Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
   3 * Copyright (c) 2016 Facebook
   4 */
   5#include <linux/kernel.h>
   6#include <linux/types.h>
   7#include <linux/slab.h>
   8#include <linux/bpf.h>
   9#include <linux/bpf_perf_event.h>
  10#include <linux/btf.h>
  11#include <linux/filter.h>
  12#include <linux/uaccess.h>
  13#include <linux/ctype.h>
  14#include <linux/kprobes.h>
  15#include <linux/spinlock.h>
  16#include <linux/syscalls.h>
  17#include <linux/error-injection.h>
  18#include <linux/btf_ids.h>
  19#include <linux/bpf_lsm.h>
  20
  21#include <net/bpf_sk_storage.h>
  22
  23#include <uapi/linux/bpf.h>
  24#include <uapi/linux/btf.h>
  25
  26#include <asm/tlb.h>
  27
  28#include "trace_probe.h"
  29#include "trace.h"
  30
  31#define CREATE_TRACE_POINTS
  32#include "bpf_trace.h"
  33
  34#define bpf_event_rcu_dereference(p)					\
  35	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
  36
  37#ifdef CONFIG_MODULES
  38struct bpf_trace_module {
  39	struct module *module;
  40	struct list_head list;
  41};
  42
  43static LIST_HEAD(bpf_trace_modules);
  44static DEFINE_MUTEX(bpf_module_mutex);
  45
  46static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
  47{
  48	struct bpf_raw_event_map *btp, *ret = NULL;
  49	struct bpf_trace_module *btm;
  50	unsigned int i;
  51
  52	mutex_lock(&bpf_module_mutex);
  53	list_for_each_entry(btm, &bpf_trace_modules, list) {
  54		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
  55			btp = &btm->module->bpf_raw_events[i];
  56			if (!strcmp(btp->tp->name, name)) {
  57				if (try_module_get(btm->module))
  58					ret = btp;
  59				goto out;
  60			}
  61		}
  62	}
  63out:
  64	mutex_unlock(&bpf_module_mutex);
  65	return ret;
  66}
  67#else
  68static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
  69{
  70	return NULL;
  71}
  72#endif /* CONFIG_MODULES */
  73
  74u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
  75u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
  76
  77static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
  78				  u64 flags, const struct btf **btf,
  79				  s32 *btf_id);
  80
  81/**
  82 * trace_call_bpf - invoke BPF program
  83 * @call: tracepoint event
  84 * @ctx: opaque context pointer
  85 *
  86 * kprobe handlers execute BPF programs via this helper.
  87 * Can be used from static tracepoints in the future.
  88 *
  89 * Return: BPF programs always return an integer which is interpreted by
  90 * kprobe handler as:
  91 * 0 - return from kprobe (event is filtered out)
  92 * 1 - store kprobe event into ring buffer
  93 * Other values are reserved and currently alias to 1
  94 */
  95unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
  96{
  97	unsigned int ret;
  98
 
 
 
  99	cant_sleep();
 100
 101	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
 102		/*
 103		 * since some bpf program is already running on this cpu,
 104		 * don't call into another bpf program (same or different)
 105		 * and don't send kprobe event into ring-buffer,
 106		 * so return zero here
 107		 */
 108		ret = 0;
 109		goto out;
 110	}
 111
 112	/*
 113	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
 114	 * to all call sites, we did a bpf_prog_array_valid() there to check
 115	 * whether call->prog_array is empty or not, which is
 116	 * a heuristic to speed up execution.
 117	 *
 118	 * If bpf_prog_array_valid() fetched prog_array was
 119	 * non-NULL, we go into trace_call_bpf() and do the actual
 120	 * proper rcu_dereference() under RCU lock.
 121	 * If it turns out that prog_array is NULL then, we bail out.
 122	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
 123	 * was NULL, you'll skip the prog_array with the risk of missing
 124	 * out of events when it was updated in between this and the
 125	 * rcu_dereference() which is accepted risk.
 126	 */
 127	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
 128
 129 out:
 130	__this_cpu_dec(bpf_prog_active);
 131
 132	return ret;
 133}
 134
 135#ifdef CONFIG_BPF_KPROBE_OVERRIDE
 136BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
 137{
 138	regs_set_return_value(regs, rc);
 139	override_function_with_return(regs);
 140	return 0;
 141}
 142
 143static const struct bpf_func_proto bpf_override_return_proto = {
 144	.func		= bpf_override_return,
 145	.gpl_only	= true,
 146	.ret_type	= RET_INTEGER,
 147	.arg1_type	= ARG_PTR_TO_CTX,
 148	.arg2_type	= ARG_ANYTHING,
 149};
 150#endif
 151
 152static __always_inline int
 153bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
 154{
 155	int ret;
 156
 157	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
 158	if (unlikely(ret < 0))
 159		memset(dst, 0, size);
 160	return ret;
 161}
 162
 163BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
 164	   const void __user *, unsafe_ptr)
 165{
 166	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
 167}
 168
 169const struct bpf_func_proto bpf_probe_read_user_proto = {
 170	.func		= bpf_probe_read_user,
 171	.gpl_only	= true,
 172	.ret_type	= RET_INTEGER,
 173	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 174	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 175	.arg3_type	= ARG_ANYTHING,
 176};
 177
 178static __always_inline int
 179bpf_probe_read_user_str_common(void *dst, u32 size,
 180			       const void __user *unsafe_ptr)
 181{
 182	int ret;
 183
 184	/*
 185	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
 186	 * terminator into `dst`.
 187	 *
 188	 * strncpy_from_user() does long-sized strides in the fast path. If the
 189	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
 190	 * then there could be junk after the NUL in `dst`. If user takes `dst`
 191	 * and keys a hash map with it, then semantically identical strings can
 192	 * occupy multiple entries in the map.
 193	 */
 194	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
 195	if (unlikely(ret < 0))
 196		memset(dst, 0, size);
 197	return ret;
 198}
 199
 200BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
 201	   const void __user *, unsafe_ptr)
 202{
 203	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
 204}
 205
 206const struct bpf_func_proto bpf_probe_read_user_str_proto = {
 207	.func		= bpf_probe_read_user_str,
 208	.gpl_only	= true,
 209	.ret_type	= RET_INTEGER,
 210	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 211	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 212	.arg3_type	= ARG_ANYTHING,
 213};
 214
 215static __always_inline int
 216bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
 217{
 218	int ret;
 219
 
 
 220	ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
 221	if (unlikely(ret < 0))
 222		memset(dst, 0, size);
 
 
 
 223	return ret;
 224}
 225
 226BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
 227	   const void *, unsafe_ptr)
 228{
 229	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
 230}
 231
 232const struct bpf_func_proto bpf_probe_read_kernel_proto = {
 233	.func		= bpf_probe_read_kernel,
 234	.gpl_only	= true,
 235	.ret_type	= RET_INTEGER,
 236	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 237	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 238	.arg3_type	= ARG_ANYTHING,
 239};
 240
 241static __always_inline int
 242bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
 243{
 244	int ret;
 
 
 
 245
 246	/*
 247	 * The strncpy_from_kernel_nofault() call will likely not fill the
 248	 * entire buffer, but that's okay in this circumstance as we're probing
 249	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
 250	 * as well probe the stack. Thus, memory is explicitly cleared
 251	 * only in error case, so that improper users ignoring return
 252	 * code altogether don't copy garbage; otherwise length of string
 253	 * is returned that can be used for bpf_perf_event_output() et al.
 254	 */
 255	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
 256	if (unlikely(ret < 0))
 257		memset(dst, 0, size);
 
 
 
 
 258	return ret;
 259}
 260
 261BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
 262	   const void *, unsafe_ptr)
 263{
 264	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
 265}
 266
 267const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
 268	.func		= bpf_probe_read_kernel_str,
 269	.gpl_only	= true,
 270	.ret_type	= RET_INTEGER,
 271	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 272	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 273	.arg3_type	= ARG_ANYTHING,
 274};
 275
 276#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
 277BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
 278	   const void *, unsafe_ptr)
 279{
 280	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
 281		return bpf_probe_read_user_common(dst, size,
 282				(__force void __user *)unsafe_ptr);
 283	}
 284	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
 285}
 286
 287static const struct bpf_func_proto bpf_probe_read_compat_proto = {
 288	.func		= bpf_probe_read_compat,
 289	.gpl_only	= true,
 290	.ret_type	= RET_INTEGER,
 291	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 292	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 293	.arg3_type	= ARG_ANYTHING,
 294};
 295
 296BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
 297	   const void *, unsafe_ptr)
 298{
 299	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
 300		return bpf_probe_read_user_str_common(dst, size,
 301				(__force void __user *)unsafe_ptr);
 302	}
 303	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
 304}
 305
 306static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
 307	.func		= bpf_probe_read_compat_str,
 308	.gpl_only	= true,
 309	.ret_type	= RET_INTEGER,
 310	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 311	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 312	.arg3_type	= ARG_ANYTHING,
 313};
 314#endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
 315
 316BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
 317	   u32, size)
 318{
 319	/*
 320	 * Ensure we're in user context which is safe for the helper to
 321	 * run. This helper has no business in a kthread.
 322	 *
 323	 * access_ok() should prevent writing to non-user memory, but in
 324	 * some situations (nommu, temporary switch, etc) access_ok() does
 325	 * not provide enough validation, hence the check on KERNEL_DS.
 326	 *
 327	 * nmi_uaccess_okay() ensures the probe is not run in an interim
 328	 * state, when the task or mm are switched. This is specifically
 329	 * required to prevent the use of temporary mm.
 330	 */
 331
 332	if (unlikely(in_interrupt() ||
 333		     current->flags & (PF_KTHREAD | PF_EXITING)))
 334		return -EPERM;
 335	if (unlikely(uaccess_kernel()))
 336		return -EPERM;
 337	if (unlikely(!nmi_uaccess_okay()))
 338		return -EPERM;
 339
 340	return copy_to_user_nofault(unsafe_ptr, src, size);
 341}
 342
 343static const struct bpf_func_proto bpf_probe_write_user_proto = {
 344	.func		= bpf_probe_write_user,
 345	.gpl_only	= true,
 346	.ret_type	= RET_INTEGER,
 347	.arg1_type	= ARG_ANYTHING,
 348	.arg2_type	= ARG_PTR_TO_MEM,
 349	.arg3_type	= ARG_CONST_SIZE,
 350};
 351
 352static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
 353{
 354	if (!capable(CAP_SYS_ADMIN))
 355		return NULL;
 356
 357	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
 358			    current->comm, task_pid_nr(current));
 359
 360	return &bpf_probe_write_user_proto;
 361}
 362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 363static DEFINE_RAW_SPINLOCK(trace_printk_lock);
 364
 365#define MAX_TRACE_PRINTK_VARARGS	3
 366#define BPF_TRACE_PRINTK_SIZE		1024
 367
 368BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
 369	   u64, arg2, u64, arg3)
 370{
 371	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
 372	u32 *bin_args;
 373	static char buf[BPF_TRACE_PRINTK_SIZE];
 374	unsigned long flags;
 
 375	int ret;
 376
 377	ret = bpf_bprintf_prepare(fmt, fmt_size, args, &bin_args,
 378				  MAX_TRACE_PRINTK_VARARGS);
 379	if (ret < 0)
 380		return ret;
 381
 382	raw_spin_lock_irqsave(&trace_printk_lock, flags);
 383	ret = bstr_printf(buf, sizeof(buf), fmt, bin_args);
 384
 
 
 
 
 385	trace_bpf_trace_printk(buf);
 386	raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
 387
 388	bpf_bprintf_cleanup();
 389
 390	return ret;
 391}
 392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 393static const struct bpf_func_proto bpf_trace_printk_proto = {
 394	.func		= bpf_trace_printk,
 395	.gpl_only	= true,
 396	.ret_type	= RET_INTEGER,
 397	.arg1_type	= ARG_PTR_TO_MEM,
 398	.arg2_type	= ARG_CONST_SIZE,
 399};
 400
 401const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
 402{
 403	/*
 404	 * This program might be calling bpf_trace_printk,
 405	 * so enable the associated bpf_trace/bpf_trace_printk event.
 406	 * Repeat this each time as it is possible a user has
 407	 * disabled bpf_trace_printk events.  By loading a program
 408	 * calling bpf_trace_printk() however the user has expressed
 409	 * the intent to see such events.
 410	 */
 411	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
 412		pr_warn_ratelimited("could not enable bpf_trace_printk events");
 413
 414	return &bpf_trace_printk_proto;
 415}
 416
 417#define MAX_SEQ_PRINTF_VARARGS		12
 
 
 
 
 
 
 
 
 418
 419BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
 420	   const void *, data, u32, data_len)
 421{
 422	int err, num_args;
 423	u32 *bin_args;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424
 425	if (data_len & 7 || data_len > MAX_SEQ_PRINTF_VARARGS * 8 ||
 426	    (data_len && !data))
 427		return -EINVAL;
 428	num_args = data_len / 8;
 429
 430	err = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args);
 431	if (err < 0)
 432		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 433
 434	seq_bprintf(m, fmt, bin_args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435
 436	bpf_bprintf_cleanup();
 
 
 
 
 
 
 
 437
 438	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439}
 440
 441BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
 
 442
 443static const struct bpf_func_proto bpf_seq_printf_proto = {
 444	.func		= bpf_seq_printf,
 445	.gpl_only	= true,
 446	.ret_type	= RET_INTEGER,
 447	.arg1_type	= ARG_PTR_TO_BTF_ID,
 448	.arg1_btf_id	= &btf_seq_file_ids[0],
 449	.arg2_type	= ARG_PTR_TO_MEM,
 450	.arg3_type	= ARG_CONST_SIZE,
 451	.arg4_type      = ARG_PTR_TO_MEM_OR_NULL,
 452	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
 
 453};
 454
 455BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
 456{
 457	return seq_write(m, data, len) ? -EOVERFLOW : 0;
 458}
 459
 
 
 
 460static const struct bpf_func_proto bpf_seq_write_proto = {
 461	.func		= bpf_seq_write,
 462	.gpl_only	= true,
 463	.ret_type	= RET_INTEGER,
 464	.arg1_type	= ARG_PTR_TO_BTF_ID,
 465	.arg1_btf_id	= &btf_seq_file_ids[0],
 466	.arg2_type	= ARG_PTR_TO_MEM,
 467	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
 468};
 469
 470BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
 471	   u32, btf_ptr_size, u64, flags)
 472{
 473	const struct btf *btf;
 474	s32 btf_id;
 475	int ret;
 476
 477	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
 478	if (ret)
 479		return ret;
 480
 481	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
 482}
 483
 484static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
 485	.func		= bpf_seq_printf_btf,
 486	.gpl_only	= true,
 487	.ret_type	= RET_INTEGER,
 488	.arg1_type	= ARG_PTR_TO_BTF_ID,
 489	.arg1_btf_id	= &btf_seq_file_ids[0],
 490	.arg2_type	= ARG_PTR_TO_MEM,
 491	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
 492	.arg4_type	= ARG_ANYTHING,
 493};
 494
 495static __always_inline int
 496get_map_perf_counter(struct bpf_map *map, u64 flags,
 497		     u64 *value, u64 *enabled, u64 *running)
 498{
 499	struct bpf_array *array = container_of(map, struct bpf_array, map);
 500	unsigned int cpu = smp_processor_id();
 501	u64 index = flags & BPF_F_INDEX_MASK;
 502	struct bpf_event_entry *ee;
 503
 504	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
 505		return -EINVAL;
 506	if (index == BPF_F_CURRENT_CPU)
 507		index = cpu;
 508	if (unlikely(index >= array->map.max_entries))
 509		return -E2BIG;
 510
 511	ee = READ_ONCE(array->ptrs[index]);
 512	if (!ee)
 513		return -ENOENT;
 514
 515	return perf_event_read_local(ee->event, value, enabled, running);
 516}
 517
 518BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
 519{
 520	u64 value = 0;
 521	int err;
 522
 523	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
 524	/*
 525	 * this api is ugly since we miss [-22..-2] range of valid
 526	 * counter values, but that's uapi
 527	 */
 528	if (err)
 529		return err;
 530	return value;
 531}
 532
 533static const struct bpf_func_proto bpf_perf_event_read_proto = {
 534	.func		= bpf_perf_event_read,
 535	.gpl_only	= true,
 536	.ret_type	= RET_INTEGER,
 537	.arg1_type	= ARG_CONST_MAP_PTR,
 538	.arg2_type	= ARG_ANYTHING,
 539};
 540
 541BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
 542	   struct bpf_perf_event_value *, buf, u32, size)
 543{
 544	int err = -EINVAL;
 545
 546	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
 547		goto clear;
 548	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
 549				   &buf->running);
 550	if (unlikely(err))
 551		goto clear;
 552	return 0;
 553clear:
 554	memset(buf, 0, size);
 555	return err;
 556}
 557
 558static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
 559	.func		= bpf_perf_event_read_value,
 560	.gpl_only	= true,
 561	.ret_type	= RET_INTEGER,
 562	.arg1_type	= ARG_CONST_MAP_PTR,
 563	.arg2_type	= ARG_ANYTHING,
 564	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
 565	.arg4_type	= ARG_CONST_SIZE,
 566};
 567
 568static __always_inline u64
 569__bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
 570			u64 flags, struct perf_sample_data *sd)
 571{
 572	struct bpf_array *array = container_of(map, struct bpf_array, map);
 573	unsigned int cpu = smp_processor_id();
 574	u64 index = flags & BPF_F_INDEX_MASK;
 575	struct bpf_event_entry *ee;
 576	struct perf_event *event;
 577
 578	if (index == BPF_F_CURRENT_CPU)
 579		index = cpu;
 580	if (unlikely(index >= array->map.max_entries))
 581		return -E2BIG;
 582
 583	ee = READ_ONCE(array->ptrs[index]);
 584	if (!ee)
 585		return -ENOENT;
 586
 587	event = ee->event;
 588	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
 589		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
 590		return -EINVAL;
 591
 592	if (unlikely(event->oncpu != cpu))
 593		return -EOPNOTSUPP;
 594
 595	return perf_event_output(event, sd, regs);
 596}
 597
 598/*
 599 * Support executing tracepoints in normal, irq, and nmi context that each call
 600 * bpf_perf_event_output
 601 */
 602struct bpf_trace_sample_data {
 603	struct perf_sample_data sds[3];
 604};
 605
 606static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
 607static DEFINE_PER_CPU(int, bpf_trace_nest_level);
 608BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
 609	   u64, flags, void *, data, u64, size)
 610{
 611	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
 612	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
 613	struct perf_raw_record raw = {
 614		.frag = {
 615			.size = size,
 616			.data = data,
 617		},
 618	};
 619	struct perf_sample_data *sd;
 620	int err;
 621
 622	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
 623		err = -EBUSY;
 624		goto out;
 625	}
 626
 627	sd = &sds->sds[nest_level - 1];
 628
 629	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
 630		err = -EINVAL;
 631		goto out;
 632	}
 633
 634	perf_sample_data_init(sd, 0, 0);
 635	sd->raw = &raw;
 636
 637	err = __bpf_perf_event_output(regs, map, flags, sd);
 638
 639out:
 640	this_cpu_dec(bpf_trace_nest_level);
 641	return err;
 642}
 643
 644static const struct bpf_func_proto bpf_perf_event_output_proto = {
 645	.func		= bpf_perf_event_output,
 646	.gpl_only	= true,
 647	.ret_type	= RET_INTEGER,
 648	.arg1_type	= ARG_PTR_TO_CTX,
 649	.arg2_type	= ARG_CONST_MAP_PTR,
 650	.arg3_type	= ARG_ANYTHING,
 651	.arg4_type	= ARG_PTR_TO_MEM,
 652	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
 653};
 654
 655static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
 656struct bpf_nested_pt_regs {
 657	struct pt_regs regs[3];
 658};
 659static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
 660static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
 661
 662u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
 663		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
 664{
 665	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
 666	struct perf_raw_frag frag = {
 667		.copy		= ctx_copy,
 668		.size		= ctx_size,
 669		.data		= ctx,
 670	};
 671	struct perf_raw_record raw = {
 672		.frag = {
 673			{
 674				.next	= ctx_size ? &frag : NULL,
 675			},
 676			.size	= meta_size,
 677			.data	= meta,
 678		},
 679	};
 680	struct perf_sample_data *sd;
 681	struct pt_regs *regs;
 682	u64 ret;
 683
 684	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
 685		ret = -EBUSY;
 686		goto out;
 687	}
 688	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
 689	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
 690
 691	perf_fetch_caller_regs(regs);
 692	perf_sample_data_init(sd, 0, 0);
 693	sd->raw = &raw;
 694
 695	ret = __bpf_perf_event_output(regs, map, flags, sd);
 696out:
 697	this_cpu_dec(bpf_event_output_nest_level);
 698	return ret;
 699}
 700
 701BPF_CALL_0(bpf_get_current_task)
 702{
 703	return (long) current;
 704}
 705
 706const struct bpf_func_proto bpf_get_current_task_proto = {
 707	.func		= bpf_get_current_task,
 708	.gpl_only	= true,
 709	.ret_type	= RET_INTEGER,
 710};
 711
 712BPF_CALL_0(bpf_get_current_task_btf)
 713{
 714	return (unsigned long) current;
 715}
 716
 717BTF_ID_LIST_SINGLE(bpf_get_current_btf_ids, struct, task_struct)
 718
 719static const struct bpf_func_proto bpf_get_current_task_btf_proto = {
 720	.func		= bpf_get_current_task_btf,
 721	.gpl_only	= true,
 722	.ret_type	= RET_PTR_TO_BTF_ID,
 723	.ret_btf_id	= &bpf_get_current_btf_ids[0],
 724};
 725
 726BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
 727{
 728	struct bpf_array *array = container_of(map, struct bpf_array, map);
 729	struct cgroup *cgrp;
 730
 731	if (unlikely(idx >= array->map.max_entries))
 732		return -E2BIG;
 733
 734	cgrp = READ_ONCE(array->ptrs[idx]);
 735	if (unlikely(!cgrp))
 736		return -EAGAIN;
 737
 738	return task_under_cgroup_hierarchy(current, cgrp);
 739}
 740
 741static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
 742	.func           = bpf_current_task_under_cgroup,
 743	.gpl_only       = false,
 744	.ret_type       = RET_INTEGER,
 745	.arg1_type      = ARG_CONST_MAP_PTR,
 746	.arg2_type      = ARG_ANYTHING,
 747};
 748
 749struct send_signal_irq_work {
 750	struct irq_work irq_work;
 751	struct task_struct *task;
 752	u32 sig;
 753	enum pid_type type;
 754};
 755
 756static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
 757
 758static void do_bpf_send_signal(struct irq_work *entry)
 759{
 760	struct send_signal_irq_work *work;
 761
 762	work = container_of(entry, struct send_signal_irq_work, irq_work);
 763	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
 764}
 765
 766static int bpf_send_signal_common(u32 sig, enum pid_type type)
 767{
 768	struct send_signal_irq_work *work = NULL;
 769
 770	/* Similar to bpf_probe_write_user, task needs to be
 771	 * in a sound condition and kernel memory access be
 772	 * permitted in order to send signal to the current
 773	 * task.
 774	 */
 775	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
 776		return -EPERM;
 777	if (unlikely(uaccess_kernel()))
 778		return -EPERM;
 779	if (unlikely(!nmi_uaccess_okay()))
 780		return -EPERM;
 781
 782	if (irqs_disabled()) {
 783		/* Do an early check on signal validity. Otherwise,
 784		 * the error is lost in deferred irq_work.
 785		 */
 786		if (unlikely(!valid_signal(sig)))
 787			return -EINVAL;
 788
 789		work = this_cpu_ptr(&send_signal_work);
 790		if (irq_work_is_busy(&work->irq_work))
 791			return -EBUSY;
 792
 793		/* Add the current task, which is the target of sending signal,
 794		 * to the irq_work. The current task may change when queued
 795		 * irq works get executed.
 796		 */
 797		work->task = current;
 798		work->sig = sig;
 799		work->type = type;
 800		irq_work_queue(&work->irq_work);
 801		return 0;
 802	}
 803
 804	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
 805}
 806
 807BPF_CALL_1(bpf_send_signal, u32, sig)
 808{
 809	return bpf_send_signal_common(sig, PIDTYPE_TGID);
 810}
 811
 812static const struct bpf_func_proto bpf_send_signal_proto = {
 813	.func		= bpf_send_signal,
 814	.gpl_only	= false,
 815	.ret_type	= RET_INTEGER,
 816	.arg1_type	= ARG_ANYTHING,
 817};
 818
 819BPF_CALL_1(bpf_send_signal_thread, u32, sig)
 820{
 821	return bpf_send_signal_common(sig, PIDTYPE_PID);
 822}
 823
 824static const struct bpf_func_proto bpf_send_signal_thread_proto = {
 825	.func		= bpf_send_signal_thread,
 826	.gpl_only	= false,
 827	.ret_type	= RET_INTEGER,
 828	.arg1_type	= ARG_ANYTHING,
 829};
 830
 831BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
 832{
 833	long len;
 834	char *p;
 835
 836	if (!sz)
 837		return 0;
 838
 839	p = d_path(path, buf, sz);
 840	if (IS_ERR(p)) {
 841		len = PTR_ERR(p);
 842	} else {
 843		len = buf + sz - p;
 844		memmove(buf, p, len);
 845	}
 846
 847	return len;
 848}
 849
 850BTF_SET_START(btf_allowlist_d_path)
 851#ifdef CONFIG_SECURITY
 852BTF_ID(func, security_file_permission)
 853BTF_ID(func, security_inode_getattr)
 854BTF_ID(func, security_file_open)
 855#endif
 856#ifdef CONFIG_SECURITY_PATH
 857BTF_ID(func, security_path_truncate)
 858#endif
 859BTF_ID(func, vfs_truncate)
 860BTF_ID(func, vfs_fallocate)
 861BTF_ID(func, dentry_open)
 862BTF_ID(func, vfs_getattr)
 863BTF_ID(func, filp_close)
 864BTF_SET_END(btf_allowlist_d_path)
 865
 866static bool bpf_d_path_allowed(const struct bpf_prog *prog)
 867{
 868	if (prog->type == BPF_PROG_TYPE_TRACING &&
 869	    prog->expected_attach_type == BPF_TRACE_ITER)
 870		return true;
 871
 872	if (prog->type == BPF_PROG_TYPE_LSM)
 873		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
 874
 875	return btf_id_set_contains(&btf_allowlist_d_path,
 876				   prog->aux->attach_btf_id);
 877}
 878
 879BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
 880
 881static const struct bpf_func_proto bpf_d_path_proto = {
 882	.func		= bpf_d_path,
 883	.gpl_only	= false,
 884	.ret_type	= RET_INTEGER,
 885	.arg1_type	= ARG_PTR_TO_BTF_ID,
 886	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
 887	.arg2_type	= ARG_PTR_TO_MEM,
 888	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
 889	.allowed	= bpf_d_path_allowed,
 890};
 891
 892#define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
 893			 BTF_F_PTR_RAW | BTF_F_ZERO)
 894
 895static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
 896				  u64 flags, const struct btf **btf,
 897				  s32 *btf_id)
 898{
 899	const struct btf_type *t;
 900
 901	if (unlikely(flags & ~(BTF_F_ALL)))
 902		return -EINVAL;
 903
 904	if (btf_ptr_size != sizeof(struct btf_ptr))
 905		return -EINVAL;
 906
 907	*btf = bpf_get_btf_vmlinux();
 908
 909	if (IS_ERR_OR_NULL(*btf))
 910		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
 911
 912	if (ptr->type_id > 0)
 913		*btf_id = ptr->type_id;
 914	else
 915		return -EINVAL;
 916
 917	if (*btf_id > 0)
 918		t = btf_type_by_id(*btf, *btf_id);
 919	if (*btf_id <= 0 || !t)
 920		return -ENOENT;
 921
 922	return 0;
 923}
 924
 925BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
 926	   u32, btf_ptr_size, u64, flags)
 927{
 928	const struct btf *btf;
 929	s32 btf_id;
 930	int ret;
 931
 932	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
 933	if (ret)
 934		return ret;
 935
 936	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
 937				      flags);
 938}
 939
 940const struct bpf_func_proto bpf_snprintf_btf_proto = {
 941	.func		= bpf_snprintf_btf,
 942	.gpl_only	= false,
 943	.ret_type	= RET_INTEGER,
 944	.arg1_type	= ARG_PTR_TO_MEM,
 945	.arg2_type	= ARG_CONST_SIZE,
 946	.arg3_type	= ARG_PTR_TO_MEM,
 947	.arg4_type	= ARG_CONST_SIZE,
 948	.arg5_type	= ARG_ANYTHING,
 949};
 950
 951const struct bpf_func_proto *
 952bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
 953{
 954	switch (func_id) {
 955	case BPF_FUNC_map_lookup_elem:
 956		return &bpf_map_lookup_elem_proto;
 957	case BPF_FUNC_map_update_elem:
 958		return &bpf_map_update_elem_proto;
 959	case BPF_FUNC_map_delete_elem:
 960		return &bpf_map_delete_elem_proto;
 961	case BPF_FUNC_map_push_elem:
 962		return &bpf_map_push_elem_proto;
 963	case BPF_FUNC_map_pop_elem:
 964		return &bpf_map_pop_elem_proto;
 965	case BPF_FUNC_map_peek_elem:
 966		return &bpf_map_peek_elem_proto;
 967	case BPF_FUNC_ktime_get_ns:
 968		return &bpf_ktime_get_ns_proto;
 969	case BPF_FUNC_ktime_get_boot_ns:
 970		return &bpf_ktime_get_boot_ns_proto;
 971	case BPF_FUNC_ktime_get_coarse_ns:
 972		return &bpf_ktime_get_coarse_ns_proto;
 973	case BPF_FUNC_tail_call:
 974		return &bpf_tail_call_proto;
 975	case BPF_FUNC_get_current_pid_tgid:
 976		return &bpf_get_current_pid_tgid_proto;
 977	case BPF_FUNC_get_current_task:
 978		return &bpf_get_current_task_proto;
 979	case BPF_FUNC_get_current_task_btf:
 980		return &bpf_get_current_task_btf_proto;
 981	case BPF_FUNC_get_current_uid_gid:
 982		return &bpf_get_current_uid_gid_proto;
 983	case BPF_FUNC_get_current_comm:
 984		return &bpf_get_current_comm_proto;
 985	case BPF_FUNC_trace_printk:
 986		return bpf_get_trace_printk_proto();
 987	case BPF_FUNC_get_smp_processor_id:
 988		return &bpf_get_smp_processor_id_proto;
 989	case BPF_FUNC_get_numa_node_id:
 990		return &bpf_get_numa_node_id_proto;
 991	case BPF_FUNC_perf_event_read:
 992		return &bpf_perf_event_read_proto;
 
 
 993	case BPF_FUNC_current_task_under_cgroup:
 994		return &bpf_current_task_under_cgroup_proto;
 995	case BPF_FUNC_get_prandom_u32:
 996		return &bpf_get_prandom_u32_proto;
 997	case BPF_FUNC_probe_write_user:
 998		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
 999		       NULL : bpf_get_probe_write_proto();
1000	case BPF_FUNC_probe_read_user:
1001		return &bpf_probe_read_user_proto;
1002	case BPF_FUNC_probe_read_kernel:
1003		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1004		       NULL : &bpf_probe_read_kernel_proto;
1005	case BPF_FUNC_probe_read_user_str:
1006		return &bpf_probe_read_user_str_proto;
1007	case BPF_FUNC_probe_read_kernel_str:
1008		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1009		       NULL : &bpf_probe_read_kernel_str_proto;
1010#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1011	case BPF_FUNC_probe_read:
1012		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1013		       NULL : &bpf_probe_read_compat_proto;
1014	case BPF_FUNC_probe_read_str:
1015		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1016		       NULL : &bpf_probe_read_compat_str_proto;
1017#endif
1018#ifdef CONFIG_CGROUPS
1019	case BPF_FUNC_get_current_cgroup_id:
1020		return &bpf_get_current_cgroup_id_proto;
1021	case BPF_FUNC_get_current_ancestor_cgroup_id:
1022		return &bpf_get_current_ancestor_cgroup_id_proto;
1023#endif
1024	case BPF_FUNC_send_signal:
1025		return &bpf_send_signal_proto;
1026	case BPF_FUNC_send_signal_thread:
1027		return &bpf_send_signal_thread_proto;
1028	case BPF_FUNC_perf_event_read_value:
1029		return &bpf_perf_event_read_value_proto;
1030	case BPF_FUNC_get_ns_current_pid_tgid:
1031		return &bpf_get_ns_current_pid_tgid_proto;
1032	case BPF_FUNC_ringbuf_output:
1033		return &bpf_ringbuf_output_proto;
1034	case BPF_FUNC_ringbuf_reserve:
1035		return &bpf_ringbuf_reserve_proto;
1036	case BPF_FUNC_ringbuf_submit:
1037		return &bpf_ringbuf_submit_proto;
1038	case BPF_FUNC_ringbuf_discard:
1039		return &bpf_ringbuf_discard_proto;
1040	case BPF_FUNC_ringbuf_query:
1041		return &bpf_ringbuf_query_proto;
1042	case BPF_FUNC_jiffies64:
1043		return &bpf_jiffies64_proto;
1044	case BPF_FUNC_get_task_stack:
1045		return &bpf_get_task_stack_proto;
1046	case BPF_FUNC_copy_from_user:
1047		return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL;
1048	case BPF_FUNC_snprintf_btf:
1049		return &bpf_snprintf_btf_proto;
1050	case BPF_FUNC_per_cpu_ptr:
1051		return &bpf_per_cpu_ptr_proto;
1052	case BPF_FUNC_this_cpu_ptr:
1053		return &bpf_this_cpu_ptr_proto;
1054	case BPF_FUNC_task_storage_get:
1055		return &bpf_task_storage_get_proto;
1056	case BPF_FUNC_task_storage_delete:
1057		return &bpf_task_storage_delete_proto;
1058	case BPF_FUNC_for_each_map_elem:
1059		return &bpf_for_each_map_elem_proto;
1060	case BPF_FUNC_snprintf:
1061		return &bpf_snprintf_proto;
1062	default:
1063		return NULL;
1064	}
1065}
1066
1067static const struct bpf_func_proto *
1068kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1069{
1070	switch (func_id) {
1071	case BPF_FUNC_perf_event_output:
1072		return &bpf_perf_event_output_proto;
1073	case BPF_FUNC_get_stackid:
1074		return &bpf_get_stackid_proto;
1075	case BPF_FUNC_get_stack:
1076		return &bpf_get_stack_proto;
1077#ifdef CONFIG_BPF_KPROBE_OVERRIDE
1078	case BPF_FUNC_override_return:
1079		return &bpf_override_return_proto;
1080#endif
1081	default:
1082		return bpf_tracing_func_proto(func_id, prog);
1083	}
1084}
1085
1086/* bpf+kprobe programs can access fields of 'struct pt_regs' */
1087static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1088					const struct bpf_prog *prog,
1089					struct bpf_insn_access_aux *info)
1090{
1091	if (off < 0 || off >= sizeof(struct pt_regs))
1092		return false;
1093	if (type != BPF_READ)
1094		return false;
1095	if (off % size != 0)
1096		return false;
1097	/*
1098	 * Assertion for 32 bit to make sure last 8 byte access
1099	 * (BPF_DW) to the last 4 byte member is disallowed.
1100	 */
1101	if (off + size > sizeof(struct pt_regs))
1102		return false;
1103
1104	return true;
1105}
1106
1107const struct bpf_verifier_ops kprobe_verifier_ops = {
1108	.get_func_proto  = kprobe_prog_func_proto,
1109	.is_valid_access = kprobe_prog_is_valid_access,
1110};
1111
1112const struct bpf_prog_ops kprobe_prog_ops = {
1113};
1114
1115BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1116	   u64, flags, void *, data, u64, size)
1117{
1118	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1119
1120	/*
1121	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1122	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1123	 * from there and call the same bpf_perf_event_output() helper inline.
1124	 */
1125	return ____bpf_perf_event_output(regs, map, flags, data, size);
1126}
1127
1128static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1129	.func		= bpf_perf_event_output_tp,
1130	.gpl_only	= true,
1131	.ret_type	= RET_INTEGER,
1132	.arg1_type	= ARG_PTR_TO_CTX,
1133	.arg2_type	= ARG_CONST_MAP_PTR,
1134	.arg3_type	= ARG_ANYTHING,
1135	.arg4_type	= ARG_PTR_TO_MEM,
1136	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1137};
1138
1139BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1140	   u64, flags)
1141{
1142	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1143
1144	/*
1145	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1146	 * the other helper's function body cannot be inlined due to being
1147	 * external, thus we need to call raw helper function.
1148	 */
1149	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1150			       flags, 0, 0);
1151}
1152
1153static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1154	.func		= bpf_get_stackid_tp,
1155	.gpl_only	= true,
1156	.ret_type	= RET_INTEGER,
1157	.arg1_type	= ARG_PTR_TO_CTX,
1158	.arg2_type	= ARG_CONST_MAP_PTR,
1159	.arg3_type	= ARG_ANYTHING,
1160};
1161
1162BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1163	   u64, flags)
1164{
1165	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1166
1167	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1168			     (unsigned long) size, flags, 0);
1169}
1170
1171static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1172	.func		= bpf_get_stack_tp,
1173	.gpl_only	= true,
1174	.ret_type	= RET_INTEGER,
1175	.arg1_type	= ARG_PTR_TO_CTX,
1176	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1177	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1178	.arg4_type	= ARG_ANYTHING,
1179};
1180
1181static const struct bpf_func_proto *
1182tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1183{
1184	switch (func_id) {
1185	case BPF_FUNC_perf_event_output:
1186		return &bpf_perf_event_output_proto_tp;
1187	case BPF_FUNC_get_stackid:
1188		return &bpf_get_stackid_proto_tp;
1189	case BPF_FUNC_get_stack:
1190		return &bpf_get_stack_proto_tp;
1191	default:
1192		return bpf_tracing_func_proto(func_id, prog);
1193	}
1194}
1195
1196static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1197				    const struct bpf_prog *prog,
1198				    struct bpf_insn_access_aux *info)
1199{
1200	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1201		return false;
1202	if (type != BPF_READ)
1203		return false;
1204	if (off % size != 0)
1205		return false;
1206
1207	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1208	return true;
1209}
1210
1211const struct bpf_verifier_ops tracepoint_verifier_ops = {
1212	.get_func_proto  = tp_prog_func_proto,
1213	.is_valid_access = tp_prog_is_valid_access,
1214};
1215
1216const struct bpf_prog_ops tracepoint_prog_ops = {
1217};
1218
1219BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1220	   struct bpf_perf_event_value *, buf, u32, size)
1221{
1222	int err = -EINVAL;
1223
1224	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1225		goto clear;
1226	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1227				    &buf->running);
1228	if (unlikely(err))
1229		goto clear;
1230	return 0;
1231clear:
1232	memset(buf, 0, size);
1233	return err;
1234}
1235
1236static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1237         .func           = bpf_perf_prog_read_value,
1238         .gpl_only       = true,
1239         .ret_type       = RET_INTEGER,
1240         .arg1_type      = ARG_PTR_TO_CTX,
1241         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1242         .arg3_type      = ARG_CONST_SIZE,
1243};
1244
1245BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1246	   void *, buf, u32, size, u64, flags)
1247{
1248#ifndef CONFIG_X86
1249	return -ENOENT;
1250#else
1251	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1252	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1253	u32 to_copy;
1254
1255	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1256		return -EINVAL;
1257
1258	if (unlikely(!br_stack))
1259		return -EINVAL;
1260
1261	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1262		return br_stack->nr * br_entry_size;
1263
1264	if (!buf || (size % br_entry_size != 0))
1265		return -EINVAL;
1266
1267	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1268	memcpy(buf, br_stack->entries, to_copy);
1269
1270	return to_copy;
1271#endif
1272}
1273
1274static const struct bpf_func_proto bpf_read_branch_records_proto = {
1275	.func           = bpf_read_branch_records,
1276	.gpl_only       = true,
1277	.ret_type       = RET_INTEGER,
1278	.arg1_type      = ARG_PTR_TO_CTX,
1279	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1280	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1281	.arg4_type      = ARG_ANYTHING,
1282};
1283
1284static const struct bpf_func_proto *
1285pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1286{
1287	switch (func_id) {
1288	case BPF_FUNC_perf_event_output:
1289		return &bpf_perf_event_output_proto_tp;
1290	case BPF_FUNC_get_stackid:
1291		return &bpf_get_stackid_proto_pe;
1292	case BPF_FUNC_get_stack:
1293		return &bpf_get_stack_proto_pe;
1294	case BPF_FUNC_perf_prog_read_value:
1295		return &bpf_perf_prog_read_value_proto;
1296	case BPF_FUNC_read_branch_records:
1297		return &bpf_read_branch_records_proto;
1298	default:
1299		return bpf_tracing_func_proto(func_id, prog);
1300	}
1301}
1302
1303/*
1304 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1305 * to avoid potential recursive reuse issue when/if tracepoints are added
1306 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1307 *
1308 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1309 * in normal, irq, and nmi context.
1310 */
1311struct bpf_raw_tp_regs {
1312	struct pt_regs regs[3];
1313};
1314static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1315static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1316static struct pt_regs *get_bpf_raw_tp_regs(void)
1317{
1318	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1319	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1320
1321	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1322		this_cpu_dec(bpf_raw_tp_nest_level);
1323		return ERR_PTR(-EBUSY);
1324	}
1325
1326	return &tp_regs->regs[nest_level - 1];
1327}
1328
1329static void put_bpf_raw_tp_regs(void)
1330{
1331	this_cpu_dec(bpf_raw_tp_nest_level);
1332}
1333
1334BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1335	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1336{
1337	struct pt_regs *regs = get_bpf_raw_tp_regs();
1338	int ret;
1339
1340	if (IS_ERR(regs))
1341		return PTR_ERR(regs);
1342
1343	perf_fetch_caller_regs(regs);
1344	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1345
1346	put_bpf_raw_tp_regs();
1347	return ret;
1348}
1349
1350static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1351	.func		= bpf_perf_event_output_raw_tp,
1352	.gpl_only	= true,
1353	.ret_type	= RET_INTEGER,
1354	.arg1_type	= ARG_PTR_TO_CTX,
1355	.arg2_type	= ARG_CONST_MAP_PTR,
1356	.arg3_type	= ARG_ANYTHING,
1357	.arg4_type	= ARG_PTR_TO_MEM,
1358	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1359};
1360
1361extern const struct bpf_func_proto bpf_skb_output_proto;
1362extern const struct bpf_func_proto bpf_xdp_output_proto;
1363
1364BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1365	   struct bpf_map *, map, u64, flags)
1366{
1367	struct pt_regs *regs = get_bpf_raw_tp_regs();
1368	int ret;
1369
1370	if (IS_ERR(regs))
1371		return PTR_ERR(regs);
1372
1373	perf_fetch_caller_regs(regs);
1374	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1375	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1376			      flags, 0, 0);
1377	put_bpf_raw_tp_regs();
1378	return ret;
1379}
1380
1381static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1382	.func		= bpf_get_stackid_raw_tp,
1383	.gpl_only	= true,
1384	.ret_type	= RET_INTEGER,
1385	.arg1_type	= ARG_PTR_TO_CTX,
1386	.arg2_type	= ARG_CONST_MAP_PTR,
1387	.arg3_type	= ARG_ANYTHING,
1388};
1389
1390BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1391	   void *, buf, u32, size, u64, flags)
1392{
1393	struct pt_regs *regs = get_bpf_raw_tp_regs();
1394	int ret;
1395
1396	if (IS_ERR(regs))
1397		return PTR_ERR(regs);
1398
1399	perf_fetch_caller_regs(regs);
1400	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1401			    (unsigned long) size, flags, 0);
1402	put_bpf_raw_tp_regs();
1403	return ret;
1404}
1405
1406static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1407	.func		= bpf_get_stack_raw_tp,
1408	.gpl_only	= true,
1409	.ret_type	= RET_INTEGER,
1410	.arg1_type	= ARG_PTR_TO_CTX,
1411	.arg2_type	= ARG_PTR_TO_MEM,
1412	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1413	.arg4_type	= ARG_ANYTHING,
1414};
1415
1416static const struct bpf_func_proto *
1417raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1418{
1419	switch (func_id) {
1420	case BPF_FUNC_perf_event_output:
1421		return &bpf_perf_event_output_proto_raw_tp;
1422	case BPF_FUNC_get_stackid:
1423		return &bpf_get_stackid_proto_raw_tp;
1424	case BPF_FUNC_get_stack:
1425		return &bpf_get_stack_proto_raw_tp;
1426	default:
1427		return bpf_tracing_func_proto(func_id, prog);
1428	}
1429}
1430
1431const struct bpf_func_proto *
1432tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1433{
1434	switch (func_id) {
1435#ifdef CONFIG_NET
1436	case BPF_FUNC_skb_output:
1437		return &bpf_skb_output_proto;
1438	case BPF_FUNC_xdp_output:
1439		return &bpf_xdp_output_proto;
1440	case BPF_FUNC_skc_to_tcp6_sock:
1441		return &bpf_skc_to_tcp6_sock_proto;
1442	case BPF_FUNC_skc_to_tcp_sock:
1443		return &bpf_skc_to_tcp_sock_proto;
1444	case BPF_FUNC_skc_to_tcp_timewait_sock:
1445		return &bpf_skc_to_tcp_timewait_sock_proto;
1446	case BPF_FUNC_skc_to_tcp_request_sock:
1447		return &bpf_skc_to_tcp_request_sock_proto;
1448	case BPF_FUNC_skc_to_udp6_sock:
1449		return &bpf_skc_to_udp6_sock_proto;
1450	case BPF_FUNC_sk_storage_get:
1451		return &bpf_sk_storage_get_tracing_proto;
1452	case BPF_FUNC_sk_storage_delete:
1453		return &bpf_sk_storage_delete_tracing_proto;
1454	case BPF_FUNC_sock_from_file:
1455		return &bpf_sock_from_file_proto;
1456	case BPF_FUNC_get_socket_cookie:
1457		return &bpf_get_socket_ptr_cookie_proto;
1458#endif
1459	case BPF_FUNC_seq_printf:
1460		return prog->expected_attach_type == BPF_TRACE_ITER ?
1461		       &bpf_seq_printf_proto :
1462		       NULL;
1463	case BPF_FUNC_seq_write:
1464		return prog->expected_attach_type == BPF_TRACE_ITER ?
1465		       &bpf_seq_write_proto :
1466		       NULL;
1467	case BPF_FUNC_seq_printf_btf:
1468		return prog->expected_attach_type == BPF_TRACE_ITER ?
1469		       &bpf_seq_printf_btf_proto :
1470		       NULL;
1471	case BPF_FUNC_d_path:
1472		return &bpf_d_path_proto;
1473	default:
1474		return raw_tp_prog_func_proto(func_id, prog);
1475	}
1476}
1477
1478static bool raw_tp_prog_is_valid_access(int off, int size,
1479					enum bpf_access_type type,
1480					const struct bpf_prog *prog,
1481					struct bpf_insn_access_aux *info)
1482{
1483	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1484		return false;
1485	if (type != BPF_READ)
1486		return false;
1487	if (off % size != 0)
1488		return false;
1489	return true;
1490}
1491
1492static bool tracing_prog_is_valid_access(int off, int size,
1493					 enum bpf_access_type type,
1494					 const struct bpf_prog *prog,
1495					 struct bpf_insn_access_aux *info)
1496{
1497	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1498		return false;
1499	if (type != BPF_READ)
1500		return false;
1501	if (off % size != 0)
1502		return false;
1503	return btf_ctx_access(off, size, type, prog, info);
1504}
1505
1506int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1507				     const union bpf_attr *kattr,
1508				     union bpf_attr __user *uattr)
1509{
1510	return -ENOTSUPP;
1511}
1512
1513const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1514	.get_func_proto  = raw_tp_prog_func_proto,
1515	.is_valid_access = raw_tp_prog_is_valid_access,
1516};
1517
1518const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1519#ifdef CONFIG_NET
1520	.test_run = bpf_prog_test_run_raw_tp,
1521#endif
1522};
1523
1524const struct bpf_verifier_ops tracing_verifier_ops = {
1525	.get_func_proto  = tracing_prog_func_proto,
1526	.is_valid_access = tracing_prog_is_valid_access,
1527};
1528
1529const struct bpf_prog_ops tracing_prog_ops = {
1530	.test_run = bpf_prog_test_run_tracing,
1531};
1532
1533static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1534						 enum bpf_access_type type,
1535						 const struct bpf_prog *prog,
1536						 struct bpf_insn_access_aux *info)
1537{
1538	if (off == 0) {
1539		if (size != sizeof(u64) || type != BPF_READ)
1540			return false;
1541		info->reg_type = PTR_TO_TP_BUFFER;
1542	}
1543	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1544}
1545
1546const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1547	.get_func_proto  = raw_tp_prog_func_proto,
1548	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1549};
1550
1551const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1552};
1553
1554static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1555				    const struct bpf_prog *prog,
1556				    struct bpf_insn_access_aux *info)
1557{
1558	const int size_u64 = sizeof(u64);
1559
1560	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1561		return false;
1562	if (type != BPF_READ)
1563		return false;
1564	if (off % size != 0) {
1565		if (sizeof(unsigned long) != 4)
1566			return false;
1567		if (size != 8)
1568			return false;
1569		if (off % size != 4)
1570			return false;
1571	}
1572
1573	switch (off) {
1574	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1575		bpf_ctx_record_field_size(info, size_u64);
1576		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1577			return false;
1578		break;
1579	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1580		bpf_ctx_record_field_size(info, size_u64);
1581		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1582			return false;
1583		break;
1584	default:
1585		if (size != sizeof(long))
1586			return false;
1587	}
1588
1589	return true;
1590}
1591
1592static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1593				      const struct bpf_insn *si,
1594				      struct bpf_insn *insn_buf,
1595				      struct bpf_prog *prog, u32 *target_size)
1596{
1597	struct bpf_insn *insn = insn_buf;
1598
1599	switch (si->off) {
1600	case offsetof(struct bpf_perf_event_data, sample_period):
1601		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1602						       data), si->dst_reg, si->src_reg,
1603				      offsetof(struct bpf_perf_event_data_kern, data));
1604		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1605				      bpf_target_off(struct perf_sample_data, period, 8,
1606						     target_size));
1607		break;
1608	case offsetof(struct bpf_perf_event_data, addr):
1609		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1610						       data), si->dst_reg, si->src_reg,
1611				      offsetof(struct bpf_perf_event_data_kern, data));
1612		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1613				      bpf_target_off(struct perf_sample_data, addr, 8,
1614						     target_size));
1615		break;
1616	default:
1617		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1618						       regs), si->dst_reg, si->src_reg,
1619				      offsetof(struct bpf_perf_event_data_kern, regs));
1620		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1621				      si->off);
1622		break;
1623	}
1624
1625	return insn - insn_buf;
1626}
1627
1628const struct bpf_verifier_ops perf_event_verifier_ops = {
1629	.get_func_proto		= pe_prog_func_proto,
1630	.is_valid_access	= pe_prog_is_valid_access,
1631	.convert_ctx_access	= pe_prog_convert_ctx_access,
1632};
1633
1634const struct bpf_prog_ops perf_event_prog_ops = {
1635};
1636
1637static DEFINE_MUTEX(bpf_event_mutex);
1638
1639#define BPF_TRACE_MAX_PROGS 64
1640
1641int perf_event_attach_bpf_prog(struct perf_event *event,
1642			       struct bpf_prog *prog)
1643{
1644	struct bpf_prog_array *old_array;
1645	struct bpf_prog_array *new_array;
1646	int ret = -EEXIST;
1647
1648	/*
1649	 * Kprobe override only works if they are on the function entry,
1650	 * and only if they are on the opt-in list.
1651	 */
1652	if (prog->kprobe_override &&
1653	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1654	     !trace_kprobe_error_injectable(event->tp_event)))
1655		return -EINVAL;
1656
1657	mutex_lock(&bpf_event_mutex);
1658
1659	if (event->prog)
1660		goto unlock;
1661
1662	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1663	if (old_array &&
1664	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1665		ret = -E2BIG;
1666		goto unlock;
1667	}
1668
1669	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1670	if (ret < 0)
1671		goto unlock;
1672
1673	/* set the new array to event->tp_event and set event->prog */
1674	event->prog = prog;
1675	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1676	bpf_prog_array_free(old_array);
1677
1678unlock:
1679	mutex_unlock(&bpf_event_mutex);
1680	return ret;
1681}
1682
1683void perf_event_detach_bpf_prog(struct perf_event *event)
1684{
1685	struct bpf_prog_array *old_array;
1686	struct bpf_prog_array *new_array;
1687	int ret;
1688
1689	mutex_lock(&bpf_event_mutex);
1690
1691	if (!event->prog)
1692		goto unlock;
1693
1694	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1695	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1696	if (ret == -ENOENT)
1697		goto unlock;
1698	if (ret < 0) {
1699		bpf_prog_array_delete_safe(old_array, event->prog);
1700	} else {
1701		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1702		bpf_prog_array_free(old_array);
1703	}
1704
1705	bpf_prog_put(event->prog);
1706	event->prog = NULL;
1707
1708unlock:
1709	mutex_unlock(&bpf_event_mutex);
1710}
1711
1712int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1713{
1714	struct perf_event_query_bpf __user *uquery = info;
1715	struct perf_event_query_bpf query = {};
1716	struct bpf_prog_array *progs;
1717	u32 *ids, prog_cnt, ids_len;
1718	int ret;
1719
1720	if (!perfmon_capable())
1721		return -EPERM;
1722	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1723		return -EINVAL;
1724	if (copy_from_user(&query, uquery, sizeof(query)))
1725		return -EFAULT;
1726
1727	ids_len = query.ids_len;
1728	if (ids_len > BPF_TRACE_MAX_PROGS)
1729		return -E2BIG;
1730	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1731	if (!ids)
1732		return -ENOMEM;
1733	/*
1734	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1735	 * is required when user only wants to check for uquery->prog_cnt.
1736	 * There is no need to check for it since the case is handled
1737	 * gracefully in bpf_prog_array_copy_info.
1738	 */
1739
1740	mutex_lock(&bpf_event_mutex);
1741	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1742	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1743	mutex_unlock(&bpf_event_mutex);
1744
1745	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1746	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1747		ret = -EFAULT;
1748
1749	kfree(ids);
1750	return ret;
1751}
1752
1753extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1754extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1755
1756struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1757{
1758	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1759
1760	for (; btp < __stop__bpf_raw_tp; btp++) {
1761		if (!strcmp(btp->tp->name, name))
1762			return btp;
1763	}
1764
1765	return bpf_get_raw_tracepoint_module(name);
1766}
1767
1768void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1769{
1770	struct module *mod;
1771
1772	preempt_disable();
1773	mod = __module_address((unsigned long)btp);
1774	module_put(mod);
1775	preempt_enable();
1776}
1777
1778static __always_inline
1779void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1780{
1781	cant_sleep();
1782	rcu_read_lock();
1783	(void) BPF_PROG_RUN(prog, args);
1784	rcu_read_unlock();
1785}
1786
1787#define UNPACK(...)			__VA_ARGS__
1788#define REPEAT_1(FN, DL, X, ...)	FN(X)
1789#define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1790#define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1791#define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1792#define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1793#define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1794#define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1795#define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1796#define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1797#define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1798#define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1799#define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1800#define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1801
1802#define SARG(X)		u64 arg##X
1803#define COPY(X)		args[X] = arg##X
1804
1805#define __DL_COM	(,)
1806#define __DL_SEM	(;)
1807
1808#define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1809
1810#define BPF_TRACE_DEFN_x(x)						\
1811	void bpf_trace_run##x(struct bpf_prog *prog,			\
1812			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1813	{								\
1814		u64 args[x];						\
1815		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1816		__bpf_trace_run(prog, args);				\
1817	}								\
1818	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1819BPF_TRACE_DEFN_x(1);
1820BPF_TRACE_DEFN_x(2);
1821BPF_TRACE_DEFN_x(3);
1822BPF_TRACE_DEFN_x(4);
1823BPF_TRACE_DEFN_x(5);
1824BPF_TRACE_DEFN_x(6);
1825BPF_TRACE_DEFN_x(7);
1826BPF_TRACE_DEFN_x(8);
1827BPF_TRACE_DEFN_x(9);
1828BPF_TRACE_DEFN_x(10);
1829BPF_TRACE_DEFN_x(11);
1830BPF_TRACE_DEFN_x(12);
1831
1832static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1833{
1834	struct tracepoint *tp = btp->tp;
1835
1836	/*
1837	 * check that program doesn't access arguments beyond what's
1838	 * available in this tracepoint
1839	 */
1840	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1841		return -EINVAL;
1842
1843	if (prog->aux->max_tp_access > btp->writable_size)
1844		return -EINVAL;
1845
1846	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
1847						   prog);
1848}
1849
1850int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1851{
1852	return __bpf_probe_register(btp, prog);
1853}
1854
1855int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1856{
1857	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1858}
1859
1860int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1861			    u32 *fd_type, const char **buf,
1862			    u64 *probe_offset, u64 *probe_addr)
1863{
1864	bool is_tracepoint, is_syscall_tp;
1865	struct bpf_prog *prog;
1866	int flags, err = 0;
1867
1868	prog = event->prog;
1869	if (!prog)
1870		return -ENOENT;
1871
1872	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1873	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1874		return -EOPNOTSUPP;
1875
1876	*prog_id = prog->aux->id;
1877	flags = event->tp_event->flags;
1878	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1879	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1880
1881	if (is_tracepoint || is_syscall_tp) {
1882		*buf = is_tracepoint ? event->tp_event->tp->name
1883				     : event->tp_event->name;
1884		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1885		*probe_offset = 0x0;
1886		*probe_addr = 0x0;
1887	} else {
1888		/* kprobe/uprobe */
1889		err = -EOPNOTSUPP;
1890#ifdef CONFIG_KPROBE_EVENTS
1891		if (flags & TRACE_EVENT_FL_KPROBE)
1892			err = bpf_get_kprobe_info(event, fd_type, buf,
1893						  probe_offset, probe_addr,
1894						  event->attr.type == PERF_TYPE_TRACEPOINT);
1895#endif
1896#ifdef CONFIG_UPROBE_EVENTS
1897		if (flags & TRACE_EVENT_FL_UPROBE)
1898			err = bpf_get_uprobe_info(event, fd_type, buf,
1899						  probe_offset,
1900						  event->attr.type == PERF_TYPE_TRACEPOINT);
1901#endif
1902	}
1903
1904	return err;
1905}
1906
1907static int __init send_signal_irq_work_init(void)
1908{
1909	int cpu;
1910	struct send_signal_irq_work *work;
1911
1912	for_each_possible_cpu(cpu) {
1913		work = per_cpu_ptr(&send_signal_work, cpu);
1914		init_irq_work(&work->irq_work, do_bpf_send_signal);
1915	}
1916	return 0;
1917}
1918
1919subsys_initcall(send_signal_irq_work_init);
1920
1921#ifdef CONFIG_MODULES
1922static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
1923			    void *module)
1924{
1925	struct bpf_trace_module *btm, *tmp;
1926	struct module *mod = module;
1927	int ret = 0;
1928
1929	if (mod->num_bpf_raw_events == 0 ||
1930	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
1931		goto out;
1932
1933	mutex_lock(&bpf_module_mutex);
1934
1935	switch (op) {
1936	case MODULE_STATE_COMING:
1937		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
1938		if (btm) {
1939			btm->module = module;
1940			list_add(&btm->list, &bpf_trace_modules);
1941		} else {
1942			ret = -ENOMEM;
1943		}
1944		break;
1945	case MODULE_STATE_GOING:
1946		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
1947			if (btm->module == module) {
1948				list_del(&btm->list);
1949				kfree(btm);
1950				break;
1951			}
1952		}
1953		break;
1954	}
1955
1956	mutex_unlock(&bpf_module_mutex);
1957
1958out:
1959	return notifier_from_errno(ret);
1960}
1961
1962static struct notifier_block bpf_module_nb = {
1963	.notifier_call = bpf_event_notify,
1964};
1965
1966static int __init bpf_event_init(void)
1967{
1968	register_module_notifier(&bpf_module_nb);
1969	return 0;
1970}
1971
1972fs_initcall(bpf_event_init);
1973#endif /* CONFIG_MODULES */
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
   3 * Copyright (c) 2016 Facebook
   4 */
   5#include <linux/kernel.h>
   6#include <linux/types.h>
   7#include <linux/slab.h>
   8#include <linux/bpf.h>
   9#include <linux/bpf_perf_event.h>
 
  10#include <linux/filter.h>
  11#include <linux/uaccess.h>
  12#include <linux/ctype.h>
  13#include <linux/kprobes.h>
  14#include <linux/spinlock.h>
  15#include <linux/syscalls.h>
  16#include <linux/error-injection.h>
  17#include <linux/btf_ids.h>
 
 
 
 
 
 
  18
  19#include <asm/tlb.h>
  20
  21#include "trace_probe.h"
  22#include "trace.h"
  23
  24#define CREATE_TRACE_POINTS
  25#include "bpf_trace.h"
  26
  27#define bpf_event_rcu_dereference(p)					\
  28	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
  29
  30#ifdef CONFIG_MODULES
  31struct bpf_trace_module {
  32	struct module *module;
  33	struct list_head list;
  34};
  35
  36static LIST_HEAD(bpf_trace_modules);
  37static DEFINE_MUTEX(bpf_module_mutex);
  38
  39static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
  40{
  41	struct bpf_raw_event_map *btp, *ret = NULL;
  42	struct bpf_trace_module *btm;
  43	unsigned int i;
  44
  45	mutex_lock(&bpf_module_mutex);
  46	list_for_each_entry(btm, &bpf_trace_modules, list) {
  47		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
  48			btp = &btm->module->bpf_raw_events[i];
  49			if (!strcmp(btp->tp->name, name)) {
  50				if (try_module_get(btm->module))
  51					ret = btp;
  52				goto out;
  53			}
  54		}
  55	}
  56out:
  57	mutex_unlock(&bpf_module_mutex);
  58	return ret;
  59}
  60#else
  61static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
  62{
  63	return NULL;
  64}
  65#endif /* CONFIG_MODULES */
  66
  67u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
  68u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
  69
 
 
 
 
  70/**
  71 * trace_call_bpf - invoke BPF program
  72 * @call: tracepoint event
  73 * @ctx: opaque context pointer
  74 *
  75 * kprobe handlers execute BPF programs via this helper.
  76 * Can be used from static tracepoints in the future.
  77 *
  78 * Return: BPF programs always return an integer which is interpreted by
  79 * kprobe handler as:
  80 * 0 - return from kprobe (event is filtered out)
  81 * 1 - store kprobe event into ring buffer
  82 * Other values are reserved and currently alias to 1
  83 */
  84unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
  85{
  86	unsigned int ret;
  87
  88	if (in_nmi()) /* not supported yet */
  89		return 1;
  90
  91	cant_sleep();
  92
  93	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
  94		/*
  95		 * since some bpf program is already running on this cpu,
  96		 * don't call into another bpf program (same or different)
  97		 * and don't send kprobe event into ring-buffer,
  98		 * so return zero here
  99		 */
 100		ret = 0;
 101		goto out;
 102	}
 103
 104	/*
 105	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
 106	 * to all call sites, we did a bpf_prog_array_valid() there to check
 107	 * whether call->prog_array is empty or not, which is
 108	 * a heurisitc to speed up execution.
 109	 *
 110	 * If bpf_prog_array_valid() fetched prog_array was
 111	 * non-NULL, we go into trace_call_bpf() and do the actual
 112	 * proper rcu_dereference() under RCU lock.
 113	 * If it turns out that prog_array is NULL then, we bail out.
 114	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
 115	 * was NULL, you'll skip the prog_array with the risk of missing
 116	 * out of events when it was updated in between this and the
 117	 * rcu_dereference() which is accepted risk.
 118	 */
 119	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
 120
 121 out:
 122	__this_cpu_dec(bpf_prog_active);
 123
 124	return ret;
 125}
 126
 127#ifdef CONFIG_BPF_KPROBE_OVERRIDE
 128BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
 129{
 130	regs_set_return_value(regs, rc);
 131	override_function_with_return(regs);
 132	return 0;
 133}
 134
 135static const struct bpf_func_proto bpf_override_return_proto = {
 136	.func		= bpf_override_return,
 137	.gpl_only	= true,
 138	.ret_type	= RET_INTEGER,
 139	.arg1_type	= ARG_PTR_TO_CTX,
 140	.arg2_type	= ARG_ANYTHING,
 141};
 142#endif
 143
 144static __always_inline int
 145bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
 146{
 147	int ret;
 148
 149	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
 150	if (unlikely(ret < 0))
 151		memset(dst, 0, size);
 152	return ret;
 153}
 154
 155BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
 156	   const void __user *, unsafe_ptr)
 157{
 158	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
 159}
 160
 161const struct bpf_func_proto bpf_probe_read_user_proto = {
 162	.func		= bpf_probe_read_user,
 163	.gpl_only	= true,
 164	.ret_type	= RET_INTEGER,
 165	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 166	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 167	.arg3_type	= ARG_ANYTHING,
 168};
 169
 170static __always_inline int
 171bpf_probe_read_user_str_common(void *dst, u32 size,
 172			       const void __user *unsafe_ptr)
 173{
 174	int ret;
 175
 
 
 
 
 
 
 
 
 
 
 176	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
 177	if (unlikely(ret < 0))
 178		memset(dst, 0, size);
 179	return ret;
 180}
 181
 182BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
 183	   const void __user *, unsafe_ptr)
 184{
 185	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
 186}
 187
 188const struct bpf_func_proto bpf_probe_read_user_str_proto = {
 189	.func		= bpf_probe_read_user_str,
 190	.gpl_only	= true,
 191	.ret_type	= RET_INTEGER,
 192	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 193	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 194	.arg3_type	= ARG_ANYTHING,
 195};
 196
 197static __always_inline int
 198bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
 199{
 200	int ret = security_locked_down(LOCKDOWN_BPF_READ);
 201
 202	if (unlikely(ret < 0))
 203		goto fail;
 204	ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
 205	if (unlikely(ret < 0))
 206		goto fail;
 207	return ret;
 208fail:
 209	memset(dst, 0, size);
 210	return ret;
 211}
 212
 213BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
 214	   const void *, unsafe_ptr)
 215{
 216	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
 217}
 218
 219const struct bpf_func_proto bpf_probe_read_kernel_proto = {
 220	.func		= bpf_probe_read_kernel,
 221	.gpl_only	= true,
 222	.ret_type	= RET_INTEGER,
 223	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 224	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 225	.arg3_type	= ARG_ANYTHING,
 226};
 227
 228static __always_inline int
 229bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
 230{
 231	int ret = security_locked_down(LOCKDOWN_BPF_READ);
 232
 233	if (unlikely(ret < 0))
 234		goto fail;
 235
 236	/*
 237	 * The strncpy_from_kernel_nofault() call will likely not fill the
 238	 * entire buffer, but that's okay in this circumstance as we're probing
 239	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
 240	 * as well probe the stack. Thus, memory is explicitly cleared
 241	 * only in error case, so that improper users ignoring return
 242	 * code altogether don't copy garbage; otherwise length of string
 243	 * is returned that can be used for bpf_perf_event_output() et al.
 244	 */
 245	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
 246	if (unlikely(ret < 0))
 247		goto fail;
 248
 249	return ret;
 250fail:
 251	memset(dst, 0, size);
 252	return ret;
 253}
 254
 255BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
 256	   const void *, unsafe_ptr)
 257{
 258	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
 259}
 260
 261const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
 262	.func		= bpf_probe_read_kernel_str,
 263	.gpl_only	= true,
 264	.ret_type	= RET_INTEGER,
 265	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 266	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 267	.arg3_type	= ARG_ANYTHING,
 268};
 269
 270#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
 271BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
 272	   const void *, unsafe_ptr)
 273{
 274	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
 275		return bpf_probe_read_user_common(dst, size,
 276				(__force void __user *)unsafe_ptr);
 277	}
 278	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
 279}
 280
 281static const struct bpf_func_proto bpf_probe_read_compat_proto = {
 282	.func		= bpf_probe_read_compat,
 283	.gpl_only	= true,
 284	.ret_type	= RET_INTEGER,
 285	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 286	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 287	.arg3_type	= ARG_ANYTHING,
 288};
 289
 290BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
 291	   const void *, unsafe_ptr)
 292{
 293	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
 294		return bpf_probe_read_user_str_common(dst, size,
 295				(__force void __user *)unsafe_ptr);
 296	}
 297	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
 298}
 299
 300static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
 301	.func		= bpf_probe_read_compat_str,
 302	.gpl_only	= true,
 303	.ret_type	= RET_INTEGER,
 304	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 305	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 306	.arg3_type	= ARG_ANYTHING,
 307};
 308#endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
 309
 310BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
 311	   u32, size)
 312{
 313	/*
 314	 * Ensure we're in user context which is safe for the helper to
 315	 * run. This helper has no business in a kthread.
 316	 *
 317	 * access_ok() should prevent writing to non-user memory, but in
 318	 * some situations (nommu, temporary switch, etc) access_ok() does
 319	 * not provide enough validation, hence the check on KERNEL_DS.
 320	 *
 321	 * nmi_uaccess_okay() ensures the probe is not run in an interim
 322	 * state, when the task or mm are switched. This is specifically
 323	 * required to prevent the use of temporary mm.
 324	 */
 325
 326	if (unlikely(in_interrupt() ||
 327		     current->flags & (PF_KTHREAD | PF_EXITING)))
 328		return -EPERM;
 329	if (unlikely(uaccess_kernel()))
 330		return -EPERM;
 331	if (unlikely(!nmi_uaccess_okay()))
 332		return -EPERM;
 333
 334	return copy_to_user_nofault(unsafe_ptr, src, size);
 335}
 336
 337static const struct bpf_func_proto bpf_probe_write_user_proto = {
 338	.func		= bpf_probe_write_user,
 339	.gpl_only	= true,
 340	.ret_type	= RET_INTEGER,
 341	.arg1_type	= ARG_ANYTHING,
 342	.arg2_type	= ARG_PTR_TO_MEM,
 343	.arg3_type	= ARG_CONST_SIZE,
 344};
 345
 346static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
 347{
 348	if (!capable(CAP_SYS_ADMIN))
 349		return NULL;
 350
 351	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
 352			    current->comm, task_pid_nr(current));
 353
 354	return &bpf_probe_write_user_proto;
 355}
 356
 357static void bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
 358		size_t bufsz)
 359{
 360	void __user *user_ptr = (__force void __user *)unsafe_ptr;
 361
 362	buf[0] = 0;
 363
 364	switch (fmt_ptype) {
 365	case 's':
 366#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
 367		if ((unsigned long)unsafe_ptr < TASK_SIZE) {
 368			strncpy_from_user_nofault(buf, user_ptr, bufsz);
 369			break;
 370		}
 371		fallthrough;
 372#endif
 373	case 'k':
 374		strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
 375		break;
 376	case 'u':
 377		strncpy_from_user_nofault(buf, user_ptr, bufsz);
 378		break;
 379	}
 380}
 381
 382static DEFINE_RAW_SPINLOCK(trace_printk_lock);
 383
 384#define BPF_TRACE_PRINTK_SIZE   1024
 
 385
 386static __printf(1, 0) int bpf_do_trace_printk(const char *fmt, ...)
 
 387{
 
 
 388	static char buf[BPF_TRACE_PRINTK_SIZE];
 389	unsigned long flags;
 390	va_list ap;
 391	int ret;
 392
 
 
 
 
 
 393	raw_spin_lock_irqsave(&trace_printk_lock, flags);
 394	va_start(ap, fmt);
 395	ret = vsnprintf(buf, sizeof(buf), fmt, ap);
 396	va_end(ap);
 397	/* vsnprintf() will not append null for zero-length strings */
 398	if (ret == 0)
 399		buf[0] = '\0';
 400	trace_bpf_trace_printk(buf);
 401	raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
 402
 
 
 403	return ret;
 404}
 405
 406/*
 407 * Only limited trace_printk() conversion specifiers allowed:
 408 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %pB %pks %pus %s
 409 */
 410BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
 411	   u64, arg2, u64, arg3)
 412{
 413	int i, mod[3] = {}, fmt_cnt = 0;
 414	char buf[64], fmt_ptype;
 415	void *unsafe_ptr = NULL;
 416	bool str_seen = false;
 417
 418	/*
 419	 * bpf_check()->check_func_arg()->check_stack_boundary()
 420	 * guarantees that fmt points to bpf program stack,
 421	 * fmt_size bytes of it were initialized and fmt_size > 0
 422	 */
 423	if (fmt[--fmt_size] != 0)
 424		return -EINVAL;
 425
 426	/* check format string for allowed specifiers */
 427	for (i = 0; i < fmt_size; i++) {
 428		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
 429			return -EINVAL;
 430
 431		if (fmt[i] != '%')
 432			continue;
 433
 434		if (fmt_cnt >= 3)
 435			return -EINVAL;
 436
 437		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
 438		i++;
 439		if (fmt[i] == 'l') {
 440			mod[fmt_cnt]++;
 441			i++;
 442		} else if (fmt[i] == 'p') {
 443			mod[fmt_cnt]++;
 444			if ((fmt[i + 1] == 'k' ||
 445			     fmt[i + 1] == 'u') &&
 446			    fmt[i + 2] == 's') {
 447				fmt_ptype = fmt[i + 1];
 448				i += 2;
 449				goto fmt_str;
 450			}
 451
 452			if (fmt[i + 1] == 'B') {
 453				i++;
 454				goto fmt_next;
 455			}
 456
 457			/* disallow any further format extensions */
 458			if (fmt[i + 1] != 0 &&
 459			    !isspace(fmt[i + 1]) &&
 460			    !ispunct(fmt[i + 1]))
 461				return -EINVAL;
 462
 463			goto fmt_next;
 464		} else if (fmt[i] == 's') {
 465			mod[fmt_cnt]++;
 466			fmt_ptype = fmt[i];
 467fmt_str:
 468			if (str_seen)
 469				/* allow only one '%s' per fmt string */
 470				return -EINVAL;
 471			str_seen = true;
 472
 473			if (fmt[i + 1] != 0 &&
 474			    !isspace(fmt[i + 1]) &&
 475			    !ispunct(fmt[i + 1]))
 476				return -EINVAL;
 477
 478			switch (fmt_cnt) {
 479			case 0:
 480				unsafe_ptr = (void *)(long)arg1;
 481				arg1 = (long)buf;
 482				break;
 483			case 1:
 484				unsafe_ptr = (void *)(long)arg2;
 485				arg2 = (long)buf;
 486				break;
 487			case 2:
 488				unsafe_ptr = (void *)(long)arg3;
 489				arg3 = (long)buf;
 490				break;
 491			}
 492
 493			bpf_trace_copy_string(buf, unsafe_ptr, fmt_ptype,
 494					sizeof(buf));
 495			goto fmt_next;
 496		}
 497
 498		if (fmt[i] == 'l') {
 499			mod[fmt_cnt]++;
 500			i++;
 501		}
 502
 503		if (fmt[i] != 'i' && fmt[i] != 'd' &&
 504		    fmt[i] != 'u' && fmt[i] != 'x')
 505			return -EINVAL;
 506fmt_next:
 507		fmt_cnt++;
 508	}
 509
 510/* Horrid workaround for getting va_list handling working with different
 511 * argument type combinations generically for 32 and 64 bit archs.
 512 */
 513#define __BPF_TP_EMIT()	__BPF_ARG3_TP()
 514#define __BPF_TP(...)							\
 515	bpf_do_trace_printk(fmt, ##__VA_ARGS__)
 516
 517#define __BPF_ARG1_TP(...)						\
 518	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
 519	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
 520	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
 521	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
 522	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
 523
 524#define __BPF_ARG2_TP(...)						\
 525	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
 526	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
 527	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
 528	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
 529	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
 530
 531#define __BPF_ARG3_TP(...)						\
 532	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
 533	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
 534	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
 535	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
 536	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
 537
 538	return __BPF_TP_EMIT();
 539}
 540
 541static const struct bpf_func_proto bpf_trace_printk_proto = {
 542	.func		= bpf_trace_printk,
 543	.gpl_only	= true,
 544	.ret_type	= RET_INTEGER,
 545	.arg1_type	= ARG_PTR_TO_MEM,
 546	.arg2_type	= ARG_CONST_SIZE,
 547};
 548
 549const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
 550{
 551	/*
 552	 * This program might be calling bpf_trace_printk,
 553	 * so enable the associated bpf_trace/bpf_trace_printk event.
 554	 * Repeat this each time as it is possible a user has
 555	 * disabled bpf_trace_printk events.  By loading a program
 556	 * calling bpf_trace_printk() however the user has expressed
 557	 * the intent to see such events.
 558	 */
 559	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
 560		pr_warn_ratelimited("could not enable bpf_trace_printk events");
 561
 562	return &bpf_trace_printk_proto;
 563}
 564
 565#define MAX_SEQ_PRINTF_VARARGS		12
 566#define MAX_SEQ_PRINTF_MAX_MEMCPY	6
 567#define MAX_SEQ_PRINTF_STR_LEN		128
 568
 569struct bpf_seq_printf_buf {
 570	char buf[MAX_SEQ_PRINTF_MAX_MEMCPY][MAX_SEQ_PRINTF_STR_LEN];
 571};
 572static DEFINE_PER_CPU(struct bpf_seq_printf_buf, bpf_seq_printf_buf);
 573static DEFINE_PER_CPU(int, bpf_seq_printf_buf_used);
 574
 575BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
 576	   const void *, data, u32, data_len)
 577{
 578	int err = -EINVAL, fmt_cnt = 0, memcpy_cnt = 0;
 579	int i, buf_used, copy_size, num_args;
 580	u64 params[MAX_SEQ_PRINTF_VARARGS];
 581	struct bpf_seq_printf_buf *bufs;
 582	const u64 *args = data;
 583
 584	buf_used = this_cpu_inc_return(bpf_seq_printf_buf_used);
 585	if (WARN_ON_ONCE(buf_used > 1)) {
 586		err = -EBUSY;
 587		goto out;
 588	}
 589
 590	bufs = this_cpu_ptr(&bpf_seq_printf_buf);
 591
 592	/*
 593	 * bpf_check()->check_func_arg()->check_stack_boundary()
 594	 * guarantees that fmt points to bpf program stack,
 595	 * fmt_size bytes of it were initialized and fmt_size > 0
 596	 */
 597	if (fmt[--fmt_size] != 0)
 598		goto out;
 599
 600	if (data_len & 7)
 601		goto out;
 602
 603	for (i = 0; i < fmt_size; i++) {
 604		if (fmt[i] == '%') {
 605			if (fmt[i + 1] == '%')
 606				i++;
 607			else if (!data || !data_len)
 608				goto out;
 609		}
 610	}
 611
 
 
 
 612	num_args = data_len / 8;
 613
 614	/* check format string for allowed specifiers */
 615	for (i = 0; i < fmt_size; i++) {
 616		/* only printable ascii for now. */
 617		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
 618			err = -EINVAL;
 619			goto out;
 620		}
 621
 622		if (fmt[i] != '%')
 623			continue;
 624
 625		if (fmt[i + 1] == '%') {
 626			i++;
 627			continue;
 628		}
 629
 630		if (fmt_cnt >= MAX_SEQ_PRINTF_VARARGS) {
 631			err = -E2BIG;
 632			goto out;
 633		}
 634
 635		if (fmt_cnt >= num_args) {
 636			err = -EINVAL;
 637			goto out;
 638		}
 639
 640		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
 641		i++;
 642
 643		/* skip optional "[0 +-][num]" width formating field */
 644		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
 645		       fmt[i] == ' ')
 646			i++;
 647		if (fmt[i] >= '1' && fmt[i] <= '9') {
 648			i++;
 649			while (fmt[i] >= '0' && fmt[i] <= '9')
 650				i++;
 651		}
 652
 653		if (fmt[i] == 's') {
 654			void *unsafe_ptr;
 655
 656			/* try our best to copy */
 657			if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) {
 658				err = -E2BIG;
 659				goto out;
 660			}
 661
 662			unsafe_ptr = (void *)(long)args[fmt_cnt];
 663			err = strncpy_from_kernel_nofault(bufs->buf[memcpy_cnt],
 664					unsafe_ptr, MAX_SEQ_PRINTF_STR_LEN);
 665			if (err < 0)
 666				bufs->buf[memcpy_cnt][0] = '\0';
 667			params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt];
 668
 669			fmt_cnt++;
 670			memcpy_cnt++;
 671			continue;
 672		}
 673
 674		if (fmt[i] == 'p') {
 675			if (fmt[i + 1] == 0 ||
 676			    fmt[i + 1] == 'K' ||
 677			    fmt[i + 1] == 'x' ||
 678			    fmt[i + 1] == 'B') {
 679				/* just kernel pointers */
 680				params[fmt_cnt] = args[fmt_cnt];
 681				fmt_cnt++;
 682				continue;
 683			}
 684
 685			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
 686			if (fmt[i + 1] != 'i' && fmt[i + 1] != 'I') {
 687				err = -EINVAL;
 688				goto out;
 689			}
 690			if (fmt[i + 2] != '4' && fmt[i + 2] != '6') {
 691				err = -EINVAL;
 692				goto out;
 693			}
 694
 695			if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) {
 696				err = -E2BIG;
 697				goto out;
 698			}
 699
 700
 701			copy_size = (fmt[i + 2] == '4') ? 4 : 16;
 702
 703			err = copy_from_kernel_nofault(bufs->buf[memcpy_cnt],
 704						(void *) (long) args[fmt_cnt],
 705						copy_size);
 706			if (err < 0)
 707				memset(bufs->buf[memcpy_cnt], 0, copy_size);
 708			params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt];
 709
 710			i += 2;
 711			fmt_cnt++;
 712			memcpy_cnt++;
 713			continue;
 714		}
 715
 716		if (fmt[i] == 'l') {
 717			i++;
 718			if (fmt[i] == 'l')
 719				i++;
 720		}
 721
 722		if (fmt[i] != 'i' && fmt[i] != 'd' &&
 723		    fmt[i] != 'u' && fmt[i] != 'x' &&
 724		    fmt[i] != 'X') {
 725			err = -EINVAL;
 726			goto out;
 727		}
 728
 729		params[fmt_cnt] = args[fmt_cnt];
 730		fmt_cnt++;
 731	}
 732
 733	/* Maximumly we can have MAX_SEQ_PRINTF_VARARGS parameter, just give
 734	 * all of them to seq_printf().
 735	 */
 736	seq_printf(m, fmt, params[0], params[1], params[2], params[3],
 737		   params[4], params[5], params[6], params[7], params[8],
 738		   params[9], params[10], params[11]);
 739
 740	err = seq_has_overflowed(m) ? -EOVERFLOW : 0;
 741out:
 742	this_cpu_dec(bpf_seq_printf_buf_used);
 743	return err;
 744}
 745
 746BTF_ID_LIST(bpf_seq_printf_btf_ids)
 747BTF_ID(struct, seq_file)
 748
 749static const struct bpf_func_proto bpf_seq_printf_proto = {
 750	.func		= bpf_seq_printf,
 751	.gpl_only	= true,
 752	.ret_type	= RET_INTEGER,
 753	.arg1_type	= ARG_PTR_TO_BTF_ID,
 
 754	.arg2_type	= ARG_PTR_TO_MEM,
 755	.arg3_type	= ARG_CONST_SIZE,
 756	.arg4_type      = ARG_PTR_TO_MEM_OR_NULL,
 757	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
 758	.btf_id		= bpf_seq_printf_btf_ids,
 759};
 760
 761BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
 762{
 763	return seq_write(m, data, len) ? -EOVERFLOW : 0;
 764}
 765
 766BTF_ID_LIST(bpf_seq_write_btf_ids)
 767BTF_ID(struct, seq_file)
 768
 769static const struct bpf_func_proto bpf_seq_write_proto = {
 770	.func		= bpf_seq_write,
 771	.gpl_only	= true,
 772	.ret_type	= RET_INTEGER,
 773	.arg1_type	= ARG_PTR_TO_BTF_ID,
 
 774	.arg2_type	= ARG_PTR_TO_MEM,
 775	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
 776	.btf_id		= bpf_seq_write_btf_ids,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 777};
 778
 779static __always_inline int
 780get_map_perf_counter(struct bpf_map *map, u64 flags,
 781		     u64 *value, u64 *enabled, u64 *running)
 782{
 783	struct bpf_array *array = container_of(map, struct bpf_array, map);
 784	unsigned int cpu = smp_processor_id();
 785	u64 index = flags & BPF_F_INDEX_MASK;
 786	struct bpf_event_entry *ee;
 787
 788	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
 789		return -EINVAL;
 790	if (index == BPF_F_CURRENT_CPU)
 791		index = cpu;
 792	if (unlikely(index >= array->map.max_entries))
 793		return -E2BIG;
 794
 795	ee = READ_ONCE(array->ptrs[index]);
 796	if (!ee)
 797		return -ENOENT;
 798
 799	return perf_event_read_local(ee->event, value, enabled, running);
 800}
 801
 802BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
 803{
 804	u64 value = 0;
 805	int err;
 806
 807	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
 808	/*
 809	 * this api is ugly since we miss [-22..-2] range of valid
 810	 * counter values, but that's uapi
 811	 */
 812	if (err)
 813		return err;
 814	return value;
 815}
 816
 817static const struct bpf_func_proto bpf_perf_event_read_proto = {
 818	.func		= bpf_perf_event_read,
 819	.gpl_only	= true,
 820	.ret_type	= RET_INTEGER,
 821	.arg1_type	= ARG_CONST_MAP_PTR,
 822	.arg2_type	= ARG_ANYTHING,
 823};
 824
 825BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
 826	   struct bpf_perf_event_value *, buf, u32, size)
 827{
 828	int err = -EINVAL;
 829
 830	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
 831		goto clear;
 832	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
 833				   &buf->running);
 834	if (unlikely(err))
 835		goto clear;
 836	return 0;
 837clear:
 838	memset(buf, 0, size);
 839	return err;
 840}
 841
 842static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
 843	.func		= bpf_perf_event_read_value,
 844	.gpl_only	= true,
 845	.ret_type	= RET_INTEGER,
 846	.arg1_type	= ARG_CONST_MAP_PTR,
 847	.arg2_type	= ARG_ANYTHING,
 848	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
 849	.arg4_type	= ARG_CONST_SIZE,
 850};
 851
 852static __always_inline u64
 853__bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
 854			u64 flags, struct perf_sample_data *sd)
 855{
 856	struct bpf_array *array = container_of(map, struct bpf_array, map);
 857	unsigned int cpu = smp_processor_id();
 858	u64 index = flags & BPF_F_INDEX_MASK;
 859	struct bpf_event_entry *ee;
 860	struct perf_event *event;
 861
 862	if (index == BPF_F_CURRENT_CPU)
 863		index = cpu;
 864	if (unlikely(index >= array->map.max_entries))
 865		return -E2BIG;
 866
 867	ee = READ_ONCE(array->ptrs[index]);
 868	if (!ee)
 869		return -ENOENT;
 870
 871	event = ee->event;
 872	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
 873		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
 874		return -EINVAL;
 875
 876	if (unlikely(event->oncpu != cpu))
 877		return -EOPNOTSUPP;
 878
 879	return perf_event_output(event, sd, regs);
 880}
 881
 882/*
 883 * Support executing tracepoints in normal, irq, and nmi context that each call
 884 * bpf_perf_event_output
 885 */
 886struct bpf_trace_sample_data {
 887	struct perf_sample_data sds[3];
 888};
 889
 890static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
 891static DEFINE_PER_CPU(int, bpf_trace_nest_level);
 892BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
 893	   u64, flags, void *, data, u64, size)
 894{
 895	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
 896	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
 897	struct perf_raw_record raw = {
 898		.frag = {
 899			.size = size,
 900			.data = data,
 901		},
 902	};
 903	struct perf_sample_data *sd;
 904	int err;
 905
 906	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
 907		err = -EBUSY;
 908		goto out;
 909	}
 910
 911	sd = &sds->sds[nest_level - 1];
 912
 913	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
 914		err = -EINVAL;
 915		goto out;
 916	}
 917
 918	perf_sample_data_init(sd, 0, 0);
 919	sd->raw = &raw;
 920
 921	err = __bpf_perf_event_output(regs, map, flags, sd);
 922
 923out:
 924	this_cpu_dec(bpf_trace_nest_level);
 925	return err;
 926}
 927
 928static const struct bpf_func_proto bpf_perf_event_output_proto = {
 929	.func		= bpf_perf_event_output,
 930	.gpl_only	= true,
 931	.ret_type	= RET_INTEGER,
 932	.arg1_type	= ARG_PTR_TO_CTX,
 933	.arg2_type	= ARG_CONST_MAP_PTR,
 934	.arg3_type	= ARG_ANYTHING,
 935	.arg4_type	= ARG_PTR_TO_MEM,
 936	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
 937};
 938
 939static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
 940struct bpf_nested_pt_regs {
 941	struct pt_regs regs[3];
 942};
 943static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
 944static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
 945
 946u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
 947		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
 948{
 949	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
 950	struct perf_raw_frag frag = {
 951		.copy		= ctx_copy,
 952		.size		= ctx_size,
 953		.data		= ctx,
 954	};
 955	struct perf_raw_record raw = {
 956		.frag = {
 957			{
 958				.next	= ctx_size ? &frag : NULL,
 959			},
 960			.size	= meta_size,
 961			.data	= meta,
 962		},
 963	};
 964	struct perf_sample_data *sd;
 965	struct pt_regs *regs;
 966	u64 ret;
 967
 968	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
 969		ret = -EBUSY;
 970		goto out;
 971	}
 972	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
 973	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
 974
 975	perf_fetch_caller_regs(regs);
 976	perf_sample_data_init(sd, 0, 0);
 977	sd->raw = &raw;
 978
 979	ret = __bpf_perf_event_output(regs, map, flags, sd);
 980out:
 981	this_cpu_dec(bpf_event_output_nest_level);
 982	return ret;
 983}
 984
 985BPF_CALL_0(bpf_get_current_task)
 986{
 987	return (long) current;
 988}
 989
 990const struct bpf_func_proto bpf_get_current_task_proto = {
 991	.func		= bpf_get_current_task,
 992	.gpl_only	= true,
 993	.ret_type	= RET_INTEGER,
 994};
 995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
 997{
 998	struct bpf_array *array = container_of(map, struct bpf_array, map);
 999	struct cgroup *cgrp;
1000
1001	if (unlikely(idx >= array->map.max_entries))
1002		return -E2BIG;
1003
1004	cgrp = READ_ONCE(array->ptrs[idx]);
1005	if (unlikely(!cgrp))
1006		return -EAGAIN;
1007
1008	return task_under_cgroup_hierarchy(current, cgrp);
1009}
1010
1011static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
1012	.func           = bpf_current_task_under_cgroup,
1013	.gpl_only       = false,
1014	.ret_type       = RET_INTEGER,
1015	.arg1_type      = ARG_CONST_MAP_PTR,
1016	.arg2_type      = ARG_ANYTHING,
1017};
1018
1019struct send_signal_irq_work {
1020	struct irq_work irq_work;
1021	struct task_struct *task;
1022	u32 sig;
1023	enum pid_type type;
1024};
1025
1026static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
1027
1028static void do_bpf_send_signal(struct irq_work *entry)
1029{
1030	struct send_signal_irq_work *work;
1031
1032	work = container_of(entry, struct send_signal_irq_work, irq_work);
1033	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
1034}
1035
1036static int bpf_send_signal_common(u32 sig, enum pid_type type)
1037{
1038	struct send_signal_irq_work *work = NULL;
1039
1040	/* Similar to bpf_probe_write_user, task needs to be
1041	 * in a sound condition and kernel memory access be
1042	 * permitted in order to send signal to the current
1043	 * task.
1044	 */
1045	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
1046		return -EPERM;
1047	if (unlikely(uaccess_kernel()))
1048		return -EPERM;
1049	if (unlikely(!nmi_uaccess_okay()))
1050		return -EPERM;
1051
1052	if (irqs_disabled()) {
1053		/* Do an early check on signal validity. Otherwise,
1054		 * the error is lost in deferred irq_work.
1055		 */
1056		if (unlikely(!valid_signal(sig)))
1057			return -EINVAL;
1058
1059		work = this_cpu_ptr(&send_signal_work);
1060		if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY)
1061			return -EBUSY;
1062
1063		/* Add the current task, which is the target of sending signal,
1064		 * to the irq_work. The current task may change when queued
1065		 * irq works get executed.
1066		 */
1067		work->task = current;
1068		work->sig = sig;
1069		work->type = type;
1070		irq_work_queue(&work->irq_work);
1071		return 0;
1072	}
1073
1074	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
1075}
1076
1077BPF_CALL_1(bpf_send_signal, u32, sig)
1078{
1079	return bpf_send_signal_common(sig, PIDTYPE_TGID);
1080}
1081
1082static const struct bpf_func_proto bpf_send_signal_proto = {
1083	.func		= bpf_send_signal,
1084	.gpl_only	= false,
1085	.ret_type	= RET_INTEGER,
1086	.arg1_type	= ARG_ANYTHING,
1087};
1088
1089BPF_CALL_1(bpf_send_signal_thread, u32, sig)
1090{
1091	return bpf_send_signal_common(sig, PIDTYPE_PID);
1092}
1093
1094static const struct bpf_func_proto bpf_send_signal_thread_proto = {
1095	.func		= bpf_send_signal_thread,
1096	.gpl_only	= false,
1097	.ret_type	= RET_INTEGER,
1098	.arg1_type	= ARG_ANYTHING,
1099};
1100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101const struct bpf_func_proto *
1102bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1103{
1104	switch (func_id) {
1105	case BPF_FUNC_map_lookup_elem:
1106		return &bpf_map_lookup_elem_proto;
1107	case BPF_FUNC_map_update_elem:
1108		return &bpf_map_update_elem_proto;
1109	case BPF_FUNC_map_delete_elem:
1110		return &bpf_map_delete_elem_proto;
1111	case BPF_FUNC_map_push_elem:
1112		return &bpf_map_push_elem_proto;
1113	case BPF_FUNC_map_pop_elem:
1114		return &bpf_map_pop_elem_proto;
1115	case BPF_FUNC_map_peek_elem:
1116		return &bpf_map_peek_elem_proto;
1117	case BPF_FUNC_ktime_get_ns:
1118		return &bpf_ktime_get_ns_proto;
1119	case BPF_FUNC_ktime_get_boot_ns:
1120		return &bpf_ktime_get_boot_ns_proto;
 
 
1121	case BPF_FUNC_tail_call:
1122		return &bpf_tail_call_proto;
1123	case BPF_FUNC_get_current_pid_tgid:
1124		return &bpf_get_current_pid_tgid_proto;
1125	case BPF_FUNC_get_current_task:
1126		return &bpf_get_current_task_proto;
 
 
1127	case BPF_FUNC_get_current_uid_gid:
1128		return &bpf_get_current_uid_gid_proto;
1129	case BPF_FUNC_get_current_comm:
1130		return &bpf_get_current_comm_proto;
1131	case BPF_FUNC_trace_printk:
1132		return bpf_get_trace_printk_proto();
1133	case BPF_FUNC_get_smp_processor_id:
1134		return &bpf_get_smp_processor_id_proto;
1135	case BPF_FUNC_get_numa_node_id:
1136		return &bpf_get_numa_node_id_proto;
1137	case BPF_FUNC_perf_event_read:
1138		return &bpf_perf_event_read_proto;
1139	case BPF_FUNC_probe_write_user:
1140		return bpf_get_probe_write_proto();
1141	case BPF_FUNC_current_task_under_cgroup:
1142		return &bpf_current_task_under_cgroup_proto;
1143	case BPF_FUNC_get_prandom_u32:
1144		return &bpf_get_prandom_u32_proto;
 
 
 
1145	case BPF_FUNC_probe_read_user:
1146		return &bpf_probe_read_user_proto;
1147	case BPF_FUNC_probe_read_kernel:
1148		return &bpf_probe_read_kernel_proto;
 
1149	case BPF_FUNC_probe_read_user_str:
1150		return &bpf_probe_read_user_str_proto;
1151	case BPF_FUNC_probe_read_kernel_str:
1152		return &bpf_probe_read_kernel_str_proto;
 
1153#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1154	case BPF_FUNC_probe_read:
1155		return &bpf_probe_read_compat_proto;
 
1156	case BPF_FUNC_probe_read_str:
1157		return &bpf_probe_read_compat_str_proto;
 
1158#endif
1159#ifdef CONFIG_CGROUPS
1160	case BPF_FUNC_get_current_cgroup_id:
1161		return &bpf_get_current_cgroup_id_proto;
 
 
1162#endif
1163	case BPF_FUNC_send_signal:
1164		return &bpf_send_signal_proto;
1165	case BPF_FUNC_send_signal_thread:
1166		return &bpf_send_signal_thread_proto;
1167	case BPF_FUNC_perf_event_read_value:
1168		return &bpf_perf_event_read_value_proto;
1169	case BPF_FUNC_get_ns_current_pid_tgid:
1170		return &bpf_get_ns_current_pid_tgid_proto;
1171	case BPF_FUNC_ringbuf_output:
1172		return &bpf_ringbuf_output_proto;
1173	case BPF_FUNC_ringbuf_reserve:
1174		return &bpf_ringbuf_reserve_proto;
1175	case BPF_FUNC_ringbuf_submit:
1176		return &bpf_ringbuf_submit_proto;
1177	case BPF_FUNC_ringbuf_discard:
1178		return &bpf_ringbuf_discard_proto;
1179	case BPF_FUNC_ringbuf_query:
1180		return &bpf_ringbuf_query_proto;
1181	case BPF_FUNC_jiffies64:
1182		return &bpf_jiffies64_proto;
1183	case BPF_FUNC_get_task_stack:
1184		return &bpf_get_task_stack_proto;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185	default:
1186		return NULL;
1187	}
1188}
1189
1190static const struct bpf_func_proto *
1191kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1192{
1193	switch (func_id) {
1194	case BPF_FUNC_perf_event_output:
1195		return &bpf_perf_event_output_proto;
1196	case BPF_FUNC_get_stackid:
1197		return &bpf_get_stackid_proto;
1198	case BPF_FUNC_get_stack:
1199		return &bpf_get_stack_proto;
1200#ifdef CONFIG_BPF_KPROBE_OVERRIDE
1201	case BPF_FUNC_override_return:
1202		return &bpf_override_return_proto;
1203#endif
1204	default:
1205		return bpf_tracing_func_proto(func_id, prog);
1206	}
1207}
1208
1209/* bpf+kprobe programs can access fields of 'struct pt_regs' */
1210static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1211					const struct bpf_prog *prog,
1212					struct bpf_insn_access_aux *info)
1213{
1214	if (off < 0 || off >= sizeof(struct pt_regs))
1215		return false;
1216	if (type != BPF_READ)
1217		return false;
1218	if (off % size != 0)
1219		return false;
1220	/*
1221	 * Assertion for 32 bit to make sure last 8 byte access
1222	 * (BPF_DW) to the last 4 byte member is disallowed.
1223	 */
1224	if (off + size > sizeof(struct pt_regs))
1225		return false;
1226
1227	return true;
1228}
1229
1230const struct bpf_verifier_ops kprobe_verifier_ops = {
1231	.get_func_proto  = kprobe_prog_func_proto,
1232	.is_valid_access = kprobe_prog_is_valid_access,
1233};
1234
1235const struct bpf_prog_ops kprobe_prog_ops = {
1236};
1237
1238BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1239	   u64, flags, void *, data, u64, size)
1240{
1241	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1242
1243	/*
1244	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1245	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1246	 * from there and call the same bpf_perf_event_output() helper inline.
1247	 */
1248	return ____bpf_perf_event_output(regs, map, flags, data, size);
1249}
1250
1251static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1252	.func		= bpf_perf_event_output_tp,
1253	.gpl_only	= true,
1254	.ret_type	= RET_INTEGER,
1255	.arg1_type	= ARG_PTR_TO_CTX,
1256	.arg2_type	= ARG_CONST_MAP_PTR,
1257	.arg3_type	= ARG_ANYTHING,
1258	.arg4_type	= ARG_PTR_TO_MEM,
1259	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1260};
1261
1262BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1263	   u64, flags)
1264{
1265	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1266
1267	/*
1268	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1269	 * the other helper's function body cannot be inlined due to being
1270	 * external, thus we need to call raw helper function.
1271	 */
1272	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1273			       flags, 0, 0);
1274}
1275
1276static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1277	.func		= bpf_get_stackid_tp,
1278	.gpl_only	= true,
1279	.ret_type	= RET_INTEGER,
1280	.arg1_type	= ARG_PTR_TO_CTX,
1281	.arg2_type	= ARG_CONST_MAP_PTR,
1282	.arg3_type	= ARG_ANYTHING,
1283};
1284
1285BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1286	   u64, flags)
1287{
1288	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1289
1290	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1291			     (unsigned long) size, flags, 0);
1292}
1293
1294static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1295	.func		= bpf_get_stack_tp,
1296	.gpl_only	= true,
1297	.ret_type	= RET_INTEGER,
1298	.arg1_type	= ARG_PTR_TO_CTX,
1299	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1300	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1301	.arg4_type	= ARG_ANYTHING,
1302};
1303
1304static const struct bpf_func_proto *
1305tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1306{
1307	switch (func_id) {
1308	case BPF_FUNC_perf_event_output:
1309		return &bpf_perf_event_output_proto_tp;
1310	case BPF_FUNC_get_stackid:
1311		return &bpf_get_stackid_proto_tp;
1312	case BPF_FUNC_get_stack:
1313		return &bpf_get_stack_proto_tp;
1314	default:
1315		return bpf_tracing_func_proto(func_id, prog);
1316	}
1317}
1318
1319static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1320				    const struct bpf_prog *prog,
1321				    struct bpf_insn_access_aux *info)
1322{
1323	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1324		return false;
1325	if (type != BPF_READ)
1326		return false;
1327	if (off % size != 0)
1328		return false;
1329
1330	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1331	return true;
1332}
1333
1334const struct bpf_verifier_ops tracepoint_verifier_ops = {
1335	.get_func_proto  = tp_prog_func_proto,
1336	.is_valid_access = tp_prog_is_valid_access,
1337};
1338
1339const struct bpf_prog_ops tracepoint_prog_ops = {
1340};
1341
1342BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1343	   struct bpf_perf_event_value *, buf, u32, size)
1344{
1345	int err = -EINVAL;
1346
1347	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1348		goto clear;
1349	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1350				    &buf->running);
1351	if (unlikely(err))
1352		goto clear;
1353	return 0;
1354clear:
1355	memset(buf, 0, size);
1356	return err;
1357}
1358
1359static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1360         .func           = bpf_perf_prog_read_value,
1361         .gpl_only       = true,
1362         .ret_type       = RET_INTEGER,
1363         .arg1_type      = ARG_PTR_TO_CTX,
1364         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1365         .arg3_type      = ARG_CONST_SIZE,
1366};
1367
1368BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1369	   void *, buf, u32, size, u64, flags)
1370{
1371#ifndef CONFIG_X86
1372	return -ENOENT;
1373#else
1374	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1375	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1376	u32 to_copy;
1377
1378	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1379		return -EINVAL;
1380
1381	if (unlikely(!br_stack))
1382		return -EINVAL;
1383
1384	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1385		return br_stack->nr * br_entry_size;
1386
1387	if (!buf || (size % br_entry_size != 0))
1388		return -EINVAL;
1389
1390	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1391	memcpy(buf, br_stack->entries, to_copy);
1392
1393	return to_copy;
1394#endif
1395}
1396
1397static const struct bpf_func_proto bpf_read_branch_records_proto = {
1398	.func           = bpf_read_branch_records,
1399	.gpl_only       = true,
1400	.ret_type       = RET_INTEGER,
1401	.arg1_type      = ARG_PTR_TO_CTX,
1402	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1403	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1404	.arg4_type      = ARG_ANYTHING,
1405};
1406
1407static const struct bpf_func_proto *
1408pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1409{
1410	switch (func_id) {
1411	case BPF_FUNC_perf_event_output:
1412		return &bpf_perf_event_output_proto_tp;
1413	case BPF_FUNC_get_stackid:
1414		return &bpf_get_stackid_proto_pe;
1415	case BPF_FUNC_get_stack:
1416		return &bpf_get_stack_proto_pe;
1417	case BPF_FUNC_perf_prog_read_value:
1418		return &bpf_perf_prog_read_value_proto;
1419	case BPF_FUNC_read_branch_records:
1420		return &bpf_read_branch_records_proto;
1421	default:
1422		return bpf_tracing_func_proto(func_id, prog);
1423	}
1424}
1425
1426/*
1427 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1428 * to avoid potential recursive reuse issue when/if tracepoints are added
1429 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1430 *
1431 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1432 * in normal, irq, and nmi context.
1433 */
1434struct bpf_raw_tp_regs {
1435	struct pt_regs regs[3];
1436};
1437static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1438static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1439static struct pt_regs *get_bpf_raw_tp_regs(void)
1440{
1441	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1442	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1443
1444	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1445		this_cpu_dec(bpf_raw_tp_nest_level);
1446		return ERR_PTR(-EBUSY);
1447	}
1448
1449	return &tp_regs->regs[nest_level - 1];
1450}
1451
1452static void put_bpf_raw_tp_regs(void)
1453{
1454	this_cpu_dec(bpf_raw_tp_nest_level);
1455}
1456
1457BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1458	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1459{
1460	struct pt_regs *regs = get_bpf_raw_tp_regs();
1461	int ret;
1462
1463	if (IS_ERR(regs))
1464		return PTR_ERR(regs);
1465
1466	perf_fetch_caller_regs(regs);
1467	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1468
1469	put_bpf_raw_tp_regs();
1470	return ret;
1471}
1472
1473static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1474	.func		= bpf_perf_event_output_raw_tp,
1475	.gpl_only	= true,
1476	.ret_type	= RET_INTEGER,
1477	.arg1_type	= ARG_PTR_TO_CTX,
1478	.arg2_type	= ARG_CONST_MAP_PTR,
1479	.arg3_type	= ARG_ANYTHING,
1480	.arg4_type	= ARG_PTR_TO_MEM,
1481	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1482};
1483
1484extern const struct bpf_func_proto bpf_skb_output_proto;
1485extern const struct bpf_func_proto bpf_xdp_output_proto;
1486
1487BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1488	   struct bpf_map *, map, u64, flags)
1489{
1490	struct pt_regs *regs = get_bpf_raw_tp_regs();
1491	int ret;
1492
1493	if (IS_ERR(regs))
1494		return PTR_ERR(regs);
1495
1496	perf_fetch_caller_regs(regs);
1497	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1498	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1499			      flags, 0, 0);
1500	put_bpf_raw_tp_regs();
1501	return ret;
1502}
1503
1504static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1505	.func		= bpf_get_stackid_raw_tp,
1506	.gpl_only	= true,
1507	.ret_type	= RET_INTEGER,
1508	.arg1_type	= ARG_PTR_TO_CTX,
1509	.arg2_type	= ARG_CONST_MAP_PTR,
1510	.arg3_type	= ARG_ANYTHING,
1511};
1512
1513BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1514	   void *, buf, u32, size, u64, flags)
1515{
1516	struct pt_regs *regs = get_bpf_raw_tp_regs();
1517	int ret;
1518
1519	if (IS_ERR(regs))
1520		return PTR_ERR(regs);
1521
1522	perf_fetch_caller_regs(regs);
1523	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1524			    (unsigned long) size, flags, 0);
1525	put_bpf_raw_tp_regs();
1526	return ret;
1527}
1528
1529static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1530	.func		= bpf_get_stack_raw_tp,
1531	.gpl_only	= true,
1532	.ret_type	= RET_INTEGER,
1533	.arg1_type	= ARG_PTR_TO_CTX,
1534	.arg2_type	= ARG_PTR_TO_MEM,
1535	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1536	.arg4_type	= ARG_ANYTHING,
1537};
1538
1539static const struct bpf_func_proto *
1540raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1541{
1542	switch (func_id) {
1543	case BPF_FUNC_perf_event_output:
1544		return &bpf_perf_event_output_proto_raw_tp;
1545	case BPF_FUNC_get_stackid:
1546		return &bpf_get_stackid_proto_raw_tp;
1547	case BPF_FUNC_get_stack:
1548		return &bpf_get_stack_proto_raw_tp;
1549	default:
1550		return bpf_tracing_func_proto(func_id, prog);
1551	}
1552}
1553
1554const struct bpf_func_proto *
1555tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1556{
1557	switch (func_id) {
1558#ifdef CONFIG_NET
1559	case BPF_FUNC_skb_output:
1560		return &bpf_skb_output_proto;
1561	case BPF_FUNC_xdp_output:
1562		return &bpf_xdp_output_proto;
1563	case BPF_FUNC_skc_to_tcp6_sock:
1564		return &bpf_skc_to_tcp6_sock_proto;
1565	case BPF_FUNC_skc_to_tcp_sock:
1566		return &bpf_skc_to_tcp_sock_proto;
1567	case BPF_FUNC_skc_to_tcp_timewait_sock:
1568		return &bpf_skc_to_tcp_timewait_sock_proto;
1569	case BPF_FUNC_skc_to_tcp_request_sock:
1570		return &bpf_skc_to_tcp_request_sock_proto;
1571	case BPF_FUNC_skc_to_udp6_sock:
1572		return &bpf_skc_to_udp6_sock_proto;
 
 
 
 
 
 
 
 
1573#endif
1574	case BPF_FUNC_seq_printf:
1575		return prog->expected_attach_type == BPF_TRACE_ITER ?
1576		       &bpf_seq_printf_proto :
1577		       NULL;
1578	case BPF_FUNC_seq_write:
1579		return prog->expected_attach_type == BPF_TRACE_ITER ?
1580		       &bpf_seq_write_proto :
1581		       NULL;
 
 
 
 
 
 
1582	default:
1583		return raw_tp_prog_func_proto(func_id, prog);
1584	}
1585}
1586
1587static bool raw_tp_prog_is_valid_access(int off, int size,
1588					enum bpf_access_type type,
1589					const struct bpf_prog *prog,
1590					struct bpf_insn_access_aux *info)
1591{
1592	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1593		return false;
1594	if (type != BPF_READ)
1595		return false;
1596	if (off % size != 0)
1597		return false;
1598	return true;
1599}
1600
1601static bool tracing_prog_is_valid_access(int off, int size,
1602					 enum bpf_access_type type,
1603					 const struct bpf_prog *prog,
1604					 struct bpf_insn_access_aux *info)
1605{
1606	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1607		return false;
1608	if (type != BPF_READ)
1609		return false;
1610	if (off % size != 0)
1611		return false;
1612	return btf_ctx_access(off, size, type, prog, info);
1613}
1614
1615int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1616				     const union bpf_attr *kattr,
1617				     union bpf_attr __user *uattr)
1618{
1619	return -ENOTSUPP;
1620}
1621
1622const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1623	.get_func_proto  = raw_tp_prog_func_proto,
1624	.is_valid_access = raw_tp_prog_is_valid_access,
1625};
1626
1627const struct bpf_prog_ops raw_tracepoint_prog_ops = {
 
 
 
1628};
1629
1630const struct bpf_verifier_ops tracing_verifier_ops = {
1631	.get_func_proto  = tracing_prog_func_proto,
1632	.is_valid_access = tracing_prog_is_valid_access,
1633};
1634
1635const struct bpf_prog_ops tracing_prog_ops = {
1636	.test_run = bpf_prog_test_run_tracing,
1637};
1638
1639static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1640						 enum bpf_access_type type,
1641						 const struct bpf_prog *prog,
1642						 struct bpf_insn_access_aux *info)
1643{
1644	if (off == 0) {
1645		if (size != sizeof(u64) || type != BPF_READ)
1646			return false;
1647		info->reg_type = PTR_TO_TP_BUFFER;
1648	}
1649	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1650}
1651
1652const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1653	.get_func_proto  = raw_tp_prog_func_proto,
1654	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1655};
1656
1657const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1658};
1659
1660static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1661				    const struct bpf_prog *prog,
1662				    struct bpf_insn_access_aux *info)
1663{
1664	const int size_u64 = sizeof(u64);
1665
1666	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1667		return false;
1668	if (type != BPF_READ)
1669		return false;
1670	if (off % size != 0) {
1671		if (sizeof(unsigned long) != 4)
1672			return false;
1673		if (size != 8)
1674			return false;
1675		if (off % size != 4)
1676			return false;
1677	}
1678
1679	switch (off) {
1680	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1681		bpf_ctx_record_field_size(info, size_u64);
1682		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1683			return false;
1684		break;
1685	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1686		bpf_ctx_record_field_size(info, size_u64);
1687		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1688			return false;
1689		break;
1690	default:
1691		if (size != sizeof(long))
1692			return false;
1693	}
1694
1695	return true;
1696}
1697
1698static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1699				      const struct bpf_insn *si,
1700				      struct bpf_insn *insn_buf,
1701				      struct bpf_prog *prog, u32 *target_size)
1702{
1703	struct bpf_insn *insn = insn_buf;
1704
1705	switch (si->off) {
1706	case offsetof(struct bpf_perf_event_data, sample_period):
1707		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1708						       data), si->dst_reg, si->src_reg,
1709				      offsetof(struct bpf_perf_event_data_kern, data));
1710		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1711				      bpf_target_off(struct perf_sample_data, period, 8,
1712						     target_size));
1713		break;
1714	case offsetof(struct bpf_perf_event_data, addr):
1715		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1716						       data), si->dst_reg, si->src_reg,
1717				      offsetof(struct bpf_perf_event_data_kern, data));
1718		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1719				      bpf_target_off(struct perf_sample_data, addr, 8,
1720						     target_size));
1721		break;
1722	default:
1723		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1724						       regs), si->dst_reg, si->src_reg,
1725				      offsetof(struct bpf_perf_event_data_kern, regs));
1726		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1727				      si->off);
1728		break;
1729	}
1730
1731	return insn - insn_buf;
1732}
1733
1734const struct bpf_verifier_ops perf_event_verifier_ops = {
1735	.get_func_proto		= pe_prog_func_proto,
1736	.is_valid_access	= pe_prog_is_valid_access,
1737	.convert_ctx_access	= pe_prog_convert_ctx_access,
1738};
1739
1740const struct bpf_prog_ops perf_event_prog_ops = {
1741};
1742
1743static DEFINE_MUTEX(bpf_event_mutex);
1744
1745#define BPF_TRACE_MAX_PROGS 64
1746
1747int perf_event_attach_bpf_prog(struct perf_event *event,
1748			       struct bpf_prog *prog)
1749{
1750	struct bpf_prog_array *old_array;
1751	struct bpf_prog_array *new_array;
1752	int ret = -EEXIST;
1753
1754	/*
1755	 * Kprobe override only works if they are on the function entry,
1756	 * and only if they are on the opt-in list.
1757	 */
1758	if (prog->kprobe_override &&
1759	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1760	     !trace_kprobe_error_injectable(event->tp_event)))
1761		return -EINVAL;
1762
1763	mutex_lock(&bpf_event_mutex);
1764
1765	if (event->prog)
1766		goto unlock;
1767
1768	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1769	if (old_array &&
1770	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1771		ret = -E2BIG;
1772		goto unlock;
1773	}
1774
1775	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1776	if (ret < 0)
1777		goto unlock;
1778
1779	/* set the new array to event->tp_event and set event->prog */
1780	event->prog = prog;
1781	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1782	bpf_prog_array_free(old_array);
1783
1784unlock:
1785	mutex_unlock(&bpf_event_mutex);
1786	return ret;
1787}
1788
1789void perf_event_detach_bpf_prog(struct perf_event *event)
1790{
1791	struct bpf_prog_array *old_array;
1792	struct bpf_prog_array *new_array;
1793	int ret;
1794
1795	mutex_lock(&bpf_event_mutex);
1796
1797	if (!event->prog)
1798		goto unlock;
1799
1800	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1801	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1802	if (ret == -ENOENT)
1803		goto unlock;
1804	if (ret < 0) {
1805		bpf_prog_array_delete_safe(old_array, event->prog);
1806	} else {
1807		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1808		bpf_prog_array_free(old_array);
1809	}
1810
1811	bpf_prog_put(event->prog);
1812	event->prog = NULL;
1813
1814unlock:
1815	mutex_unlock(&bpf_event_mutex);
1816}
1817
1818int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1819{
1820	struct perf_event_query_bpf __user *uquery = info;
1821	struct perf_event_query_bpf query = {};
1822	struct bpf_prog_array *progs;
1823	u32 *ids, prog_cnt, ids_len;
1824	int ret;
1825
1826	if (!perfmon_capable())
1827		return -EPERM;
1828	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1829		return -EINVAL;
1830	if (copy_from_user(&query, uquery, sizeof(query)))
1831		return -EFAULT;
1832
1833	ids_len = query.ids_len;
1834	if (ids_len > BPF_TRACE_MAX_PROGS)
1835		return -E2BIG;
1836	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1837	if (!ids)
1838		return -ENOMEM;
1839	/*
1840	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1841	 * is required when user only wants to check for uquery->prog_cnt.
1842	 * There is no need to check for it since the case is handled
1843	 * gracefully in bpf_prog_array_copy_info.
1844	 */
1845
1846	mutex_lock(&bpf_event_mutex);
1847	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1848	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1849	mutex_unlock(&bpf_event_mutex);
1850
1851	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1852	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1853		ret = -EFAULT;
1854
1855	kfree(ids);
1856	return ret;
1857}
1858
1859extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1860extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1861
1862struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1863{
1864	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1865
1866	for (; btp < __stop__bpf_raw_tp; btp++) {
1867		if (!strcmp(btp->tp->name, name))
1868			return btp;
1869	}
1870
1871	return bpf_get_raw_tracepoint_module(name);
1872}
1873
1874void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1875{
1876	struct module *mod = __module_address((unsigned long)btp);
1877
1878	if (mod)
1879		module_put(mod);
 
 
1880}
1881
1882static __always_inline
1883void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1884{
1885	cant_sleep();
1886	rcu_read_lock();
1887	(void) BPF_PROG_RUN(prog, args);
1888	rcu_read_unlock();
1889}
1890
1891#define UNPACK(...)			__VA_ARGS__
1892#define REPEAT_1(FN, DL, X, ...)	FN(X)
1893#define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1894#define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1895#define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1896#define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1897#define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1898#define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1899#define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1900#define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1901#define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1902#define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1903#define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1904#define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1905
1906#define SARG(X)		u64 arg##X
1907#define COPY(X)		args[X] = arg##X
1908
1909#define __DL_COM	(,)
1910#define __DL_SEM	(;)
1911
1912#define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1913
1914#define BPF_TRACE_DEFN_x(x)						\
1915	void bpf_trace_run##x(struct bpf_prog *prog,			\
1916			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1917	{								\
1918		u64 args[x];						\
1919		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1920		__bpf_trace_run(prog, args);				\
1921	}								\
1922	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1923BPF_TRACE_DEFN_x(1);
1924BPF_TRACE_DEFN_x(2);
1925BPF_TRACE_DEFN_x(3);
1926BPF_TRACE_DEFN_x(4);
1927BPF_TRACE_DEFN_x(5);
1928BPF_TRACE_DEFN_x(6);
1929BPF_TRACE_DEFN_x(7);
1930BPF_TRACE_DEFN_x(8);
1931BPF_TRACE_DEFN_x(9);
1932BPF_TRACE_DEFN_x(10);
1933BPF_TRACE_DEFN_x(11);
1934BPF_TRACE_DEFN_x(12);
1935
1936static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1937{
1938	struct tracepoint *tp = btp->tp;
1939
1940	/*
1941	 * check that program doesn't access arguments beyond what's
1942	 * available in this tracepoint
1943	 */
1944	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1945		return -EINVAL;
1946
1947	if (prog->aux->max_tp_access > btp->writable_size)
1948		return -EINVAL;
1949
1950	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
 
1951}
1952
1953int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1954{
1955	return __bpf_probe_register(btp, prog);
1956}
1957
1958int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1959{
1960	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1961}
1962
1963int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1964			    u32 *fd_type, const char **buf,
1965			    u64 *probe_offset, u64 *probe_addr)
1966{
1967	bool is_tracepoint, is_syscall_tp;
1968	struct bpf_prog *prog;
1969	int flags, err = 0;
1970
1971	prog = event->prog;
1972	if (!prog)
1973		return -ENOENT;
1974
1975	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1976	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1977		return -EOPNOTSUPP;
1978
1979	*prog_id = prog->aux->id;
1980	flags = event->tp_event->flags;
1981	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1982	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1983
1984	if (is_tracepoint || is_syscall_tp) {
1985		*buf = is_tracepoint ? event->tp_event->tp->name
1986				     : event->tp_event->name;
1987		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1988		*probe_offset = 0x0;
1989		*probe_addr = 0x0;
1990	} else {
1991		/* kprobe/uprobe */
1992		err = -EOPNOTSUPP;
1993#ifdef CONFIG_KPROBE_EVENTS
1994		if (flags & TRACE_EVENT_FL_KPROBE)
1995			err = bpf_get_kprobe_info(event, fd_type, buf,
1996						  probe_offset, probe_addr,
1997						  event->attr.type == PERF_TYPE_TRACEPOINT);
1998#endif
1999#ifdef CONFIG_UPROBE_EVENTS
2000		if (flags & TRACE_EVENT_FL_UPROBE)
2001			err = bpf_get_uprobe_info(event, fd_type, buf,
2002						  probe_offset,
2003						  event->attr.type == PERF_TYPE_TRACEPOINT);
2004#endif
2005	}
2006
2007	return err;
2008}
2009
2010static int __init send_signal_irq_work_init(void)
2011{
2012	int cpu;
2013	struct send_signal_irq_work *work;
2014
2015	for_each_possible_cpu(cpu) {
2016		work = per_cpu_ptr(&send_signal_work, cpu);
2017		init_irq_work(&work->irq_work, do_bpf_send_signal);
2018	}
2019	return 0;
2020}
2021
2022subsys_initcall(send_signal_irq_work_init);
2023
2024#ifdef CONFIG_MODULES
2025static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2026			    void *module)
2027{
2028	struct bpf_trace_module *btm, *tmp;
2029	struct module *mod = module;
 
2030
2031	if (mod->num_bpf_raw_events == 0 ||
2032	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2033		return 0;
2034
2035	mutex_lock(&bpf_module_mutex);
2036
2037	switch (op) {
2038	case MODULE_STATE_COMING:
2039		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2040		if (btm) {
2041			btm->module = module;
2042			list_add(&btm->list, &bpf_trace_modules);
 
 
2043		}
2044		break;
2045	case MODULE_STATE_GOING:
2046		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2047			if (btm->module == module) {
2048				list_del(&btm->list);
2049				kfree(btm);
2050				break;
2051			}
2052		}
2053		break;
2054	}
2055
2056	mutex_unlock(&bpf_module_mutex);
2057
2058	return 0;
 
2059}
2060
2061static struct notifier_block bpf_module_nb = {
2062	.notifier_call = bpf_event_notify,
2063};
2064
2065static int __init bpf_event_init(void)
2066{
2067	register_module_notifier(&bpf_module_nb);
2068	return 0;
2069}
2070
2071fs_initcall(bpf_event_init);
2072#endif /* CONFIG_MODULES */