Linux Audio

Check our new training course

Loading...
v5.14.15
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/mm.h>
  32#include <linux/random.h>
  33#include <linux/sched/signal.h>
  34#include <linux/export.h>
  35#include <linux/swap.h>
  36#include <linux/uio.h>
  37#include <linux/khugepaged.h>
  38#include <linux/hugetlb.h>
  39#include <linux/frontswap.h>
  40#include <linux/fs_parser.h>
  41
  42#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
  43
  44static struct vfsmount *shm_mnt;
  45
  46#ifdef CONFIG_SHMEM
  47/*
  48 * This virtual memory filesystem is heavily based on the ramfs. It
  49 * extends ramfs by the ability to use swap and honor resource limits
  50 * which makes it a completely usable filesystem.
  51 */
  52
  53#include <linux/xattr.h>
  54#include <linux/exportfs.h>
  55#include <linux/posix_acl.h>
  56#include <linux/posix_acl_xattr.h>
  57#include <linux/mman.h>
  58#include <linux/string.h>
  59#include <linux/slab.h>
  60#include <linux/backing-dev.h>
  61#include <linux/shmem_fs.h>
  62#include <linux/writeback.h>
  63#include <linux/blkdev.h>
  64#include <linux/pagevec.h>
  65#include <linux/percpu_counter.h>
  66#include <linux/falloc.h>
  67#include <linux/splice.h>
  68#include <linux/security.h>
  69#include <linux/swapops.h>
  70#include <linux/mempolicy.h>
  71#include <linux/namei.h>
  72#include <linux/ctype.h>
  73#include <linux/migrate.h>
  74#include <linux/highmem.h>
  75#include <linux/seq_file.h>
  76#include <linux/magic.h>
  77#include <linux/syscalls.h>
  78#include <linux/fcntl.h>
  79#include <uapi/linux/memfd.h>
  80#include <linux/userfaultfd_k.h>
  81#include <linux/rmap.h>
  82#include <linux/uuid.h>
  83
  84#include <linux/uaccess.h>
  85
  86#include "internal.h"
  87
  88#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  89#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  90
  91/* Pretend that each entry is of this size in directory's i_size */
  92#define BOGO_DIRENT_SIZE 20
  93
  94/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  95#define SHORT_SYMLINK_LEN 128
  96
  97/*
  98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  99 * inode->i_private (with i_mutex making sure that it has only one user at
 100 * a time): we would prefer not to enlarge the shmem inode just for that.
 101 */
 102struct shmem_falloc {
 103	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
 104	pgoff_t start;		/* start of range currently being fallocated */
 105	pgoff_t next;		/* the next page offset to be fallocated */
 106	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
 107	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
 108};
 109
 110struct shmem_options {
 111	unsigned long long blocks;
 112	unsigned long long inodes;
 113	struct mempolicy *mpol;
 114	kuid_t uid;
 115	kgid_t gid;
 116	umode_t mode;
 117	bool full_inums;
 118	int huge;
 119	int seen;
 120#define SHMEM_SEEN_BLOCKS 1
 121#define SHMEM_SEEN_INODES 2
 122#define SHMEM_SEEN_HUGE 4
 123#define SHMEM_SEEN_INUMS 8
 124};
 125
 126#ifdef CONFIG_TMPFS
 127static unsigned long shmem_default_max_blocks(void)
 128{
 129	return totalram_pages() / 2;
 130}
 131
 132static unsigned long shmem_default_max_inodes(void)
 133{
 134	unsigned long nr_pages = totalram_pages();
 135
 136	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
 137}
 138#endif
 139
 140static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 141static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 142				struct shmem_inode_info *info, pgoff_t index);
 143static int shmem_swapin_page(struct inode *inode, pgoff_t index,
 144			     struct page **pagep, enum sgp_type sgp,
 145			     gfp_t gfp, struct vm_area_struct *vma,
 146			     vm_fault_t *fault_type);
 147static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 148		struct page **pagep, enum sgp_type sgp,
 149		gfp_t gfp, struct vm_area_struct *vma,
 150		struct vm_fault *vmf, vm_fault_t *fault_type);
 151
 152int shmem_getpage(struct inode *inode, pgoff_t index,
 153		struct page **pagep, enum sgp_type sgp)
 154{
 155	return shmem_getpage_gfp(inode, index, pagep, sgp,
 156		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
 157}
 158
 159static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 160{
 161	return sb->s_fs_info;
 162}
 163
 164/*
 165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 166 * for shared memory and for shared anonymous (/dev/zero) mappings
 167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 168 * consistent with the pre-accounting of private mappings ...
 169 */
 170static inline int shmem_acct_size(unsigned long flags, loff_t size)
 171{
 172	return (flags & VM_NORESERVE) ?
 173		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 174}
 175
 176static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 177{
 178	if (!(flags & VM_NORESERVE))
 179		vm_unacct_memory(VM_ACCT(size));
 180}
 181
 182static inline int shmem_reacct_size(unsigned long flags,
 183		loff_t oldsize, loff_t newsize)
 184{
 185	if (!(flags & VM_NORESERVE)) {
 186		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 187			return security_vm_enough_memory_mm(current->mm,
 188					VM_ACCT(newsize) - VM_ACCT(oldsize));
 189		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 190			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 191	}
 192	return 0;
 193}
 194
 195/*
 196 * ... whereas tmpfs objects are accounted incrementally as
 197 * pages are allocated, in order to allow large sparse files.
 198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 200 */
 201static inline int shmem_acct_block(unsigned long flags, long pages)
 202{
 203	if (!(flags & VM_NORESERVE))
 204		return 0;
 205
 206	return security_vm_enough_memory_mm(current->mm,
 207			pages * VM_ACCT(PAGE_SIZE));
 208}
 209
 210static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 211{
 212	if (flags & VM_NORESERVE)
 213		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 214}
 215
 216static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
 217{
 218	struct shmem_inode_info *info = SHMEM_I(inode);
 219	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 220
 221	if (shmem_acct_block(info->flags, pages))
 222		return false;
 223
 224	if (sbinfo->max_blocks) {
 225		if (percpu_counter_compare(&sbinfo->used_blocks,
 226					   sbinfo->max_blocks - pages) > 0)
 227			goto unacct;
 228		percpu_counter_add(&sbinfo->used_blocks, pages);
 229	}
 230
 231	return true;
 232
 233unacct:
 234	shmem_unacct_blocks(info->flags, pages);
 235	return false;
 236}
 237
 238static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
 239{
 240	struct shmem_inode_info *info = SHMEM_I(inode);
 241	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 242
 243	if (sbinfo->max_blocks)
 244		percpu_counter_sub(&sbinfo->used_blocks, pages);
 245	shmem_unacct_blocks(info->flags, pages);
 246}
 247
 248static const struct super_operations shmem_ops;
 249const struct address_space_operations shmem_aops;
 250static const struct file_operations shmem_file_operations;
 251static const struct inode_operations shmem_inode_operations;
 252static const struct inode_operations shmem_dir_inode_operations;
 253static const struct inode_operations shmem_special_inode_operations;
 254static const struct vm_operations_struct shmem_vm_ops;
 255static struct file_system_type shmem_fs_type;
 256
 257bool vma_is_shmem(struct vm_area_struct *vma)
 258{
 259	return vma->vm_ops == &shmem_vm_ops;
 260}
 261
 262static LIST_HEAD(shmem_swaplist);
 263static DEFINE_MUTEX(shmem_swaplist_mutex);
 264
 265/*
 266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
 267 * produces a novel ino for the newly allocated inode.
 268 *
 269 * It may also be called when making a hard link to permit the space needed by
 270 * each dentry. However, in that case, no new inode number is needed since that
 271 * internally draws from another pool of inode numbers (currently global
 272 * get_next_ino()). This case is indicated by passing NULL as inop.
 273 */
 274#define SHMEM_INO_BATCH 1024
 275static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
 276{
 277	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 278	ino_t ino;
 279
 280	if (!(sb->s_flags & SB_KERNMOUNT)) {
 281		spin_lock(&sbinfo->stat_lock);
 282		if (sbinfo->max_inodes) {
 283			if (!sbinfo->free_inodes) {
 284				spin_unlock(&sbinfo->stat_lock);
 285				return -ENOSPC;
 286			}
 287			sbinfo->free_inodes--;
 288		}
 289		if (inop) {
 290			ino = sbinfo->next_ino++;
 291			if (unlikely(is_zero_ino(ino)))
 292				ino = sbinfo->next_ino++;
 293			if (unlikely(!sbinfo->full_inums &&
 294				     ino > UINT_MAX)) {
 295				/*
 296				 * Emulate get_next_ino uint wraparound for
 297				 * compatibility
 298				 */
 299				if (IS_ENABLED(CONFIG_64BIT))
 300					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
 301						__func__, MINOR(sb->s_dev));
 302				sbinfo->next_ino = 1;
 303				ino = sbinfo->next_ino++;
 304			}
 305			*inop = ino;
 306		}
 307		spin_unlock(&sbinfo->stat_lock);
 308	} else if (inop) {
 309		/*
 310		 * __shmem_file_setup, one of our callers, is lock-free: it
 311		 * doesn't hold stat_lock in shmem_reserve_inode since
 312		 * max_inodes is always 0, and is called from potentially
 313		 * unknown contexts. As such, use a per-cpu batched allocator
 314		 * which doesn't require the per-sb stat_lock unless we are at
 315		 * the batch boundary.
 316		 *
 317		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
 318		 * shmem mounts are not exposed to userspace, so we don't need
 319		 * to worry about things like glibc compatibility.
 320		 */
 321		ino_t *next_ino;
 322		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
 323		ino = *next_ino;
 324		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
 325			spin_lock(&sbinfo->stat_lock);
 326			ino = sbinfo->next_ino;
 327			sbinfo->next_ino += SHMEM_INO_BATCH;
 328			spin_unlock(&sbinfo->stat_lock);
 329			if (unlikely(is_zero_ino(ino)))
 330				ino++;
 331		}
 332		*inop = ino;
 333		*next_ino = ++ino;
 334		put_cpu();
 335	}
 336
 337	return 0;
 338}
 339
 340static void shmem_free_inode(struct super_block *sb)
 341{
 342	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 343	if (sbinfo->max_inodes) {
 344		spin_lock(&sbinfo->stat_lock);
 345		sbinfo->free_inodes++;
 346		spin_unlock(&sbinfo->stat_lock);
 347	}
 348}
 349
 350/**
 351 * shmem_recalc_inode - recalculate the block usage of an inode
 352 * @inode: inode to recalc
 353 *
 354 * We have to calculate the free blocks since the mm can drop
 355 * undirtied hole pages behind our back.
 356 *
 357 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 359 *
 360 * It has to be called with the spinlock held.
 361 */
 362static void shmem_recalc_inode(struct inode *inode)
 363{
 364	struct shmem_inode_info *info = SHMEM_I(inode);
 365	long freed;
 366
 367	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 368	if (freed > 0) {
 369		info->alloced -= freed;
 370		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 371		shmem_inode_unacct_blocks(inode, freed);
 372	}
 373}
 374
 375bool shmem_charge(struct inode *inode, long pages)
 376{
 377	struct shmem_inode_info *info = SHMEM_I(inode);
 378	unsigned long flags;
 379
 380	if (!shmem_inode_acct_block(inode, pages))
 381		return false;
 382
 383	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
 384	inode->i_mapping->nrpages += pages;
 385
 386	spin_lock_irqsave(&info->lock, flags);
 387	info->alloced += pages;
 388	inode->i_blocks += pages * BLOCKS_PER_PAGE;
 389	shmem_recalc_inode(inode);
 390	spin_unlock_irqrestore(&info->lock, flags);
 391
 392	return true;
 393}
 394
 395void shmem_uncharge(struct inode *inode, long pages)
 396{
 397	struct shmem_inode_info *info = SHMEM_I(inode);
 398	unsigned long flags;
 399
 400	/* nrpages adjustment done by __delete_from_page_cache() or caller */
 401
 402	spin_lock_irqsave(&info->lock, flags);
 403	info->alloced -= pages;
 404	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
 405	shmem_recalc_inode(inode);
 406	spin_unlock_irqrestore(&info->lock, flags);
 407
 408	shmem_inode_unacct_blocks(inode, pages);
 409}
 410
 411/*
 412 * Replace item expected in xarray by a new item, while holding xa_lock.
 413 */
 414static int shmem_replace_entry(struct address_space *mapping,
 415			pgoff_t index, void *expected, void *replacement)
 416{
 417	XA_STATE(xas, &mapping->i_pages, index);
 418	void *item;
 419
 420	VM_BUG_ON(!expected);
 421	VM_BUG_ON(!replacement);
 422	item = xas_load(&xas);
 423	if (item != expected)
 424		return -ENOENT;
 425	xas_store(&xas, replacement);
 426	return 0;
 427}
 428
 429/*
 430 * Sometimes, before we decide whether to proceed or to fail, we must check
 431 * that an entry was not already brought back from swap by a racing thread.
 432 *
 433 * Checking page is not enough: by the time a SwapCache page is locked, it
 434 * might be reused, and again be SwapCache, using the same swap as before.
 435 */
 436static bool shmem_confirm_swap(struct address_space *mapping,
 437			       pgoff_t index, swp_entry_t swap)
 438{
 439	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
 440}
 441
 442/*
 443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
 444 *
 445 * SHMEM_HUGE_NEVER:
 446 *	disables huge pages for the mount;
 447 * SHMEM_HUGE_ALWAYS:
 448 *	enables huge pages for the mount;
 449 * SHMEM_HUGE_WITHIN_SIZE:
 450 *	only allocate huge pages if the page will be fully within i_size,
 451 *	also respect fadvise()/madvise() hints;
 452 * SHMEM_HUGE_ADVISE:
 453 *	only allocate huge pages if requested with fadvise()/madvise();
 454 */
 455
 456#define SHMEM_HUGE_NEVER	0
 457#define SHMEM_HUGE_ALWAYS	1
 458#define SHMEM_HUGE_WITHIN_SIZE	2
 459#define SHMEM_HUGE_ADVISE	3
 460
 461/*
 462 * Special values.
 463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
 464 *
 465 * SHMEM_HUGE_DENY:
 466 *	disables huge on shm_mnt and all mounts, for emergency use;
 467 * SHMEM_HUGE_FORCE:
 468 *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
 469 *
 470 */
 471#define SHMEM_HUGE_DENY		(-1)
 472#define SHMEM_HUGE_FORCE	(-2)
 473
 474#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 475/* ifdef here to avoid bloating shmem.o when not necessary */
 476
 477static int shmem_huge __read_mostly;
 478
 479#if defined(CONFIG_SYSFS)
 480static int shmem_parse_huge(const char *str)
 481{
 482	if (!strcmp(str, "never"))
 483		return SHMEM_HUGE_NEVER;
 484	if (!strcmp(str, "always"))
 485		return SHMEM_HUGE_ALWAYS;
 486	if (!strcmp(str, "within_size"))
 487		return SHMEM_HUGE_WITHIN_SIZE;
 488	if (!strcmp(str, "advise"))
 489		return SHMEM_HUGE_ADVISE;
 490	if (!strcmp(str, "deny"))
 491		return SHMEM_HUGE_DENY;
 492	if (!strcmp(str, "force"))
 493		return SHMEM_HUGE_FORCE;
 494	return -EINVAL;
 495}
 496#endif
 497
 498#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
 499static const char *shmem_format_huge(int huge)
 500{
 501	switch (huge) {
 502	case SHMEM_HUGE_NEVER:
 503		return "never";
 504	case SHMEM_HUGE_ALWAYS:
 505		return "always";
 506	case SHMEM_HUGE_WITHIN_SIZE:
 507		return "within_size";
 508	case SHMEM_HUGE_ADVISE:
 509		return "advise";
 510	case SHMEM_HUGE_DENY:
 511		return "deny";
 512	case SHMEM_HUGE_FORCE:
 513		return "force";
 514	default:
 515		VM_BUG_ON(1);
 516		return "bad_val";
 517	}
 518}
 519#endif
 520
 521static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 522		struct shrink_control *sc, unsigned long nr_to_split)
 523{
 524	LIST_HEAD(list), *pos, *next;
 525	LIST_HEAD(to_remove);
 526	struct inode *inode;
 527	struct shmem_inode_info *info;
 528	struct page *page;
 529	unsigned long batch = sc ? sc->nr_to_scan : 128;
 530	int removed = 0, split = 0;
 531
 532	if (list_empty(&sbinfo->shrinklist))
 533		return SHRINK_STOP;
 534
 535	spin_lock(&sbinfo->shrinklist_lock);
 536	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
 537		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 538
 539		/* pin the inode */
 540		inode = igrab(&info->vfs_inode);
 541
 542		/* inode is about to be evicted */
 543		if (!inode) {
 544			list_del_init(&info->shrinklist);
 545			removed++;
 546			goto next;
 547		}
 548
 549		/* Check if there's anything to gain */
 550		if (round_up(inode->i_size, PAGE_SIZE) ==
 551				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
 552			list_move(&info->shrinklist, &to_remove);
 553			removed++;
 554			goto next;
 555		}
 556
 557		list_move(&info->shrinklist, &list);
 558next:
 559		if (!--batch)
 560			break;
 561	}
 562	spin_unlock(&sbinfo->shrinklist_lock);
 563
 564	list_for_each_safe(pos, next, &to_remove) {
 565		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 566		inode = &info->vfs_inode;
 567		list_del_init(&info->shrinklist);
 568		iput(inode);
 569	}
 570
 571	list_for_each_safe(pos, next, &list) {
 572		int ret;
 573
 574		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 575		inode = &info->vfs_inode;
 576
 577		if (nr_to_split && split >= nr_to_split)
 578			goto leave;
 579
 580		page = find_get_page(inode->i_mapping,
 581				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
 582		if (!page)
 583			goto drop;
 584
 585		/* No huge page at the end of the file: nothing to split */
 586		if (!PageTransHuge(page)) {
 587			put_page(page);
 588			goto drop;
 589		}
 590
 591		/*
 592		 * Leave the inode on the list if we failed to lock
 593		 * the page at this time.
 594		 *
 595		 * Waiting for the lock may lead to deadlock in the
 596		 * reclaim path.
 597		 */
 598		if (!trylock_page(page)) {
 599			put_page(page);
 600			goto leave;
 601		}
 602
 603		ret = split_huge_page(page);
 604		unlock_page(page);
 605		put_page(page);
 606
 607		/* If split failed leave the inode on the list */
 608		if (ret)
 609			goto leave;
 610
 611		split++;
 612drop:
 613		list_del_init(&info->shrinklist);
 614		removed++;
 615leave:
 616		iput(inode);
 617	}
 618
 619	spin_lock(&sbinfo->shrinklist_lock);
 620	list_splice_tail(&list, &sbinfo->shrinklist);
 621	sbinfo->shrinklist_len -= removed;
 622	spin_unlock(&sbinfo->shrinklist_lock);
 623
 624	return split;
 625}
 626
 627static long shmem_unused_huge_scan(struct super_block *sb,
 628		struct shrink_control *sc)
 629{
 630	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 631
 632	if (!READ_ONCE(sbinfo->shrinklist_len))
 633		return SHRINK_STOP;
 634
 635	return shmem_unused_huge_shrink(sbinfo, sc, 0);
 636}
 637
 638static long shmem_unused_huge_count(struct super_block *sb,
 639		struct shrink_control *sc)
 640{
 641	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 642	return READ_ONCE(sbinfo->shrinklist_len);
 643}
 644#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
 645
 646#define shmem_huge SHMEM_HUGE_DENY
 647
 648static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 649		struct shrink_control *sc, unsigned long nr_to_split)
 650{
 651	return 0;
 652}
 653#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 654
 655static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
 656{
 657	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 658	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
 659	    shmem_huge != SHMEM_HUGE_DENY)
 660		return true;
 661	return false;
 662}
 663
 664/*
 665 * Like add_to_page_cache_locked, but error if expected item has gone.
 666 */
 667static int shmem_add_to_page_cache(struct page *page,
 668				   struct address_space *mapping,
 669				   pgoff_t index, void *expected, gfp_t gfp,
 670				   struct mm_struct *charge_mm)
 671{
 672	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
 673	unsigned long i = 0;
 674	unsigned long nr = compound_nr(page);
 675	int error;
 676
 677	VM_BUG_ON_PAGE(PageTail(page), page);
 678	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
 679	VM_BUG_ON_PAGE(!PageLocked(page), page);
 680	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 681	VM_BUG_ON(expected && PageTransHuge(page));
 682
 683	page_ref_add(page, nr);
 684	page->mapping = mapping;
 685	page->index = index;
 686
 687	if (!PageSwapCache(page)) {
 688		error = mem_cgroup_charge(page, charge_mm, gfp);
 689		if (error) {
 690			if (PageTransHuge(page)) {
 691				count_vm_event(THP_FILE_FALLBACK);
 692				count_vm_event(THP_FILE_FALLBACK_CHARGE);
 693			}
 694			goto error;
 695		}
 696	}
 697	cgroup_throttle_swaprate(page, gfp);
 698
 699	do {
 700		void *entry;
 701		xas_lock_irq(&xas);
 702		entry = xas_find_conflict(&xas);
 703		if (entry != expected)
 704			xas_set_err(&xas, -EEXIST);
 705		xas_create_range(&xas);
 706		if (xas_error(&xas))
 707			goto unlock;
 708next:
 709		xas_store(&xas, page);
 710		if (++i < nr) {
 711			xas_next(&xas);
 712			goto next;
 713		}
 714		if (PageTransHuge(page)) {
 715			count_vm_event(THP_FILE_ALLOC);
 716			__mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
 717		}
 718		mapping->nrpages += nr;
 719		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
 720		__mod_lruvec_page_state(page, NR_SHMEM, nr);
 721unlock:
 722		xas_unlock_irq(&xas);
 723	} while (xas_nomem(&xas, gfp));
 724
 725	if (xas_error(&xas)) {
 726		error = xas_error(&xas);
 727		goto error;
 728	}
 729
 730	return 0;
 731error:
 732	page->mapping = NULL;
 733	page_ref_sub(page, nr);
 734	return error;
 735}
 736
 737/*
 738 * Like delete_from_page_cache, but substitutes swap for page.
 739 */
 740static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 741{
 742	struct address_space *mapping = page->mapping;
 743	int error;
 744
 745	VM_BUG_ON_PAGE(PageCompound(page), page);
 746
 747	xa_lock_irq(&mapping->i_pages);
 748	error = shmem_replace_entry(mapping, page->index, page, radswap);
 749	page->mapping = NULL;
 750	mapping->nrpages--;
 751	__dec_lruvec_page_state(page, NR_FILE_PAGES);
 752	__dec_lruvec_page_state(page, NR_SHMEM);
 753	xa_unlock_irq(&mapping->i_pages);
 754	put_page(page);
 755	BUG_ON(error);
 756}
 757
 758/*
 759 * Remove swap entry from page cache, free the swap and its page cache.
 760 */
 761static int shmem_free_swap(struct address_space *mapping,
 762			   pgoff_t index, void *radswap)
 763{
 764	void *old;
 765
 766	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
 767	if (old != radswap)
 768		return -ENOENT;
 769	free_swap_and_cache(radix_to_swp_entry(radswap));
 770	return 0;
 771}
 772
 773/*
 774 * Determine (in bytes) how many of the shmem object's pages mapped by the
 775 * given offsets are swapped out.
 776 *
 777 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 778 * as long as the inode doesn't go away and racy results are not a problem.
 779 */
 780unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 781						pgoff_t start, pgoff_t end)
 782{
 783	XA_STATE(xas, &mapping->i_pages, start);
 784	struct page *page;
 785	unsigned long swapped = 0;
 786
 787	rcu_read_lock();
 788	xas_for_each(&xas, page, end - 1) {
 789		if (xas_retry(&xas, page))
 790			continue;
 791		if (xa_is_value(page))
 792			swapped++;
 793
 794		if (need_resched()) {
 795			xas_pause(&xas);
 796			cond_resched_rcu();
 797		}
 798	}
 799
 800	rcu_read_unlock();
 801
 802	return swapped << PAGE_SHIFT;
 803}
 804
 805/*
 806 * Determine (in bytes) how many of the shmem object's pages mapped by the
 807 * given vma is swapped out.
 808 *
 809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 810 * as long as the inode doesn't go away and racy results are not a problem.
 811 */
 812unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 813{
 814	struct inode *inode = file_inode(vma->vm_file);
 815	struct shmem_inode_info *info = SHMEM_I(inode);
 816	struct address_space *mapping = inode->i_mapping;
 817	unsigned long swapped;
 818
 819	/* Be careful as we don't hold info->lock */
 820	swapped = READ_ONCE(info->swapped);
 821
 822	/*
 823	 * The easier cases are when the shmem object has nothing in swap, or
 824	 * the vma maps it whole. Then we can simply use the stats that we
 825	 * already track.
 826	 */
 827	if (!swapped)
 828		return 0;
 829
 830	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 831		return swapped << PAGE_SHIFT;
 832
 833	/* Here comes the more involved part */
 834	return shmem_partial_swap_usage(mapping,
 835			linear_page_index(vma, vma->vm_start),
 836			linear_page_index(vma, vma->vm_end));
 837}
 838
 839/*
 840 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 841 */
 842void shmem_unlock_mapping(struct address_space *mapping)
 843{
 844	struct pagevec pvec;
 
 845	pgoff_t index = 0;
 846
 847	pagevec_init(&pvec);
 848	/*
 849	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 850	 */
 851	while (!mapping_unevictable(mapping)) {
 852		if (!pagevec_lookup(&pvec, mapping, &index))
 
 
 
 
 
 
 853			break;
 
 
 854		check_move_unevictable_pages(&pvec);
 855		pagevec_release(&pvec);
 856		cond_resched();
 857	}
 858}
 859
 860/*
 861 * Check whether a hole-punch or truncation needs to split a huge page,
 862 * returning true if no split was required, or the split has been successful.
 863 *
 864 * Eviction (or truncation to 0 size) should never need to split a huge page;
 865 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
 866 * head, and then succeeded to trylock on tail.
 867 *
 868 * A split can only succeed when there are no additional references on the
 869 * huge page: so the split below relies upon find_get_entries() having stopped
 870 * when it found a subpage of the huge page, without getting further references.
 871 */
 872static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
 873{
 874	if (!PageTransCompound(page))
 875		return true;
 876
 877	/* Just proceed to delete a huge page wholly within the range punched */
 878	if (PageHead(page) &&
 879	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
 880		return true;
 881
 882	/* Try to split huge page, so we can truly punch the hole or truncate */
 883	return split_huge_page(page) >= 0;
 884}
 885
 886/*
 887 * Remove range of pages and swap entries from page cache, and free them.
 888 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 889 */
 890static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 891								 bool unfalloc)
 892{
 893	struct address_space *mapping = inode->i_mapping;
 894	struct shmem_inode_info *info = SHMEM_I(inode);
 895	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 896	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 897	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
 898	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
 899	struct pagevec pvec;
 900	pgoff_t indices[PAGEVEC_SIZE];
 901	long nr_swaps_freed = 0;
 902	pgoff_t index;
 903	int i;
 904
 905	if (lend == -1)
 906		end = -1;	/* unsigned, so actually very big */
 907
 908	pagevec_init(&pvec);
 909	index = start;
 910	while (index < end && find_lock_entries(mapping, index, end - 1,
 911			&pvec, indices)) {
 
 
 
 
 912		for (i = 0; i < pagevec_count(&pvec); i++) {
 913			struct page *page = pvec.pages[i];
 914
 915			index = indices[i];
 
 
 916
 917			if (xa_is_value(page)) {
 918				if (unfalloc)
 919					continue;
 920				nr_swaps_freed += !shmem_free_swap(mapping,
 921								index, page);
 922				continue;
 923			}
 924			index += thp_nr_pages(page) - 1;
 925
 926			if (!unfalloc || !PageUptodate(page))
 927				truncate_inode_page(mapping, page);
 
 
 
 
 
 
 
 
 
 928			unlock_page(page);
 929		}
 930		pagevec_remove_exceptionals(&pvec);
 931		pagevec_release(&pvec);
 932		cond_resched();
 933		index++;
 934	}
 935
 936	if (partial_start) {
 937		struct page *page = NULL;
 938		shmem_getpage(inode, start - 1, &page, SGP_READ);
 939		if (page) {
 940			unsigned int top = PAGE_SIZE;
 941			if (start > end) {
 942				top = partial_end;
 943				partial_end = 0;
 944			}
 945			zero_user_segment(page, partial_start, top);
 946			set_page_dirty(page);
 947			unlock_page(page);
 948			put_page(page);
 949		}
 950	}
 951	if (partial_end) {
 952		struct page *page = NULL;
 953		shmem_getpage(inode, end, &page, SGP_READ);
 954		if (page) {
 955			zero_user_segment(page, 0, partial_end);
 956			set_page_dirty(page);
 957			unlock_page(page);
 958			put_page(page);
 959		}
 960	}
 961	if (start >= end)
 962		return;
 963
 964	index = start;
 965	while (index < end) {
 966		cond_resched();
 967
 968		if (!find_get_entries(mapping, index, end - 1, &pvec,
 969				indices)) {
 
 
 970			/* If all gone or hole-punch or unfalloc, we're done */
 971			if (index == start || end != -1)
 972				break;
 973			/* But if truncating, restart to make sure all gone */
 974			index = start;
 975			continue;
 976		}
 977		for (i = 0; i < pagevec_count(&pvec); i++) {
 978			struct page *page = pvec.pages[i];
 979
 980			index = indices[i];
 
 
 
 981			if (xa_is_value(page)) {
 982				if (unfalloc)
 983					continue;
 984				if (shmem_free_swap(mapping, index, page)) {
 985					/* Swap was replaced by page: retry */
 986					index--;
 987					break;
 988				}
 989				nr_swaps_freed++;
 990				continue;
 991			}
 992
 993			lock_page(page);
 994
 995			if (!unfalloc || !PageUptodate(page)) {
 996				if (page_mapping(page) != mapping) {
 997					/* Page was replaced by swap: retry */
 998					unlock_page(page);
 999					index--;
1000					break;
1001				}
1002				VM_BUG_ON_PAGE(PageWriteback(page), page);
1003				if (shmem_punch_compound(page, start, end))
1004					truncate_inode_page(mapping, page);
1005				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1006					/* Wipe the page and don't get stuck */
1007					clear_highpage(page);
1008					flush_dcache_page(page);
1009					set_page_dirty(page);
1010					if (index <
1011					    round_up(start, HPAGE_PMD_NR))
1012						start = index + 1;
1013				}
1014			}
1015			unlock_page(page);
1016		}
1017		pagevec_remove_exceptionals(&pvec);
1018		pagevec_release(&pvec);
1019		index++;
1020	}
1021
1022	spin_lock_irq(&info->lock);
1023	info->swapped -= nr_swaps_freed;
1024	shmem_recalc_inode(inode);
1025	spin_unlock_irq(&info->lock);
1026}
1027
1028void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1029{
1030	shmem_undo_range(inode, lstart, lend, false);
1031	inode->i_ctime = inode->i_mtime = current_time(inode);
1032}
1033EXPORT_SYMBOL_GPL(shmem_truncate_range);
1034
1035static int shmem_getattr(struct user_namespace *mnt_userns,
1036			 const struct path *path, struct kstat *stat,
1037			 u32 request_mask, unsigned int query_flags)
1038{
1039	struct inode *inode = path->dentry->d_inode;
1040	struct shmem_inode_info *info = SHMEM_I(inode);
1041	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1042
1043	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1044		spin_lock_irq(&info->lock);
1045		shmem_recalc_inode(inode);
1046		spin_unlock_irq(&info->lock);
1047	}
1048	generic_fillattr(&init_user_ns, inode, stat);
1049
1050	if (is_huge_enabled(sb_info))
1051		stat->blksize = HPAGE_PMD_SIZE;
1052
1053	return 0;
1054}
1055
1056static int shmem_setattr(struct user_namespace *mnt_userns,
1057			 struct dentry *dentry, struct iattr *attr)
1058{
1059	struct inode *inode = d_inode(dentry);
1060	struct shmem_inode_info *info = SHMEM_I(inode);
1061	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1062	int error;
1063
1064	error = setattr_prepare(&init_user_ns, dentry, attr);
1065	if (error)
1066		return error;
1067
1068	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1069		loff_t oldsize = inode->i_size;
1070		loff_t newsize = attr->ia_size;
1071
1072		/* protected by i_mutex */
1073		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1074		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1075			return -EPERM;
1076
1077		if (newsize != oldsize) {
1078			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1079					oldsize, newsize);
1080			if (error)
1081				return error;
1082			i_size_write(inode, newsize);
1083			inode->i_ctime = inode->i_mtime = current_time(inode);
1084		}
1085		if (newsize <= oldsize) {
1086			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1087			if (oldsize > holebegin)
1088				unmap_mapping_range(inode->i_mapping,
1089							holebegin, 0, 1);
1090			if (info->alloced)
1091				shmem_truncate_range(inode,
1092							newsize, (loff_t)-1);
1093			/* unmap again to remove racily COWed private pages */
1094			if (oldsize > holebegin)
1095				unmap_mapping_range(inode->i_mapping,
1096							holebegin, 0, 1);
1097
1098			/*
1099			 * Part of the huge page can be beyond i_size: subject
1100			 * to shrink under memory pressure.
1101			 */
1102			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1103				spin_lock(&sbinfo->shrinklist_lock);
1104				/*
1105				 * _careful to defend against unlocked access to
1106				 * ->shrink_list in shmem_unused_huge_shrink()
1107				 */
1108				if (list_empty_careful(&info->shrinklist)) {
1109					list_add_tail(&info->shrinklist,
1110							&sbinfo->shrinklist);
1111					sbinfo->shrinklist_len++;
1112				}
1113				spin_unlock(&sbinfo->shrinklist_lock);
1114			}
1115		}
1116	}
1117
1118	setattr_copy(&init_user_ns, inode, attr);
1119	if (attr->ia_valid & ATTR_MODE)
1120		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1121	return error;
1122}
1123
1124static void shmem_evict_inode(struct inode *inode)
1125{
1126	struct shmem_inode_info *info = SHMEM_I(inode);
1127	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128
1129	if (shmem_mapping(inode->i_mapping)) {
1130		shmem_unacct_size(info->flags, inode->i_size);
1131		inode->i_size = 0;
1132		shmem_truncate_range(inode, 0, (loff_t)-1);
1133		if (!list_empty(&info->shrinklist)) {
1134			spin_lock(&sbinfo->shrinklist_lock);
1135			if (!list_empty(&info->shrinklist)) {
1136				list_del_init(&info->shrinklist);
1137				sbinfo->shrinklist_len--;
1138			}
1139			spin_unlock(&sbinfo->shrinklist_lock);
1140		}
1141		while (!list_empty(&info->swaplist)) {
1142			/* Wait while shmem_unuse() is scanning this inode... */
1143			wait_var_event(&info->stop_eviction,
1144				       !atomic_read(&info->stop_eviction));
1145			mutex_lock(&shmem_swaplist_mutex);
1146			/* ...but beware of the race if we peeked too early */
1147			if (!atomic_read(&info->stop_eviction))
1148				list_del_init(&info->swaplist);
1149			mutex_unlock(&shmem_swaplist_mutex);
1150		}
1151	}
1152
1153	simple_xattrs_free(&info->xattrs);
1154	WARN_ON(inode->i_blocks);
1155	shmem_free_inode(inode->i_sb);
1156	clear_inode(inode);
1157}
1158
1159extern struct swap_info_struct *swap_info[];
1160
1161static int shmem_find_swap_entries(struct address_space *mapping,
1162				   pgoff_t start, unsigned int nr_entries,
1163				   struct page **entries, pgoff_t *indices,
1164				   unsigned int type, bool frontswap)
1165{
1166	XA_STATE(xas, &mapping->i_pages, start);
1167	struct page *page;
1168	swp_entry_t entry;
1169	unsigned int ret = 0;
1170
1171	if (!nr_entries)
1172		return 0;
1173
1174	rcu_read_lock();
1175	xas_for_each(&xas, page, ULONG_MAX) {
1176		if (xas_retry(&xas, page))
1177			continue;
1178
1179		if (!xa_is_value(page))
1180			continue;
1181
1182		entry = radix_to_swp_entry(page);
1183		if (swp_type(entry) != type)
1184			continue;
1185		if (frontswap &&
1186		    !frontswap_test(swap_info[type], swp_offset(entry)))
1187			continue;
1188
1189		indices[ret] = xas.xa_index;
1190		entries[ret] = page;
1191
1192		if (need_resched()) {
1193			xas_pause(&xas);
1194			cond_resched_rcu();
1195		}
1196		if (++ret == nr_entries)
1197			break;
1198	}
1199	rcu_read_unlock();
1200
1201	return ret;
1202}
1203
1204/*
1205 * Move the swapped pages for an inode to page cache. Returns the count
1206 * of pages swapped in, or the error in case of failure.
1207 */
1208static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1209				    pgoff_t *indices)
1210{
1211	int i = 0;
1212	int ret = 0;
1213	int error = 0;
1214	struct address_space *mapping = inode->i_mapping;
1215
1216	for (i = 0; i < pvec.nr; i++) {
1217		struct page *page = pvec.pages[i];
1218
1219		if (!xa_is_value(page))
1220			continue;
1221		error = shmem_swapin_page(inode, indices[i],
1222					  &page, SGP_CACHE,
1223					  mapping_gfp_mask(mapping),
1224					  NULL, NULL);
1225		if (error == 0) {
1226			unlock_page(page);
1227			put_page(page);
1228			ret++;
1229		}
1230		if (error == -ENOMEM)
1231			break;
1232		error = 0;
1233	}
1234	return error ? error : ret;
1235}
1236
1237/*
1238 * If swap found in inode, free it and move page from swapcache to filecache.
1239 */
1240static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1241			     bool frontswap, unsigned long *fs_pages_to_unuse)
1242{
1243	struct address_space *mapping = inode->i_mapping;
1244	pgoff_t start = 0;
1245	struct pagevec pvec;
1246	pgoff_t indices[PAGEVEC_SIZE];
1247	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1248	int ret = 0;
1249
1250	pagevec_init(&pvec);
1251	do {
1252		unsigned int nr_entries = PAGEVEC_SIZE;
1253
1254		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1255			nr_entries = *fs_pages_to_unuse;
1256
1257		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1258						  pvec.pages, indices,
1259						  type, frontswap);
1260		if (pvec.nr == 0) {
1261			ret = 0;
1262			break;
1263		}
1264
1265		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1266		if (ret < 0)
1267			break;
1268
1269		if (frontswap_partial) {
1270			*fs_pages_to_unuse -= ret;
1271			if (*fs_pages_to_unuse == 0) {
1272				ret = FRONTSWAP_PAGES_UNUSED;
1273				break;
1274			}
1275		}
1276
1277		start = indices[pvec.nr - 1];
1278	} while (true);
1279
1280	return ret;
1281}
1282
1283/*
1284 * Read all the shared memory data that resides in the swap
1285 * device 'type' back into memory, so the swap device can be
1286 * unused.
1287 */
1288int shmem_unuse(unsigned int type, bool frontswap,
1289		unsigned long *fs_pages_to_unuse)
1290{
1291	struct shmem_inode_info *info, *next;
1292	int error = 0;
1293
1294	if (list_empty(&shmem_swaplist))
1295		return 0;
1296
1297	mutex_lock(&shmem_swaplist_mutex);
1298	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1299		if (!info->swapped) {
1300			list_del_init(&info->swaplist);
1301			continue;
1302		}
1303		/*
1304		 * Drop the swaplist mutex while searching the inode for swap;
1305		 * but before doing so, make sure shmem_evict_inode() will not
1306		 * remove placeholder inode from swaplist, nor let it be freed
1307		 * (igrab() would protect from unlink, but not from unmount).
1308		 */
1309		atomic_inc(&info->stop_eviction);
1310		mutex_unlock(&shmem_swaplist_mutex);
1311
1312		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1313					  fs_pages_to_unuse);
1314		cond_resched();
1315
1316		mutex_lock(&shmem_swaplist_mutex);
1317		next = list_next_entry(info, swaplist);
1318		if (!info->swapped)
1319			list_del_init(&info->swaplist);
1320		if (atomic_dec_and_test(&info->stop_eviction))
1321			wake_up_var(&info->stop_eviction);
1322		if (error)
1323			break;
1324	}
1325	mutex_unlock(&shmem_swaplist_mutex);
1326
1327	return error;
1328}
1329
1330/*
1331 * Move the page from the page cache to the swap cache.
1332 */
1333static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1334{
1335	struct shmem_inode_info *info;
1336	struct address_space *mapping;
1337	struct inode *inode;
1338	swp_entry_t swap;
1339	pgoff_t index;
1340
1341	VM_BUG_ON_PAGE(PageCompound(page), page);
1342	BUG_ON(!PageLocked(page));
1343	mapping = page->mapping;
1344	index = page->index;
1345	inode = mapping->host;
1346	info = SHMEM_I(inode);
1347	if (info->flags & VM_LOCKED)
1348		goto redirty;
1349	if (!total_swap_pages)
1350		goto redirty;
1351
1352	/*
1353	 * Our capabilities prevent regular writeback or sync from ever calling
1354	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1355	 * its underlying filesystem, in which case tmpfs should write out to
1356	 * swap only in response to memory pressure, and not for the writeback
1357	 * threads or sync.
1358	 */
1359	if (!wbc->for_reclaim) {
1360		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1361		goto redirty;
1362	}
1363
1364	/*
1365	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1366	 * value into swapfile.c, the only way we can correctly account for a
1367	 * fallocated page arriving here is now to initialize it and write it.
1368	 *
1369	 * That's okay for a page already fallocated earlier, but if we have
1370	 * not yet completed the fallocation, then (a) we want to keep track
1371	 * of this page in case we have to undo it, and (b) it may not be a
1372	 * good idea to continue anyway, once we're pushing into swap.  So
1373	 * reactivate the page, and let shmem_fallocate() quit when too many.
1374	 */
1375	if (!PageUptodate(page)) {
1376		if (inode->i_private) {
1377			struct shmem_falloc *shmem_falloc;
1378			spin_lock(&inode->i_lock);
1379			shmem_falloc = inode->i_private;
1380			if (shmem_falloc &&
1381			    !shmem_falloc->waitq &&
1382			    index >= shmem_falloc->start &&
1383			    index < shmem_falloc->next)
1384				shmem_falloc->nr_unswapped++;
1385			else
1386				shmem_falloc = NULL;
1387			spin_unlock(&inode->i_lock);
1388			if (shmem_falloc)
1389				goto redirty;
1390		}
1391		clear_highpage(page);
1392		flush_dcache_page(page);
1393		SetPageUptodate(page);
1394	}
1395
1396	swap = get_swap_page(page);
1397	if (!swap.val)
1398		goto redirty;
1399
1400	/*
1401	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1402	 * if it's not already there.  Do it now before the page is
1403	 * moved to swap cache, when its pagelock no longer protects
1404	 * the inode from eviction.  But don't unlock the mutex until
1405	 * we've incremented swapped, because shmem_unuse_inode() will
1406	 * prune a !swapped inode from the swaplist under this mutex.
1407	 */
1408	mutex_lock(&shmem_swaplist_mutex);
1409	if (list_empty(&info->swaplist))
1410		list_add(&info->swaplist, &shmem_swaplist);
1411
1412	if (add_to_swap_cache(page, swap,
1413			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1414			NULL) == 0) {
1415		spin_lock_irq(&info->lock);
1416		shmem_recalc_inode(inode);
1417		info->swapped++;
1418		spin_unlock_irq(&info->lock);
1419
1420		swap_shmem_alloc(swap);
1421		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1422
1423		mutex_unlock(&shmem_swaplist_mutex);
1424		BUG_ON(page_mapped(page));
1425		swap_writepage(page, wbc);
1426		return 0;
1427	}
1428
1429	mutex_unlock(&shmem_swaplist_mutex);
1430	put_swap_page(page, swap);
1431redirty:
1432	set_page_dirty(page);
1433	if (wbc->for_reclaim)
1434		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1435	unlock_page(page);
1436	return 0;
1437}
1438
1439#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1440static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1441{
1442	char buffer[64];
1443
1444	if (!mpol || mpol->mode == MPOL_DEFAULT)
1445		return;		/* show nothing */
1446
1447	mpol_to_str(buffer, sizeof(buffer), mpol);
1448
1449	seq_printf(seq, ",mpol=%s", buffer);
1450}
1451
1452static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1453{
1454	struct mempolicy *mpol = NULL;
1455	if (sbinfo->mpol) {
1456		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1457		mpol = sbinfo->mpol;
1458		mpol_get(mpol);
1459		spin_unlock(&sbinfo->stat_lock);
1460	}
1461	return mpol;
1462}
1463#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1464static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1465{
1466}
1467static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1468{
1469	return NULL;
1470}
1471#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1472#ifndef CONFIG_NUMA
1473#define vm_policy vm_private_data
1474#endif
1475
1476static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1477		struct shmem_inode_info *info, pgoff_t index)
1478{
1479	/* Create a pseudo vma that just contains the policy */
1480	vma_init(vma, NULL);
1481	/* Bias interleave by inode number to distribute better across nodes */
1482	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1483	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1484}
1485
1486static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1487{
1488	/* Drop reference taken by mpol_shared_policy_lookup() */
1489	mpol_cond_put(vma->vm_policy);
1490}
1491
1492static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1493			struct shmem_inode_info *info, pgoff_t index)
1494{
1495	struct vm_area_struct pvma;
1496	struct page *page;
1497	struct vm_fault vmf = {
1498		.vma = &pvma,
1499	};
1500
1501	shmem_pseudo_vma_init(&pvma, info, index);
 
 
1502	page = swap_cluster_readahead(swap, gfp, &vmf);
1503	shmem_pseudo_vma_destroy(&pvma);
1504
1505	return page;
1506}
1507
1508/*
1509 * Make sure huge_gfp is always more limited than limit_gfp.
1510 * Some of the flags set permissions, while others set limitations.
1511 */
1512static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1513{
1514	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1515	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1516	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1517	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1518
1519	/* Allow allocations only from the originally specified zones. */
1520	result |= zoneflags;
1521
1522	/*
1523	 * Minimize the result gfp by taking the union with the deny flags,
1524	 * and the intersection of the allow flags.
1525	 */
1526	result |= (limit_gfp & denyflags);
1527	result |= (huge_gfp & limit_gfp) & allowflags;
1528
1529	return result;
1530}
1531
1532static struct page *shmem_alloc_hugepage(gfp_t gfp,
1533		struct shmem_inode_info *info, pgoff_t index)
1534{
1535	struct vm_area_struct pvma;
1536	struct address_space *mapping = info->vfs_inode.i_mapping;
1537	pgoff_t hindex;
1538	struct page *page;
1539
1540	hindex = round_down(index, HPAGE_PMD_NR);
1541	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1542								XA_PRESENT))
1543		return NULL;
1544
1545	shmem_pseudo_vma_init(&pvma, info, hindex);
1546	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1547			       true);
1548	shmem_pseudo_vma_destroy(&pvma);
1549	if (page)
1550		prep_transhuge_page(page);
1551	else
1552		count_vm_event(THP_FILE_FALLBACK);
1553	return page;
1554}
1555
1556static struct page *shmem_alloc_page(gfp_t gfp,
1557			struct shmem_inode_info *info, pgoff_t index)
1558{
1559	struct vm_area_struct pvma;
1560	struct page *page;
1561
1562	shmem_pseudo_vma_init(&pvma, info, index);
1563	page = alloc_page_vma(gfp, &pvma, 0);
1564	shmem_pseudo_vma_destroy(&pvma);
1565
1566	return page;
1567}
1568
1569static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1570		struct inode *inode,
1571		pgoff_t index, bool huge)
1572{
1573	struct shmem_inode_info *info = SHMEM_I(inode);
1574	struct page *page;
1575	int nr;
1576	int err = -ENOSPC;
1577
1578	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1579		huge = false;
1580	nr = huge ? HPAGE_PMD_NR : 1;
1581
1582	if (!shmem_inode_acct_block(inode, nr))
1583		goto failed;
1584
1585	if (huge)
1586		page = shmem_alloc_hugepage(gfp, info, index);
1587	else
1588		page = shmem_alloc_page(gfp, info, index);
1589	if (page) {
1590		__SetPageLocked(page);
1591		__SetPageSwapBacked(page);
1592		return page;
1593	}
1594
1595	err = -ENOMEM;
1596	shmem_inode_unacct_blocks(inode, nr);
1597failed:
1598	return ERR_PTR(err);
1599}
1600
1601/*
1602 * When a page is moved from swapcache to shmem filecache (either by the
1603 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1604 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1605 * ignorance of the mapping it belongs to.  If that mapping has special
1606 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1607 * we may need to copy to a suitable page before moving to filecache.
1608 *
1609 * In a future release, this may well be extended to respect cpuset and
1610 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1611 * but for now it is a simple matter of zone.
1612 */
1613static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1614{
1615	return page_zonenum(page) > gfp_zone(gfp);
1616}
1617
1618static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1619				struct shmem_inode_info *info, pgoff_t index)
1620{
1621	struct page *oldpage, *newpage;
1622	struct address_space *swap_mapping;
1623	swp_entry_t entry;
1624	pgoff_t swap_index;
1625	int error;
1626
1627	oldpage = *pagep;
1628	entry.val = page_private(oldpage);
1629	swap_index = swp_offset(entry);
1630	swap_mapping = page_mapping(oldpage);
1631
1632	/*
1633	 * We have arrived here because our zones are constrained, so don't
1634	 * limit chance of success by further cpuset and node constraints.
1635	 */
1636	gfp &= ~GFP_CONSTRAINT_MASK;
1637	newpage = shmem_alloc_page(gfp, info, index);
1638	if (!newpage)
1639		return -ENOMEM;
1640
1641	get_page(newpage);
1642	copy_highpage(newpage, oldpage);
1643	flush_dcache_page(newpage);
1644
1645	__SetPageLocked(newpage);
1646	__SetPageSwapBacked(newpage);
1647	SetPageUptodate(newpage);
1648	set_page_private(newpage, entry.val);
1649	SetPageSwapCache(newpage);
1650
1651	/*
1652	 * Our caller will very soon move newpage out of swapcache, but it's
1653	 * a nice clean interface for us to replace oldpage by newpage there.
1654	 */
1655	xa_lock_irq(&swap_mapping->i_pages);
1656	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1657	if (!error) {
1658		mem_cgroup_migrate(oldpage, newpage);
1659		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1660		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1661	}
1662	xa_unlock_irq(&swap_mapping->i_pages);
1663
1664	if (unlikely(error)) {
1665		/*
1666		 * Is this possible?  I think not, now that our callers check
1667		 * both PageSwapCache and page_private after getting page lock;
1668		 * but be defensive.  Reverse old to newpage for clear and free.
1669		 */
1670		oldpage = newpage;
1671	} else {
1672		lru_cache_add(newpage);
1673		*pagep = newpage;
1674	}
1675
1676	ClearPageSwapCache(oldpage);
1677	set_page_private(oldpage, 0);
1678
1679	unlock_page(oldpage);
1680	put_page(oldpage);
1681	put_page(oldpage);
1682	return error;
1683}
1684
1685/*
1686 * Swap in the page pointed to by *pagep.
1687 * Caller has to make sure that *pagep contains a valid swapped page.
1688 * Returns 0 and the page in pagep if success. On failure, returns the
1689 * error code and NULL in *pagep.
1690 */
1691static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1692			     struct page **pagep, enum sgp_type sgp,
1693			     gfp_t gfp, struct vm_area_struct *vma,
1694			     vm_fault_t *fault_type)
1695{
1696	struct address_space *mapping = inode->i_mapping;
1697	struct shmem_inode_info *info = SHMEM_I(inode);
1698	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1699	struct page *page;
1700	swp_entry_t swap;
1701	int error;
1702
1703	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1704	swap = radix_to_swp_entry(*pagep);
1705	*pagep = NULL;
1706
1707	/* Look it up and read it in.. */
1708	page = lookup_swap_cache(swap, NULL, 0);
1709	if (!page) {
1710		/* Or update major stats only when swapin succeeds?? */
1711		if (fault_type) {
1712			*fault_type |= VM_FAULT_MAJOR;
1713			count_vm_event(PGMAJFAULT);
1714			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1715		}
1716		/* Here we actually start the io */
1717		page = shmem_swapin(swap, gfp, info, index);
1718		if (!page) {
1719			error = -ENOMEM;
1720			goto failed;
1721		}
1722	}
1723
1724	/* We have to do this with page locked to prevent races */
1725	lock_page(page);
1726	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1727	    !shmem_confirm_swap(mapping, index, swap)) {
1728		error = -EEXIST;
1729		goto unlock;
1730	}
1731	if (!PageUptodate(page)) {
1732		error = -EIO;
1733		goto failed;
1734	}
1735	wait_on_page_writeback(page);
1736
1737	/*
1738	 * Some architectures may have to restore extra metadata to the
1739	 * physical page after reading from swap.
1740	 */
1741	arch_swap_restore(swap, page);
1742
1743	if (shmem_should_replace_page(page, gfp)) {
1744		error = shmem_replace_page(&page, gfp, info, index);
1745		if (error)
1746			goto failed;
1747	}
1748
1749	error = shmem_add_to_page_cache(page, mapping, index,
1750					swp_to_radix_entry(swap), gfp,
1751					charge_mm);
1752	if (error)
1753		goto failed;
1754
1755	spin_lock_irq(&info->lock);
1756	info->swapped--;
1757	shmem_recalc_inode(inode);
1758	spin_unlock_irq(&info->lock);
1759
1760	if (sgp == SGP_WRITE)
1761		mark_page_accessed(page);
1762
1763	delete_from_swap_cache(page);
1764	set_page_dirty(page);
1765	swap_free(swap);
1766
1767	*pagep = page;
1768	return 0;
1769failed:
1770	if (!shmem_confirm_swap(mapping, index, swap))
1771		error = -EEXIST;
1772unlock:
1773	if (page) {
1774		unlock_page(page);
1775		put_page(page);
1776	}
1777
1778	return error;
1779}
1780
1781/*
1782 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1783 *
1784 * If we allocate a new one we do not mark it dirty. That's up to the
1785 * vm. If we swap it in we mark it dirty since we also free the swap
1786 * entry since a page cannot live in both the swap and page cache.
1787 *
1788 * vma, vmf, and fault_type are only supplied by shmem_fault:
1789 * otherwise they are NULL.
1790 */
1791static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1792	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1793	struct vm_area_struct *vma, struct vm_fault *vmf,
1794			vm_fault_t *fault_type)
1795{
1796	struct address_space *mapping = inode->i_mapping;
1797	struct shmem_inode_info *info = SHMEM_I(inode);
1798	struct shmem_sb_info *sbinfo;
1799	struct mm_struct *charge_mm;
1800	struct page *page;
1801	enum sgp_type sgp_huge = sgp;
1802	pgoff_t hindex = index;
1803	gfp_t huge_gfp;
1804	int error;
1805	int once = 0;
1806	int alloced = 0;
1807
1808	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1809		return -EFBIG;
1810	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1811		sgp = SGP_CACHE;
1812repeat:
1813	if (sgp <= SGP_CACHE &&
1814	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1815		return -EINVAL;
1816	}
1817
1818	sbinfo = SHMEM_SB(inode->i_sb);
1819	charge_mm = vma ? vma->vm_mm : NULL;
1820
1821	page = pagecache_get_page(mapping, index,
1822					FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1823
1824	if (page && vma && userfaultfd_minor(vma)) {
1825		if (!xa_is_value(page)) {
1826			unlock_page(page);
1827			put_page(page);
1828		}
1829		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1830		return 0;
1831	}
1832
 
1833	if (xa_is_value(page)) {
1834		error = shmem_swapin_page(inode, index, &page,
1835					  sgp, gfp, vma, fault_type);
1836		if (error == -EEXIST)
1837			goto repeat;
1838
1839		*pagep = page;
1840		return error;
1841	}
1842
1843	if (page)
1844		hindex = page->index;
1845	if (page && sgp == SGP_WRITE)
1846		mark_page_accessed(page);
1847
1848	/* fallocated page? */
1849	if (page && !PageUptodate(page)) {
1850		if (sgp != SGP_READ)
1851			goto clear;
1852		unlock_page(page);
1853		put_page(page);
1854		page = NULL;
1855		hindex = index;
1856	}
1857	if (page || sgp == SGP_READ)
1858		goto out;
 
 
1859
1860	/*
1861	 * Fast cache lookup did not find it:
1862	 * bring it back from swap or allocate.
1863	 */
1864
1865	if (vma && userfaultfd_missing(vma)) {
1866		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1867		return 0;
1868	}
1869
1870	/* shmem_symlink() */
1871	if (!shmem_mapping(mapping))
1872		goto alloc_nohuge;
1873	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1874		goto alloc_nohuge;
1875	if (shmem_huge == SHMEM_HUGE_FORCE)
1876		goto alloc_huge;
1877	switch (sbinfo->huge) {
1878	case SHMEM_HUGE_NEVER:
1879		goto alloc_nohuge;
1880	case SHMEM_HUGE_WITHIN_SIZE: {
1881		loff_t i_size;
1882		pgoff_t off;
1883
1884		off = round_up(index, HPAGE_PMD_NR);
1885		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1886		if (i_size >= HPAGE_PMD_SIZE &&
1887		    i_size >> PAGE_SHIFT >= off)
1888			goto alloc_huge;
1889
1890		fallthrough;
1891	}
1892	case SHMEM_HUGE_ADVISE:
1893		if (sgp_huge == SGP_HUGE)
1894			goto alloc_huge;
1895		/* TODO: implement fadvise() hints */
1896		goto alloc_nohuge;
1897	}
1898
1899alloc_huge:
1900	huge_gfp = vma_thp_gfp_mask(vma);
1901	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1902	page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1903	if (IS_ERR(page)) {
1904alloc_nohuge:
1905		page = shmem_alloc_and_acct_page(gfp, inode,
1906						 index, false);
1907	}
1908	if (IS_ERR(page)) {
1909		int retry = 5;
1910
1911		error = PTR_ERR(page);
1912		page = NULL;
1913		if (error != -ENOSPC)
1914			goto unlock;
1915		/*
1916		 * Try to reclaim some space by splitting a huge page
1917		 * beyond i_size on the filesystem.
1918		 */
1919		while (retry--) {
1920			int ret;
1921
1922			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1923			if (ret == SHRINK_STOP)
1924				break;
1925			if (ret)
1926				goto alloc_nohuge;
1927		}
1928		goto unlock;
1929	}
1930
1931	if (PageTransHuge(page))
1932		hindex = round_down(index, HPAGE_PMD_NR);
1933	else
1934		hindex = index;
1935
1936	if (sgp == SGP_WRITE)
1937		__SetPageReferenced(page);
1938
1939	error = shmem_add_to_page_cache(page, mapping, hindex,
1940					NULL, gfp & GFP_RECLAIM_MASK,
1941					charge_mm);
1942	if (error)
1943		goto unacct;
1944	lru_cache_add(page);
1945
1946	spin_lock_irq(&info->lock);
1947	info->alloced += compound_nr(page);
1948	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1949	shmem_recalc_inode(inode);
1950	spin_unlock_irq(&info->lock);
1951	alloced = true;
1952
1953	if (PageTransHuge(page) &&
1954	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1955			hindex + HPAGE_PMD_NR - 1) {
1956		/*
1957		 * Part of the huge page is beyond i_size: subject
1958		 * to shrink under memory pressure.
1959		 */
1960		spin_lock(&sbinfo->shrinklist_lock);
1961		/*
1962		 * _careful to defend against unlocked access to
1963		 * ->shrink_list in shmem_unused_huge_shrink()
1964		 */
1965		if (list_empty_careful(&info->shrinklist)) {
1966			list_add_tail(&info->shrinklist,
1967				      &sbinfo->shrinklist);
1968			sbinfo->shrinklist_len++;
1969		}
1970		spin_unlock(&sbinfo->shrinklist_lock);
1971	}
1972
1973	/*
1974	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1975	 */
1976	if (sgp == SGP_FALLOC)
1977		sgp = SGP_WRITE;
1978clear:
1979	/*
1980	 * Let SGP_WRITE caller clear ends if write does not fill page;
1981	 * but SGP_FALLOC on a page fallocated earlier must initialize
1982	 * it now, lest undo on failure cancel our earlier guarantee.
1983	 */
1984	if (sgp != SGP_WRITE && !PageUptodate(page)) {
 
1985		int i;
1986
1987		for (i = 0; i < compound_nr(page); i++) {
1988			clear_highpage(page + i);
1989			flush_dcache_page(page + i);
1990		}
1991		SetPageUptodate(page);
1992	}
1993
1994	/* Perhaps the file has been truncated since we checked */
1995	if (sgp <= SGP_CACHE &&
1996	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1997		if (alloced) {
1998			ClearPageDirty(page);
1999			delete_from_page_cache(page);
2000			spin_lock_irq(&info->lock);
2001			shmem_recalc_inode(inode);
2002			spin_unlock_irq(&info->lock);
2003		}
2004		error = -EINVAL;
2005		goto unlock;
2006	}
2007out:
2008	*pagep = page + index - hindex;
2009	return 0;
2010
2011	/*
2012	 * Error recovery.
2013	 */
2014unacct:
2015	shmem_inode_unacct_blocks(inode, compound_nr(page));
2016
2017	if (PageTransHuge(page)) {
2018		unlock_page(page);
2019		put_page(page);
2020		goto alloc_nohuge;
2021	}
2022unlock:
2023	if (page) {
2024		unlock_page(page);
2025		put_page(page);
2026	}
2027	if (error == -ENOSPC && !once++) {
2028		spin_lock_irq(&info->lock);
2029		shmem_recalc_inode(inode);
2030		spin_unlock_irq(&info->lock);
2031		goto repeat;
2032	}
2033	if (error == -EEXIST)
2034		goto repeat;
2035	return error;
2036}
2037
2038/*
2039 * This is like autoremove_wake_function, but it removes the wait queue
2040 * entry unconditionally - even if something else had already woken the
2041 * target.
2042 */
2043static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2044{
2045	int ret = default_wake_function(wait, mode, sync, key);
2046	list_del_init(&wait->entry);
2047	return ret;
2048}
2049
2050static vm_fault_t shmem_fault(struct vm_fault *vmf)
2051{
2052	struct vm_area_struct *vma = vmf->vma;
2053	struct inode *inode = file_inode(vma->vm_file);
2054	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2055	enum sgp_type sgp;
2056	int err;
2057	vm_fault_t ret = VM_FAULT_LOCKED;
2058
2059	/*
2060	 * Trinity finds that probing a hole which tmpfs is punching can
2061	 * prevent the hole-punch from ever completing: which in turn
2062	 * locks writers out with its hold on i_mutex.  So refrain from
2063	 * faulting pages into the hole while it's being punched.  Although
2064	 * shmem_undo_range() does remove the additions, it may be unable to
2065	 * keep up, as each new page needs its own unmap_mapping_range() call,
2066	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2067	 *
2068	 * It does not matter if we sometimes reach this check just before the
2069	 * hole-punch begins, so that one fault then races with the punch:
2070	 * we just need to make racing faults a rare case.
2071	 *
2072	 * The implementation below would be much simpler if we just used a
2073	 * standard mutex or completion: but we cannot take i_mutex in fault,
2074	 * and bloating every shmem inode for this unlikely case would be sad.
2075	 */
2076	if (unlikely(inode->i_private)) {
2077		struct shmem_falloc *shmem_falloc;
2078
2079		spin_lock(&inode->i_lock);
2080		shmem_falloc = inode->i_private;
2081		if (shmem_falloc &&
2082		    shmem_falloc->waitq &&
2083		    vmf->pgoff >= shmem_falloc->start &&
2084		    vmf->pgoff < shmem_falloc->next) {
2085			struct file *fpin;
2086			wait_queue_head_t *shmem_falloc_waitq;
2087			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2088
2089			ret = VM_FAULT_NOPAGE;
2090			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2091			if (fpin)
2092				ret = VM_FAULT_RETRY;
2093
2094			shmem_falloc_waitq = shmem_falloc->waitq;
2095			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2096					TASK_UNINTERRUPTIBLE);
2097			spin_unlock(&inode->i_lock);
2098			schedule();
2099
2100			/*
2101			 * shmem_falloc_waitq points into the shmem_fallocate()
2102			 * stack of the hole-punching task: shmem_falloc_waitq
2103			 * is usually invalid by the time we reach here, but
2104			 * finish_wait() does not dereference it in that case;
2105			 * though i_lock needed lest racing with wake_up_all().
2106			 */
2107			spin_lock(&inode->i_lock);
2108			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2109			spin_unlock(&inode->i_lock);
2110
2111			if (fpin)
2112				fput(fpin);
2113			return ret;
2114		}
2115		spin_unlock(&inode->i_lock);
2116	}
2117
2118	sgp = SGP_CACHE;
2119
2120	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2121	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2122		sgp = SGP_NOHUGE;
2123	else if (vma->vm_flags & VM_HUGEPAGE)
2124		sgp = SGP_HUGE;
2125
2126	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2127				  gfp, vma, vmf, &ret);
2128	if (err)
2129		return vmf_error(err);
2130	return ret;
2131}
2132
2133unsigned long shmem_get_unmapped_area(struct file *file,
2134				      unsigned long uaddr, unsigned long len,
2135				      unsigned long pgoff, unsigned long flags)
2136{
2137	unsigned long (*get_area)(struct file *,
2138		unsigned long, unsigned long, unsigned long, unsigned long);
2139	unsigned long addr;
2140	unsigned long offset;
2141	unsigned long inflated_len;
2142	unsigned long inflated_addr;
2143	unsigned long inflated_offset;
2144
2145	if (len > TASK_SIZE)
2146		return -ENOMEM;
2147
2148	get_area = current->mm->get_unmapped_area;
2149	addr = get_area(file, uaddr, len, pgoff, flags);
2150
2151	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2152		return addr;
2153	if (IS_ERR_VALUE(addr))
2154		return addr;
2155	if (addr & ~PAGE_MASK)
2156		return addr;
2157	if (addr > TASK_SIZE - len)
2158		return addr;
2159
2160	if (shmem_huge == SHMEM_HUGE_DENY)
2161		return addr;
2162	if (len < HPAGE_PMD_SIZE)
2163		return addr;
2164	if (flags & MAP_FIXED)
2165		return addr;
2166	/*
2167	 * Our priority is to support MAP_SHARED mapped hugely;
2168	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2169	 * But if caller specified an address hint and we allocated area there
2170	 * successfully, respect that as before.
2171	 */
2172	if (uaddr == addr)
2173		return addr;
2174
2175	if (shmem_huge != SHMEM_HUGE_FORCE) {
2176		struct super_block *sb;
2177
2178		if (file) {
2179			VM_BUG_ON(file->f_op != &shmem_file_operations);
2180			sb = file_inode(file)->i_sb;
2181		} else {
2182			/*
2183			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2184			 * for "/dev/zero", to create a shared anonymous object.
2185			 */
2186			if (IS_ERR(shm_mnt))
2187				return addr;
2188			sb = shm_mnt->mnt_sb;
2189		}
2190		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2191			return addr;
2192	}
2193
2194	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2195	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2196		return addr;
2197	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2198		return addr;
2199
2200	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2201	if (inflated_len > TASK_SIZE)
2202		return addr;
2203	if (inflated_len < len)
2204		return addr;
2205
2206	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2207	if (IS_ERR_VALUE(inflated_addr))
2208		return addr;
2209	if (inflated_addr & ~PAGE_MASK)
2210		return addr;
2211
2212	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2213	inflated_addr += offset - inflated_offset;
2214	if (inflated_offset > offset)
2215		inflated_addr += HPAGE_PMD_SIZE;
2216
2217	if (inflated_addr > TASK_SIZE - len)
2218		return addr;
2219	return inflated_addr;
2220}
2221
2222#ifdef CONFIG_NUMA
2223static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2224{
2225	struct inode *inode = file_inode(vma->vm_file);
2226	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2227}
2228
2229static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2230					  unsigned long addr)
2231{
2232	struct inode *inode = file_inode(vma->vm_file);
2233	pgoff_t index;
2234
2235	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2236	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2237}
2238#endif
2239
2240int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2241{
2242	struct inode *inode = file_inode(file);
2243	struct shmem_inode_info *info = SHMEM_I(inode);
2244	int retval = -ENOMEM;
2245
2246	/*
2247	 * What serializes the accesses to info->flags?
2248	 * ipc_lock_object() when called from shmctl_do_lock(),
2249	 * no serialization needed when called from shm_destroy().
2250	 */
2251	if (lock && !(info->flags & VM_LOCKED)) {
2252		if (!user_shm_lock(inode->i_size, ucounts))
2253			goto out_nomem;
2254		info->flags |= VM_LOCKED;
2255		mapping_set_unevictable(file->f_mapping);
2256	}
2257	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2258		user_shm_unlock(inode->i_size, ucounts);
2259		info->flags &= ~VM_LOCKED;
2260		mapping_clear_unevictable(file->f_mapping);
2261	}
2262	retval = 0;
2263
2264out_nomem:
2265	return retval;
2266}
2267
2268static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2269{
2270	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2271	int ret;
2272
2273	ret = seal_check_future_write(info->seals, vma);
2274	if (ret)
2275		return ret;
 
 
 
 
2276
2277	/* arm64 - allow memory tagging on RAM-based files */
2278	vma->vm_flags |= VM_MTE_ALLOWED;
 
 
 
 
 
 
 
 
2279
2280	file_accessed(file);
2281	vma->vm_ops = &shmem_vm_ops;
2282	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2283			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2284			(vma->vm_end & HPAGE_PMD_MASK)) {
2285		khugepaged_enter(vma, vma->vm_flags);
2286	}
2287	return 0;
2288}
2289
2290static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2291				     umode_t mode, dev_t dev, unsigned long flags)
2292{
2293	struct inode *inode;
2294	struct shmem_inode_info *info;
2295	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2296	ino_t ino;
2297
2298	if (shmem_reserve_inode(sb, &ino))
2299		return NULL;
2300
2301	inode = new_inode(sb);
2302	if (inode) {
2303		inode->i_ino = ino;
2304		inode_init_owner(&init_user_ns, inode, dir, mode);
2305		inode->i_blocks = 0;
2306		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2307		inode->i_generation = prandom_u32();
2308		info = SHMEM_I(inode);
2309		memset(info, 0, (char *)inode - (char *)info);
2310		spin_lock_init(&info->lock);
2311		atomic_set(&info->stop_eviction, 0);
2312		info->seals = F_SEAL_SEAL;
2313		info->flags = flags & VM_NORESERVE;
2314		INIT_LIST_HEAD(&info->shrinklist);
2315		INIT_LIST_HEAD(&info->swaplist);
2316		simple_xattrs_init(&info->xattrs);
2317		cache_no_acl(inode);
2318
2319		switch (mode & S_IFMT) {
2320		default:
2321			inode->i_op = &shmem_special_inode_operations;
2322			init_special_inode(inode, mode, dev);
2323			break;
2324		case S_IFREG:
2325			inode->i_mapping->a_ops = &shmem_aops;
2326			inode->i_op = &shmem_inode_operations;
2327			inode->i_fop = &shmem_file_operations;
2328			mpol_shared_policy_init(&info->policy,
2329						 shmem_get_sbmpol(sbinfo));
2330			break;
2331		case S_IFDIR:
2332			inc_nlink(inode);
2333			/* Some things misbehave if size == 0 on a directory */
2334			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2335			inode->i_op = &shmem_dir_inode_operations;
2336			inode->i_fop = &simple_dir_operations;
2337			break;
2338		case S_IFLNK:
2339			/*
2340			 * Must not load anything in the rbtree,
2341			 * mpol_free_shared_policy will not be called.
2342			 */
2343			mpol_shared_policy_init(&info->policy, NULL);
2344			break;
2345		}
2346
2347		lockdep_annotate_inode_mutex_key(inode);
2348	} else
2349		shmem_free_inode(sb);
2350	return inode;
2351}
2352
2353#ifdef CONFIG_USERFAULTFD
2354int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2355			   pmd_t *dst_pmd,
2356			   struct vm_area_struct *dst_vma,
2357			   unsigned long dst_addr,
2358			   unsigned long src_addr,
2359			   bool zeropage,
2360			   struct page **pagep)
 
 
 
 
2361{
2362	struct inode *inode = file_inode(dst_vma->vm_file);
2363	struct shmem_inode_info *info = SHMEM_I(inode);
2364	struct address_space *mapping = inode->i_mapping;
2365	gfp_t gfp = mapping_gfp_mask(mapping);
2366	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
 
2367	void *page_kaddr;
2368	struct page *page;
 
2369	int ret;
2370	pgoff_t max_off;
2371
2372	if (!shmem_inode_acct_block(inode, 1)) {
2373		/*
2374		 * We may have got a page, returned -ENOENT triggering a retry,
2375		 * and now we find ourselves with -ENOMEM. Release the page, to
2376		 * avoid a BUG_ON in our caller.
2377		 */
2378		if (unlikely(*pagep)) {
2379			put_page(*pagep);
2380			*pagep = NULL;
2381		}
2382		return -ENOMEM;
2383	}
2384
2385	if (!*pagep) {
2386		ret = -ENOMEM;
2387		page = shmem_alloc_page(gfp, info, pgoff);
2388		if (!page)
2389			goto out_unacct_blocks;
2390
2391		if (!zeropage) {	/* COPY */
2392			page_kaddr = kmap_atomic(page);
2393			ret = copy_from_user(page_kaddr,
2394					     (const void __user *)src_addr,
2395					     PAGE_SIZE);
2396			kunmap_atomic(page_kaddr);
2397
2398			/* fallback to copy_from_user outside mmap_lock */
2399			if (unlikely(ret)) {
2400				*pagep = page;
2401				ret = -ENOENT;
2402				/* don't free the page */
2403				goto out_unacct_blocks;
2404			}
2405		} else {		/* ZEROPAGE */
2406			clear_highpage(page);
2407		}
2408	} else {
2409		page = *pagep;
2410		*pagep = NULL;
2411	}
2412
2413	VM_BUG_ON(PageLocked(page));
2414	VM_BUG_ON(PageSwapBacked(page));
2415	__SetPageLocked(page);
2416	__SetPageSwapBacked(page);
2417	__SetPageUptodate(page);
2418
2419	ret = -EFAULT;
 
2420	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2421	if (unlikely(pgoff >= max_off))
2422		goto out_release;
2423
2424	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2425				      gfp & GFP_RECLAIM_MASK, dst_mm);
2426	if (ret)
2427		goto out_release;
2428
2429	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2430				       page, true, false);
2431	if (ret)
2432		goto out_delete_from_cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2433
2434	spin_lock_irq(&info->lock);
2435	info->alloced++;
2436	inode->i_blocks += BLOCKS_PER_PAGE;
2437	shmem_recalc_inode(inode);
2438	spin_unlock_irq(&info->lock);
2439
2440	SetPageDirty(page);
 
 
 
 
 
 
2441	unlock_page(page);
2442	return 0;
2443out_delete_from_cache:
 
 
 
 
2444	delete_from_page_cache(page);
2445out_release:
2446	unlock_page(page);
2447	put_page(page);
2448out_unacct_blocks:
2449	shmem_inode_unacct_blocks(inode, 1);
2450	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2451}
2452#endif /* CONFIG_USERFAULTFD */
2453
2454#ifdef CONFIG_TMPFS
2455static const struct inode_operations shmem_symlink_inode_operations;
2456static const struct inode_operations shmem_short_symlink_operations;
2457
2458#ifdef CONFIG_TMPFS_XATTR
2459static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2460#else
2461#define shmem_initxattrs NULL
2462#endif
2463
2464static int
2465shmem_write_begin(struct file *file, struct address_space *mapping,
2466			loff_t pos, unsigned len, unsigned flags,
2467			struct page **pagep, void **fsdata)
2468{
2469	struct inode *inode = mapping->host;
2470	struct shmem_inode_info *info = SHMEM_I(inode);
2471	pgoff_t index = pos >> PAGE_SHIFT;
2472
2473	/* i_mutex is held by caller */
2474	if (unlikely(info->seals & (F_SEAL_GROW |
2475				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2476		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2477			return -EPERM;
2478		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2479			return -EPERM;
2480	}
2481
2482	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2483}
2484
2485static int
2486shmem_write_end(struct file *file, struct address_space *mapping,
2487			loff_t pos, unsigned len, unsigned copied,
2488			struct page *page, void *fsdata)
2489{
2490	struct inode *inode = mapping->host;
2491
2492	if (pos + copied > inode->i_size)
2493		i_size_write(inode, pos + copied);
2494
2495	if (!PageUptodate(page)) {
2496		struct page *head = compound_head(page);
2497		if (PageTransCompound(page)) {
2498			int i;
2499
2500			for (i = 0; i < HPAGE_PMD_NR; i++) {
2501				if (head + i == page)
2502					continue;
2503				clear_highpage(head + i);
2504				flush_dcache_page(head + i);
2505			}
2506		}
2507		if (copied < PAGE_SIZE) {
2508			unsigned from = pos & (PAGE_SIZE - 1);
2509			zero_user_segments(page, 0, from,
2510					from + copied, PAGE_SIZE);
2511		}
2512		SetPageUptodate(head);
2513	}
2514	set_page_dirty(page);
2515	unlock_page(page);
2516	put_page(page);
2517
2518	return copied;
2519}
2520
2521static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2522{
2523	struct file *file = iocb->ki_filp;
2524	struct inode *inode = file_inode(file);
2525	struct address_space *mapping = inode->i_mapping;
2526	pgoff_t index;
2527	unsigned long offset;
2528	enum sgp_type sgp = SGP_READ;
2529	int error = 0;
2530	ssize_t retval = 0;
2531	loff_t *ppos = &iocb->ki_pos;
2532
2533	/*
2534	 * Might this read be for a stacking filesystem?  Then when reading
2535	 * holes of a sparse file, we actually need to allocate those pages,
2536	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2537	 */
2538	if (!iter_is_iovec(to))
2539		sgp = SGP_CACHE;
2540
2541	index = *ppos >> PAGE_SHIFT;
2542	offset = *ppos & ~PAGE_MASK;
2543
2544	for (;;) {
2545		struct page *page = NULL;
2546		pgoff_t end_index;
2547		unsigned long nr, ret;
2548		loff_t i_size = i_size_read(inode);
2549
2550		end_index = i_size >> PAGE_SHIFT;
2551		if (index > end_index)
2552			break;
2553		if (index == end_index) {
2554			nr = i_size & ~PAGE_MASK;
2555			if (nr <= offset)
2556				break;
2557		}
2558
2559		error = shmem_getpage(inode, index, &page, sgp);
2560		if (error) {
2561			if (error == -EINVAL)
2562				error = 0;
2563			break;
2564		}
2565		if (page) {
2566			if (sgp == SGP_CACHE)
2567				set_page_dirty(page);
2568			unlock_page(page);
2569		}
2570
2571		/*
2572		 * We must evaluate after, since reads (unlike writes)
2573		 * are called without i_mutex protection against truncate
2574		 */
2575		nr = PAGE_SIZE;
2576		i_size = i_size_read(inode);
2577		end_index = i_size >> PAGE_SHIFT;
2578		if (index == end_index) {
2579			nr = i_size & ~PAGE_MASK;
2580			if (nr <= offset) {
2581				if (page)
2582					put_page(page);
2583				break;
2584			}
2585		}
2586		nr -= offset;
2587
2588		if (page) {
2589			/*
2590			 * If users can be writing to this page using arbitrary
2591			 * virtual addresses, take care about potential aliasing
2592			 * before reading the page on the kernel side.
2593			 */
2594			if (mapping_writably_mapped(mapping))
2595				flush_dcache_page(page);
2596			/*
2597			 * Mark the page accessed if we read the beginning.
2598			 */
2599			if (!offset)
2600				mark_page_accessed(page);
2601		} else {
2602			page = ZERO_PAGE(0);
2603			get_page(page);
2604		}
2605
2606		/*
2607		 * Ok, we have the page, and it's up-to-date, so
2608		 * now we can copy it to user space...
2609		 */
2610		ret = copy_page_to_iter(page, offset, nr, to);
2611		retval += ret;
2612		offset += ret;
2613		index += offset >> PAGE_SHIFT;
2614		offset &= ~PAGE_MASK;
2615
2616		put_page(page);
2617		if (!iov_iter_count(to))
2618			break;
2619		if (ret < nr) {
2620			error = -EFAULT;
2621			break;
2622		}
2623		cond_resched();
2624	}
2625
2626	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2627	file_accessed(file);
2628	return retval ? retval : error;
2629}
2630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2631static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2632{
2633	struct address_space *mapping = file->f_mapping;
2634	struct inode *inode = mapping->host;
 
 
2635
2636	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2637		return generic_file_llseek_size(file, offset, whence,
2638					MAX_LFS_FILESIZE, i_size_read(inode));
2639	if (offset < 0)
2640		return -ENXIO;
2641
2642	inode_lock(inode);
2643	/* We're holding i_mutex so we can access i_size directly */
2644	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2645	if (offset >= 0)
2646		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2647	inode_unlock(inode);
2648	return offset;
2649}
2650
2651static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2652							 loff_t len)
2653{
2654	struct inode *inode = file_inode(file);
2655	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2656	struct shmem_inode_info *info = SHMEM_I(inode);
2657	struct shmem_falloc shmem_falloc;
2658	pgoff_t start, index, end;
2659	int error;
2660
2661	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2662		return -EOPNOTSUPP;
2663
2664	inode_lock(inode);
2665
2666	if (mode & FALLOC_FL_PUNCH_HOLE) {
2667		struct address_space *mapping = file->f_mapping;
2668		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2669		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2670		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2671
2672		/* protected by i_mutex */
2673		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2674			error = -EPERM;
2675			goto out;
2676		}
2677
2678		shmem_falloc.waitq = &shmem_falloc_waitq;
2679		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2680		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2681		spin_lock(&inode->i_lock);
2682		inode->i_private = &shmem_falloc;
2683		spin_unlock(&inode->i_lock);
2684
2685		if ((u64)unmap_end > (u64)unmap_start)
2686			unmap_mapping_range(mapping, unmap_start,
2687					    1 + unmap_end - unmap_start, 0);
2688		shmem_truncate_range(inode, offset, offset + len - 1);
2689		/* No need to unmap again: hole-punching leaves COWed pages */
2690
2691		spin_lock(&inode->i_lock);
2692		inode->i_private = NULL;
2693		wake_up_all(&shmem_falloc_waitq);
2694		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2695		spin_unlock(&inode->i_lock);
2696		error = 0;
2697		goto out;
2698	}
2699
2700	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2701	error = inode_newsize_ok(inode, offset + len);
2702	if (error)
2703		goto out;
2704
2705	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2706		error = -EPERM;
2707		goto out;
2708	}
2709
2710	start = offset >> PAGE_SHIFT;
2711	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2712	/* Try to avoid a swapstorm if len is impossible to satisfy */
2713	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2714		error = -ENOSPC;
2715		goto out;
2716	}
2717
2718	shmem_falloc.waitq = NULL;
2719	shmem_falloc.start = start;
2720	shmem_falloc.next  = start;
2721	shmem_falloc.nr_falloced = 0;
2722	shmem_falloc.nr_unswapped = 0;
2723	spin_lock(&inode->i_lock);
2724	inode->i_private = &shmem_falloc;
2725	spin_unlock(&inode->i_lock);
2726
2727	for (index = start; index < end; index++) {
2728		struct page *page;
2729
2730		/*
2731		 * Good, the fallocate(2) manpage permits EINTR: we may have
2732		 * been interrupted because we are using up too much memory.
2733		 */
2734		if (signal_pending(current))
2735			error = -EINTR;
2736		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2737			error = -ENOMEM;
2738		else
2739			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2740		if (error) {
2741			/* Remove the !PageUptodate pages we added */
2742			if (index > start) {
2743				shmem_undo_range(inode,
2744				    (loff_t)start << PAGE_SHIFT,
2745				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2746			}
2747			goto undone;
2748		}
2749
2750		/*
2751		 * Inform shmem_writepage() how far we have reached.
2752		 * No need for lock or barrier: we have the page lock.
2753		 */
2754		shmem_falloc.next++;
2755		if (!PageUptodate(page))
2756			shmem_falloc.nr_falloced++;
2757
2758		/*
2759		 * If !PageUptodate, leave it that way so that freeable pages
2760		 * can be recognized if we need to rollback on error later.
2761		 * But set_page_dirty so that memory pressure will swap rather
2762		 * than free the pages we are allocating (and SGP_CACHE pages
2763		 * might still be clean: we now need to mark those dirty too).
2764		 */
2765		set_page_dirty(page);
2766		unlock_page(page);
2767		put_page(page);
2768		cond_resched();
2769	}
2770
2771	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2772		i_size_write(inode, offset + len);
2773	inode->i_ctime = current_time(inode);
2774undone:
2775	spin_lock(&inode->i_lock);
2776	inode->i_private = NULL;
2777	spin_unlock(&inode->i_lock);
2778out:
2779	inode_unlock(inode);
2780	return error;
2781}
2782
2783static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2784{
2785	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2786
2787	buf->f_type = TMPFS_MAGIC;
2788	buf->f_bsize = PAGE_SIZE;
2789	buf->f_namelen = NAME_MAX;
2790	if (sbinfo->max_blocks) {
2791		buf->f_blocks = sbinfo->max_blocks;
2792		buf->f_bavail =
2793		buf->f_bfree  = sbinfo->max_blocks -
2794				percpu_counter_sum(&sbinfo->used_blocks);
2795	}
2796	if (sbinfo->max_inodes) {
2797		buf->f_files = sbinfo->max_inodes;
2798		buf->f_ffree = sbinfo->free_inodes;
2799	}
2800	/* else leave those fields 0 like simple_statfs */
2801
2802	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2803
2804	return 0;
2805}
2806
2807/*
2808 * File creation. Allocate an inode, and we're done..
2809 */
2810static int
2811shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2812	    struct dentry *dentry, umode_t mode, dev_t dev)
2813{
2814	struct inode *inode;
2815	int error = -ENOSPC;
2816
2817	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2818	if (inode) {
2819		error = simple_acl_create(dir, inode);
2820		if (error)
2821			goto out_iput;
2822		error = security_inode_init_security(inode, dir,
2823						     &dentry->d_name,
2824						     shmem_initxattrs, NULL);
2825		if (error && error != -EOPNOTSUPP)
2826			goto out_iput;
2827
2828		error = 0;
2829		dir->i_size += BOGO_DIRENT_SIZE;
2830		dir->i_ctime = dir->i_mtime = current_time(dir);
2831		d_instantiate(dentry, inode);
2832		dget(dentry); /* Extra count - pin the dentry in core */
2833	}
2834	return error;
2835out_iput:
2836	iput(inode);
2837	return error;
2838}
2839
2840static int
2841shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2842	      struct dentry *dentry, umode_t mode)
2843{
2844	struct inode *inode;
2845	int error = -ENOSPC;
2846
2847	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2848	if (inode) {
2849		error = security_inode_init_security(inode, dir,
2850						     NULL,
2851						     shmem_initxattrs, NULL);
2852		if (error && error != -EOPNOTSUPP)
2853			goto out_iput;
2854		error = simple_acl_create(dir, inode);
2855		if (error)
2856			goto out_iput;
2857		d_tmpfile(dentry, inode);
2858	}
2859	return error;
2860out_iput:
2861	iput(inode);
2862	return error;
2863}
2864
2865static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2866		       struct dentry *dentry, umode_t mode)
2867{
2868	int error;
2869
2870	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2871				 mode | S_IFDIR, 0)))
2872		return error;
2873	inc_nlink(dir);
2874	return 0;
2875}
2876
2877static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2878			struct dentry *dentry, umode_t mode, bool excl)
2879{
2880	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2881}
2882
2883/*
2884 * Link a file..
2885 */
2886static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2887{
2888	struct inode *inode = d_inode(old_dentry);
2889	int ret = 0;
2890
2891	/*
2892	 * No ordinary (disk based) filesystem counts links as inodes;
2893	 * but each new link needs a new dentry, pinning lowmem, and
2894	 * tmpfs dentries cannot be pruned until they are unlinked.
2895	 * But if an O_TMPFILE file is linked into the tmpfs, the
2896	 * first link must skip that, to get the accounting right.
2897	 */
2898	if (inode->i_nlink) {
2899		ret = shmem_reserve_inode(inode->i_sb, NULL);
2900		if (ret)
2901			goto out;
2902	}
2903
2904	dir->i_size += BOGO_DIRENT_SIZE;
2905	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2906	inc_nlink(inode);
2907	ihold(inode);	/* New dentry reference */
2908	dget(dentry);		/* Extra pinning count for the created dentry */
2909	d_instantiate(dentry, inode);
2910out:
2911	return ret;
2912}
2913
2914static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2915{
2916	struct inode *inode = d_inode(dentry);
2917
2918	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2919		shmem_free_inode(inode->i_sb);
2920
2921	dir->i_size -= BOGO_DIRENT_SIZE;
2922	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2923	drop_nlink(inode);
2924	dput(dentry);	/* Undo the count from "create" - this does all the work */
2925	return 0;
2926}
2927
2928static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2929{
2930	if (!simple_empty(dentry))
2931		return -ENOTEMPTY;
2932
2933	drop_nlink(d_inode(dentry));
2934	drop_nlink(dir);
2935	return shmem_unlink(dir, dentry);
2936}
2937
2938static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2939{
2940	bool old_is_dir = d_is_dir(old_dentry);
2941	bool new_is_dir = d_is_dir(new_dentry);
2942
2943	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2944		if (old_is_dir) {
2945			drop_nlink(old_dir);
2946			inc_nlink(new_dir);
2947		} else {
2948			drop_nlink(new_dir);
2949			inc_nlink(old_dir);
2950		}
2951	}
2952	old_dir->i_ctime = old_dir->i_mtime =
2953	new_dir->i_ctime = new_dir->i_mtime =
2954	d_inode(old_dentry)->i_ctime =
2955	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2956
2957	return 0;
2958}
2959
2960static int shmem_whiteout(struct user_namespace *mnt_userns,
2961			  struct inode *old_dir, struct dentry *old_dentry)
2962{
2963	struct dentry *whiteout;
2964	int error;
2965
2966	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2967	if (!whiteout)
2968		return -ENOMEM;
2969
2970	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2971			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2972	dput(whiteout);
2973	if (error)
2974		return error;
2975
2976	/*
2977	 * Cheat and hash the whiteout while the old dentry is still in
2978	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2979	 *
2980	 * d_lookup() will consistently find one of them at this point,
2981	 * not sure which one, but that isn't even important.
2982	 */
2983	d_rehash(whiteout);
2984	return 0;
2985}
2986
2987/*
2988 * The VFS layer already does all the dentry stuff for rename,
2989 * we just have to decrement the usage count for the target if
2990 * it exists so that the VFS layer correctly free's it when it
2991 * gets overwritten.
2992 */
2993static int shmem_rename2(struct user_namespace *mnt_userns,
2994			 struct inode *old_dir, struct dentry *old_dentry,
2995			 struct inode *new_dir, struct dentry *new_dentry,
2996			 unsigned int flags)
2997{
2998	struct inode *inode = d_inode(old_dentry);
2999	int they_are_dirs = S_ISDIR(inode->i_mode);
3000
3001	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3002		return -EINVAL;
3003
3004	if (flags & RENAME_EXCHANGE)
3005		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3006
3007	if (!simple_empty(new_dentry))
3008		return -ENOTEMPTY;
3009
3010	if (flags & RENAME_WHITEOUT) {
3011		int error;
3012
3013		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3014		if (error)
3015			return error;
3016	}
3017
3018	if (d_really_is_positive(new_dentry)) {
3019		(void) shmem_unlink(new_dir, new_dentry);
3020		if (they_are_dirs) {
3021			drop_nlink(d_inode(new_dentry));
3022			drop_nlink(old_dir);
3023		}
3024	} else if (they_are_dirs) {
3025		drop_nlink(old_dir);
3026		inc_nlink(new_dir);
3027	}
3028
3029	old_dir->i_size -= BOGO_DIRENT_SIZE;
3030	new_dir->i_size += BOGO_DIRENT_SIZE;
3031	old_dir->i_ctime = old_dir->i_mtime =
3032	new_dir->i_ctime = new_dir->i_mtime =
3033	inode->i_ctime = current_time(old_dir);
3034	return 0;
3035}
3036
3037static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3038			 struct dentry *dentry, const char *symname)
3039{
3040	int error;
3041	int len;
3042	struct inode *inode;
3043	struct page *page;
3044
3045	len = strlen(symname) + 1;
3046	if (len > PAGE_SIZE)
3047		return -ENAMETOOLONG;
3048
3049	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3050				VM_NORESERVE);
3051	if (!inode)
3052		return -ENOSPC;
3053
3054	error = security_inode_init_security(inode, dir, &dentry->d_name,
3055					     shmem_initxattrs, NULL);
3056	if (error && error != -EOPNOTSUPP) {
3057		iput(inode);
3058		return error;
3059	}
3060
3061	inode->i_size = len-1;
3062	if (len <= SHORT_SYMLINK_LEN) {
3063		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3064		if (!inode->i_link) {
3065			iput(inode);
3066			return -ENOMEM;
3067		}
3068		inode->i_op = &shmem_short_symlink_operations;
3069	} else {
3070		inode_nohighmem(inode);
3071		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3072		if (error) {
3073			iput(inode);
3074			return error;
3075		}
3076		inode->i_mapping->a_ops = &shmem_aops;
3077		inode->i_op = &shmem_symlink_inode_operations;
3078		memcpy(page_address(page), symname, len);
3079		SetPageUptodate(page);
3080		set_page_dirty(page);
3081		unlock_page(page);
3082		put_page(page);
3083	}
3084	dir->i_size += BOGO_DIRENT_SIZE;
3085	dir->i_ctime = dir->i_mtime = current_time(dir);
3086	d_instantiate(dentry, inode);
3087	dget(dentry);
3088	return 0;
3089}
3090
3091static void shmem_put_link(void *arg)
3092{
3093	mark_page_accessed(arg);
3094	put_page(arg);
3095}
3096
3097static const char *shmem_get_link(struct dentry *dentry,
3098				  struct inode *inode,
3099				  struct delayed_call *done)
3100{
3101	struct page *page = NULL;
3102	int error;
3103	if (!dentry) {
3104		page = find_get_page(inode->i_mapping, 0);
3105		if (!page)
3106			return ERR_PTR(-ECHILD);
3107		if (!PageUptodate(page)) {
3108			put_page(page);
3109			return ERR_PTR(-ECHILD);
3110		}
3111	} else {
3112		error = shmem_getpage(inode, 0, &page, SGP_READ);
3113		if (error)
3114			return ERR_PTR(error);
3115		unlock_page(page);
3116	}
3117	set_delayed_call(done, shmem_put_link, page);
3118	return page_address(page);
3119}
3120
3121#ifdef CONFIG_TMPFS_XATTR
3122/*
3123 * Superblocks without xattr inode operations may get some security.* xattr
3124 * support from the LSM "for free". As soon as we have any other xattrs
3125 * like ACLs, we also need to implement the security.* handlers at
3126 * filesystem level, though.
3127 */
3128
3129/*
3130 * Callback for security_inode_init_security() for acquiring xattrs.
3131 */
3132static int shmem_initxattrs(struct inode *inode,
3133			    const struct xattr *xattr_array,
3134			    void *fs_info)
3135{
3136	struct shmem_inode_info *info = SHMEM_I(inode);
3137	const struct xattr *xattr;
3138	struct simple_xattr *new_xattr;
3139	size_t len;
3140
3141	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3142		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3143		if (!new_xattr)
3144			return -ENOMEM;
3145
3146		len = strlen(xattr->name) + 1;
3147		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3148					  GFP_KERNEL);
3149		if (!new_xattr->name) {
3150			kvfree(new_xattr);
3151			return -ENOMEM;
3152		}
3153
3154		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3155		       XATTR_SECURITY_PREFIX_LEN);
3156		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3157		       xattr->name, len);
3158
3159		simple_xattr_list_add(&info->xattrs, new_xattr);
3160	}
3161
3162	return 0;
3163}
3164
3165static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3166				   struct dentry *unused, struct inode *inode,
3167				   const char *name, void *buffer, size_t size)
3168{
3169	struct shmem_inode_info *info = SHMEM_I(inode);
3170
3171	name = xattr_full_name(handler, name);
3172	return simple_xattr_get(&info->xattrs, name, buffer, size);
3173}
3174
3175static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3176				   struct user_namespace *mnt_userns,
3177				   struct dentry *unused, struct inode *inode,
3178				   const char *name, const void *value,
3179				   size_t size, int flags)
3180{
3181	struct shmem_inode_info *info = SHMEM_I(inode);
3182
3183	name = xattr_full_name(handler, name);
3184	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3185}
3186
3187static const struct xattr_handler shmem_security_xattr_handler = {
3188	.prefix = XATTR_SECURITY_PREFIX,
3189	.get = shmem_xattr_handler_get,
3190	.set = shmem_xattr_handler_set,
3191};
3192
3193static const struct xattr_handler shmem_trusted_xattr_handler = {
3194	.prefix = XATTR_TRUSTED_PREFIX,
3195	.get = shmem_xattr_handler_get,
3196	.set = shmem_xattr_handler_set,
3197};
3198
3199static const struct xattr_handler *shmem_xattr_handlers[] = {
3200#ifdef CONFIG_TMPFS_POSIX_ACL
3201	&posix_acl_access_xattr_handler,
3202	&posix_acl_default_xattr_handler,
3203#endif
3204	&shmem_security_xattr_handler,
3205	&shmem_trusted_xattr_handler,
3206	NULL
3207};
3208
3209static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3210{
3211	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3212	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3213}
3214#endif /* CONFIG_TMPFS_XATTR */
3215
3216static const struct inode_operations shmem_short_symlink_operations = {
3217	.get_link	= simple_get_link,
3218#ifdef CONFIG_TMPFS_XATTR
3219	.listxattr	= shmem_listxattr,
3220#endif
3221};
3222
3223static const struct inode_operations shmem_symlink_inode_operations = {
3224	.get_link	= shmem_get_link,
3225#ifdef CONFIG_TMPFS_XATTR
3226	.listxattr	= shmem_listxattr,
3227#endif
3228};
3229
3230static struct dentry *shmem_get_parent(struct dentry *child)
3231{
3232	return ERR_PTR(-ESTALE);
3233}
3234
3235static int shmem_match(struct inode *ino, void *vfh)
3236{
3237	__u32 *fh = vfh;
3238	__u64 inum = fh[2];
3239	inum = (inum << 32) | fh[1];
3240	return ino->i_ino == inum && fh[0] == ino->i_generation;
3241}
3242
3243/* Find any alias of inode, but prefer a hashed alias */
3244static struct dentry *shmem_find_alias(struct inode *inode)
3245{
3246	struct dentry *alias = d_find_alias(inode);
3247
3248	return alias ?: d_find_any_alias(inode);
3249}
3250
3251
3252static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3253		struct fid *fid, int fh_len, int fh_type)
3254{
3255	struct inode *inode;
3256	struct dentry *dentry = NULL;
3257	u64 inum;
3258
3259	if (fh_len < 3)
3260		return NULL;
3261
3262	inum = fid->raw[2];
3263	inum = (inum << 32) | fid->raw[1];
3264
3265	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3266			shmem_match, fid->raw);
3267	if (inode) {
3268		dentry = shmem_find_alias(inode);
3269		iput(inode);
3270	}
3271
3272	return dentry;
3273}
3274
3275static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3276				struct inode *parent)
3277{
3278	if (*len < 3) {
3279		*len = 3;
3280		return FILEID_INVALID;
3281	}
3282
3283	if (inode_unhashed(inode)) {
3284		/* Unfortunately insert_inode_hash is not idempotent,
3285		 * so as we hash inodes here rather than at creation
3286		 * time, we need a lock to ensure we only try
3287		 * to do it once
3288		 */
3289		static DEFINE_SPINLOCK(lock);
3290		spin_lock(&lock);
3291		if (inode_unhashed(inode))
3292			__insert_inode_hash(inode,
3293					    inode->i_ino + inode->i_generation);
3294		spin_unlock(&lock);
3295	}
3296
3297	fh[0] = inode->i_generation;
3298	fh[1] = inode->i_ino;
3299	fh[2] = ((__u64)inode->i_ino) >> 32;
3300
3301	*len = 3;
3302	return 1;
3303}
3304
3305static const struct export_operations shmem_export_ops = {
3306	.get_parent     = shmem_get_parent,
3307	.encode_fh      = shmem_encode_fh,
3308	.fh_to_dentry	= shmem_fh_to_dentry,
3309};
3310
3311enum shmem_param {
3312	Opt_gid,
3313	Opt_huge,
3314	Opt_mode,
3315	Opt_mpol,
3316	Opt_nr_blocks,
3317	Opt_nr_inodes,
3318	Opt_size,
3319	Opt_uid,
3320	Opt_inode32,
3321	Opt_inode64,
3322};
3323
3324static const struct constant_table shmem_param_enums_huge[] = {
3325	{"never",	SHMEM_HUGE_NEVER },
3326	{"always",	SHMEM_HUGE_ALWAYS },
3327	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3328	{"advise",	SHMEM_HUGE_ADVISE },
3329	{}
3330};
3331
3332const struct fs_parameter_spec shmem_fs_parameters[] = {
3333	fsparam_u32   ("gid",		Opt_gid),
3334	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3335	fsparam_u32oct("mode",		Opt_mode),
3336	fsparam_string("mpol",		Opt_mpol),
3337	fsparam_string("nr_blocks",	Opt_nr_blocks),
3338	fsparam_string("nr_inodes",	Opt_nr_inodes),
3339	fsparam_string("size",		Opt_size),
3340	fsparam_u32   ("uid",		Opt_uid),
3341	fsparam_flag  ("inode32",	Opt_inode32),
3342	fsparam_flag  ("inode64",	Opt_inode64),
3343	{}
3344};
3345
3346static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3347{
3348	struct shmem_options *ctx = fc->fs_private;
3349	struct fs_parse_result result;
3350	unsigned long long size;
3351	char *rest;
3352	int opt;
3353
3354	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3355	if (opt < 0)
3356		return opt;
3357
3358	switch (opt) {
3359	case Opt_size:
3360		size = memparse(param->string, &rest);
3361		if (*rest == '%') {
3362			size <<= PAGE_SHIFT;
3363			size *= totalram_pages();
3364			do_div(size, 100);
3365			rest++;
3366		}
3367		if (*rest)
3368			goto bad_value;
3369		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3370		ctx->seen |= SHMEM_SEEN_BLOCKS;
3371		break;
3372	case Opt_nr_blocks:
3373		ctx->blocks = memparse(param->string, &rest);
3374		if (*rest)
3375			goto bad_value;
3376		ctx->seen |= SHMEM_SEEN_BLOCKS;
3377		break;
3378	case Opt_nr_inodes:
3379		ctx->inodes = memparse(param->string, &rest);
3380		if (*rest)
3381			goto bad_value;
3382		ctx->seen |= SHMEM_SEEN_INODES;
3383		break;
3384	case Opt_mode:
3385		ctx->mode = result.uint_32 & 07777;
3386		break;
3387	case Opt_uid:
3388		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3389		if (!uid_valid(ctx->uid))
3390			goto bad_value;
3391		break;
3392	case Opt_gid:
3393		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3394		if (!gid_valid(ctx->gid))
3395			goto bad_value;
3396		break;
3397	case Opt_huge:
3398		ctx->huge = result.uint_32;
3399		if (ctx->huge != SHMEM_HUGE_NEVER &&
3400		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3401		      has_transparent_hugepage()))
3402			goto unsupported_parameter;
3403		ctx->seen |= SHMEM_SEEN_HUGE;
3404		break;
3405	case Opt_mpol:
3406		if (IS_ENABLED(CONFIG_NUMA)) {
3407			mpol_put(ctx->mpol);
3408			ctx->mpol = NULL;
3409			if (mpol_parse_str(param->string, &ctx->mpol))
3410				goto bad_value;
3411			break;
3412		}
3413		goto unsupported_parameter;
3414	case Opt_inode32:
3415		ctx->full_inums = false;
3416		ctx->seen |= SHMEM_SEEN_INUMS;
3417		break;
3418	case Opt_inode64:
3419		if (sizeof(ino_t) < 8) {
3420			return invalfc(fc,
3421				       "Cannot use inode64 with <64bit inums in kernel\n");
3422		}
3423		ctx->full_inums = true;
3424		ctx->seen |= SHMEM_SEEN_INUMS;
3425		break;
3426	}
3427	return 0;
3428
3429unsupported_parameter:
3430	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3431bad_value:
3432	return invalfc(fc, "Bad value for '%s'", param->key);
3433}
3434
3435static int shmem_parse_options(struct fs_context *fc, void *data)
3436{
3437	char *options = data;
3438
3439	if (options) {
3440		int err = security_sb_eat_lsm_opts(options, &fc->security);
3441		if (err)
3442			return err;
3443	}
3444
3445	while (options != NULL) {
3446		char *this_char = options;
3447		for (;;) {
3448			/*
3449			 * NUL-terminate this option: unfortunately,
3450			 * mount options form a comma-separated list,
3451			 * but mpol's nodelist may also contain commas.
3452			 */
3453			options = strchr(options, ',');
3454			if (options == NULL)
3455				break;
3456			options++;
3457			if (!isdigit(*options)) {
3458				options[-1] = '\0';
3459				break;
3460			}
3461		}
3462		if (*this_char) {
3463			char *value = strchr(this_char, '=');
3464			size_t len = 0;
3465			int err;
3466
3467			if (value) {
3468				*value++ = '\0';
3469				len = strlen(value);
3470			}
3471			err = vfs_parse_fs_string(fc, this_char, value, len);
3472			if (err < 0)
3473				return err;
3474		}
3475	}
3476	return 0;
3477}
3478
3479/*
3480 * Reconfigure a shmem filesystem.
3481 *
3482 * Note that we disallow change from limited->unlimited blocks/inodes while any
3483 * are in use; but we must separately disallow unlimited->limited, because in
3484 * that case we have no record of how much is already in use.
3485 */
3486static int shmem_reconfigure(struct fs_context *fc)
3487{
3488	struct shmem_options *ctx = fc->fs_private;
3489	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3490	unsigned long inodes;
3491	const char *err;
3492
3493	spin_lock(&sbinfo->stat_lock);
3494	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3495	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3496		if (!sbinfo->max_blocks) {
3497			err = "Cannot retroactively limit size";
3498			goto out;
3499		}
3500		if (percpu_counter_compare(&sbinfo->used_blocks,
3501					   ctx->blocks) > 0) {
3502			err = "Too small a size for current use";
3503			goto out;
3504		}
3505	}
3506	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3507		if (!sbinfo->max_inodes) {
3508			err = "Cannot retroactively limit inodes";
3509			goto out;
3510		}
3511		if (ctx->inodes < inodes) {
3512			err = "Too few inodes for current use";
3513			goto out;
3514		}
3515	}
3516
3517	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3518	    sbinfo->next_ino > UINT_MAX) {
3519		err = "Current inum too high to switch to 32-bit inums";
3520		goto out;
3521	}
3522
3523	if (ctx->seen & SHMEM_SEEN_HUGE)
3524		sbinfo->huge = ctx->huge;
3525	if (ctx->seen & SHMEM_SEEN_INUMS)
3526		sbinfo->full_inums = ctx->full_inums;
3527	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3528		sbinfo->max_blocks  = ctx->blocks;
3529	if (ctx->seen & SHMEM_SEEN_INODES) {
3530		sbinfo->max_inodes  = ctx->inodes;
3531		sbinfo->free_inodes = ctx->inodes - inodes;
3532	}
3533
3534	/*
3535	 * Preserve previous mempolicy unless mpol remount option was specified.
3536	 */
3537	if (ctx->mpol) {
3538		mpol_put(sbinfo->mpol);
3539		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3540		ctx->mpol = NULL;
3541	}
3542	spin_unlock(&sbinfo->stat_lock);
3543	return 0;
3544out:
3545	spin_unlock(&sbinfo->stat_lock);
3546	return invalfc(fc, "%s", err);
3547}
3548
3549static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3550{
3551	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3552
3553	if (sbinfo->max_blocks != shmem_default_max_blocks())
3554		seq_printf(seq, ",size=%luk",
3555			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3556	if (sbinfo->max_inodes != shmem_default_max_inodes())
3557		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3558	if (sbinfo->mode != (0777 | S_ISVTX))
3559		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3560	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3561		seq_printf(seq, ",uid=%u",
3562				from_kuid_munged(&init_user_ns, sbinfo->uid));
3563	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3564		seq_printf(seq, ",gid=%u",
3565				from_kgid_munged(&init_user_ns, sbinfo->gid));
3566
3567	/*
3568	 * Showing inode{64,32} might be useful even if it's the system default,
3569	 * since then people don't have to resort to checking both here and
3570	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3571	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3572	 *
3573	 * We hide it when inode64 isn't the default and we are using 32-bit
3574	 * inodes, since that probably just means the feature isn't even under
3575	 * consideration.
3576	 *
3577	 * As such:
3578	 *
3579	 *                     +-----------------+-----------------+
3580	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3581	 *  +------------------+-----------------+-----------------+
3582	 *  | full_inums=true  | show            | show            |
3583	 *  | full_inums=false | show            | hide            |
3584	 *  +------------------+-----------------+-----------------+
3585	 *
3586	 */
3587	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3588		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3589#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3590	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3591	if (sbinfo->huge)
3592		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3593#endif
3594	shmem_show_mpol(seq, sbinfo->mpol);
3595	return 0;
3596}
3597
3598#endif /* CONFIG_TMPFS */
3599
3600static void shmem_put_super(struct super_block *sb)
3601{
3602	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3603
3604	free_percpu(sbinfo->ino_batch);
3605	percpu_counter_destroy(&sbinfo->used_blocks);
3606	mpol_put(sbinfo->mpol);
3607	kfree(sbinfo);
3608	sb->s_fs_info = NULL;
3609}
3610
3611static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3612{
3613	struct shmem_options *ctx = fc->fs_private;
3614	struct inode *inode;
3615	struct shmem_sb_info *sbinfo;
3616	int err = -ENOMEM;
3617
3618	/* Round up to L1_CACHE_BYTES to resist false sharing */
3619	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3620				L1_CACHE_BYTES), GFP_KERNEL);
3621	if (!sbinfo)
3622		return -ENOMEM;
3623
3624	sb->s_fs_info = sbinfo;
3625
3626#ifdef CONFIG_TMPFS
3627	/*
3628	 * Per default we only allow half of the physical ram per
3629	 * tmpfs instance, limiting inodes to one per page of lowmem;
3630	 * but the internal instance is left unlimited.
3631	 */
3632	if (!(sb->s_flags & SB_KERNMOUNT)) {
3633		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3634			ctx->blocks = shmem_default_max_blocks();
3635		if (!(ctx->seen & SHMEM_SEEN_INODES))
3636			ctx->inodes = shmem_default_max_inodes();
3637		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3638			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3639	} else {
3640		sb->s_flags |= SB_NOUSER;
3641	}
3642	sb->s_export_op = &shmem_export_ops;
3643	sb->s_flags |= SB_NOSEC;
3644#else
3645	sb->s_flags |= SB_NOUSER;
3646#endif
3647	sbinfo->max_blocks = ctx->blocks;
3648	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3649	if (sb->s_flags & SB_KERNMOUNT) {
3650		sbinfo->ino_batch = alloc_percpu(ino_t);
3651		if (!sbinfo->ino_batch)
3652			goto failed;
3653	}
3654	sbinfo->uid = ctx->uid;
3655	sbinfo->gid = ctx->gid;
3656	sbinfo->full_inums = ctx->full_inums;
3657	sbinfo->mode = ctx->mode;
3658	sbinfo->huge = ctx->huge;
3659	sbinfo->mpol = ctx->mpol;
3660	ctx->mpol = NULL;
3661
3662	spin_lock_init(&sbinfo->stat_lock);
3663	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3664		goto failed;
3665	spin_lock_init(&sbinfo->shrinklist_lock);
3666	INIT_LIST_HEAD(&sbinfo->shrinklist);
3667
3668	sb->s_maxbytes = MAX_LFS_FILESIZE;
3669	sb->s_blocksize = PAGE_SIZE;
3670	sb->s_blocksize_bits = PAGE_SHIFT;
3671	sb->s_magic = TMPFS_MAGIC;
3672	sb->s_op = &shmem_ops;
3673	sb->s_time_gran = 1;
3674#ifdef CONFIG_TMPFS_XATTR
3675	sb->s_xattr = shmem_xattr_handlers;
3676#endif
3677#ifdef CONFIG_TMPFS_POSIX_ACL
3678	sb->s_flags |= SB_POSIXACL;
3679#endif
3680	uuid_gen(&sb->s_uuid);
3681
3682	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3683	if (!inode)
3684		goto failed;
3685	inode->i_uid = sbinfo->uid;
3686	inode->i_gid = sbinfo->gid;
3687	sb->s_root = d_make_root(inode);
3688	if (!sb->s_root)
3689		goto failed;
3690	return 0;
3691
3692failed:
3693	shmem_put_super(sb);
3694	return err;
3695}
3696
3697static int shmem_get_tree(struct fs_context *fc)
3698{
3699	return get_tree_nodev(fc, shmem_fill_super);
3700}
3701
3702static void shmem_free_fc(struct fs_context *fc)
3703{
3704	struct shmem_options *ctx = fc->fs_private;
3705
3706	if (ctx) {
3707		mpol_put(ctx->mpol);
3708		kfree(ctx);
3709	}
3710}
3711
3712static const struct fs_context_operations shmem_fs_context_ops = {
3713	.free			= shmem_free_fc,
3714	.get_tree		= shmem_get_tree,
3715#ifdef CONFIG_TMPFS
3716	.parse_monolithic	= shmem_parse_options,
3717	.parse_param		= shmem_parse_one,
3718	.reconfigure		= shmem_reconfigure,
3719#endif
3720};
3721
3722static struct kmem_cache *shmem_inode_cachep;
3723
3724static struct inode *shmem_alloc_inode(struct super_block *sb)
3725{
3726	struct shmem_inode_info *info;
3727	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3728	if (!info)
3729		return NULL;
3730	return &info->vfs_inode;
3731}
3732
3733static void shmem_free_in_core_inode(struct inode *inode)
3734{
3735	if (S_ISLNK(inode->i_mode))
3736		kfree(inode->i_link);
3737	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3738}
3739
3740static void shmem_destroy_inode(struct inode *inode)
3741{
3742	if (S_ISREG(inode->i_mode))
3743		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3744}
3745
3746static void shmem_init_inode(void *foo)
3747{
3748	struct shmem_inode_info *info = foo;
3749	inode_init_once(&info->vfs_inode);
3750}
3751
3752static void shmem_init_inodecache(void)
3753{
3754	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3755				sizeof(struct shmem_inode_info),
3756				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3757}
3758
3759static void shmem_destroy_inodecache(void)
3760{
3761	kmem_cache_destroy(shmem_inode_cachep);
3762}
3763
3764const struct address_space_operations shmem_aops = {
3765	.writepage	= shmem_writepage,
3766	.set_page_dirty	= __set_page_dirty_no_writeback,
3767#ifdef CONFIG_TMPFS
3768	.write_begin	= shmem_write_begin,
3769	.write_end	= shmem_write_end,
3770#endif
3771#ifdef CONFIG_MIGRATION
3772	.migratepage	= migrate_page,
3773#endif
3774	.error_remove_page = generic_error_remove_page,
3775};
3776EXPORT_SYMBOL(shmem_aops);
3777
3778static const struct file_operations shmem_file_operations = {
3779	.mmap		= shmem_mmap,
3780	.get_unmapped_area = shmem_get_unmapped_area,
3781#ifdef CONFIG_TMPFS
3782	.llseek		= shmem_file_llseek,
3783	.read_iter	= shmem_file_read_iter,
3784	.write_iter	= generic_file_write_iter,
3785	.fsync		= noop_fsync,
3786	.splice_read	= generic_file_splice_read,
3787	.splice_write	= iter_file_splice_write,
3788	.fallocate	= shmem_fallocate,
3789#endif
3790};
3791
3792static const struct inode_operations shmem_inode_operations = {
3793	.getattr	= shmem_getattr,
3794	.setattr	= shmem_setattr,
3795#ifdef CONFIG_TMPFS_XATTR
3796	.listxattr	= shmem_listxattr,
3797	.set_acl	= simple_set_acl,
3798#endif
3799};
3800
3801static const struct inode_operations shmem_dir_inode_operations = {
3802#ifdef CONFIG_TMPFS
3803	.create		= shmem_create,
3804	.lookup		= simple_lookup,
3805	.link		= shmem_link,
3806	.unlink		= shmem_unlink,
3807	.symlink	= shmem_symlink,
3808	.mkdir		= shmem_mkdir,
3809	.rmdir		= shmem_rmdir,
3810	.mknod		= shmem_mknod,
3811	.rename		= shmem_rename2,
3812	.tmpfile	= shmem_tmpfile,
3813#endif
3814#ifdef CONFIG_TMPFS_XATTR
3815	.listxattr	= shmem_listxattr,
3816#endif
3817#ifdef CONFIG_TMPFS_POSIX_ACL
3818	.setattr	= shmem_setattr,
3819	.set_acl	= simple_set_acl,
3820#endif
3821};
3822
3823static const struct inode_operations shmem_special_inode_operations = {
3824#ifdef CONFIG_TMPFS_XATTR
3825	.listxattr	= shmem_listxattr,
3826#endif
3827#ifdef CONFIG_TMPFS_POSIX_ACL
3828	.setattr	= shmem_setattr,
3829	.set_acl	= simple_set_acl,
3830#endif
3831};
3832
3833static const struct super_operations shmem_ops = {
3834	.alloc_inode	= shmem_alloc_inode,
3835	.free_inode	= shmem_free_in_core_inode,
3836	.destroy_inode	= shmem_destroy_inode,
3837#ifdef CONFIG_TMPFS
3838	.statfs		= shmem_statfs,
3839	.show_options	= shmem_show_options,
3840#endif
3841	.evict_inode	= shmem_evict_inode,
3842	.drop_inode	= generic_delete_inode,
3843	.put_super	= shmem_put_super,
3844#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3845	.nr_cached_objects	= shmem_unused_huge_count,
3846	.free_cached_objects	= shmem_unused_huge_scan,
3847#endif
3848};
3849
3850static const struct vm_operations_struct shmem_vm_ops = {
3851	.fault		= shmem_fault,
3852	.map_pages	= filemap_map_pages,
3853#ifdef CONFIG_NUMA
3854	.set_policy     = shmem_set_policy,
3855	.get_policy     = shmem_get_policy,
3856#endif
3857};
3858
3859int shmem_init_fs_context(struct fs_context *fc)
3860{
3861	struct shmem_options *ctx;
3862
3863	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3864	if (!ctx)
3865		return -ENOMEM;
3866
3867	ctx->mode = 0777 | S_ISVTX;
3868	ctx->uid = current_fsuid();
3869	ctx->gid = current_fsgid();
3870
3871	fc->fs_private = ctx;
3872	fc->ops = &shmem_fs_context_ops;
3873	return 0;
3874}
3875
3876static struct file_system_type shmem_fs_type = {
3877	.owner		= THIS_MODULE,
3878	.name		= "tmpfs",
3879	.init_fs_context = shmem_init_fs_context,
3880#ifdef CONFIG_TMPFS
3881	.parameters	= shmem_fs_parameters,
3882#endif
3883	.kill_sb	= kill_litter_super,
3884	.fs_flags	= FS_USERNS_MOUNT | FS_THP_SUPPORT,
3885};
3886
3887int __init shmem_init(void)
3888{
3889	int error;
3890
3891	shmem_init_inodecache();
3892
3893	error = register_filesystem(&shmem_fs_type);
3894	if (error) {
3895		pr_err("Could not register tmpfs\n");
3896		goto out2;
3897	}
3898
3899	shm_mnt = kern_mount(&shmem_fs_type);
3900	if (IS_ERR(shm_mnt)) {
3901		error = PTR_ERR(shm_mnt);
3902		pr_err("Could not kern_mount tmpfs\n");
3903		goto out1;
3904	}
3905
3906#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3907	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3908		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3909	else
3910		shmem_huge = 0; /* just in case it was patched */
3911#endif
3912	return 0;
3913
3914out1:
3915	unregister_filesystem(&shmem_fs_type);
3916out2:
3917	shmem_destroy_inodecache();
3918	shm_mnt = ERR_PTR(error);
3919	return error;
3920}
3921
3922#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3923static ssize_t shmem_enabled_show(struct kobject *kobj,
3924				  struct kobj_attribute *attr, char *buf)
3925{
3926	static const int values[] = {
3927		SHMEM_HUGE_ALWAYS,
3928		SHMEM_HUGE_WITHIN_SIZE,
3929		SHMEM_HUGE_ADVISE,
3930		SHMEM_HUGE_NEVER,
3931		SHMEM_HUGE_DENY,
3932		SHMEM_HUGE_FORCE,
3933	};
3934	int len = 0;
3935	int i;
3936
3937	for (i = 0; i < ARRAY_SIZE(values); i++) {
3938		len += sysfs_emit_at(buf, len,
3939				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3940				     i ? " " : "",
3941				     shmem_format_huge(values[i]));
3942	}
3943
3944	len += sysfs_emit_at(buf, len, "\n");
 
3945
3946	return len;
 
 
 
 
3947}
3948
3949static ssize_t shmem_enabled_store(struct kobject *kobj,
3950		struct kobj_attribute *attr, const char *buf, size_t count)
3951{
3952	char tmp[16];
3953	int huge;
3954
3955	if (count + 1 > sizeof(tmp))
3956		return -EINVAL;
3957	memcpy(tmp, buf, count);
3958	tmp[count] = '\0';
3959	if (count && tmp[count - 1] == '\n')
3960		tmp[count - 1] = '\0';
3961
3962	huge = shmem_parse_huge(tmp);
3963	if (huge == -EINVAL)
3964		return -EINVAL;
3965	if (!has_transparent_hugepage() &&
3966			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3967		return -EINVAL;
3968
3969	shmem_huge = huge;
3970	if (shmem_huge > SHMEM_HUGE_DENY)
3971		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3972	return count;
3973}
3974
3975struct kobj_attribute shmem_enabled_attr =
3976	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3977#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3978
3979#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3980bool shmem_huge_enabled(struct vm_area_struct *vma)
3981{
3982	struct inode *inode = file_inode(vma->vm_file);
3983	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3984	loff_t i_size;
3985	pgoff_t off;
3986
3987	if (!transhuge_vma_enabled(vma, vma->vm_flags))
 
3988		return false;
3989	if (shmem_huge == SHMEM_HUGE_FORCE)
3990		return true;
3991	if (shmem_huge == SHMEM_HUGE_DENY)
3992		return false;
3993	switch (sbinfo->huge) {
3994		case SHMEM_HUGE_NEVER:
3995			return false;
3996		case SHMEM_HUGE_ALWAYS:
3997			return true;
3998		case SHMEM_HUGE_WITHIN_SIZE:
3999			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4000			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4001			if (i_size >= HPAGE_PMD_SIZE &&
4002					i_size >> PAGE_SHIFT >= off)
4003				return true;
4004			fallthrough;
4005		case SHMEM_HUGE_ADVISE:
4006			/* TODO: implement fadvise() hints */
4007			return (vma->vm_flags & VM_HUGEPAGE);
4008		default:
4009			VM_BUG_ON(1);
4010			return false;
4011	}
4012}
4013#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4014
4015#else /* !CONFIG_SHMEM */
4016
4017/*
4018 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4019 *
4020 * This is intended for small system where the benefits of the full
4021 * shmem code (swap-backed and resource-limited) are outweighed by
4022 * their complexity. On systems without swap this code should be
4023 * effectively equivalent, but much lighter weight.
4024 */
4025
4026static struct file_system_type shmem_fs_type = {
4027	.name		= "tmpfs",
4028	.init_fs_context = ramfs_init_fs_context,
4029	.parameters	= ramfs_fs_parameters,
4030	.kill_sb	= kill_litter_super,
4031	.fs_flags	= FS_USERNS_MOUNT,
4032};
4033
4034int __init shmem_init(void)
4035{
4036	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4037
4038	shm_mnt = kern_mount(&shmem_fs_type);
4039	BUG_ON(IS_ERR(shm_mnt));
4040
4041	return 0;
4042}
4043
4044int shmem_unuse(unsigned int type, bool frontswap,
4045		unsigned long *fs_pages_to_unuse)
4046{
4047	return 0;
4048}
4049
4050int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4051{
4052	return 0;
4053}
4054
4055void shmem_unlock_mapping(struct address_space *mapping)
4056{
4057}
4058
4059#ifdef CONFIG_MMU
4060unsigned long shmem_get_unmapped_area(struct file *file,
4061				      unsigned long addr, unsigned long len,
4062				      unsigned long pgoff, unsigned long flags)
4063{
4064	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4065}
4066#endif
4067
4068void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4069{
4070	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4071}
4072EXPORT_SYMBOL_GPL(shmem_truncate_range);
4073
4074#define shmem_vm_ops				generic_file_vm_ops
4075#define shmem_file_operations			ramfs_file_operations
4076#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4077#define shmem_acct_size(flags, size)		0
4078#define shmem_unacct_size(flags, size)		do {} while (0)
4079
4080#endif /* CONFIG_SHMEM */
4081
4082/* common code */
4083
4084static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4085				       unsigned long flags, unsigned int i_flags)
4086{
4087	struct inode *inode;
4088	struct file *res;
4089
4090	if (IS_ERR(mnt))
4091		return ERR_CAST(mnt);
4092
4093	if (size < 0 || size > MAX_LFS_FILESIZE)
4094		return ERR_PTR(-EINVAL);
4095
4096	if (shmem_acct_size(flags, size))
4097		return ERR_PTR(-ENOMEM);
4098
4099	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4100				flags);
4101	if (unlikely(!inode)) {
4102		shmem_unacct_size(flags, size);
4103		return ERR_PTR(-ENOSPC);
4104	}
4105	inode->i_flags |= i_flags;
4106	inode->i_size = size;
4107	clear_nlink(inode);	/* It is unlinked */
4108	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4109	if (!IS_ERR(res))
4110		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4111				&shmem_file_operations);
4112	if (IS_ERR(res))
4113		iput(inode);
4114	return res;
4115}
4116
4117/**
4118 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4119 * 	kernel internal.  There will be NO LSM permission checks against the
4120 * 	underlying inode.  So users of this interface must do LSM checks at a
4121 *	higher layer.  The users are the big_key and shm implementations.  LSM
4122 *	checks are provided at the key or shm level rather than the inode.
4123 * @name: name for dentry (to be seen in /proc/<pid>/maps
4124 * @size: size to be set for the file
4125 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4126 */
4127struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4128{
4129	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4130}
4131
4132/**
4133 * shmem_file_setup - get an unlinked file living in tmpfs
4134 * @name: name for dentry (to be seen in /proc/<pid>/maps
4135 * @size: size to be set for the file
4136 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4137 */
4138struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4139{
4140	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4141}
4142EXPORT_SYMBOL_GPL(shmem_file_setup);
4143
4144/**
4145 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4146 * @mnt: the tmpfs mount where the file will be created
4147 * @name: name for dentry (to be seen in /proc/<pid>/maps
4148 * @size: size to be set for the file
4149 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4150 */
4151struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4152				       loff_t size, unsigned long flags)
4153{
4154	return __shmem_file_setup(mnt, name, size, flags, 0);
4155}
4156EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4157
4158/**
4159 * shmem_zero_setup - setup a shared anonymous mapping
4160 * @vma: the vma to be mmapped is prepared by do_mmap
4161 */
4162int shmem_zero_setup(struct vm_area_struct *vma)
4163{
4164	struct file *file;
4165	loff_t size = vma->vm_end - vma->vm_start;
4166
4167	/*
4168	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4169	 * between XFS directory reading and selinux: since this file is only
4170	 * accessible to the user through its mapping, use S_PRIVATE flag to
4171	 * bypass file security, in the same way as shmem_kernel_file_setup().
4172	 */
4173	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4174	if (IS_ERR(file))
4175		return PTR_ERR(file);
4176
4177	if (vma->vm_file)
4178		fput(vma->vm_file);
4179	vma->vm_file = file;
4180	vma->vm_ops = &shmem_vm_ops;
4181
4182	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4183			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4184			(vma->vm_end & HPAGE_PMD_MASK)) {
4185		khugepaged_enter(vma, vma->vm_flags);
4186	}
4187
4188	return 0;
4189}
4190
4191/**
4192 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4193 * @mapping:	the page's address_space
4194 * @index:	the page index
4195 * @gfp:	the page allocator flags to use if allocating
4196 *
4197 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4198 * with any new page allocations done using the specified allocation flags.
4199 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4200 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4201 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4202 *
4203 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4204 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4205 */
4206struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4207					 pgoff_t index, gfp_t gfp)
4208{
4209#ifdef CONFIG_SHMEM
4210	struct inode *inode = mapping->host;
4211	struct page *page;
4212	int error;
4213
4214	BUG_ON(!shmem_mapping(mapping));
4215	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4216				  gfp, NULL, NULL, NULL);
4217	if (error)
4218		page = ERR_PTR(error);
4219	else
4220		unlock_page(page);
4221	return page;
4222#else
4223	/*
4224	 * The tiny !SHMEM case uses ramfs without swap
4225	 */
4226	return read_cache_page_gfp(mapping, index, gfp);
4227#endif
4228}
4229EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
v5.9
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/mm.h>
  32#include <linux/random.h>
  33#include <linux/sched/signal.h>
  34#include <linux/export.h>
  35#include <linux/swap.h>
  36#include <linux/uio.h>
  37#include <linux/khugepaged.h>
  38#include <linux/hugetlb.h>
  39#include <linux/frontswap.h>
  40#include <linux/fs_parser.h>
  41
  42#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
  43
  44static struct vfsmount *shm_mnt;
  45
  46#ifdef CONFIG_SHMEM
  47/*
  48 * This virtual memory filesystem is heavily based on the ramfs. It
  49 * extends ramfs by the ability to use swap and honor resource limits
  50 * which makes it a completely usable filesystem.
  51 */
  52
  53#include <linux/xattr.h>
  54#include <linux/exportfs.h>
  55#include <linux/posix_acl.h>
  56#include <linux/posix_acl_xattr.h>
  57#include <linux/mman.h>
  58#include <linux/string.h>
  59#include <linux/slab.h>
  60#include <linux/backing-dev.h>
  61#include <linux/shmem_fs.h>
  62#include <linux/writeback.h>
  63#include <linux/blkdev.h>
  64#include <linux/pagevec.h>
  65#include <linux/percpu_counter.h>
  66#include <linux/falloc.h>
  67#include <linux/splice.h>
  68#include <linux/security.h>
  69#include <linux/swapops.h>
  70#include <linux/mempolicy.h>
  71#include <linux/namei.h>
  72#include <linux/ctype.h>
  73#include <linux/migrate.h>
  74#include <linux/highmem.h>
  75#include <linux/seq_file.h>
  76#include <linux/magic.h>
  77#include <linux/syscalls.h>
  78#include <linux/fcntl.h>
  79#include <uapi/linux/memfd.h>
  80#include <linux/userfaultfd_k.h>
  81#include <linux/rmap.h>
  82#include <linux/uuid.h>
  83
  84#include <linux/uaccess.h>
  85
  86#include "internal.h"
  87
  88#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  89#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  90
  91/* Pretend that each entry is of this size in directory's i_size */
  92#define BOGO_DIRENT_SIZE 20
  93
  94/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  95#define SHORT_SYMLINK_LEN 128
  96
  97/*
  98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  99 * inode->i_private (with i_mutex making sure that it has only one user at
 100 * a time): we would prefer not to enlarge the shmem inode just for that.
 101 */
 102struct shmem_falloc {
 103	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
 104	pgoff_t start;		/* start of range currently being fallocated */
 105	pgoff_t next;		/* the next page offset to be fallocated */
 106	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
 107	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
 108};
 109
 110struct shmem_options {
 111	unsigned long long blocks;
 112	unsigned long long inodes;
 113	struct mempolicy *mpol;
 114	kuid_t uid;
 115	kgid_t gid;
 116	umode_t mode;
 117	bool full_inums;
 118	int huge;
 119	int seen;
 120#define SHMEM_SEEN_BLOCKS 1
 121#define SHMEM_SEEN_INODES 2
 122#define SHMEM_SEEN_HUGE 4
 123#define SHMEM_SEEN_INUMS 8
 124};
 125
 126#ifdef CONFIG_TMPFS
 127static unsigned long shmem_default_max_blocks(void)
 128{
 129	return totalram_pages() / 2;
 130}
 131
 132static unsigned long shmem_default_max_inodes(void)
 133{
 134	unsigned long nr_pages = totalram_pages();
 135
 136	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
 137}
 138#endif
 139
 140static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 141static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 142				struct shmem_inode_info *info, pgoff_t index);
 143static int shmem_swapin_page(struct inode *inode, pgoff_t index,
 144			     struct page **pagep, enum sgp_type sgp,
 145			     gfp_t gfp, struct vm_area_struct *vma,
 146			     vm_fault_t *fault_type);
 147static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 148		struct page **pagep, enum sgp_type sgp,
 149		gfp_t gfp, struct vm_area_struct *vma,
 150		struct vm_fault *vmf, vm_fault_t *fault_type);
 151
 152int shmem_getpage(struct inode *inode, pgoff_t index,
 153		struct page **pagep, enum sgp_type sgp)
 154{
 155	return shmem_getpage_gfp(inode, index, pagep, sgp,
 156		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
 157}
 158
 159static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 160{
 161	return sb->s_fs_info;
 162}
 163
 164/*
 165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 166 * for shared memory and for shared anonymous (/dev/zero) mappings
 167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 168 * consistent with the pre-accounting of private mappings ...
 169 */
 170static inline int shmem_acct_size(unsigned long flags, loff_t size)
 171{
 172	return (flags & VM_NORESERVE) ?
 173		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 174}
 175
 176static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 177{
 178	if (!(flags & VM_NORESERVE))
 179		vm_unacct_memory(VM_ACCT(size));
 180}
 181
 182static inline int shmem_reacct_size(unsigned long flags,
 183		loff_t oldsize, loff_t newsize)
 184{
 185	if (!(flags & VM_NORESERVE)) {
 186		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 187			return security_vm_enough_memory_mm(current->mm,
 188					VM_ACCT(newsize) - VM_ACCT(oldsize));
 189		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 190			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 191	}
 192	return 0;
 193}
 194
 195/*
 196 * ... whereas tmpfs objects are accounted incrementally as
 197 * pages are allocated, in order to allow large sparse files.
 198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 200 */
 201static inline int shmem_acct_block(unsigned long flags, long pages)
 202{
 203	if (!(flags & VM_NORESERVE))
 204		return 0;
 205
 206	return security_vm_enough_memory_mm(current->mm,
 207			pages * VM_ACCT(PAGE_SIZE));
 208}
 209
 210static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 211{
 212	if (flags & VM_NORESERVE)
 213		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 214}
 215
 216static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
 217{
 218	struct shmem_inode_info *info = SHMEM_I(inode);
 219	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 220
 221	if (shmem_acct_block(info->flags, pages))
 222		return false;
 223
 224	if (sbinfo->max_blocks) {
 225		if (percpu_counter_compare(&sbinfo->used_blocks,
 226					   sbinfo->max_blocks - pages) > 0)
 227			goto unacct;
 228		percpu_counter_add(&sbinfo->used_blocks, pages);
 229	}
 230
 231	return true;
 232
 233unacct:
 234	shmem_unacct_blocks(info->flags, pages);
 235	return false;
 236}
 237
 238static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
 239{
 240	struct shmem_inode_info *info = SHMEM_I(inode);
 241	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 242
 243	if (sbinfo->max_blocks)
 244		percpu_counter_sub(&sbinfo->used_blocks, pages);
 245	shmem_unacct_blocks(info->flags, pages);
 246}
 247
 248static const struct super_operations shmem_ops;
 249static const struct address_space_operations shmem_aops;
 250static const struct file_operations shmem_file_operations;
 251static const struct inode_operations shmem_inode_operations;
 252static const struct inode_operations shmem_dir_inode_operations;
 253static const struct inode_operations shmem_special_inode_operations;
 254static const struct vm_operations_struct shmem_vm_ops;
 255static struct file_system_type shmem_fs_type;
 256
 257bool vma_is_shmem(struct vm_area_struct *vma)
 258{
 259	return vma->vm_ops == &shmem_vm_ops;
 260}
 261
 262static LIST_HEAD(shmem_swaplist);
 263static DEFINE_MUTEX(shmem_swaplist_mutex);
 264
 265/*
 266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
 267 * produces a novel ino for the newly allocated inode.
 268 *
 269 * It may also be called when making a hard link to permit the space needed by
 270 * each dentry. However, in that case, no new inode number is needed since that
 271 * internally draws from another pool of inode numbers (currently global
 272 * get_next_ino()). This case is indicated by passing NULL as inop.
 273 */
 274#define SHMEM_INO_BATCH 1024
 275static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
 276{
 277	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 278	ino_t ino;
 279
 280	if (!(sb->s_flags & SB_KERNMOUNT)) {
 281		spin_lock(&sbinfo->stat_lock);
 282		if (sbinfo->max_inodes) {
 283			if (!sbinfo->free_inodes) {
 284				spin_unlock(&sbinfo->stat_lock);
 285				return -ENOSPC;
 286			}
 287			sbinfo->free_inodes--;
 288		}
 289		if (inop) {
 290			ino = sbinfo->next_ino++;
 291			if (unlikely(is_zero_ino(ino)))
 292				ino = sbinfo->next_ino++;
 293			if (unlikely(!sbinfo->full_inums &&
 294				     ino > UINT_MAX)) {
 295				/*
 296				 * Emulate get_next_ino uint wraparound for
 297				 * compatibility
 298				 */
 299				if (IS_ENABLED(CONFIG_64BIT))
 300					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
 301						__func__, MINOR(sb->s_dev));
 302				sbinfo->next_ino = 1;
 303				ino = sbinfo->next_ino++;
 304			}
 305			*inop = ino;
 306		}
 307		spin_unlock(&sbinfo->stat_lock);
 308	} else if (inop) {
 309		/*
 310		 * __shmem_file_setup, one of our callers, is lock-free: it
 311		 * doesn't hold stat_lock in shmem_reserve_inode since
 312		 * max_inodes is always 0, and is called from potentially
 313		 * unknown contexts. As such, use a per-cpu batched allocator
 314		 * which doesn't require the per-sb stat_lock unless we are at
 315		 * the batch boundary.
 316		 *
 317		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
 318		 * shmem mounts are not exposed to userspace, so we don't need
 319		 * to worry about things like glibc compatibility.
 320		 */
 321		ino_t *next_ino;
 322		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
 323		ino = *next_ino;
 324		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
 325			spin_lock(&sbinfo->stat_lock);
 326			ino = sbinfo->next_ino;
 327			sbinfo->next_ino += SHMEM_INO_BATCH;
 328			spin_unlock(&sbinfo->stat_lock);
 329			if (unlikely(is_zero_ino(ino)))
 330				ino++;
 331		}
 332		*inop = ino;
 333		*next_ino = ++ino;
 334		put_cpu();
 335	}
 336
 337	return 0;
 338}
 339
 340static void shmem_free_inode(struct super_block *sb)
 341{
 342	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 343	if (sbinfo->max_inodes) {
 344		spin_lock(&sbinfo->stat_lock);
 345		sbinfo->free_inodes++;
 346		spin_unlock(&sbinfo->stat_lock);
 347	}
 348}
 349
 350/**
 351 * shmem_recalc_inode - recalculate the block usage of an inode
 352 * @inode: inode to recalc
 353 *
 354 * We have to calculate the free blocks since the mm can drop
 355 * undirtied hole pages behind our back.
 356 *
 357 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 359 *
 360 * It has to be called with the spinlock held.
 361 */
 362static void shmem_recalc_inode(struct inode *inode)
 363{
 364	struct shmem_inode_info *info = SHMEM_I(inode);
 365	long freed;
 366
 367	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 368	if (freed > 0) {
 369		info->alloced -= freed;
 370		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 371		shmem_inode_unacct_blocks(inode, freed);
 372	}
 373}
 374
 375bool shmem_charge(struct inode *inode, long pages)
 376{
 377	struct shmem_inode_info *info = SHMEM_I(inode);
 378	unsigned long flags;
 379
 380	if (!shmem_inode_acct_block(inode, pages))
 381		return false;
 382
 383	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
 384	inode->i_mapping->nrpages += pages;
 385
 386	spin_lock_irqsave(&info->lock, flags);
 387	info->alloced += pages;
 388	inode->i_blocks += pages * BLOCKS_PER_PAGE;
 389	shmem_recalc_inode(inode);
 390	spin_unlock_irqrestore(&info->lock, flags);
 391
 392	return true;
 393}
 394
 395void shmem_uncharge(struct inode *inode, long pages)
 396{
 397	struct shmem_inode_info *info = SHMEM_I(inode);
 398	unsigned long flags;
 399
 400	/* nrpages adjustment done by __delete_from_page_cache() or caller */
 401
 402	spin_lock_irqsave(&info->lock, flags);
 403	info->alloced -= pages;
 404	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
 405	shmem_recalc_inode(inode);
 406	spin_unlock_irqrestore(&info->lock, flags);
 407
 408	shmem_inode_unacct_blocks(inode, pages);
 409}
 410
 411/*
 412 * Replace item expected in xarray by a new item, while holding xa_lock.
 413 */
 414static int shmem_replace_entry(struct address_space *mapping,
 415			pgoff_t index, void *expected, void *replacement)
 416{
 417	XA_STATE(xas, &mapping->i_pages, index);
 418	void *item;
 419
 420	VM_BUG_ON(!expected);
 421	VM_BUG_ON(!replacement);
 422	item = xas_load(&xas);
 423	if (item != expected)
 424		return -ENOENT;
 425	xas_store(&xas, replacement);
 426	return 0;
 427}
 428
 429/*
 430 * Sometimes, before we decide whether to proceed or to fail, we must check
 431 * that an entry was not already brought back from swap by a racing thread.
 432 *
 433 * Checking page is not enough: by the time a SwapCache page is locked, it
 434 * might be reused, and again be SwapCache, using the same swap as before.
 435 */
 436static bool shmem_confirm_swap(struct address_space *mapping,
 437			       pgoff_t index, swp_entry_t swap)
 438{
 439	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
 440}
 441
 442/*
 443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
 444 *
 445 * SHMEM_HUGE_NEVER:
 446 *	disables huge pages for the mount;
 447 * SHMEM_HUGE_ALWAYS:
 448 *	enables huge pages for the mount;
 449 * SHMEM_HUGE_WITHIN_SIZE:
 450 *	only allocate huge pages if the page will be fully within i_size,
 451 *	also respect fadvise()/madvise() hints;
 452 * SHMEM_HUGE_ADVISE:
 453 *	only allocate huge pages if requested with fadvise()/madvise();
 454 */
 455
 456#define SHMEM_HUGE_NEVER	0
 457#define SHMEM_HUGE_ALWAYS	1
 458#define SHMEM_HUGE_WITHIN_SIZE	2
 459#define SHMEM_HUGE_ADVISE	3
 460
 461/*
 462 * Special values.
 463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
 464 *
 465 * SHMEM_HUGE_DENY:
 466 *	disables huge on shm_mnt and all mounts, for emergency use;
 467 * SHMEM_HUGE_FORCE:
 468 *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
 469 *
 470 */
 471#define SHMEM_HUGE_DENY		(-1)
 472#define SHMEM_HUGE_FORCE	(-2)
 473
 474#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 475/* ifdef here to avoid bloating shmem.o when not necessary */
 476
 477static int shmem_huge __read_mostly;
 478
 479#if defined(CONFIG_SYSFS)
 480static int shmem_parse_huge(const char *str)
 481{
 482	if (!strcmp(str, "never"))
 483		return SHMEM_HUGE_NEVER;
 484	if (!strcmp(str, "always"))
 485		return SHMEM_HUGE_ALWAYS;
 486	if (!strcmp(str, "within_size"))
 487		return SHMEM_HUGE_WITHIN_SIZE;
 488	if (!strcmp(str, "advise"))
 489		return SHMEM_HUGE_ADVISE;
 490	if (!strcmp(str, "deny"))
 491		return SHMEM_HUGE_DENY;
 492	if (!strcmp(str, "force"))
 493		return SHMEM_HUGE_FORCE;
 494	return -EINVAL;
 495}
 496#endif
 497
 498#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
 499static const char *shmem_format_huge(int huge)
 500{
 501	switch (huge) {
 502	case SHMEM_HUGE_NEVER:
 503		return "never";
 504	case SHMEM_HUGE_ALWAYS:
 505		return "always";
 506	case SHMEM_HUGE_WITHIN_SIZE:
 507		return "within_size";
 508	case SHMEM_HUGE_ADVISE:
 509		return "advise";
 510	case SHMEM_HUGE_DENY:
 511		return "deny";
 512	case SHMEM_HUGE_FORCE:
 513		return "force";
 514	default:
 515		VM_BUG_ON(1);
 516		return "bad_val";
 517	}
 518}
 519#endif
 520
 521static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 522		struct shrink_control *sc, unsigned long nr_to_split)
 523{
 524	LIST_HEAD(list), *pos, *next;
 525	LIST_HEAD(to_remove);
 526	struct inode *inode;
 527	struct shmem_inode_info *info;
 528	struct page *page;
 529	unsigned long batch = sc ? sc->nr_to_scan : 128;
 530	int removed = 0, split = 0;
 531
 532	if (list_empty(&sbinfo->shrinklist))
 533		return SHRINK_STOP;
 534
 535	spin_lock(&sbinfo->shrinklist_lock);
 536	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
 537		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 538
 539		/* pin the inode */
 540		inode = igrab(&info->vfs_inode);
 541
 542		/* inode is about to be evicted */
 543		if (!inode) {
 544			list_del_init(&info->shrinklist);
 545			removed++;
 546			goto next;
 547		}
 548
 549		/* Check if there's anything to gain */
 550		if (round_up(inode->i_size, PAGE_SIZE) ==
 551				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
 552			list_move(&info->shrinklist, &to_remove);
 553			removed++;
 554			goto next;
 555		}
 556
 557		list_move(&info->shrinklist, &list);
 558next:
 559		if (!--batch)
 560			break;
 561	}
 562	spin_unlock(&sbinfo->shrinklist_lock);
 563
 564	list_for_each_safe(pos, next, &to_remove) {
 565		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 566		inode = &info->vfs_inode;
 567		list_del_init(&info->shrinklist);
 568		iput(inode);
 569	}
 570
 571	list_for_each_safe(pos, next, &list) {
 572		int ret;
 573
 574		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 575		inode = &info->vfs_inode;
 576
 577		if (nr_to_split && split >= nr_to_split)
 578			goto leave;
 579
 580		page = find_get_page(inode->i_mapping,
 581				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
 582		if (!page)
 583			goto drop;
 584
 585		/* No huge page at the end of the file: nothing to split */
 586		if (!PageTransHuge(page)) {
 587			put_page(page);
 588			goto drop;
 589		}
 590
 591		/*
 592		 * Leave the inode on the list if we failed to lock
 593		 * the page at this time.
 594		 *
 595		 * Waiting for the lock may lead to deadlock in the
 596		 * reclaim path.
 597		 */
 598		if (!trylock_page(page)) {
 599			put_page(page);
 600			goto leave;
 601		}
 602
 603		ret = split_huge_page(page);
 604		unlock_page(page);
 605		put_page(page);
 606
 607		/* If split failed leave the inode on the list */
 608		if (ret)
 609			goto leave;
 610
 611		split++;
 612drop:
 613		list_del_init(&info->shrinklist);
 614		removed++;
 615leave:
 616		iput(inode);
 617	}
 618
 619	spin_lock(&sbinfo->shrinklist_lock);
 620	list_splice_tail(&list, &sbinfo->shrinklist);
 621	sbinfo->shrinklist_len -= removed;
 622	spin_unlock(&sbinfo->shrinklist_lock);
 623
 624	return split;
 625}
 626
 627static long shmem_unused_huge_scan(struct super_block *sb,
 628		struct shrink_control *sc)
 629{
 630	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 631
 632	if (!READ_ONCE(sbinfo->shrinklist_len))
 633		return SHRINK_STOP;
 634
 635	return shmem_unused_huge_shrink(sbinfo, sc, 0);
 636}
 637
 638static long shmem_unused_huge_count(struct super_block *sb,
 639		struct shrink_control *sc)
 640{
 641	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 642	return READ_ONCE(sbinfo->shrinklist_len);
 643}
 644#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
 645
 646#define shmem_huge SHMEM_HUGE_DENY
 647
 648static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 649		struct shrink_control *sc, unsigned long nr_to_split)
 650{
 651	return 0;
 652}
 653#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 654
 655static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
 656{
 657	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 658	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
 659	    shmem_huge != SHMEM_HUGE_DENY)
 660		return true;
 661	return false;
 662}
 663
 664/*
 665 * Like add_to_page_cache_locked, but error if expected item has gone.
 666 */
 667static int shmem_add_to_page_cache(struct page *page,
 668				   struct address_space *mapping,
 669				   pgoff_t index, void *expected, gfp_t gfp,
 670				   struct mm_struct *charge_mm)
 671{
 672	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
 673	unsigned long i = 0;
 674	unsigned long nr = compound_nr(page);
 675	int error;
 676
 677	VM_BUG_ON_PAGE(PageTail(page), page);
 678	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
 679	VM_BUG_ON_PAGE(!PageLocked(page), page);
 680	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 681	VM_BUG_ON(expected && PageTransHuge(page));
 682
 683	page_ref_add(page, nr);
 684	page->mapping = mapping;
 685	page->index = index;
 686
 687	if (!PageSwapCache(page)) {
 688		error = mem_cgroup_charge(page, charge_mm, gfp);
 689		if (error) {
 690			if (PageTransHuge(page)) {
 691				count_vm_event(THP_FILE_FALLBACK);
 692				count_vm_event(THP_FILE_FALLBACK_CHARGE);
 693			}
 694			goto error;
 695		}
 696	}
 697	cgroup_throttle_swaprate(page, gfp);
 698
 699	do {
 700		void *entry;
 701		xas_lock_irq(&xas);
 702		entry = xas_find_conflict(&xas);
 703		if (entry != expected)
 704			xas_set_err(&xas, -EEXIST);
 705		xas_create_range(&xas);
 706		if (xas_error(&xas))
 707			goto unlock;
 708next:
 709		xas_store(&xas, page);
 710		if (++i < nr) {
 711			xas_next(&xas);
 712			goto next;
 713		}
 714		if (PageTransHuge(page)) {
 715			count_vm_event(THP_FILE_ALLOC);
 716			__inc_node_page_state(page, NR_SHMEM_THPS);
 717		}
 718		mapping->nrpages += nr;
 719		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
 720		__mod_lruvec_page_state(page, NR_SHMEM, nr);
 721unlock:
 722		xas_unlock_irq(&xas);
 723	} while (xas_nomem(&xas, gfp));
 724
 725	if (xas_error(&xas)) {
 726		error = xas_error(&xas);
 727		goto error;
 728	}
 729
 730	return 0;
 731error:
 732	page->mapping = NULL;
 733	page_ref_sub(page, nr);
 734	return error;
 735}
 736
 737/*
 738 * Like delete_from_page_cache, but substitutes swap for page.
 739 */
 740static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 741{
 742	struct address_space *mapping = page->mapping;
 743	int error;
 744
 745	VM_BUG_ON_PAGE(PageCompound(page), page);
 746
 747	xa_lock_irq(&mapping->i_pages);
 748	error = shmem_replace_entry(mapping, page->index, page, radswap);
 749	page->mapping = NULL;
 750	mapping->nrpages--;
 751	__dec_lruvec_page_state(page, NR_FILE_PAGES);
 752	__dec_lruvec_page_state(page, NR_SHMEM);
 753	xa_unlock_irq(&mapping->i_pages);
 754	put_page(page);
 755	BUG_ON(error);
 756}
 757
 758/*
 759 * Remove swap entry from page cache, free the swap and its page cache.
 760 */
 761static int shmem_free_swap(struct address_space *mapping,
 762			   pgoff_t index, void *radswap)
 763{
 764	void *old;
 765
 766	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
 767	if (old != radswap)
 768		return -ENOENT;
 769	free_swap_and_cache(radix_to_swp_entry(radswap));
 770	return 0;
 771}
 772
 773/*
 774 * Determine (in bytes) how many of the shmem object's pages mapped by the
 775 * given offsets are swapped out.
 776 *
 777 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 778 * as long as the inode doesn't go away and racy results are not a problem.
 779 */
 780unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 781						pgoff_t start, pgoff_t end)
 782{
 783	XA_STATE(xas, &mapping->i_pages, start);
 784	struct page *page;
 785	unsigned long swapped = 0;
 786
 787	rcu_read_lock();
 788	xas_for_each(&xas, page, end - 1) {
 789		if (xas_retry(&xas, page))
 790			continue;
 791		if (xa_is_value(page))
 792			swapped++;
 793
 794		if (need_resched()) {
 795			xas_pause(&xas);
 796			cond_resched_rcu();
 797		}
 798	}
 799
 800	rcu_read_unlock();
 801
 802	return swapped << PAGE_SHIFT;
 803}
 804
 805/*
 806 * Determine (in bytes) how many of the shmem object's pages mapped by the
 807 * given vma is swapped out.
 808 *
 809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 810 * as long as the inode doesn't go away and racy results are not a problem.
 811 */
 812unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 813{
 814	struct inode *inode = file_inode(vma->vm_file);
 815	struct shmem_inode_info *info = SHMEM_I(inode);
 816	struct address_space *mapping = inode->i_mapping;
 817	unsigned long swapped;
 818
 819	/* Be careful as we don't hold info->lock */
 820	swapped = READ_ONCE(info->swapped);
 821
 822	/*
 823	 * The easier cases are when the shmem object has nothing in swap, or
 824	 * the vma maps it whole. Then we can simply use the stats that we
 825	 * already track.
 826	 */
 827	if (!swapped)
 828		return 0;
 829
 830	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 831		return swapped << PAGE_SHIFT;
 832
 833	/* Here comes the more involved part */
 834	return shmem_partial_swap_usage(mapping,
 835			linear_page_index(vma, vma->vm_start),
 836			linear_page_index(vma, vma->vm_end));
 837}
 838
 839/*
 840 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 841 */
 842void shmem_unlock_mapping(struct address_space *mapping)
 843{
 844	struct pagevec pvec;
 845	pgoff_t indices[PAGEVEC_SIZE];
 846	pgoff_t index = 0;
 847
 848	pagevec_init(&pvec);
 849	/*
 850	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 851	 */
 852	while (!mapping_unevictable(mapping)) {
 853		/*
 854		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
 855		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
 856		 */
 857		pvec.nr = find_get_entries(mapping, index,
 858					   PAGEVEC_SIZE, pvec.pages, indices);
 859		if (!pvec.nr)
 860			break;
 861		index = indices[pvec.nr - 1] + 1;
 862		pagevec_remove_exceptionals(&pvec);
 863		check_move_unevictable_pages(&pvec);
 864		pagevec_release(&pvec);
 865		cond_resched();
 866	}
 867}
 868
 869/*
 870 * Check whether a hole-punch or truncation needs to split a huge page,
 871 * returning true if no split was required, or the split has been successful.
 872 *
 873 * Eviction (or truncation to 0 size) should never need to split a huge page;
 874 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
 875 * head, and then succeeded to trylock on tail.
 876 *
 877 * A split can only succeed when there are no additional references on the
 878 * huge page: so the split below relies upon find_get_entries() having stopped
 879 * when it found a subpage of the huge page, without getting further references.
 880 */
 881static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
 882{
 883	if (!PageTransCompound(page))
 884		return true;
 885
 886	/* Just proceed to delete a huge page wholly within the range punched */
 887	if (PageHead(page) &&
 888	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
 889		return true;
 890
 891	/* Try to split huge page, so we can truly punch the hole or truncate */
 892	return split_huge_page(page) >= 0;
 893}
 894
 895/*
 896 * Remove range of pages and swap entries from page cache, and free them.
 897 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 898 */
 899static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 900								 bool unfalloc)
 901{
 902	struct address_space *mapping = inode->i_mapping;
 903	struct shmem_inode_info *info = SHMEM_I(inode);
 904	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 905	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 906	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
 907	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
 908	struct pagevec pvec;
 909	pgoff_t indices[PAGEVEC_SIZE];
 910	long nr_swaps_freed = 0;
 911	pgoff_t index;
 912	int i;
 913
 914	if (lend == -1)
 915		end = -1;	/* unsigned, so actually very big */
 916
 917	pagevec_init(&pvec);
 918	index = start;
 919	while (index < end) {
 920		pvec.nr = find_get_entries(mapping, index,
 921			min(end - index, (pgoff_t)PAGEVEC_SIZE),
 922			pvec.pages, indices);
 923		if (!pvec.nr)
 924			break;
 925		for (i = 0; i < pagevec_count(&pvec); i++) {
 926			struct page *page = pvec.pages[i];
 927
 928			index = indices[i];
 929			if (index >= end)
 930				break;
 931
 932			if (xa_is_value(page)) {
 933				if (unfalloc)
 934					continue;
 935				nr_swaps_freed += !shmem_free_swap(mapping,
 936								index, page);
 937				continue;
 938			}
 
 939
 940			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
 941
 942			if (!trylock_page(page))
 943				continue;
 944
 945			if ((!unfalloc || !PageUptodate(page)) &&
 946			    page_mapping(page) == mapping) {
 947				VM_BUG_ON_PAGE(PageWriteback(page), page);
 948				if (shmem_punch_compound(page, start, end))
 949					truncate_inode_page(mapping, page);
 950			}
 951			unlock_page(page);
 952		}
 953		pagevec_remove_exceptionals(&pvec);
 954		pagevec_release(&pvec);
 955		cond_resched();
 956		index++;
 957	}
 958
 959	if (partial_start) {
 960		struct page *page = NULL;
 961		shmem_getpage(inode, start - 1, &page, SGP_READ);
 962		if (page) {
 963			unsigned int top = PAGE_SIZE;
 964			if (start > end) {
 965				top = partial_end;
 966				partial_end = 0;
 967			}
 968			zero_user_segment(page, partial_start, top);
 969			set_page_dirty(page);
 970			unlock_page(page);
 971			put_page(page);
 972		}
 973	}
 974	if (partial_end) {
 975		struct page *page = NULL;
 976		shmem_getpage(inode, end, &page, SGP_READ);
 977		if (page) {
 978			zero_user_segment(page, 0, partial_end);
 979			set_page_dirty(page);
 980			unlock_page(page);
 981			put_page(page);
 982		}
 983	}
 984	if (start >= end)
 985		return;
 986
 987	index = start;
 988	while (index < end) {
 989		cond_resched();
 990
 991		pvec.nr = find_get_entries(mapping, index,
 992				min(end - index, (pgoff_t)PAGEVEC_SIZE),
 993				pvec.pages, indices);
 994		if (!pvec.nr) {
 995			/* If all gone or hole-punch or unfalloc, we're done */
 996			if (index == start || end != -1)
 997				break;
 998			/* But if truncating, restart to make sure all gone */
 999			index = start;
1000			continue;
1001		}
1002		for (i = 0; i < pagevec_count(&pvec); i++) {
1003			struct page *page = pvec.pages[i];
1004
1005			index = indices[i];
1006			if (index >= end)
1007				break;
1008
1009			if (xa_is_value(page)) {
1010				if (unfalloc)
1011					continue;
1012				if (shmem_free_swap(mapping, index, page)) {
1013					/* Swap was replaced by page: retry */
1014					index--;
1015					break;
1016				}
1017				nr_swaps_freed++;
1018				continue;
1019			}
1020
1021			lock_page(page);
1022
1023			if (!unfalloc || !PageUptodate(page)) {
1024				if (page_mapping(page) != mapping) {
1025					/* Page was replaced by swap: retry */
1026					unlock_page(page);
1027					index--;
1028					break;
1029				}
1030				VM_BUG_ON_PAGE(PageWriteback(page), page);
1031				if (shmem_punch_compound(page, start, end))
1032					truncate_inode_page(mapping, page);
1033				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1034					/* Wipe the page and don't get stuck */
1035					clear_highpage(page);
1036					flush_dcache_page(page);
1037					set_page_dirty(page);
1038					if (index <
1039					    round_up(start, HPAGE_PMD_NR))
1040						start = index + 1;
1041				}
1042			}
1043			unlock_page(page);
1044		}
1045		pagevec_remove_exceptionals(&pvec);
1046		pagevec_release(&pvec);
1047		index++;
1048	}
1049
1050	spin_lock_irq(&info->lock);
1051	info->swapped -= nr_swaps_freed;
1052	shmem_recalc_inode(inode);
1053	spin_unlock_irq(&info->lock);
1054}
1055
1056void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1057{
1058	shmem_undo_range(inode, lstart, lend, false);
1059	inode->i_ctime = inode->i_mtime = current_time(inode);
1060}
1061EXPORT_SYMBOL_GPL(shmem_truncate_range);
1062
1063static int shmem_getattr(const struct path *path, struct kstat *stat,
 
1064			 u32 request_mask, unsigned int query_flags)
1065{
1066	struct inode *inode = path->dentry->d_inode;
1067	struct shmem_inode_info *info = SHMEM_I(inode);
1068	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1069
1070	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1071		spin_lock_irq(&info->lock);
1072		shmem_recalc_inode(inode);
1073		spin_unlock_irq(&info->lock);
1074	}
1075	generic_fillattr(inode, stat);
1076
1077	if (is_huge_enabled(sb_info))
1078		stat->blksize = HPAGE_PMD_SIZE;
1079
1080	return 0;
1081}
1082
1083static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 
1084{
1085	struct inode *inode = d_inode(dentry);
1086	struct shmem_inode_info *info = SHMEM_I(inode);
1087	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1088	int error;
1089
1090	error = setattr_prepare(dentry, attr);
1091	if (error)
1092		return error;
1093
1094	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1095		loff_t oldsize = inode->i_size;
1096		loff_t newsize = attr->ia_size;
1097
1098		/* protected by i_mutex */
1099		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1100		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1101			return -EPERM;
1102
1103		if (newsize != oldsize) {
1104			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1105					oldsize, newsize);
1106			if (error)
1107				return error;
1108			i_size_write(inode, newsize);
1109			inode->i_ctime = inode->i_mtime = current_time(inode);
1110		}
1111		if (newsize <= oldsize) {
1112			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1113			if (oldsize > holebegin)
1114				unmap_mapping_range(inode->i_mapping,
1115							holebegin, 0, 1);
1116			if (info->alloced)
1117				shmem_truncate_range(inode,
1118							newsize, (loff_t)-1);
1119			/* unmap again to remove racily COWed private pages */
1120			if (oldsize > holebegin)
1121				unmap_mapping_range(inode->i_mapping,
1122							holebegin, 0, 1);
1123
1124			/*
1125			 * Part of the huge page can be beyond i_size: subject
1126			 * to shrink under memory pressure.
1127			 */
1128			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1129				spin_lock(&sbinfo->shrinklist_lock);
1130				/*
1131				 * _careful to defend against unlocked access to
1132				 * ->shrink_list in shmem_unused_huge_shrink()
1133				 */
1134				if (list_empty_careful(&info->shrinklist)) {
1135					list_add_tail(&info->shrinklist,
1136							&sbinfo->shrinklist);
1137					sbinfo->shrinklist_len++;
1138				}
1139				spin_unlock(&sbinfo->shrinklist_lock);
1140			}
1141		}
1142	}
1143
1144	setattr_copy(inode, attr);
1145	if (attr->ia_valid & ATTR_MODE)
1146		error = posix_acl_chmod(inode, inode->i_mode);
1147	return error;
1148}
1149
1150static void shmem_evict_inode(struct inode *inode)
1151{
1152	struct shmem_inode_info *info = SHMEM_I(inode);
1153	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1154
1155	if (inode->i_mapping->a_ops == &shmem_aops) {
1156		shmem_unacct_size(info->flags, inode->i_size);
1157		inode->i_size = 0;
1158		shmem_truncate_range(inode, 0, (loff_t)-1);
1159		if (!list_empty(&info->shrinklist)) {
1160			spin_lock(&sbinfo->shrinklist_lock);
1161			if (!list_empty(&info->shrinklist)) {
1162				list_del_init(&info->shrinklist);
1163				sbinfo->shrinklist_len--;
1164			}
1165			spin_unlock(&sbinfo->shrinklist_lock);
1166		}
1167		while (!list_empty(&info->swaplist)) {
1168			/* Wait while shmem_unuse() is scanning this inode... */
1169			wait_var_event(&info->stop_eviction,
1170				       !atomic_read(&info->stop_eviction));
1171			mutex_lock(&shmem_swaplist_mutex);
1172			/* ...but beware of the race if we peeked too early */
1173			if (!atomic_read(&info->stop_eviction))
1174				list_del_init(&info->swaplist);
1175			mutex_unlock(&shmem_swaplist_mutex);
1176		}
1177	}
1178
1179	simple_xattrs_free(&info->xattrs);
1180	WARN_ON(inode->i_blocks);
1181	shmem_free_inode(inode->i_sb);
1182	clear_inode(inode);
1183}
1184
1185extern struct swap_info_struct *swap_info[];
1186
1187static int shmem_find_swap_entries(struct address_space *mapping,
1188				   pgoff_t start, unsigned int nr_entries,
1189				   struct page **entries, pgoff_t *indices,
1190				   unsigned int type, bool frontswap)
1191{
1192	XA_STATE(xas, &mapping->i_pages, start);
1193	struct page *page;
1194	swp_entry_t entry;
1195	unsigned int ret = 0;
1196
1197	if (!nr_entries)
1198		return 0;
1199
1200	rcu_read_lock();
1201	xas_for_each(&xas, page, ULONG_MAX) {
1202		if (xas_retry(&xas, page))
1203			continue;
1204
1205		if (!xa_is_value(page))
1206			continue;
1207
1208		entry = radix_to_swp_entry(page);
1209		if (swp_type(entry) != type)
1210			continue;
1211		if (frontswap &&
1212		    !frontswap_test(swap_info[type], swp_offset(entry)))
1213			continue;
1214
1215		indices[ret] = xas.xa_index;
1216		entries[ret] = page;
1217
1218		if (need_resched()) {
1219			xas_pause(&xas);
1220			cond_resched_rcu();
1221		}
1222		if (++ret == nr_entries)
1223			break;
1224	}
1225	rcu_read_unlock();
1226
1227	return ret;
1228}
1229
1230/*
1231 * Move the swapped pages for an inode to page cache. Returns the count
1232 * of pages swapped in, or the error in case of failure.
1233 */
1234static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1235				    pgoff_t *indices)
1236{
1237	int i = 0;
1238	int ret = 0;
1239	int error = 0;
1240	struct address_space *mapping = inode->i_mapping;
1241
1242	for (i = 0; i < pvec.nr; i++) {
1243		struct page *page = pvec.pages[i];
1244
1245		if (!xa_is_value(page))
1246			continue;
1247		error = shmem_swapin_page(inode, indices[i],
1248					  &page, SGP_CACHE,
1249					  mapping_gfp_mask(mapping),
1250					  NULL, NULL);
1251		if (error == 0) {
1252			unlock_page(page);
1253			put_page(page);
1254			ret++;
1255		}
1256		if (error == -ENOMEM)
1257			break;
1258		error = 0;
1259	}
1260	return error ? error : ret;
1261}
1262
1263/*
1264 * If swap found in inode, free it and move page from swapcache to filecache.
1265 */
1266static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1267			     bool frontswap, unsigned long *fs_pages_to_unuse)
1268{
1269	struct address_space *mapping = inode->i_mapping;
1270	pgoff_t start = 0;
1271	struct pagevec pvec;
1272	pgoff_t indices[PAGEVEC_SIZE];
1273	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1274	int ret = 0;
1275
1276	pagevec_init(&pvec);
1277	do {
1278		unsigned int nr_entries = PAGEVEC_SIZE;
1279
1280		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1281			nr_entries = *fs_pages_to_unuse;
1282
1283		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1284						  pvec.pages, indices,
1285						  type, frontswap);
1286		if (pvec.nr == 0) {
1287			ret = 0;
1288			break;
1289		}
1290
1291		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1292		if (ret < 0)
1293			break;
1294
1295		if (frontswap_partial) {
1296			*fs_pages_to_unuse -= ret;
1297			if (*fs_pages_to_unuse == 0) {
1298				ret = FRONTSWAP_PAGES_UNUSED;
1299				break;
1300			}
1301		}
1302
1303		start = indices[pvec.nr - 1];
1304	} while (true);
1305
1306	return ret;
1307}
1308
1309/*
1310 * Read all the shared memory data that resides in the swap
1311 * device 'type' back into memory, so the swap device can be
1312 * unused.
1313 */
1314int shmem_unuse(unsigned int type, bool frontswap,
1315		unsigned long *fs_pages_to_unuse)
1316{
1317	struct shmem_inode_info *info, *next;
1318	int error = 0;
1319
1320	if (list_empty(&shmem_swaplist))
1321		return 0;
1322
1323	mutex_lock(&shmem_swaplist_mutex);
1324	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1325		if (!info->swapped) {
1326			list_del_init(&info->swaplist);
1327			continue;
1328		}
1329		/*
1330		 * Drop the swaplist mutex while searching the inode for swap;
1331		 * but before doing so, make sure shmem_evict_inode() will not
1332		 * remove placeholder inode from swaplist, nor let it be freed
1333		 * (igrab() would protect from unlink, but not from unmount).
1334		 */
1335		atomic_inc(&info->stop_eviction);
1336		mutex_unlock(&shmem_swaplist_mutex);
1337
1338		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1339					  fs_pages_to_unuse);
1340		cond_resched();
1341
1342		mutex_lock(&shmem_swaplist_mutex);
1343		next = list_next_entry(info, swaplist);
1344		if (!info->swapped)
1345			list_del_init(&info->swaplist);
1346		if (atomic_dec_and_test(&info->stop_eviction))
1347			wake_up_var(&info->stop_eviction);
1348		if (error)
1349			break;
1350	}
1351	mutex_unlock(&shmem_swaplist_mutex);
1352
1353	return error;
1354}
1355
1356/*
1357 * Move the page from the page cache to the swap cache.
1358 */
1359static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1360{
1361	struct shmem_inode_info *info;
1362	struct address_space *mapping;
1363	struct inode *inode;
1364	swp_entry_t swap;
1365	pgoff_t index;
1366
1367	VM_BUG_ON_PAGE(PageCompound(page), page);
1368	BUG_ON(!PageLocked(page));
1369	mapping = page->mapping;
1370	index = page->index;
1371	inode = mapping->host;
1372	info = SHMEM_I(inode);
1373	if (info->flags & VM_LOCKED)
1374		goto redirty;
1375	if (!total_swap_pages)
1376		goto redirty;
1377
1378	/*
1379	 * Our capabilities prevent regular writeback or sync from ever calling
1380	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1381	 * its underlying filesystem, in which case tmpfs should write out to
1382	 * swap only in response to memory pressure, and not for the writeback
1383	 * threads or sync.
1384	 */
1385	if (!wbc->for_reclaim) {
1386		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1387		goto redirty;
1388	}
1389
1390	/*
1391	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1392	 * value into swapfile.c, the only way we can correctly account for a
1393	 * fallocated page arriving here is now to initialize it and write it.
1394	 *
1395	 * That's okay for a page already fallocated earlier, but if we have
1396	 * not yet completed the fallocation, then (a) we want to keep track
1397	 * of this page in case we have to undo it, and (b) it may not be a
1398	 * good idea to continue anyway, once we're pushing into swap.  So
1399	 * reactivate the page, and let shmem_fallocate() quit when too many.
1400	 */
1401	if (!PageUptodate(page)) {
1402		if (inode->i_private) {
1403			struct shmem_falloc *shmem_falloc;
1404			spin_lock(&inode->i_lock);
1405			shmem_falloc = inode->i_private;
1406			if (shmem_falloc &&
1407			    !shmem_falloc->waitq &&
1408			    index >= shmem_falloc->start &&
1409			    index < shmem_falloc->next)
1410				shmem_falloc->nr_unswapped++;
1411			else
1412				shmem_falloc = NULL;
1413			spin_unlock(&inode->i_lock);
1414			if (shmem_falloc)
1415				goto redirty;
1416		}
1417		clear_highpage(page);
1418		flush_dcache_page(page);
1419		SetPageUptodate(page);
1420	}
1421
1422	swap = get_swap_page(page);
1423	if (!swap.val)
1424		goto redirty;
1425
1426	/*
1427	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1428	 * if it's not already there.  Do it now before the page is
1429	 * moved to swap cache, when its pagelock no longer protects
1430	 * the inode from eviction.  But don't unlock the mutex until
1431	 * we've incremented swapped, because shmem_unuse_inode() will
1432	 * prune a !swapped inode from the swaplist under this mutex.
1433	 */
1434	mutex_lock(&shmem_swaplist_mutex);
1435	if (list_empty(&info->swaplist))
1436		list_add(&info->swaplist, &shmem_swaplist);
1437
1438	if (add_to_swap_cache(page, swap,
1439			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1440			NULL) == 0) {
1441		spin_lock_irq(&info->lock);
1442		shmem_recalc_inode(inode);
1443		info->swapped++;
1444		spin_unlock_irq(&info->lock);
1445
1446		swap_shmem_alloc(swap);
1447		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1448
1449		mutex_unlock(&shmem_swaplist_mutex);
1450		BUG_ON(page_mapped(page));
1451		swap_writepage(page, wbc);
1452		return 0;
1453	}
1454
1455	mutex_unlock(&shmem_swaplist_mutex);
1456	put_swap_page(page, swap);
1457redirty:
1458	set_page_dirty(page);
1459	if (wbc->for_reclaim)
1460		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1461	unlock_page(page);
1462	return 0;
1463}
1464
1465#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1466static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1467{
1468	char buffer[64];
1469
1470	if (!mpol || mpol->mode == MPOL_DEFAULT)
1471		return;		/* show nothing */
1472
1473	mpol_to_str(buffer, sizeof(buffer), mpol);
1474
1475	seq_printf(seq, ",mpol=%s", buffer);
1476}
1477
1478static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1479{
1480	struct mempolicy *mpol = NULL;
1481	if (sbinfo->mpol) {
1482		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1483		mpol = sbinfo->mpol;
1484		mpol_get(mpol);
1485		spin_unlock(&sbinfo->stat_lock);
1486	}
1487	return mpol;
1488}
1489#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1490static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1491{
1492}
1493static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1494{
1495	return NULL;
1496}
1497#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1498#ifndef CONFIG_NUMA
1499#define vm_policy vm_private_data
1500#endif
1501
1502static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1503		struct shmem_inode_info *info, pgoff_t index)
1504{
1505	/* Create a pseudo vma that just contains the policy */
1506	vma_init(vma, NULL);
1507	/* Bias interleave by inode number to distribute better across nodes */
1508	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1509	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1510}
1511
1512static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1513{
1514	/* Drop reference taken by mpol_shared_policy_lookup() */
1515	mpol_cond_put(vma->vm_policy);
1516}
1517
1518static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1519			struct shmem_inode_info *info, pgoff_t index)
1520{
1521	struct vm_area_struct pvma;
1522	struct page *page;
1523	struct vm_fault vmf;
 
 
1524
1525	shmem_pseudo_vma_init(&pvma, info, index);
1526	vmf.vma = &pvma;
1527	vmf.address = 0;
1528	page = swap_cluster_readahead(swap, gfp, &vmf);
1529	shmem_pseudo_vma_destroy(&pvma);
1530
1531	return page;
1532}
1533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1534static struct page *shmem_alloc_hugepage(gfp_t gfp,
1535		struct shmem_inode_info *info, pgoff_t index)
1536{
1537	struct vm_area_struct pvma;
1538	struct address_space *mapping = info->vfs_inode.i_mapping;
1539	pgoff_t hindex;
1540	struct page *page;
1541
1542	hindex = round_down(index, HPAGE_PMD_NR);
1543	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1544								XA_PRESENT))
1545		return NULL;
1546
1547	shmem_pseudo_vma_init(&pvma, info, hindex);
1548	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1549			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1550	shmem_pseudo_vma_destroy(&pvma);
1551	if (page)
1552		prep_transhuge_page(page);
1553	else
1554		count_vm_event(THP_FILE_FALLBACK);
1555	return page;
1556}
1557
1558static struct page *shmem_alloc_page(gfp_t gfp,
1559			struct shmem_inode_info *info, pgoff_t index)
1560{
1561	struct vm_area_struct pvma;
1562	struct page *page;
1563
1564	shmem_pseudo_vma_init(&pvma, info, index);
1565	page = alloc_page_vma(gfp, &pvma, 0);
1566	shmem_pseudo_vma_destroy(&pvma);
1567
1568	return page;
1569}
1570
1571static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1572		struct inode *inode,
1573		pgoff_t index, bool huge)
1574{
1575	struct shmem_inode_info *info = SHMEM_I(inode);
1576	struct page *page;
1577	int nr;
1578	int err = -ENOSPC;
1579
1580	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1581		huge = false;
1582	nr = huge ? HPAGE_PMD_NR : 1;
1583
1584	if (!shmem_inode_acct_block(inode, nr))
1585		goto failed;
1586
1587	if (huge)
1588		page = shmem_alloc_hugepage(gfp, info, index);
1589	else
1590		page = shmem_alloc_page(gfp, info, index);
1591	if (page) {
1592		__SetPageLocked(page);
1593		__SetPageSwapBacked(page);
1594		return page;
1595	}
1596
1597	err = -ENOMEM;
1598	shmem_inode_unacct_blocks(inode, nr);
1599failed:
1600	return ERR_PTR(err);
1601}
1602
1603/*
1604 * When a page is moved from swapcache to shmem filecache (either by the
1605 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1606 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1607 * ignorance of the mapping it belongs to.  If that mapping has special
1608 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1609 * we may need to copy to a suitable page before moving to filecache.
1610 *
1611 * In a future release, this may well be extended to respect cpuset and
1612 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1613 * but for now it is a simple matter of zone.
1614 */
1615static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1616{
1617	return page_zonenum(page) > gfp_zone(gfp);
1618}
1619
1620static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1621				struct shmem_inode_info *info, pgoff_t index)
1622{
1623	struct page *oldpage, *newpage;
1624	struct address_space *swap_mapping;
1625	swp_entry_t entry;
1626	pgoff_t swap_index;
1627	int error;
1628
1629	oldpage = *pagep;
1630	entry.val = page_private(oldpage);
1631	swap_index = swp_offset(entry);
1632	swap_mapping = page_mapping(oldpage);
1633
1634	/*
1635	 * We have arrived here because our zones are constrained, so don't
1636	 * limit chance of success by further cpuset and node constraints.
1637	 */
1638	gfp &= ~GFP_CONSTRAINT_MASK;
1639	newpage = shmem_alloc_page(gfp, info, index);
1640	if (!newpage)
1641		return -ENOMEM;
1642
1643	get_page(newpage);
1644	copy_highpage(newpage, oldpage);
1645	flush_dcache_page(newpage);
1646
1647	__SetPageLocked(newpage);
1648	__SetPageSwapBacked(newpage);
1649	SetPageUptodate(newpage);
1650	set_page_private(newpage, entry.val);
1651	SetPageSwapCache(newpage);
1652
1653	/*
1654	 * Our caller will very soon move newpage out of swapcache, but it's
1655	 * a nice clean interface for us to replace oldpage by newpage there.
1656	 */
1657	xa_lock_irq(&swap_mapping->i_pages);
1658	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1659	if (!error) {
1660		mem_cgroup_migrate(oldpage, newpage);
1661		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1662		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1663	}
1664	xa_unlock_irq(&swap_mapping->i_pages);
1665
1666	if (unlikely(error)) {
1667		/*
1668		 * Is this possible?  I think not, now that our callers check
1669		 * both PageSwapCache and page_private after getting page lock;
1670		 * but be defensive.  Reverse old to newpage for clear and free.
1671		 */
1672		oldpage = newpage;
1673	} else {
1674		lru_cache_add(newpage);
1675		*pagep = newpage;
1676	}
1677
1678	ClearPageSwapCache(oldpage);
1679	set_page_private(oldpage, 0);
1680
1681	unlock_page(oldpage);
1682	put_page(oldpage);
1683	put_page(oldpage);
1684	return error;
1685}
1686
1687/*
1688 * Swap in the page pointed to by *pagep.
1689 * Caller has to make sure that *pagep contains a valid swapped page.
1690 * Returns 0 and the page in pagep if success. On failure, returns the
1691 * error code and NULL in *pagep.
1692 */
1693static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1694			     struct page **pagep, enum sgp_type sgp,
1695			     gfp_t gfp, struct vm_area_struct *vma,
1696			     vm_fault_t *fault_type)
1697{
1698	struct address_space *mapping = inode->i_mapping;
1699	struct shmem_inode_info *info = SHMEM_I(inode);
1700	struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1701	struct page *page;
1702	swp_entry_t swap;
1703	int error;
1704
1705	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1706	swap = radix_to_swp_entry(*pagep);
1707	*pagep = NULL;
1708
1709	/* Look it up and read it in.. */
1710	page = lookup_swap_cache(swap, NULL, 0);
1711	if (!page) {
1712		/* Or update major stats only when swapin succeeds?? */
1713		if (fault_type) {
1714			*fault_type |= VM_FAULT_MAJOR;
1715			count_vm_event(PGMAJFAULT);
1716			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1717		}
1718		/* Here we actually start the io */
1719		page = shmem_swapin(swap, gfp, info, index);
1720		if (!page) {
1721			error = -ENOMEM;
1722			goto failed;
1723		}
1724	}
1725
1726	/* We have to do this with page locked to prevent races */
1727	lock_page(page);
1728	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1729	    !shmem_confirm_swap(mapping, index, swap)) {
1730		error = -EEXIST;
1731		goto unlock;
1732	}
1733	if (!PageUptodate(page)) {
1734		error = -EIO;
1735		goto failed;
1736	}
1737	wait_on_page_writeback(page);
1738
 
 
 
 
 
 
1739	if (shmem_should_replace_page(page, gfp)) {
1740		error = shmem_replace_page(&page, gfp, info, index);
1741		if (error)
1742			goto failed;
1743	}
1744
1745	error = shmem_add_to_page_cache(page, mapping, index,
1746					swp_to_radix_entry(swap), gfp,
1747					charge_mm);
1748	if (error)
1749		goto failed;
1750
1751	spin_lock_irq(&info->lock);
1752	info->swapped--;
1753	shmem_recalc_inode(inode);
1754	spin_unlock_irq(&info->lock);
1755
1756	if (sgp == SGP_WRITE)
1757		mark_page_accessed(page);
1758
1759	delete_from_swap_cache(page);
1760	set_page_dirty(page);
1761	swap_free(swap);
1762
1763	*pagep = page;
1764	return 0;
1765failed:
1766	if (!shmem_confirm_swap(mapping, index, swap))
1767		error = -EEXIST;
1768unlock:
1769	if (page) {
1770		unlock_page(page);
1771		put_page(page);
1772	}
1773
1774	return error;
1775}
1776
1777/*
1778 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1779 *
1780 * If we allocate a new one we do not mark it dirty. That's up to the
1781 * vm. If we swap it in we mark it dirty since we also free the swap
1782 * entry since a page cannot live in both the swap and page cache.
1783 *
1784 * vmf and fault_type are only supplied by shmem_fault:
1785 * otherwise they are NULL.
1786 */
1787static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1788	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1789	struct vm_area_struct *vma, struct vm_fault *vmf,
1790			vm_fault_t *fault_type)
1791{
1792	struct address_space *mapping = inode->i_mapping;
1793	struct shmem_inode_info *info = SHMEM_I(inode);
1794	struct shmem_sb_info *sbinfo;
1795	struct mm_struct *charge_mm;
1796	struct page *page;
1797	enum sgp_type sgp_huge = sgp;
1798	pgoff_t hindex = index;
 
1799	int error;
1800	int once = 0;
1801	int alloced = 0;
1802
1803	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1804		return -EFBIG;
1805	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1806		sgp = SGP_CACHE;
1807repeat:
1808	if (sgp <= SGP_CACHE &&
1809	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1810		return -EINVAL;
1811	}
1812
1813	sbinfo = SHMEM_SB(inode->i_sb);
1814	charge_mm = vma ? vma->vm_mm : current->mm;
 
 
 
 
 
 
 
 
 
 
 
 
1815
1816	page = find_lock_entry(mapping, index);
1817	if (xa_is_value(page)) {
1818		error = shmem_swapin_page(inode, index, &page,
1819					  sgp, gfp, vma, fault_type);
1820		if (error == -EEXIST)
1821			goto repeat;
1822
1823		*pagep = page;
1824		return error;
1825	}
1826
 
 
1827	if (page && sgp == SGP_WRITE)
1828		mark_page_accessed(page);
1829
1830	/* fallocated page? */
1831	if (page && !PageUptodate(page)) {
1832		if (sgp != SGP_READ)
1833			goto clear;
1834		unlock_page(page);
1835		put_page(page);
1836		page = NULL;
 
1837	}
1838	if (page || sgp == SGP_READ) {
1839		*pagep = page;
1840		return 0;
1841	}
1842
1843	/*
1844	 * Fast cache lookup did not find it:
1845	 * bring it back from swap or allocate.
1846	 */
1847
1848	if (vma && userfaultfd_missing(vma)) {
1849		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1850		return 0;
1851	}
1852
1853	/* shmem_symlink() */
1854	if (mapping->a_ops != &shmem_aops)
1855		goto alloc_nohuge;
1856	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1857		goto alloc_nohuge;
1858	if (shmem_huge == SHMEM_HUGE_FORCE)
1859		goto alloc_huge;
1860	switch (sbinfo->huge) {
1861	case SHMEM_HUGE_NEVER:
1862		goto alloc_nohuge;
1863	case SHMEM_HUGE_WITHIN_SIZE: {
1864		loff_t i_size;
1865		pgoff_t off;
1866
1867		off = round_up(index, HPAGE_PMD_NR);
1868		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1869		if (i_size >= HPAGE_PMD_SIZE &&
1870		    i_size >> PAGE_SHIFT >= off)
1871			goto alloc_huge;
1872
1873		fallthrough;
1874	}
1875	case SHMEM_HUGE_ADVISE:
1876		if (sgp_huge == SGP_HUGE)
1877			goto alloc_huge;
1878		/* TODO: implement fadvise() hints */
1879		goto alloc_nohuge;
1880	}
1881
1882alloc_huge:
1883	page = shmem_alloc_and_acct_page(gfp, inode, index, true);
 
 
1884	if (IS_ERR(page)) {
1885alloc_nohuge:
1886		page = shmem_alloc_and_acct_page(gfp, inode,
1887						 index, false);
1888	}
1889	if (IS_ERR(page)) {
1890		int retry = 5;
1891
1892		error = PTR_ERR(page);
1893		page = NULL;
1894		if (error != -ENOSPC)
1895			goto unlock;
1896		/*
1897		 * Try to reclaim some space by splitting a huge page
1898		 * beyond i_size on the filesystem.
1899		 */
1900		while (retry--) {
1901			int ret;
1902
1903			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1904			if (ret == SHRINK_STOP)
1905				break;
1906			if (ret)
1907				goto alloc_nohuge;
1908		}
1909		goto unlock;
1910	}
1911
1912	if (PageTransHuge(page))
1913		hindex = round_down(index, HPAGE_PMD_NR);
1914	else
1915		hindex = index;
1916
1917	if (sgp == SGP_WRITE)
1918		__SetPageReferenced(page);
1919
1920	error = shmem_add_to_page_cache(page, mapping, hindex,
1921					NULL, gfp & GFP_RECLAIM_MASK,
1922					charge_mm);
1923	if (error)
1924		goto unacct;
1925	lru_cache_add(page);
1926
1927	spin_lock_irq(&info->lock);
1928	info->alloced += compound_nr(page);
1929	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1930	shmem_recalc_inode(inode);
1931	spin_unlock_irq(&info->lock);
1932	alloced = true;
1933
1934	if (PageTransHuge(page) &&
1935	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1936			hindex + HPAGE_PMD_NR - 1) {
1937		/*
1938		 * Part of the huge page is beyond i_size: subject
1939		 * to shrink under memory pressure.
1940		 */
1941		spin_lock(&sbinfo->shrinklist_lock);
1942		/*
1943		 * _careful to defend against unlocked access to
1944		 * ->shrink_list in shmem_unused_huge_shrink()
1945		 */
1946		if (list_empty_careful(&info->shrinklist)) {
1947			list_add_tail(&info->shrinklist,
1948				      &sbinfo->shrinklist);
1949			sbinfo->shrinklist_len++;
1950		}
1951		spin_unlock(&sbinfo->shrinklist_lock);
1952	}
1953
1954	/*
1955	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1956	 */
1957	if (sgp == SGP_FALLOC)
1958		sgp = SGP_WRITE;
1959clear:
1960	/*
1961	 * Let SGP_WRITE caller clear ends if write does not fill page;
1962	 * but SGP_FALLOC on a page fallocated earlier must initialize
1963	 * it now, lest undo on failure cancel our earlier guarantee.
1964	 */
1965	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1966		struct page *head = compound_head(page);
1967		int i;
1968
1969		for (i = 0; i < compound_nr(head); i++) {
1970			clear_highpage(head + i);
1971			flush_dcache_page(head + i);
1972		}
1973		SetPageUptodate(head);
1974	}
1975
1976	/* Perhaps the file has been truncated since we checked */
1977	if (sgp <= SGP_CACHE &&
1978	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1979		if (alloced) {
1980			ClearPageDirty(page);
1981			delete_from_page_cache(page);
1982			spin_lock_irq(&info->lock);
1983			shmem_recalc_inode(inode);
1984			spin_unlock_irq(&info->lock);
1985		}
1986		error = -EINVAL;
1987		goto unlock;
1988	}
 
1989	*pagep = page + index - hindex;
1990	return 0;
1991
1992	/*
1993	 * Error recovery.
1994	 */
1995unacct:
1996	shmem_inode_unacct_blocks(inode, compound_nr(page));
1997
1998	if (PageTransHuge(page)) {
1999		unlock_page(page);
2000		put_page(page);
2001		goto alloc_nohuge;
2002	}
2003unlock:
2004	if (page) {
2005		unlock_page(page);
2006		put_page(page);
2007	}
2008	if (error == -ENOSPC && !once++) {
2009		spin_lock_irq(&info->lock);
2010		shmem_recalc_inode(inode);
2011		spin_unlock_irq(&info->lock);
2012		goto repeat;
2013	}
2014	if (error == -EEXIST)
2015		goto repeat;
2016	return error;
2017}
2018
2019/*
2020 * This is like autoremove_wake_function, but it removes the wait queue
2021 * entry unconditionally - even if something else had already woken the
2022 * target.
2023 */
2024static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2025{
2026	int ret = default_wake_function(wait, mode, sync, key);
2027	list_del_init(&wait->entry);
2028	return ret;
2029}
2030
2031static vm_fault_t shmem_fault(struct vm_fault *vmf)
2032{
2033	struct vm_area_struct *vma = vmf->vma;
2034	struct inode *inode = file_inode(vma->vm_file);
2035	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2036	enum sgp_type sgp;
2037	int err;
2038	vm_fault_t ret = VM_FAULT_LOCKED;
2039
2040	/*
2041	 * Trinity finds that probing a hole which tmpfs is punching can
2042	 * prevent the hole-punch from ever completing: which in turn
2043	 * locks writers out with its hold on i_mutex.  So refrain from
2044	 * faulting pages into the hole while it's being punched.  Although
2045	 * shmem_undo_range() does remove the additions, it may be unable to
2046	 * keep up, as each new page needs its own unmap_mapping_range() call,
2047	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2048	 *
2049	 * It does not matter if we sometimes reach this check just before the
2050	 * hole-punch begins, so that one fault then races with the punch:
2051	 * we just need to make racing faults a rare case.
2052	 *
2053	 * The implementation below would be much simpler if we just used a
2054	 * standard mutex or completion: but we cannot take i_mutex in fault,
2055	 * and bloating every shmem inode for this unlikely case would be sad.
2056	 */
2057	if (unlikely(inode->i_private)) {
2058		struct shmem_falloc *shmem_falloc;
2059
2060		spin_lock(&inode->i_lock);
2061		shmem_falloc = inode->i_private;
2062		if (shmem_falloc &&
2063		    shmem_falloc->waitq &&
2064		    vmf->pgoff >= shmem_falloc->start &&
2065		    vmf->pgoff < shmem_falloc->next) {
2066			struct file *fpin;
2067			wait_queue_head_t *shmem_falloc_waitq;
2068			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2069
2070			ret = VM_FAULT_NOPAGE;
2071			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2072			if (fpin)
2073				ret = VM_FAULT_RETRY;
2074
2075			shmem_falloc_waitq = shmem_falloc->waitq;
2076			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2077					TASK_UNINTERRUPTIBLE);
2078			spin_unlock(&inode->i_lock);
2079			schedule();
2080
2081			/*
2082			 * shmem_falloc_waitq points into the shmem_fallocate()
2083			 * stack of the hole-punching task: shmem_falloc_waitq
2084			 * is usually invalid by the time we reach here, but
2085			 * finish_wait() does not dereference it in that case;
2086			 * though i_lock needed lest racing with wake_up_all().
2087			 */
2088			spin_lock(&inode->i_lock);
2089			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2090			spin_unlock(&inode->i_lock);
2091
2092			if (fpin)
2093				fput(fpin);
2094			return ret;
2095		}
2096		spin_unlock(&inode->i_lock);
2097	}
2098
2099	sgp = SGP_CACHE;
2100
2101	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2102	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2103		sgp = SGP_NOHUGE;
2104	else if (vma->vm_flags & VM_HUGEPAGE)
2105		sgp = SGP_HUGE;
2106
2107	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2108				  gfp, vma, vmf, &ret);
2109	if (err)
2110		return vmf_error(err);
2111	return ret;
2112}
2113
2114unsigned long shmem_get_unmapped_area(struct file *file,
2115				      unsigned long uaddr, unsigned long len,
2116				      unsigned long pgoff, unsigned long flags)
2117{
2118	unsigned long (*get_area)(struct file *,
2119		unsigned long, unsigned long, unsigned long, unsigned long);
2120	unsigned long addr;
2121	unsigned long offset;
2122	unsigned long inflated_len;
2123	unsigned long inflated_addr;
2124	unsigned long inflated_offset;
2125
2126	if (len > TASK_SIZE)
2127		return -ENOMEM;
2128
2129	get_area = current->mm->get_unmapped_area;
2130	addr = get_area(file, uaddr, len, pgoff, flags);
2131
2132	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2133		return addr;
2134	if (IS_ERR_VALUE(addr))
2135		return addr;
2136	if (addr & ~PAGE_MASK)
2137		return addr;
2138	if (addr > TASK_SIZE - len)
2139		return addr;
2140
2141	if (shmem_huge == SHMEM_HUGE_DENY)
2142		return addr;
2143	if (len < HPAGE_PMD_SIZE)
2144		return addr;
2145	if (flags & MAP_FIXED)
2146		return addr;
2147	/*
2148	 * Our priority is to support MAP_SHARED mapped hugely;
2149	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2150	 * But if caller specified an address hint and we allocated area there
2151	 * successfully, respect that as before.
2152	 */
2153	if (uaddr == addr)
2154		return addr;
2155
2156	if (shmem_huge != SHMEM_HUGE_FORCE) {
2157		struct super_block *sb;
2158
2159		if (file) {
2160			VM_BUG_ON(file->f_op != &shmem_file_operations);
2161			sb = file_inode(file)->i_sb;
2162		} else {
2163			/*
2164			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2165			 * for "/dev/zero", to create a shared anonymous object.
2166			 */
2167			if (IS_ERR(shm_mnt))
2168				return addr;
2169			sb = shm_mnt->mnt_sb;
2170		}
2171		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2172			return addr;
2173	}
2174
2175	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2176	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2177		return addr;
2178	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2179		return addr;
2180
2181	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2182	if (inflated_len > TASK_SIZE)
2183		return addr;
2184	if (inflated_len < len)
2185		return addr;
2186
2187	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2188	if (IS_ERR_VALUE(inflated_addr))
2189		return addr;
2190	if (inflated_addr & ~PAGE_MASK)
2191		return addr;
2192
2193	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2194	inflated_addr += offset - inflated_offset;
2195	if (inflated_offset > offset)
2196		inflated_addr += HPAGE_PMD_SIZE;
2197
2198	if (inflated_addr > TASK_SIZE - len)
2199		return addr;
2200	return inflated_addr;
2201}
2202
2203#ifdef CONFIG_NUMA
2204static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2205{
2206	struct inode *inode = file_inode(vma->vm_file);
2207	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2208}
2209
2210static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2211					  unsigned long addr)
2212{
2213	struct inode *inode = file_inode(vma->vm_file);
2214	pgoff_t index;
2215
2216	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2217	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2218}
2219#endif
2220
2221int shmem_lock(struct file *file, int lock, struct user_struct *user)
2222{
2223	struct inode *inode = file_inode(file);
2224	struct shmem_inode_info *info = SHMEM_I(inode);
2225	int retval = -ENOMEM;
2226
2227	/*
2228	 * What serializes the accesses to info->flags?
2229	 * ipc_lock_object() when called from shmctl_do_lock(),
2230	 * no serialization needed when called from shm_destroy().
2231	 */
2232	if (lock && !(info->flags & VM_LOCKED)) {
2233		if (!user_shm_lock(inode->i_size, user))
2234			goto out_nomem;
2235		info->flags |= VM_LOCKED;
2236		mapping_set_unevictable(file->f_mapping);
2237	}
2238	if (!lock && (info->flags & VM_LOCKED) && user) {
2239		user_shm_unlock(inode->i_size, user);
2240		info->flags &= ~VM_LOCKED;
2241		mapping_clear_unevictable(file->f_mapping);
2242	}
2243	retval = 0;
2244
2245out_nomem:
2246	return retval;
2247}
2248
2249static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2250{
2251	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
 
2252
2253	if (info->seals & F_SEAL_FUTURE_WRITE) {
2254		/*
2255		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2256		 * "future write" seal active.
2257		 */
2258		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2259			return -EPERM;
2260
2261		/*
2262		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2263		 * MAP_SHARED and read-only, take care to not allow mprotect to
2264		 * revert protections on such mappings. Do this only for shared
2265		 * mappings. For private mappings, don't need to mask
2266		 * VM_MAYWRITE as we still want them to be COW-writable.
2267		 */
2268		if (vma->vm_flags & VM_SHARED)
2269			vma->vm_flags &= ~(VM_MAYWRITE);
2270	}
2271
2272	file_accessed(file);
2273	vma->vm_ops = &shmem_vm_ops;
2274	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2275			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2276			(vma->vm_end & HPAGE_PMD_MASK)) {
2277		khugepaged_enter(vma, vma->vm_flags);
2278	}
2279	return 0;
2280}
2281
2282static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2283				     umode_t mode, dev_t dev, unsigned long flags)
2284{
2285	struct inode *inode;
2286	struct shmem_inode_info *info;
2287	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2288	ino_t ino;
2289
2290	if (shmem_reserve_inode(sb, &ino))
2291		return NULL;
2292
2293	inode = new_inode(sb);
2294	if (inode) {
2295		inode->i_ino = ino;
2296		inode_init_owner(inode, dir, mode);
2297		inode->i_blocks = 0;
2298		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2299		inode->i_generation = prandom_u32();
2300		info = SHMEM_I(inode);
2301		memset(info, 0, (char *)inode - (char *)info);
2302		spin_lock_init(&info->lock);
2303		atomic_set(&info->stop_eviction, 0);
2304		info->seals = F_SEAL_SEAL;
2305		info->flags = flags & VM_NORESERVE;
2306		INIT_LIST_HEAD(&info->shrinklist);
2307		INIT_LIST_HEAD(&info->swaplist);
2308		simple_xattrs_init(&info->xattrs);
2309		cache_no_acl(inode);
2310
2311		switch (mode & S_IFMT) {
2312		default:
2313			inode->i_op = &shmem_special_inode_operations;
2314			init_special_inode(inode, mode, dev);
2315			break;
2316		case S_IFREG:
2317			inode->i_mapping->a_ops = &shmem_aops;
2318			inode->i_op = &shmem_inode_operations;
2319			inode->i_fop = &shmem_file_operations;
2320			mpol_shared_policy_init(&info->policy,
2321						 shmem_get_sbmpol(sbinfo));
2322			break;
2323		case S_IFDIR:
2324			inc_nlink(inode);
2325			/* Some things misbehave if size == 0 on a directory */
2326			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2327			inode->i_op = &shmem_dir_inode_operations;
2328			inode->i_fop = &simple_dir_operations;
2329			break;
2330		case S_IFLNK:
2331			/*
2332			 * Must not load anything in the rbtree,
2333			 * mpol_free_shared_policy will not be called.
2334			 */
2335			mpol_shared_policy_init(&info->policy, NULL);
2336			break;
2337		}
2338
2339		lockdep_annotate_inode_mutex_key(inode);
2340	} else
2341		shmem_free_inode(sb);
2342	return inode;
2343}
2344
2345bool shmem_mapping(struct address_space *mapping)
2346{
2347	return mapping->a_ops == &shmem_aops;
2348}
2349
2350static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2351				  pmd_t *dst_pmd,
2352				  struct vm_area_struct *dst_vma,
2353				  unsigned long dst_addr,
2354				  unsigned long src_addr,
2355				  bool zeropage,
2356				  struct page **pagep)
2357{
2358	struct inode *inode = file_inode(dst_vma->vm_file);
2359	struct shmem_inode_info *info = SHMEM_I(inode);
2360	struct address_space *mapping = inode->i_mapping;
2361	gfp_t gfp = mapping_gfp_mask(mapping);
2362	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2363	spinlock_t *ptl;
2364	void *page_kaddr;
2365	struct page *page;
2366	pte_t _dst_pte, *dst_pte;
2367	int ret;
2368	pgoff_t offset, max_off;
2369
2370	ret = -ENOMEM;
2371	if (!shmem_inode_acct_block(inode, 1))
2372		goto out;
 
 
 
 
 
 
 
 
 
2373
2374	if (!*pagep) {
 
2375		page = shmem_alloc_page(gfp, info, pgoff);
2376		if (!page)
2377			goto out_unacct_blocks;
2378
2379		if (!zeropage) {	/* mcopy_atomic */
2380			page_kaddr = kmap_atomic(page);
2381			ret = copy_from_user(page_kaddr,
2382					     (const void __user *)src_addr,
2383					     PAGE_SIZE);
2384			kunmap_atomic(page_kaddr);
2385
2386			/* fallback to copy_from_user outside mmap_lock */
2387			if (unlikely(ret)) {
2388				*pagep = page;
2389				shmem_inode_unacct_blocks(inode, 1);
2390				/* don't free the page */
2391				return -ENOENT;
2392			}
2393		} else {		/* mfill_zeropage_atomic */
2394			clear_highpage(page);
2395		}
2396	} else {
2397		page = *pagep;
2398		*pagep = NULL;
2399	}
2400
2401	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
 
2402	__SetPageLocked(page);
2403	__SetPageSwapBacked(page);
2404	__SetPageUptodate(page);
2405
2406	ret = -EFAULT;
2407	offset = linear_page_index(dst_vma, dst_addr);
2408	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2409	if (unlikely(offset >= max_off))
2410		goto out_release;
2411
2412	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2413				      gfp & GFP_RECLAIM_MASK, dst_mm);
2414	if (ret)
2415		goto out_release;
2416
2417	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2418	if (dst_vma->vm_flags & VM_WRITE)
2419		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2420	else {
2421		/*
2422		 * We don't set the pte dirty if the vma has no
2423		 * VM_WRITE permission, so mark the page dirty or it
2424		 * could be freed from under us. We could do it
2425		 * unconditionally before unlock_page(), but doing it
2426		 * only if VM_WRITE is not set is faster.
2427		 */
2428		set_page_dirty(page);
2429	}
2430
2431	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2432
2433	ret = -EFAULT;
2434	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2435	if (unlikely(offset >= max_off))
2436		goto out_release_unlock;
2437
2438	ret = -EEXIST;
2439	if (!pte_none(*dst_pte))
2440		goto out_release_unlock;
2441
2442	lru_cache_add(page);
2443
2444	spin_lock_irq(&info->lock);
2445	info->alloced++;
2446	inode->i_blocks += BLOCKS_PER_PAGE;
2447	shmem_recalc_inode(inode);
2448	spin_unlock_irq(&info->lock);
2449
2450	inc_mm_counter(dst_mm, mm_counter_file(page));
2451	page_add_file_rmap(page, false);
2452	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2453
2454	/* No need to invalidate - it was non-present before */
2455	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2456	pte_unmap_unlock(dst_pte, ptl);
2457	unlock_page(page);
2458	ret = 0;
2459out:
2460	return ret;
2461out_release_unlock:
2462	pte_unmap_unlock(dst_pte, ptl);
2463	ClearPageDirty(page);
2464	delete_from_page_cache(page);
2465out_release:
2466	unlock_page(page);
2467	put_page(page);
2468out_unacct_blocks:
2469	shmem_inode_unacct_blocks(inode, 1);
2470	goto out;
2471}
2472
2473int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2474			   pmd_t *dst_pmd,
2475			   struct vm_area_struct *dst_vma,
2476			   unsigned long dst_addr,
2477			   unsigned long src_addr,
2478			   struct page **pagep)
2479{
2480	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2481				      dst_addr, src_addr, false, pagep);
2482}
2483
2484int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2485			     pmd_t *dst_pmd,
2486			     struct vm_area_struct *dst_vma,
2487			     unsigned long dst_addr)
2488{
2489	struct page *page = NULL;
2490
2491	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2492				      dst_addr, 0, true, &page);
2493}
 
2494
2495#ifdef CONFIG_TMPFS
2496static const struct inode_operations shmem_symlink_inode_operations;
2497static const struct inode_operations shmem_short_symlink_operations;
2498
2499#ifdef CONFIG_TMPFS_XATTR
2500static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2501#else
2502#define shmem_initxattrs NULL
2503#endif
2504
2505static int
2506shmem_write_begin(struct file *file, struct address_space *mapping,
2507			loff_t pos, unsigned len, unsigned flags,
2508			struct page **pagep, void **fsdata)
2509{
2510	struct inode *inode = mapping->host;
2511	struct shmem_inode_info *info = SHMEM_I(inode);
2512	pgoff_t index = pos >> PAGE_SHIFT;
2513
2514	/* i_mutex is held by caller */
2515	if (unlikely(info->seals & (F_SEAL_GROW |
2516				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2517		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2518			return -EPERM;
2519		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2520			return -EPERM;
2521	}
2522
2523	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2524}
2525
2526static int
2527shmem_write_end(struct file *file, struct address_space *mapping,
2528			loff_t pos, unsigned len, unsigned copied,
2529			struct page *page, void *fsdata)
2530{
2531	struct inode *inode = mapping->host;
2532
2533	if (pos + copied > inode->i_size)
2534		i_size_write(inode, pos + copied);
2535
2536	if (!PageUptodate(page)) {
2537		struct page *head = compound_head(page);
2538		if (PageTransCompound(page)) {
2539			int i;
2540
2541			for (i = 0; i < HPAGE_PMD_NR; i++) {
2542				if (head + i == page)
2543					continue;
2544				clear_highpage(head + i);
2545				flush_dcache_page(head + i);
2546			}
2547		}
2548		if (copied < PAGE_SIZE) {
2549			unsigned from = pos & (PAGE_SIZE - 1);
2550			zero_user_segments(page, 0, from,
2551					from + copied, PAGE_SIZE);
2552		}
2553		SetPageUptodate(head);
2554	}
2555	set_page_dirty(page);
2556	unlock_page(page);
2557	put_page(page);
2558
2559	return copied;
2560}
2561
2562static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2563{
2564	struct file *file = iocb->ki_filp;
2565	struct inode *inode = file_inode(file);
2566	struct address_space *mapping = inode->i_mapping;
2567	pgoff_t index;
2568	unsigned long offset;
2569	enum sgp_type sgp = SGP_READ;
2570	int error = 0;
2571	ssize_t retval = 0;
2572	loff_t *ppos = &iocb->ki_pos;
2573
2574	/*
2575	 * Might this read be for a stacking filesystem?  Then when reading
2576	 * holes of a sparse file, we actually need to allocate those pages,
2577	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2578	 */
2579	if (!iter_is_iovec(to))
2580		sgp = SGP_CACHE;
2581
2582	index = *ppos >> PAGE_SHIFT;
2583	offset = *ppos & ~PAGE_MASK;
2584
2585	for (;;) {
2586		struct page *page = NULL;
2587		pgoff_t end_index;
2588		unsigned long nr, ret;
2589		loff_t i_size = i_size_read(inode);
2590
2591		end_index = i_size >> PAGE_SHIFT;
2592		if (index > end_index)
2593			break;
2594		if (index == end_index) {
2595			nr = i_size & ~PAGE_MASK;
2596			if (nr <= offset)
2597				break;
2598		}
2599
2600		error = shmem_getpage(inode, index, &page, sgp);
2601		if (error) {
2602			if (error == -EINVAL)
2603				error = 0;
2604			break;
2605		}
2606		if (page) {
2607			if (sgp == SGP_CACHE)
2608				set_page_dirty(page);
2609			unlock_page(page);
2610		}
2611
2612		/*
2613		 * We must evaluate after, since reads (unlike writes)
2614		 * are called without i_mutex protection against truncate
2615		 */
2616		nr = PAGE_SIZE;
2617		i_size = i_size_read(inode);
2618		end_index = i_size >> PAGE_SHIFT;
2619		if (index == end_index) {
2620			nr = i_size & ~PAGE_MASK;
2621			if (nr <= offset) {
2622				if (page)
2623					put_page(page);
2624				break;
2625			}
2626		}
2627		nr -= offset;
2628
2629		if (page) {
2630			/*
2631			 * If users can be writing to this page using arbitrary
2632			 * virtual addresses, take care about potential aliasing
2633			 * before reading the page on the kernel side.
2634			 */
2635			if (mapping_writably_mapped(mapping))
2636				flush_dcache_page(page);
2637			/*
2638			 * Mark the page accessed if we read the beginning.
2639			 */
2640			if (!offset)
2641				mark_page_accessed(page);
2642		} else {
2643			page = ZERO_PAGE(0);
2644			get_page(page);
2645		}
2646
2647		/*
2648		 * Ok, we have the page, and it's up-to-date, so
2649		 * now we can copy it to user space...
2650		 */
2651		ret = copy_page_to_iter(page, offset, nr, to);
2652		retval += ret;
2653		offset += ret;
2654		index += offset >> PAGE_SHIFT;
2655		offset &= ~PAGE_MASK;
2656
2657		put_page(page);
2658		if (!iov_iter_count(to))
2659			break;
2660		if (ret < nr) {
2661			error = -EFAULT;
2662			break;
2663		}
2664		cond_resched();
2665	}
2666
2667	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2668	file_accessed(file);
2669	return retval ? retval : error;
2670}
2671
2672/*
2673 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2674 */
2675static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2676				    pgoff_t index, pgoff_t end, int whence)
2677{
2678	struct page *page;
2679	struct pagevec pvec;
2680	pgoff_t indices[PAGEVEC_SIZE];
2681	bool done = false;
2682	int i;
2683
2684	pagevec_init(&pvec);
2685	pvec.nr = 1;		/* start small: we may be there already */
2686	while (!done) {
2687		pvec.nr = find_get_entries(mapping, index,
2688					pvec.nr, pvec.pages, indices);
2689		if (!pvec.nr) {
2690			if (whence == SEEK_DATA)
2691				index = end;
2692			break;
2693		}
2694		for (i = 0; i < pvec.nr; i++, index++) {
2695			if (index < indices[i]) {
2696				if (whence == SEEK_HOLE) {
2697					done = true;
2698					break;
2699				}
2700				index = indices[i];
2701			}
2702			page = pvec.pages[i];
2703			if (page && !xa_is_value(page)) {
2704				if (!PageUptodate(page))
2705					page = NULL;
2706			}
2707			if (index >= end ||
2708			    (page && whence == SEEK_DATA) ||
2709			    (!page && whence == SEEK_HOLE)) {
2710				done = true;
2711				break;
2712			}
2713		}
2714		pagevec_remove_exceptionals(&pvec);
2715		pagevec_release(&pvec);
2716		pvec.nr = PAGEVEC_SIZE;
2717		cond_resched();
2718	}
2719	return index;
2720}
2721
2722static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2723{
2724	struct address_space *mapping = file->f_mapping;
2725	struct inode *inode = mapping->host;
2726	pgoff_t start, end;
2727	loff_t new_offset;
2728
2729	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2730		return generic_file_llseek_size(file, offset, whence,
2731					MAX_LFS_FILESIZE, i_size_read(inode));
 
 
 
2732	inode_lock(inode);
2733	/* We're holding i_mutex so we can access i_size directly */
2734
2735	if (offset < 0 || offset >= inode->i_size)
2736		offset = -ENXIO;
2737	else {
2738		start = offset >> PAGE_SHIFT;
2739		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2740		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2741		new_offset <<= PAGE_SHIFT;
2742		if (new_offset > offset) {
2743			if (new_offset < inode->i_size)
2744				offset = new_offset;
2745			else if (whence == SEEK_DATA)
2746				offset = -ENXIO;
2747			else
2748				offset = inode->i_size;
2749		}
2750	}
2751
2752	if (offset >= 0)
2753		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2754	inode_unlock(inode);
2755	return offset;
2756}
2757
2758static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2759							 loff_t len)
2760{
2761	struct inode *inode = file_inode(file);
2762	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2763	struct shmem_inode_info *info = SHMEM_I(inode);
2764	struct shmem_falloc shmem_falloc;
2765	pgoff_t start, index, end;
2766	int error;
2767
2768	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2769		return -EOPNOTSUPP;
2770
2771	inode_lock(inode);
2772
2773	if (mode & FALLOC_FL_PUNCH_HOLE) {
2774		struct address_space *mapping = file->f_mapping;
2775		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2776		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2777		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2778
2779		/* protected by i_mutex */
2780		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2781			error = -EPERM;
2782			goto out;
2783		}
2784
2785		shmem_falloc.waitq = &shmem_falloc_waitq;
2786		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2787		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2788		spin_lock(&inode->i_lock);
2789		inode->i_private = &shmem_falloc;
2790		spin_unlock(&inode->i_lock);
2791
2792		if ((u64)unmap_end > (u64)unmap_start)
2793			unmap_mapping_range(mapping, unmap_start,
2794					    1 + unmap_end - unmap_start, 0);
2795		shmem_truncate_range(inode, offset, offset + len - 1);
2796		/* No need to unmap again: hole-punching leaves COWed pages */
2797
2798		spin_lock(&inode->i_lock);
2799		inode->i_private = NULL;
2800		wake_up_all(&shmem_falloc_waitq);
2801		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2802		spin_unlock(&inode->i_lock);
2803		error = 0;
2804		goto out;
2805	}
2806
2807	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2808	error = inode_newsize_ok(inode, offset + len);
2809	if (error)
2810		goto out;
2811
2812	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2813		error = -EPERM;
2814		goto out;
2815	}
2816
2817	start = offset >> PAGE_SHIFT;
2818	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2819	/* Try to avoid a swapstorm if len is impossible to satisfy */
2820	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2821		error = -ENOSPC;
2822		goto out;
2823	}
2824
2825	shmem_falloc.waitq = NULL;
2826	shmem_falloc.start = start;
2827	shmem_falloc.next  = start;
2828	shmem_falloc.nr_falloced = 0;
2829	shmem_falloc.nr_unswapped = 0;
2830	spin_lock(&inode->i_lock);
2831	inode->i_private = &shmem_falloc;
2832	spin_unlock(&inode->i_lock);
2833
2834	for (index = start; index < end; index++) {
2835		struct page *page;
2836
2837		/*
2838		 * Good, the fallocate(2) manpage permits EINTR: we may have
2839		 * been interrupted because we are using up too much memory.
2840		 */
2841		if (signal_pending(current))
2842			error = -EINTR;
2843		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2844			error = -ENOMEM;
2845		else
2846			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2847		if (error) {
2848			/* Remove the !PageUptodate pages we added */
2849			if (index > start) {
2850				shmem_undo_range(inode,
2851				    (loff_t)start << PAGE_SHIFT,
2852				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2853			}
2854			goto undone;
2855		}
2856
2857		/*
2858		 * Inform shmem_writepage() how far we have reached.
2859		 * No need for lock or barrier: we have the page lock.
2860		 */
2861		shmem_falloc.next++;
2862		if (!PageUptodate(page))
2863			shmem_falloc.nr_falloced++;
2864
2865		/*
2866		 * If !PageUptodate, leave it that way so that freeable pages
2867		 * can be recognized if we need to rollback on error later.
2868		 * But set_page_dirty so that memory pressure will swap rather
2869		 * than free the pages we are allocating (and SGP_CACHE pages
2870		 * might still be clean: we now need to mark those dirty too).
2871		 */
2872		set_page_dirty(page);
2873		unlock_page(page);
2874		put_page(page);
2875		cond_resched();
2876	}
2877
2878	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2879		i_size_write(inode, offset + len);
2880	inode->i_ctime = current_time(inode);
2881undone:
2882	spin_lock(&inode->i_lock);
2883	inode->i_private = NULL;
2884	spin_unlock(&inode->i_lock);
2885out:
2886	inode_unlock(inode);
2887	return error;
2888}
2889
2890static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2891{
2892	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2893
2894	buf->f_type = TMPFS_MAGIC;
2895	buf->f_bsize = PAGE_SIZE;
2896	buf->f_namelen = NAME_MAX;
2897	if (sbinfo->max_blocks) {
2898		buf->f_blocks = sbinfo->max_blocks;
2899		buf->f_bavail =
2900		buf->f_bfree  = sbinfo->max_blocks -
2901				percpu_counter_sum(&sbinfo->used_blocks);
2902	}
2903	if (sbinfo->max_inodes) {
2904		buf->f_files = sbinfo->max_inodes;
2905		buf->f_ffree = sbinfo->free_inodes;
2906	}
2907	/* else leave those fields 0 like simple_statfs */
 
 
 
2908	return 0;
2909}
2910
2911/*
2912 * File creation. Allocate an inode, and we're done..
2913 */
2914static int
2915shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 
2916{
2917	struct inode *inode;
2918	int error = -ENOSPC;
2919
2920	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2921	if (inode) {
2922		error = simple_acl_create(dir, inode);
2923		if (error)
2924			goto out_iput;
2925		error = security_inode_init_security(inode, dir,
2926						     &dentry->d_name,
2927						     shmem_initxattrs, NULL);
2928		if (error && error != -EOPNOTSUPP)
2929			goto out_iput;
2930
2931		error = 0;
2932		dir->i_size += BOGO_DIRENT_SIZE;
2933		dir->i_ctime = dir->i_mtime = current_time(dir);
2934		d_instantiate(dentry, inode);
2935		dget(dentry); /* Extra count - pin the dentry in core */
2936	}
2937	return error;
2938out_iput:
2939	iput(inode);
2940	return error;
2941}
2942
2943static int
2944shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
 
2945{
2946	struct inode *inode;
2947	int error = -ENOSPC;
2948
2949	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2950	if (inode) {
2951		error = security_inode_init_security(inode, dir,
2952						     NULL,
2953						     shmem_initxattrs, NULL);
2954		if (error && error != -EOPNOTSUPP)
2955			goto out_iput;
2956		error = simple_acl_create(dir, inode);
2957		if (error)
2958			goto out_iput;
2959		d_tmpfile(dentry, inode);
2960	}
2961	return error;
2962out_iput:
2963	iput(inode);
2964	return error;
2965}
2966
2967static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 
2968{
2969	int error;
2970
2971	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
 
2972		return error;
2973	inc_nlink(dir);
2974	return 0;
2975}
2976
2977static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2978		bool excl)
2979{
2980	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2981}
2982
2983/*
2984 * Link a file..
2985 */
2986static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2987{
2988	struct inode *inode = d_inode(old_dentry);
2989	int ret = 0;
2990
2991	/*
2992	 * No ordinary (disk based) filesystem counts links as inodes;
2993	 * but each new link needs a new dentry, pinning lowmem, and
2994	 * tmpfs dentries cannot be pruned until they are unlinked.
2995	 * But if an O_TMPFILE file is linked into the tmpfs, the
2996	 * first link must skip that, to get the accounting right.
2997	 */
2998	if (inode->i_nlink) {
2999		ret = shmem_reserve_inode(inode->i_sb, NULL);
3000		if (ret)
3001			goto out;
3002	}
3003
3004	dir->i_size += BOGO_DIRENT_SIZE;
3005	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3006	inc_nlink(inode);
3007	ihold(inode);	/* New dentry reference */
3008	dget(dentry);		/* Extra pinning count for the created dentry */
3009	d_instantiate(dentry, inode);
3010out:
3011	return ret;
3012}
3013
3014static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3015{
3016	struct inode *inode = d_inode(dentry);
3017
3018	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3019		shmem_free_inode(inode->i_sb);
3020
3021	dir->i_size -= BOGO_DIRENT_SIZE;
3022	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3023	drop_nlink(inode);
3024	dput(dentry);	/* Undo the count from "create" - this does all the work */
3025	return 0;
3026}
3027
3028static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3029{
3030	if (!simple_empty(dentry))
3031		return -ENOTEMPTY;
3032
3033	drop_nlink(d_inode(dentry));
3034	drop_nlink(dir);
3035	return shmem_unlink(dir, dentry);
3036}
3037
3038static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3039{
3040	bool old_is_dir = d_is_dir(old_dentry);
3041	bool new_is_dir = d_is_dir(new_dentry);
3042
3043	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3044		if (old_is_dir) {
3045			drop_nlink(old_dir);
3046			inc_nlink(new_dir);
3047		} else {
3048			drop_nlink(new_dir);
3049			inc_nlink(old_dir);
3050		}
3051	}
3052	old_dir->i_ctime = old_dir->i_mtime =
3053	new_dir->i_ctime = new_dir->i_mtime =
3054	d_inode(old_dentry)->i_ctime =
3055	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3056
3057	return 0;
3058}
3059
3060static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
 
3061{
3062	struct dentry *whiteout;
3063	int error;
3064
3065	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3066	if (!whiteout)
3067		return -ENOMEM;
3068
3069	error = shmem_mknod(old_dir, whiteout,
3070			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3071	dput(whiteout);
3072	if (error)
3073		return error;
3074
3075	/*
3076	 * Cheat and hash the whiteout while the old dentry is still in
3077	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3078	 *
3079	 * d_lookup() will consistently find one of them at this point,
3080	 * not sure which one, but that isn't even important.
3081	 */
3082	d_rehash(whiteout);
3083	return 0;
3084}
3085
3086/*
3087 * The VFS layer already does all the dentry stuff for rename,
3088 * we just have to decrement the usage count for the target if
3089 * it exists so that the VFS layer correctly free's it when it
3090 * gets overwritten.
3091 */
3092static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
 
 
 
3093{
3094	struct inode *inode = d_inode(old_dentry);
3095	int they_are_dirs = S_ISDIR(inode->i_mode);
3096
3097	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3098		return -EINVAL;
3099
3100	if (flags & RENAME_EXCHANGE)
3101		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3102
3103	if (!simple_empty(new_dentry))
3104		return -ENOTEMPTY;
3105
3106	if (flags & RENAME_WHITEOUT) {
3107		int error;
3108
3109		error = shmem_whiteout(old_dir, old_dentry);
3110		if (error)
3111			return error;
3112	}
3113
3114	if (d_really_is_positive(new_dentry)) {
3115		(void) shmem_unlink(new_dir, new_dentry);
3116		if (they_are_dirs) {
3117			drop_nlink(d_inode(new_dentry));
3118			drop_nlink(old_dir);
3119		}
3120	} else if (they_are_dirs) {
3121		drop_nlink(old_dir);
3122		inc_nlink(new_dir);
3123	}
3124
3125	old_dir->i_size -= BOGO_DIRENT_SIZE;
3126	new_dir->i_size += BOGO_DIRENT_SIZE;
3127	old_dir->i_ctime = old_dir->i_mtime =
3128	new_dir->i_ctime = new_dir->i_mtime =
3129	inode->i_ctime = current_time(old_dir);
3130	return 0;
3131}
3132
3133static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
 
3134{
3135	int error;
3136	int len;
3137	struct inode *inode;
3138	struct page *page;
3139
3140	len = strlen(symname) + 1;
3141	if (len > PAGE_SIZE)
3142		return -ENAMETOOLONG;
3143
3144	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3145				VM_NORESERVE);
3146	if (!inode)
3147		return -ENOSPC;
3148
3149	error = security_inode_init_security(inode, dir, &dentry->d_name,
3150					     shmem_initxattrs, NULL);
3151	if (error && error != -EOPNOTSUPP) {
3152		iput(inode);
3153		return error;
3154	}
3155
3156	inode->i_size = len-1;
3157	if (len <= SHORT_SYMLINK_LEN) {
3158		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3159		if (!inode->i_link) {
3160			iput(inode);
3161			return -ENOMEM;
3162		}
3163		inode->i_op = &shmem_short_symlink_operations;
3164	} else {
3165		inode_nohighmem(inode);
3166		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3167		if (error) {
3168			iput(inode);
3169			return error;
3170		}
3171		inode->i_mapping->a_ops = &shmem_aops;
3172		inode->i_op = &shmem_symlink_inode_operations;
3173		memcpy(page_address(page), symname, len);
3174		SetPageUptodate(page);
3175		set_page_dirty(page);
3176		unlock_page(page);
3177		put_page(page);
3178	}
3179	dir->i_size += BOGO_DIRENT_SIZE;
3180	dir->i_ctime = dir->i_mtime = current_time(dir);
3181	d_instantiate(dentry, inode);
3182	dget(dentry);
3183	return 0;
3184}
3185
3186static void shmem_put_link(void *arg)
3187{
3188	mark_page_accessed(arg);
3189	put_page(arg);
3190}
3191
3192static const char *shmem_get_link(struct dentry *dentry,
3193				  struct inode *inode,
3194				  struct delayed_call *done)
3195{
3196	struct page *page = NULL;
3197	int error;
3198	if (!dentry) {
3199		page = find_get_page(inode->i_mapping, 0);
3200		if (!page)
3201			return ERR_PTR(-ECHILD);
3202		if (!PageUptodate(page)) {
3203			put_page(page);
3204			return ERR_PTR(-ECHILD);
3205		}
3206	} else {
3207		error = shmem_getpage(inode, 0, &page, SGP_READ);
3208		if (error)
3209			return ERR_PTR(error);
3210		unlock_page(page);
3211	}
3212	set_delayed_call(done, shmem_put_link, page);
3213	return page_address(page);
3214}
3215
3216#ifdef CONFIG_TMPFS_XATTR
3217/*
3218 * Superblocks without xattr inode operations may get some security.* xattr
3219 * support from the LSM "for free". As soon as we have any other xattrs
3220 * like ACLs, we also need to implement the security.* handlers at
3221 * filesystem level, though.
3222 */
3223
3224/*
3225 * Callback for security_inode_init_security() for acquiring xattrs.
3226 */
3227static int shmem_initxattrs(struct inode *inode,
3228			    const struct xattr *xattr_array,
3229			    void *fs_info)
3230{
3231	struct shmem_inode_info *info = SHMEM_I(inode);
3232	const struct xattr *xattr;
3233	struct simple_xattr *new_xattr;
3234	size_t len;
3235
3236	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3237		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3238		if (!new_xattr)
3239			return -ENOMEM;
3240
3241		len = strlen(xattr->name) + 1;
3242		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3243					  GFP_KERNEL);
3244		if (!new_xattr->name) {
3245			kvfree(new_xattr);
3246			return -ENOMEM;
3247		}
3248
3249		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3250		       XATTR_SECURITY_PREFIX_LEN);
3251		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3252		       xattr->name, len);
3253
3254		simple_xattr_list_add(&info->xattrs, new_xattr);
3255	}
3256
3257	return 0;
3258}
3259
3260static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3261				   struct dentry *unused, struct inode *inode,
3262				   const char *name, void *buffer, size_t size)
3263{
3264	struct shmem_inode_info *info = SHMEM_I(inode);
3265
3266	name = xattr_full_name(handler, name);
3267	return simple_xattr_get(&info->xattrs, name, buffer, size);
3268}
3269
3270static int shmem_xattr_handler_set(const struct xattr_handler *handler,
 
3271				   struct dentry *unused, struct inode *inode,
3272				   const char *name, const void *value,
3273				   size_t size, int flags)
3274{
3275	struct shmem_inode_info *info = SHMEM_I(inode);
3276
3277	name = xattr_full_name(handler, name);
3278	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3279}
3280
3281static const struct xattr_handler shmem_security_xattr_handler = {
3282	.prefix = XATTR_SECURITY_PREFIX,
3283	.get = shmem_xattr_handler_get,
3284	.set = shmem_xattr_handler_set,
3285};
3286
3287static const struct xattr_handler shmem_trusted_xattr_handler = {
3288	.prefix = XATTR_TRUSTED_PREFIX,
3289	.get = shmem_xattr_handler_get,
3290	.set = shmem_xattr_handler_set,
3291};
3292
3293static const struct xattr_handler *shmem_xattr_handlers[] = {
3294#ifdef CONFIG_TMPFS_POSIX_ACL
3295	&posix_acl_access_xattr_handler,
3296	&posix_acl_default_xattr_handler,
3297#endif
3298	&shmem_security_xattr_handler,
3299	&shmem_trusted_xattr_handler,
3300	NULL
3301};
3302
3303static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3304{
3305	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3306	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3307}
3308#endif /* CONFIG_TMPFS_XATTR */
3309
3310static const struct inode_operations shmem_short_symlink_operations = {
3311	.get_link	= simple_get_link,
3312#ifdef CONFIG_TMPFS_XATTR
3313	.listxattr	= shmem_listxattr,
3314#endif
3315};
3316
3317static const struct inode_operations shmem_symlink_inode_operations = {
3318	.get_link	= shmem_get_link,
3319#ifdef CONFIG_TMPFS_XATTR
3320	.listxattr	= shmem_listxattr,
3321#endif
3322};
3323
3324static struct dentry *shmem_get_parent(struct dentry *child)
3325{
3326	return ERR_PTR(-ESTALE);
3327}
3328
3329static int shmem_match(struct inode *ino, void *vfh)
3330{
3331	__u32 *fh = vfh;
3332	__u64 inum = fh[2];
3333	inum = (inum << 32) | fh[1];
3334	return ino->i_ino == inum && fh[0] == ino->i_generation;
3335}
3336
3337/* Find any alias of inode, but prefer a hashed alias */
3338static struct dentry *shmem_find_alias(struct inode *inode)
3339{
3340	struct dentry *alias = d_find_alias(inode);
3341
3342	return alias ?: d_find_any_alias(inode);
3343}
3344
3345
3346static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3347		struct fid *fid, int fh_len, int fh_type)
3348{
3349	struct inode *inode;
3350	struct dentry *dentry = NULL;
3351	u64 inum;
3352
3353	if (fh_len < 3)
3354		return NULL;
3355
3356	inum = fid->raw[2];
3357	inum = (inum << 32) | fid->raw[1];
3358
3359	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3360			shmem_match, fid->raw);
3361	if (inode) {
3362		dentry = shmem_find_alias(inode);
3363		iput(inode);
3364	}
3365
3366	return dentry;
3367}
3368
3369static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3370				struct inode *parent)
3371{
3372	if (*len < 3) {
3373		*len = 3;
3374		return FILEID_INVALID;
3375	}
3376
3377	if (inode_unhashed(inode)) {
3378		/* Unfortunately insert_inode_hash is not idempotent,
3379		 * so as we hash inodes here rather than at creation
3380		 * time, we need a lock to ensure we only try
3381		 * to do it once
3382		 */
3383		static DEFINE_SPINLOCK(lock);
3384		spin_lock(&lock);
3385		if (inode_unhashed(inode))
3386			__insert_inode_hash(inode,
3387					    inode->i_ino + inode->i_generation);
3388		spin_unlock(&lock);
3389	}
3390
3391	fh[0] = inode->i_generation;
3392	fh[1] = inode->i_ino;
3393	fh[2] = ((__u64)inode->i_ino) >> 32;
3394
3395	*len = 3;
3396	return 1;
3397}
3398
3399static const struct export_operations shmem_export_ops = {
3400	.get_parent     = shmem_get_parent,
3401	.encode_fh      = shmem_encode_fh,
3402	.fh_to_dentry	= shmem_fh_to_dentry,
3403};
3404
3405enum shmem_param {
3406	Opt_gid,
3407	Opt_huge,
3408	Opt_mode,
3409	Opt_mpol,
3410	Opt_nr_blocks,
3411	Opt_nr_inodes,
3412	Opt_size,
3413	Opt_uid,
3414	Opt_inode32,
3415	Opt_inode64,
3416};
3417
3418static const struct constant_table shmem_param_enums_huge[] = {
3419	{"never",	SHMEM_HUGE_NEVER },
3420	{"always",	SHMEM_HUGE_ALWAYS },
3421	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3422	{"advise",	SHMEM_HUGE_ADVISE },
3423	{}
3424};
3425
3426const struct fs_parameter_spec shmem_fs_parameters[] = {
3427	fsparam_u32   ("gid",		Opt_gid),
3428	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3429	fsparam_u32oct("mode",		Opt_mode),
3430	fsparam_string("mpol",		Opt_mpol),
3431	fsparam_string("nr_blocks",	Opt_nr_blocks),
3432	fsparam_string("nr_inodes",	Opt_nr_inodes),
3433	fsparam_string("size",		Opt_size),
3434	fsparam_u32   ("uid",		Opt_uid),
3435	fsparam_flag  ("inode32",	Opt_inode32),
3436	fsparam_flag  ("inode64",	Opt_inode64),
3437	{}
3438};
3439
3440static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3441{
3442	struct shmem_options *ctx = fc->fs_private;
3443	struct fs_parse_result result;
3444	unsigned long long size;
3445	char *rest;
3446	int opt;
3447
3448	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3449	if (opt < 0)
3450		return opt;
3451
3452	switch (opt) {
3453	case Opt_size:
3454		size = memparse(param->string, &rest);
3455		if (*rest == '%') {
3456			size <<= PAGE_SHIFT;
3457			size *= totalram_pages();
3458			do_div(size, 100);
3459			rest++;
3460		}
3461		if (*rest)
3462			goto bad_value;
3463		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3464		ctx->seen |= SHMEM_SEEN_BLOCKS;
3465		break;
3466	case Opt_nr_blocks:
3467		ctx->blocks = memparse(param->string, &rest);
3468		if (*rest)
3469			goto bad_value;
3470		ctx->seen |= SHMEM_SEEN_BLOCKS;
3471		break;
3472	case Opt_nr_inodes:
3473		ctx->inodes = memparse(param->string, &rest);
3474		if (*rest)
3475			goto bad_value;
3476		ctx->seen |= SHMEM_SEEN_INODES;
3477		break;
3478	case Opt_mode:
3479		ctx->mode = result.uint_32 & 07777;
3480		break;
3481	case Opt_uid:
3482		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3483		if (!uid_valid(ctx->uid))
3484			goto bad_value;
3485		break;
3486	case Opt_gid:
3487		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3488		if (!gid_valid(ctx->gid))
3489			goto bad_value;
3490		break;
3491	case Opt_huge:
3492		ctx->huge = result.uint_32;
3493		if (ctx->huge != SHMEM_HUGE_NEVER &&
3494		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3495		      has_transparent_hugepage()))
3496			goto unsupported_parameter;
3497		ctx->seen |= SHMEM_SEEN_HUGE;
3498		break;
3499	case Opt_mpol:
3500		if (IS_ENABLED(CONFIG_NUMA)) {
3501			mpol_put(ctx->mpol);
3502			ctx->mpol = NULL;
3503			if (mpol_parse_str(param->string, &ctx->mpol))
3504				goto bad_value;
3505			break;
3506		}
3507		goto unsupported_parameter;
3508	case Opt_inode32:
3509		ctx->full_inums = false;
3510		ctx->seen |= SHMEM_SEEN_INUMS;
3511		break;
3512	case Opt_inode64:
3513		if (sizeof(ino_t) < 8) {
3514			return invalfc(fc,
3515				       "Cannot use inode64 with <64bit inums in kernel\n");
3516		}
3517		ctx->full_inums = true;
3518		ctx->seen |= SHMEM_SEEN_INUMS;
3519		break;
3520	}
3521	return 0;
3522
3523unsupported_parameter:
3524	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3525bad_value:
3526	return invalfc(fc, "Bad value for '%s'", param->key);
3527}
3528
3529static int shmem_parse_options(struct fs_context *fc, void *data)
3530{
3531	char *options = data;
3532
3533	if (options) {
3534		int err = security_sb_eat_lsm_opts(options, &fc->security);
3535		if (err)
3536			return err;
3537	}
3538
3539	while (options != NULL) {
3540		char *this_char = options;
3541		for (;;) {
3542			/*
3543			 * NUL-terminate this option: unfortunately,
3544			 * mount options form a comma-separated list,
3545			 * but mpol's nodelist may also contain commas.
3546			 */
3547			options = strchr(options, ',');
3548			if (options == NULL)
3549				break;
3550			options++;
3551			if (!isdigit(*options)) {
3552				options[-1] = '\0';
3553				break;
3554			}
3555		}
3556		if (*this_char) {
3557			char *value = strchr(this_char,'=');
3558			size_t len = 0;
3559			int err;
3560
3561			if (value) {
3562				*value++ = '\0';
3563				len = strlen(value);
3564			}
3565			err = vfs_parse_fs_string(fc, this_char, value, len);
3566			if (err < 0)
3567				return err;
3568		}
3569	}
3570	return 0;
3571}
3572
3573/*
3574 * Reconfigure a shmem filesystem.
3575 *
3576 * Note that we disallow change from limited->unlimited blocks/inodes while any
3577 * are in use; but we must separately disallow unlimited->limited, because in
3578 * that case we have no record of how much is already in use.
3579 */
3580static int shmem_reconfigure(struct fs_context *fc)
3581{
3582	struct shmem_options *ctx = fc->fs_private;
3583	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3584	unsigned long inodes;
3585	const char *err;
3586
3587	spin_lock(&sbinfo->stat_lock);
3588	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3589	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3590		if (!sbinfo->max_blocks) {
3591			err = "Cannot retroactively limit size";
3592			goto out;
3593		}
3594		if (percpu_counter_compare(&sbinfo->used_blocks,
3595					   ctx->blocks) > 0) {
3596			err = "Too small a size for current use";
3597			goto out;
3598		}
3599	}
3600	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3601		if (!sbinfo->max_inodes) {
3602			err = "Cannot retroactively limit inodes";
3603			goto out;
3604		}
3605		if (ctx->inodes < inodes) {
3606			err = "Too few inodes for current use";
3607			goto out;
3608		}
3609	}
3610
3611	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3612	    sbinfo->next_ino > UINT_MAX) {
3613		err = "Current inum too high to switch to 32-bit inums";
3614		goto out;
3615	}
3616
3617	if (ctx->seen & SHMEM_SEEN_HUGE)
3618		sbinfo->huge = ctx->huge;
3619	if (ctx->seen & SHMEM_SEEN_INUMS)
3620		sbinfo->full_inums = ctx->full_inums;
3621	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3622		sbinfo->max_blocks  = ctx->blocks;
3623	if (ctx->seen & SHMEM_SEEN_INODES) {
3624		sbinfo->max_inodes  = ctx->inodes;
3625		sbinfo->free_inodes = ctx->inodes - inodes;
3626	}
3627
3628	/*
3629	 * Preserve previous mempolicy unless mpol remount option was specified.
3630	 */
3631	if (ctx->mpol) {
3632		mpol_put(sbinfo->mpol);
3633		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3634		ctx->mpol = NULL;
3635	}
3636	spin_unlock(&sbinfo->stat_lock);
3637	return 0;
3638out:
3639	spin_unlock(&sbinfo->stat_lock);
3640	return invalfc(fc, "%s", err);
3641}
3642
3643static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3644{
3645	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3646
3647	if (sbinfo->max_blocks != shmem_default_max_blocks())
3648		seq_printf(seq, ",size=%luk",
3649			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3650	if (sbinfo->max_inodes != shmem_default_max_inodes())
3651		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3652	if (sbinfo->mode != (0777 | S_ISVTX))
3653		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3654	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3655		seq_printf(seq, ",uid=%u",
3656				from_kuid_munged(&init_user_ns, sbinfo->uid));
3657	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3658		seq_printf(seq, ",gid=%u",
3659				from_kgid_munged(&init_user_ns, sbinfo->gid));
3660
3661	/*
3662	 * Showing inode{64,32} might be useful even if it's the system default,
3663	 * since then people don't have to resort to checking both here and
3664	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3665	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3666	 *
3667	 * We hide it when inode64 isn't the default and we are using 32-bit
3668	 * inodes, since that probably just means the feature isn't even under
3669	 * consideration.
3670	 *
3671	 * As such:
3672	 *
3673	 *                     +-----------------+-----------------+
3674	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3675	 *  +------------------+-----------------+-----------------+
3676	 *  | full_inums=true  | show            | show            |
3677	 *  | full_inums=false | show            | hide            |
3678	 *  +------------------+-----------------+-----------------+
3679	 *
3680	 */
3681	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3682		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3683#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3684	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3685	if (sbinfo->huge)
3686		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3687#endif
3688	shmem_show_mpol(seq, sbinfo->mpol);
3689	return 0;
3690}
3691
3692#endif /* CONFIG_TMPFS */
3693
3694static void shmem_put_super(struct super_block *sb)
3695{
3696	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3697
3698	free_percpu(sbinfo->ino_batch);
3699	percpu_counter_destroy(&sbinfo->used_blocks);
3700	mpol_put(sbinfo->mpol);
3701	kfree(sbinfo);
3702	sb->s_fs_info = NULL;
3703}
3704
3705static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3706{
3707	struct shmem_options *ctx = fc->fs_private;
3708	struct inode *inode;
3709	struct shmem_sb_info *sbinfo;
3710	int err = -ENOMEM;
3711
3712	/* Round up to L1_CACHE_BYTES to resist false sharing */
3713	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3714				L1_CACHE_BYTES), GFP_KERNEL);
3715	if (!sbinfo)
3716		return -ENOMEM;
3717
3718	sb->s_fs_info = sbinfo;
3719
3720#ifdef CONFIG_TMPFS
3721	/*
3722	 * Per default we only allow half of the physical ram per
3723	 * tmpfs instance, limiting inodes to one per page of lowmem;
3724	 * but the internal instance is left unlimited.
3725	 */
3726	if (!(sb->s_flags & SB_KERNMOUNT)) {
3727		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3728			ctx->blocks = shmem_default_max_blocks();
3729		if (!(ctx->seen & SHMEM_SEEN_INODES))
3730			ctx->inodes = shmem_default_max_inodes();
3731		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3732			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3733	} else {
3734		sb->s_flags |= SB_NOUSER;
3735	}
3736	sb->s_export_op = &shmem_export_ops;
3737	sb->s_flags |= SB_NOSEC;
3738#else
3739	sb->s_flags |= SB_NOUSER;
3740#endif
3741	sbinfo->max_blocks = ctx->blocks;
3742	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3743	if (sb->s_flags & SB_KERNMOUNT) {
3744		sbinfo->ino_batch = alloc_percpu(ino_t);
3745		if (!sbinfo->ino_batch)
3746			goto failed;
3747	}
3748	sbinfo->uid = ctx->uid;
3749	sbinfo->gid = ctx->gid;
3750	sbinfo->full_inums = ctx->full_inums;
3751	sbinfo->mode = ctx->mode;
3752	sbinfo->huge = ctx->huge;
3753	sbinfo->mpol = ctx->mpol;
3754	ctx->mpol = NULL;
3755
3756	spin_lock_init(&sbinfo->stat_lock);
3757	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3758		goto failed;
3759	spin_lock_init(&sbinfo->shrinklist_lock);
3760	INIT_LIST_HEAD(&sbinfo->shrinklist);
3761
3762	sb->s_maxbytes = MAX_LFS_FILESIZE;
3763	sb->s_blocksize = PAGE_SIZE;
3764	sb->s_blocksize_bits = PAGE_SHIFT;
3765	sb->s_magic = TMPFS_MAGIC;
3766	sb->s_op = &shmem_ops;
3767	sb->s_time_gran = 1;
3768#ifdef CONFIG_TMPFS_XATTR
3769	sb->s_xattr = shmem_xattr_handlers;
3770#endif
3771#ifdef CONFIG_TMPFS_POSIX_ACL
3772	sb->s_flags |= SB_POSIXACL;
3773#endif
3774	uuid_gen(&sb->s_uuid);
3775
3776	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3777	if (!inode)
3778		goto failed;
3779	inode->i_uid = sbinfo->uid;
3780	inode->i_gid = sbinfo->gid;
3781	sb->s_root = d_make_root(inode);
3782	if (!sb->s_root)
3783		goto failed;
3784	return 0;
3785
3786failed:
3787	shmem_put_super(sb);
3788	return err;
3789}
3790
3791static int shmem_get_tree(struct fs_context *fc)
3792{
3793	return get_tree_nodev(fc, shmem_fill_super);
3794}
3795
3796static void shmem_free_fc(struct fs_context *fc)
3797{
3798	struct shmem_options *ctx = fc->fs_private;
3799
3800	if (ctx) {
3801		mpol_put(ctx->mpol);
3802		kfree(ctx);
3803	}
3804}
3805
3806static const struct fs_context_operations shmem_fs_context_ops = {
3807	.free			= shmem_free_fc,
3808	.get_tree		= shmem_get_tree,
3809#ifdef CONFIG_TMPFS
3810	.parse_monolithic	= shmem_parse_options,
3811	.parse_param		= shmem_parse_one,
3812	.reconfigure		= shmem_reconfigure,
3813#endif
3814};
3815
3816static struct kmem_cache *shmem_inode_cachep;
3817
3818static struct inode *shmem_alloc_inode(struct super_block *sb)
3819{
3820	struct shmem_inode_info *info;
3821	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3822	if (!info)
3823		return NULL;
3824	return &info->vfs_inode;
3825}
3826
3827static void shmem_free_in_core_inode(struct inode *inode)
3828{
3829	if (S_ISLNK(inode->i_mode))
3830		kfree(inode->i_link);
3831	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3832}
3833
3834static void shmem_destroy_inode(struct inode *inode)
3835{
3836	if (S_ISREG(inode->i_mode))
3837		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3838}
3839
3840static void shmem_init_inode(void *foo)
3841{
3842	struct shmem_inode_info *info = foo;
3843	inode_init_once(&info->vfs_inode);
3844}
3845
3846static void shmem_init_inodecache(void)
3847{
3848	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3849				sizeof(struct shmem_inode_info),
3850				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3851}
3852
3853static void shmem_destroy_inodecache(void)
3854{
3855	kmem_cache_destroy(shmem_inode_cachep);
3856}
3857
3858static const struct address_space_operations shmem_aops = {
3859	.writepage	= shmem_writepage,
3860	.set_page_dirty	= __set_page_dirty_no_writeback,
3861#ifdef CONFIG_TMPFS
3862	.write_begin	= shmem_write_begin,
3863	.write_end	= shmem_write_end,
3864#endif
3865#ifdef CONFIG_MIGRATION
3866	.migratepage	= migrate_page,
3867#endif
3868	.error_remove_page = generic_error_remove_page,
3869};
 
3870
3871static const struct file_operations shmem_file_operations = {
3872	.mmap		= shmem_mmap,
3873	.get_unmapped_area = shmem_get_unmapped_area,
3874#ifdef CONFIG_TMPFS
3875	.llseek		= shmem_file_llseek,
3876	.read_iter	= shmem_file_read_iter,
3877	.write_iter	= generic_file_write_iter,
3878	.fsync		= noop_fsync,
3879	.splice_read	= generic_file_splice_read,
3880	.splice_write	= iter_file_splice_write,
3881	.fallocate	= shmem_fallocate,
3882#endif
3883};
3884
3885static const struct inode_operations shmem_inode_operations = {
3886	.getattr	= shmem_getattr,
3887	.setattr	= shmem_setattr,
3888#ifdef CONFIG_TMPFS_XATTR
3889	.listxattr	= shmem_listxattr,
3890	.set_acl	= simple_set_acl,
3891#endif
3892};
3893
3894static const struct inode_operations shmem_dir_inode_operations = {
3895#ifdef CONFIG_TMPFS
3896	.create		= shmem_create,
3897	.lookup		= simple_lookup,
3898	.link		= shmem_link,
3899	.unlink		= shmem_unlink,
3900	.symlink	= shmem_symlink,
3901	.mkdir		= shmem_mkdir,
3902	.rmdir		= shmem_rmdir,
3903	.mknod		= shmem_mknod,
3904	.rename		= shmem_rename2,
3905	.tmpfile	= shmem_tmpfile,
3906#endif
3907#ifdef CONFIG_TMPFS_XATTR
3908	.listxattr	= shmem_listxattr,
3909#endif
3910#ifdef CONFIG_TMPFS_POSIX_ACL
3911	.setattr	= shmem_setattr,
3912	.set_acl	= simple_set_acl,
3913#endif
3914};
3915
3916static const struct inode_operations shmem_special_inode_operations = {
3917#ifdef CONFIG_TMPFS_XATTR
3918	.listxattr	= shmem_listxattr,
3919#endif
3920#ifdef CONFIG_TMPFS_POSIX_ACL
3921	.setattr	= shmem_setattr,
3922	.set_acl	= simple_set_acl,
3923#endif
3924};
3925
3926static const struct super_operations shmem_ops = {
3927	.alloc_inode	= shmem_alloc_inode,
3928	.free_inode	= shmem_free_in_core_inode,
3929	.destroy_inode	= shmem_destroy_inode,
3930#ifdef CONFIG_TMPFS
3931	.statfs		= shmem_statfs,
3932	.show_options	= shmem_show_options,
3933#endif
3934	.evict_inode	= shmem_evict_inode,
3935	.drop_inode	= generic_delete_inode,
3936	.put_super	= shmem_put_super,
3937#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3938	.nr_cached_objects	= shmem_unused_huge_count,
3939	.free_cached_objects	= shmem_unused_huge_scan,
3940#endif
3941};
3942
3943static const struct vm_operations_struct shmem_vm_ops = {
3944	.fault		= shmem_fault,
3945	.map_pages	= filemap_map_pages,
3946#ifdef CONFIG_NUMA
3947	.set_policy     = shmem_set_policy,
3948	.get_policy     = shmem_get_policy,
3949#endif
3950};
3951
3952int shmem_init_fs_context(struct fs_context *fc)
3953{
3954	struct shmem_options *ctx;
3955
3956	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3957	if (!ctx)
3958		return -ENOMEM;
3959
3960	ctx->mode = 0777 | S_ISVTX;
3961	ctx->uid = current_fsuid();
3962	ctx->gid = current_fsgid();
3963
3964	fc->fs_private = ctx;
3965	fc->ops = &shmem_fs_context_ops;
3966	return 0;
3967}
3968
3969static struct file_system_type shmem_fs_type = {
3970	.owner		= THIS_MODULE,
3971	.name		= "tmpfs",
3972	.init_fs_context = shmem_init_fs_context,
3973#ifdef CONFIG_TMPFS
3974	.parameters	= shmem_fs_parameters,
3975#endif
3976	.kill_sb	= kill_litter_super,
3977	.fs_flags	= FS_USERNS_MOUNT,
3978};
3979
3980int __init shmem_init(void)
3981{
3982	int error;
3983
3984	shmem_init_inodecache();
3985
3986	error = register_filesystem(&shmem_fs_type);
3987	if (error) {
3988		pr_err("Could not register tmpfs\n");
3989		goto out2;
3990	}
3991
3992	shm_mnt = kern_mount(&shmem_fs_type);
3993	if (IS_ERR(shm_mnt)) {
3994		error = PTR_ERR(shm_mnt);
3995		pr_err("Could not kern_mount tmpfs\n");
3996		goto out1;
3997	}
3998
3999#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4000	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4001		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4002	else
4003		shmem_huge = 0; /* just in case it was patched */
4004#endif
4005	return 0;
4006
4007out1:
4008	unregister_filesystem(&shmem_fs_type);
4009out2:
4010	shmem_destroy_inodecache();
4011	shm_mnt = ERR_PTR(error);
4012	return error;
4013}
4014
4015#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4016static ssize_t shmem_enabled_show(struct kobject *kobj,
4017		struct kobj_attribute *attr, char *buf)
4018{
4019	static const int values[] = {
4020		SHMEM_HUGE_ALWAYS,
4021		SHMEM_HUGE_WITHIN_SIZE,
4022		SHMEM_HUGE_ADVISE,
4023		SHMEM_HUGE_NEVER,
4024		SHMEM_HUGE_DENY,
4025		SHMEM_HUGE_FORCE,
4026	};
4027	int i, count;
 
 
 
 
 
 
 
 
4028
4029	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4030		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4031
4032		count += sprintf(buf + count, fmt,
4033				shmem_format_huge(values[i]));
4034	}
4035	buf[count - 1] = '\n';
4036	return count;
4037}
4038
4039static ssize_t shmem_enabled_store(struct kobject *kobj,
4040		struct kobj_attribute *attr, const char *buf, size_t count)
4041{
4042	char tmp[16];
4043	int huge;
4044
4045	if (count + 1 > sizeof(tmp))
4046		return -EINVAL;
4047	memcpy(tmp, buf, count);
4048	tmp[count] = '\0';
4049	if (count && tmp[count - 1] == '\n')
4050		tmp[count - 1] = '\0';
4051
4052	huge = shmem_parse_huge(tmp);
4053	if (huge == -EINVAL)
4054		return -EINVAL;
4055	if (!has_transparent_hugepage() &&
4056			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4057		return -EINVAL;
4058
4059	shmem_huge = huge;
4060	if (shmem_huge > SHMEM_HUGE_DENY)
4061		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4062	return count;
4063}
4064
4065struct kobj_attribute shmem_enabled_attr =
4066	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4067#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4068
4069#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4070bool shmem_huge_enabled(struct vm_area_struct *vma)
4071{
4072	struct inode *inode = file_inode(vma->vm_file);
4073	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4074	loff_t i_size;
4075	pgoff_t off;
4076
4077	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4078	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4079		return false;
4080	if (shmem_huge == SHMEM_HUGE_FORCE)
4081		return true;
4082	if (shmem_huge == SHMEM_HUGE_DENY)
4083		return false;
4084	switch (sbinfo->huge) {
4085		case SHMEM_HUGE_NEVER:
4086			return false;
4087		case SHMEM_HUGE_ALWAYS:
4088			return true;
4089		case SHMEM_HUGE_WITHIN_SIZE:
4090			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4091			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4092			if (i_size >= HPAGE_PMD_SIZE &&
4093					i_size >> PAGE_SHIFT >= off)
4094				return true;
4095			fallthrough;
4096		case SHMEM_HUGE_ADVISE:
4097			/* TODO: implement fadvise() hints */
4098			return (vma->vm_flags & VM_HUGEPAGE);
4099		default:
4100			VM_BUG_ON(1);
4101			return false;
4102	}
4103}
4104#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4105
4106#else /* !CONFIG_SHMEM */
4107
4108/*
4109 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4110 *
4111 * This is intended for small system where the benefits of the full
4112 * shmem code (swap-backed and resource-limited) are outweighed by
4113 * their complexity. On systems without swap this code should be
4114 * effectively equivalent, but much lighter weight.
4115 */
4116
4117static struct file_system_type shmem_fs_type = {
4118	.name		= "tmpfs",
4119	.init_fs_context = ramfs_init_fs_context,
4120	.parameters	= ramfs_fs_parameters,
4121	.kill_sb	= kill_litter_super,
4122	.fs_flags	= FS_USERNS_MOUNT,
4123};
4124
4125int __init shmem_init(void)
4126{
4127	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4128
4129	shm_mnt = kern_mount(&shmem_fs_type);
4130	BUG_ON(IS_ERR(shm_mnt));
4131
4132	return 0;
4133}
4134
4135int shmem_unuse(unsigned int type, bool frontswap,
4136		unsigned long *fs_pages_to_unuse)
4137{
4138	return 0;
4139}
4140
4141int shmem_lock(struct file *file, int lock, struct user_struct *user)
4142{
4143	return 0;
4144}
4145
4146void shmem_unlock_mapping(struct address_space *mapping)
4147{
4148}
4149
4150#ifdef CONFIG_MMU
4151unsigned long shmem_get_unmapped_area(struct file *file,
4152				      unsigned long addr, unsigned long len,
4153				      unsigned long pgoff, unsigned long flags)
4154{
4155	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4156}
4157#endif
4158
4159void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4160{
4161	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4162}
4163EXPORT_SYMBOL_GPL(shmem_truncate_range);
4164
4165#define shmem_vm_ops				generic_file_vm_ops
4166#define shmem_file_operations			ramfs_file_operations
4167#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4168#define shmem_acct_size(flags, size)		0
4169#define shmem_unacct_size(flags, size)		do {} while (0)
4170
4171#endif /* CONFIG_SHMEM */
4172
4173/* common code */
4174
4175static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4176				       unsigned long flags, unsigned int i_flags)
4177{
4178	struct inode *inode;
4179	struct file *res;
4180
4181	if (IS_ERR(mnt))
4182		return ERR_CAST(mnt);
4183
4184	if (size < 0 || size > MAX_LFS_FILESIZE)
4185		return ERR_PTR(-EINVAL);
4186
4187	if (shmem_acct_size(flags, size))
4188		return ERR_PTR(-ENOMEM);
4189
4190	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4191				flags);
4192	if (unlikely(!inode)) {
4193		shmem_unacct_size(flags, size);
4194		return ERR_PTR(-ENOSPC);
4195	}
4196	inode->i_flags |= i_flags;
4197	inode->i_size = size;
4198	clear_nlink(inode);	/* It is unlinked */
4199	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4200	if (!IS_ERR(res))
4201		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4202				&shmem_file_operations);
4203	if (IS_ERR(res))
4204		iput(inode);
4205	return res;
4206}
4207
4208/**
4209 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4210 * 	kernel internal.  There will be NO LSM permission checks against the
4211 * 	underlying inode.  So users of this interface must do LSM checks at a
4212 *	higher layer.  The users are the big_key and shm implementations.  LSM
4213 *	checks are provided at the key or shm level rather than the inode.
4214 * @name: name for dentry (to be seen in /proc/<pid>/maps
4215 * @size: size to be set for the file
4216 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4217 */
4218struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4219{
4220	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4221}
4222
4223/**
4224 * shmem_file_setup - get an unlinked file living in tmpfs
4225 * @name: name for dentry (to be seen in /proc/<pid>/maps
4226 * @size: size to be set for the file
4227 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4228 */
4229struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4230{
4231	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4232}
4233EXPORT_SYMBOL_GPL(shmem_file_setup);
4234
4235/**
4236 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4237 * @mnt: the tmpfs mount where the file will be created
4238 * @name: name for dentry (to be seen in /proc/<pid>/maps
4239 * @size: size to be set for the file
4240 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4241 */
4242struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4243				       loff_t size, unsigned long flags)
4244{
4245	return __shmem_file_setup(mnt, name, size, flags, 0);
4246}
4247EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4248
4249/**
4250 * shmem_zero_setup - setup a shared anonymous mapping
4251 * @vma: the vma to be mmapped is prepared by do_mmap
4252 */
4253int shmem_zero_setup(struct vm_area_struct *vma)
4254{
4255	struct file *file;
4256	loff_t size = vma->vm_end - vma->vm_start;
4257
4258	/*
4259	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4260	 * between XFS directory reading and selinux: since this file is only
4261	 * accessible to the user through its mapping, use S_PRIVATE flag to
4262	 * bypass file security, in the same way as shmem_kernel_file_setup().
4263	 */
4264	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4265	if (IS_ERR(file))
4266		return PTR_ERR(file);
4267
4268	if (vma->vm_file)
4269		fput(vma->vm_file);
4270	vma->vm_file = file;
4271	vma->vm_ops = &shmem_vm_ops;
4272
4273	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4274			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4275			(vma->vm_end & HPAGE_PMD_MASK)) {
4276		khugepaged_enter(vma, vma->vm_flags);
4277	}
4278
4279	return 0;
4280}
4281
4282/**
4283 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4284 * @mapping:	the page's address_space
4285 * @index:	the page index
4286 * @gfp:	the page allocator flags to use if allocating
4287 *
4288 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4289 * with any new page allocations done using the specified allocation flags.
4290 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4291 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4292 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4293 *
4294 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4295 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4296 */
4297struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4298					 pgoff_t index, gfp_t gfp)
4299{
4300#ifdef CONFIG_SHMEM
4301	struct inode *inode = mapping->host;
4302	struct page *page;
4303	int error;
4304
4305	BUG_ON(mapping->a_ops != &shmem_aops);
4306	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4307				  gfp, NULL, NULL, NULL);
4308	if (error)
4309		page = ERR_PTR(error);
4310	else
4311		unlock_page(page);
4312	return page;
4313#else
4314	/*
4315	 * The tiny !SHMEM case uses ramfs without swap
4316	 */
4317	return read_cache_page_gfp(mapping, index, gfp);
4318#endif
4319}
4320EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);