Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * zpool memory storage api
  4 *
  5 * Copyright (C) 2014 Dan Streetman
  6 *
  7 * This is a common frontend for memory storage pool implementations.
  8 * Typically, this is used to store compressed memory.
  9 */
 10
 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12
 13#include <linux/list.h>
 14#include <linux/types.h>
 15#include <linux/mm.h>
 16#include <linux/slab.h>
 17#include <linux/spinlock.h>
 18#include <linux/module.h>
 19#include <linux/zpool.h>
 20
 21struct zpool {
 22	struct zpool_driver *driver;
 23	void *pool;
 24	const struct zpool_ops *ops;
 25	bool evictable;
 26	bool can_sleep_mapped;
 27
 28	struct list_head list;
 29};
 30
 31static LIST_HEAD(drivers_head);
 32static DEFINE_SPINLOCK(drivers_lock);
 33
 34static LIST_HEAD(pools_head);
 35static DEFINE_SPINLOCK(pools_lock);
 36
 37/**
 38 * zpool_register_driver() - register a zpool implementation.
 39 * @driver:	driver to register
 40 */
 41void zpool_register_driver(struct zpool_driver *driver)
 42{
 43	spin_lock(&drivers_lock);
 44	atomic_set(&driver->refcount, 0);
 45	list_add(&driver->list, &drivers_head);
 46	spin_unlock(&drivers_lock);
 47}
 48EXPORT_SYMBOL(zpool_register_driver);
 49
 50/**
 51 * zpool_unregister_driver() - unregister a zpool implementation.
 52 * @driver:	driver to unregister.
 53 *
 54 * Module usage counting is used to prevent using a driver
 55 * while/after unloading, so if this is called from module
 56 * exit function, this should never fail; if called from
 57 * other than the module exit function, and this returns
 58 * failure, the driver is in use and must remain available.
 59 */
 60int zpool_unregister_driver(struct zpool_driver *driver)
 61{
 62	int ret = 0, refcount;
 63
 64	spin_lock(&drivers_lock);
 65	refcount = atomic_read(&driver->refcount);
 66	WARN_ON(refcount < 0);
 67	if (refcount > 0)
 68		ret = -EBUSY;
 69	else
 70		list_del(&driver->list);
 71	spin_unlock(&drivers_lock);
 72
 73	return ret;
 74}
 75EXPORT_SYMBOL(zpool_unregister_driver);
 76
 77/* this assumes @type is null-terminated. */
 78static struct zpool_driver *zpool_get_driver(const char *type)
 79{
 80	struct zpool_driver *driver;
 81
 82	spin_lock(&drivers_lock);
 83	list_for_each_entry(driver, &drivers_head, list) {
 84		if (!strcmp(driver->type, type)) {
 85			bool got = try_module_get(driver->owner);
 86
 87			if (got)
 88				atomic_inc(&driver->refcount);
 89			spin_unlock(&drivers_lock);
 90			return got ? driver : NULL;
 91		}
 92	}
 93
 94	spin_unlock(&drivers_lock);
 95	return NULL;
 96}
 97
 98static void zpool_put_driver(struct zpool_driver *driver)
 99{
100	atomic_dec(&driver->refcount);
101	module_put(driver->owner);
102}
103
104/**
105 * zpool_has_pool() - Check if the pool driver is available
106 * @type:	The type of the zpool to check (e.g. zbud, zsmalloc)
107 *
108 * This checks if the @type pool driver is available.  This will try to load
109 * the requested module, if needed, but there is no guarantee the module will
110 * still be loaded and available immediately after calling.  If this returns
111 * true, the caller should assume the pool is available, but must be prepared
112 * to handle the @zpool_create_pool() returning failure.  However if this
113 * returns false, the caller should assume the requested pool type is not
114 * available; either the requested pool type module does not exist, or could
115 * not be loaded, and calling @zpool_create_pool() with the pool type will
116 * fail.
117 *
118 * The @type string must be null-terminated.
119 *
120 * Returns: true if @type pool is available, false if not
121 */
122bool zpool_has_pool(char *type)
123{
124	struct zpool_driver *driver = zpool_get_driver(type);
125
126	if (!driver) {
127		request_module("zpool-%s", type);
128		driver = zpool_get_driver(type);
129	}
130
131	if (!driver)
132		return false;
133
134	zpool_put_driver(driver);
135	return true;
136}
137EXPORT_SYMBOL(zpool_has_pool);
138
139/**
140 * zpool_create_pool() - Create a new zpool
141 * @type:	The type of the zpool to create (e.g. zbud, zsmalloc)
142 * @name:	The name of the zpool (e.g. zram0, zswap)
143 * @gfp:	The GFP flags to use when allocating the pool.
144 * @ops:	The optional ops callback.
145 *
146 * This creates a new zpool of the specified type.  The gfp flags will be
147 * used when allocating memory, if the implementation supports it.  If the
148 * ops param is NULL, then the created zpool will not be evictable.
149 *
150 * Implementations must guarantee this to be thread-safe.
151 *
152 * The @type and @name strings must be null-terminated.
153 *
154 * Returns: New zpool on success, NULL on failure.
155 */
156struct zpool *zpool_create_pool(const char *type, const char *name, gfp_t gfp,
157		const struct zpool_ops *ops)
158{
159	struct zpool_driver *driver;
160	struct zpool *zpool;
161
162	pr_debug("creating pool type %s\n", type);
163
164	driver = zpool_get_driver(type);
165
166	if (!driver) {
167		request_module("zpool-%s", type);
168		driver = zpool_get_driver(type);
169	}
170
171	if (!driver) {
172		pr_err("no driver for type %s\n", type);
173		return NULL;
174	}
175
176	zpool = kmalloc(sizeof(*zpool), gfp);
177	if (!zpool) {
178		pr_err("couldn't create zpool - out of memory\n");
179		zpool_put_driver(driver);
180		return NULL;
181	}
182
183	zpool->driver = driver;
184	zpool->pool = driver->create(name, gfp, ops, zpool);
185	zpool->ops = ops;
186	zpool->evictable = driver->shrink && ops && ops->evict;
187	zpool->can_sleep_mapped = driver->sleep_mapped;
188
189	if (!zpool->pool) {
190		pr_err("couldn't create %s pool\n", type);
191		zpool_put_driver(driver);
192		kfree(zpool);
193		return NULL;
194	}
195
196	pr_debug("created pool type %s\n", type);
197
198	spin_lock(&pools_lock);
199	list_add(&zpool->list, &pools_head);
200	spin_unlock(&pools_lock);
201
202	return zpool;
203}
204
205/**
206 * zpool_destroy_pool() - Destroy a zpool
207 * @zpool:	The zpool to destroy.
208 *
209 * Implementations must guarantee this to be thread-safe,
210 * however only when destroying different pools.  The same
211 * pool should only be destroyed once, and should not be used
212 * after it is destroyed.
213 *
214 * This destroys an existing zpool.  The zpool should not be in use.
215 */
216void zpool_destroy_pool(struct zpool *zpool)
217{
218	pr_debug("destroying pool type %s\n", zpool->driver->type);
219
220	spin_lock(&pools_lock);
221	list_del(&zpool->list);
222	spin_unlock(&pools_lock);
223	zpool->driver->destroy(zpool->pool);
224	zpool_put_driver(zpool->driver);
225	kfree(zpool);
226}
227
228/**
229 * zpool_get_type() - Get the type of the zpool
230 * @zpool:	The zpool to check
231 *
232 * This returns the type of the pool.
233 *
234 * Implementations must guarantee this to be thread-safe.
235 *
236 * Returns: The type of zpool.
237 */
238const char *zpool_get_type(struct zpool *zpool)
239{
240	return zpool->driver->type;
241}
242
243/**
244 * zpool_malloc_support_movable() - Check if the zpool supports
245 *	allocating movable memory
246 * @zpool:	The zpool to check
247 *
248 * This returns if the zpool supports allocating movable memory.
249 *
250 * Implementations must guarantee this to be thread-safe.
251 *
252 * Returns: true if the zpool supports allocating movable memory, false if not
253 */
254bool zpool_malloc_support_movable(struct zpool *zpool)
255{
256	return zpool->driver->malloc_support_movable;
257}
258
259/**
260 * zpool_malloc() - Allocate memory
261 * @zpool:	The zpool to allocate from.
262 * @size:	The amount of memory to allocate.
263 * @gfp:	The GFP flags to use when allocating memory.
264 * @handle:	Pointer to the handle to set
265 *
266 * This allocates the requested amount of memory from the pool.
267 * The gfp flags will be used when allocating memory, if the
268 * implementation supports it.  The provided @handle will be
269 * set to the allocated object handle.
270 *
271 * Implementations must guarantee this to be thread-safe.
272 *
273 * Returns: 0 on success, negative value on error.
274 */
275int zpool_malloc(struct zpool *zpool, size_t size, gfp_t gfp,
276			unsigned long *handle)
277{
278	return zpool->driver->malloc(zpool->pool, size, gfp, handle);
279}
280
281/**
282 * zpool_free() - Free previously allocated memory
283 * @zpool:	The zpool that allocated the memory.
284 * @handle:	The handle to the memory to free.
285 *
286 * This frees previously allocated memory.  This does not guarantee
287 * that the pool will actually free memory, only that the memory
288 * in the pool will become available for use by the pool.
289 *
290 * Implementations must guarantee this to be thread-safe,
291 * however only when freeing different handles.  The same
292 * handle should only be freed once, and should not be used
293 * after freeing.
294 */
295void zpool_free(struct zpool *zpool, unsigned long handle)
296{
297	zpool->driver->free(zpool->pool, handle);
298}
299
300/**
301 * zpool_shrink() - Shrink the pool size
302 * @zpool:	The zpool to shrink.
303 * @pages:	The number of pages to shrink the pool.
304 * @reclaimed:	The number of pages successfully evicted.
305 *
306 * This attempts to shrink the actual memory size of the pool
307 * by evicting currently used handle(s).  If the pool was
308 * created with no zpool_ops, or the evict call fails for any
309 * of the handles, this will fail.  If non-NULL, the @reclaimed
310 * parameter will be set to the number of pages reclaimed,
311 * which may be more than the number of pages requested.
312 *
313 * Implementations must guarantee this to be thread-safe.
314 *
315 * Returns: 0 on success, negative value on error/failure.
316 */
317int zpool_shrink(struct zpool *zpool, unsigned int pages,
318			unsigned int *reclaimed)
319{
320	return zpool->driver->shrink ?
321	       zpool->driver->shrink(zpool->pool, pages, reclaimed) : -EINVAL;
322}
323
324/**
325 * zpool_map_handle() - Map a previously allocated handle into memory
326 * @zpool:	The zpool that the handle was allocated from
327 * @handle:	The handle to map
328 * @mapmode:	How the memory should be mapped
329 *
330 * This maps a previously allocated handle into memory.  The @mapmode
331 * param indicates to the implementation how the memory will be
332 * used, i.e. read-only, write-only, read-write.  If the
333 * implementation does not support it, the memory will be treated
334 * as read-write.
335 *
336 * This may hold locks, disable interrupts, and/or preemption,
337 * and the zpool_unmap_handle() must be called to undo those
338 * actions.  The code that uses the mapped handle should complete
339 * its operations on the mapped handle memory quickly and unmap
340 * as soon as possible.  As the implementation may use per-cpu
341 * data, multiple handles should not be mapped concurrently on
342 * any cpu.
343 *
344 * Returns: A pointer to the handle's mapped memory area.
345 */
346void *zpool_map_handle(struct zpool *zpool, unsigned long handle,
347			enum zpool_mapmode mapmode)
348{
349	return zpool->driver->map(zpool->pool, handle, mapmode);
350}
351
352/**
353 * zpool_unmap_handle() - Unmap a previously mapped handle
354 * @zpool:	The zpool that the handle was allocated from
355 * @handle:	The handle to unmap
356 *
357 * This unmaps a previously mapped handle.  Any locks or other
358 * actions that the implementation took in zpool_map_handle()
359 * will be undone here.  The memory area returned from
360 * zpool_map_handle() should no longer be used after this.
361 */
362void zpool_unmap_handle(struct zpool *zpool, unsigned long handle)
363{
364	zpool->driver->unmap(zpool->pool, handle);
365}
366
367/**
368 * zpool_get_total_size() - The total size of the pool
369 * @zpool:	The zpool to check
370 *
371 * This returns the total size in bytes of the pool.
372 *
373 * Returns: Total size of the zpool in bytes.
374 */
375u64 zpool_get_total_size(struct zpool *zpool)
376{
377	return zpool->driver->total_size(zpool->pool);
378}
379
380/**
381 * zpool_evictable() - Test if zpool is potentially evictable
382 * @zpool:	The zpool to test
383 *
384 * Zpool is only potentially evictable when it's created with struct
385 * zpool_ops.evict and its driver implements struct zpool_driver.shrink.
386 *
387 * However, it doesn't necessarily mean driver will use zpool_ops.evict
388 * in its implementation of zpool_driver.shrink. It could do internal
389 * defragmentation instead.
390 *
391 * Returns: true if potentially evictable; false otherwise.
392 */
393bool zpool_evictable(struct zpool *zpool)
394{
395	return zpool->evictable;
396}
397
398/**
399 * zpool_can_sleep_mapped - Test if zpool can sleep when do mapped.
400 * @zpool:	The zpool to test
401 *
402 * Returns: true if zpool can sleep; false otherwise.
403 */
404bool zpool_can_sleep_mapped(struct zpool *zpool)
405{
406	return zpool->can_sleep_mapped;
407}
408
409MODULE_LICENSE("GPL");
410MODULE_AUTHOR("Dan Streetman <ddstreet@ieee.org>");
411MODULE_DESCRIPTION("Common API for compressed memory storage");
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * zpool memory storage api
  4 *
  5 * Copyright (C) 2014 Dan Streetman
  6 *
  7 * This is a common frontend for memory storage pool implementations.
  8 * Typically, this is used to store compressed memory.
  9 */
 10
 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12
 13#include <linux/list.h>
 14#include <linux/types.h>
 15#include <linux/mm.h>
 16#include <linux/slab.h>
 17#include <linux/spinlock.h>
 18#include <linux/module.h>
 19#include <linux/zpool.h>
 20
 21struct zpool {
 22	struct zpool_driver *driver;
 23	void *pool;
 24	const struct zpool_ops *ops;
 25	bool evictable;
 
 26
 27	struct list_head list;
 28};
 29
 30static LIST_HEAD(drivers_head);
 31static DEFINE_SPINLOCK(drivers_lock);
 32
 33static LIST_HEAD(pools_head);
 34static DEFINE_SPINLOCK(pools_lock);
 35
 36/**
 37 * zpool_register_driver() - register a zpool implementation.
 38 * @driver:	driver to register
 39 */
 40void zpool_register_driver(struct zpool_driver *driver)
 41{
 42	spin_lock(&drivers_lock);
 43	atomic_set(&driver->refcount, 0);
 44	list_add(&driver->list, &drivers_head);
 45	spin_unlock(&drivers_lock);
 46}
 47EXPORT_SYMBOL(zpool_register_driver);
 48
 49/**
 50 * zpool_unregister_driver() - unregister a zpool implementation.
 51 * @driver:	driver to unregister.
 52 *
 53 * Module usage counting is used to prevent using a driver
 54 * while/after unloading, so if this is called from module
 55 * exit function, this should never fail; if called from
 56 * other than the module exit function, and this returns
 57 * failure, the driver is in use and must remain available.
 58 */
 59int zpool_unregister_driver(struct zpool_driver *driver)
 60{
 61	int ret = 0, refcount;
 62
 63	spin_lock(&drivers_lock);
 64	refcount = atomic_read(&driver->refcount);
 65	WARN_ON(refcount < 0);
 66	if (refcount > 0)
 67		ret = -EBUSY;
 68	else
 69		list_del(&driver->list);
 70	spin_unlock(&drivers_lock);
 71
 72	return ret;
 73}
 74EXPORT_SYMBOL(zpool_unregister_driver);
 75
 76/* this assumes @type is null-terminated. */
 77static struct zpool_driver *zpool_get_driver(const char *type)
 78{
 79	struct zpool_driver *driver;
 80
 81	spin_lock(&drivers_lock);
 82	list_for_each_entry(driver, &drivers_head, list) {
 83		if (!strcmp(driver->type, type)) {
 84			bool got = try_module_get(driver->owner);
 85
 86			if (got)
 87				atomic_inc(&driver->refcount);
 88			spin_unlock(&drivers_lock);
 89			return got ? driver : NULL;
 90		}
 91	}
 92
 93	spin_unlock(&drivers_lock);
 94	return NULL;
 95}
 96
 97static void zpool_put_driver(struct zpool_driver *driver)
 98{
 99	atomic_dec(&driver->refcount);
100	module_put(driver->owner);
101}
102
103/**
104 * zpool_has_pool() - Check if the pool driver is available
105 * @type:	The type of the zpool to check (e.g. zbud, zsmalloc)
106 *
107 * This checks if the @type pool driver is available.  This will try to load
108 * the requested module, if needed, but there is no guarantee the module will
109 * still be loaded and available immediately after calling.  If this returns
110 * true, the caller should assume the pool is available, but must be prepared
111 * to handle the @zpool_create_pool() returning failure.  However if this
112 * returns false, the caller should assume the requested pool type is not
113 * available; either the requested pool type module does not exist, or could
114 * not be loaded, and calling @zpool_create_pool() with the pool type will
115 * fail.
116 *
117 * The @type string must be null-terminated.
118 *
119 * Returns: true if @type pool is available, false if not
120 */
121bool zpool_has_pool(char *type)
122{
123	struct zpool_driver *driver = zpool_get_driver(type);
124
125	if (!driver) {
126		request_module("zpool-%s", type);
127		driver = zpool_get_driver(type);
128	}
129
130	if (!driver)
131		return false;
132
133	zpool_put_driver(driver);
134	return true;
135}
136EXPORT_SYMBOL(zpool_has_pool);
137
138/**
139 * zpool_create_pool() - Create a new zpool
140 * @type:	The type of the zpool to create (e.g. zbud, zsmalloc)
141 * @name:	The name of the zpool (e.g. zram0, zswap)
142 * @gfp:	The GFP flags to use when allocating the pool.
143 * @ops:	The optional ops callback.
144 *
145 * This creates a new zpool of the specified type.  The gfp flags will be
146 * used when allocating memory, if the implementation supports it.  If the
147 * ops param is NULL, then the created zpool will not be evictable.
148 *
149 * Implementations must guarantee this to be thread-safe.
150 *
151 * The @type and @name strings must be null-terminated.
152 *
153 * Returns: New zpool on success, NULL on failure.
154 */
155struct zpool *zpool_create_pool(const char *type, const char *name, gfp_t gfp,
156		const struct zpool_ops *ops)
157{
158	struct zpool_driver *driver;
159	struct zpool *zpool;
160
161	pr_debug("creating pool type %s\n", type);
162
163	driver = zpool_get_driver(type);
164
165	if (!driver) {
166		request_module("zpool-%s", type);
167		driver = zpool_get_driver(type);
168	}
169
170	if (!driver) {
171		pr_err("no driver for type %s\n", type);
172		return NULL;
173	}
174
175	zpool = kmalloc(sizeof(*zpool), gfp);
176	if (!zpool) {
177		pr_err("couldn't create zpool - out of memory\n");
178		zpool_put_driver(driver);
179		return NULL;
180	}
181
182	zpool->driver = driver;
183	zpool->pool = driver->create(name, gfp, ops, zpool);
184	zpool->ops = ops;
185	zpool->evictable = driver->shrink && ops && ops->evict;
 
186
187	if (!zpool->pool) {
188		pr_err("couldn't create %s pool\n", type);
189		zpool_put_driver(driver);
190		kfree(zpool);
191		return NULL;
192	}
193
194	pr_debug("created pool type %s\n", type);
195
196	spin_lock(&pools_lock);
197	list_add(&zpool->list, &pools_head);
198	spin_unlock(&pools_lock);
199
200	return zpool;
201}
202
203/**
204 * zpool_destroy_pool() - Destroy a zpool
205 * @zpool:	The zpool to destroy.
206 *
207 * Implementations must guarantee this to be thread-safe,
208 * however only when destroying different pools.  The same
209 * pool should only be destroyed once, and should not be used
210 * after it is destroyed.
211 *
212 * This destroys an existing zpool.  The zpool should not be in use.
213 */
214void zpool_destroy_pool(struct zpool *zpool)
215{
216	pr_debug("destroying pool type %s\n", zpool->driver->type);
217
218	spin_lock(&pools_lock);
219	list_del(&zpool->list);
220	spin_unlock(&pools_lock);
221	zpool->driver->destroy(zpool->pool);
222	zpool_put_driver(zpool->driver);
223	kfree(zpool);
224}
225
226/**
227 * zpool_get_type() - Get the type of the zpool
228 * @zpool:	The zpool to check
229 *
230 * This returns the type of the pool.
231 *
232 * Implementations must guarantee this to be thread-safe.
233 *
234 * Returns: The type of zpool.
235 */
236const char *zpool_get_type(struct zpool *zpool)
237{
238	return zpool->driver->type;
239}
240
241/**
242 * zpool_malloc_support_movable() - Check if the zpool supports
243 *	allocating movable memory
244 * @zpool:	The zpool to check
245 *
246 * This returns if the zpool supports allocating movable memory.
247 *
248 * Implementations must guarantee this to be thread-safe.
249 *
250 * Returns: true if the zpool supports allocating movable memory, false if not
251 */
252bool zpool_malloc_support_movable(struct zpool *zpool)
253{
254	return zpool->driver->malloc_support_movable;
255}
256
257/**
258 * zpool_malloc() - Allocate memory
259 * @zpool:	The zpool to allocate from.
260 * @size:	The amount of memory to allocate.
261 * @gfp:	The GFP flags to use when allocating memory.
262 * @handle:	Pointer to the handle to set
263 *
264 * This allocates the requested amount of memory from the pool.
265 * The gfp flags will be used when allocating memory, if the
266 * implementation supports it.  The provided @handle will be
267 * set to the allocated object handle.
268 *
269 * Implementations must guarantee this to be thread-safe.
270 *
271 * Returns: 0 on success, negative value on error.
272 */
273int zpool_malloc(struct zpool *zpool, size_t size, gfp_t gfp,
274			unsigned long *handle)
275{
276	return zpool->driver->malloc(zpool->pool, size, gfp, handle);
277}
278
279/**
280 * zpool_free() - Free previously allocated memory
281 * @zpool:	The zpool that allocated the memory.
282 * @handle:	The handle to the memory to free.
283 *
284 * This frees previously allocated memory.  This does not guarantee
285 * that the pool will actually free memory, only that the memory
286 * in the pool will become available for use by the pool.
287 *
288 * Implementations must guarantee this to be thread-safe,
289 * however only when freeing different handles.  The same
290 * handle should only be freed once, and should not be used
291 * after freeing.
292 */
293void zpool_free(struct zpool *zpool, unsigned long handle)
294{
295	zpool->driver->free(zpool->pool, handle);
296}
297
298/**
299 * zpool_shrink() - Shrink the pool size
300 * @zpool:	The zpool to shrink.
301 * @pages:	The number of pages to shrink the pool.
302 * @reclaimed:	The number of pages successfully evicted.
303 *
304 * This attempts to shrink the actual memory size of the pool
305 * by evicting currently used handle(s).  If the pool was
306 * created with no zpool_ops, or the evict call fails for any
307 * of the handles, this will fail.  If non-NULL, the @reclaimed
308 * parameter will be set to the number of pages reclaimed,
309 * which may be more than the number of pages requested.
310 *
311 * Implementations must guarantee this to be thread-safe.
312 *
313 * Returns: 0 on success, negative value on error/failure.
314 */
315int zpool_shrink(struct zpool *zpool, unsigned int pages,
316			unsigned int *reclaimed)
317{
318	return zpool->driver->shrink ?
319	       zpool->driver->shrink(zpool->pool, pages, reclaimed) : -EINVAL;
320}
321
322/**
323 * zpool_map_handle() - Map a previously allocated handle into memory
324 * @zpool:	The zpool that the handle was allocated from
325 * @handle:	The handle to map
326 * @mapmode:	How the memory should be mapped
327 *
328 * This maps a previously allocated handle into memory.  The @mapmode
329 * param indicates to the implementation how the memory will be
330 * used, i.e. read-only, write-only, read-write.  If the
331 * implementation does not support it, the memory will be treated
332 * as read-write.
333 *
334 * This may hold locks, disable interrupts, and/or preemption,
335 * and the zpool_unmap_handle() must be called to undo those
336 * actions.  The code that uses the mapped handle should complete
337 * its operatons on the mapped handle memory quickly and unmap
338 * as soon as possible.  As the implementation may use per-cpu
339 * data, multiple handles should not be mapped concurrently on
340 * any cpu.
341 *
342 * Returns: A pointer to the handle's mapped memory area.
343 */
344void *zpool_map_handle(struct zpool *zpool, unsigned long handle,
345			enum zpool_mapmode mapmode)
346{
347	return zpool->driver->map(zpool->pool, handle, mapmode);
348}
349
350/**
351 * zpool_unmap_handle() - Unmap a previously mapped handle
352 * @zpool:	The zpool that the handle was allocated from
353 * @handle:	The handle to unmap
354 *
355 * This unmaps a previously mapped handle.  Any locks or other
356 * actions that the implementation took in zpool_map_handle()
357 * will be undone here.  The memory area returned from
358 * zpool_map_handle() should no longer be used after this.
359 */
360void zpool_unmap_handle(struct zpool *zpool, unsigned long handle)
361{
362	zpool->driver->unmap(zpool->pool, handle);
363}
364
365/**
366 * zpool_get_total_size() - The total size of the pool
367 * @zpool:	The zpool to check
368 *
369 * This returns the total size in bytes of the pool.
370 *
371 * Returns: Total size of the zpool in bytes.
372 */
373u64 zpool_get_total_size(struct zpool *zpool)
374{
375	return zpool->driver->total_size(zpool->pool);
376}
377
378/**
379 * zpool_evictable() - Test if zpool is potentially evictable
380 * @zpool:	The zpool to test
381 *
382 * Zpool is only potentially evictable when it's created with struct
383 * zpool_ops.evict and its driver implements struct zpool_driver.shrink.
384 *
385 * However, it doesn't necessarily mean driver will use zpool_ops.evict
386 * in its implementation of zpool_driver.shrink. It could do internal
387 * defragmentation instead.
388 *
389 * Returns: true if potentially evictable; false otherwise.
390 */
391bool zpool_evictable(struct zpool *zpool)
392{
393	return zpool->evictable;
 
 
 
 
 
 
 
 
 
 
 
394}
395
396MODULE_LICENSE("GPL");
397MODULE_AUTHOR("Dan Streetman <ddstreet@ieee.org>");
398MODULE_DESCRIPTION("Common API for compressed memory storage");