Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for SiS7019 Audio Accelerator
4 *
5 * Copyright (C) 2004-2007, David Dillow
6 * Written by David Dillow <dave@thedillows.org>
7 * Inspired by the Trident 4D-WaveDX/NX driver.
8 *
9 * All rights reserved.
10 */
11
12#include <linux/init.h>
13#include <linux/pci.h>
14#include <linux/time.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/interrupt.h>
18#include <linux/delay.h>
19#include <sound/core.h>
20#include <sound/ac97_codec.h>
21#include <sound/initval.h>
22#include "sis7019.h"
23
24MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
25MODULE_DESCRIPTION("SiS7019");
26MODULE_LICENSE("GPL");
27
28static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
29static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
30static bool enable = 1;
31static int codecs = 1;
32
33module_param(index, int, 0444);
34MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
35module_param(id, charp, 0444);
36MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
37module_param(enable, bool, 0444);
38MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
39module_param(codecs, int, 0444);
40MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
41
42static const struct pci_device_id snd_sis7019_ids[] = {
43 { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
44 { 0, }
45};
46
47MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
48
49/* There are three timing modes for the voices.
50 *
51 * For both playback and capture, when the buffer is one or two periods long,
52 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
53 * to let us know when the periods have ended.
54 *
55 * When performing playback with more than two periods per buffer, we set
56 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
57 * reach it. We then update the offset and continue on until we are
58 * interrupted for the next period.
59 *
60 * Capture channels do not have a SSO, so we allocate a playback channel to
61 * use as a timer for the capture periods. We use the SSO on the playback
62 * channel to clock out virtual periods, and adjust the virtual period length
63 * to maintain synchronization. This algorithm came from the Trident driver.
64 *
65 * FIXME: It'd be nice to make use of some of the synth features in the
66 * hardware, but a woeful lack of documentation is a significant roadblock.
67 */
68struct voice {
69 u16 flags;
70#define VOICE_IN_USE 1
71#define VOICE_CAPTURE 2
72#define VOICE_SSO_TIMING 4
73#define VOICE_SYNC_TIMING 8
74 u16 sync_cso;
75 u16 period_size;
76 u16 buffer_size;
77 u16 sync_period_size;
78 u16 sync_buffer_size;
79 u32 sso;
80 u32 vperiod;
81 struct snd_pcm_substream *substream;
82 struct voice *timing;
83 void __iomem *ctrl_base;
84 void __iomem *wave_base;
85 void __iomem *sync_base;
86 int num;
87};
88
89/* We need four pages to store our wave parameters during a suspend. If
90 * we're not doing power management, we still need to allocate a page
91 * for the silence buffer.
92 */
93#ifdef CONFIG_PM_SLEEP
94#define SIS_SUSPEND_PAGES 4
95#else
96#define SIS_SUSPEND_PAGES 1
97#endif
98
99struct sis7019 {
100 unsigned long ioport;
101 void __iomem *ioaddr;
102 int irq;
103 int codecs_present;
104
105 struct pci_dev *pci;
106 struct snd_pcm *pcm;
107 struct snd_card *card;
108 struct snd_ac97 *ac97[3];
109
110 /* Protect against more than one thread hitting the AC97
111 * registers (in a more polite manner than pounding the hardware
112 * semaphore)
113 */
114 struct mutex ac97_mutex;
115
116 /* voice_lock protects allocation/freeing of the voice descriptions
117 */
118 spinlock_t voice_lock;
119
120 struct voice voices[64];
121 struct voice capture_voice;
122
123 /* Allocate pages to store the internal wave state during
124 * suspends. When we're operating, this can be used as a silence
125 * buffer for a timing channel.
126 */
127 void *suspend_state[SIS_SUSPEND_PAGES];
128
129 int silence_users;
130 dma_addr_t silence_dma_addr;
131};
132
133/* These values are also used by the module param 'codecs' to indicate
134 * which codecs should be present.
135 */
136#define SIS_PRIMARY_CODEC_PRESENT 0x0001
137#define SIS_SECONDARY_CODEC_PRESENT 0x0002
138#define SIS_TERTIARY_CODEC_PRESENT 0x0004
139
140/* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
141 * documented range of 8-0xfff8 samples. Given that they are 0-based,
142 * that places our period/buffer range at 9-0xfff9 samples. That makes the
143 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
144 * max samples / min samples gives us the max periods in a buffer.
145 *
146 * We'll add a constraint upon open that limits the period and buffer sample
147 * size to values that are legal for the hardware.
148 */
149static const struct snd_pcm_hardware sis_playback_hw_info = {
150 .info = (SNDRV_PCM_INFO_MMAP |
151 SNDRV_PCM_INFO_MMAP_VALID |
152 SNDRV_PCM_INFO_INTERLEAVED |
153 SNDRV_PCM_INFO_BLOCK_TRANSFER |
154 SNDRV_PCM_INFO_SYNC_START |
155 SNDRV_PCM_INFO_RESUME),
156 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
157 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
158 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
159 .rate_min = 4000,
160 .rate_max = 48000,
161 .channels_min = 1,
162 .channels_max = 2,
163 .buffer_bytes_max = (0xfff9 * 4),
164 .period_bytes_min = 9,
165 .period_bytes_max = (0xfff9 * 4),
166 .periods_min = 1,
167 .periods_max = (0xfff9 / 9),
168};
169
170static const struct snd_pcm_hardware sis_capture_hw_info = {
171 .info = (SNDRV_PCM_INFO_MMAP |
172 SNDRV_PCM_INFO_MMAP_VALID |
173 SNDRV_PCM_INFO_INTERLEAVED |
174 SNDRV_PCM_INFO_BLOCK_TRANSFER |
175 SNDRV_PCM_INFO_SYNC_START |
176 SNDRV_PCM_INFO_RESUME),
177 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
178 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
179 .rates = SNDRV_PCM_RATE_48000,
180 .rate_min = 4000,
181 .rate_max = 48000,
182 .channels_min = 1,
183 .channels_max = 2,
184 .buffer_bytes_max = (0xfff9 * 4),
185 .period_bytes_min = 9,
186 .period_bytes_max = (0xfff9 * 4),
187 .periods_min = 1,
188 .periods_max = (0xfff9 / 9),
189};
190
191static void sis_update_sso(struct voice *voice, u16 period)
192{
193 void __iomem *base = voice->ctrl_base;
194
195 voice->sso += period;
196 if (voice->sso >= voice->buffer_size)
197 voice->sso -= voice->buffer_size;
198
199 /* Enforce the documented hardware minimum offset */
200 if (voice->sso < 8)
201 voice->sso = 8;
202
203 /* The SSO is in the upper 16 bits of the register. */
204 writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
205}
206
207static void sis_update_voice(struct voice *voice)
208{
209 if (voice->flags & VOICE_SSO_TIMING) {
210 sis_update_sso(voice, voice->period_size);
211 } else if (voice->flags & VOICE_SYNC_TIMING) {
212 int sync;
213
214 /* If we've not hit the end of the virtual period, update
215 * our records and keep going.
216 */
217 if (voice->vperiod > voice->period_size) {
218 voice->vperiod -= voice->period_size;
219 if (voice->vperiod < voice->period_size)
220 sis_update_sso(voice, voice->vperiod);
221 else
222 sis_update_sso(voice, voice->period_size);
223 return;
224 }
225
226 /* Calculate our relative offset between the target and
227 * the actual CSO value. Since we're operating in a loop,
228 * if the value is more than half way around, we can
229 * consider ourselves wrapped.
230 */
231 sync = voice->sync_cso;
232 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
233 if (sync > (voice->sync_buffer_size / 2))
234 sync -= voice->sync_buffer_size;
235
236 /* If sync is positive, then we interrupted too early, and
237 * we'll need to come back in a few samples and try again.
238 * There's a minimum wait, as it takes some time for the DMA
239 * engine to startup, etc...
240 */
241 if (sync > 0) {
242 if (sync < 16)
243 sync = 16;
244 sis_update_sso(voice, sync);
245 return;
246 }
247
248 /* Ok, we interrupted right on time, or (hopefully) just
249 * a bit late. We'll adjst our next waiting period based
250 * on how close we got.
251 *
252 * We need to stay just behind the actual channel to ensure
253 * it really is past a period when we get our interrupt --
254 * otherwise we'll fall into the early code above and have
255 * a minimum wait time, which makes us quite late here,
256 * eating into the user's time to refresh the buffer, esp.
257 * if using small periods.
258 *
259 * If we're less than 9 samples behind, we're on target.
260 * Otherwise, shorten the next vperiod by the amount we've
261 * been delayed.
262 */
263 if (sync > -9)
264 voice->vperiod = voice->sync_period_size + 1;
265 else
266 voice->vperiod = voice->sync_period_size + sync + 10;
267
268 if (voice->vperiod < voice->buffer_size) {
269 sis_update_sso(voice, voice->vperiod);
270 voice->vperiod = 0;
271 } else
272 sis_update_sso(voice, voice->period_size);
273
274 sync = voice->sync_cso + voice->sync_period_size;
275 if (sync >= voice->sync_buffer_size)
276 sync -= voice->sync_buffer_size;
277 voice->sync_cso = sync;
278 }
279
280 snd_pcm_period_elapsed(voice->substream);
281}
282
283static void sis_voice_irq(u32 status, struct voice *voice)
284{
285 int bit;
286
287 while (status) {
288 bit = __ffs(status);
289 status >>= bit + 1;
290 voice += bit;
291 sis_update_voice(voice);
292 voice++;
293 }
294}
295
296static irqreturn_t sis_interrupt(int irq, void *dev)
297{
298 struct sis7019 *sis = dev;
299 unsigned long io = sis->ioport;
300 struct voice *voice;
301 u32 intr, status;
302
303 /* We only use the DMA interrupts, and we don't enable any other
304 * source of interrupts. But, it is possible to see an interrupt
305 * status that didn't actually interrupt us, so eliminate anything
306 * we're not expecting to avoid falsely claiming an IRQ, and an
307 * ensuing endless loop.
308 */
309 intr = inl(io + SIS_GISR);
310 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
311 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
312 if (!intr)
313 return IRQ_NONE;
314
315 do {
316 status = inl(io + SIS_PISR_A);
317 if (status) {
318 sis_voice_irq(status, sis->voices);
319 outl(status, io + SIS_PISR_A);
320 }
321
322 status = inl(io + SIS_PISR_B);
323 if (status) {
324 sis_voice_irq(status, &sis->voices[32]);
325 outl(status, io + SIS_PISR_B);
326 }
327
328 status = inl(io + SIS_RISR);
329 if (status) {
330 voice = &sis->capture_voice;
331 if (!voice->timing)
332 snd_pcm_period_elapsed(voice->substream);
333
334 outl(status, io + SIS_RISR);
335 }
336
337 outl(intr, io + SIS_GISR);
338 intr = inl(io + SIS_GISR);
339 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
340 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
341 } while (intr);
342
343 return IRQ_HANDLED;
344}
345
346static u32 sis_rate_to_delta(unsigned int rate)
347{
348 u32 delta;
349
350 /* This was copied from the trident driver, but it seems its gotten
351 * around a bit... nevertheless, it works well.
352 *
353 * We special case 44100 and 8000 since rounding with the equation
354 * does not give us an accurate enough value. For 11025 and 22050
355 * the equation gives us the best answer. All other frequencies will
356 * also use the equation. JDW
357 */
358 if (rate == 44100)
359 delta = 0xeb3;
360 else if (rate == 8000)
361 delta = 0x2ab;
362 else if (rate == 48000)
363 delta = 0x1000;
364 else
365 delta = DIV_ROUND_CLOSEST(rate << 12, 48000) & 0x0000ffff;
366 return delta;
367}
368
369static void __sis_map_silence(struct sis7019 *sis)
370{
371 /* Helper function: must hold sis->voice_lock on entry */
372 if (!sis->silence_users)
373 sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
374 sis->suspend_state[0],
375 4096, DMA_TO_DEVICE);
376 sis->silence_users++;
377}
378
379static void __sis_unmap_silence(struct sis7019 *sis)
380{
381 /* Helper function: must hold sis->voice_lock on entry */
382 sis->silence_users--;
383 if (!sis->silence_users)
384 dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
385 DMA_TO_DEVICE);
386}
387
388static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
389{
390 unsigned long flags;
391
392 spin_lock_irqsave(&sis->voice_lock, flags);
393 if (voice->timing) {
394 __sis_unmap_silence(sis);
395 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
396 VOICE_SYNC_TIMING);
397 voice->timing = NULL;
398 }
399 voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
400 spin_unlock_irqrestore(&sis->voice_lock, flags);
401}
402
403static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
404{
405 /* Must hold the voice_lock on entry */
406 struct voice *voice;
407 int i;
408
409 for (i = 0; i < 64; i++) {
410 voice = &sis->voices[i];
411 if (voice->flags & VOICE_IN_USE)
412 continue;
413 voice->flags |= VOICE_IN_USE;
414 goto found_one;
415 }
416 voice = NULL;
417
418found_one:
419 return voice;
420}
421
422static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
423{
424 struct voice *voice;
425 unsigned long flags;
426
427 spin_lock_irqsave(&sis->voice_lock, flags);
428 voice = __sis_alloc_playback_voice(sis);
429 spin_unlock_irqrestore(&sis->voice_lock, flags);
430
431 return voice;
432}
433
434static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
435 struct snd_pcm_hw_params *hw_params)
436{
437 struct sis7019 *sis = snd_pcm_substream_chip(substream);
438 struct snd_pcm_runtime *runtime = substream->runtime;
439 struct voice *voice = runtime->private_data;
440 unsigned int period_size, buffer_size;
441 unsigned long flags;
442 int needed;
443
444 /* If there are one or two periods per buffer, we don't need a
445 * timing voice, as we can use the capture channel's interrupts
446 * to clock out the periods.
447 */
448 period_size = params_period_size(hw_params);
449 buffer_size = params_buffer_size(hw_params);
450 needed = (period_size != buffer_size &&
451 period_size != (buffer_size / 2));
452
453 if (needed && !voice->timing) {
454 spin_lock_irqsave(&sis->voice_lock, flags);
455 voice->timing = __sis_alloc_playback_voice(sis);
456 if (voice->timing)
457 __sis_map_silence(sis);
458 spin_unlock_irqrestore(&sis->voice_lock, flags);
459 if (!voice->timing)
460 return -ENOMEM;
461 voice->timing->substream = substream;
462 } else if (!needed && voice->timing) {
463 sis_free_voice(sis, voice);
464 voice->timing = NULL;
465 }
466
467 return 0;
468}
469
470static int sis_playback_open(struct snd_pcm_substream *substream)
471{
472 struct sis7019 *sis = snd_pcm_substream_chip(substream);
473 struct snd_pcm_runtime *runtime = substream->runtime;
474 struct voice *voice;
475
476 voice = sis_alloc_playback_voice(sis);
477 if (!voice)
478 return -EAGAIN;
479
480 voice->substream = substream;
481 runtime->private_data = voice;
482 runtime->hw = sis_playback_hw_info;
483 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
484 9, 0xfff9);
485 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
486 9, 0xfff9);
487 snd_pcm_set_sync(substream);
488 return 0;
489}
490
491static int sis_substream_close(struct snd_pcm_substream *substream)
492{
493 struct sis7019 *sis = snd_pcm_substream_chip(substream);
494 struct snd_pcm_runtime *runtime = substream->runtime;
495 struct voice *voice = runtime->private_data;
496
497 sis_free_voice(sis, voice);
498 return 0;
499}
500
501static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
502{
503 struct snd_pcm_runtime *runtime = substream->runtime;
504 struct voice *voice = runtime->private_data;
505 void __iomem *ctrl_base = voice->ctrl_base;
506 void __iomem *wave_base = voice->wave_base;
507 u32 format, dma_addr, control, sso_eso, delta, reg;
508 u16 leo;
509
510 /* We rely on the PCM core to ensure that the parameters for this
511 * substream do not change on us while we're programming the HW.
512 */
513 format = 0;
514 if (snd_pcm_format_width(runtime->format) == 8)
515 format |= SIS_PLAY_DMA_FORMAT_8BIT;
516 if (!snd_pcm_format_signed(runtime->format))
517 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
518 if (runtime->channels == 1)
519 format |= SIS_PLAY_DMA_FORMAT_MONO;
520
521 /* The baseline setup is for a single period per buffer, and
522 * we add bells and whistles as needed from there.
523 */
524 dma_addr = runtime->dma_addr;
525 leo = runtime->buffer_size - 1;
526 control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
527 sso_eso = leo;
528
529 if (runtime->period_size == (runtime->buffer_size / 2)) {
530 control |= SIS_PLAY_DMA_INTR_AT_MLP;
531 } else if (runtime->period_size != runtime->buffer_size) {
532 voice->flags |= VOICE_SSO_TIMING;
533 voice->sso = runtime->period_size - 1;
534 voice->period_size = runtime->period_size;
535 voice->buffer_size = runtime->buffer_size;
536
537 control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
538 control |= SIS_PLAY_DMA_INTR_AT_SSO;
539 sso_eso |= (runtime->period_size - 1) << 16;
540 }
541
542 delta = sis_rate_to_delta(runtime->rate);
543
544 /* Ok, we're ready to go, set up the channel.
545 */
546 writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
547 writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
548 writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
549 writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
550
551 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
552 writel(0, wave_base + reg);
553
554 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
555 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
556 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
557 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
558 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
559 wave_base + SIS_WAVE_CHANNEL_CONTROL);
560
561 /* Force PCI writes to post. */
562 readl(ctrl_base);
563
564 return 0;
565}
566
567static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
568{
569 struct sis7019 *sis = snd_pcm_substream_chip(substream);
570 unsigned long io = sis->ioport;
571 struct snd_pcm_substream *s;
572 struct voice *voice;
573 void *chip;
574 int starting;
575 u32 record = 0;
576 u32 play[2] = { 0, 0 };
577
578 /* No locks needed, as the PCM core will hold the locks on the
579 * substreams, and the HW will only start/stop the indicated voices
580 * without changing the state of the others.
581 */
582 switch (cmd) {
583 case SNDRV_PCM_TRIGGER_START:
584 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
585 case SNDRV_PCM_TRIGGER_RESUME:
586 starting = 1;
587 break;
588 case SNDRV_PCM_TRIGGER_STOP:
589 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
590 case SNDRV_PCM_TRIGGER_SUSPEND:
591 starting = 0;
592 break;
593 default:
594 return -EINVAL;
595 }
596
597 snd_pcm_group_for_each_entry(s, substream) {
598 /* Make sure it is for us... */
599 chip = snd_pcm_substream_chip(s);
600 if (chip != sis)
601 continue;
602
603 voice = s->runtime->private_data;
604 if (voice->flags & VOICE_CAPTURE) {
605 record |= 1 << voice->num;
606 voice = voice->timing;
607 }
608
609 /* voice could be NULL if this a recording stream, and it
610 * doesn't have an external timing channel.
611 */
612 if (voice)
613 play[voice->num / 32] |= 1 << (voice->num & 0x1f);
614
615 snd_pcm_trigger_done(s, substream);
616 }
617
618 if (starting) {
619 if (record)
620 outl(record, io + SIS_RECORD_START_REG);
621 if (play[0])
622 outl(play[0], io + SIS_PLAY_START_A_REG);
623 if (play[1])
624 outl(play[1], io + SIS_PLAY_START_B_REG);
625 } else {
626 if (record)
627 outl(record, io + SIS_RECORD_STOP_REG);
628 if (play[0])
629 outl(play[0], io + SIS_PLAY_STOP_A_REG);
630 if (play[1])
631 outl(play[1], io + SIS_PLAY_STOP_B_REG);
632 }
633 return 0;
634}
635
636static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
637{
638 struct snd_pcm_runtime *runtime = substream->runtime;
639 struct voice *voice = runtime->private_data;
640 u32 cso;
641
642 cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
643 cso &= 0xffff;
644 return cso;
645}
646
647static int sis_capture_open(struct snd_pcm_substream *substream)
648{
649 struct sis7019 *sis = snd_pcm_substream_chip(substream);
650 struct snd_pcm_runtime *runtime = substream->runtime;
651 struct voice *voice = &sis->capture_voice;
652 unsigned long flags;
653
654 /* FIXME: The driver only supports recording from one channel
655 * at the moment, but it could support more.
656 */
657 spin_lock_irqsave(&sis->voice_lock, flags);
658 if (voice->flags & VOICE_IN_USE)
659 voice = NULL;
660 else
661 voice->flags |= VOICE_IN_USE;
662 spin_unlock_irqrestore(&sis->voice_lock, flags);
663
664 if (!voice)
665 return -EAGAIN;
666
667 voice->substream = substream;
668 runtime->private_data = voice;
669 runtime->hw = sis_capture_hw_info;
670 runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
671 snd_pcm_limit_hw_rates(runtime);
672 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
673 9, 0xfff9);
674 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
675 9, 0xfff9);
676 snd_pcm_set_sync(substream);
677 return 0;
678}
679
680static int sis_capture_hw_params(struct snd_pcm_substream *substream,
681 struct snd_pcm_hw_params *hw_params)
682{
683 struct sis7019 *sis = snd_pcm_substream_chip(substream);
684 int rc;
685
686 rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
687 params_rate(hw_params));
688 if (rc)
689 goto out;
690
691 rc = sis_alloc_timing_voice(substream, hw_params);
692
693out:
694 return rc;
695}
696
697static void sis_prepare_timing_voice(struct voice *voice,
698 struct snd_pcm_substream *substream)
699{
700 struct sis7019 *sis = snd_pcm_substream_chip(substream);
701 struct snd_pcm_runtime *runtime = substream->runtime;
702 struct voice *timing = voice->timing;
703 void __iomem *play_base = timing->ctrl_base;
704 void __iomem *wave_base = timing->wave_base;
705 u16 buffer_size, period_size;
706 u32 format, control, sso_eso, delta;
707 u32 vperiod, sso, reg;
708
709 /* Set our initial buffer and period as large as we can given a
710 * single page of silence.
711 */
712 buffer_size = 4096 / runtime->channels;
713 buffer_size /= snd_pcm_format_size(runtime->format, 1);
714 period_size = buffer_size;
715
716 /* Initially, we want to interrupt just a bit behind the end of
717 * the period we're clocking out. 12 samples seems to give a good
718 * delay.
719 *
720 * We want to spread our interrupts throughout the virtual period,
721 * so that we don't end up with two interrupts back to back at the
722 * end -- this helps minimize the effects of any jitter. Adjust our
723 * clocking period size so that the last period is at least a fourth
724 * of a full period.
725 *
726 * This is all moot if we don't need to use virtual periods.
727 */
728 vperiod = runtime->period_size + 12;
729 if (vperiod > period_size) {
730 u16 tail = vperiod % period_size;
731 u16 quarter_period = period_size / 4;
732
733 if (tail && tail < quarter_period) {
734 u16 loops = vperiod / period_size;
735
736 tail = quarter_period - tail;
737 tail += loops - 1;
738 tail /= loops;
739 period_size -= tail;
740 }
741
742 sso = period_size - 1;
743 } else {
744 /* The initial period will fit inside the buffer, so we
745 * don't need to use virtual periods -- disable them.
746 */
747 period_size = runtime->period_size;
748 sso = vperiod - 1;
749 vperiod = 0;
750 }
751
752 /* The interrupt handler implements the timing synchronization, so
753 * setup its state.
754 */
755 timing->flags |= VOICE_SYNC_TIMING;
756 timing->sync_base = voice->ctrl_base;
757 timing->sync_cso = runtime->period_size;
758 timing->sync_period_size = runtime->period_size;
759 timing->sync_buffer_size = runtime->buffer_size;
760 timing->period_size = period_size;
761 timing->buffer_size = buffer_size;
762 timing->sso = sso;
763 timing->vperiod = vperiod;
764
765 /* Using unsigned samples with the all-zero silence buffer
766 * forces the output to the lower rail, killing playback.
767 * So ignore unsigned vs signed -- it doesn't change the timing.
768 */
769 format = 0;
770 if (snd_pcm_format_width(runtime->format) == 8)
771 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
772 if (runtime->channels == 1)
773 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
774
775 control = timing->buffer_size - 1;
776 control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
777 sso_eso = timing->buffer_size - 1;
778 sso_eso |= timing->sso << 16;
779
780 delta = sis_rate_to_delta(runtime->rate);
781
782 /* We've done the math, now configure the channel.
783 */
784 writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
785 writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
786 writel(control, play_base + SIS_PLAY_DMA_CONTROL);
787 writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
788
789 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
790 writel(0, wave_base + reg);
791
792 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
793 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
794 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
795 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
796 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
797 wave_base + SIS_WAVE_CHANNEL_CONTROL);
798}
799
800static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
801{
802 struct snd_pcm_runtime *runtime = substream->runtime;
803 struct voice *voice = runtime->private_data;
804 void __iomem *rec_base = voice->ctrl_base;
805 u32 format, dma_addr, control;
806 u16 leo;
807
808 /* We rely on the PCM core to ensure that the parameters for this
809 * substream do not change on us while we're programming the HW.
810 */
811 format = 0;
812 if (snd_pcm_format_width(runtime->format) == 8)
813 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
814 if (!snd_pcm_format_signed(runtime->format))
815 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
816 if (runtime->channels == 1)
817 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
818
819 dma_addr = runtime->dma_addr;
820 leo = runtime->buffer_size - 1;
821 control = leo | SIS_CAPTURE_DMA_LOOP;
822
823 /* If we've got more than two periods per buffer, then we have
824 * use a timing voice to clock out the periods. Otherwise, we can
825 * use the capture channel's interrupts.
826 */
827 if (voice->timing) {
828 sis_prepare_timing_voice(voice, substream);
829 } else {
830 control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
831 if (runtime->period_size != runtime->buffer_size)
832 control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
833 }
834
835 writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
836 writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
837 writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
838
839 /* Force the writes to post. */
840 readl(rec_base);
841
842 return 0;
843}
844
845static const struct snd_pcm_ops sis_playback_ops = {
846 .open = sis_playback_open,
847 .close = sis_substream_close,
848 .prepare = sis_pcm_playback_prepare,
849 .trigger = sis_pcm_trigger,
850 .pointer = sis_pcm_pointer,
851};
852
853static const struct snd_pcm_ops sis_capture_ops = {
854 .open = sis_capture_open,
855 .close = sis_substream_close,
856 .hw_params = sis_capture_hw_params,
857 .prepare = sis_pcm_capture_prepare,
858 .trigger = sis_pcm_trigger,
859 .pointer = sis_pcm_pointer,
860};
861
862static int sis_pcm_create(struct sis7019 *sis)
863{
864 struct snd_pcm *pcm;
865 int rc;
866
867 /* We have 64 voices, and the driver currently records from
868 * only one channel, though that could change in the future.
869 */
870 rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
871 if (rc)
872 return rc;
873
874 pcm->private_data = sis;
875 strcpy(pcm->name, "SiS7019");
876 sis->pcm = pcm;
877
878 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
879 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
880
881 /* Try to preallocate some memory, but it's not the end of the
882 * world if this fails.
883 */
884 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
885 &sis->pci->dev, 64*1024, 128*1024);
886
887 return 0;
888}
889
890static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
891{
892 unsigned long io = sis->ioport;
893 unsigned short val = 0xffff;
894 u16 status;
895 u16 rdy;
896 int count;
897 static const u16 codec_ready[3] = {
898 SIS_AC97_STATUS_CODEC_READY,
899 SIS_AC97_STATUS_CODEC2_READY,
900 SIS_AC97_STATUS_CODEC3_READY,
901 };
902
903 rdy = codec_ready[codec];
904
905
906 /* Get the AC97 semaphore -- software first, so we don't spin
907 * pounding out IO reads on the hardware semaphore...
908 */
909 mutex_lock(&sis->ac97_mutex);
910
911 count = 0xffff;
912 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
913 udelay(1);
914
915 if (!count)
916 goto timeout;
917
918 /* ... and wait for any outstanding commands to complete ...
919 */
920 count = 0xffff;
921 do {
922 status = inw(io + SIS_AC97_STATUS);
923 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
924 break;
925
926 udelay(1);
927 } while (--count);
928
929 if (!count)
930 goto timeout_sema;
931
932 /* ... before sending our command and waiting for it to finish ...
933 */
934 outl(cmd, io + SIS_AC97_CMD);
935 udelay(10);
936
937 count = 0xffff;
938 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
939 udelay(1);
940
941 /* ... and reading the results (if any).
942 */
943 val = inl(io + SIS_AC97_CMD) >> 16;
944
945timeout_sema:
946 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
947timeout:
948 mutex_unlock(&sis->ac97_mutex);
949
950 if (!count) {
951 dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
952 codec, cmd);
953 }
954
955 return val;
956}
957
958static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
959 unsigned short val)
960{
961 static const u32 cmd[3] = {
962 SIS_AC97_CMD_CODEC_WRITE,
963 SIS_AC97_CMD_CODEC2_WRITE,
964 SIS_AC97_CMD_CODEC3_WRITE,
965 };
966 sis_ac97_rw(ac97->private_data, ac97->num,
967 (val << 16) | (reg << 8) | cmd[ac97->num]);
968}
969
970static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
971{
972 static const u32 cmd[3] = {
973 SIS_AC97_CMD_CODEC_READ,
974 SIS_AC97_CMD_CODEC2_READ,
975 SIS_AC97_CMD_CODEC3_READ,
976 };
977 return sis_ac97_rw(ac97->private_data, ac97->num,
978 (reg << 8) | cmd[ac97->num]);
979}
980
981static int sis_mixer_create(struct sis7019 *sis)
982{
983 struct snd_ac97_bus *bus;
984 struct snd_ac97_template ac97;
985 static const struct snd_ac97_bus_ops ops = {
986 .write = sis_ac97_write,
987 .read = sis_ac97_read,
988 };
989 int rc;
990
991 memset(&ac97, 0, sizeof(ac97));
992 ac97.private_data = sis;
993
994 rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
995 if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
996 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
997 ac97.num = 1;
998 if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
999 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1000 ac97.num = 2;
1001 if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1002 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1003
1004 /* If we return an error here, then snd_card_free() should
1005 * free up any ac97 codecs that got created, as well as the bus.
1006 */
1007 return rc;
1008}
1009
1010static void sis_free_suspend(struct sis7019 *sis)
1011{
1012 int i;
1013
1014 for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1015 kfree(sis->suspend_state[i]);
1016}
1017
1018static int sis_chip_free(struct sis7019 *sis)
1019{
1020 /* Reset the chip, and disable all interrputs.
1021 */
1022 outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1023 udelay(25);
1024 outl(0, sis->ioport + SIS_GCR);
1025 outl(0, sis->ioport + SIS_GIER);
1026
1027 /* Now, free everything we allocated.
1028 */
1029 if (sis->irq >= 0)
1030 free_irq(sis->irq, sis);
1031
1032 iounmap(sis->ioaddr);
1033 pci_release_regions(sis->pci);
1034 pci_disable_device(sis->pci);
1035 sis_free_suspend(sis);
1036 return 0;
1037}
1038
1039static int sis_dev_free(struct snd_device *dev)
1040{
1041 struct sis7019 *sis = dev->device_data;
1042 return sis_chip_free(sis);
1043}
1044
1045static int sis_chip_init(struct sis7019 *sis)
1046{
1047 unsigned long io = sis->ioport;
1048 void __iomem *ioaddr = sis->ioaddr;
1049 unsigned long timeout;
1050 u16 status;
1051 int count;
1052 int i;
1053
1054 /* Reset the audio controller
1055 */
1056 outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1057 udelay(25);
1058 outl(0, io + SIS_GCR);
1059
1060 /* Get the AC-link semaphore, and reset the codecs
1061 */
1062 count = 0xffff;
1063 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1064 udelay(1);
1065
1066 if (!count)
1067 return -EIO;
1068
1069 outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1070 udelay(250);
1071
1072 count = 0xffff;
1073 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1074 udelay(1);
1075
1076 /* Command complete, we can let go of the semaphore now.
1077 */
1078 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1079 if (!count)
1080 return -EIO;
1081
1082 /* Now that we've finished the reset, find out what's attached.
1083 * There are some codec/board combinations that take an extremely
1084 * long time to come up. 350+ ms has been observed in the field,
1085 * so we'll give them up to 500ms.
1086 */
1087 sis->codecs_present = 0;
1088 timeout = msecs_to_jiffies(500) + jiffies;
1089 while (time_before_eq(jiffies, timeout)) {
1090 status = inl(io + SIS_AC97_STATUS);
1091 if (status & SIS_AC97_STATUS_CODEC_READY)
1092 sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1093 if (status & SIS_AC97_STATUS_CODEC2_READY)
1094 sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1095 if (status & SIS_AC97_STATUS_CODEC3_READY)
1096 sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1097
1098 if (sis->codecs_present == codecs)
1099 break;
1100
1101 msleep(1);
1102 }
1103
1104 /* All done, check for errors.
1105 */
1106 if (!sis->codecs_present) {
1107 dev_err(&sis->pci->dev, "could not find any codecs\n");
1108 return -EIO;
1109 }
1110
1111 if (sis->codecs_present != codecs) {
1112 dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1113 sis->codecs_present, codecs);
1114 }
1115
1116 /* Let the hardware know that the audio driver is alive,
1117 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1118 * record channels. We're going to want to use Variable Rate Audio
1119 * for recording, to avoid needlessly resampling from 48kHZ.
1120 */
1121 outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1122 outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1123 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1124 SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1125 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1126
1127 /* All AC97 PCM slots should be sourced from sub-mixer 0.
1128 */
1129 outl(0, io + SIS_AC97_PSR);
1130
1131 /* There is only one valid DMA setup for a PCI environment.
1132 */
1133 outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1134
1135 /* Reset the synchronization groups for all of the channels
1136 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1137 * we'll need to change how we handle these. Until then, we just
1138 * assign sub-mixer 0 to all playback channels, and avoid any
1139 * attenuation on the audio.
1140 */
1141 outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1142 outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1143 outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1144 outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1145 outl(0, io + SIS_MIXER_SYNC_GROUP);
1146
1147 for (i = 0; i < 64; i++) {
1148 writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1149 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1150 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1151 }
1152
1153 /* Don't attenuate any audio set for the wave amplifier.
1154 *
1155 * FIXME: Maximum attenuation is set for the music amp, which will
1156 * need to change if we start using the synth engine.
1157 */
1158 outl(0xffff0000, io + SIS_WEVCR);
1159
1160 /* Ensure that the wave engine is in normal operating mode.
1161 */
1162 outl(0, io + SIS_WECCR);
1163
1164 /* Go ahead and enable the DMA interrupts. They won't go live
1165 * until we start a channel.
1166 */
1167 outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1168 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1169
1170 return 0;
1171}
1172
1173#ifdef CONFIG_PM_SLEEP
1174static int sis_suspend(struct device *dev)
1175{
1176 struct snd_card *card = dev_get_drvdata(dev);
1177 struct sis7019 *sis = card->private_data;
1178 void __iomem *ioaddr = sis->ioaddr;
1179 int i;
1180
1181 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1182 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1183 snd_ac97_suspend(sis->ac97[0]);
1184 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1185 snd_ac97_suspend(sis->ac97[1]);
1186 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1187 snd_ac97_suspend(sis->ac97[2]);
1188
1189 /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1190 */
1191 if (sis->irq >= 0) {
1192 free_irq(sis->irq, sis);
1193 sis->irq = -1;
1194 }
1195
1196 /* Save the internal state away
1197 */
1198 for (i = 0; i < 4; i++) {
1199 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1200 ioaddr += 4096;
1201 }
1202
1203 return 0;
1204}
1205
1206static int sis_resume(struct device *dev)
1207{
1208 struct pci_dev *pci = to_pci_dev(dev);
1209 struct snd_card *card = dev_get_drvdata(dev);
1210 struct sis7019 *sis = card->private_data;
1211 void __iomem *ioaddr = sis->ioaddr;
1212 int i;
1213
1214 if (sis_chip_init(sis)) {
1215 dev_err(&pci->dev, "unable to re-init controller\n");
1216 goto error;
1217 }
1218
1219 if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1220 KBUILD_MODNAME, sis)) {
1221 dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1222 goto error;
1223 }
1224
1225 /* Restore saved state, then clear out the page we use for the
1226 * silence buffer.
1227 */
1228 for (i = 0; i < 4; i++) {
1229 memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1230 ioaddr += 4096;
1231 }
1232
1233 memset(sis->suspend_state[0], 0, 4096);
1234
1235 sis->irq = pci->irq;
1236
1237 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1238 snd_ac97_resume(sis->ac97[0]);
1239 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1240 snd_ac97_resume(sis->ac97[1]);
1241 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1242 snd_ac97_resume(sis->ac97[2]);
1243
1244 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1245 return 0;
1246
1247error:
1248 snd_card_disconnect(card);
1249 return -EIO;
1250}
1251
1252static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1253#define SIS_PM_OPS &sis_pm
1254#else
1255#define SIS_PM_OPS NULL
1256#endif /* CONFIG_PM_SLEEP */
1257
1258static int sis_alloc_suspend(struct sis7019 *sis)
1259{
1260 int i;
1261
1262 /* We need 16K to store the internal wave engine state during a
1263 * suspend, but we don't need it to be contiguous, so play nice
1264 * with the memory system. We'll also use this area for a silence
1265 * buffer.
1266 */
1267 for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1268 sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1269 if (!sis->suspend_state[i])
1270 return -ENOMEM;
1271 }
1272 memset(sis->suspend_state[0], 0, 4096);
1273
1274 return 0;
1275}
1276
1277static int sis_chip_create(struct snd_card *card,
1278 struct pci_dev *pci)
1279{
1280 struct sis7019 *sis = card->private_data;
1281 struct voice *voice;
1282 static const struct snd_device_ops ops = {
1283 .dev_free = sis_dev_free,
1284 };
1285 int rc;
1286 int i;
1287
1288 rc = pci_enable_device(pci);
1289 if (rc)
1290 goto error_out;
1291
1292 rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1293 if (rc < 0) {
1294 dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1295 goto error_out_enabled;
1296 }
1297
1298 memset(sis, 0, sizeof(*sis));
1299 mutex_init(&sis->ac97_mutex);
1300 spin_lock_init(&sis->voice_lock);
1301 sis->card = card;
1302 sis->pci = pci;
1303 sis->irq = -1;
1304 sis->ioport = pci_resource_start(pci, 0);
1305
1306 rc = pci_request_regions(pci, "SiS7019");
1307 if (rc) {
1308 dev_err(&pci->dev, "unable request regions\n");
1309 goto error_out_enabled;
1310 }
1311
1312 rc = -EIO;
1313 sis->ioaddr = ioremap(pci_resource_start(pci, 1), 0x4000);
1314 if (!sis->ioaddr) {
1315 dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1316 goto error_out_cleanup;
1317 }
1318
1319 rc = sis_alloc_suspend(sis);
1320 if (rc < 0) {
1321 dev_err(&pci->dev, "unable to allocate state storage\n");
1322 goto error_out_cleanup;
1323 }
1324
1325 rc = sis_chip_init(sis);
1326 if (rc)
1327 goto error_out_cleanup;
1328
1329 rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1330 sis);
1331 if (rc) {
1332 dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1333 goto error_out_cleanup;
1334 }
1335
1336 sis->irq = pci->irq;
1337 card->sync_irq = sis->irq;
1338 pci_set_master(pci);
1339
1340 for (i = 0; i < 64; i++) {
1341 voice = &sis->voices[i];
1342 voice->num = i;
1343 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1344 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1345 }
1346
1347 voice = &sis->capture_voice;
1348 voice->flags = VOICE_CAPTURE;
1349 voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1350 voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1351
1352 rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1353 if (rc)
1354 goto error_out_cleanup;
1355
1356 return 0;
1357
1358error_out_cleanup:
1359 sis_chip_free(sis);
1360
1361error_out_enabled:
1362 pci_disable_device(pci);
1363
1364error_out:
1365 return rc;
1366}
1367
1368static int snd_sis7019_probe(struct pci_dev *pci,
1369 const struct pci_device_id *pci_id)
1370{
1371 struct snd_card *card;
1372 struct sis7019 *sis;
1373 int rc;
1374
1375 rc = -ENOENT;
1376 if (!enable)
1377 goto error_out;
1378
1379 /* The user can specify which codecs should be present so that we
1380 * can wait for them to show up if they are slow to recover from
1381 * the AC97 cold reset. We default to a single codec, the primary.
1382 *
1383 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1384 */
1385 codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1386 SIS_TERTIARY_CODEC_PRESENT;
1387 if (!codecs)
1388 codecs = SIS_PRIMARY_CODEC_PRESENT;
1389
1390 rc = snd_card_new(&pci->dev, index, id, THIS_MODULE,
1391 sizeof(*sis), &card);
1392 if (rc < 0)
1393 goto error_out;
1394
1395 strcpy(card->driver, "SiS7019");
1396 strcpy(card->shortname, "SiS7019");
1397 rc = sis_chip_create(card, pci);
1398 if (rc)
1399 goto card_error_out;
1400
1401 sis = card->private_data;
1402
1403 rc = sis_mixer_create(sis);
1404 if (rc)
1405 goto card_error_out;
1406
1407 rc = sis_pcm_create(sis);
1408 if (rc)
1409 goto card_error_out;
1410
1411 snprintf(card->longname, sizeof(card->longname),
1412 "%s Audio Accelerator with %s at 0x%lx, irq %d",
1413 card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1414 sis->ioport, sis->irq);
1415
1416 rc = snd_card_register(card);
1417 if (rc)
1418 goto card_error_out;
1419
1420 pci_set_drvdata(pci, card);
1421 return 0;
1422
1423card_error_out:
1424 snd_card_free(card);
1425
1426error_out:
1427 return rc;
1428}
1429
1430static void snd_sis7019_remove(struct pci_dev *pci)
1431{
1432 snd_card_free(pci_get_drvdata(pci));
1433}
1434
1435static struct pci_driver sis7019_driver = {
1436 .name = KBUILD_MODNAME,
1437 .id_table = snd_sis7019_ids,
1438 .probe = snd_sis7019_probe,
1439 .remove = snd_sis7019_remove,
1440 .driver = {
1441 .pm = SIS_PM_OPS,
1442 },
1443};
1444
1445module_pci_driver(sis7019_driver);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for SiS7019 Audio Accelerator
4 *
5 * Copyright (C) 2004-2007, David Dillow
6 * Written by David Dillow <dave@thedillows.org>
7 * Inspired by the Trident 4D-WaveDX/NX driver.
8 *
9 * All rights reserved.
10 */
11
12#include <linux/init.h>
13#include <linux/pci.h>
14#include <linux/time.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/interrupt.h>
18#include <linux/delay.h>
19#include <sound/core.h>
20#include <sound/ac97_codec.h>
21#include <sound/initval.h>
22#include "sis7019.h"
23
24MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
25MODULE_DESCRIPTION("SiS7019");
26MODULE_LICENSE("GPL");
27MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
28
29static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
30static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
31static bool enable = 1;
32static int codecs = 1;
33
34module_param(index, int, 0444);
35MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
36module_param(id, charp, 0444);
37MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
38module_param(enable, bool, 0444);
39MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
40module_param(codecs, int, 0444);
41MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
42
43static const struct pci_device_id snd_sis7019_ids[] = {
44 { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
45 { 0, }
46};
47
48MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
49
50/* There are three timing modes for the voices.
51 *
52 * For both playback and capture, when the buffer is one or two periods long,
53 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
54 * to let us know when the periods have ended.
55 *
56 * When performing playback with more than two periods per buffer, we set
57 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
58 * reach it. We then update the offset and continue on until we are
59 * interrupted for the next period.
60 *
61 * Capture channels do not have a SSO, so we allocate a playback channel to
62 * use as a timer for the capture periods. We use the SSO on the playback
63 * channel to clock out virtual periods, and adjust the virtual period length
64 * to maintain synchronization. This algorithm came from the Trident driver.
65 *
66 * FIXME: It'd be nice to make use of some of the synth features in the
67 * hardware, but a woeful lack of documentation is a significant roadblock.
68 */
69struct voice {
70 u16 flags;
71#define VOICE_IN_USE 1
72#define VOICE_CAPTURE 2
73#define VOICE_SSO_TIMING 4
74#define VOICE_SYNC_TIMING 8
75 u16 sync_cso;
76 u16 period_size;
77 u16 buffer_size;
78 u16 sync_period_size;
79 u16 sync_buffer_size;
80 u32 sso;
81 u32 vperiod;
82 struct snd_pcm_substream *substream;
83 struct voice *timing;
84 void __iomem *ctrl_base;
85 void __iomem *wave_base;
86 void __iomem *sync_base;
87 int num;
88};
89
90/* We need four pages to store our wave parameters during a suspend. If
91 * we're not doing power management, we still need to allocate a page
92 * for the silence buffer.
93 */
94#ifdef CONFIG_PM_SLEEP
95#define SIS_SUSPEND_PAGES 4
96#else
97#define SIS_SUSPEND_PAGES 1
98#endif
99
100struct sis7019 {
101 unsigned long ioport;
102 void __iomem *ioaddr;
103 int irq;
104 int codecs_present;
105
106 struct pci_dev *pci;
107 struct snd_pcm *pcm;
108 struct snd_card *card;
109 struct snd_ac97 *ac97[3];
110
111 /* Protect against more than one thread hitting the AC97
112 * registers (in a more polite manner than pounding the hardware
113 * semaphore)
114 */
115 struct mutex ac97_mutex;
116
117 /* voice_lock protects allocation/freeing of the voice descriptions
118 */
119 spinlock_t voice_lock;
120
121 struct voice voices[64];
122 struct voice capture_voice;
123
124 /* Allocate pages to store the internal wave state during
125 * suspends. When we're operating, this can be used as a silence
126 * buffer for a timing channel.
127 */
128 void *suspend_state[SIS_SUSPEND_PAGES];
129
130 int silence_users;
131 dma_addr_t silence_dma_addr;
132};
133
134/* These values are also used by the module param 'codecs' to indicate
135 * which codecs should be present.
136 */
137#define SIS_PRIMARY_CODEC_PRESENT 0x0001
138#define SIS_SECONDARY_CODEC_PRESENT 0x0002
139#define SIS_TERTIARY_CODEC_PRESENT 0x0004
140
141/* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
142 * documented range of 8-0xfff8 samples. Given that they are 0-based,
143 * that places our period/buffer range at 9-0xfff9 samples. That makes the
144 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
145 * max samples / min samples gives us the max periods in a buffer.
146 *
147 * We'll add a constraint upon open that limits the period and buffer sample
148 * size to values that are legal for the hardware.
149 */
150static const struct snd_pcm_hardware sis_playback_hw_info = {
151 .info = (SNDRV_PCM_INFO_MMAP |
152 SNDRV_PCM_INFO_MMAP_VALID |
153 SNDRV_PCM_INFO_INTERLEAVED |
154 SNDRV_PCM_INFO_BLOCK_TRANSFER |
155 SNDRV_PCM_INFO_SYNC_START |
156 SNDRV_PCM_INFO_RESUME),
157 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
158 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
159 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
160 .rate_min = 4000,
161 .rate_max = 48000,
162 .channels_min = 1,
163 .channels_max = 2,
164 .buffer_bytes_max = (0xfff9 * 4),
165 .period_bytes_min = 9,
166 .period_bytes_max = (0xfff9 * 4),
167 .periods_min = 1,
168 .periods_max = (0xfff9 / 9),
169};
170
171static const struct snd_pcm_hardware sis_capture_hw_info = {
172 .info = (SNDRV_PCM_INFO_MMAP |
173 SNDRV_PCM_INFO_MMAP_VALID |
174 SNDRV_PCM_INFO_INTERLEAVED |
175 SNDRV_PCM_INFO_BLOCK_TRANSFER |
176 SNDRV_PCM_INFO_SYNC_START |
177 SNDRV_PCM_INFO_RESUME),
178 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
179 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
180 .rates = SNDRV_PCM_RATE_48000,
181 .rate_min = 4000,
182 .rate_max = 48000,
183 .channels_min = 1,
184 .channels_max = 2,
185 .buffer_bytes_max = (0xfff9 * 4),
186 .period_bytes_min = 9,
187 .period_bytes_max = (0xfff9 * 4),
188 .periods_min = 1,
189 .periods_max = (0xfff9 / 9),
190};
191
192static void sis_update_sso(struct voice *voice, u16 period)
193{
194 void __iomem *base = voice->ctrl_base;
195
196 voice->sso += period;
197 if (voice->sso >= voice->buffer_size)
198 voice->sso -= voice->buffer_size;
199
200 /* Enforce the documented hardware minimum offset */
201 if (voice->sso < 8)
202 voice->sso = 8;
203
204 /* The SSO is in the upper 16 bits of the register. */
205 writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
206}
207
208static void sis_update_voice(struct voice *voice)
209{
210 if (voice->flags & VOICE_SSO_TIMING) {
211 sis_update_sso(voice, voice->period_size);
212 } else if (voice->flags & VOICE_SYNC_TIMING) {
213 int sync;
214
215 /* If we've not hit the end of the virtual period, update
216 * our records and keep going.
217 */
218 if (voice->vperiod > voice->period_size) {
219 voice->vperiod -= voice->period_size;
220 if (voice->vperiod < voice->period_size)
221 sis_update_sso(voice, voice->vperiod);
222 else
223 sis_update_sso(voice, voice->period_size);
224 return;
225 }
226
227 /* Calculate our relative offset between the target and
228 * the actual CSO value. Since we're operating in a loop,
229 * if the value is more than half way around, we can
230 * consider ourselves wrapped.
231 */
232 sync = voice->sync_cso;
233 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
234 if (sync > (voice->sync_buffer_size / 2))
235 sync -= voice->sync_buffer_size;
236
237 /* If sync is positive, then we interrupted too early, and
238 * we'll need to come back in a few samples and try again.
239 * There's a minimum wait, as it takes some time for the DMA
240 * engine to startup, etc...
241 */
242 if (sync > 0) {
243 if (sync < 16)
244 sync = 16;
245 sis_update_sso(voice, sync);
246 return;
247 }
248
249 /* Ok, we interrupted right on time, or (hopefully) just
250 * a bit late. We'll adjst our next waiting period based
251 * on how close we got.
252 *
253 * We need to stay just behind the actual channel to ensure
254 * it really is past a period when we get our interrupt --
255 * otherwise we'll fall into the early code above and have
256 * a minimum wait time, which makes us quite late here,
257 * eating into the user's time to refresh the buffer, esp.
258 * if using small periods.
259 *
260 * If we're less than 9 samples behind, we're on target.
261 * Otherwise, shorten the next vperiod by the amount we've
262 * been delayed.
263 */
264 if (sync > -9)
265 voice->vperiod = voice->sync_period_size + 1;
266 else
267 voice->vperiod = voice->sync_period_size + sync + 10;
268
269 if (voice->vperiod < voice->buffer_size) {
270 sis_update_sso(voice, voice->vperiod);
271 voice->vperiod = 0;
272 } else
273 sis_update_sso(voice, voice->period_size);
274
275 sync = voice->sync_cso + voice->sync_period_size;
276 if (sync >= voice->sync_buffer_size)
277 sync -= voice->sync_buffer_size;
278 voice->sync_cso = sync;
279 }
280
281 snd_pcm_period_elapsed(voice->substream);
282}
283
284static void sis_voice_irq(u32 status, struct voice *voice)
285{
286 int bit;
287
288 while (status) {
289 bit = __ffs(status);
290 status >>= bit + 1;
291 voice += bit;
292 sis_update_voice(voice);
293 voice++;
294 }
295}
296
297static irqreturn_t sis_interrupt(int irq, void *dev)
298{
299 struct sis7019 *sis = dev;
300 unsigned long io = sis->ioport;
301 struct voice *voice;
302 u32 intr, status;
303
304 /* We only use the DMA interrupts, and we don't enable any other
305 * source of interrupts. But, it is possible to see an interrupt
306 * status that didn't actually interrupt us, so eliminate anything
307 * we're not expecting to avoid falsely claiming an IRQ, and an
308 * ensuing endless loop.
309 */
310 intr = inl(io + SIS_GISR);
311 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
312 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
313 if (!intr)
314 return IRQ_NONE;
315
316 do {
317 status = inl(io + SIS_PISR_A);
318 if (status) {
319 sis_voice_irq(status, sis->voices);
320 outl(status, io + SIS_PISR_A);
321 }
322
323 status = inl(io + SIS_PISR_B);
324 if (status) {
325 sis_voice_irq(status, &sis->voices[32]);
326 outl(status, io + SIS_PISR_B);
327 }
328
329 status = inl(io + SIS_RISR);
330 if (status) {
331 voice = &sis->capture_voice;
332 if (!voice->timing)
333 snd_pcm_period_elapsed(voice->substream);
334
335 outl(status, io + SIS_RISR);
336 }
337
338 outl(intr, io + SIS_GISR);
339 intr = inl(io + SIS_GISR);
340 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
341 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
342 } while (intr);
343
344 return IRQ_HANDLED;
345}
346
347static u32 sis_rate_to_delta(unsigned int rate)
348{
349 u32 delta;
350
351 /* This was copied from the trident driver, but it seems its gotten
352 * around a bit... nevertheless, it works well.
353 *
354 * We special case 44100 and 8000 since rounding with the equation
355 * does not give us an accurate enough value. For 11025 and 22050
356 * the equation gives us the best answer. All other frequencies will
357 * also use the equation. JDW
358 */
359 if (rate == 44100)
360 delta = 0xeb3;
361 else if (rate == 8000)
362 delta = 0x2ab;
363 else if (rate == 48000)
364 delta = 0x1000;
365 else
366 delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
367 return delta;
368}
369
370static void __sis_map_silence(struct sis7019 *sis)
371{
372 /* Helper function: must hold sis->voice_lock on entry */
373 if (!sis->silence_users)
374 sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
375 sis->suspend_state[0],
376 4096, DMA_TO_DEVICE);
377 sis->silence_users++;
378}
379
380static void __sis_unmap_silence(struct sis7019 *sis)
381{
382 /* Helper function: must hold sis->voice_lock on entry */
383 sis->silence_users--;
384 if (!sis->silence_users)
385 dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
386 DMA_TO_DEVICE);
387}
388
389static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
390{
391 unsigned long flags;
392
393 spin_lock_irqsave(&sis->voice_lock, flags);
394 if (voice->timing) {
395 __sis_unmap_silence(sis);
396 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
397 VOICE_SYNC_TIMING);
398 voice->timing = NULL;
399 }
400 voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
401 spin_unlock_irqrestore(&sis->voice_lock, flags);
402}
403
404static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
405{
406 /* Must hold the voice_lock on entry */
407 struct voice *voice;
408 int i;
409
410 for (i = 0; i < 64; i++) {
411 voice = &sis->voices[i];
412 if (voice->flags & VOICE_IN_USE)
413 continue;
414 voice->flags |= VOICE_IN_USE;
415 goto found_one;
416 }
417 voice = NULL;
418
419found_one:
420 return voice;
421}
422
423static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
424{
425 struct voice *voice;
426 unsigned long flags;
427
428 spin_lock_irqsave(&sis->voice_lock, flags);
429 voice = __sis_alloc_playback_voice(sis);
430 spin_unlock_irqrestore(&sis->voice_lock, flags);
431
432 return voice;
433}
434
435static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
436 struct snd_pcm_hw_params *hw_params)
437{
438 struct sis7019 *sis = snd_pcm_substream_chip(substream);
439 struct snd_pcm_runtime *runtime = substream->runtime;
440 struct voice *voice = runtime->private_data;
441 unsigned int period_size, buffer_size;
442 unsigned long flags;
443 int needed;
444
445 /* If there are one or two periods per buffer, we don't need a
446 * timing voice, as we can use the capture channel's interrupts
447 * to clock out the periods.
448 */
449 period_size = params_period_size(hw_params);
450 buffer_size = params_buffer_size(hw_params);
451 needed = (period_size != buffer_size &&
452 period_size != (buffer_size / 2));
453
454 if (needed && !voice->timing) {
455 spin_lock_irqsave(&sis->voice_lock, flags);
456 voice->timing = __sis_alloc_playback_voice(sis);
457 if (voice->timing)
458 __sis_map_silence(sis);
459 spin_unlock_irqrestore(&sis->voice_lock, flags);
460 if (!voice->timing)
461 return -ENOMEM;
462 voice->timing->substream = substream;
463 } else if (!needed && voice->timing) {
464 sis_free_voice(sis, voice);
465 voice->timing = NULL;
466 }
467
468 return 0;
469}
470
471static int sis_playback_open(struct snd_pcm_substream *substream)
472{
473 struct sis7019 *sis = snd_pcm_substream_chip(substream);
474 struct snd_pcm_runtime *runtime = substream->runtime;
475 struct voice *voice;
476
477 voice = sis_alloc_playback_voice(sis);
478 if (!voice)
479 return -EAGAIN;
480
481 voice->substream = substream;
482 runtime->private_data = voice;
483 runtime->hw = sis_playback_hw_info;
484 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
485 9, 0xfff9);
486 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
487 9, 0xfff9);
488 snd_pcm_set_sync(substream);
489 return 0;
490}
491
492static int sis_substream_close(struct snd_pcm_substream *substream)
493{
494 struct sis7019 *sis = snd_pcm_substream_chip(substream);
495 struct snd_pcm_runtime *runtime = substream->runtime;
496 struct voice *voice = runtime->private_data;
497
498 sis_free_voice(sis, voice);
499 return 0;
500}
501
502static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
503{
504 struct snd_pcm_runtime *runtime = substream->runtime;
505 struct voice *voice = runtime->private_data;
506 void __iomem *ctrl_base = voice->ctrl_base;
507 void __iomem *wave_base = voice->wave_base;
508 u32 format, dma_addr, control, sso_eso, delta, reg;
509 u16 leo;
510
511 /* We rely on the PCM core to ensure that the parameters for this
512 * substream do not change on us while we're programming the HW.
513 */
514 format = 0;
515 if (snd_pcm_format_width(runtime->format) == 8)
516 format |= SIS_PLAY_DMA_FORMAT_8BIT;
517 if (!snd_pcm_format_signed(runtime->format))
518 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
519 if (runtime->channels == 1)
520 format |= SIS_PLAY_DMA_FORMAT_MONO;
521
522 /* The baseline setup is for a single period per buffer, and
523 * we add bells and whistles as needed from there.
524 */
525 dma_addr = runtime->dma_addr;
526 leo = runtime->buffer_size - 1;
527 control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
528 sso_eso = leo;
529
530 if (runtime->period_size == (runtime->buffer_size / 2)) {
531 control |= SIS_PLAY_DMA_INTR_AT_MLP;
532 } else if (runtime->period_size != runtime->buffer_size) {
533 voice->flags |= VOICE_SSO_TIMING;
534 voice->sso = runtime->period_size - 1;
535 voice->period_size = runtime->period_size;
536 voice->buffer_size = runtime->buffer_size;
537
538 control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
539 control |= SIS_PLAY_DMA_INTR_AT_SSO;
540 sso_eso |= (runtime->period_size - 1) << 16;
541 }
542
543 delta = sis_rate_to_delta(runtime->rate);
544
545 /* Ok, we're ready to go, set up the channel.
546 */
547 writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
548 writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
549 writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
550 writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
551
552 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
553 writel(0, wave_base + reg);
554
555 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
556 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
557 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
558 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
559 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
560 wave_base + SIS_WAVE_CHANNEL_CONTROL);
561
562 /* Force PCI writes to post. */
563 readl(ctrl_base);
564
565 return 0;
566}
567
568static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
569{
570 struct sis7019 *sis = snd_pcm_substream_chip(substream);
571 unsigned long io = sis->ioport;
572 struct snd_pcm_substream *s;
573 struct voice *voice;
574 void *chip;
575 int starting;
576 u32 record = 0;
577 u32 play[2] = { 0, 0 };
578
579 /* No locks needed, as the PCM core will hold the locks on the
580 * substreams, and the HW will only start/stop the indicated voices
581 * without changing the state of the others.
582 */
583 switch (cmd) {
584 case SNDRV_PCM_TRIGGER_START:
585 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
586 case SNDRV_PCM_TRIGGER_RESUME:
587 starting = 1;
588 break;
589 case SNDRV_PCM_TRIGGER_STOP:
590 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
591 case SNDRV_PCM_TRIGGER_SUSPEND:
592 starting = 0;
593 break;
594 default:
595 return -EINVAL;
596 }
597
598 snd_pcm_group_for_each_entry(s, substream) {
599 /* Make sure it is for us... */
600 chip = snd_pcm_substream_chip(s);
601 if (chip != sis)
602 continue;
603
604 voice = s->runtime->private_data;
605 if (voice->flags & VOICE_CAPTURE) {
606 record |= 1 << voice->num;
607 voice = voice->timing;
608 }
609
610 /* voice could be NULL if this a recording stream, and it
611 * doesn't have an external timing channel.
612 */
613 if (voice)
614 play[voice->num / 32] |= 1 << (voice->num & 0x1f);
615
616 snd_pcm_trigger_done(s, substream);
617 }
618
619 if (starting) {
620 if (record)
621 outl(record, io + SIS_RECORD_START_REG);
622 if (play[0])
623 outl(play[0], io + SIS_PLAY_START_A_REG);
624 if (play[1])
625 outl(play[1], io + SIS_PLAY_START_B_REG);
626 } else {
627 if (record)
628 outl(record, io + SIS_RECORD_STOP_REG);
629 if (play[0])
630 outl(play[0], io + SIS_PLAY_STOP_A_REG);
631 if (play[1])
632 outl(play[1], io + SIS_PLAY_STOP_B_REG);
633 }
634 return 0;
635}
636
637static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
638{
639 struct snd_pcm_runtime *runtime = substream->runtime;
640 struct voice *voice = runtime->private_data;
641 u32 cso;
642
643 cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
644 cso &= 0xffff;
645 return cso;
646}
647
648static int sis_capture_open(struct snd_pcm_substream *substream)
649{
650 struct sis7019 *sis = snd_pcm_substream_chip(substream);
651 struct snd_pcm_runtime *runtime = substream->runtime;
652 struct voice *voice = &sis->capture_voice;
653 unsigned long flags;
654
655 /* FIXME: The driver only supports recording from one channel
656 * at the moment, but it could support more.
657 */
658 spin_lock_irqsave(&sis->voice_lock, flags);
659 if (voice->flags & VOICE_IN_USE)
660 voice = NULL;
661 else
662 voice->flags |= VOICE_IN_USE;
663 spin_unlock_irqrestore(&sis->voice_lock, flags);
664
665 if (!voice)
666 return -EAGAIN;
667
668 voice->substream = substream;
669 runtime->private_data = voice;
670 runtime->hw = sis_capture_hw_info;
671 runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
672 snd_pcm_limit_hw_rates(runtime);
673 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
674 9, 0xfff9);
675 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
676 9, 0xfff9);
677 snd_pcm_set_sync(substream);
678 return 0;
679}
680
681static int sis_capture_hw_params(struct snd_pcm_substream *substream,
682 struct snd_pcm_hw_params *hw_params)
683{
684 struct sis7019 *sis = snd_pcm_substream_chip(substream);
685 int rc;
686
687 rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
688 params_rate(hw_params));
689 if (rc)
690 goto out;
691
692 rc = sis_alloc_timing_voice(substream, hw_params);
693
694out:
695 return rc;
696}
697
698static void sis_prepare_timing_voice(struct voice *voice,
699 struct snd_pcm_substream *substream)
700{
701 struct sis7019 *sis = snd_pcm_substream_chip(substream);
702 struct snd_pcm_runtime *runtime = substream->runtime;
703 struct voice *timing = voice->timing;
704 void __iomem *play_base = timing->ctrl_base;
705 void __iomem *wave_base = timing->wave_base;
706 u16 buffer_size, period_size;
707 u32 format, control, sso_eso, delta;
708 u32 vperiod, sso, reg;
709
710 /* Set our initial buffer and period as large as we can given a
711 * single page of silence.
712 */
713 buffer_size = 4096 / runtime->channels;
714 buffer_size /= snd_pcm_format_size(runtime->format, 1);
715 period_size = buffer_size;
716
717 /* Initially, we want to interrupt just a bit behind the end of
718 * the period we're clocking out. 12 samples seems to give a good
719 * delay.
720 *
721 * We want to spread our interrupts throughout the virtual period,
722 * so that we don't end up with two interrupts back to back at the
723 * end -- this helps minimize the effects of any jitter. Adjust our
724 * clocking period size so that the last period is at least a fourth
725 * of a full period.
726 *
727 * This is all moot if we don't need to use virtual periods.
728 */
729 vperiod = runtime->period_size + 12;
730 if (vperiod > period_size) {
731 u16 tail = vperiod % period_size;
732 u16 quarter_period = period_size / 4;
733
734 if (tail && tail < quarter_period) {
735 u16 loops = vperiod / period_size;
736
737 tail = quarter_period - tail;
738 tail += loops - 1;
739 tail /= loops;
740 period_size -= tail;
741 }
742
743 sso = period_size - 1;
744 } else {
745 /* The initial period will fit inside the buffer, so we
746 * don't need to use virtual periods -- disable them.
747 */
748 period_size = runtime->period_size;
749 sso = vperiod - 1;
750 vperiod = 0;
751 }
752
753 /* The interrupt handler implements the timing synchronization, so
754 * setup its state.
755 */
756 timing->flags |= VOICE_SYNC_TIMING;
757 timing->sync_base = voice->ctrl_base;
758 timing->sync_cso = runtime->period_size;
759 timing->sync_period_size = runtime->period_size;
760 timing->sync_buffer_size = runtime->buffer_size;
761 timing->period_size = period_size;
762 timing->buffer_size = buffer_size;
763 timing->sso = sso;
764 timing->vperiod = vperiod;
765
766 /* Using unsigned samples with the all-zero silence buffer
767 * forces the output to the lower rail, killing playback.
768 * So ignore unsigned vs signed -- it doesn't change the timing.
769 */
770 format = 0;
771 if (snd_pcm_format_width(runtime->format) == 8)
772 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
773 if (runtime->channels == 1)
774 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
775
776 control = timing->buffer_size - 1;
777 control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
778 sso_eso = timing->buffer_size - 1;
779 sso_eso |= timing->sso << 16;
780
781 delta = sis_rate_to_delta(runtime->rate);
782
783 /* We've done the math, now configure the channel.
784 */
785 writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
786 writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
787 writel(control, play_base + SIS_PLAY_DMA_CONTROL);
788 writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
789
790 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
791 writel(0, wave_base + reg);
792
793 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
794 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
795 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
796 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
797 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
798 wave_base + SIS_WAVE_CHANNEL_CONTROL);
799}
800
801static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
802{
803 struct snd_pcm_runtime *runtime = substream->runtime;
804 struct voice *voice = runtime->private_data;
805 void __iomem *rec_base = voice->ctrl_base;
806 u32 format, dma_addr, control;
807 u16 leo;
808
809 /* We rely on the PCM core to ensure that the parameters for this
810 * substream do not change on us while we're programming the HW.
811 */
812 format = 0;
813 if (snd_pcm_format_width(runtime->format) == 8)
814 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
815 if (!snd_pcm_format_signed(runtime->format))
816 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
817 if (runtime->channels == 1)
818 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
819
820 dma_addr = runtime->dma_addr;
821 leo = runtime->buffer_size - 1;
822 control = leo | SIS_CAPTURE_DMA_LOOP;
823
824 /* If we've got more than two periods per buffer, then we have
825 * use a timing voice to clock out the periods. Otherwise, we can
826 * use the capture channel's interrupts.
827 */
828 if (voice->timing) {
829 sis_prepare_timing_voice(voice, substream);
830 } else {
831 control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
832 if (runtime->period_size != runtime->buffer_size)
833 control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
834 }
835
836 writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
837 writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
838 writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
839
840 /* Force the writes to post. */
841 readl(rec_base);
842
843 return 0;
844}
845
846static const struct snd_pcm_ops sis_playback_ops = {
847 .open = sis_playback_open,
848 .close = sis_substream_close,
849 .prepare = sis_pcm_playback_prepare,
850 .trigger = sis_pcm_trigger,
851 .pointer = sis_pcm_pointer,
852};
853
854static const struct snd_pcm_ops sis_capture_ops = {
855 .open = sis_capture_open,
856 .close = sis_substream_close,
857 .hw_params = sis_capture_hw_params,
858 .prepare = sis_pcm_capture_prepare,
859 .trigger = sis_pcm_trigger,
860 .pointer = sis_pcm_pointer,
861};
862
863static int sis_pcm_create(struct sis7019 *sis)
864{
865 struct snd_pcm *pcm;
866 int rc;
867
868 /* We have 64 voices, and the driver currently records from
869 * only one channel, though that could change in the future.
870 */
871 rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
872 if (rc)
873 return rc;
874
875 pcm->private_data = sis;
876 strcpy(pcm->name, "SiS7019");
877 sis->pcm = pcm;
878
879 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
880 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
881
882 /* Try to preallocate some memory, but it's not the end of the
883 * world if this fails.
884 */
885 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
886 &sis->pci->dev, 64*1024, 128*1024);
887
888 return 0;
889}
890
891static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
892{
893 unsigned long io = sis->ioport;
894 unsigned short val = 0xffff;
895 u16 status;
896 u16 rdy;
897 int count;
898 static const u16 codec_ready[3] = {
899 SIS_AC97_STATUS_CODEC_READY,
900 SIS_AC97_STATUS_CODEC2_READY,
901 SIS_AC97_STATUS_CODEC3_READY,
902 };
903
904 rdy = codec_ready[codec];
905
906
907 /* Get the AC97 semaphore -- software first, so we don't spin
908 * pounding out IO reads on the hardware semaphore...
909 */
910 mutex_lock(&sis->ac97_mutex);
911
912 count = 0xffff;
913 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
914 udelay(1);
915
916 if (!count)
917 goto timeout;
918
919 /* ... and wait for any outstanding commands to complete ...
920 */
921 count = 0xffff;
922 do {
923 status = inw(io + SIS_AC97_STATUS);
924 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
925 break;
926
927 udelay(1);
928 } while (--count);
929
930 if (!count)
931 goto timeout_sema;
932
933 /* ... before sending our command and waiting for it to finish ...
934 */
935 outl(cmd, io + SIS_AC97_CMD);
936 udelay(10);
937
938 count = 0xffff;
939 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
940 udelay(1);
941
942 /* ... and reading the results (if any).
943 */
944 val = inl(io + SIS_AC97_CMD) >> 16;
945
946timeout_sema:
947 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
948timeout:
949 mutex_unlock(&sis->ac97_mutex);
950
951 if (!count) {
952 dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
953 codec, cmd);
954 }
955
956 return val;
957}
958
959static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
960 unsigned short val)
961{
962 static const u32 cmd[3] = {
963 SIS_AC97_CMD_CODEC_WRITE,
964 SIS_AC97_CMD_CODEC2_WRITE,
965 SIS_AC97_CMD_CODEC3_WRITE,
966 };
967 sis_ac97_rw(ac97->private_data, ac97->num,
968 (val << 16) | (reg << 8) | cmd[ac97->num]);
969}
970
971static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
972{
973 static const u32 cmd[3] = {
974 SIS_AC97_CMD_CODEC_READ,
975 SIS_AC97_CMD_CODEC2_READ,
976 SIS_AC97_CMD_CODEC3_READ,
977 };
978 return sis_ac97_rw(ac97->private_data, ac97->num,
979 (reg << 8) | cmd[ac97->num]);
980}
981
982static int sis_mixer_create(struct sis7019 *sis)
983{
984 struct snd_ac97_bus *bus;
985 struct snd_ac97_template ac97;
986 static const struct snd_ac97_bus_ops ops = {
987 .write = sis_ac97_write,
988 .read = sis_ac97_read,
989 };
990 int rc;
991
992 memset(&ac97, 0, sizeof(ac97));
993 ac97.private_data = sis;
994
995 rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
996 if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
997 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
998 ac97.num = 1;
999 if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1000 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1001 ac97.num = 2;
1002 if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1003 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1004
1005 /* If we return an error here, then snd_card_free() should
1006 * free up any ac97 codecs that got created, as well as the bus.
1007 */
1008 return rc;
1009}
1010
1011static void sis_free_suspend(struct sis7019 *sis)
1012{
1013 int i;
1014
1015 for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1016 kfree(sis->suspend_state[i]);
1017}
1018
1019static int sis_chip_free(struct sis7019 *sis)
1020{
1021 /* Reset the chip, and disable all interrputs.
1022 */
1023 outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1024 udelay(25);
1025 outl(0, sis->ioport + SIS_GCR);
1026 outl(0, sis->ioport + SIS_GIER);
1027
1028 /* Now, free everything we allocated.
1029 */
1030 if (sis->irq >= 0)
1031 free_irq(sis->irq, sis);
1032
1033 iounmap(sis->ioaddr);
1034 pci_release_regions(sis->pci);
1035 pci_disable_device(sis->pci);
1036 sis_free_suspend(sis);
1037 return 0;
1038}
1039
1040static int sis_dev_free(struct snd_device *dev)
1041{
1042 struct sis7019 *sis = dev->device_data;
1043 return sis_chip_free(sis);
1044}
1045
1046static int sis_chip_init(struct sis7019 *sis)
1047{
1048 unsigned long io = sis->ioport;
1049 void __iomem *ioaddr = sis->ioaddr;
1050 unsigned long timeout;
1051 u16 status;
1052 int count;
1053 int i;
1054
1055 /* Reset the audio controller
1056 */
1057 outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1058 udelay(25);
1059 outl(0, io + SIS_GCR);
1060
1061 /* Get the AC-link semaphore, and reset the codecs
1062 */
1063 count = 0xffff;
1064 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1065 udelay(1);
1066
1067 if (!count)
1068 return -EIO;
1069
1070 outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1071 udelay(250);
1072
1073 count = 0xffff;
1074 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1075 udelay(1);
1076
1077 /* Command complete, we can let go of the semaphore now.
1078 */
1079 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1080 if (!count)
1081 return -EIO;
1082
1083 /* Now that we've finished the reset, find out what's attached.
1084 * There are some codec/board combinations that take an extremely
1085 * long time to come up. 350+ ms has been observed in the field,
1086 * so we'll give them up to 500ms.
1087 */
1088 sis->codecs_present = 0;
1089 timeout = msecs_to_jiffies(500) + jiffies;
1090 while (time_before_eq(jiffies, timeout)) {
1091 status = inl(io + SIS_AC97_STATUS);
1092 if (status & SIS_AC97_STATUS_CODEC_READY)
1093 sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1094 if (status & SIS_AC97_STATUS_CODEC2_READY)
1095 sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1096 if (status & SIS_AC97_STATUS_CODEC3_READY)
1097 sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1098
1099 if (sis->codecs_present == codecs)
1100 break;
1101
1102 msleep(1);
1103 }
1104
1105 /* All done, check for errors.
1106 */
1107 if (!sis->codecs_present) {
1108 dev_err(&sis->pci->dev, "could not find any codecs\n");
1109 return -EIO;
1110 }
1111
1112 if (sis->codecs_present != codecs) {
1113 dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1114 sis->codecs_present, codecs);
1115 }
1116
1117 /* Let the hardware know that the audio driver is alive,
1118 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1119 * record channels. We're going to want to use Variable Rate Audio
1120 * for recording, to avoid needlessly resampling from 48kHZ.
1121 */
1122 outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1123 outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1124 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1125 SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1126 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1127
1128 /* All AC97 PCM slots should be sourced from sub-mixer 0.
1129 */
1130 outl(0, io + SIS_AC97_PSR);
1131
1132 /* There is only one valid DMA setup for a PCI environment.
1133 */
1134 outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1135
1136 /* Reset the synchronization groups for all of the channels
1137 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1138 * we'll need to change how we handle these. Until then, we just
1139 * assign sub-mixer 0 to all playback channels, and avoid any
1140 * attenuation on the audio.
1141 */
1142 outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1143 outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1144 outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1145 outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1146 outl(0, io + SIS_MIXER_SYNC_GROUP);
1147
1148 for (i = 0; i < 64; i++) {
1149 writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1150 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1151 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1152 }
1153
1154 /* Don't attenuate any audio set for the wave amplifier.
1155 *
1156 * FIXME: Maximum attenuation is set for the music amp, which will
1157 * need to change if we start using the synth engine.
1158 */
1159 outl(0xffff0000, io + SIS_WEVCR);
1160
1161 /* Ensure that the wave engine is in normal operating mode.
1162 */
1163 outl(0, io + SIS_WECCR);
1164
1165 /* Go ahead and enable the DMA interrupts. They won't go live
1166 * until we start a channel.
1167 */
1168 outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1169 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1170
1171 return 0;
1172}
1173
1174#ifdef CONFIG_PM_SLEEP
1175static int sis_suspend(struct device *dev)
1176{
1177 struct snd_card *card = dev_get_drvdata(dev);
1178 struct sis7019 *sis = card->private_data;
1179 void __iomem *ioaddr = sis->ioaddr;
1180 int i;
1181
1182 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1183 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1184 snd_ac97_suspend(sis->ac97[0]);
1185 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1186 snd_ac97_suspend(sis->ac97[1]);
1187 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1188 snd_ac97_suspend(sis->ac97[2]);
1189
1190 /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1191 */
1192 if (sis->irq >= 0) {
1193 free_irq(sis->irq, sis);
1194 sis->irq = -1;
1195 }
1196
1197 /* Save the internal state away
1198 */
1199 for (i = 0; i < 4; i++) {
1200 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1201 ioaddr += 4096;
1202 }
1203
1204 return 0;
1205}
1206
1207static int sis_resume(struct device *dev)
1208{
1209 struct pci_dev *pci = to_pci_dev(dev);
1210 struct snd_card *card = dev_get_drvdata(dev);
1211 struct sis7019 *sis = card->private_data;
1212 void __iomem *ioaddr = sis->ioaddr;
1213 int i;
1214
1215 if (sis_chip_init(sis)) {
1216 dev_err(&pci->dev, "unable to re-init controller\n");
1217 goto error;
1218 }
1219
1220 if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1221 KBUILD_MODNAME, sis)) {
1222 dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1223 goto error;
1224 }
1225
1226 /* Restore saved state, then clear out the page we use for the
1227 * silence buffer.
1228 */
1229 for (i = 0; i < 4; i++) {
1230 memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1231 ioaddr += 4096;
1232 }
1233
1234 memset(sis->suspend_state[0], 0, 4096);
1235
1236 sis->irq = pci->irq;
1237
1238 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1239 snd_ac97_resume(sis->ac97[0]);
1240 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1241 snd_ac97_resume(sis->ac97[1]);
1242 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1243 snd_ac97_resume(sis->ac97[2]);
1244
1245 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1246 return 0;
1247
1248error:
1249 snd_card_disconnect(card);
1250 return -EIO;
1251}
1252
1253static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1254#define SIS_PM_OPS &sis_pm
1255#else
1256#define SIS_PM_OPS NULL
1257#endif /* CONFIG_PM_SLEEP */
1258
1259static int sis_alloc_suspend(struct sis7019 *sis)
1260{
1261 int i;
1262
1263 /* We need 16K to store the internal wave engine state during a
1264 * suspend, but we don't need it to be contiguous, so play nice
1265 * with the memory system. We'll also use this area for a silence
1266 * buffer.
1267 */
1268 for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1269 sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1270 if (!sis->suspend_state[i])
1271 return -ENOMEM;
1272 }
1273 memset(sis->suspend_state[0], 0, 4096);
1274
1275 return 0;
1276}
1277
1278static int sis_chip_create(struct snd_card *card,
1279 struct pci_dev *pci)
1280{
1281 struct sis7019 *sis = card->private_data;
1282 struct voice *voice;
1283 static const struct snd_device_ops ops = {
1284 .dev_free = sis_dev_free,
1285 };
1286 int rc;
1287 int i;
1288
1289 rc = pci_enable_device(pci);
1290 if (rc)
1291 goto error_out;
1292
1293 rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1294 if (rc < 0) {
1295 dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1296 goto error_out_enabled;
1297 }
1298
1299 memset(sis, 0, sizeof(*sis));
1300 mutex_init(&sis->ac97_mutex);
1301 spin_lock_init(&sis->voice_lock);
1302 sis->card = card;
1303 sis->pci = pci;
1304 sis->irq = -1;
1305 sis->ioport = pci_resource_start(pci, 0);
1306
1307 rc = pci_request_regions(pci, "SiS7019");
1308 if (rc) {
1309 dev_err(&pci->dev, "unable request regions\n");
1310 goto error_out_enabled;
1311 }
1312
1313 rc = -EIO;
1314 sis->ioaddr = ioremap(pci_resource_start(pci, 1), 0x4000);
1315 if (!sis->ioaddr) {
1316 dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1317 goto error_out_cleanup;
1318 }
1319
1320 rc = sis_alloc_suspend(sis);
1321 if (rc < 0) {
1322 dev_err(&pci->dev, "unable to allocate state storage\n");
1323 goto error_out_cleanup;
1324 }
1325
1326 rc = sis_chip_init(sis);
1327 if (rc)
1328 goto error_out_cleanup;
1329
1330 rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1331 sis);
1332 if (rc) {
1333 dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1334 goto error_out_cleanup;
1335 }
1336
1337 sis->irq = pci->irq;
1338 card->sync_irq = sis->irq;
1339 pci_set_master(pci);
1340
1341 for (i = 0; i < 64; i++) {
1342 voice = &sis->voices[i];
1343 voice->num = i;
1344 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1345 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1346 }
1347
1348 voice = &sis->capture_voice;
1349 voice->flags = VOICE_CAPTURE;
1350 voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1351 voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1352
1353 rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1354 if (rc)
1355 goto error_out_cleanup;
1356
1357 return 0;
1358
1359error_out_cleanup:
1360 sis_chip_free(sis);
1361
1362error_out_enabled:
1363 pci_disable_device(pci);
1364
1365error_out:
1366 return rc;
1367}
1368
1369static int snd_sis7019_probe(struct pci_dev *pci,
1370 const struct pci_device_id *pci_id)
1371{
1372 struct snd_card *card;
1373 struct sis7019 *sis;
1374 int rc;
1375
1376 rc = -ENOENT;
1377 if (!enable)
1378 goto error_out;
1379
1380 /* The user can specify which codecs should be present so that we
1381 * can wait for them to show up if they are slow to recover from
1382 * the AC97 cold reset. We default to a single codec, the primary.
1383 *
1384 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1385 */
1386 codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1387 SIS_TERTIARY_CODEC_PRESENT;
1388 if (!codecs)
1389 codecs = SIS_PRIMARY_CODEC_PRESENT;
1390
1391 rc = snd_card_new(&pci->dev, index, id, THIS_MODULE,
1392 sizeof(*sis), &card);
1393 if (rc < 0)
1394 goto error_out;
1395
1396 strcpy(card->driver, "SiS7019");
1397 strcpy(card->shortname, "SiS7019");
1398 rc = sis_chip_create(card, pci);
1399 if (rc)
1400 goto card_error_out;
1401
1402 sis = card->private_data;
1403
1404 rc = sis_mixer_create(sis);
1405 if (rc)
1406 goto card_error_out;
1407
1408 rc = sis_pcm_create(sis);
1409 if (rc)
1410 goto card_error_out;
1411
1412 snprintf(card->longname, sizeof(card->longname),
1413 "%s Audio Accelerator with %s at 0x%lx, irq %d",
1414 card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1415 sis->ioport, sis->irq);
1416
1417 rc = snd_card_register(card);
1418 if (rc)
1419 goto card_error_out;
1420
1421 pci_set_drvdata(pci, card);
1422 return 0;
1423
1424card_error_out:
1425 snd_card_free(card);
1426
1427error_out:
1428 return rc;
1429}
1430
1431static void snd_sis7019_remove(struct pci_dev *pci)
1432{
1433 snd_card_free(pci_get_drvdata(pci));
1434}
1435
1436static struct pci_driver sis7019_driver = {
1437 .name = KBUILD_MODNAME,
1438 .id_table = snd_sis7019_ids,
1439 .probe = snd_sis7019_probe,
1440 .remove = snd_sis7019_remove,
1441 .driver = {
1442 .pm = SIS_PM_OPS,
1443 },
1444};
1445
1446module_pci_driver(sis7019_driver);