Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36#include <linux/kernel.h>
37#include <linux/mm.h>
38#include <linux/page-flags.h>
39#include <linux/kernel-page-flags.h>
40#include <linux/sched/signal.h>
41#include <linux/sched/task.h>
42#include <linux/ksm.h>
43#include <linux/rmap.h>
44#include <linux/export.h>
45#include <linux/pagemap.h>
46#include <linux/swap.h>
47#include <linux/backing-dev.h>
48#include <linux/migrate.h>
49#include <linux/suspend.h>
50#include <linux/slab.h>
51#include <linux/swapops.h>
52#include <linux/hugetlb.h>
53#include <linux/memory_hotplug.h>
54#include <linux/mm_inline.h>
55#include <linux/memremap.h>
56#include <linux/kfifo.h>
57#include <linux/ratelimit.h>
58#include <linux/page-isolation.h>
59#include <linux/pagewalk.h>
60#include "internal.h"
61#include "ras/ras_event.h"
62
63int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65int sysctl_memory_failure_recovery __read_mostly = 1;
66
67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68
69static bool __page_handle_poison(struct page *page)
70{
71 int ret;
72
73 zone_pcp_disable(page_zone(page));
74 ret = dissolve_free_huge_page(page);
75 if (!ret)
76 ret = take_page_off_buddy(page);
77 zone_pcp_enable(page_zone(page));
78
79 return ret > 0;
80}
81
82static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
83{
84 if (hugepage_or_freepage) {
85 /*
86 * Doing this check for free pages is also fine since dissolve_free_huge_page
87 * returns 0 for non-hugetlb pages as well.
88 */
89 if (!__page_handle_poison(page))
90 /*
91 * We could fail to take off the target page from buddy
92 * for example due to racy page allocation, but that's
93 * acceptable because soft-offlined page is not broken
94 * and if someone really want to use it, they should
95 * take it.
96 */
97 return false;
98 }
99
100 SetPageHWPoison(page);
101 if (release)
102 put_page(page);
103 page_ref_inc(page);
104 num_poisoned_pages_inc();
105
106 return true;
107}
108
109#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
110
111u32 hwpoison_filter_enable = 0;
112u32 hwpoison_filter_dev_major = ~0U;
113u32 hwpoison_filter_dev_minor = ~0U;
114u64 hwpoison_filter_flags_mask;
115u64 hwpoison_filter_flags_value;
116EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
117EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
118EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
119EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
120EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
121
122static int hwpoison_filter_dev(struct page *p)
123{
124 struct address_space *mapping;
125 dev_t dev;
126
127 if (hwpoison_filter_dev_major == ~0U &&
128 hwpoison_filter_dev_minor == ~0U)
129 return 0;
130
131 /*
132 * page_mapping() does not accept slab pages.
133 */
134 if (PageSlab(p))
135 return -EINVAL;
136
137 mapping = page_mapping(p);
138 if (mapping == NULL || mapping->host == NULL)
139 return -EINVAL;
140
141 dev = mapping->host->i_sb->s_dev;
142 if (hwpoison_filter_dev_major != ~0U &&
143 hwpoison_filter_dev_major != MAJOR(dev))
144 return -EINVAL;
145 if (hwpoison_filter_dev_minor != ~0U &&
146 hwpoison_filter_dev_minor != MINOR(dev))
147 return -EINVAL;
148
149 return 0;
150}
151
152static int hwpoison_filter_flags(struct page *p)
153{
154 if (!hwpoison_filter_flags_mask)
155 return 0;
156
157 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
158 hwpoison_filter_flags_value)
159 return 0;
160 else
161 return -EINVAL;
162}
163
164/*
165 * This allows stress tests to limit test scope to a collection of tasks
166 * by putting them under some memcg. This prevents killing unrelated/important
167 * processes such as /sbin/init. Note that the target task may share clean
168 * pages with init (eg. libc text), which is harmless. If the target task
169 * share _dirty_ pages with another task B, the test scheme must make sure B
170 * is also included in the memcg. At last, due to race conditions this filter
171 * can only guarantee that the page either belongs to the memcg tasks, or is
172 * a freed page.
173 */
174#ifdef CONFIG_MEMCG
175u64 hwpoison_filter_memcg;
176EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
177static int hwpoison_filter_task(struct page *p)
178{
179 if (!hwpoison_filter_memcg)
180 return 0;
181
182 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
183 return -EINVAL;
184
185 return 0;
186}
187#else
188static int hwpoison_filter_task(struct page *p) { return 0; }
189#endif
190
191int hwpoison_filter(struct page *p)
192{
193 if (!hwpoison_filter_enable)
194 return 0;
195
196 if (hwpoison_filter_dev(p))
197 return -EINVAL;
198
199 if (hwpoison_filter_flags(p))
200 return -EINVAL;
201
202 if (hwpoison_filter_task(p))
203 return -EINVAL;
204
205 return 0;
206}
207#else
208int hwpoison_filter(struct page *p)
209{
210 return 0;
211}
212#endif
213
214EXPORT_SYMBOL_GPL(hwpoison_filter);
215
216/*
217 * Kill all processes that have a poisoned page mapped and then isolate
218 * the page.
219 *
220 * General strategy:
221 * Find all processes having the page mapped and kill them.
222 * But we keep a page reference around so that the page is not
223 * actually freed yet.
224 * Then stash the page away
225 *
226 * There's no convenient way to get back to mapped processes
227 * from the VMAs. So do a brute-force search over all
228 * running processes.
229 *
230 * Remember that machine checks are not common (or rather
231 * if they are common you have other problems), so this shouldn't
232 * be a performance issue.
233 *
234 * Also there are some races possible while we get from the
235 * error detection to actually handle it.
236 */
237
238struct to_kill {
239 struct list_head nd;
240 struct task_struct *tsk;
241 unsigned long addr;
242 short size_shift;
243};
244
245/*
246 * Send all the processes who have the page mapped a signal.
247 * ``action optional'' if they are not immediately affected by the error
248 * ``action required'' if error happened in current execution context
249 */
250static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
251{
252 struct task_struct *t = tk->tsk;
253 short addr_lsb = tk->size_shift;
254 int ret = 0;
255
256 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
257 pfn, t->comm, t->pid);
258
259 if (flags & MF_ACTION_REQUIRED) {
260 if (t == current)
261 ret = force_sig_mceerr(BUS_MCEERR_AR,
262 (void __user *)tk->addr, addr_lsb);
263 else
264 /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
265 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
266 addr_lsb, t);
267 } else {
268 /*
269 * Don't use force here, it's convenient if the signal
270 * can be temporarily blocked.
271 * This could cause a loop when the user sets SIGBUS
272 * to SIG_IGN, but hopefully no one will do that?
273 */
274 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
275 addr_lsb, t); /* synchronous? */
276 }
277 if (ret < 0)
278 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
279 t->comm, t->pid, ret);
280 return ret;
281}
282
283/*
284 * Unknown page type encountered. Try to check whether it can turn PageLRU by
285 * lru_add_drain_all, or a free page by reclaiming slabs when possible.
286 */
287void shake_page(struct page *p, int access)
288{
289 if (PageHuge(p))
290 return;
291
292 if (!PageSlab(p)) {
293 lru_add_drain_all();
294 if (PageLRU(p) || is_free_buddy_page(p))
295 return;
296 }
297
298 /*
299 * Only call shrink_node_slabs here (which would also shrink
300 * other caches) if access is not potentially fatal.
301 */
302 if (access)
303 drop_slab_node(page_to_nid(p));
304}
305EXPORT_SYMBOL_GPL(shake_page);
306
307static unsigned long dev_pagemap_mapping_shift(struct page *page,
308 struct vm_area_struct *vma)
309{
310 unsigned long address = vma_address(page, vma);
311 pgd_t *pgd;
312 p4d_t *p4d;
313 pud_t *pud;
314 pmd_t *pmd;
315 pte_t *pte;
316
317 pgd = pgd_offset(vma->vm_mm, address);
318 if (!pgd_present(*pgd))
319 return 0;
320 p4d = p4d_offset(pgd, address);
321 if (!p4d_present(*p4d))
322 return 0;
323 pud = pud_offset(p4d, address);
324 if (!pud_present(*pud))
325 return 0;
326 if (pud_devmap(*pud))
327 return PUD_SHIFT;
328 pmd = pmd_offset(pud, address);
329 if (!pmd_present(*pmd))
330 return 0;
331 if (pmd_devmap(*pmd))
332 return PMD_SHIFT;
333 pte = pte_offset_map(pmd, address);
334 if (!pte_present(*pte))
335 return 0;
336 if (pte_devmap(*pte))
337 return PAGE_SHIFT;
338 return 0;
339}
340
341/*
342 * Failure handling: if we can't find or can't kill a process there's
343 * not much we can do. We just print a message and ignore otherwise.
344 */
345
346/*
347 * Schedule a process for later kill.
348 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
349 */
350static void add_to_kill(struct task_struct *tsk, struct page *p,
351 struct vm_area_struct *vma,
352 struct list_head *to_kill)
353{
354 struct to_kill *tk;
355
356 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
357 if (!tk) {
358 pr_err("Memory failure: Out of memory while machine check handling\n");
359 return;
360 }
361
362 tk->addr = page_address_in_vma(p, vma);
363 if (is_zone_device_page(p))
364 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
365 else
366 tk->size_shift = page_shift(compound_head(p));
367
368 /*
369 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
370 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
371 * so "tk->size_shift == 0" effectively checks no mapping on
372 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
373 * to a process' address space, it's possible not all N VMAs
374 * contain mappings for the page, but at least one VMA does.
375 * Only deliver SIGBUS with payload derived from the VMA that
376 * has a mapping for the page.
377 */
378 if (tk->addr == -EFAULT) {
379 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
380 page_to_pfn(p), tsk->comm);
381 } else if (tk->size_shift == 0) {
382 kfree(tk);
383 return;
384 }
385
386 get_task_struct(tsk);
387 tk->tsk = tsk;
388 list_add_tail(&tk->nd, to_kill);
389}
390
391/*
392 * Kill the processes that have been collected earlier.
393 *
394 * Only do anything when DOIT is set, otherwise just free the list
395 * (this is used for clean pages which do not need killing)
396 * Also when FAIL is set do a force kill because something went
397 * wrong earlier.
398 */
399static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
400 unsigned long pfn, int flags)
401{
402 struct to_kill *tk, *next;
403
404 list_for_each_entry_safe (tk, next, to_kill, nd) {
405 if (forcekill) {
406 /*
407 * In case something went wrong with munmapping
408 * make sure the process doesn't catch the
409 * signal and then access the memory. Just kill it.
410 */
411 if (fail || tk->addr == -EFAULT) {
412 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
413 pfn, tk->tsk->comm, tk->tsk->pid);
414 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
415 tk->tsk, PIDTYPE_PID);
416 }
417
418 /*
419 * In theory the process could have mapped
420 * something else on the address in-between. We could
421 * check for that, but we need to tell the
422 * process anyways.
423 */
424 else if (kill_proc(tk, pfn, flags) < 0)
425 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
426 pfn, tk->tsk->comm, tk->tsk->pid);
427 }
428 put_task_struct(tk->tsk);
429 kfree(tk);
430 }
431}
432
433/*
434 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
435 * on behalf of the thread group. Return task_struct of the (first found)
436 * dedicated thread if found, and return NULL otherwise.
437 *
438 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
439 * have to call rcu_read_lock/unlock() in this function.
440 */
441static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
442{
443 struct task_struct *t;
444
445 for_each_thread(tsk, t) {
446 if (t->flags & PF_MCE_PROCESS) {
447 if (t->flags & PF_MCE_EARLY)
448 return t;
449 } else {
450 if (sysctl_memory_failure_early_kill)
451 return t;
452 }
453 }
454 return NULL;
455}
456
457/*
458 * Determine whether a given process is "early kill" process which expects
459 * to be signaled when some page under the process is hwpoisoned.
460 * Return task_struct of the dedicated thread (main thread unless explicitly
461 * specified) if the process is "early kill" and otherwise returns NULL.
462 *
463 * Note that the above is true for Action Optional case. For Action Required
464 * case, it's only meaningful to the current thread which need to be signaled
465 * with SIGBUS, this error is Action Optional for other non current
466 * processes sharing the same error page,if the process is "early kill", the
467 * task_struct of the dedicated thread will also be returned.
468 */
469static struct task_struct *task_early_kill(struct task_struct *tsk,
470 int force_early)
471{
472 if (!tsk->mm)
473 return NULL;
474 /*
475 * Comparing ->mm here because current task might represent
476 * a subthread, while tsk always points to the main thread.
477 */
478 if (force_early && tsk->mm == current->mm)
479 return current;
480
481 return find_early_kill_thread(tsk);
482}
483
484/*
485 * Collect processes when the error hit an anonymous page.
486 */
487static void collect_procs_anon(struct page *page, struct list_head *to_kill,
488 int force_early)
489{
490 struct vm_area_struct *vma;
491 struct task_struct *tsk;
492 struct anon_vma *av;
493 pgoff_t pgoff;
494
495 av = page_lock_anon_vma_read(page);
496 if (av == NULL) /* Not actually mapped anymore */
497 return;
498
499 pgoff = page_to_pgoff(page);
500 read_lock(&tasklist_lock);
501 for_each_process (tsk) {
502 struct anon_vma_chain *vmac;
503 struct task_struct *t = task_early_kill(tsk, force_early);
504
505 if (!t)
506 continue;
507 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
508 pgoff, pgoff) {
509 vma = vmac->vma;
510 if (!page_mapped_in_vma(page, vma))
511 continue;
512 if (vma->vm_mm == t->mm)
513 add_to_kill(t, page, vma, to_kill);
514 }
515 }
516 read_unlock(&tasklist_lock);
517 page_unlock_anon_vma_read(av);
518}
519
520/*
521 * Collect processes when the error hit a file mapped page.
522 */
523static void collect_procs_file(struct page *page, struct list_head *to_kill,
524 int force_early)
525{
526 struct vm_area_struct *vma;
527 struct task_struct *tsk;
528 struct address_space *mapping = page->mapping;
529 pgoff_t pgoff;
530
531 i_mmap_lock_read(mapping);
532 read_lock(&tasklist_lock);
533 pgoff = page_to_pgoff(page);
534 for_each_process(tsk) {
535 struct task_struct *t = task_early_kill(tsk, force_early);
536
537 if (!t)
538 continue;
539 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
540 pgoff) {
541 /*
542 * Send early kill signal to tasks where a vma covers
543 * the page but the corrupted page is not necessarily
544 * mapped it in its pte.
545 * Assume applications who requested early kill want
546 * to be informed of all such data corruptions.
547 */
548 if (vma->vm_mm == t->mm)
549 add_to_kill(t, page, vma, to_kill);
550 }
551 }
552 read_unlock(&tasklist_lock);
553 i_mmap_unlock_read(mapping);
554}
555
556/*
557 * Collect the processes who have the corrupted page mapped to kill.
558 */
559static void collect_procs(struct page *page, struct list_head *tokill,
560 int force_early)
561{
562 if (!page->mapping)
563 return;
564
565 if (PageAnon(page))
566 collect_procs_anon(page, tokill, force_early);
567 else
568 collect_procs_file(page, tokill, force_early);
569}
570
571struct hwp_walk {
572 struct to_kill tk;
573 unsigned long pfn;
574 int flags;
575};
576
577static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
578{
579 tk->addr = addr;
580 tk->size_shift = shift;
581}
582
583static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
584 unsigned long poisoned_pfn, struct to_kill *tk)
585{
586 unsigned long pfn = 0;
587
588 if (pte_present(pte)) {
589 pfn = pte_pfn(pte);
590 } else {
591 swp_entry_t swp = pte_to_swp_entry(pte);
592
593 if (is_hwpoison_entry(swp))
594 pfn = hwpoison_entry_to_pfn(swp);
595 }
596
597 if (!pfn || pfn != poisoned_pfn)
598 return 0;
599
600 set_to_kill(tk, addr, shift);
601 return 1;
602}
603
604#ifdef CONFIG_TRANSPARENT_HUGEPAGE
605static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
606 struct hwp_walk *hwp)
607{
608 pmd_t pmd = *pmdp;
609 unsigned long pfn;
610 unsigned long hwpoison_vaddr;
611
612 if (!pmd_present(pmd))
613 return 0;
614 pfn = pmd_pfn(pmd);
615 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
616 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
617 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
618 return 1;
619 }
620 return 0;
621}
622#else
623static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
624 struct hwp_walk *hwp)
625{
626 return 0;
627}
628#endif
629
630static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
631 unsigned long end, struct mm_walk *walk)
632{
633 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
634 int ret = 0;
635 pte_t *ptep;
636 spinlock_t *ptl;
637
638 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
639 if (ptl) {
640 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
641 spin_unlock(ptl);
642 goto out;
643 }
644
645 if (pmd_trans_unstable(pmdp))
646 goto out;
647
648 ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, addr, &ptl);
649 for (; addr != end; ptep++, addr += PAGE_SIZE) {
650 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
651 hwp->pfn, &hwp->tk);
652 if (ret == 1)
653 break;
654 }
655 pte_unmap_unlock(ptep - 1, ptl);
656out:
657 cond_resched();
658 return ret;
659}
660
661#ifdef CONFIG_HUGETLB_PAGE
662static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
663 unsigned long addr, unsigned long end,
664 struct mm_walk *walk)
665{
666 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
667 pte_t pte = huge_ptep_get(ptep);
668 struct hstate *h = hstate_vma(walk->vma);
669
670 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
671 hwp->pfn, &hwp->tk);
672}
673#else
674#define hwpoison_hugetlb_range NULL
675#endif
676
677static struct mm_walk_ops hwp_walk_ops = {
678 .pmd_entry = hwpoison_pte_range,
679 .hugetlb_entry = hwpoison_hugetlb_range,
680};
681
682/*
683 * Sends SIGBUS to the current process with error info.
684 *
685 * This function is intended to handle "Action Required" MCEs on already
686 * hardware poisoned pages. They could happen, for example, when
687 * memory_failure() failed to unmap the error page at the first call, or
688 * when multiple local machine checks happened on different CPUs.
689 *
690 * MCE handler currently has no easy access to the error virtual address,
691 * so this function walks page table to find it. The returned virtual address
692 * is proper in most cases, but it could be wrong when the application
693 * process has multiple entries mapping the error page.
694 */
695static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
696 int flags)
697{
698 int ret;
699 struct hwp_walk priv = {
700 .pfn = pfn,
701 };
702 priv.tk.tsk = p;
703
704 mmap_read_lock(p->mm);
705 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
706 (void *)&priv);
707 if (ret == 1 && priv.tk.addr)
708 kill_proc(&priv.tk, pfn, flags);
709 mmap_read_unlock(p->mm);
710 return ret ? -EFAULT : -EHWPOISON;
711}
712
713static const char *action_name[] = {
714 [MF_IGNORED] = "Ignored",
715 [MF_FAILED] = "Failed",
716 [MF_DELAYED] = "Delayed",
717 [MF_RECOVERED] = "Recovered",
718};
719
720static const char * const action_page_types[] = {
721 [MF_MSG_KERNEL] = "reserved kernel page",
722 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
723 [MF_MSG_SLAB] = "kernel slab page",
724 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
725 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
726 [MF_MSG_HUGE] = "huge page",
727 [MF_MSG_FREE_HUGE] = "free huge page",
728 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
729 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
730 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
731 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
732 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
733 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
734 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
735 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
736 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
737 [MF_MSG_CLEAN_LRU] = "clean LRU page",
738 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
739 [MF_MSG_BUDDY] = "free buddy page",
740 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
741 [MF_MSG_DAX] = "dax page",
742 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
743 [MF_MSG_UNKNOWN] = "unknown page",
744};
745
746/*
747 * XXX: It is possible that a page is isolated from LRU cache,
748 * and then kept in swap cache or failed to remove from page cache.
749 * The page count will stop it from being freed by unpoison.
750 * Stress tests should be aware of this memory leak problem.
751 */
752static int delete_from_lru_cache(struct page *p)
753{
754 if (!isolate_lru_page(p)) {
755 /*
756 * Clear sensible page flags, so that the buddy system won't
757 * complain when the page is unpoison-and-freed.
758 */
759 ClearPageActive(p);
760 ClearPageUnevictable(p);
761
762 /*
763 * Poisoned page might never drop its ref count to 0 so we have
764 * to uncharge it manually from its memcg.
765 */
766 mem_cgroup_uncharge(p);
767
768 /*
769 * drop the page count elevated by isolate_lru_page()
770 */
771 put_page(p);
772 return 0;
773 }
774 return -EIO;
775}
776
777static int truncate_error_page(struct page *p, unsigned long pfn,
778 struct address_space *mapping)
779{
780 int ret = MF_FAILED;
781
782 if (mapping->a_ops->error_remove_page) {
783 int err = mapping->a_ops->error_remove_page(mapping, p);
784
785 if (err != 0) {
786 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
787 pfn, err);
788 } else if (page_has_private(p) &&
789 !try_to_release_page(p, GFP_NOIO)) {
790 pr_info("Memory failure: %#lx: failed to release buffers\n",
791 pfn);
792 } else {
793 ret = MF_RECOVERED;
794 }
795 } else {
796 /*
797 * If the file system doesn't support it just invalidate
798 * This fails on dirty or anything with private pages
799 */
800 if (invalidate_inode_page(p))
801 ret = MF_RECOVERED;
802 else
803 pr_info("Memory failure: %#lx: Failed to invalidate\n",
804 pfn);
805 }
806
807 return ret;
808}
809
810/*
811 * Error hit kernel page.
812 * Do nothing, try to be lucky and not touch this instead. For a few cases we
813 * could be more sophisticated.
814 */
815static int me_kernel(struct page *p, unsigned long pfn)
816{
817 unlock_page(p);
818 return MF_IGNORED;
819}
820
821/*
822 * Page in unknown state. Do nothing.
823 */
824static int me_unknown(struct page *p, unsigned long pfn)
825{
826 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
827 unlock_page(p);
828 return MF_FAILED;
829}
830
831/*
832 * Clean (or cleaned) page cache page.
833 */
834static int me_pagecache_clean(struct page *p, unsigned long pfn)
835{
836 int ret;
837 struct address_space *mapping;
838
839 delete_from_lru_cache(p);
840
841 /*
842 * For anonymous pages we're done the only reference left
843 * should be the one m_f() holds.
844 */
845 if (PageAnon(p)) {
846 ret = MF_RECOVERED;
847 goto out;
848 }
849
850 /*
851 * Now truncate the page in the page cache. This is really
852 * more like a "temporary hole punch"
853 * Don't do this for block devices when someone else
854 * has a reference, because it could be file system metadata
855 * and that's not safe to truncate.
856 */
857 mapping = page_mapping(p);
858 if (!mapping) {
859 /*
860 * Page has been teared down in the meanwhile
861 */
862 ret = MF_FAILED;
863 goto out;
864 }
865
866 /*
867 * Truncation is a bit tricky. Enable it per file system for now.
868 *
869 * Open: to take i_mutex or not for this? Right now we don't.
870 */
871 ret = truncate_error_page(p, pfn, mapping);
872out:
873 unlock_page(p);
874 return ret;
875}
876
877/*
878 * Dirty pagecache page
879 * Issues: when the error hit a hole page the error is not properly
880 * propagated.
881 */
882static int me_pagecache_dirty(struct page *p, unsigned long pfn)
883{
884 struct address_space *mapping = page_mapping(p);
885
886 SetPageError(p);
887 /* TBD: print more information about the file. */
888 if (mapping) {
889 /*
890 * IO error will be reported by write(), fsync(), etc.
891 * who check the mapping.
892 * This way the application knows that something went
893 * wrong with its dirty file data.
894 *
895 * There's one open issue:
896 *
897 * The EIO will be only reported on the next IO
898 * operation and then cleared through the IO map.
899 * Normally Linux has two mechanisms to pass IO error
900 * first through the AS_EIO flag in the address space
901 * and then through the PageError flag in the page.
902 * Since we drop pages on memory failure handling the
903 * only mechanism open to use is through AS_AIO.
904 *
905 * This has the disadvantage that it gets cleared on
906 * the first operation that returns an error, while
907 * the PageError bit is more sticky and only cleared
908 * when the page is reread or dropped. If an
909 * application assumes it will always get error on
910 * fsync, but does other operations on the fd before
911 * and the page is dropped between then the error
912 * will not be properly reported.
913 *
914 * This can already happen even without hwpoisoned
915 * pages: first on metadata IO errors (which only
916 * report through AS_EIO) or when the page is dropped
917 * at the wrong time.
918 *
919 * So right now we assume that the application DTRT on
920 * the first EIO, but we're not worse than other parts
921 * of the kernel.
922 */
923 mapping_set_error(mapping, -EIO);
924 }
925
926 return me_pagecache_clean(p, pfn);
927}
928
929/*
930 * Clean and dirty swap cache.
931 *
932 * Dirty swap cache page is tricky to handle. The page could live both in page
933 * cache and swap cache(ie. page is freshly swapped in). So it could be
934 * referenced concurrently by 2 types of PTEs:
935 * normal PTEs and swap PTEs. We try to handle them consistently by calling
936 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
937 * and then
938 * - clear dirty bit to prevent IO
939 * - remove from LRU
940 * - but keep in the swap cache, so that when we return to it on
941 * a later page fault, we know the application is accessing
942 * corrupted data and shall be killed (we installed simple
943 * interception code in do_swap_page to catch it).
944 *
945 * Clean swap cache pages can be directly isolated. A later page fault will
946 * bring in the known good data from disk.
947 */
948static int me_swapcache_dirty(struct page *p, unsigned long pfn)
949{
950 int ret;
951
952 ClearPageDirty(p);
953 /* Trigger EIO in shmem: */
954 ClearPageUptodate(p);
955
956 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
957 unlock_page(p);
958 return ret;
959}
960
961static int me_swapcache_clean(struct page *p, unsigned long pfn)
962{
963 int ret;
964
965 delete_from_swap_cache(p);
966
967 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
968 unlock_page(p);
969 return ret;
970}
971
972/*
973 * Huge pages. Needs work.
974 * Issues:
975 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
976 * To narrow down kill region to one page, we need to break up pmd.
977 */
978static int me_huge_page(struct page *p, unsigned long pfn)
979{
980 int res;
981 struct page *hpage = compound_head(p);
982 struct address_space *mapping;
983
984 if (!PageHuge(hpage))
985 return MF_DELAYED;
986
987 mapping = page_mapping(hpage);
988 if (mapping) {
989 res = truncate_error_page(hpage, pfn, mapping);
990 unlock_page(hpage);
991 } else {
992 res = MF_FAILED;
993 unlock_page(hpage);
994 /*
995 * migration entry prevents later access on error anonymous
996 * hugepage, so we can free and dissolve it into buddy to
997 * save healthy subpages.
998 */
999 if (PageAnon(hpage))
1000 put_page(hpage);
1001 if (__page_handle_poison(p)) {
1002 page_ref_inc(p);
1003 res = MF_RECOVERED;
1004 }
1005 }
1006
1007 return res;
1008}
1009
1010/*
1011 * Various page states we can handle.
1012 *
1013 * A page state is defined by its current page->flags bits.
1014 * The table matches them in order and calls the right handler.
1015 *
1016 * This is quite tricky because we can access page at any time
1017 * in its live cycle, so all accesses have to be extremely careful.
1018 *
1019 * This is not complete. More states could be added.
1020 * For any missing state don't attempt recovery.
1021 */
1022
1023#define dirty (1UL << PG_dirty)
1024#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1025#define unevict (1UL << PG_unevictable)
1026#define mlock (1UL << PG_mlocked)
1027#define lru (1UL << PG_lru)
1028#define head (1UL << PG_head)
1029#define slab (1UL << PG_slab)
1030#define reserved (1UL << PG_reserved)
1031
1032static struct page_state {
1033 unsigned long mask;
1034 unsigned long res;
1035 enum mf_action_page_type type;
1036
1037 /* Callback ->action() has to unlock the relevant page inside it. */
1038 int (*action)(struct page *p, unsigned long pfn);
1039} error_states[] = {
1040 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1041 /*
1042 * free pages are specially detected outside this table:
1043 * PG_buddy pages only make a small fraction of all free pages.
1044 */
1045
1046 /*
1047 * Could in theory check if slab page is free or if we can drop
1048 * currently unused objects without touching them. But just
1049 * treat it as standard kernel for now.
1050 */
1051 { slab, slab, MF_MSG_SLAB, me_kernel },
1052
1053 { head, head, MF_MSG_HUGE, me_huge_page },
1054
1055 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1056 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1057
1058 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1059 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1060
1061 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1062 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1063
1064 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1065 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1066
1067 /*
1068 * Catchall entry: must be at end.
1069 */
1070 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1071};
1072
1073#undef dirty
1074#undef sc
1075#undef unevict
1076#undef mlock
1077#undef lru
1078#undef head
1079#undef slab
1080#undef reserved
1081
1082/*
1083 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1084 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1085 */
1086static void action_result(unsigned long pfn, enum mf_action_page_type type,
1087 enum mf_result result)
1088{
1089 trace_memory_failure_event(pfn, type, result);
1090
1091 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1092 pfn, action_page_types[type], action_name[result]);
1093}
1094
1095static int page_action(struct page_state *ps, struct page *p,
1096 unsigned long pfn)
1097{
1098 int result;
1099 int count;
1100
1101 /* page p should be unlocked after returning from ps->action(). */
1102 result = ps->action(p, pfn);
1103
1104 count = page_count(p) - 1;
1105 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
1106 count--;
1107 if (count > 0) {
1108 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
1109 pfn, action_page_types[ps->type], count);
1110 result = MF_FAILED;
1111 }
1112 action_result(pfn, ps->type, result);
1113
1114 /* Could do more checks here if page looks ok */
1115 /*
1116 * Could adjust zone counters here to correct for the missing page.
1117 */
1118
1119 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1120}
1121
1122/*
1123 * Return true if a page type of a given page is supported by hwpoison
1124 * mechanism (while handling could fail), otherwise false. This function
1125 * does not return true for hugetlb or device memory pages, so it's assumed
1126 * to be called only in the context where we never have such pages.
1127 */
1128static inline bool HWPoisonHandlable(struct page *page)
1129{
1130 return PageLRU(page) || __PageMovable(page) || is_free_buddy_page(page);
1131}
1132
1133static int __get_hwpoison_page(struct page *page)
1134{
1135 struct page *head = compound_head(page);
1136 int ret = 0;
1137 bool hugetlb = false;
1138
1139 ret = get_hwpoison_huge_page(head, &hugetlb);
1140 if (hugetlb)
1141 return ret;
1142
1143 /*
1144 * This check prevents from calling get_hwpoison_unless_zero()
1145 * for any unsupported type of page in order to reduce the risk of
1146 * unexpected races caused by taking a page refcount.
1147 */
1148 if (!HWPoisonHandlable(head))
1149 return -EBUSY;
1150
1151 if (PageTransHuge(head)) {
1152 /*
1153 * Non anonymous thp exists only in allocation/free time. We
1154 * can't handle such a case correctly, so let's give it up.
1155 * This should be better than triggering BUG_ON when kernel
1156 * tries to touch the "partially handled" page.
1157 */
1158 if (!PageAnon(head)) {
1159 pr_err("Memory failure: %#lx: non anonymous thp\n",
1160 page_to_pfn(page));
1161 return 0;
1162 }
1163 }
1164
1165 if (get_page_unless_zero(head)) {
1166 if (head == compound_head(page))
1167 return 1;
1168
1169 pr_info("Memory failure: %#lx cannot catch tail\n",
1170 page_to_pfn(page));
1171 put_page(head);
1172 }
1173
1174 return 0;
1175}
1176
1177static int get_any_page(struct page *p, unsigned long flags)
1178{
1179 int ret = 0, pass = 0;
1180 bool count_increased = false;
1181
1182 if (flags & MF_COUNT_INCREASED)
1183 count_increased = true;
1184
1185try_again:
1186 if (!count_increased) {
1187 ret = __get_hwpoison_page(p);
1188 if (!ret) {
1189 if (page_count(p)) {
1190 /* We raced with an allocation, retry. */
1191 if (pass++ < 3)
1192 goto try_again;
1193 ret = -EBUSY;
1194 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1195 /* We raced with put_page, retry. */
1196 if (pass++ < 3)
1197 goto try_again;
1198 ret = -EIO;
1199 }
1200 goto out;
1201 } else if (ret == -EBUSY) {
1202 /*
1203 * We raced with (possibly temporary) unhandlable
1204 * page, retry.
1205 */
1206 if (pass++ < 3) {
1207 shake_page(p, 1);
1208 goto try_again;
1209 }
1210 ret = -EIO;
1211 goto out;
1212 }
1213 }
1214
1215 if (PageHuge(p) || HWPoisonHandlable(p)) {
1216 ret = 1;
1217 } else {
1218 /*
1219 * A page we cannot handle. Check whether we can turn
1220 * it into something we can handle.
1221 */
1222 if (pass++ < 3) {
1223 put_page(p);
1224 shake_page(p, 1);
1225 count_increased = false;
1226 goto try_again;
1227 }
1228 put_page(p);
1229 ret = -EIO;
1230 }
1231out:
1232 return ret;
1233}
1234
1235/**
1236 * get_hwpoison_page() - Get refcount for memory error handling
1237 * @p: Raw error page (hit by memory error)
1238 * @flags: Flags controlling behavior of error handling
1239 *
1240 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1241 * error on it, after checking that the error page is in a well-defined state
1242 * (defined as a page-type we can successfully handle the memor error on it,
1243 * such as LRU page and hugetlb page).
1244 *
1245 * Memory error handling could be triggered at any time on any type of page,
1246 * so it's prone to race with typical memory management lifecycle (like
1247 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1248 * extra care for the error page's state (as done in __get_hwpoison_page()),
1249 * and has some retry logic in get_any_page().
1250 *
1251 * Return: 0 on failure,
1252 * 1 on success for in-use pages in a well-defined state,
1253 * -EIO for pages on which we can not handle memory errors,
1254 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1255 * operations like allocation and free.
1256 */
1257static int get_hwpoison_page(struct page *p, unsigned long flags)
1258{
1259 int ret;
1260
1261 zone_pcp_disable(page_zone(p));
1262 ret = get_any_page(p, flags);
1263 zone_pcp_enable(page_zone(p));
1264
1265 return ret;
1266}
1267
1268/*
1269 * Do all that is necessary to remove user space mappings. Unmap
1270 * the pages and send SIGBUS to the processes if the data was dirty.
1271 */
1272static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1273 int flags, struct page **hpagep)
1274{
1275 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1276 struct address_space *mapping;
1277 LIST_HEAD(tokill);
1278 bool unmap_success;
1279 int kill = 1, forcekill;
1280 struct page *hpage = *hpagep;
1281 bool mlocked = PageMlocked(hpage);
1282
1283 /*
1284 * Here we are interested only in user-mapped pages, so skip any
1285 * other types of pages.
1286 */
1287 if (PageReserved(p) || PageSlab(p))
1288 return true;
1289 if (!(PageLRU(hpage) || PageHuge(p)))
1290 return true;
1291
1292 /*
1293 * This check implies we don't kill processes if their pages
1294 * are in the swap cache early. Those are always late kills.
1295 */
1296 if (!page_mapped(hpage))
1297 return true;
1298
1299 if (PageKsm(p)) {
1300 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1301 return false;
1302 }
1303
1304 if (PageSwapCache(p)) {
1305 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1306 pfn);
1307 ttu |= TTU_IGNORE_HWPOISON;
1308 }
1309
1310 /*
1311 * Propagate the dirty bit from PTEs to struct page first, because we
1312 * need this to decide if we should kill or just drop the page.
1313 * XXX: the dirty test could be racy: set_page_dirty() may not always
1314 * be called inside page lock (it's recommended but not enforced).
1315 */
1316 mapping = page_mapping(hpage);
1317 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1318 mapping_can_writeback(mapping)) {
1319 if (page_mkclean(hpage)) {
1320 SetPageDirty(hpage);
1321 } else {
1322 kill = 0;
1323 ttu |= TTU_IGNORE_HWPOISON;
1324 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1325 pfn);
1326 }
1327 }
1328
1329 /*
1330 * First collect all the processes that have the page
1331 * mapped in dirty form. This has to be done before try_to_unmap,
1332 * because ttu takes the rmap data structures down.
1333 *
1334 * Error handling: We ignore errors here because
1335 * there's nothing that can be done.
1336 */
1337 if (kill)
1338 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1339
1340 if (!PageHuge(hpage)) {
1341 try_to_unmap(hpage, ttu);
1342 } else {
1343 if (!PageAnon(hpage)) {
1344 /*
1345 * For hugetlb pages in shared mappings, try_to_unmap
1346 * could potentially call huge_pmd_unshare. Because of
1347 * this, take semaphore in write mode here and set
1348 * TTU_RMAP_LOCKED to indicate we have taken the lock
1349 * at this higher level.
1350 */
1351 mapping = hugetlb_page_mapping_lock_write(hpage);
1352 if (mapping) {
1353 try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1354 i_mmap_unlock_write(mapping);
1355 } else
1356 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1357 } else {
1358 try_to_unmap(hpage, ttu);
1359 }
1360 }
1361
1362 unmap_success = !page_mapped(hpage);
1363 if (!unmap_success)
1364 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1365 pfn, page_mapcount(hpage));
1366
1367 /*
1368 * try_to_unmap() might put mlocked page in lru cache, so call
1369 * shake_page() again to ensure that it's flushed.
1370 */
1371 if (mlocked)
1372 shake_page(hpage, 0);
1373
1374 /*
1375 * Now that the dirty bit has been propagated to the
1376 * struct page and all unmaps done we can decide if
1377 * killing is needed or not. Only kill when the page
1378 * was dirty or the process is not restartable,
1379 * otherwise the tokill list is merely
1380 * freed. When there was a problem unmapping earlier
1381 * use a more force-full uncatchable kill to prevent
1382 * any accesses to the poisoned memory.
1383 */
1384 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1385 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1386
1387 return unmap_success;
1388}
1389
1390static int identify_page_state(unsigned long pfn, struct page *p,
1391 unsigned long page_flags)
1392{
1393 struct page_state *ps;
1394
1395 /*
1396 * The first check uses the current page flags which may not have any
1397 * relevant information. The second check with the saved page flags is
1398 * carried out only if the first check can't determine the page status.
1399 */
1400 for (ps = error_states;; ps++)
1401 if ((p->flags & ps->mask) == ps->res)
1402 break;
1403
1404 page_flags |= (p->flags & (1UL << PG_dirty));
1405
1406 if (!ps->mask)
1407 for (ps = error_states;; ps++)
1408 if ((page_flags & ps->mask) == ps->res)
1409 break;
1410 return page_action(ps, p, pfn);
1411}
1412
1413static int try_to_split_thp_page(struct page *page, const char *msg)
1414{
1415 lock_page(page);
1416 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1417 unsigned long pfn = page_to_pfn(page);
1418
1419 unlock_page(page);
1420 if (!PageAnon(page))
1421 pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1422 else
1423 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1424 put_page(page);
1425 return -EBUSY;
1426 }
1427 unlock_page(page);
1428
1429 return 0;
1430}
1431
1432static int memory_failure_hugetlb(unsigned long pfn, int flags)
1433{
1434 struct page *p = pfn_to_page(pfn);
1435 struct page *head = compound_head(p);
1436 int res;
1437 unsigned long page_flags;
1438
1439 if (TestSetPageHWPoison(head)) {
1440 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1441 pfn);
1442 res = -EHWPOISON;
1443 if (flags & MF_ACTION_REQUIRED)
1444 res = kill_accessing_process(current, page_to_pfn(head), flags);
1445 return res;
1446 }
1447
1448 num_poisoned_pages_inc();
1449
1450 if (!(flags & MF_COUNT_INCREASED)) {
1451 res = get_hwpoison_page(p, flags);
1452 if (!res) {
1453 /*
1454 * Check "filter hit" and "race with other subpage."
1455 */
1456 lock_page(head);
1457 if (PageHWPoison(head)) {
1458 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1459 || (p != head && TestSetPageHWPoison(head))) {
1460 num_poisoned_pages_dec();
1461 unlock_page(head);
1462 return 0;
1463 }
1464 }
1465 unlock_page(head);
1466 res = MF_FAILED;
1467 if (__page_handle_poison(p)) {
1468 page_ref_inc(p);
1469 res = MF_RECOVERED;
1470 }
1471 action_result(pfn, MF_MSG_FREE_HUGE, res);
1472 return res == MF_RECOVERED ? 0 : -EBUSY;
1473 } else if (res < 0) {
1474 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1475 return -EBUSY;
1476 }
1477 }
1478
1479 lock_page(head);
1480 page_flags = head->flags;
1481
1482 if (!PageHWPoison(head)) {
1483 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1484 num_poisoned_pages_dec();
1485 unlock_page(head);
1486 put_page(head);
1487 return 0;
1488 }
1489
1490 /*
1491 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1492 * simply disable it. In order to make it work properly, we need
1493 * make sure that:
1494 * - conversion of a pud that maps an error hugetlb into hwpoison
1495 * entry properly works, and
1496 * - other mm code walking over page table is aware of pud-aligned
1497 * hwpoison entries.
1498 */
1499 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1500 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1501 res = -EBUSY;
1502 goto out;
1503 }
1504
1505 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1506 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1507 res = -EBUSY;
1508 goto out;
1509 }
1510
1511 return identify_page_state(pfn, p, page_flags);
1512out:
1513 unlock_page(head);
1514 return res;
1515}
1516
1517static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1518 struct dev_pagemap *pgmap)
1519{
1520 struct page *page = pfn_to_page(pfn);
1521 const bool unmap_success = true;
1522 unsigned long size = 0;
1523 struct to_kill *tk;
1524 LIST_HEAD(tokill);
1525 int rc = -EBUSY;
1526 loff_t start;
1527 dax_entry_t cookie;
1528
1529 if (flags & MF_COUNT_INCREASED)
1530 /*
1531 * Drop the extra refcount in case we come from madvise().
1532 */
1533 put_page(page);
1534
1535 /* device metadata space is not recoverable */
1536 if (!pgmap_pfn_valid(pgmap, pfn)) {
1537 rc = -ENXIO;
1538 goto out;
1539 }
1540
1541 /*
1542 * Prevent the inode from being freed while we are interrogating
1543 * the address_space, typically this would be handled by
1544 * lock_page(), but dax pages do not use the page lock. This
1545 * also prevents changes to the mapping of this pfn until
1546 * poison signaling is complete.
1547 */
1548 cookie = dax_lock_page(page);
1549 if (!cookie)
1550 goto out;
1551
1552 if (hwpoison_filter(page)) {
1553 rc = 0;
1554 goto unlock;
1555 }
1556
1557 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1558 /*
1559 * TODO: Handle HMM pages which may need coordination
1560 * with device-side memory.
1561 */
1562 goto unlock;
1563 }
1564
1565 /*
1566 * Use this flag as an indication that the dax page has been
1567 * remapped UC to prevent speculative consumption of poison.
1568 */
1569 SetPageHWPoison(page);
1570
1571 /*
1572 * Unlike System-RAM there is no possibility to swap in a
1573 * different physical page at a given virtual address, so all
1574 * userspace consumption of ZONE_DEVICE memory necessitates
1575 * SIGBUS (i.e. MF_MUST_KILL)
1576 */
1577 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1578 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1579
1580 list_for_each_entry(tk, &tokill, nd)
1581 if (tk->size_shift)
1582 size = max(size, 1UL << tk->size_shift);
1583 if (size) {
1584 /*
1585 * Unmap the largest mapping to avoid breaking up
1586 * device-dax mappings which are constant size. The
1587 * actual size of the mapping being torn down is
1588 * communicated in siginfo, see kill_proc()
1589 */
1590 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1591 unmap_mapping_range(page->mapping, start, size, 0);
1592 }
1593 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1594 rc = 0;
1595unlock:
1596 dax_unlock_page(page, cookie);
1597out:
1598 /* drop pgmap ref acquired in caller */
1599 put_dev_pagemap(pgmap);
1600 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1601 return rc;
1602}
1603
1604/**
1605 * memory_failure - Handle memory failure of a page.
1606 * @pfn: Page Number of the corrupted page
1607 * @flags: fine tune action taken
1608 *
1609 * This function is called by the low level machine check code
1610 * of an architecture when it detects hardware memory corruption
1611 * of a page. It tries its best to recover, which includes
1612 * dropping pages, killing processes etc.
1613 *
1614 * The function is primarily of use for corruptions that
1615 * happen outside the current execution context (e.g. when
1616 * detected by a background scrubber)
1617 *
1618 * Must run in process context (e.g. a work queue) with interrupts
1619 * enabled and no spinlocks hold.
1620 */
1621int memory_failure(unsigned long pfn, int flags)
1622{
1623 struct page *p;
1624 struct page *hpage;
1625 struct page *orig_head;
1626 struct dev_pagemap *pgmap;
1627 int res = 0;
1628 unsigned long page_flags;
1629 bool retry = true;
1630 static DEFINE_MUTEX(mf_mutex);
1631
1632 if (!sysctl_memory_failure_recovery)
1633 panic("Memory failure on page %lx", pfn);
1634
1635 p = pfn_to_online_page(pfn);
1636 if (!p) {
1637 if (pfn_valid(pfn)) {
1638 pgmap = get_dev_pagemap(pfn, NULL);
1639 if (pgmap)
1640 return memory_failure_dev_pagemap(pfn, flags,
1641 pgmap);
1642 }
1643 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1644 pfn);
1645 return -ENXIO;
1646 }
1647
1648 mutex_lock(&mf_mutex);
1649
1650try_again:
1651 if (PageHuge(p)) {
1652 res = memory_failure_hugetlb(pfn, flags);
1653 goto unlock_mutex;
1654 }
1655
1656 if (TestSetPageHWPoison(p)) {
1657 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1658 pfn);
1659 res = -EHWPOISON;
1660 if (flags & MF_ACTION_REQUIRED)
1661 res = kill_accessing_process(current, pfn, flags);
1662 goto unlock_mutex;
1663 }
1664
1665 orig_head = hpage = compound_head(p);
1666 num_poisoned_pages_inc();
1667
1668 /*
1669 * We need/can do nothing about count=0 pages.
1670 * 1) it's a free page, and therefore in safe hand:
1671 * prep_new_page() will be the gate keeper.
1672 * 2) it's part of a non-compound high order page.
1673 * Implies some kernel user: cannot stop them from
1674 * R/W the page; let's pray that the page has been
1675 * used and will be freed some time later.
1676 * In fact it's dangerous to directly bump up page count from 0,
1677 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1678 */
1679 if (!(flags & MF_COUNT_INCREASED)) {
1680 res = get_hwpoison_page(p, flags);
1681 if (!res) {
1682 if (is_free_buddy_page(p)) {
1683 if (take_page_off_buddy(p)) {
1684 page_ref_inc(p);
1685 res = MF_RECOVERED;
1686 } else {
1687 /* We lost the race, try again */
1688 if (retry) {
1689 ClearPageHWPoison(p);
1690 num_poisoned_pages_dec();
1691 retry = false;
1692 goto try_again;
1693 }
1694 res = MF_FAILED;
1695 }
1696 action_result(pfn, MF_MSG_BUDDY, res);
1697 res = res == MF_RECOVERED ? 0 : -EBUSY;
1698 } else {
1699 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1700 res = -EBUSY;
1701 }
1702 goto unlock_mutex;
1703 } else if (res < 0) {
1704 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1705 res = -EBUSY;
1706 goto unlock_mutex;
1707 }
1708 }
1709
1710 if (PageTransHuge(hpage)) {
1711 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1712 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1713 res = -EBUSY;
1714 goto unlock_mutex;
1715 }
1716 VM_BUG_ON_PAGE(!page_count(p), p);
1717 }
1718
1719 /*
1720 * We ignore non-LRU pages for good reasons.
1721 * - PG_locked is only well defined for LRU pages and a few others
1722 * - to avoid races with __SetPageLocked()
1723 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1724 * The check (unnecessarily) ignores LRU pages being isolated and
1725 * walked by the page reclaim code, however that's not a big loss.
1726 */
1727 shake_page(p, 0);
1728
1729 lock_page(p);
1730
1731 /*
1732 * The page could have changed compound pages during the locking.
1733 * If this happens just bail out.
1734 */
1735 if (PageCompound(p) && compound_head(p) != orig_head) {
1736 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1737 res = -EBUSY;
1738 goto unlock_page;
1739 }
1740
1741 /*
1742 * We use page flags to determine what action should be taken, but
1743 * the flags can be modified by the error containment action. One
1744 * example is an mlocked page, where PG_mlocked is cleared by
1745 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1746 * correctly, we save a copy of the page flags at this time.
1747 */
1748 page_flags = p->flags;
1749
1750 /*
1751 * unpoison always clear PG_hwpoison inside page lock
1752 */
1753 if (!PageHWPoison(p)) {
1754 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1755 num_poisoned_pages_dec();
1756 unlock_page(p);
1757 put_page(p);
1758 goto unlock_mutex;
1759 }
1760 if (hwpoison_filter(p)) {
1761 if (TestClearPageHWPoison(p))
1762 num_poisoned_pages_dec();
1763 unlock_page(p);
1764 put_page(p);
1765 goto unlock_mutex;
1766 }
1767
1768 /*
1769 * __munlock_pagevec may clear a writeback page's LRU flag without
1770 * page_lock. We need wait writeback completion for this page or it
1771 * may trigger vfs BUG while evict inode.
1772 */
1773 if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1774 goto identify_page_state;
1775
1776 /*
1777 * It's very difficult to mess with pages currently under IO
1778 * and in many cases impossible, so we just avoid it here.
1779 */
1780 wait_on_page_writeback(p);
1781
1782 /*
1783 * Now take care of user space mappings.
1784 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1785 */
1786 if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1787 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1788 res = -EBUSY;
1789 goto unlock_page;
1790 }
1791
1792 /*
1793 * Torn down by someone else?
1794 */
1795 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1796 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1797 res = -EBUSY;
1798 goto unlock_page;
1799 }
1800
1801identify_page_state:
1802 res = identify_page_state(pfn, p, page_flags);
1803 mutex_unlock(&mf_mutex);
1804 return res;
1805unlock_page:
1806 unlock_page(p);
1807unlock_mutex:
1808 mutex_unlock(&mf_mutex);
1809 return res;
1810}
1811EXPORT_SYMBOL_GPL(memory_failure);
1812
1813#define MEMORY_FAILURE_FIFO_ORDER 4
1814#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1815
1816struct memory_failure_entry {
1817 unsigned long pfn;
1818 int flags;
1819};
1820
1821struct memory_failure_cpu {
1822 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1823 MEMORY_FAILURE_FIFO_SIZE);
1824 spinlock_t lock;
1825 struct work_struct work;
1826};
1827
1828static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1829
1830/**
1831 * memory_failure_queue - Schedule handling memory failure of a page.
1832 * @pfn: Page Number of the corrupted page
1833 * @flags: Flags for memory failure handling
1834 *
1835 * This function is called by the low level hardware error handler
1836 * when it detects hardware memory corruption of a page. It schedules
1837 * the recovering of error page, including dropping pages, killing
1838 * processes etc.
1839 *
1840 * The function is primarily of use for corruptions that
1841 * happen outside the current execution context (e.g. when
1842 * detected by a background scrubber)
1843 *
1844 * Can run in IRQ context.
1845 */
1846void memory_failure_queue(unsigned long pfn, int flags)
1847{
1848 struct memory_failure_cpu *mf_cpu;
1849 unsigned long proc_flags;
1850 struct memory_failure_entry entry = {
1851 .pfn = pfn,
1852 .flags = flags,
1853 };
1854
1855 mf_cpu = &get_cpu_var(memory_failure_cpu);
1856 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1857 if (kfifo_put(&mf_cpu->fifo, entry))
1858 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1859 else
1860 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1861 pfn);
1862 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1863 put_cpu_var(memory_failure_cpu);
1864}
1865EXPORT_SYMBOL_GPL(memory_failure_queue);
1866
1867static void memory_failure_work_func(struct work_struct *work)
1868{
1869 struct memory_failure_cpu *mf_cpu;
1870 struct memory_failure_entry entry = { 0, };
1871 unsigned long proc_flags;
1872 int gotten;
1873
1874 mf_cpu = container_of(work, struct memory_failure_cpu, work);
1875 for (;;) {
1876 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1877 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1878 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1879 if (!gotten)
1880 break;
1881 if (entry.flags & MF_SOFT_OFFLINE)
1882 soft_offline_page(entry.pfn, entry.flags);
1883 else
1884 memory_failure(entry.pfn, entry.flags);
1885 }
1886}
1887
1888/*
1889 * Process memory_failure work queued on the specified CPU.
1890 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1891 */
1892void memory_failure_queue_kick(int cpu)
1893{
1894 struct memory_failure_cpu *mf_cpu;
1895
1896 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1897 cancel_work_sync(&mf_cpu->work);
1898 memory_failure_work_func(&mf_cpu->work);
1899}
1900
1901static int __init memory_failure_init(void)
1902{
1903 struct memory_failure_cpu *mf_cpu;
1904 int cpu;
1905
1906 for_each_possible_cpu(cpu) {
1907 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1908 spin_lock_init(&mf_cpu->lock);
1909 INIT_KFIFO(mf_cpu->fifo);
1910 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1911 }
1912
1913 return 0;
1914}
1915core_initcall(memory_failure_init);
1916
1917#define unpoison_pr_info(fmt, pfn, rs) \
1918({ \
1919 if (__ratelimit(rs)) \
1920 pr_info(fmt, pfn); \
1921})
1922
1923/**
1924 * unpoison_memory - Unpoison a previously poisoned page
1925 * @pfn: Page number of the to be unpoisoned page
1926 *
1927 * Software-unpoison a page that has been poisoned by
1928 * memory_failure() earlier.
1929 *
1930 * This is only done on the software-level, so it only works
1931 * for linux injected failures, not real hardware failures
1932 *
1933 * Returns 0 for success, otherwise -errno.
1934 */
1935int unpoison_memory(unsigned long pfn)
1936{
1937 struct page *page;
1938 struct page *p;
1939 int freeit = 0;
1940 unsigned long flags = 0;
1941 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1942 DEFAULT_RATELIMIT_BURST);
1943
1944 if (!pfn_valid(pfn))
1945 return -ENXIO;
1946
1947 p = pfn_to_page(pfn);
1948 page = compound_head(p);
1949
1950 if (!PageHWPoison(p)) {
1951 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1952 pfn, &unpoison_rs);
1953 return 0;
1954 }
1955
1956 if (page_count(page) > 1) {
1957 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1958 pfn, &unpoison_rs);
1959 return 0;
1960 }
1961
1962 if (page_mapped(page)) {
1963 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1964 pfn, &unpoison_rs);
1965 return 0;
1966 }
1967
1968 if (page_mapping(page)) {
1969 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1970 pfn, &unpoison_rs);
1971 return 0;
1972 }
1973
1974 /*
1975 * unpoison_memory() can encounter thp only when the thp is being
1976 * worked by memory_failure() and the page lock is not held yet.
1977 * In such case, we yield to memory_failure() and make unpoison fail.
1978 */
1979 if (!PageHuge(page) && PageTransHuge(page)) {
1980 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1981 pfn, &unpoison_rs);
1982 return 0;
1983 }
1984
1985 if (!get_hwpoison_page(p, flags)) {
1986 if (TestClearPageHWPoison(p))
1987 num_poisoned_pages_dec();
1988 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1989 pfn, &unpoison_rs);
1990 return 0;
1991 }
1992
1993 lock_page(page);
1994 /*
1995 * This test is racy because PG_hwpoison is set outside of page lock.
1996 * That's acceptable because that won't trigger kernel panic. Instead,
1997 * the PG_hwpoison page will be caught and isolated on the entrance to
1998 * the free buddy page pool.
1999 */
2000 if (TestClearPageHWPoison(page)) {
2001 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2002 pfn, &unpoison_rs);
2003 num_poisoned_pages_dec();
2004 freeit = 1;
2005 }
2006 unlock_page(page);
2007
2008 put_page(page);
2009 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
2010 put_page(page);
2011
2012 return 0;
2013}
2014EXPORT_SYMBOL(unpoison_memory);
2015
2016static bool isolate_page(struct page *page, struct list_head *pagelist)
2017{
2018 bool isolated = false;
2019 bool lru = PageLRU(page);
2020
2021 if (PageHuge(page)) {
2022 isolated = isolate_huge_page(page, pagelist);
2023 } else {
2024 if (lru)
2025 isolated = !isolate_lru_page(page);
2026 else
2027 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2028
2029 if (isolated)
2030 list_add(&page->lru, pagelist);
2031 }
2032
2033 if (isolated && lru)
2034 inc_node_page_state(page, NR_ISOLATED_ANON +
2035 page_is_file_lru(page));
2036
2037 /*
2038 * If we succeed to isolate the page, we grabbed another refcount on
2039 * the page, so we can safely drop the one we got from get_any_pages().
2040 * If we failed to isolate the page, it means that we cannot go further
2041 * and we will return an error, so drop the reference we got from
2042 * get_any_pages() as well.
2043 */
2044 put_page(page);
2045 return isolated;
2046}
2047
2048/*
2049 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2050 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2051 * If the page is mapped, it migrates the contents over.
2052 */
2053static int __soft_offline_page(struct page *page)
2054{
2055 int ret = 0;
2056 unsigned long pfn = page_to_pfn(page);
2057 struct page *hpage = compound_head(page);
2058 char const *msg_page[] = {"page", "hugepage"};
2059 bool huge = PageHuge(page);
2060 LIST_HEAD(pagelist);
2061 struct migration_target_control mtc = {
2062 .nid = NUMA_NO_NODE,
2063 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2064 };
2065
2066 /*
2067 * Check PageHWPoison again inside page lock because PageHWPoison
2068 * is set by memory_failure() outside page lock. Note that
2069 * memory_failure() also double-checks PageHWPoison inside page lock,
2070 * so there's no race between soft_offline_page() and memory_failure().
2071 */
2072 lock_page(page);
2073 if (!PageHuge(page))
2074 wait_on_page_writeback(page);
2075 if (PageHWPoison(page)) {
2076 unlock_page(page);
2077 put_page(page);
2078 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2079 return 0;
2080 }
2081
2082 if (!PageHuge(page))
2083 /*
2084 * Try to invalidate first. This should work for
2085 * non dirty unmapped page cache pages.
2086 */
2087 ret = invalidate_inode_page(page);
2088 unlock_page(page);
2089
2090 /*
2091 * RED-PEN would be better to keep it isolated here, but we
2092 * would need to fix isolation locking first.
2093 */
2094 if (ret) {
2095 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2096 page_handle_poison(page, false, true);
2097 return 0;
2098 }
2099
2100 if (isolate_page(hpage, &pagelist)) {
2101 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2102 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
2103 if (!ret) {
2104 bool release = !huge;
2105
2106 if (!page_handle_poison(page, huge, release))
2107 ret = -EBUSY;
2108 } else {
2109 if (!list_empty(&pagelist))
2110 putback_movable_pages(&pagelist);
2111
2112 pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
2113 pfn, msg_page[huge], ret, page->flags, &page->flags);
2114 if (ret > 0)
2115 ret = -EBUSY;
2116 }
2117 } else {
2118 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
2119 pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
2120 ret = -EBUSY;
2121 }
2122 return ret;
2123}
2124
2125static int soft_offline_in_use_page(struct page *page)
2126{
2127 struct page *hpage = compound_head(page);
2128
2129 if (!PageHuge(page) && PageTransHuge(hpage))
2130 if (try_to_split_thp_page(page, "soft offline") < 0)
2131 return -EBUSY;
2132 return __soft_offline_page(page);
2133}
2134
2135static int soft_offline_free_page(struct page *page)
2136{
2137 int rc = 0;
2138
2139 if (!page_handle_poison(page, true, false))
2140 rc = -EBUSY;
2141
2142 return rc;
2143}
2144
2145static void put_ref_page(struct page *page)
2146{
2147 if (page)
2148 put_page(page);
2149}
2150
2151/**
2152 * soft_offline_page - Soft offline a page.
2153 * @pfn: pfn to soft-offline
2154 * @flags: flags. Same as memory_failure().
2155 *
2156 * Returns 0 on success, otherwise negated errno.
2157 *
2158 * Soft offline a page, by migration or invalidation,
2159 * without killing anything. This is for the case when
2160 * a page is not corrupted yet (so it's still valid to access),
2161 * but has had a number of corrected errors and is better taken
2162 * out.
2163 *
2164 * The actual policy on when to do that is maintained by
2165 * user space.
2166 *
2167 * This should never impact any application or cause data loss,
2168 * however it might take some time.
2169 *
2170 * This is not a 100% solution for all memory, but tries to be
2171 * ``good enough'' for the majority of memory.
2172 */
2173int soft_offline_page(unsigned long pfn, int flags)
2174{
2175 int ret;
2176 bool try_again = true;
2177 struct page *page, *ref_page = NULL;
2178
2179 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2180
2181 if (!pfn_valid(pfn))
2182 return -ENXIO;
2183 if (flags & MF_COUNT_INCREASED)
2184 ref_page = pfn_to_page(pfn);
2185
2186 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2187 page = pfn_to_online_page(pfn);
2188 if (!page) {
2189 put_ref_page(ref_page);
2190 return -EIO;
2191 }
2192
2193 if (PageHWPoison(page)) {
2194 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2195 put_ref_page(ref_page);
2196 return 0;
2197 }
2198
2199retry:
2200 get_online_mems();
2201 ret = get_hwpoison_page(page, flags);
2202 put_online_mems();
2203
2204 if (ret > 0) {
2205 ret = soft_offline_in_use_page(page);
2206 } else if (ret == 0) {
2207 if (soft_offline_free_page(page) && try_again) {
2208 try_again = false;
2209 goto retry;
2210 }
2211 } else if (ret == -EIO) {
2212 pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
2213 __func__, pfn, page->flags, &page->flags);
2214 }
2215
2216 return ret;
2217}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36#include <linux/kernel.h>
37#include <linux/mm.h>
38#include <linux/page-flags.h>
39#include <linux/kernel-page-flags.h>
40#include <linux/sched/signal.h>
41#include <linux/sched/task.h>
42#include <linux/ksm.h>
43#include <linux/rmap.h>
44#include <linux/export.h>
45#include <linux/pagemap.h>
46#include <linux/swap.h>
47#include <linux/backing-dev.h>
48#include <linux/migrate.h>
49#include <linux/suspend.h>
50#include <linux/slab.h>
51#include <linux/swapops.h>
52#include <linux/hugetlb.h>
53#include <linux/memory_hotplug.h>
54#include <linux/mm_inline.h>
55#include <linux/memremap.h>
56#include <linux/kfifo.h>
57#include <linux/ratelimit.h>
58#include <linux/page-isolation.h>
59#include "internal.h"
60#include "ras/ras_event.h"
61
62int sysctl_memory_failure_early_kill __read_mostly = 0;
63
64int sysctl_memory_failure_recovery __read_mostly = 1;
65
66atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67
68#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
69
70u32 hwpoison_filter_enable = 0;
71u32 hwpoison_filter_dev_major = ~0U;
72u32 hwpoison_filter_dev_minor = ~0U;
73u64 hwpoison_filter_flags_mask;
74u64 hwpoison_filter_flags_value;
75EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
76EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
78EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
80
81static int hwpoison_filter_dev(struct page *p)
82{
83 struct address_space *mapping;
84 dev_t dev;
85
86 if (hwpoison_filter_dev_major == ~0U &&
87 hwpoison_filter_dev_minor == ~0U)
88 return 0;
89
90 /*
91 * page_mapping() does not accept slab pages.
92 */
93 if (PageSlab(p))
94 return -EINVAL;
95
96 mapping = page_mapping(p);
97 if (mapping == NULL || mapping->host == NULL)
98 return -EINVAL;
99
100 dev = mapping->host->i_sb->s_dev;
101 if (hwpoison_filter_dev_major != ~0U &&
102 hwpoison_filter_dev_major != MAJOR(dev))
103 return -EINVAL;
104 if (hwpoison_filter_dev_minor != ~0U &&
105 hwpoison_filter_dev_minor != MINOR(dev))
106 return -EINVAL;
107
108 return 0;
109}
110
111static int hwpoison_filter_flags(struct page *p)
112{
113 if (!hwpoison_filter_flags_mask)
114 return 0;
115
116 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
117 hwpoison_filter_flags_value)
118 return 0;
119 else
120 return -EINVAL;
121}
122
123/*
124 * This allows stress tests to limit test scope to a collection of tasks
125 * by putting them under some memcg. This prevents killing unrelated/important
126 * processes such as /sbin/init. Note that the target task may share clean
127 * pages with init (eg. libc text), which is harmless. If the target task
128 * share _dirty_ pages with another task B, the test scheme must make sure B
129 * is also included in the memcg. At last, due to race conditions this filter
130 * can only guarantee that the page either belongs to the memcg tasks, or is
131 * a freed page.
132 */
133#ifdef CONFIG_MEMCG
134u64 hwpoison_filter_memcg;
135EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
136static int hwpoison_filter_task(struct page *p)
137{
138 if (!hwpoison_filter_memcg)
139 return 0;
140
141 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
142 return -EINVAL;
143
144 return 0;
145}
146#else
147static int hwpoison_filter_task(struct page *p) { return 0; }
148#endif
149
150int hwpoison_filter(struct page *p)
151{
152 if (!hwpoison_filter_enable)
153 return 0;
154
155 if (hwpoison_filter_dev(p))
156 return -EINVAL;
157
158 if (hwpoison_filter_flags(p))
159 return -EINVAL;
160
161 if (hwpoison_filter_task(p))
162 return -EINVAL;
163
164 return 0;
165}
166#else
167int hwpoison_filter(struct page *p)
168{
169 return 0;
170}
171#endif
172
173EXPORT_SYMBOL_GPL(hwpoison_filter);
174
175/*
176 * Kill all processes that have a poisoned page mapped and then isolate
177 * the page.
178 *
179 * General strategy:
180 * Find all processes having the page mapped and kill them.
181 * But we keep a page reference around so that the page is not
182 * actually freed yet.
183 * Then stash the page away
184 *
185 * There's no convenient way to get back to mapped processes
186 * from the VMAs. So do a brute-force search over all
187 * running processes.
188 *
189 * Remember that machine checks are not common (or rather
190 * if they are common you have other problems), so this shouldn't
191 * be a performance issue.
192 *
193 * Also there are some races possible while we get from the
194 * error detection to actually handle it.
195 */
196
197struct to_kill {
198 struct list_head nd;
199 struct task_struct *tsk;
200 unsigned long addr;
201 short size_shift;
202};
203
204/*
205 * Send all the processes who have the page mapped a signal.
206 * ``action optional'' if they are not immediately affected by the error
207 * ``action required'' if error happened in current execution context
208 */
209static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
210{
211 struct task_struct *t = tk->tsk;
212 short addr_lsb = tk->size_shift;
213 int ret = 0;
214
215 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
216 pfn, t->comm, t->pid);
217
218 if (flags & MF_ACTION_REQUIRED) {
219 WARN_ON_ONCE(t != current);
220 ret = force_sig_mceerr(BUS_MCEERR_AR,
221 (void __user *)tk->addr, addr_lsb);
222 } else {
223 /*
224 * Don't use force here, it's convenient if the signal
225 * can be temporarily blocked.
226 * This could cause a loop when the user sets SIGBUS
227 * to SIG_IGN, but hopefully no one will do that?
228 */
229 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
230 addr_lsb, t); /* synchronous? */
231 }
232 if (ret < 0)
233 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
234 t->comm, t->pid, ret);
235 return ret;
236}
237
238/*
239 * When a unknown page type is encountered drain as many buffers as possible
240 * in the hope to turn the page into a LRU or free page, which we can handle.
241 */
242void shake_page(struct page *p, int access)
243{
244 if (PageHuge(p))
245 return;
246
247 if (!PageSlab(p)) {
248 lru_add_drain_all();
249 if (PageLRU(p))
250 return;
251 drain_all_pages(page_zone(p));
252 if (PageLRU(p) || is_free_buddy_page(p))
253 return;
254 }
255
256 /*
257 * Only call shrink_node_slabs here (which would also shrink
258 * other caches) if access is not potentially fatal.
259 */
260 if (access)
261 drop_slab_node(page_to_nid(p));
262}
263EXPORT_SYMBOL_GPL(shake_page);
264
265static unsigned long dev_pagemap_mapping_shift(struct page *page,
266 struct vm_area_struct *vma)
267{
268 unsigned long address = vma_address(page, vma);
269 pgd_t *pgd;
270 p4d_t *p4d;
271 pud_t *pud;
272 pmd_t *pmd;
273 pte_t *pte;
274
275 pgd = pgd_offset(vma->vm_mm, address);
276 if (!pgd_present(*pgd))
277 return 0;
278 p4d = p4d_offset(pgd, address);
279 if (!p4d_present(*p4d))
280 return 0;
281 pud = pud_offset(p4d, address);
282 if (!pud_present(*pud))
283 return 0;
284 if (pud_devmap(*pud))
285 return PUD_SHIFT;
286 pmd = pmd_offset(pud, address);
287 if (!pmd_present(*pmd))
288 return 0;
289 if (pmd_devmap(*pmd))
290 return PMD_SHIFT;
291 pte = pte_offset_map(pmd, address);
292 if (!pte_present(*pte))
293 return 0;
294 if (pte_devmap(*pte))
295 return PAGE_SHIFT;
296 return 0;
297}
298
299/*
300 * Failure handling: if we can't find or can't kill a process there's
301 * not much we can do. We just print a message and ignore otherwise.
302 */
303
304/*
305 * Schedule a process for later kill.
306 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
307 */
308static void add_to_kill(struct task_struct *tsk, struct page *p,
309 struct vm_area_struct *vma,
310 struct list_head *to_kill)
311{
312 struct to_kill *tk;
313
314 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
315 if (!tk) {
316 pr_err("Memory failure: Out of memory while machine check handling\n");
317 return;
318 }
319
320 tk->addr = page_address_in_vma(p, vma);
321 if (is_zone_device_page(p))
322 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
323 else
324 tk->size_shift = page_shift(compound_head(p));
325
326 /*
327 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
328 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
329 * so "tk->size_shift == 0" effectively checks no mapping on
330 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
331 * to a process' address space, it's possible not all N VMAs
332 * contain mappings for the page, but at least one VMA does.
333 * Only deliver SIGBUS with payload derived from the VMA that
334 * has a mapping for the page.
335 */
336 if (tk->addr == -EFAULT) {
337 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
338 page_to_pfn(p), tsk->comm);
339 } else if (tk->size_shift == 0) {
340 kfree(tk);
341 return;
342 }
343
344 get_task_struct(tsk);
345 tk->tsk = tsk;
346 list_add_tail(&tk->nd, to_kill);
347}
348
349/*
350 * Kill the processes that have been collected earlier.
351 *
352 * Only do anything when DOIT is set, otherwise just free the list
353 * (this is used for clean pages which do not need killing)
354 * Also when FAIL is set do a force kill because something went
355 * wrong earlier.
356 */
357static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
358 unsigned long pfn, int flags)
359{
360 struct to_kill *tk, *next;
361
362 list_for_each_entry_safe (tk, next, to_kill, nd) {
363 if (forcekill) {
364 /*
365 * In case something went wrong with munmapping
366 * make sure the process doesn't catch the
367 * signal and then access the memory. Just kill it.
368 */
369 if (fail || tk->addr == -EFAULT) {
370 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
371 pfn, tk->tsk->comm, tk->tsk->pid);
372 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
373 tk->tsk, PIDTYPE_PID);
374 }
375
376 /*
377 * In theory the process could have mapped
378 * something else on the address in-between. We could
379 * check for that, but we need to tell the
380 * process anyways.
381 */
382 else if (kill_proc(tk, pfn, flags) < 0)
383 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
384 pfn, tk->tsk->comm, tk->tsk->pid);
385 }
386 put_task_struct(tk->tsk);
387 kfree(tk);
388 }
389}
390
391/*
392 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
393 * on behalf of the thread group. Return task_struct of the (first found)
394 * dedicated thread if found, and return NULL otherwise.
395 *
396 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
397 * have to call rcu_read_lock/unlock() in this function.
398 */
399static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
400{
401 struct task_struct *t;
402
403 for_each_thread(tsk, t) {
404 if (t->flags & PF_MCE_PROCESS) {
405 if (t->flags & PF_MCE_EARLY)
406 return t;
407 } else {
408 if (sysctl_memory_failure_early_kill)
409 return t;
410 }
411 }
412 return NULL;
413}
414
415/*
416 * Determine whether a given process is "early kill" process which expects
417 * to be signaled when some page under the process is hwpoisoned.
418 * Return task_struct of the dedicated thread (main thread unless explicitly
419 * specified) if the process is "early kill," and otherwise returns NULL.
420 *
421 * Note that the above is true for Action Optional case, but not for Action
422 * Required case where SIGBUS should sent only to the current thread.
423 */
424static struct task_struct *task_early_kill(struct task_struct *tsk,
425 int force_early)
426{
427 if (!tsk->mm)
428 return NULL;
429 if (force_early) {
430 /*
431 * Comparing ->mm here because current task might represent
432 * a subthread, while tsk always points to the main thread.
433 */
434 if (tsk->mm == current->mm)
435 return current;
436 else
437 return NULL;
438 }
439 return find_early_kill_thread(tsk);
440}
441
442/*
443 * Collect processes when the error hit an anonymous page.
444 */
445static void collect_procs_anon(struct page *page, struct list_head *to_kill,
446 int force_early)
447{
448 struct vm_area_struct *vma;
449 struct task_struct *tsk;
450 struct anon_vma *av;
451 pgoff_t pgoff;
452
453 av = page_lock_anon_vma_read(page);
454 if (av == NULL) /* Not actually mapped anymore */
455 return;
456
457 pgoff = page_to_pgoff(page);
458 read_lock(&tasklist_lock);
459 for_each_process (tsk) {
460 struct anon_vma_chain *vmac;
461 struct task_struct *t = task_early_kill(tsk, force_early);
462
463 if (!t)
464 continue;
465 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
466 pgoff, pgoff) {
467 vma = vmac->vma;
468 if (!page_mapped_in_vma(page, vma))
469 continue;
470 if (vma->vm_mm == t->mm)
471 add_to_kill(t, page, vma, to_kill);
472 }
473 }
474 read_unlock(&tasklist_lock);
475 page_unlock_anon_vma_read(av);
476}
477
478/*
479 * Collect processes when the error hit a file mapped page.
480 */
481static void collect_procs_file(struct page *page, struct list_head *to_kill,
482 int force_early)
483{
484 struct vm_area_struct *vma;
485 struct task_struct *tsk;
486 struct address_space *mapping = page->mapping;
487
488 i_mmap_lock_read(mapping);
489 read_lock(&tasklist_lock);
490 for_each_process(tsk) {
491 pgoff_t pgoff = page_to_pgoff(page);
492 struct task_struct *t = task_early_kill(tsk, force_early);
493
494 if (!t)
495 continue;
496 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
497 pgoff) {
498 /*
499 * Send early kill signal to tasks where a vma covers
500 * the page but the corrupted page is not necessarily
501 * mapped it in its pte.
502 * Assume applications who requested early kill want
503 * to be informed of all such data corruptions.
504 */
505 if (vma->vm_mm == t->mm)
506 add_to_kill(t, page, vma, to_kill);
507 }
508 }
509 read_unlock(&tasklist_lock);
510 i_mmap_unlock_read(mapping);
511}
512
513/*
514 * Collect the processes who have the corrupted page mapped to kill.
515 */
516static void collect_procs(struct page *page, struct list_head *tokill,
517 int force_early)
518{
519 if (!page->mapping)
520 return;
521
522 if (PageAnon(page))
523 collect_procs_anon(page, tokill, force_early);
524 else
525 collect_procs_file(page, tokill, force_early);
526}
527
528static const char *action_name[] = {
529 [MF_IGNORED] = "Ignored",
530 [MF_FAILED] = "Failed",
531 [MF_DELAYED] = "Delayed",
532 [MF_RECOVERED] = "Recovered",
533};
534
535static const char * const action_page_types[] = {
536 [MF_MSG_KERNEL] = "reserved kernel page",
537 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
538 [MF_MSG_SLAB] = "kernel slab page",
539 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
540 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
541 [MF_MSG_HUGE] = "huge page",
542 [MF_MSG_FREE_HUGE] = "free huge page",
543 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
544 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
545 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
546 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
547 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
548 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
549 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
550 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
551 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
552 [MF_MSG_CLEAN_LRU] = "clean LRU page",
553 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
554 [MF_MSG_BUDDY] = "free buddy page",
555 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
556 [MF_MSG_DAX] = "dax page",
557 [MF_MSG_UNKNOWN] = "unknown page",
558};
559
560/*
561 * XXX: It is possible that a page is isolated from LRU cache,
562 * and then kept in swap cache or failed to remove from page cache.
563 * The page count will stop it from being freed by unpoison.
564 * Stress tests should be aware of this memory leak problem.
565 */
566static int delete_from_lru_cache(struct page *p)
567{
568 if (!isolate_lru_page(p)) {
569 /*
570 * Clear sensible page flags, so that the buddy system won't
571 * complain when the page is unpoison-and-freed.
572 */
573 ClearPageActive(p);
574 ClearPageUnevictable(p);
575
576 /*
577 * Poisoned page might never drop its ref count to 0 so we have
578 * to uncharge it manually from its memcg.
579 */
580 mem_cgroup_uncharge(p);
581
582 /*
583 * drop the page count elevated by isolate_lru_page()
584 */
585 put_page(p);
586 return 0;
587 }
588 return -EIO;
589}
590
591static int truncate_error_page(struct page *p, unsigned long pfn,
592 struct address_space *mapping)
593{
594 int ret = MF_FAILED;
595
596 if (mapping->a_ops->error_remove_page) {
597 int err = mapping->a_ops->error_remove_page(mapping, p);
598
599 if (err != 0) {
600 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
601 pfn, err);
602 } else if (page_has_private(p) &&
603 !try_to_release_page(p, GFP_NOIO)) {
604 pr_info("Memory failure: %#lx: failed to release buffers\n",
605 pfn);
606 } else {
607 ret = MF_RECOVERED;
608 }
609 } else {
610 /*
611 * If the file system doesn't support it just invalidate
612 * This fails on dirty or anything with private pages
613 */
614 if (invalidate_inode_page(p))
615 ret = MF_RECOVERED;
616 else
617 pr_info("Memory failure: %#lx: Failed to invalidate\n",
618 pfn);
619 }
620
621 return ret;
622}
623
624/*
625 * Error hit kernel page.
626 * Do nothing, try to be lucky and not touch this instead. For a few cases we
627 * could be more sophisticated.
628 */
629static int me_kernel(struct page *p, unsigned long pfn)
630{
631 return MF_IGNORED;
632}
633
634/*
635 * Page in unknown state. Do nothing.
636 */
637static int me_unknown(struct page *p, unsigned long pfn)
638{
639 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
640 return MF_FAILED;
641}
642
643/*
644 * Clean (or cleaned) page cache page.
645 */
646static int me_pagecache_clean(struct page *p, unsigned long pfn)
647{
648 struct address_space *mapping;
649
650 delete_from_lru_cache(p);
651
652 /*
653 * For anonymous pages we're done the only reference left
654 * should be the one m_f() holds.
655 */
656 if (PageAnon(p))
657 return MF_RECOVERED;
658
659 /*
660 * Now truncate the page in the page cache. This is really
661 * more like a "temporary hole punch"
662 * Don't do this for block devices when someone else
663 * has a reference, because it could be file system metadata
664 * and that's not safe to truncate.
665 */
666 mapping = page_mapping(p);
667 if (!mapping) {
668 /*
669 * Page has been teared down in the meanwhile
670 */
671 return MF_FAILED;
672 }
673
674 /*
675 * Truncation is a bit tricky. Enable it per file system for now.
676 *
677 * Open: to take i_mutex or not for this? Right now we don't.
678 */
679 return truncate_error_page(p, pfn, mapping);
680}
681
682/*
683 * Dirty pagecache page
684 * Issues: when the error hit a hole page the error is not properly
685 * propagated.
686 */
687static int me_pagecache_dirty(struct page *p, unsigned long pfn)
688{
689 struct address_space *mapping = page_mapping(p);
690
691 SetPageError(p);
692 /* TBD: print more information about the file. */
693 if (mapping) {
694 /*
695 * IO error will be reported by write(), fsync(), etc.
696 * who check the mapping.
697 * This way the application knows that something went
698 * wrong with its dirty file data.
699 *
700 * There's one open issue:
701 *
702 * The EIO will be only reported on the next IO
703 * operation and then cleared through the IO map.
704 * Normally Linux has two mechanisms to pass IO error
705 * first through the AS_EIO flag in the address space
706 * and then through the PageError flag in the page.
707 * Since we drop pages on memory failure handling the
708 * only mechanism open to use is through AS_AIO.
709 *
710 * This has the disadvantage that it gets cleared on
711 * the first operation that returns an error, while
712 * the PageError bit is more sticky and only cleared
713 * when the page is reread or dropped. If an
714 * application assumes it will always get error on
715 * fsync, but does other operations on the fd before
716 * and the page is dropped between then the error
717 * will not be properly reported.
718 *
719 * This can already happen even without hwpoisoned
720 * pages: first on metadata IO errors (which only
721 * report through AS_EIO) or when the page is dropped
722 * at the wrong time.
723 *
724 * So right now we assume that the application DTRT on
725 * the first EIO, but we're not worse than other parts
726 * of the kernel.
727 */
728 mapping_set_error(mapping, -EIO);
729 }
730
731 return me_pagecache_clean(p, pfn);
732}
733
734/*
735 * Clean and dirty swap cache.
736 *
737 * Dirty swap cache page is tricky to handle. The page could live both in page
738 * cache and swap cache(ie. page is freshly swapped in). So it could be
739 * referenced concurrently by 2 types of PTEs:
740 * normal PTEs and swap PTEs. We try to handle them consistently by calling
741 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
742 * and then
743 * - clear dirty bit to prevent IO
744 * - remove from LRU
745 * - but keep in the swap cache, so that when we return to it on
746 * a later page fault, we know the application is accessing
747 * corrupted data and shall be killed (we installed simple
748 * interception code in do_swap_page to catch it).
749 *
750 * Clean swap cache pages can be directly isolated. A later page fault will
751 * bring in the known good data from disk.
752 */
753static int me_swapcache_dirty(struct page *p, unsigned long pfn)
754{
755 ClearPageDirty(p);
756 /* Trigger EIO in shmem: */
757 ClearPageUptodate(p);
758
759 if (!delete_from_lru_cache(p))
760 return MF_DELAYED;
761 else
762 return MF_FAILED;
763}
764
765static int me_swapcache_clean(struct page *p, unsigned long pfn)
766{
767 delete_from_swap_cache(p);
768
769 if (!delete_from_lru_cache(p))
770 return MF_RECOVERED;
771 else
772 return MF_FAILED;
773}
774
775/*
776 * Huge pages. Needs work.
777 * Issues:
778 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
779 * To narrow down kill region to one page, we need to break up pmd.
780 */
781static int me_huge_page(struct page *p, unsigned long pfn)
782{
783 int res = 0;
784 struct page *hpage = compound_head(p);
785 struct address_space *mapping;
786
787 if (!PageHuge(hpage))
788 return MF_DELAYED;
789
790 mapping = page_mapping(hpage);
791 if (mapping) {
792 res = truncate_error_page(hpage, pfn, mapping);
793 } else {
794 unlock_page(hpage);
795 /*
796 * migration entry prevents later access on error anonymous
797 * hugepage, so we can free and dissolve it into buddy to
798 * save healthy subpages.
799 */
800 if (PageAnon(hpage))
801 put_page(hpage);
802 dissolve_free_huge_page(p);
803 res = MF_RECOVERED;
804 lock_page(hpage);
805 }
806
807 return res;
808}
809
810/*
811 * Various page states we can handle.
812 *
813 * A page state is defined by its current page->flags bits.
814 * The table matches them in order and calls the right handler.
815 *
816 * This is quite tricky because we can access page at any time
817 * in its live cycle, so all accesses have to be extremely careful.
818 *
819 * This is not complete. More states could be added.
820 * For any missing state don't attempt recovery.
821 */
822
823#define dirty (1UL << PG_dirty)
824#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
825#define unevict (1UL << PG_unevictable)
826#define mlock (1UL << PG_mlocked)
827#define writeback (1UL << PG_writeback)
828#define lru (1UL << PG_lru)
829#define head (1UL << PG_head)
830#define slab (1UL << PG_slab)
831#define reserved (1UL << PG_reserved)
832
833static struct page_state {
834 unsigned long mask;
835 unsigned long res;
836 enum mf_action_page_type type;
837 int (*action)(struct page *p, unsigned long pfn);
838} error_states[] = {
839 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
840 /*
841 * free pages are specially detected outside this table:
842 * PG_buddy pages only make a small fraction of all free pages.
843 */
844
845 /*
846 * Could in theory check if slab page is free or if we can drop
847 * currently unused objects without touching them. But just
848 * treat it as standard kernel for now.
849 */
850 { slab, slab, MF_MSG_SLAB, me_kernel },
851
852 { head, head, MF_MSG_HUGE, me_huge_page },
853
854 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
855 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
856
857 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
858 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
859
860 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
861 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
862
863 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
864 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
865
866 /*
867 * Catchall entry: must be at end.
868 */
869 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
870};
871
872#undef dirty
873#undef sc
874#undef unevict
875#undef mlock
876#undef writeback
877#undef lru
878#undef head
879#undef slab
880#undef reserved
881
882/*
883 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
884 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
885 */
886static void action_result(unsigned long pfn, enum mf_action_page_type type,
887 enum mf_result result)
888{
889 trace_memory_failure_event(pfn, type, result);
890
891 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
892 pfn, action_page_types[type], action_name[result]);
893}
894
895static int page_action(struct page_state *ps, struct page *p,
896 unsigned long pfn)
897{
898 int result;
899 int count;
900
901 result = ps->action(p, pfn);
902
903 count = page_count(p) - 1;
904 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
905 count--;
906 if (count > 0) {
907 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
908 pfn, action_page_types[ps->type], count);
909 result = MF_FAILED;
910 }
911 action_result(pfn, ps->type, result);
912
913 /* Could do more checks here if page looks ok */
914 /*
915 * Could adjust zone counters here to correct for the missing page.
916 */
917
918 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
919}
920
921/**
922 * get_hwpoison_page() - Get refcount for memory error handling:
923 * @page: raw error page (hit by memory error)
924 *
925 * Return: return 0 if failed to grab the refcount, otherwise true (some
926 * non-zero value.)
927 */
928int get_hwpoison_page(struct page *page)
929{
930 struct page *head = compound_head(page);
931
932 if (!PageHuge(head) && PageTransHuge(head)) {
933 /*
934 * Non anonymous thp exists only in allocation/free time. We
935 * can't handle such a case correctly, so let's give it up.
936 * This should be better than triggering BUG_ON when kernel
937 * tries to touch the "partially handled" page.
938 */
939 if (!PageAnon(head)) {
940 pr_err("Memory failure: %#lx: non anonymous thp\n",
941 page_to_pfn(page));
942 return 0;
943 }
944 }
945
946 if (get_page_unless_zero(head)) {
947 if (head == compound_head(page))
948 return 1;
949
950 pr_info("Memory failure: %#lx cannot catch tail\n",
951 page_to_pfn(page));
952 put_page(head);
953 }
954
955 return 0;
956}
957EXPORT_SYMBOL_GPL(get_hwpoison_page);
958
959/*
960 * Do all that is necessary to remove user space mappings. Unmap
961 * the pages and send SIGBUS to the processes if the data was dirty.
962 */
963static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
964 int flags, struct page **hpagep)
965{
966 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
967 struct address_space *mapping;
968 LIST_HEAD(tokill);
969 bool unmap_success = true;
970 int kill = 1, forcekill;
971 struct page *hpage = *hpagep;
972 bool mlocked = PageMlocked(hpage);
973
974 /*
975 * Here we are interested only in user-mapped pages, so skip any
976 * other types of pages.
977 */
978 if (PageReserved(p) || PageSlab(p))
979 return true;
980 if (!(PageLRU(hpage) || PageHuge(p)))
981 return true;
982
983 /*
984 * This check implies we don't kill processes if their pages
985 * are in the swap cache early. Those are always late kills.
986 */
987 if (!page_mapped(hpage))
988 return true;
989
990 if (PageKsm(p)) {
991 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
992 return false;
993 }
994
995 if (PageSwapCache(p)) {
996 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
997 pfn);
998 ttu |= TTU_IGNORE_HWPOISON;
999 }
1000
1001 /*
1002 * Propagate the dirty bit from PTEs to struct page first, because we
1003 * need this to decide if we should kill or just drop the page.
1004 * XXX: the dirty test could be racy: set_page_dirty() may not always
1005 * be called inside page lock (it's recommended but not enforced).
1006 */
1007 mapping = page_mapping(hpage);
1008 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1009 mapping_cap_writeback_dirty(mapping)) {
1010 if (page_mkclean(hpage)) {
1011 SetPageDirty(hpage);
1012 } else {
1013 kill = 0;
1014 ttu |= TTU_IGNORE_HWPOISON;
1015 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1016 pfn);
1017 }
1018 }
1019
1020 /*
1021 * First collect all the processes that have the page
1022 * mapped in dirty form. This has to be done before try_to_unmap,
1023 * because ttu takes the rmap data structures down.
1024 *
1025 * Error handling: We ignore errors here because
1026 * there's nothing that can be done.
1027 */
1028 if (kill)
1029 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1030
1031 if (!PageHuge(hpage)) {
1032 unmap_success = try_to_unmap(hpage, ttu);
1033 } else {
1034 /*
1035 * For hugetlb pages, try_to_unmap could potentially call
1036 * huge_pmd_unshare. Because of this, take semaphore in
1037 * write mode here and set TTU_RMAP_LOCKED to indicate we
1038 * have taken the lock at this higer level.
1039 *
1040 * Note that the call to hugetlb_page_mapping_lock_write
1041 * is necessary even if mapping is already set. It handles
1042 * ugliness of potentially having to drop page lock to obtain
1043 * i_mmap_rwsem.
1044 */
1045 mapping = hugetlb_page_mapping_lock_write(hpage);
1046
1047 if (mapping) {
1048 unmap_success = try_to_unmap(hpage,
1049 ttu|TTU_RMAP_LOCKED);
1050 i_mmap_unlock_write(mapping);
1051 } else {
1052 pr_info("Memory failure: %#lx: could not find mapping for mapped huge page\n",
1053 pfn);
1054 unmap_success = false;
1055 }
1056 }
1057 if (!unmap_success)
1058 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1059 pfn, page_mapcount(hpage));
1060
1061 /*
1062 * try_to_unmap() might put mlocked page in lru cache, so call
1063 * shake_page() again to ensure that it's flushed.
1064 */
1065 if (mlocked)
1066 shake_page(hpage, 0);
1067
1068 /*
1069 * Now that the dirty bit has been propagated to the
1070 * struct page and all unmaps done we can decide if
1071 * killing is needed or not. Only kill when the page
1072 * was dirty or the process is not restartable,
1073 * otherwise the tokill list is merely
1074 * freed. When there was a problem unmapping earlier
1075 * use a more force-full uncatchable kill to prevent
1076 * any accesses to the poisoned memory.
1077 */
1078 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1079 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1080
1081 return unmap_success;
1082}
1083
1084static int identify_page_state(unsigned long pfn, struct page *p,
1085 unsigned long page_flags)
1086{
1087 struct page_state *ps;
1088
1089 /*
1090 * The first check uses the current page flags which may not have any
1091 * relevant information. The second check with the saved page flags is
1092 * carried out only if the first check can't determine the page status.
1093 */
1094 for (ps = error_states;; ps++)
1095 if ((p->flags & ps->mask) == ps->res)
1096 break;
1097
1098 page_flags |= (p->flags & (1UL << PG_dirty));
1099
1100 if (!ps->mask)
1101 for (ps = error_states;; ps++)
1102 if ((page_flags & ps->mask) == ps->res)
1103 break;
1104 return page_action(ps, p, pfn);
1105}
1106
1107static int memory_failure_hugetlb(unsigned long pfn, int flags)
1108{
1109 struct page *p = pfn_to_page(pfn);
1110 struct page *head = compound_head(p);
1111 int res;
1112 unsigned long page_flags;
1113
1114 if (TestSetPageHWPoison(head)) {
1115 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1116 pfn);
1117 return 0;
1118 }
1119
1120 num_poisoned_pages_inc();
1121
1122 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1123 /*
1124 * Check "filter hit" and "race with other subpage."
1125 */
1126 lock_page(head);
1127 if (PageHWPoison(head)) {
1128 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1129 || (p != head && TestSetPageHWPoison(head))) {
1130 num_poisoned_pages_dec();
1131 unlock_page(head);
1132 return 0;
1133 }
1134 }
1135 unlock_page(head);
1136 dissolve_free_huge_page(p);
1137 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1138 return 0;
1139 }
1140
1141 lock_page(head);
1142 page_flags = head->flags;
1143
1144 if (!PageHWPoison(head)) {
1145 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1146 num_poisoned_pages_dec();
1147 unlock_page(head);
1148 put_hwpoison_page(head);
1149 return 0;
1150 }
1151
1152 /*
1153 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1154 * simply disable it. In order to make it work properly, we need
1155 * make sure that:
1156 * - conversion of a pud that maps an error hugetlb into hwpoison
1157 * entry properly works, and
1158 * - other mm code walking over page table is aware of pud-aligned
1159 * hwpoison entries.
1160 */
1161 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1162 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1163 res = -EBUSY;
1164 goto out;
1165 }
1166
1167 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1168 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1169 res = -EBUSY;
1170 goto out;
1171 }
1172
1173 res = identify_page_state(pfn, p, page_flags);
1174out:
1175 unlock_page(head);
1176 return res;
1177}
1178
1179static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1180 struct dev_pagemap *pgmap)
1181{
1182 struct page *page = pfn_to_page(pfn);
1183 const bool unmap_success = true;
1184 unsigned long size = 0;
1185 struct to_kill *tk;
1186 LIST_HEAD(tokill);
1187 int rc = -EBUSY;
1188 loff_t start;
1189 dax_entry_t cookie;
1190
1191 /*
1192 * Prevent the inode from being freed while we are interrogating
1193 * the address_space, typically this would be handled by
1194 * lock_page(), but dax pages do not use the page lock. This
1195 * also prevents changes to the mapping of this pfn until
1196 * poison signaling is complete.
1197 */
1198 cookie = dax_lock_page(page);
1199 if (!cookie)
1200 goto out;
1201
1202 if (hwpoison_filter(page)) {
1203 rc = 0;
1204 goto unlock;
1205 }
1206
1207 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1208 /*
1209 * TODO: Handle HMM pages which may need coordination
1210 * with device-side memory.
1211 */
1212 goto unlock;
1213 }
1214
1215 /*
1216 * Use this flag as an indication that the dax page has been
1217 * remapped UC to prevent speculative consumption of poison.
1218 */
1219 SetPageHWPoison(page);
1220
1221 /*
1222 * Unlike System-RAM there is no possibility to swap in a
1223 * different physical page at a given virtual address, so all
1224 * userspace consumption of ZONE_DEVICE memory necessitates
1225 * SIGBUS (i.e. MF_MUST_KILL)
1226 */
1227 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1228 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1229
1230 list_for_each_entry(tk, &tokill, nd)
1231 if (tk->size_shift)
1232 size = max(size, 1UL << tk->size_shift);
1233 if (size) {
1234 /*
1235 * Unmap the largest mapping to avoid breaking up
1236 * device-dax mappings which are constant size. The
1237 * actual size of the mapping being torn down is
1238 * communicated in siginfo, see kill_proc()
1239 */
1240 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1241 unmap_mapping_range(page->mapping, start, start + size, 0);
1242 }
1243 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1244 rc = 0;
1245unlock:
1246 dax_unlock_page(page, cookie);
1247out:
1248 /* drop pgmap ref acquired in caller */
1249 put_dev_pagemap(pgmap);
1250 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1251 return rc;
1252}
1253
1254/**
1255 * memory_failure - Handle memory failure of a page.
1256 * @pfn: Page Number of the corrupted page
1257 * @flags: fine tune action taken
1258 *
1259 * This function is called by the low level machine check code
1260 * of an architecture when it detects hardware memory corruption
1261 * of a page. It tries its best to recover, which includes
1262 * dropping pages, killing processes etc.
1263 *
1264 * The function is primarily of use for corruptions that
1265 * happen outside the current execution context (e.g. when
1266 * detected by a background scrubber)
1267 *
1268 * Must run in process context (e.g. a work queue) with interrupts
1269 * enabled and no spinlocks hold.
1270 */
1271int memory_failure(unsigned long pfn, int flags)
1272{
1273 struct page *p;
1274 struct page *hpage;
1275 struct page *orig_head;
1276 struct dev_pagemap *pgmap;
1277 int res;
1278 unsigned long page_flags;
1279
1280 if (!sysctl_memory_failure_recovery)
1281 panic("Memory failure on page %lx", pfn);
1282
1283 p = pfn_to_online_page(pfn);
1284 if (!p) {
1285 if (pfn_valid(pfn)) {
1286 pgmap = get_dev_pagemap(pfn, NULL);
1287 if (pgmap)
1288 return memory_failure_dev_pagemap(pfn, flags,
1289 pgmap);
1290 }
1291 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1292 pfn);
1293 return -ENXIO;
1294 }
1295
1296 if (PageHuge(p))
1297 return memory_failure_hugetlb(pfn, flags);
1298 if (TestSetPageHWPoison(p)) {
1299 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1300 pfn);
1301 return 0;
1302 }
1303
1304 orig_head = hpage = compound_head(p);
1305 num_poisoned_pages_inc();
1306
1307 /*
1308 * We need/can do nothing about count=0 pages.
1309 * 1) it's a free page, and therefore in safe hand:
1310 * prep_new_page() will be the gate keeper.
1311 * 2) it's part of a non-compound high order page.
1312 * Implies some kernel user: cannot stop them from
1313 * R/W the page; let's pray that the page has been
1314 * used and will be freed some time later.
1315 * In fact it's dangerous to directly bump up page count from 0,
1316 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1317 */
1318 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1319 if (is_free_buddy_page(p)) {
1320 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1321 return 0;
1322 } else {
1323 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1324 return -EBUSY;
1325 }
1326 }
1327
1328 if (PageTransHuge(hpage)) {
1329 lock_page(p);
1330 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1331 unlock_page(p);
1332 if (!PageAnon(p))
1333 pr_err("Memory failure: %#lx: non anonymous thp\n",
1334 pfn);
1335 else
1336 pr_err("Memory failure: %#lx: thp split failed\n",
1337 pfn);
1338 if (TestClearPageHWPoison(p))
1339 num_poisoned_pages_dec();
1340 put_hwpoison_page(p);
1341 return -EBUSY;
1342 }
1343 unlock_page(p);
1344 VM_BUG_ON_PAGE(!page_count(p), p);
1345 hpage = compound_head(p);
1346 }
1347
1348 /*
1349 * We ignore non-LRU pages for good reasons.
1350 * - PG_locked is only well defined for LRU pages and a few others
1351 * - to avoid races with __SetPageLocked()
1352 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1353 * The check (unnecessarily) ignores LRU pages being isolated and
1354 * walked by the page reclaim code, however that's not a big loss.
1355 */
1356 shake_page(p, 0);
1357 /* shake_page could have turned it free. */
1358 if (!PageLRU(p) && is_free_buddy_page(p)) {
1359 if (flags & MF_COUNT_INCREASED)
1360 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1361 else
1362 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1363 return 0;
1364 }
1365
1366 lock_page(p);
1367
1368 /*
1369 * The page could have changed compound pages during the locking.
1370 * If this happens just bail out.
1371 */
1372 if (PageCompound(p) && compound_head(p) != orig_head) {
1373 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1374 res = -EBUSY;
1375 goto out;
1376 }
1377
1378 /*
1379 * We use page flags to determine what action should be taken, but
1380 * the flags can be modified by the error containment action. One
1381 * example is an mlocked page, where PG_mlocked is cleared by
1382 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1383 * correctly, we save a copy of the page flags at this time.
1384 */
1385 if (PageHuge(p))
1386 page_flags = hpage->flags;
1387 else
1388 page_flags = p->flags;
1389
1390 /*
1391 * unpoison always clear PG_hwpoison inside page lock
1392 */
1393 if (!PageHWPoison(p)) {
1394 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1395 num_poisoned_pages_dec();
1396 unlock_page(p);
1397 put_hwpoison_page(p);
1398 return 0;
1399 }
1400 if (hwpoison_filter(p)) {
1401 if (TestClearPageHWPoison(p))
1402 num_poisoned_pages_dec();
1403 unlock_page(p);
1404 put_hwpoison_page(p);
1405 return 0;
1406 }
1407
1408 if (!PageTransTail(p) && !PageLRU(p))
1409 goto identify_page_state;
1410
1411 /*
1412 * It's very difficult to mess with pages currently under IO
1413 * and in many cases impossible, so we just avoid it here.
1414 */
1415 wait_on_page_writeback(p);
1416
1417 /*
1418 * Now take care of user space mappings.
1419 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1420 *
1421 * When the raw error page is thp tail page, hpage points to the raw
1422 * page after thp split.
1423 */
1424 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1425 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1426 res = -EBUSY;
1427 goto out;
1428 }
1429
1430 /*
1431 * Torn down by someone else?
1432 */
1433 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1434 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1435 res = -EBUSY;
1436 goto out;
1437 }
1438
1439identify_page_state:
1440 res = identify_page_state(pfn, p, page_flags);
1441out:
1442 unlock_page(p);
1443 return res;
1444}
1445EXPORT_SYMBOL_GPL(memory_failure);
1446
1447#define MEMORY_FAILURE_FIFO_ORDER 4
1448#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1449
1450struct memory_failure_entry {
1451 unsigned long pfn;
1452 int flags;
1453};
1454
1455struct memory_failure_cpu {
1456 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1457 MEMORY_FAILURE_FIFO_SIZE);
1458 spinlock_t lock;
1459 struct work_struct work;
1460};
1461
1462static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1463
1464/**
1465 * memory_failure_queue - Schedule handling memory failure of a page.
1466 * @pfn: Page Number of the corrupted page
1467 * @flags: Flags for memory failure handling
1468 *
1469 * This function is called by the low level hardware error handler
1470 * when it detects hardware memory corruption of a page. It schedules
1471 * the recovering of error page, including dropping pages, killing
1472 * processes etc.
1473 *
1474 * The function is primarily of use for corruptions that
1475 * happen outside the current execution context (e.g. when
1476 * detected by a background scrubber)
1477 *
1478 * Can run in IRQ context.
1479 */
1480void memory_failure_queue(unsigned long pfn, int flags)
1481{
1482 struct memory_failure_cpu *mf_cpu;
1483 unsigned long proc_flags;
1484 struct memory_failure_entry entry = {
1485 .pfn = pfn,
1486 .flags = flags,
1487 };
1488
1489 mf_cpu = &get_cpu_var(memory_failure_cpu);
1490 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1491 if (kfifo_put(&mf_cpu->fifo, entry))
1492 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1493 else
1494 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1495 pfn);
1496 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1497 put_cpu_var(memory_failure_cpu);
1498}
1499EXPORT_SYMBOL_GPL(memory_failure_queue);
1500
1501static void memory_failure_work_func(struct work_struct *work)
1502{
1503 struct memory_failure_cpu *mf_cpu;
1504 struct memory_failure_entry entry = { 0, };
1505 unsigned long proc_flags;
1506 int gotten;
1507
1508 mf_cpu = container_of(work, struct memory_failure_cpu, work);
1509 for (;;) {
1510 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1511 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1512 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1513 if (!gotten)
1514 break;
1515 if (entry.flags & MF_SOFT_OFFLINE)
1516 soft_offline_page(entry.pfn, entry.flags);
1517 else
1518 memory_failure(entry.pfn, entry.flags);
1519 }
1520}
1521
1522/*
1523 * Process memory_failure work queued on the specified CPU.
1524 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1525 */
1526void memory_failure_queue_kick(int cpu)
1527{
1528 struct memory_failure_cpu *mf_cpu;
1529
1530 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1531 cancel_work_sync(&mf_cpu->work);
1532 memory_failure_work_func(&mf_cpu->work);
1533}
1534
1535static int __init memory_failure_init(void)
1536{
1537 struct memory_failure_cpu *mf_cpu;
1538 int cpu;
1539
1540 for_each_possible_cpu(cpu) {
1541 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1542 spin_lock_init(&mf_cpu->lock);
1543 INIT_KFIFO(mf_cpu->fifo);
1544 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1545 }
1546
1547 return 0;
1548}
1549core_initcall(memory_failure_init);
1550
1551#define unpoison_pr_info(fmt, pfn, rs) \
1552({ \
1553 if (__ratelimit(rs)) \
1554 pr_info(fmt, pfn); \
1555})
1556
1557/**
1558 * unpoison_memory - Unpoison a previously poisoned page
1559 * @pfn: Page number of the to be unpoisoned page
1560 *
1561 * Software-unpoison a page that has been poisoned by
1562 * memory_failure() earlier.
1563 *
1564 * This is only done on the software-level, so it only works
1565 * for linux injected failures, not real hardware failures
1566 *
1567 * Returns 0 for success, otherwise -errno.
1568 */
1569int unpoison_memory(unsigned long pfn)
1570{
1571 struct page *page;
1572 struct page *p;
1573 int freeit = 0;
1574 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1575 DEFAULT_RATELIMIT_BURST);
1576
1577 if (!pfn_valid(pfn))
1578 return -ENXIO;
1579
1580 p = pfn_to_page(pfn);
1581 page = compound_head(p);
1582
1583 if (!PageHWPoison(p)) {
1584 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1585 pfn, &unpoison_rs);
1586 return 0;
1587 }
1588
1589 if (page_count(page) > 1) {
1590 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1591 pfn, &unpoison_rs);
1592 return 0;
1593 }
1594
1595 if (page_mapped(page)) {
1596 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1597 pfn, &unpoison_rs);
1598 return 0;
1599 }
1600
1601 if (page_mapping(page)) {
1602 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1603 pfn, &unpoison_rs);
1604 return 0;
1605 }
1606
1607 /*
1608 * unpoison_memory() can encounter thp only when the thp is being
1609 * worked by memory_failure() and the page lock is not held yet.
1610 * In such case, we yield to memory_failure() and make unpoison fail.
1611 */
1612 if (!PageHuge(page) && PageTransHuge(page)) {
1613 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1614 pfn, &unpoison_rs);
1615 return 0;
1616 }
1617
1618 if (!get_hwpoison_page(p)) {
1619 if (TestClearPageHWPoison(p))
1620 num_poisoned_pages_dec();
1621 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1622 pfn, &unpoison_rs);
1623 return 0;
1624 }
1625
1626 lock_page(page);
1627 /*
1628 * This test is racy because PG_hwpoison is set outside of page lock.
1629 * That's acceptable because that won't trigger kernel panic. Instead,
1630 * the PG_hwpoison page will be caught and isolated on the entrance to
1631 * the free buddy page pool.
1632 */
1633 if (TestClearPageHWPoison(page)) {
1634 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1635 pfn, &unpoison_rs);
1636 num_poisoned_pages_dec();
1637 freeit = 1;
1638 }
1639 unlock_page(page);
1640
1641 put_hwpoison_page(page);
1642 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1643 put_hwpoison_page(page);
1644
1645 return 0;
1646}
1647EXPORT_SYMBOL(unpoison_memory);
1648
1649static struct page *new_page(struct page *p, unsigned long private)
1650{
1651 struct migration_target_control mtc = {
1652 .nid = page_to_nid(p),
1653 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1654 };
1655
1656 return alloc_migration_target(p, (unsigned long)&mtc);
1657}
1658
1659/*
1660 * Safely get reference count of an arbitrary page.
1661 * Returns 0 for a free page, -EIO for a zero refcount page
1662 * that is not free, and 1 for any other page type.
1663 * For 1 the page is returned with increased page count, otherwise not.
1664 */
1665static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1666{
1667 int ret;
1668
1669 if (flags & MF_COUNT_INCREASED)
1670 return 1;
1671
1672 /*
1673 * When the target page is a free hugepage, just remove it
1674 * from free hugepage list.
1675 */
1676 if (!get_hwpoison_page(p)) {
1677 if (PageHuge(p)) {
1678 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1679 ret = 0;
1680 } else if (is_free_buddy_page(p)) {
1681 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1682 ret = 0;
1683 } else {
1684 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1685 __func__, pfn, p->flags);
1686 ret = -EIO;
1687 }
1688 } else {
1689 /* Not a free page */
1690 ret = 1;
1691 }
1692 return ret;
1693}
1694
1695static int get_any_page(struct page *page, unsigned long pfn, int flags)
1696{
1697 int ret = __get_any_page(page, pfn, flags);
1698
1699 if (ret == 1 && !PageHuge(page) &&
1700 !PageLRU(page) && !__PageMovable(page)) {
1701 /*
1702 * Try to free it.
1703 */
1704 put_hwpoison_page(page);
1705 shake_page(page, 1);
1706
1707 /*
1708 * Did it turn free?
1709 */
1710 ret = __get_any_page(page, pfn, 0);
1711 if (ret == 1 && !PageLRU(page)) {
1712 /* Drop page reference which is from __get_any_page() */
1713 put_hwpoison_page(page);
1714 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1715 pfn, page->flags, &page->flags);
1716 return -EIO;
1717 }
1718 }
1719 return ret;
1720}
1721
1722static int soft_offline_huge_page(struct page *page, int flags)
1723{
1724 int ret;
1725 unsigned long pfn = page_to_pfn(page);
1726 struct page *hpage = compound_head(page);
1727 LIST_HEAD(pagelist);
1728
1729 /*
1730 * This double-check of PageHWPoison is to avoid the race with
1731 * memory_failure(). See also comment in __soft_offline_page().
1732 */
1733 lock_page(hpage);
1734 if (PageHWPoison(hpage)) {
1735 unlock_page(hpage);
1736 put_hwpoison_page(hpage);
1737 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1738 return -EBUSY;
1739 }
1740 unlock_page(hpage);
1741
1742 ret = isolate_huge_page(hpage, &pagelist);
1743 /*
1744 * get_any_page() and isolate_huge_page() takes a refcount each,
1745 * so need to drop one here.
1746 */
1747 put_hwpoison_page(hpage);
1748 if (!ret) {
1749 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1750 return -EBUSY;
1751 }
1752
1753 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1754 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1755 if (ret) {
1756 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1757 pfn, ret, page->flags, &page->flags);
1758 if (!list_empty(&pagelist))
1759 putback_movable_pages(&pagelist);
1760 if (ret > 0)
1761 ret = -EIO;
1762 } else {
1763 /*
1764 * We set PG_hwpoison only when the migration source hugepage
1765 * was successfully dissolved, because otherwise hwpoisoned
1766 * hugepage remains on free hugepage list, then userspace will
1767 * find it as SIGBUS by allocation failure. That's not expected
1768 * in soft-offlining.
1769 */
1770 ret = dissolve_free_huge_page(page);
1771 if (!ret) {
1772 if (set_hwpoison_free_buddy_page(page))
1773 num_poisoned_pages_inc();
1774 else
1775 ret = -EBUSY;
1776 }
1777 }
1778 return ret;
1779}
1780
1781static int __soft_offline_page(struct page *page, int flags)
1782{
1783 int ret;
1784 unsigned long pfn = page_to_pfn(page);
1785
1786 /*
1787 * Check PageHWPoison again inside page lock because PageHWPoison
1788 * is set by memory_failure() outside page lock. Note that
1789 * memory_failure() also double-checks PageHWPoison inside page lock,
1790 * so there's no race between soft_offline_page() and memory_failure().
1791 */
1792 lock_page(page);
1793 wait_on_page_writeback(page);
1794 if (PageHWPoison(page)) {
1795 unlock_page(page);
1796 put_hwpoison_page(page);
1797 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1798 return -EBUSY;
1799 }
1800 /*
1801 * Try to invalidate first. This should work for
1802 * non dirty unmapped page cache pages.
1803 */
1804 ret = invalidate_inode_page(page);
1805 unlock_page(page);
1806 /*
1807 * RED-PEN would be better to keep it isolated here, but we
1808 * would need to fix isolation locking first.
1809 */
1810 if (ret == 1) {
1811 put_hwpoison_page(page);
1812 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1813 SetPageHWPoison(page);
1814 num_poisoned_pages_inc();
1815 return 0;
1816 }
1817
1818 /*
1819 * Simple invalidation didn't work.
1820 * Try to migrate to a new page instead. migrate.c
1821 * handles a large number of cases for us.
1822 */
1823 if (PageLRU(page))
1824 ret = isolate_lru_page(page);
1825 else
1826 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1827 /*
1828 * Drop page reference which is came from get_any_page()
1829 * successful isolate_lru_page() already took another one.
1830 */
1831 put_hwpoison_page(page);
1832 if (!ret) {
1833 LIST_HEAD(pagelist);
1834 /*
1835 * After isolated lru page, the PageLRU will be cleared,
1836 * so use !__PageMovable instead for LRU page's mapping
1837 * cannot have PAGE_MAPPING_MOVABLE.
1838 */
1839 if (!__PageMovable(page))
1840 inc_node_page_state(page, NR_ISOLATED_ANON +
1841 page_is_file_lru(page));
1842 list_add(&page->lru, &pagelist);
1843 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1844 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1845 if (ret) {
1846 if (!list_empty(&pagelist))
1847 putback_movable_pages(&pagelist);
1848
1849 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1850 pfn, ret, page->flags, &page->flags);
1851 if (ret > 0)
1852 ret = -EIO;
1853 }
1854 } else {
1855 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1856 pfn, ret, page_count(page), page->flags, &page->flags);
1857 }
1858 return ret;
1859}
1860
1861static int soft_offline_in_use_page(struct page *page, int flags)
1862{
1863 int ret;
1864 int mt;
1865 struct page *hpage = compound_head(page);
1866
1867 if (!PageHuge(page) && PageTransHuge(hpage)) {
1868 lock_page(page);
1869 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1870 unlock_page(page);
1871 if (!PageAnon(page))
1872 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1873 else
1874 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1875 put_hwpoison_page(page);
1876 return -EBUSY;
1877 }
1878 unlock_page(page);
1879 }
1880
1881 /*
1882 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1883 * to free list immediately (not via pcplist) when released after
1884 * successful page migration. Otherwise we can't guarantee that the
1885 * page is really free after put_page() returns, so
1886 * set_hwpoison_free_buddy_page() highly likely fails.
1887 */
1888 mt = get_pageblock_migratetype(page);
1889 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1890 if (PageHuge(page))
1891 ret = soft_offline_huge_page(page, flags);
1892 else
1893 ret = __soft_offline_page(page, flags);
1894 set_pageblock_migratetype(page, mt);
1895 return ret;
1896}
1897
1898static int soft_offline_free_page(struct page *page)
1899{
1900 int rc = dissolve_free_huge_page(page);
1901
1902 if (!rc) {
1903 if (set_hwpoison_free_buddy_page(page))
1904 num_poisoned_pages_inc();
1905 else
1906 rc = -EBUSY;
1907 }
1908 return rc;
1909}
1910
1911/**
1912 * soft_offline_page - Soft offline a page.
1913 * @pfn: pfn to soft-offline
1914 * @flags: flags. Same as memory_failure().
1915 *
1916 * Returns 0 on success, otherwise negated errno.
1917 *
1918 * Soft offline a page, by migration or invalidation,
1919 * without killing anything. This is for the case when
1920 * a page is not corrupted yet (so it's still valid to access),
1921 * but has had a number of corrected errors and is better taken
1922 * out.
1923 *
1924 * The actual policy on when to do that is maintained by
1925 * user space.
1926 *
1927 * This should never impact any application or cause data loss,
1928 * however it might take some time.
1929 *
1930 * This is not a 100% solution for all memory, but tries to be
1931 * ``good enough'' for the majority of memory.
1932 */
1933int soft_offline_page(unsigned long pfn, int flags)
1934{
1935 int ret;
1936 struct page *page;
1937
1938 if (!pfn_valid(pfn))
1939 return -ENXIO;
1940 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1941 page = pfn_to_online_page(pfn);
1942 if (!page)
1943 return -EIO;
1944
1945 if (PageHWPoison(page)) {
1946 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1947 if (flags & MF_COUNT_INCREASED)
1948 put_hwpoison_page(page);
1949 return -EBUSY;
1950 }
1951
1952 get_online_mems();
1953 ret = get_any_page(page, pfn, flags);
1954 put_online_mems();
1955
1956 if (ret > 0)
1957 ret = soft_offline_in_use_page(page, flags);
1958 else if (ret == 0)
1959 ret = soft_offline_free_page(page);
1960
1961 return ret;
1962}