicted && amdgpu_vm_is_bo_always_valid(vm, bo)) {
2161			amdgpu_vm_bo_evicted(bo_base);
2162			continue;
2163		}
2164
2165		if (bo_base->moved)
2166			continue;
2167		bo_base->moved = true;
2168
2169		if (bo->tbo.type == ttm_bo_type_kernel)
2170			amdgpu_vm_bo_relocated(bo_base);
2171		else if (amdgpu_vm_is_bo_always_valid(vm, bo))
2172			amdgpu_vm_bo_moved(bo_base);
2173		else
2174			amdgpu_vm_bo_invalidated(bo_base);
2175	}
2176}
2177
2178/**
2179 * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2180 *
2181 * @vm_size: VM size
2182 *
2183 * Returns:
2184 * VM page table as power of two
2185 */
2186static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2187{
2188	/* Total bits covered by PD + PTs */
2189	unsigned bits = ilog2(vm_size) + 18;
2190
2191	/* Make sure the PD is 4K in size up to 8GB address space.
2192	   Above that split equal between PD and PTs */
2193	if (vm_size <= 8)
2194		return (bits - 9);
2195	else
2196		return ((bits + 3) / 2);
2197}
2198
2199/**
2200 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2201 *
2202 * @adev: amdgpu_device pointer
2203 * @min_vm_size: the minimum vm size in GB if it's set auto
2204 * @fragment_size_default: Default PTE fragment size
2205 * @max_level: max VMPT level
2206 * @max_bits: max address space size in bits
2207 *
2208 */
2209void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2210			   uint32_t fragment_size_default, unsigned max_level,
2211			   unsigned max_bits)
2212{
2213	unsigned int max_size = 1 << (max_bits - 30);
2214	unsigned int vm_size;
2215	uint64_t tmp;
2216
2217	/* adjust vm size first */
2218	if (amdgpu_vm_size != -1) {
2219		vm_size = amdgpu_vm_size;
2220		if (vm_size > max_size) {
2221			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2222				 amdgpu_vm_size, max_size);
2223			vm_size = max_size;
2224		}
2225	} else {
2226		struct sysinfo si;
2227		unsigned int phys_ram_gb;
2228
2229		/* Optimal VM size depends on the amount of physical
2230		 * RAM available. Underlying requirements and
2231		 * assumptions:
2232		 *
2233		 *  - Need to map system memory and VRAM from all GPUs
2234		 *     - VRAM from other GPUs not known here
2235		 *     - Assume VRAM <= system memory
2236		 *  - On GFX8 and older, VM space can be segmented for
2237		 *    different MTYPEs
2238		 *  - Need to allow room for fragmentation, guard pages etc.
2239		 *
2240		 * This adds up to a rough guess of system memory x3.
2241		 * Round up to power of two to maximize the available
2242		 * VM size with the given page table size.
2243		 */
2244		si_meminfo(&si);
2245		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2246			       (1 << 30) - 1) >> 30;
2247		vm_size = roundup_pow_of_two(
2248			clamp(phys_ram_gb * 3, min_vm_size, max_size));
2249	}
2250
2251	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2252
2253	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2254	if (amdgpu_vm_block_size != -1)
2255		tmp >>= amdgpu_vm_block_size - 9;
2256	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2257	adev->vm_manager.num_level = min_t(unsigned int, max_level, tmp);
2258	switch (adev->vm_manager.num_level) {
2259	case 3:
2260		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2261		break;
2262	case 2:
2263		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2264		break;
2265	case 1:
2266		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2267		break;
2268	default:
2269		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2270	}
2271	/* block size depends on vm size and hw setup*/
2272	if (amdgpu_vm_block_size != -1)
2273		adev->vm_manager.block_size =
2274			min((unsigned)amdgpu_vm_block_size, max_bits
2275			    - AMDGPU_GPU_PAGE_SHIFT
2276			    - 9 * adev->vm_manager.num_level);
2277	else if (adev->vm_manager.num_level > 1)
2278		adev->vm_manager.block_size = 9;
2279	else
2280		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2281
2282	if (amdgpu_vm_fragment_size == -1)
2283		adev->vm_manager.fragment_size = fragment_size_default;
2284	else
2285		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2286
2287	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2288		 vm_size, adev->vm_manager.num_level + 1,
2289		 adev->vm_manager.block_size,
2290		 adev->vm_manager.fragment_size);
2291}
2292
2293/**
2294 * amdgpu_vm_wait_idle - wait for the VM to become idle
2295 *
2296 * @vm: VM object to wait for
2297 * @timeout: timeout to wait for VM to become idle
2298 */
2299long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2300{
2301	timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv,
2302					DMA_RESV_USAGE_BOOKKEEP,
2303					true, timeout);
2304	if (timeout <= 0)
2305		return timeout;
2306
2307	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2308}
2309
2310static void amdgpu_vm_destroy_task_info(struct kref *kref)
2311{
2312	struct amdgpu_task_info *ti = container_of(kref, struct amdgpu_task_info, refcount);
2313
2314	kfree(ti);
2315}
2316
2317static inline struct amdgpu_vm *
2318amdgpu_vm_get_vm_from_pasid(struct amdgpu_device *adev, u32 pasid)
2319{
2320	struct amdgpu_vm *vm;
2321	unsigned long flags;
2322
2323	xa_lock_irqsave(&adev->vm_manager.pasids, flags);
2324	vm = xa_load(&adev->vm_manager.pasids, pasid);
2325	xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
2326
2327	return vm;
2328}
2329
2330/**
2331 * amdgpu_vm_put_task_info - reference down the vm task_info ptr
2332 *
2333 * @task_info: task_info struct under discussion.
2334 *
2335 * frees the vm task_info ptr at the last put
2336 */
2337void amdgpu_vm_put_task_info(struct amdgpu_task_info *task_info)
2338{
2339	kref_put(&task_info->refcount, amdgpu_vm_destroy_task_info);
2340}
2341
2342/**
2343 * amdgpu_vm_get_task_info_vm - Extracts task info for a vm.
2344 *
2345 * @vm: VM to get info from
2346 *
2347 * Returns the reference counted task_info structure, which must be
2348 * referenced down with amdgpu_vm_put_task_info.
2349 */
2350struct amdgpu_task_info *
2351amdgpu_vm_get_task_info_vm(struct amdgpu_vm *vm)
2352{
2353	struct amdgpu_task_info *ti = NULL;
2354
2355	if (vm) {
2356		ti = vm->task_info;
2357		kref_get(&vm->task_info->refcount);
2358	}
2359
2360	return ti;
2361}
2362
2363/**
2364 * amdgpu_vm_get_task_info_pasid - Extracts task info for a PASID.
2365 *
2366 * @adev: drm device pointer
2367 * @pasid: PASID identifier for VM
2368 *
2369 * Returns the reference counted task_info structure, which must be
2370 * referenced down with amdgpu_vm_put_task_info.
2371 */
2372struct amdgpu_task_info *
2373amdgpu_vm_get_task_info_pasid(struct amdgpu_device *adev, u32 pasid)
2374{
2375	return amdgpu_vm_get_task_info_vm(
2376			amdgpu_vm_get_vm_from_pasid(adev, pasid));
2377}
2378
2379static int amdgpu_vm_create_task_info(struct amdgpu_vm *vm)
2380{
2381	vm->task_info = kzalloc(sizeof(struct amdgpu_task_info), GFP_KERNEL);
2382	if (!vm->task_info)
2383		return -ENOMEM;
2384
2385	kref_init(&vm->task_info->refcount);
2386	return 0;
2387}
2388
2389/**
2390 * amdgpu_vm_set_task_info - Sets VMs task info.
2391 *
2392 * @vm: vm for which to set the info
2393 */
2394void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
2395{
2396	if (!vm->task_info)
2397		return;
2398
2399	if (vm->task_info->pid == current->pid)
2400		return;
2401
2402	vm->task_info->pid = current->pid;
2403	get_task_comm(vm->task_info->task_name, current);
2404
2405	if (current->group_leader->mm != current->mm)
2406		return;
2407
2408	vm->task_info->tgid = current->group_leader->pid;
2409	get_task_comm(vm->task_info->process_name, current->group_leader);
2410}
2411
2412/**
2413 * amdgpu_vm_init - initialize a vm instance
2414 *
2415 * @adev: amdgpu_device pointer
2416 * @vm: requested vm
2417 * @xcp_id: GPU partition selection id
2418 *
2419 * Init @vm fields.
2420 *
2421 * Returns:
2422 * 0 for success, error for failure.
2423 */
2424int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2425		   int32_t xcp_id)
2426{
2427	struct amdgpu_bo *root_bo;
2428	struct amdgpu_bo_vm *root;
2429	int r, i;
2430
2431	vm->va = RB_ROOT_CACHED;
2432	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2433		vm->reserved_vmid[i] = NULL;
2434	INIT_LIST_HEAD(&vm->evicted);
2435	INIT_LIST_HEAD(&vm->evicted_user);
2436	INIT_LIST_HEAD(&vm->relocated);
2437	INIT_LIST_HEAD(&vm->moved);
2438	INIT_LIST_HEAD(&vm->idle);
2439	INIT_LIST_HEAD(&vm->invalidated);
2440	spin_lock_init(&vm->status_lock);
2441	INIT_LIST_HEAD(&vm->freed);
2442	INIT_LIST_HEAD(&vm->done);
2443	INIT_LIST_HEAD(&vm->pt_freed);
2444	INIT_WORK(&vm->pt_free_work, amdgpu_vm_pt_free_work);
2445	INIT_KFIFO(vm->faults);
2446
2447	r = amdgpu_vm_init_entities(adev, vm);
 
 
 
2448	if (r)
2449		return r;
2450
2451	ttm_lru_bulk_move_init(&vm->lru_bulk_move);
 
 
 
 
2452
 
2453	vm->is_compute_context = false;
2454
2455	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2456				    AMDGPU_VM_USE_CPU_FOR_GFX);
2457
2458	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2459			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2460	WARN_ONCE((vm->use_cpu_for_update &&
2461		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2462		  "CPU update of VM recommended only for large BAR system\n");
2463
2464	if (vm->use_cpu_for_update)
2465		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2466	else
2467		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2468
2469	vm->last_update = dma_fence_get_stub();
2470	vm->last_unlocked = dma_fence_get_stub();
2471	vm->last_tlb_flush = dma_fence_get_stub();
2472	vm->generation = amdgpu_vm_generation(adev, NULL);
2473
2474	mutex_init(&vm->eviction_lock);
2475	vm->evicting = false;
2476	vm->tlb_fence_context = dma_fence_context_alloc(1);
2477
2478	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2479				false, &root, xcp_id);
2480	if (r)
2481		goto error_free_delayed;
2482
2483	root_bo = amdgpu_bo_ref(&root->bo);
2484	r = amdgpu_bo_reserve(root_bo, true);
2485	if (r) {
2486		amdgpu_bo_unref(&root_bo);
2487		goto error_free_delayed;
2488	}
2489
2490	amdgpu_vm_bo_base_init(&vm->root, vm, root_bo);
2491	r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1);
2492	if (r)
2493		goto error_free_root;
2494
2495	r = amdgpu_vm_pt_clear(adev, vm, root, false);
2496	if (r)
2497		goto error_free_root;
 
 
2498
2499	r = amdgpu_vm_create_task_info(vm);
2500	if (r)
2501		DRM_DEBUG("Failed to create task info for VM\n");
2502
2503	amdgpu_bo_unreserve(vm->root.bo);
2504	amdgpu_bo_unref(&root_bo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2505
2506	return 0;
2507
 
 
 
2508error_free_root:
2509	amdgpu_vm_pt_free_root(adev, vm);
2510	amdgpu_bo_unreserve(vm->root.bo);
2511	amdgpu_bo_unref(&root_bo);
 
2512
2513error_free_delayed:
2514	dma_fence_put(vm->last_tlb_flush);
2515	dma_fence_put(vm->last_unlocked);
2516	ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move);
2517	amdgpu_vm_fini_entities(vm);
 
 
2518
2519	return r;
2520}
2521
2522/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2523 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2524 *
2525 * @adev: amdgpu_device pointer
2526 * @vm: requested vm
 
2527 *
2528 * This only works on GFX VMs that don't have any BOs added and no
2529 * page tables allocated yet.
2530 *
2531 * Changes the following VM parameters:
2532 * - use_cpu_for_update
2533 * - pte_supports_ats
 
2534 *
2535 * Reinitializes the page directory to reflect the changed ATS
2536 * setting.
2537 *
2538 * Returns:
2539 * 0 for success, -errno for errors.
2540 */
2541int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
 
2542{
 
2543	int r;
2544
2545	r = amdgpu_bo_reserve(vm->root.bo, true);
2546	if (r)
2547		return r;
2548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2549	/* Update VM state */
2550	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2551				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2552	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2553			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2554	WARN_ONCE((vm->use_cpu_for_update &&
2555		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2556		  "CPU update of VM recommended only for large BAR system\n");
2557
2558	if (vm->use_cpu_for_update) {
2559		/* Sync with last SDMA update/clear before switching to CPU */
2560		r = amdgpu_bo_sync_wait(vm->root.bo,
2561					AMDGPU_FENCE_OWNER_UNDEFINED, true);
2562		if (r)
2563			goto unreserve_bo;
2564
2565		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2566		r = amdgpu_vm_pt_map_tables(adev, vm);
2567		if (r)
2568			goto unreserve_bo;
2569
2570	} else {
2571		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2572	}
2573
2574	dma_fence_put(vm->last_update);
2575	vm->last_update = dma_fence_get_stub();
2576	vm->is_compute_context = true;
2577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2578unreserve_bo:
2579	amdgpu_bo_unreserve(vm->root.bo);
2580	return r;
2581}
2582
2583/**
2584 * amdgpu_vm_release_compute - release a compute vm
2585 * @adev: amdgpu_device pointer
2586 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
2587 *
2588 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
2589 * pasid from vm. Compute should stop use of vm after this call.
2590 */
2591void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2592{
2593	amdgpu_vm_set_pasid(adev, vm, 0);
 
 
 
 
 
 
 
2594	vm->is_compute_context = false;
2595}
2596
2597/**
2598 * amdgpu_vm_fini - tear down a vm instance
2599 *
2600 * @adev: amdgpu_device pointer
2601 * @vm: requested vm
2602 *
2603 * Tear down @vm.
2604 * Unbind the VM and remove all bos from the vm bo list
2605 */
2606void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2607{
2608	struct amdgpu_bo_va_mapping *mapping, *tmp;
2609	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
2610	struct amdgpu_bo *root;
2611	unsigned long flags;
2612	int i;
2613
2614	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
2615
2616	flush_work(&vm->pt_free_work);
2617
2618	root = amdgpu_bo_ref(vm->root.bo);
2619	amdgpu_bo_reserve(root, true);
2620	amdgpu_vm_put_task_info(vm->task_info);
2621	amdgpu_vm_set_pasid(adev, vm, 0);
 
 
 
 
 
 
 
2622	dma_fence_wait(vm->last_unlocked, false);
2623	dma_fence_put(vm->last_unlocked);
2624	dma_fence_wait(vm->last_tlb_flush, false);
2625	/* Make sure that all fence callbacks have completed */
2626	spin_lock_irqsave(vm->last_tlb_flush->lock, flags);
2627	spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags);
2628	dma_fence_put(vm->last_tlb_flush);
2629
2630	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2631		if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev) && prt_fini_needed) {
2632			amdgpu_vm_prt_fini(adev, vm);
2633			prt_fini_needed = false;
2634		}
2635
2636		list_del(&mapping->list);
2637		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2638	}
2639
2640	amdgpu_vm_pt_free_root(adev, vm);
2641	amdgpu_bo_unreserve(root);
2642	amdgpu_bo_unref(&root);
2643	WARN_ON(vm->root.bo);
2644
2645	amdgpu_vm_fini_entities(vm);
 
2646
2647	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
2648		dev_err(adev->dev, "still active bo inside vm\n");
2649	}
2650	rbtree_postorder_for_each_entry_safe(mapping, tmp,
2651					     &vm->va.rb_root, rb) {
2652		/* Don't remove the mapping here, we don't want to trigger a
2653		 * rebalance and the tree is about to be destroyed anyway.
2654		 */
2655		list_del(&mapping->list);
2656		kfree(mapping);
2657	}
2658
2659	dma_fence_put(vm->last_update);
2660
2661	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) {
2662		if (vm->reserved_vmid[i]) {
2663			amdgpu_vmid_free_reserved(adev, i);
2664			vm->reserved_vmid[i] = false;
2665		}
2666	}
2667
2668	ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move);
2669}
2670
2671/**
2672 * amdgpu_vm_manager_init - init the VM manager
2673 *
2674 * @adev: amdgpu_device pointer
2675 *
2676 * Initialize the VM manager structures
2677 */
2678void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2679{
2680	unsigned i;
2681
2682	/* Concurrent flushes are only possible starting with Vega10 and
2683	 * are broken on Navi10 and Navi14.
2684	 */
2685	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
2686					      adev->asic_type == CHIP_NAVI10 ||
2687					      adev->asic_type == CHIP_NAVI14);
2688	amdgpu_vmid_mgr_init(adev);
2689
2690	adev->vm_manager.fence_context =
2691		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2692	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2693		adev->vm_manager.seqno[i] = 0;
2694
2695	spin_lock_init(&adev->vm_manager.prt_lock);
2696	atomic_set(&adev->vm_manager.num_prt_users, 0);
2697
2698	/* If not overridden by the user, by default, only in large BAR systems
2699	 * Compute VM tables will be updated by CPU
2700	 */
2701#ifdef CONFIG_X86_64
2702	if (amdgpu_vm_update_mode == -1) {
2703		/* For asic with VF MMIO access protection
2704		 * avoid using CPU for VM table updates
2705		 */
2706		if (amdgpu_gmc_vram_full_visible(&adev->gmc) &&
2707		    !amdgpu_sriov_vf_mmio_access_protection(adev))
2708			adev->vm_manager.vm_update_mode =
2709				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2710		else
2711			adev->vm_manager.vm_update_mode = 0;
2712	} else
2713		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2714#else
2715	adev->vm_manager.vm_update_mode = 0;
2716#endif
2717
2718	xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ);
 
2719}
2720
2721/**
2722 * amdgpu_vm_manager_fini - cleanup VM manager
2723 *
2724 * @adev: amdgpu_device pointer
2725 *
2726 * Cleanup the VM manager and free resources.
2727 */
2728void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2729{
2730	WARN_ON(!xa_empty(&adev->vm_manager.pasids));
2731	xa_destroy(&adev->vm_manager.pasids);
2732
2733	amdgpu_vmid_mgr_fini(adev);
2734}
2735
2736/**
2737 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
2738 *
2739 * @dev: drm device pointer
2740 * @data: drm_amdgpu_vm
2741 * @filp: drm file pointer
2742 *
2743 * Returns:
2744 * 0 for success, -errno for errors.
2745 */
2746int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2747{
2748	union drm_amdgpu_vm *args = data;
2749	struct amdgpu_device *adev = drm_to_adev(dev);
2750	struct amdgpu_fpriv *fpriv = filp->driver_priv;
2751
2752	/* No valid flags defined yet */
2753	if (args->in.flags)
2754		return -EINVAL;
2755
2756	switch (args->in.op) {
2757	case AMDGPU_VM_OP_RESERVE_VMID:
2758		/* We only have requirement to reserve vmid from gfxhub */
2759		if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) {
2760			amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0));
2761			fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true;
2762		}
2763
2764		break;
2765	case AMDGPU_VM_OP_UNRESERVE_VMID:
2766		if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) {
2767			amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0));
2768			fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false;
2769		}
 
 
 
 
 
 
 
 
 
 
 
 
2770		break;
2771	default:
2772		return -EINVAL;
2773	}
2774
2775	return 0;
2776}
2777
2778/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2779 * amdgpu_vm_handle_fault - graceful handling of VM faults.
2780 * @adev: amdgpu device pointer
2781 * @pasid: PASID of the VM
2782 * @ts: Timestamp of the fault
2783 * @vmid: VMID, only used for GFX 9.4.3.
2784 * @node_id: Node_id received in IH cookie. Only applicable for
2785 *           GFX 9.4.3.
2786 * @addr: Address of the fault
2787 * @write_fault: true is write fault, false is read fault
2788 *
2789 * Try to gracefully handle a VM fault. Return true if the fault was handled and
2790 * shouldn't be reported any more.
2791 */
2792bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
2793			    u32 vmid, u32 node_id, uint64_t addr, uint64_t ts,
2794			    bool write_fault)
2795{
2796	bool is_compute_context = false;
2797	struct amdgpu_bo *root;
2798	unsigned long irqflags;
2799	uint64_t value, flags;
2800	struct amdgpu_vm *vm;
2801	int r;
2802
2803	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
2804	vm = xa_load(&adev->vm_manager.pasids, pasid);
2805	if (vm) {
2806		root = amdgpu_bo_ref(vm->root.bo);
2807		is_compute_context = vm->is_compute_context;
2808	} else {
2809		root = NULL;
2810	}
2811	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
2812
2813	if (!root)
2814		return false;
2815
2816	addr /= AMDGPU_GPU_PAGE_SIZE;
2817
2818	if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid,
2819	    node_id, addr, ts, write_fault)) {
2820		amdgpu_bo_unref(&root);
2821		return true;
2822	}
2823
2824	r = amdgpu_bo_reserve(root, true);
2825	if (r)
2826		goto error_unref;
2827
2828	/* Double check that the VM still exists */
2829	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
2830	vm = xa_load(&adev->vm_manager.pasids, pasid);
2831	if (vm && vm->root.bo != root)
2832		vm = NULL;
2833	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
2834	if (!vm)
2835		goto error_unlock;
2836
2837	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
2838		AMDGPU_PTE_SYSTEM;
2839
2840	if (is_compute_context) {
2841		/* Intentionally setting invalid PTE flag
2842		 * combination to force a no-retry-fault
2843		 */
2844		flags = AMDGPU_VM_NORETRY_FLAGS;
 
2845		value = 0;
2846	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
2847		/* Redirect the access to the dummy page */
2848		value = adev->dummy_page_addr;
2849		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
2850			AMDGPU_PTE_WRITEABLE;
2851
2852	} else {
2853		/* Let the hw retry silently on the PTE */
2854		value = 0;
2855	}
2856
2857	r = dma_resv_reserve_fences(root->tbo.base.resv, 1);
2858	if (r) {
2859		pr_debug("failed %d to reserve fence slot\n", r);
2860		goto error_unlock;
2861	}
2862
2863	r = amdgpu_vm_update_range(adev, vm, true, false, false, false,
2864				   NULL, addr, addr, flags, value, 0, NULL, NULL, NULL);
 
2865	if (r)
2866		goto error_unlock;
2867
2868	r = amdgpu_vm_update_pdes(adev, vm, true);
2869
2870error_unlock:
2871	amdgpu_bo_unreserve(root);
2872	if (r < 0)
2873		DRM_ERROR("Can't handle page fault (%d)\n", r);
2874
2875error_unref:
2876	amdgpu_bo_unref(&root);
2877
2878	return false;
2879}
2880
2881#if defined(CONFIG_DEBUG_FS)
2882/**
2883 * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
2884 *
2885 * @vm: Requested VM for printing BO info
2886 * @m: debugfs file
2887 *
2888 * Print BO information in debugfs file for the VM
2889 */
2890void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
2891{
2892	struct amdgpu_bo_va *bo_va, *tmp;
2893	u64 total_idle = 0;
2894	u64 total_evicted = 0;
2895	u64 total_relocated = 0;
2896	u64 total_moved = 0;
2897	u64 total_invalidated = 0;
2898	u64 total_done = 0;
2899	unsigned int total_idle_objs = 0;
2900	unsigned int total_evicted_objs = 0;
2901	unsigned int total_relocated_objs = 0;
2902	unsigned int total_moved_objs = 0;
2903	unsigned int total_invalidated_objs = 0;
2904	unsigned int total_done_objs = 0;
2905	unsigned int id = 0;
2906
2907	spin_lock(&vm->status_lock);
2908	seq_puts(m, "\tIdle BOs:\n");
2909	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
2910		if (!bo_va->base.bo)
2911			continue;
2912		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2913	}
2914	total_idle_objs = id;
2915	id = 0;
2916
2917	seq_puts(m, "\tEvicted BOs:\n");
2918	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
2919		if (!bo_va->base.bo)
2920			continue;
2921		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2922	}
2923	total_evicted_objs = id;
2924	id = 0;
2925
2926	seq_puts(m, "\tRelocated BOs:\n");
2927	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
2928		if (!bo_va->base.bo)
2929			continue;
2930		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2931	}
2932	total_relocated_objs = id;
2933	id = 0;
2934
2935	seq_puts(m, "\tMoved BOs:\n");
2936	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2937		if (!bo_va->base.bo)
2938			continue;
2939		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2940	}
2941	total_moved_objs = id;
2942	id = 0;
2943
2944	seq_puts(m, "\tInvalidated BOs:\n");
 
2945	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
2946		if (!bo_va->base.bo)
2947			continue;
2948		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
2949	}
2950	total_invalidated_objs = id;
2951	id = 0;
2952
2953	seq_puts(m, "\tDone BOs:\n");
2954	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
2955		if (!bo_va->base.bo)
2956			continue;
2957		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2958	}
2959	spin_unlock(&vm->status_lock);
2960	total_done_objs = id;
2961
2962	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
2963		   total_idle_objs);
2964	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
2965		   total_evicted_objs);
2966	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
2967		   total_relocated_objs);
2968	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
2969		   total_moved_objs);
2970	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
2971		   total_invalidated_objs);
2972	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
2973		   total_done_objs);
2974}
2975#endif
2976
2977/**
2978 * amdgpu_vm_update_fault_cache - update cached fault into.
2979 * @adev: amdgpu device pointer
2980 * @pasid: PASID of the VM
2981 * @addr: Address of the fault
2982 * @status: GPUVM fault status register
2983 * @vmhub: which vmhub got the fault
2984 *
2985 * Cache the fault info for later use by userspace in debugging.
2986 */
2987void amdgpu_vm_update_fault_cache(struct amdgpu_device *adev,
2988				  unsigned int pasid,
2989				  uint64_t addr,
2990				  uint32_t status,
2991				  unsigned int vmhub)
2992{
2993	struct amdgpu_vm *vm;
2994	unsigned long flags;
2995
2996	xa_lock_irqsave(&adev->vm_manager.pasids, flags);
2997
2998	vm = xa_load(&adev->vm_manager.pasids, pasid);
2999	/* Don't update the fault cache if status is 0.  In the multiple
3000	 * fault case, subsequent faults will return a 0 status which is
3001	 * useless for userspace and replaces the useful fault status, so
3002	 * only update if status is non-0.
3003	 */
3004	if (vm && status) {
3005		vm->fault_info.addr = addr;
3006		vm->fault_info.status = status;
3007		/*
3008		 * Update the fault information globally for later usage
3009		 * when vm could be stale or freed.
3010		 */
3011		adev->vm_manager.fault_info.addr = addr;
3012		adev->vm_manager.fault_info.vmhub = vmhub;
3013		adev->vm_manager.fault_info.status = status;
3014
3015		if (AMDGPU_IS_GFXHUB(vmhub)) {
3016			vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_GFX;
3017			vm->fault_info.vmhub |=
3018				(vmhub - AMDGPU_GFXHUB_START) << AMDGPU_VMHUB_IDX_SHIFT;
3019		} else if (AMDGPU_IS_MMHUB0(vmhub)) {
3020			vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM0;
3021			vm->fault_info.vmhub |=
3022				(vmhub - AMDGPU_MMHUB0_START) << AMDGPU_VMHUB_IDX_SHIFT;
3023		} else if (AMDGPU_IS_MMHUB1(vmhub)) {
3024			vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM1;
3025			vm->fault_info.vmhub |=
3026				(vmhub - AMDGPU_MMHUB1_START) << AMDGPU_VMHUB_IDX_SHIFT;
3027		} else {
3028			WARN_ONCE(1, "Invalid vmhub %u\n", vmhub);
3029		}
3030	}
3031	xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
3032}
3033
3034/**
3035 * amdgpu_vm_is_bo_always_valid - check if the BO is VM always valid
3036 *
3037 * @vm: VM to test against.
3038 * @bo: BO to be tested.
3039 *
3040 * Returns true if the BO shares the dma_resv object with the root PD and is
3041 * always guaranteed to be valid inside the VM.
3042 */
3043bool amdgpu_vm_is_bo_always_valid(struct amdgpu_vm *vm, struct amdgpu_bo *bo)
3044{
3045	return bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv;
3046}