Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_trans.h"
15#include "xfs_trans_priv.h"
16#include "xfs_inode_item.h"
17#include "xfs_quota.h"
18#include "xfs_trace.h"
19#include "xfs_icache.h"
20#include "xfs_bmap_util.h"
21#include "xfs_dquot_item.h"
22#include "xfs_dquot.h"
23#include "xfs_reflink.h"
24#include "xfs_ialloc.h"
25#include "xfs_ag.h"
26
27#include <linux/iversion.h>
28
29/* Radix tree tags for incore inode tree. */
30
31/* inode is to be reclaimed */
32#define XFS_ICI_RECLAIM_TAG 0
33/* Inode has speculative preallocations (posteof or cow) to clean. */
34#define XFS_ICI_BLOCKGC_TAG 1
35
36/*
37 * The goal for walking incore inodes. These can correspond with incore inode
38 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace.
39 */
40enum xfs_icwalk_goal {
41 /* Goals that are not related to tags; these must be < 0. */
42 XFS_ICWALK_DQRELE = -1,
43
44 /* Goals directly associated with tagged inodes. */
45 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG,
46 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG,
47};
48
49#define XFS_ICWALK_NULL_TAG (-1U)
50
51/* Compute the inode radix tree tag for this goal. */
52static inline unsigned int
53xfs_icwalk_tag(enum xfs_icwalk_goal goal)
54{
55 return goal < 0 ? XFS_ICWALK_NULL_TAG : goal;
56}
57
58static int xfs_icwalk(struct xfs_mount *mp,
59 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
60static int xfs_icwalk_ag(struct xfs_perag *pag,
61 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
62
63/*
64 * Private inode cache walk flags for struct xfs_icwalk. Must not
65 * coincide with XFS_ICWALK_FLAGS_VALID.
66 */
67#define XFS_ICWALK_FLAG_DROP_UDQUOT (1U << 31)
68#define XFS_ICWALK_FLAG_DROP_GDQUOT (1U << 30)
69#define XFS_ICWALK_FLAG_DROP_PDQUOT (1U << 29)
70
71/* Stop scanning after icw_scan_limit inodes. */
72#define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28)
73
74#define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27)
75#define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */
76
77#define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_DROP_UDQUOT | \
78 XFS_ICWALK_FLAG_DROP_GDQUOT | \
79 XFS_ICWALK_FLAG_DROP_PDQUOT | \
80 XFS_ICWALK_FLAG_SCAN_LIMIT | \
81 XFS_ICWALK_FLAG_RECLAIM_SICK | \
82 XFS_ICWALK_FLAG_UNION)
83
84/*
85 * Allocate and initialise an xfs_inode.
86 */
87struct xfs_inode *
88xfs_inode_alloc(
89 struct xfs_mount *mp,
90 xfs_ino_t ino)
91{
92 struct xfs_inode *ip;
93
94 /*
95 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
96 * and return NULL here on ENOMEM.
97 */
98 ip = kmem_cache_alloc(xfs_inode_zone, GFP_KERNEL | __GFP_NOFAIL);
99
100 if (inode_init_always(mp->m_super, VFS_I(ip))) {
101 kmem_cache_free(xfs_inode_zone, ip);
102 return NULL;
103 }
104
105 /* VFS doesn't initialise i_mode! */
106 VFS_I(ip)->i_mode = 0;
107
108 XFS_STATS_INC(mp, vn_active);
109 ASSERT(atomic_read(&ip->i_pincount) == 0);
110 ASSERT(ip->i_ino == 0);
111
112 /* initialise the xfs inode */
113 ip->i_ino = ino;
114 ip->i_mount = mp;
115 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
116 ip->i_afp = NULL;
117 ip->i_cowfp = NULL;
118 memset(&ip->i_df, 0, sizeof(ip->i_df));
119 ip->i_flags = 0;
120 ip->i_delayed_blks = 0;
121 ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
122 ip->i_nblocks = 0;
123 ip->i_forkoff = 0;
124 ip->i_sick = 0;
125 ip->i_checked = 0;
126 INIT_WORK(&ip->i_ioend_work, xfs_end_io);
127 INIT_LIST_HEAD(&ip->i_ioend_list);
128 spin_lock_init(&ip->i_ioend_lock);
129
130 return ip;
131}
132
133STATIC void
134xfs_inode_free_callback(
135 struct rcu_head *head)
136{
137 struct inode *inode = container_of(head, struct inode, i_rcu);
138 struct xfs_inode *ip = XFS_I(inode);
139
140 switch (VFS_I(ip)->i_mode & S_IFMT) {
141 case S_IFREG:
142 case S_IFDIR:
143 case S_IFLNK:
144 xfs_idestroy_fork(&ip->i_df);
145 break;
146 }
147
148 if (ip->i_afp) {
149 xfs_idestroy_fork(ip->i_afp);
150 kmem_cache_free(xfs_ifork_zone, ip->i_afp);
151 }
152 if (ip->i_cowfp) {
153 xfs_idestroy_fork(ip->i_cowfp);
154 kmem_cache_free(xfs_ifork_zone, ip->i_cowfp);
155 }
156 if (ip->i_itemp) {
157 ASSERT(!test_bit(XFS_LI_IN_AIL,
158 &ip->i_itemp->ili_item.li_flags));
159 xfs_inode_item_destroy(ip);
160 ip->i_itemp = NULL;
161 }
162
163 kmem_cache_free(xfs_inode_zone, ip);
164}
165
166static void
167__xfs_inode_free(
168 struct xfs_inode *ip)
169{
170 /* asserts to verify all state is correct here */
171 ASSERT(atomic_read(&ip->i_pincount) == 0);
172 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
173 XFS_STATS_DEC(ip->i_mount, vn_active);
174
175 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
176}
177
178void
179xfs_inode_free(
180 struct xfs_inode *ip)
181{
182 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
183
184 /*
185 * Because we use RCU freeing we need to ensure the inode always
186 * appears to be reclaimed with an invalid inode number when in the
187 * free state. The ip->i_flags_lock provides the barrier against lookup
188 * races.
189 */
190 spin_lock(&ip->i_flags_lock);
191 ip->i_flags = XFS_IRECLAIM;
192 ip->i_ino = 0;
193 spin_unlock(&ip->i_flags_lock);
194
195 __xfs_inode_free(ip);
196}
197
198/*
199 * Queue background inode reclaim work if there are reclaimable inodes and there
200 * isn't reclaim work already scheduled or in progress.
201 */
202static void
203xfs_reclaim_work_queue(
204 struct xfs_mount *mp)
205{
206
207 rcu_read_lock();
208 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
209 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
210 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
211 }
212 rcu_read_unlock();
213}
214
215/*
216 * Background scanning to trim preallocated space. This is queued based on the
217 * 'speculative_prealloc_lifetime' tunable (5m by default).
218 */
219static inline void
220xfs_blockgc_queue(
221 struct xfs_perag *pag)
222{
223 rcu_read_lock();
224 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
225 queue_delayed_work(pag->pag_mount->m_gc_workqueue,
226 &pag->pag_blockgc_work,
227 msecs_to_jiffies(xfs_blockgc_secs * 1000));
228 rcu_read_unlock();
229}
230
231/* Set a tag on both the AG incore inode tree and the AG radix tree. */
232static void
233xfs_perag_set_inode_tag(
234 struct xfs_perag *pag,
235 xfs_agino_t agino,
236 unsigned int tag)
237{
238 struct xfs_mount *mp = pag->pag_mount;
239 bool was_tagged;
240
241 lockdep_assert_held(&pag->pag_ici_lock);
242
243 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
244 radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
245
246 if (tag == XFS_ICI_RECLAIM_TAG)
247 pag->pag_ici_reclaimable++;
248
249 if (was_tagged)
250 return;
251
252 /* propagate the tag up into the perag radix tree */
253 spin_lock(&mp->m_perag_lock);
254 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
255 spin_unlock(&mp->m_perag_lock);
256
257 /* start background work */
258 switch (tag) {
259 case XFS_ICI_RECLAIM_TAG:
260 xfs_reclaim_work_queue(mp);
261 break;
262 case XFS_ICI_BLOCKGC_TAG:
263 xfs_blockgc_queue(pag);
264 break;
265 }
266
267 trace_xfs_perag_set_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
268}
269
270/* Clear a tag on both the AG incore inode tree and the AG radix tree. */
271static void
272xfs_perag_clear_inode_tag(
273 struct xfs_perag *pag,
274 xfs_agino_t agino,
275 unsigned int tag)
276{
277 struct xfs_mount *mp = pag->pag_mount;
278
279 lockdep_assert_held(&pag->pag_ici_lock);
280
281 /*
282 * Reclaim can signal (with a null agino) that it cleared its own tag
283 * by removing the inode from the radix tree.
284 */
285 if (agino != NULLAGINO)
286 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
287 else
288 ASSERT(tag == XFS_ICI_RECLAIM_TAG);
289
290 if (tag == XFS_ICI_RECLAIM_TAG)
291 pag->pag_ici_reclaimable--;
292
293 if (radix_tree_tagged(&pag->pag_ici_root, tag))
294 return;
295
296 /* clear the tag from the perag radix tree */
297 spin_lock(&mp->m_perag_lock);
298 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
299 spin_unlock(&mp->m_perag_lock);
300
301 trace_xfs_perag_clear_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
302}
303
304/*
305 * We set the inode flag atomically with the radix tree tag.
306 * Once we get tag lookups on the radix tree, this inode flag
307 * can go away.
308 */
309void
310xfs_inode_mark_reclaimable(
311 struct xfs_inode *ip)
312{
313 struct xfs_mount *mp = ip->i_mount;
314 struct xfs_perag *pag;
315
316 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
317 spin_lock(&pag->pag_ici_lock);
318 spin_lock(&ip->i_flags_lock);
319
320 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
321 XFS_ICI_RECLAIM_TAG);
322 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
323
324 spin_unlock(&ip->i_flags_lock);
325 spin_unlock(&pag->pag_ici_lock);
326 xfs_perag_put(pag);
327}
328
329static inline void
330xfs_inew_wait(
331 struct xfs_inode *ip)
332{
333 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
334 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
335
336 do {
337 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
338 if (!xfs_iflags_test(ip, XFS_INEW))
339 break;
340 schedule();
341 } while (true);
342 finish_wait(wq, &wait.wq_entry);
343}
344
345/*
346 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
347 * part of the structure. This is made more complex by the fact we store
348 * information about the on-disk values in the VFS inode and so we can't just
349 * overwrite the values unconditionally. Hence we save the parameters we
350 * need to retain across reinitialisation, and rewrite them into the VFS inode
351 * after reinitialisation even if it fails.
352 */
353static int
354xfs_reinit_inode(
355 struct xfs_mount *mp,
356 struct inode *inode)
357{
358 int error;
359 uint32_t nlink = inode->i_nlink;
360 uint32_t generation = inode->i_generation;
361 uint64_t version = inode_peek_iversion(inode);
362 umode_t mode = inode->i_mode;
363 dev_t dev = inode->i_rdev;
364 kuid_t uid = inode->i_uid;
365 kgid_t gid = inode->i_gid;
366
367 error = inode_init_always(mp->m_super, inode);
368
369 set_nlink(inode, nlink);
370 inode->i_generation = generation;
371 inode_set_iversion_queried(inode, version);
372 inode->i_mode = mode;
373 inode->i_rdev = dev;
374 inode->i_uid = uid;
375 inode->i_gid = gid;
376 return error;
377}
378
379/*
380 * Carefully nudge an inode whose VFS state has been torn down back into a
381 * usable state. Drops the i_flags_lock and the rcu read lock.
382 */
383static int
384xfs_iget_recycle(
385 struct xfs_perag *pag,
386 struct xfs_inode *ip) __releases(&ip->i_flags_lock)
387{
388 struct xfs_mount *mp = ip->i_mount;
389 struct inode *inode = VFS_I(ip);
390 int error;
391
392 trace_xfs_iget_recycle(ip);
393
394 /*
395 * We need to make it look like the inode is being reclaimed to prevent
396 * the actual reclaim workers from stomping over us while we recycle
397 * the inode. We can't clear the radix tree tag yet as it requires
398 * pag_ici_lock to be held exclusive.
399 */
400 ip->i_flags |= XFS_IRECLAIM;
401
402 spin_unlock(&ip->i_flags_lock);
403 rcu_read_unlock();
404
405 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
406 error = xfs_reinit_inode(mp, inode);
407 if (error) {
408 bool wake;
409
410 /*
411 * Re-initializing the inode failed, and we are in deep
412 * trouble. Try to re-add it to the reclaim list.
413 */
414 rcu_read_lock();
415 spin_lock(&ip->i_flags_lock);
416 wake = !!__xfs_iflags_test(ip, XFS_INEW);
417 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
418 if (wake)
419 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
420 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
421 spin_unlock(&ip->i_flags_lock);
422 rcu_read_unlock();
423
424 trace_xfs_iget_recycle_fail(ip);
425 return error;
426 }
427
428 spin_lock(&pag->pag_ici_lock);
429 spin_lock(&ip->i_flags_lock);
430
431 /*
432 * Clear the per-lifetime state in the inode as we are now effectively
433 * a new inode and need to return to the initial state before reuse
434 * occurs.
435 */
436 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
437 ip->i_flags |= XFS_INEW;
438 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
439 XFS_ICI_RECLAIM_TAG);
440 inode->i_state = I_NEW;
441 spin_unlock(&ip->i_flags_lock);
442 spin_unlock(&pag->pag_ici_lock);
443
444 return 0;
445}
446
447/*
448 * If we are allocating a new inode, then check what was returned is
449 * actually a free, empty inode. If we are not allocating an inode,
450 * then check we didn't find a free inode.
451 *
452 * Returns:
453 * 0 if the inode free state matches the lookup context
454 * -ENOENT if the inode is free and we are not allocating
455 * -EFSCORRUPTED if there is any state mismatch at all
456 */
457static int
458xfs_iget_check_free_state(
459 struct xfs_inode *ip,
460 int flags)
461{
462 if (flags & XFS_IGET_CREATE) {
463 /* should be a free inode */
464 if (VFS_I(ip)->i_mode != 0) {
465 xfs_warn(ip->i_mount,
466"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
467 ip->i_ino, VFS_I(ip)->i_mode);
468 return -EFSCORRUPTED;
469 }
470
471 if (ip->i_nblocks != 0) {
472 xfs_warn(ip->i_mount,
473"Corruption detected! Free inode 0x%llx has blocks allocated!",
474 ip->i_ino);
475 return -EFSCORRUPTED;
476 }
477 return 0;
478 }
479
480 /* should be an allocated inode */
481 if (VFS_I(ip)->i_mode == 0)
482 return -ENOENT;
483
484 return 0;
485}
486
487/*
488 * Check the validity of the inode we just found it the cache
489 */
490static int
491xfs_iget_cache_hit(
492 struct xfs_perag *pag,
493 struct xfs_inode *ip,
494 xfs_ino_t ino,
495 int flags,
496 int lock_flags) __releases(RCU)
497{
498 struct inode *inode = VFS_I(ip);
499 struct xfs_mount *mp = ip->i_mount;
500 int error;
501
502 /*
503 * check for re-use of an inode within an RCU grace period due to the
504 * radix tree nodes not being updated yet. We monitor for this by
505 * setting the inode number to zero before freeing the inode structure.
506 * If the inode has been reallocated and set up, then the inode number
507 * will not match, so check for that, too.
508 */
509 spin_lock(&ip->i_flags_lock);
510 if (ip->i_ino != ino)
511 goto out_skip;
512
513 /*
514 * If we are racing with another cache hit that is currently
515 * instantiating this inode or currently recycling it out of
516 * reclaimable state, wait for the initialisation to complete
517 * before continuing.
518 *
519 * XXX(hch): eventually we should do something equivalent to
520 * wait_on_inode to wait for these flags to be cleared
521 * instead of polling for it.
522 */
523 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM))
524 goto out_skip;
525
526 /*
527 * Check the inode free state is valid. This also detects lookup
528 * racing with unlinks.
529 */
530 error = xfs_iget_check_free_state(ip, flags);
531 if (error)
532 goto out_error;
533
534 /* Skip inodes that have no vfs state. */
535 if ((flags & XFS_IGET_INCORE) &&
536 (ip->i_flags & XFS_IRECLAIMABLE))
537 goto out_skip;
538
539 /* The inode fits the selection criteria; process it. */
540 if (ip->i_flags & XFS_IRECLAIMABLE) {
541 /* Drops i_flags_lock and RCU read lock. */
542 error = xfs_iget_recycle(pag, ip);
543 if (error)
544 return error;
545 } else {
546 /* If the VFS inode is being torn down, pause and try again. */
547 if (!igrab(inode))
548 goto out_skip;
549
550 /* We've got a live one. */
551 spin_unlock(&ip->i_flags_lock);
552 rcu_read_unlock();
553 trace_xfs_iget_hit(ip);
554 }
555
556 if (lock_flags != 0)
557 xfs_ilock(ip, lock_flags);
558
559 if (!(flags & XFS_IGET_INCORE))
560 xfs_iflags_clear(ip, XFS_ISTALE);
561 XFS_STATS_INC(mp, xs_ig_found);
562
563 return 0;
564
565out_skip:
566 trace_xfs_iget_skip(ip);
567 XFS_STATS_INC(mp, xs_ig_frecycle);
568 error = -EAGAIN;
569out_error:
570 spin_unlock(&ip->i_flags_lock);
571 rcu_read_unlock();
572 return error;
573}
574
575static int
576xfs_iget_cache_miss(
577 struct xfs_mount *mp,
578 struct xfs_perag *pag,
579 xfs_trans_t *tp,
580 xfs_ino_t ino,
581 struct xfs_inode **ipp,
582 int flags,
583 int lock_flags)
584{
585 struct xfs_inode *ip;
586 int error;
587 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
588 int iflags;
589
590 ip = xfs_inode_alloc(mp, ino);
591 if (!ip)
592 return -ENOMEM;
593
594 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
595 if (error)
596 goto out_destroy;
597
598 /*
599 * For version 5 superblocks, if we are initialising a new inode and we
600 * are not utilising the XFS_MOUNT_IKEEP inode cluster mode, we can
601 * simply build the new inode core with a random generation number.
602 *
603 * For version 4 (and older) superblocks, log recovery is dependent on
604 * the i_flushiter field being initialised from the current on-disk
605 * value and hence we must also read the inode off disk even when
606 * initializing new inodes.
607 */
608 if (xfs_sb_version_has_v3inode(&mp->m_sb) &&
609 (flags & XFS_IGET_CREATE) && !(mp->m_flags & XFS_MOUNT_IKEEP)) {
610 VFS_I(ip)->i_generation = prandom_u32();
611 } else {
612 struct xfs_buf *bp;
613
614 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
615 if (error)
616 goto out_destroy;
617
618 error = xfs_inode_from_disk(ip,
619 xfs_buf_offset(bp, ip->i_imap.im_boffset));
620 if (!error)
621 xfs_buf_set_ref(bp, XFS_INO_REF);
622 xfs_trans_brelse(tp, bp);
623
624 if (error)
625 goto out_destroy;
626 }
627
628 trace_xfs_iget_miss(ip);
629
630 /*
631 * Check the inode free state is valid. This also detects lookup
632 * racing with unlinks.
633 */
634 error = xfs_iget_check_free_state(ip, flags);
635 if (error)
636 goto out_destroy;
637
638 /*
639 * Preload the radix tree so we can insert safely under the
640 * write spinlock. Note that we cannot sleep inside the preload
641 * region. Since we can be called from transaction context, don't
642 * recurse into the file system.
643 */
644 if (radix_tree_preload(GFP_NOFS)) {
645 error = -EAGAIN;
646 goto out_destroy;
647 }
648
649 /*
650 * Because the inode hasn't been added to the radix-tree yet it can't
651 * be found by another thread, so we can do the non-sleeping lock here.
652 */
653 if (lock_flags) {
654 if (!xfs_ilock_nowait(ip, lock_flags))
655 BUG();
656 }
657
658 /*
659 * These values must be set before inserting the inode into the radix
660 * tree as the moment it is inserted a concurrent lookup (allowed by the
661 * RCU locking mechanism) can find it and that lookup must see that this
662 * is an inode currently under construction (i.e. that XFS_INEW is set).
663 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
664 * memory barrier that ensures this detection works correctly at lookup
665 * time.
666 */
667 iflags = XFS_INEW;
668 if (flags & XFS_IGET_DONTCACHE)
669 d_mark_dontcache(VFS_I(ip));
670 ip->i_udquot = NULL;
671 ip->i_gdquot = NULL;
672 ip->i_pdquot = NULL;
673 xfs_iflags_set(ip, iflags);
674
675 /* insert the new inode */
676 spin_lock(&pag->pag_ici_lock);
677 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
678 if (unlikely(error)) {
679 WARN_ON(error != -EEXIST);
680 XFS_STATS_INC(mp, xs_ig_dup);
681 error = -EAGAIN;
682 goto out_preload_end;
683 }
684 spin_unlock(&pag->pag_ici_lock);
685 radix_tree_preload_end();
686
687 *ipp = ip;
688 return 0;
689
690out_preload_end:
691 spin_unlock(&pag->pag_ici_lock);
692 radix_tree_preload_end();
693 if (lock_flags)
694 xfs_iunlock(ip, lock_flags);
695out_destroy:
696 __destroy_inode(VFS_I(ip));
697 xfs_inode_free(ip);
698 return error;
699}
700
701/*
702 * Look up an inode by number in the given file system. The inode is looked up
703 * in the cache held in each AG. If the inode is found in the cache, initialise
704 * the vfs inode if necessary.
705 *
706 * If it is not in core, read it in from the file system's device, add it to the
707 * cache and initialise the vfs inode.
708 *
709 * The inode is locked according to the value of the lock_flags parameter.
710 * Inode lookup is only done during metadata operations and not as part of the
711 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
712 */
713int
714xfs_iget(
715 struct xfs_mount *mp,
716 struct xfs_trans *tp,
717 xfs_ino_t ino,
718 uint flags,
719 uint lock_flags,
720 struct xfs_inode **ipp)
721{
722 struct xfs_inode *ip;
723 struct xfs_perag *pag;
724 xfs_agino_t agino;
725 int error;
726
727 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
728
729 /* reject inode numbers outside existing AGs */
730 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
731 return -EINVAL;
732
733 XFS_STATS_INC(mp, xs_ig_attempts);
734
735 /* get the perag structure and ensure that it's inode capable */
736 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
737 agino = XFS_INO_TO_AGINO(mp, ino);
738
739again:
740 error = 0;
741 rcu_read_lock();
742 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
743
744 if (ip) {
745 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
746 if (error)
747 goto out_error_or_again;
748 } else {
749 rcu_read_unlock();
750 if (flags & XFS_IGET_INCORE) {
751 error = -ENODATA;
752 goto out_error_or_again;
753 }
754 XFS_STATS_INC(mp, xs_ig_missed);
755
756 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
757 flags, lock_flags);
758 if (error)
759 goto out_error_or_again;
760 }
761 xfs_perag_put(pag);
762
763 *ipp = ip;
764
765 /*
766 * If we have a real type for an on-disk inode, we can setup the inode
767 * now. If it's a new inode being created, xfs_ialloc will handle it.
768 */
769 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
770 xfs_setup_existing_inode(ip);
771 return 0;
772
773out_error_or_again:
774 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
775 delay(1);
776 goto again;
777 }
778 xfs_perag_put(pag);
779 return error;
780}
781
782/*
783 * "Is this a cached inode that's also allocated?"
784 *
785 * Look up an inode by number in the given file system. If the inode is
786 * in cache and isn't in purgatory, return 1 if the inode is allocated
787 * and 0 if it is not. For all other cases (not in cache, being torn
788 * down, etc.), return a negative error code.
789 *
790 * The caller has to prevent inode allocation and freeing activity,
791 * presumably by locking the AGI buffer. This is to ensure that an
792 * inode cannot transition from allocated to freed until the caller is
793 * ready to allow that. If the inode is in an intermediate state (new,
794 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
795 * inode is not in the cache, -ENOENT will be returned. The caller must
796 * deal with these scenarios appropriately.
797 *
798 * This is a specialized use case for the online scrubber; if you're
799 * reading this, you probably want xfs_iget.
800 */
801int
802xfs_icache_inode_is_allocated(
803 struct xfs_mount *mp,
804 struct xfs_trans *tp,
805 xfs_ino_t ino,
806 bool *inuse)
807{
808 struct xfs_inode *ip;
809 int error;
810
811 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
812 if (error)
813 return error;
814
815 *inuse = !!(VFS_I(ip)->i_mode);
816 xfs_irele(ip);
817 return 0;
818}
819
820#ifdef CONFIG_XFS_QUOTA
821/* Decide if we want to grab this inode to drop its dquots. */
822static bool
823xfs_dqrele_igrab(
824 struct xfs_inode *ip)
825{
826 bool ret = false;
827
828 ASSERT(rcu_read_lock_held());
829
830 /* Check for stale RCU freed inode */
831 spin_lock(&ip->i_flags_lock);
832 if (!ip->i_ino)
833 goto out_unlock;
834
835 /*
836 * Skip inodes that are anywhere in the reclaim machinery because we
837 * drop dquots before tagging an inode for reclamation.
838 */
839 if (ip->i_flags & (XFS_IRECLAIM | XFS_IRECLAIMABLE))
840 goto out_unlock;
841
842 /*
843 * The inode looks alive; try to grab a VFS reference so that it won't
844 * get destroyed. If we got the reference, return true to say that
845 * we grabbed the inode.
846 *
847 * If we can't get the reference, then we know the inode had its VFS
848 * state torn down and hasn't yet entered the reclaim machinery. Since
849 * we also know that dquots are detached from an inode before it enters
850 * reclaim, we can skip the inode.
851 */
852 ret = igrab(VFS_I(ip)) != NULL;
853
854out_unlock:
855 spin_unlock(&ip->i_flags_lock);
856 return ret;
857}
858
859/* Drop this inode's dquots. */
860static void
861xfs_dqrele_inode(
862 struct xfs_inode *ip,
863 struct xfs_icwalk *icw)
864{
865 if (xfs_iflags_test(ip, XFS_INEW))
866 xfs_inew_wait(ip);
867
868 xfs_ilock(ip, XFS_ILOCK_EXCL);
869 if (icw->icw_flags & XFS_ICWALK_FLAG_DROP_UDQUOT) {
870 xfs_qm_dqrele(ip->i_udquot);
871 ip->i_udquot = NULL;
872 }
873 if (icw->icw_flags & XFS_ICWALK_FLAG_DROP_GDQUOT) {
874 xfs_qm_dqrele(ip->i_gdquot);
875 ip->i_gdquot = NULL;
876 }
877 if (icw->icw_flags & XFS_ICWALK_FLAG_DROP_PDQUOT) {
878 xfs_qm_dqrele(ip->i_pdquot);
879 ip->i_pdquot = NULL;
880 }
881 xfs_iunlock(ip, XFS_ILOCK_EXCL);
882 xfs_irele(ip);
883}
884
885/*
886 * Detach all dquots from incore inodes if we can. The caller must already
887 * have dropped the relevant XFS_[UGP]QUOTA_ACTIVE flags so that dquots will
888 * not get reattached.
889 */
890int
891xfs_dqrele_all_inodes(
892 struct xfs_mount *mp,
893 unsigned int qflags)
894{
895 struct xfs_icwalk icw = { .icw_flags = 0 };
896
897 if (qflags & XFS_UQUOTA_ACCT)
898 icw.icw_flags |= XFS_ICWALK_FLAG_DROP_UDQUOT;
899 if (qflags & XFS_GQUOTA_ACCT)
900 icw.icw_flags |= XFS_ICWALK_FLAG_DROP_GDQUOT;
901 if (qflags & XFS_PQUOTA_ACCT)
902 icw.icw_flags |= XFS_ICWALK_FLAG_DROP_PDQUOT;
903
904 return xfs_icwalk(mp, XFS_ICWALK_DQRELE, &icw);
905}
906#else
907# define xfs_dqrele_igrab(ip) (false)
908# define xfs_dqrele_inode(ip, priv) ((void)0)
909#endif /* CONFIG_XFS_QUOTA */
910
911/*
912 * Grab the inode for reclaim exclusively.
913 *
914 * We have found this inode via a lookup under RCU, so the inode may have
915 * already been freed, or it may be in the process of being recycled by
916 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
917 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
918 * will not be set. Hence we need to check for both these flag conditions to
919 * avoid inodes that are no longer reclaim candidates.
920 *
921 * Note: checking for other state flags here, under the i_flags_lock or not, is
922 * racy and should be avoided. Those races should be resolved only after we have
923 * ensured that we are able to reclaim this inode and the world can see that we
924 * are going to reclaim it.
925 *
926 * Return true if we grabbed it, false otherwise.
927 */
928static bool
929xfs_reclaim_igrab(
930 struct xfs_inode *ip,
931 struct xfs_icwalk *icw)
932{
933 ASSERT(rcu_read_lock_held());
934
935 spin_lock(&ip->i_flags_lock);
936 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
937 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
938 /* not a reclaim candidate. */
939 spin_unlock(&ip->i_flags_lock);
940 return false;
941 }
942
943 /* Don't reclaim a sick inode unless the caller asked for it. */
944 if (ip->i_sick &&
945 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
946 spin_unlock(&ip->i_flags_lock);
947 return false;
948 }
949
950 __xfs_iflags_set(ip, XFS_IRECLAIM);
951 spin_unlock(&ip->i_flags_lock);
952 return true;
953}
954
955/*
956 * Inode reclaim is non-blocking, so the default action if progress cannot be
957 * made is to "requeue" the inode for reclaim by unlocking it and clearing the
958 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about
959 * blocking anymore and hence we can wait for the inode to be able to reclaim
960 * it.
961 *
962 * We do no IO here - if callers require inodes to be cleaned they must push the
963 * AIL first to trigger writeback of dirty inodes. This enables writeback to be
964 * done in the background in a non-blocking manner, and enables memory reclaim
965 * to make progress without blocking.
966 */
967static void
968xfs_reclaim_inode(
969 struct xfs_inode *ip,
970 struct xfs_perag *pag)
971{
972 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
973
974 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
975 goto out;
976 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
977 goto out_iunlock;
978
979 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
980 xfs_iunpin_wait(ip);
981 xfs_iflush_abort(ip);
982 goto reclaim;
983 }
984 if (xfs_ipincount(ip))
985 goto out_clear_flush;
986 if (!xfs_inode_clean(ip))
987 goto out_clear_flush;
988
989 xfs_iflags_clear(ip, XFS_IFLUSHING);
990reclaim:
991
992 /*
993 * Because we use RCU freeing we need to ensure the inode always appears
994 * to be reclaimed with an invalid inode number when in the free state.
995 * We do this as early as possible under the ILOCK so that
996 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
997 * detect races with us here. By doing this, we guarantee that once
998 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
999 * it will see either a valid inode that will serialise correctly, or it
1000 * will see an invalid inode that it can skip.
1001 */
1002 spin_lock(&ip->i_flags_lock);
1003 ip->i_flags = XFS_IRECLAIM;
1004 ip->i_ino = 0;
1005 ip->i_sick = 0;
1006 ip->i_checked = 0;
1007 spin_unlock(&ip->i_flags_lock);
1008
1009 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1010
1011 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1012 /*
1013 * Remove the inode from the per-AG radix tree.
1014 *
1015 * Because radix_tree_delete won't complain even if the item was never
1016 * added to the tree assert that it's been there before to catch
1017 * problems with the inode life time early on.
1018 */
1019 spin_lock(&pag->pag_ici_lock);
1020 if (!radix_tree_delete(&pag->pag_ici_root,
1021 XFS_INO_TO_AGINO(ip->i_mount, ino)))
1022 ASSERT(0);
1023 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
1024 spin_unlock(&pag->pag_ici_lock);
1025
1026 /*
1027 * Here we do an (almost) spurious inode lock in order to coordinate
1028 * with inode cache radix tree lookups. This is because the lookup
1029 * can reference the inodes in the cache without taking references.
1030 *
1031 * We make that OK here by ensuring that we wait until the inode is
1032 * unlocked after the lookup before we go ahead and free it.
1033 */
1034 xfs_ilock(ip, XFS_ILOCK_EXCL);
1035 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
1036 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1037 ASSERT(xfs_inode_clean(ip));
1038
1039 __xfs_inode_free(ip);
1040 return;
1041
1042out_clear_flush:
1043 xfs_iflags_clear(ip, XFS_IFLUSHING);
1044out_iunlock:
1045 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1046out:
1047 xfs_iflags_clear(ip, XFS_IRECLAIM);
1048}
1049
1050/* Reclaim sick inodes if we're unmounting or the fs went down. */
1051static inline bool
1052xfs_want_reclaim_sick(
1053 struct xfs_mount *mp)
1054{
1055 return (mp->m_flags & XFS_MOUNT_UNMOUNTING) ||
1056 (mp->m_flags & XFS_MOUNT_NORECOVERY) ||
1057 XFS_FORCED_SHUTDOWN(mp);
1058}
1059
1060void
1061xfs_reclaim_inodes(
1062 struct xfs_mount *mp)
1063{
1064 struct xfs_icwalk icw = {
1065 .icw_flags = 0,
1066 };
1067
1068 if (xfs_want_reclaim_sick(mp))
1069 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1070
1071 while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
1072 xfs_ail_push_all_sync(mp->m_ail);
1073 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1074 }
1075}
1076
1077/*
1078 * The shrinker infrastructure determines how many inodes we should scan for
1079 * reclaim. We want as many clean inodes ready to reclaim as possible, so we
1080 * push the AIL here. We also want to proactively free up memory if we can to
1081 * minimise the amount of work memory reclaim has to do so we kick the
1082 * background reclaim if it isn't already scheduled.
1083 */
1084long
1085xfs_reclaim_inodes_nr(
1086 struct xfs_mount *mp,
1087 unsigned long nr_to_scan)
1088{
1089 struct xfs_icwalk icw = {
1090 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT,
1091 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan),
1092 };
1093
1094 if (xfs_want_reclaim_sick(mp))
1095 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1096
1097 /* kick background reclaimer and push the AIL */
1098 xfs_reclaim_work_queue(mp);
1099 xfs_ail_push_all(mp->m_ail);
1100
1101 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1102 return 0;
1103}
1104
1105/*
1106 * Return the number of reclaimable inodes in the filesystem for
1107 * the shrinker to determine how much to reclaim.
1108 */
1109long
1110xfs_reclaim_inodes_count(
1111 struct xfs_mount *mp)
1112{
1113 struct xfs_perag *pag;
1114 xfs_agnumber_t ag = 0;
1115 long reclaimable = 0;
1116
1117 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1118 ag = pag->pag_agno + 1;
1119 reclaimable += pag->pag_ici_reclaimable;
1120 xfs_perag_put(pag);
1121 }
1122 return reclaimable;
1123}
1124
1125STATIC bool
1126xfs_icwalk_match_id(
1127 struct xfs_inode *ip,
1128 struct xfs_icwalk *icw)
1129{
1130 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1131 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1132 return false;
1133
1134 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1135 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1136 return false;
1137
1138 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1139 ip->i_projid != icw->icw_prid)
1140 return false;
1141
1142 return true;
1143}
1144
1145/*
1146 * A union-based inode filtering algorithm. Process the inode if any of the
1147 * criteria match. This is for global/internal scans only.
1148 */
1149STATIC bool
1150xfs_icwalk_match_id_union(
1151 struct xfs_inode *ip,
1152 struct xfs_icwalk *icw)
1153{
1154 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1155 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1156 return true;
1157
1158 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1159 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1160 return true;
1161
1162 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1163 ip->i_projid == icw->icw_prid)
1164 return true;
1165
1166 return false;
1167}
1168
1169/*
1170 * Is this inode @ip eligible for eof/cow block reclamation, given some
1171 * filtering parameters @icw? The inode is eligible if @icw is null or
1172 * if the predicate functions match.
1173 */
1174static bool
1175xfs_icwalk_match(
1176 struct xfs_inode *ip,
1177 struct xfs_icwalk *icw)
1178{
1179 bool match;
1180
1181 if (!icw)
1182 return true;
1183
1184 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1185 match = xfs_icwalk_match_id_union(ip, icw);
1186 else
1187 match = xfs_icwalk_match_id(ip, icw);
1188 if (!match)
1189 return false;
1190
1191 /* skip the inode if the file size is too small */
1192 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1193 XFS_ISIZE(ip) < icw->icw_min_file_size)
1194 return false;
1195
1196 return true;
1197}
1198
1199/*
1200 * This is a fast pass over the inode cache to try to get reclaim moving on as
1201 * many inodes as possible in a short period of time. It kicks itself every few
1202 * seconds, as well as being kicked by the inode cache shrinker when memory
1203 * goes low.
1204 */
1205void
1206xfs_reclaim_worker(
1207 struct work_struct *work)
1208{
1209 struct xfs_mount *mp = container_of(to_delayed_work(work),
1210 struct xfs_mount, m_reclaim_work);
1211
1212 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1213 xfs_reclaim_work_queue(mp);
1214}
1215
1216STATIC int
1217xfs_inode_free_eofblocks(
1218 struct xfs_inode *ip,
1219 struct xfs_icwalk *icw,
1220 unsigned int *lockflags)
1221{
1222 bool wait;
1223
1224 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1225
1226 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1227 return 0;
1228
1229 /*
1230 * If the mapping is dirty the operation can block and wait for some
1231 * time. Unless we are waiting, skip it.
1232 */
1233 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1234 return 0;
1235
1236 if (!xfs_icwalk_match(ip, icw))
1237 return 0;
1238
1239 /*
1240 * If the caller is waiting, return -EAGAIN to keep the background
1241 * scanner moving and revisit the inode in a subsequent pass.
1242 */
1243 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1244 if (wait)
1245 return -EAGAIN;
1246 return 0;
1247 }
1248 *lockflags |= XFS_IOLOCK_EXCL;
1249
1250 if (xfs_can_free_eofblocks(ip, false))
1251 return xfs_free_eofblocks(ip);
1252
1253 /* inode could be preallocated or append-only */
1254 trace_xfs_inode_free_eofblocks_invalid(ip);
1255 xfs_inode_clear_eofblocks_tag(ip);
1256 return 0;
1257}
1258
1259static void
1260xfs_blockgc_set_iflag(
1261 struct xfs_inode *ip,
1262 unsigned long iflag)
1263{
1264 struct xfs_mount *mp = ip->i_mount;
1265 struct xfs_perag *pag;
1266
1267 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1268
1269 /*
1270 * Don't bother locking the AG and looking up in the radix trees
1271 * if we already know that we have the tag set.
1272 */
1273 if (ip->i_flags & iflag)
1274 return;
1275 spin_lock(&ip->i_flags_lock);
1276 ip->i_flags |= iflag;
1277 spin_unlock(&ip->i_flags_lock);
1278
1279 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1280 spin_lock(&pag->pag_ici_lock);
1281
1282 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1283 XFS_ICI_BLOCKGC_TAG);
1284
1285 spin_unlock(&pag->pag_ici_lock);
1286 xfs_perag_put(pag);
1287}
1288
1289void
1290xfs_inode_set_eofblocks_tag(
1291 xfs_inode_t *ip)
1292{
1293 trace_xfs_inode_set_eofblocks_tag(ip);
1294 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1295}
1296
1297static void
1298xfs_blockgc_clear_iflag(
1299 struct xfs_inode *ip,
1300 unsigned long iflag)
1301{
1302 struct xfs_mount *mp = ip->i_mount;
1303 struct xfs_perag *pag;
1304 bool clear_tag;
1305
1306 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1307
1308 spin_lock(&ip->i_flags_lock);
1309 ip->i_flags &= ~iflag;
1310 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1311 spin_unlock(&ip->i_flags_lock);
1312
1313 if (!clear_tag)
1314 return;
1315
1316 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1317 spin_lock(&pag->pag_ici_lock);
1318
1319 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1320 XFS_ICI_BLOCKGC_TAG);
1321
1322 spin_unlock(&pag->pag_ici_lock);
1323 xfs_perag_put(pag);
1324}
1325
1326void
1327xfs_inode_clear_eofblocks_tag(
1328 xfs_inode_t *ip)
1329{
1330 trace_xfs_inode_clear_eofblocks_tag(ip);
1331 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1332}
1333
1334/*
1335 * Set ourselves up to free CoW blocks from this file. If it's already clean
1336 * then we can bail out quickly, but otherwise we must back off if the file
1337 * is undergoing some kind of write.
1338 */
1339static bool
1340xfs_prep_free_cowblocks(
1341 struct xfs_inode *ip)
1342{
1343 /*
1344 * Just clear the tag if we have an empty cow fork or none at all. It's
1345 * possible the inode was fully unshared since it was originally tagged.
1346 */
1347 if (!xfs_inode_has_cow_data(ip)) {
1348 trace_xfs_inode_free_cowblocks_invalid(ip);
1349 xfs_inode_clear_cowblocks_tag(ip);
1350 return false;
1351 }
1352
1353 /*
1354 * If the mapping is dirty or under writeback we cannot touch the
1355 * CoW fork. Leave it alone if we're in the midst of a directio.
1356 */
1357 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1358 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1359 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1360 atomic_read(&VFS_I(ip)->i_dio_count))
1361 return false;
1362
1363 return true;
1364}
1365
1366/*
1367 * Automatic CoW Reservation Freeing
1368 *
1369 * These functions automatically garbage collect leftover CoW reservations
1370 * that were made on behalf of a cowextsize hint when we start to run out
1371 * of quota or when the reservations sit around for too long. If the file
1372 * has dirty pages or is undergoing writeback, its CoW reservations will
1373 * be retained.
1374 *
1375 * The actual garbage collection piggybacks off the same code that runs
1376 * the speculative EOF preallocation garbage collector.
1377 */
1378STATIC int
1379xfs_inode_free_cowblocks(
1380 struct xfs_inode *ip,
1381 struct xfs_icwalk *icw,
1382 unsigned int *lockflags)
1383{
1384 bool wait;
1385 int ret = 0;
1386
1387 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1388
1389 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1390 return 0;
1391
1392 if (!xfs_prep_free_cowblocks(ip))
1393 return 0;
1394
1395 if (!xfs_icwalk_match(ip, icw))
1396 return 0;
1397
1398 /*
1399 * If the caller is waiting, return -EAGAIN to keep the background
1400 * scanner moving and revisit the inode in a subsequent pass.
1401 */
1402 if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1403 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1404 if (wait)
1405 return -EAGAIN;
1406 return 0;
1407 }
1408 *lockflags |= XFS_IOLOCK_EXCL;
1409
1410 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1411 if (wait)
1412 return -EAGAIN;
1413 return 0;
1414 }
1415 *lockflags |= XFS_MMAPLOCK_EXCL;
1416
1417 /*
1418 * Check again, nobody else should be able to dirty blocks or change
1419 * the reflink iflag now that we have the first two locks held.
1420 */
1421 if (xfs_prep_free_cowblocks(ip))
1422 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1423 return ret;
1424}
1425
1426void
1427xfs_inode_set_cowblocks_tag(
1428 xfs_inode_t *ip)
1429{
1430 trace_xfs_inode_set_cowblocks_tag(ip);
1431 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1432}
1433
1434void
1435xfs_inode_clear_cowblocks_tag(
1436 xfs_inode_t *ip)
1437{
1438 trace_xfs_inode_clear_cowblocks_tag(ip);
1439 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1440}
1441
1442/* Disable post-EOF and CoW block auto-reclamation. */
1443void
1444xfs_blockgc_stop(
1445 struct xfs_mount *mp)
1446{
1447 struct xfs_perag *pag;
1448 xfs_agnumber_t agno;
1449
1450 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1451 cancel_delayed_work_sync(&pag->pag_blockgc_work);
1452}
1453
1454/* Enable post-EOF and CoW block auto-reclamation. */
1455void
1456xfs_blockgc_start(
1457 struct xfs_mount *mp)
1458{
1459 struct xfs_perag *pag;
1460 xfs_agnumber_t agno;
1461
1462 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1463 xfs_blockgc_queue(pag);
1464}
1465
1466/* Don't try to run block gc on an inode that's in any of these states. */
1467#define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \
1468 XFS_IRECLAIMABLE | \
1469 XFS_IRECLAIM)
1470/*
1471 * Decide if the given @ip is eligible for garbage collection of speculative
1472 * preallocations, and grab it if so. Returns true if it's ready to go or
1473 * false if we should just ignore it.
1474 */
1475static bool
1476xfs_blockgc_igrab(
1477 struct xfs_inode *ip)
1478{
1479 struct inode *inode = VFS_I(ip);
1480
1481 ASSERT(rcu_read_lock_held());
1482
1483 /* Check for stale RCU freed inode */
1484 spin_lock(&ip->i_flags_lock);
1485 if (!ip->i_ino)
1486 goto out_unlock_noent;
1487
1488 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1489 goto out_unlock_noent;
1490 spin_unlock(&ip->i_flags_lock);
1491
1492 /* nothing to sync during shutdown */
1493 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
1494 return false;
1495
1496 /* If we can't grab the inode, it must on it's way to reclaim. */
1497 if (!igrab(inode))
1498 return false;
1499
1500 /* inode is valid */
1501 return true;
1502
1503out_unlock_noent:
1504 spin_unlock(&ip->i_flags_lock);
1505 return false;
1506}
1507
1508/* Scan one incore inode for block preallocations that we can remove. */
1509static int
1510xfs_blockgc_scan_inode(
1511 struct xfs_inode *ip,
1512 struct xfs_icwalk *icw)
1513{
1514 unsigned int lockflags = 0;
1515 int error;
1516
1517 error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1518 if (error)
1519 goto unlock;
1520
1521 error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1522unlock:
1523 if (lockflags)
1524 xfs_iunlock(ip, lockflags);
1525 xfs_irele(ip);
1526 return error;
1527}
1528
1529/* Background worker that trims preallocated space. */
1530void
1531xfs_blockgc_worker(
1532 struct work_struct *work)
1533{
1534 struct xfs_perag *pag = container_of(to_delayed_work(work),
1535 struct xfs_perag, pag_blockgc_work);
1536 struct xfs_mount *mp = pag->pag_mount;
1537 int error;
1538
1539 if (!sb_start_write_trylock(mp->m_super))
1540 return;
1541 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1542 if (error)
1543 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1544 pag->pag_agno, error);
1545 sb_end_write(mp->m_super);
1546 xfs_blockgc_queue(pag);
1547}
1548
1549/*
1550 * Try to free space in the filesystem by purging eofblocks and cowblocks.
1551 */
1552int
1553xfs_blockgc_free_space(
1554 struct xfs_mount *mp,
1555 struct xfs_icwalk *icw)
1556{
1557 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1558
1559 return xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1560}
1561
1562/*
1563 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which
1564 * quota caused an allocation failure, so we make a best effort by including
1565 * each quota under low free space conditions (less than 1% free space) in the
1566 * scan.
1567 *
1568 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan
1569 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1570 * MMAPLOCK.
1571 */
1572int
1573xfs_blockgc_free_dquots(
1574 struct xfs_mount *mp,
1575 struct xfs_dquot *udqp,
1576 struct xfs_dquot *gdqp,
1577 struct xfs_dquot *pdqp,
1578 unsigned int iwalk_flags)
1579{
1580 struct xfs_icwalk icw = {0};
1581 bool do_work = false;
1582
1583 if (!udqp && !gdqp && !pdqp)
1584 return 0;
1585
1586 /*
1587 * Run a scan to free blocks using the union filter to cover all
1588 * applicable quotas in a single scan.
1589 */
1590 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1591
1592 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1593 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1594 icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1595 do_work = true;
1596 }
1597
1598 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1599 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1600 icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1601 do_work = true;
1602 }
1603
1604 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1605 icw.icw_prid = pdqp->q_id;
1606 icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1607 do_work = true;
1608 }
1609
1610 if (!do_work)
1611 return 0;
1612
1613 return xfs_blockgc_free_space(mp, &icw);
1614}
1615
1616/* Run cow/eofblocks scans on the quotas attached to the inode. */
1617int
1618xfs_blockgc_free_quota(
1619 struct xfs_inode *ip,
1620 unsigned int iwalk_flags)
1621{
1622 return xfs_blockgc_free_dquots(ip->i_mount,
1623 xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1624 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1625 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1626}
1627
1628/* XFS Inode Cache Walking Code */
1629
1630/*
1631 * The inode lookup is done in batches to keep the amount of lock traffic and
1632 * radix tree lookups to a minimum. The batch size is a trade off between
1633 * lookup reduction and stack usage. This is in the reclaim path, so we can't
1634 * be too greedy.
1635 */
1636#define XFS_LOOKUP_BATCH 32
1637
1638
1639/*
1640 * Decide if we want to grab this inode in anticipation of doing work towards
1641 * the goal.
1642 */
1643static inline bool
1644xfs_icwalk_igrab(
1645 enum xfs_icwalk_goal goal,
1646 struct xfs_inode *ip,
1647 struct xfs_icwalk *icw)
1648{
1649 switch (goal) {
1650 case XFS_ICWALK_DQRELE:
1651 return xfs_dqrele_igrab(ip);
1652 case XFS_ICWALK_BLOCKGC:
1653 return xfs_blockgc_igrab(ip);
1654 case XFS_ICWALK_RECLAIM:
1655 return xfs_reclaim_igrab(ip, icw);
1656 default:
1657 return false;
1658 }
1659}
1660
1661/*
1662 * Process an inode. Each processing function must handle any state changes
1663 * made by the icwalk igrab function. Return -EAGAIN to skip an inode.
1664 */
1665static inline int
1666xfs_icwalk_process_inode(
1667 enum xfs_icwalk_goal goal,
1668 struct xfs_inode *ip,
1669 struct xfs_perag *pag,
1670 struct xfs_icwalk *icw)
1671{
1672 int error = 0;
1673
1674 switch (goal) {
1675 case XFS_ICWALK_DQRELE:
1676 xfs_dqrele_inode(ip, icw);
1677 break;
1678 case XFS_ICWALK_BLOCKGC:
1679 error = xfs_blockgc_scan_inode(ip, icw);
1680 break;
1681 case XFS_ICWALK_RECLAIM:
1682 xfs_reclaim_inode(ip, pag);
1683 break;
1684 }
1685 return error;
1686}
1687
1688/*
1689 * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1690 * process them in some manner.
1691 */
1692static int
1693xfs_icwalk_ag(
1694 struct xfs_perag *pag,
1695 enum xfs_icwalk_goal goal,
1696 struct xfs_icwalk *icw)
1697{
1698 struct xfs_mount *mp = pag->pag_mount;
1699 uint32_t first_index;
1700 int last_error = 0;
1701 int skipped;
1702 bool done;
1703 int nr_found;
1704
1705restart:
1706 done = false;
1707 skipped = 0;
1708 if (goal == XFS_ICWALK_RECLAIM)
1709 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1710 else
1711 first_index = 0;
1712 nr_found = 0;
1713 do {
1714 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1715 unsigned int tag = xfs_icwalk_tag(goal);
1716 int error = 0;
1717 int i;
1718
1719 rcu_read_lock();
1720
1721 if (tag == XFS_ICWALK_NULL_TAG)
1722 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
1723 (void **)batch, first_index,
1724 XFS_LOOKUP_BATCH);
1725 else
1726 nr_found = radix_tree_gang_lookup_tag(
1727 &pag->pag_ici_root,
1728 (void **) batch, first_index,
1729 XFS_LOOKUP_BATCH, tag);
1730
1731 if (!nr_found) {
1732 done = true;
1733 rcu_read_unlock();
1734 break;
1735 }
1736
1737 /*
1738 * Grab the inodes before we drop the lock. if we found
1739 * nothing, nr == 0 and the loop will be skipped.
1740 */
1741 for (i = 0; i < nr_found; i++) {
1742 struct xfs_inode *ip = batch[i];
1743
1744 if (done || !xfs_icwalk_igrab(goal, ip, icw))
1745 batch[i] = NULL;
1746
1747 /*
1748 * Update the index for the next lookup. Catch
1749 * overflows into the next AG range which can occur if
1750 * we have inodes in the last block of the AG and we
1751 * are currently pointing to the last inode.
1752 *
1753 * Because we may see inodes that are from the wrong AG
1754 * due to RCU freeing and reallocation, only update the
1755 * index if it lies in this AG. It was a race that lead
1756 * us to see this inode, so another lookup from the
1757 * same index will not find it again.
1758 */
1759 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1760 continue;
1761 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1762 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1763 done = true;
1764 }
1765
1766 /* unlock now we've grabbed the inodes. */
1767 rcu_read_unlock();
1768
1769 for (i = 0; i < nr_found; i++) {
1770 if (!batch[i])
1771 continue;
1772 error = xfs_icwalk_process_inode(goal, batch[i], pag,
1773 icw);
1774 if (error == -EAGAIN) {
1775 skipped++;
1776 continue;
1777 }
1778 if (error && last_error != -EFSCORRUPTED)
1779 last_error = error;
1780 }
1781
1782 /* bail out if the filesystem is corrupted. */
1783 if (error == -EFSCORRUPTED)
1784 break;
1785
1786 cond_resched();
1787
1788 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1789 icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1790 if (icw->icw_scan_limit <= 0)
1791 break;
1792 }
1793 } while (nr_found && !done);
1794
1795 if (goal == XFS_ICWALK_RECLAIM) {
1796 if (done)
1797 first_index = 0;
1798 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1799 }
1800
1801 if (skipped) {
1802 delay(1);
1803 goto restart;
1804 }
1805 return last_error;
1806}
1807
1808/* Fetch the next (possibly tagged) per-AG structure. */
1809static inline struct xfs_perag *
1810xfs_icwalk_get_perag(
1811 struct xfs_mount *mp,
1812 xfs_agnumber_t agno,
1813 enum xfs_icwalk_goal goal)
1814{
1815 unsigned int tag = xfs_icwalk_tag(goal);
1816
1817 if (tag == XFS_ICWALK_NULL_TAG)
1818 return xfs_perag_get(mp, agno);
1819 return xfs_perag_get_tag(mp, agno, tag);
1820}
1821
1822/* Walk all incore inodes to achieve a given goal. */
1823static int
1824xfs_icwalk(
1825 struct xfs_mount *mp,
1826 enum xfs_icwalk_goal goal,
1827 struct xfs_icwalk *icw)
1828{
1829 struct xfs_perag *pag;
1830 int error = 0;
1831 int last_error = 0;
1832 xfs_agnumber_t agno = 0;
1833
1834 while ((pag = xfs_icwalk_get_perag(mp, agno, goal))) {
1835 agno = pag->pag_agno + 1;
1836 error = xfs_icwalk_ag(pag, goal, icw);
1837 xfs_perag_put(pag);
1838 if (error) {
1839 last_error = error;
1840 if (error == -EFSCORRUPTED)
1841 break;
1842 }
1843 }
1844 return last_error;
1845 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1846}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_sb.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_trans_priv.h"
17#include "xfs_inode_item.h"
18#include "xfs_quota.h"
19#include "xfs_trace.h"
20#include "xfs_icache.h"
21#include "xfs_bmap_util.h"
22#include "xfs_dquot_item.h"
23#include "xfs_dquot.h"
24#include "xfs_reflink.h"
25#include "xfs_ialloc.h"
26
27#include <linux/iversion.h>
28
29/*
30 * Allocate and initialise an xfs_inode.
31 */
32struct xfs_inode *
33xfs_inode_alloc(
34 struct xfs_mount *mp,
35 xfs_ino_t ino)
36{
37 struct xfs_inode *ip;
38
39 /*
40 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
41 * and return NULL here on ENOMEM.
42 */
43 ip = kmem_cache_alloc(xfs_inode_zone, GFP_KERNEL | __GFP_NOFAIL);
44
45 if (inode_init_always(mp->m_super, VFS_I(ip))) {
46 kmem_cache_free(xfs_inode_zone, ip);
47 return NULL;
48 }
49
50 /* VFS doesn't initialise i_mode! */
51 VFS_I(ip)->i_mode = 0;
52
53 XFS_STATS_INC(mp, vn_active);
54 ASSERT(atomic_read(&ip->i_pincount) == 0);
55 ASSERT(!xfs_isiflocked(ip));
56 ASSERT(ip->i_ino == 0);
57
58 /* initialise the xfs inode */
59 ip->i_ino = ino;
60 ip->i_mount = mp;
61 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
62 ip->i_afp = NULL;
63 ip->i_cowfp = NULL;
64 memset(&ip->i_df, 0, sizeof(ip->i_df));
65 ip->i_flags = 0;
66 ip->i_delayed_blks = 0;
67 memset(&ip->i_d, 0, sizeof(ip->i_d));
68 ip->i_sick = 0;
69 ip->i_checked = 0;
70 INIT_WORK(&ip->i_ioend_work, xfs_end_io);
71 INIT_LIST_HEAD(&ip->i_ioend_list);
72 spin_lock_init(&ip->i_ioend_lock);
73
74 return ip;
75}
76
77STATIC void
78xfs_inode_free_callback(
79 struct rcu_head *head)
80{
81 struct inode *inode = container_of(head, struct inode, i_rcu);
82 struct xfs_inode *ip = XFS_I(inode);
83
84 switch (VFS_I(ip)->i_mode & S_IFMT) {
85 case S_IFREG:
86 case S_IFDIR:
87 case S_IFLNK:
88 xfs_idestroy_fork(&ip->i_df);
89 break;
90 }
91
92 if (ip->i_afp) {
93 xfs_idestroy_fork(ip->i_afp);
94 kmem_cache_free(xfs_ifork_zone, ip->i_afp);
95 }
96 if (ip->i_cowfp) {
97 xfs_idestroy_fork(ip->i_cowfp);
98 kmem_cache_free(xfs_ifork_zone, ip->i_cowfp);
99 }
100 if (ip->i_itemp) {
101 ASSERT(!test_bit(XFS_LI_IN_AIL,
102 &ip->i_itemp->ili_item.li_flags));
103 xfs_inode_item_destroy(ip);
104 ip->i_itemp = NULL;
105 }
106
107 kmem_cache_free(xfs_inode_zone, ip);
108}
109
110static void
111__xfs_inode_free(
112 struct xfs_inode *ip)
113{
114 /* asserts to verify all state is correct here */
115 ASSERT(atomic_read(&ip->i_pincount) == 0);
116 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
117 XFS_STATS_DEC(ip->i_mount, vn_active);
118
119 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
120}
121
122void
123xfs_inode_free(
124 struct xfs_inode *ip)
125{
126 ASSERT(!xfs_isiflocked(ip));
127
128 /*
129 * Because we use RCU freeing we need to ensure the inode always
130 * appears to be reclaimed with an invalid inode number when in the
131 * free state. The ip->i_flags_lock provides the barrier against lookup
132 * races.
133 */
134 spin_lock(&ip->i_flags_lock);
135 ip->i_flags = XFS_IRECLAIM;
136 ip->i_ino = 0;
137 spin_unlock(&ip->i_flags_lock);
138
139 __xfs_inode_free(ip);
140}
141
142/*
143 * Queue background inode reclaim work if there are reclaimable inodes and there
144 * isn't reclaim work already scheduled or in progress.
145 */
146static void
147xfs_reclaim_work_queue(
148 struct xfs_mount *mp)
149{
150
151 rcu_read_lock();
152 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
153 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
154 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
155 }
156 rcu_read_unlock();
157}
158
159static void
160xfs_perag_set_reclaim_tag(
161 struct xfs_perag *pag)
162{
163 struct xfs_mount *mp = pag->pag_mount;
164
165 lockdep_assert_held(&pag->pag_ici_lock);
166 if (pag->pag_ici_reclaimable++)
167 return;
168
169 /* propagate the reclaim tag up into the perag radix tree */
170 spin_lock(&mp->m_perag_lock);
171 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
172 XFS_ICI_RECLAIM_TAG);
173 spin_unlock(&mp->m_perag_lock);
174
175 /* schedule periodic background inode reclaim */
176 xfs_reclaim_work_queue(mp);
177
178 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
179}
180
181static void
182xfs_perag_clear_reclaim_tag(
183 struct xfs_perag *pag)
184{
185 struct xfs_mount *mp = pag->pag_mount;
186
187 lockdep_assert_held(&pag->pag_ici_lock);
188 if (--pag->pag_ici_reclaimable)
189 return;
190
191 /* clear the reclaim tag from the perag radix tree */
192 spin_lock(&mp->m_perag_lock);
193 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
194 XFS_ICI_RECLAIM_TAG);
195 spin_unlock(&mp->m_perag_lock);
196 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
197}
198
199
200/*
201 * We set the inode flag atomically with the radix tree tag.
202 * Once we get tag lookups on the radix tree, this inode flag
203 * can go away.
204 */
205void
206xfs_inode_set_reclaim_tag(
207 struct xfs_inode *ip)
208{
209 struct xfs_mount *mp = ip->i_mount;
210 struct xfs_perag *pag;
211
212 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
213 spin_lock(&pag->pag_ici_lock);
214 spin_lock(&ip->i_flags_lock);
215
216 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
217 XFS_ICI_RECLAIM_TAG);
218 xfs_perag_set_reclaim_tag(pag);
219 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
220
221 spin_unlock(&ip->i_flags_lock);
222 spin_unlock(&pag->pag_ici_lock);
223 xfs_perag_put(pag);
224}
225
226STATIC void
227xfs_inode_clear_reclaim_tag(
228 struct xfs_perag *pag,
229 xfs_ino_t ino)
230{
231 radix_tree_tag_clear(&pag->pag_ici_root,
232 XFS_INO_TO_AGINO(pag->pag_mount, ino),
233 XFS_ICI_RECLAIM_TAG);
234 xfs_perag_clear_reclaim_tag(pag);
235}
236
237static void
238xfs_inew_wait(
239 struct xfs_inode *ip)
240{
241 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
242 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
243
244 do {
245 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
246 if (!xfs_iflags_test(ip, XFS_INEW))
247 break;
248 schedule();
249 } while (true);
250 finish_wait(wq, &wait.wq_entry);
251}
252
253/*
254 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
255 * part of the structure. This is made more complex by the fact we store
256 * information about the on-disk values in the VFS inode and so we can't just
257 * overwrite the values unconditionally. Hence we save the parameters we
258 * need to retain across reinitialisation, and rewrite them into the VFS inode
259 * after reinitialisation even if it fails.
260 */
261static int
262xfs_reinit_inode(
263 struct xfs_mount *mp,
264 struct inode *inode)
265{
266 int error;
267 uint32_t nlink = inode->i_nlink;
268 uint32_t generation = inode->i_generation;
269 uint64_t version = inode_peek_iversion(inode);
270 umode_t mode = inode->i_mode;
271 dev_t dev = inode->i_rdev;
272 kuid_t uid = inode->i_uid;
273 kgid_t gid = inode->i_gid;
274
275 error = inode_init_always(mp->m_super, inode);
276
277 set_nlink(inode, nlink);
278 inode->i_generation = generation;
279 inode_set_iversion_queried(inode, version);
280 inode->i_mode = mode;
281 inode->i_rdev = dev;
282 inode->i_uid = uid;
283 inode->i_gid = gid;
284 return error;
285}
286
287/*
288 * If we are allocating a new inode, then check what was returned is
289 * actually a free, empty inode. If we are not allocating an inode,
290 * then check we didn't find a free inode.
291 *
292 * Returns:
293 * 0 if the inode free state matches the lookup context
294 * -ENOENT if the inode is free and we are not allocating
295 * -EFSCORRUPTED if there is any state mismatch at all
296 */
297static int
298xfs_iget_check_free_state(
299 struct xfs_inode *ip,
300 int flags)
301{
302 if (flags & XFS_IGET_CREATE) {
303 /* should be a free inode */
304 if (VFS_I(ip)->i_mode != 0) {
305 xfs_warn(ip->i_mount,
306"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
307 ip->i_ino, VFS_I(ip)->i_mode);
308 return -EFSCORRUPTED;
309 }
310
311 if (ip->i_d.di_nblocks != 0) {
312 xfs_warn(ip->i_mount,
313"Corruption detected! Free inode 0x%llx has blocks allocated!",
314 ip->i_ino);
315 return -EFSCORRUPTED;
316 }
317 return 0;
318 }
319
320 /* should be an allocated inode */
321 if (VFS_I(ip)->i_mode == 0)
322 return -ENOENT;
323
324 return 0;
325}
326
327/*
328 * Check the validity of the inode we just found it the cache
329 */
330static int
331xfs_iget_cache_hit(
332 struct xfs_perag *pag,
333 struct xfs_inode *ip,
334 xfs_ino_t ino,
335 int flags,
336 int lock_flags) __releases(RCU)
337{
338 struct inode *inode = VFS_I(ip);
339 struct xfs_mount *mp = ip->i_mount;
340 int error;
341
342 /*
343 * check for re-use of an inode within an RCU grace period due to the
344 * radix tree nodes not being updated yet. We monitor for this by
345 * setting the inode number to zero before freeing the inode structure.
346 * If the inode has been reallocated and set up, then the inode number
347 * will not match, so check for that, too.
348 */
349 spin_lock(&ip->i_flags_lock);
350 if (ip->i_ino != ino) {
351 trace_xfs_iget_skip(ip);
352 XFS_STATS_INC(mp, xs_ig_frecycle);
353 error = -EAGAIN;
354 goto out_error;
355 }
356
357
358 /*
359 * If we are racing with another cache hit that is currently
360 * instantiating this inode or currently recycling it out of
361 * reclaimabe state, wait for the initialisation to complete
362 * before continuing.
363 *
364 * XXX(hch): eventually we should do something equivalent to
365 * wait_on_inode to wait for these flags to be cleared
366 * instead of polling for it.
367 */
368 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
369 trace_xfs_iget_skip(ip);
370 XFS_STATS_INC(mp, xs_ig_frecycle);
371 error = -EAGAIN;
372 goto out_error;
373 }
374
375 /*
376 * Check the inode free state is valid. This also detects lookup
377 * racing with unlinks.
378 */
379 error = xfs_iget_check_free_state(ip, flags);
380 if (error)
381 goto out_error;
382
383 /*
384 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
385 * Need to carefully get it back into useable state.
386 */
387 if (ip->i_flags & XFS_IRECLAIMABLE) {
388 trace_xfs_iget_reclaim(ip);
389
390 if (flags & XFS_IGET_INCORE) {
391 error = -EAGAIN;
392 goto out_error;
393 }
394
395 /*
396 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
397 * from stomping over us while we recycle the inode. We can't
398 * clear the radix tree reclaimable tag yet as it requires
399 * pag_ici_lock to be held exclusive.
400 */
401 ip->i_flags |= XFS_IRECLAIM;
402
403 spin_unlock(&ip->i_flags_lock);
404 rcu_read_unlock();
405
406 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
407 error = xfs_reinit_inode(mp, inode);
408 if (error) {
409 bool wake;
410 /*
411 * Re-initializing the inode failed, and we are in deep
412 * trouble. Try to re-add it to the reclaim list.
413 */
414 rcu_read_lock();
415 spin_lock(&ip->i_flags_lock);
416 wake = !!__xfs_iflags_test(ip, XFS_INEW);
417 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
418 if (wake)
419 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
420 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
421 trace_xfs_iget_reclaim_fail(ip);
422 goto out_error;
423 }
424
425 spin_lock(&pag->pag_ici_lock);
426 spin_lock(&ip->i_flags_lock);
427
428 /*
429 * Clear the per-lifetime state in the inode as we are now
430 * effectively a new inode and need to return to the initial
431 * state before reuse occurs.
432 */
433 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
434 ip->i_flags |= XFS_INEW;
435 xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
436 inode->i_state = I_NEW;
437 ip->i_sick = 0;
438 ip->i_checked = 0;
439
440 spin_unlock(&ip->i_flags_lock);
441 spin_unlock(&pag->pag_ici_lock);
442 } else {
443 /* If the VFS inode is being torn down, pause and try again. */
444 if (!igrab(inode)) {
445 trace_xfs_iget_skip(ip);
446 error = -EAGAIN;
447 goto out_error;
448 }
449
450 /* We've got a live one. */
451 spin_unlock(&ip->i_flags_lock);
452 rcu_read_unlock();
453 trace_xfs_iget_hit(ip);
454 }
455
456 if (lock_flags != 0)
457 xfs_ilock(ip, lock_flags);
458
459 if (!(flags & XFS_IGET_INCORE))
460 xfs_iflags_clear(ip, XFS_ISTALE);
461 XFS_STATS_INC(mp, xs_ig_found);
462
463 return 0;
464
465out_error:
466 spin_unlock(&ip->i_flags_lock);
467 rcu_read_unlock();
468 return error;
469}
470
471
472static int
473xfs_iget_cache_miss(
474 struct xfs_mount *mp,
475 struct xfs_perag *pag,
476 xfs_trans_t *tp,
477 xfs_ino_t ino,
478 struct xfs_inode **ipp,
479 int flags,
480 int lock_flags)
481{
482 struct xfs_inode *ip;
483 int error;
484 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
485 int iflags;
486
487 ip = xfs_inode_alloc(mp, ino);
488 if (!ip)
489 return -ENOMEM;
490
491 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
492 if (error)
493 goto out_destroy;
494
495 /*
496 * For version 5 superblocks, if we are initialising a new inode and we
497 * are not utilising the XFS_MOUNT_IKEEP inode cluster mode, we can
498 * simply build the new inode core with a random generation number.
499 *
500 * For version 4 (and older) superblocks, log recovery is dependent on
501 * the di_flushiter field being initialised from the current on-disk
502 * value and hence we must also read the inode off disk even when
503 * initializing new inodes.
504 */
505 if (xfs_sb_version_has_v3inode(&mp->m_sb) &&
506 (flags & XFS_IGET_CREATE) && !(mp->m_flags & XFS_MOUNT_IKEEP)) {
507 VFS_I(ip)->i_generation = prandom_u32();
508 } else {
509 struct xfs_dinode *dip;
510 struct xfs_buf *bp;
511
512 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0);
513 if (error)
514 goto out_destroy;
515
516 error = xfs_inode_from_disk(ip, dip);
517 if (!error)
518 xfs_buf_set_ref(bp, XFS_INO_REF);
519 xfs_trans_brelse(tp, bp);
520
521 if (error)
522 goto out_destroy;
523 }
524
525 trace_xfs_iget_miss(ip);
526
527 /*
528 * Check the inode free state is valid. This also detects lookup
529 * racing with unlinks.
530 */
531 error = xfs_iget_check_free_state(ip, flags);
532 if (error)
533 goto out_destroy;
534
535 /*
536 * Preload the radix tree so we can insert safely under the
537 * write spinlock. Note that we cannot sleep inside the preload
538 * region. Since we can be called from transaction context, don't
539 * recurse into the file system.
540 */
541 if (radix_tree_preload(GFP_NOFS)) {
542 error = -EAGAIN;
543 goto out_destroy;
544 }
545
546 /*
547 * Because the inode hasn't been added to the radix-tree yet it can't
548 * be found by another thread, so we can do the non-sleeping lock here.
549 */
550 if (lock_flags) {
551 if (!xfs_ilock_nowait(ip, lock_flags))
552 BUG();
553 }
554
555 /*
556 * These values must be set before inserting the inode into the radix
557 * tree as the moment it is inserted a concurrent lookup (allowed by the
558 * RCU locking mechanism) can find it and that lookup must see that this
559 * is an inode currently under construction (i.e. that XFS_INEW is set).
560 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
561 * memory barrier that ensures this detection works correctly at lookup
562 * time.
563 */
564 iflags = XFS_INEW;
565 if (flags & XFS_IGET_DONTCACHE)
566 d_mark_dontcache(VFS_I(ip));
567 ip->i_udquot = NULL;
568 ip->i_gdquot = NULL;
569 ip->i_pdquot = NULL;
570 xfs_iflags_set(ip, iflags);
571
572 /* insert the new inode */
573 spin_lock(&pag->pag_ici_lock);
574 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
575 if (unlikely(error)) {
576 WARN_ON(error != -EEXIST);
577 XFS_STATS_INC(mp, xs_ig_dup);
578 error = -EAGAIN;
579 goto out_preload_end;
580 }
581 spin_unlock(&pag->pag_ici_lock);
582 radix_tree_preload_end();
583
584 *ipp = ip;
585 return 0;
586
587out_preload_end:
588 spin_unlock(&pag->pag_ici_lock);
589 radix_tree_preload_end();
590 if (lock_flags)
591 xfs_iunlock(ip, lock_flags);
592out_destroy:
593 __destroy_inode(VFS_I(ip));
594 xfs_inode_free(ip);
595 return error;
596}
597
598/*
599 * Look up an inode by number in the given file system. The inode is looked up
600 * in the cache held in each AG. If the inode is found in the cache, initialise
601 * the vfs inode if necessary.
602 *
603 * If it is not in core, read it in from the file system's device, add it to the
604 * cache and initialise the vfs inode.
605 *
606 * The inode is locked according to the value of the lock_flags parameter.
607 * Inode lookup is only done during metadata operations and not as part of the
608 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
609 */
610int
611xfs_iget(
612 struct xfs_mount *mp,
613 struct xfs_trans *tp,
614 xfs_ino_t ino,
615 uint flags,
616 uint lock_flags,
617 struct xfs_inode **ipp)
618{
619 struct xfs_inode *ip;
620 struct xfs_perag *pag;
621 xfs_agino_t agino;
622 int error;
623
624 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
625
626 /* reject inode numbers outside existing AGs */
627 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
628 return -EINVAL;
629
630 XFS_STATS_INC(mp, xs_ig_attempts);
631
632 /* get the perag structure and ensure that it's inode capable */
633 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
634 agino = XFS_INO_TO_AGINO(mp, ino);
635
636again:
637 error = 0;
638 rcu_read_lock();
639 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
640
641 if (ip) {
642 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
643 if (error)
644 goto out_error_or_again;
645 } else {
646 rcu_read_unlock();
647 if (flags & XFS_IGET_INCORE) {
648 error = -ENODATA;
649 goto out_error_or_again;
650 }
651 XFS_STATS_INC(mp, xs_ig_missed);
652
653 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
654 flags, lock_flags);
655 if (error)
656 goto out_error_or_again;
657 }
658 xfs_perag_put(pag);
659
660 *ipp = ip;
661
662 /*
663 * If we have a real type for an on-disk inode, we can setup the inode
664 * now. If it's a new inode being created, xfs_ialloc will handle it.
665 */
666 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
667 xfs_setup_existing_inode(ip);
668 return 0;
669
670out_error_or_again:
671 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
672 delay(1);
673 goto again;
674 }
675 xfs_perag_put(pag);
676 return error;
677}
678
679/*
680 * "Is this a cached inode that's also allocated?"
681 *
682 * Look up an inode by number in the given file system. If the inode is
683 * in cache and isn't in purgatory, return 1 if the inode is allocated
684 * and 0 if it is not. For all other cases (not in cache, being torn
685 * down, etc.), return a negative error code.
686 *
687 * The caller has to prevent inode allocation and freeing activity,
688 * presumably by locking the AGI buffer. This is to ensure that an
689 * inode cannot transition from allocated to freed until the caller is
690 * ready to allow that. If the inode is in an intermediate state (new,
691 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
692 * inode is not in the cache, -ENOENT will be returned. The caller must
693 * deal with these scenarios appropriately.
694 *
695 * This is a specialized use case for the online scrubber; if you're
696 * reading this, you probably want xfs_iget.
697 */
698int
699xfs_icache_inode_is_allocated(
700 struct xfs_mount *mp,
701 struct xfs_trans *tp,
702 xfs_ino_t ino,
703 bool *inuse)
704{
705 struct xfs_inode *ip;
706 int error;
707
708 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
709 if (error)
710 return error;
711
712 *inuse = !!(VFS_I(ip)->i_mode);
713 xfs_irele(ip);
714 return 0;
715}
716
717/*
718 * The inode lookup is done in batches to keep the amount of lock traffic and
719 * radix tree lookups to a minimum. The batch size is a trade off between
720 * lookup reduction and stack usage. This is in the reclaim path, so we can't
721 * be too greedy.
722 */
723#define XFS_LOOKUP_BATCH 32
724
725/*
726 * Decide if the given @ip is eligible to be a part of the inode walk, and
727 * grab it if so. Returns true if it's ready to go or false if we should just
728 * ignore it.
729 */
730STATIC bool
731xfs_inode_walk_ag_grab(
732 struct xfs_inode *ip,
733 int flags)
734{
735 struct inode *inode = VFS_I(ip);
736 bool newinos = !!(flags & XFS_INODE_WALK_INEW_WAIT);
737
738 ASSERT(rcu_read_lock_held());
739
740 /* Check for stale RCU freed inode */
741 spin_lock(&ip->i_flags_lock);
742 if (!ip->i_ino)
743 goto out_unlock_noent;
744
745 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
746 if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
747 __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
748 goto out_unlock_noent;
749 spin_unlock(&ip->i_flags_lock);
750
751 /* nothing to sync during shutdown */
752 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
753 return false;
754
755 /* If we can't grab the inode, it must on it's way to reclaim. */
756 if (!igrab(inode))
757 return false;
758
759 /* inode is valid */
760 return true;
761
762out_unlock_noent:
763 spin_unlock(&ip->i_flags_lock);
764 return false;
765}
766
767/*
768 * For a given per-AG structure @pag, grab, @execute, and rele all incore
769 * inodes with the given radix tree @tag.
770 */
771STATIC int
772xfs_inode_walk_ag(
773 struct xfs_perag *pag,
774 int iter_flags,
775 int (*execute)(struct xfs_inode *ip, void *args),
776 void *args,
777 int tag)
778{
779 struct xfs_mount *mp = pag->pag_mount;
780 uint32_t first_index;
781 int last_error = 0;
782 int skipped;
783 bool done;
784 int nr_found;
785
786restart:
787 done = false;
788 skipped = 0;
789 first_index = 0;
790 nr_found = 0;
791 do {
792 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
793 int error = 0;
794 int i;
795
796 rcu_read_lock();
797
798 if (tag == XFS_ICI_NO_TAG)
799 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
800 (void **)batch, first_index,
801 XFS_LOOKUP_BATCH);
802 else
803 nr_found = radix_tree_gang_lookup_tag(
804 &pag->pag_ici_root,
805 (void **) batch, first_index,
806 XFS_LOOKUP_BATCH, tag);
807
808 if (!nr_found) {
809 rcu_read_unlock();
810 break;
811 }
812
813 /*
814 * Grab the inodes before we drop the lock. if we found
815 * nothing, nr == 0 and the loop will be skipped.
816 */
817 for (i = 0; i < nr_found; i++) {
818 struct xfs_inode *ip = batch[i];
819
820 if (done || !xfs_inode_walk_ag_grab(ip, iter_flags))
821 batch[i] = NULL;
822
823 /*
824 * Update the index for the next lookup. Catch
825 * overflows into the next AG range which can occur if
826 * we have inodes in the last block of the AG and we
827 * are currently pointing to the last inode.
828 *
829 * Because we may see inodes that are from the wrong AG
830 * due to RCU freeing and reallocation, only update the
831 * index if it lies in this AG. It was a race that lead
832 * us to see this inode, so another lookup from the
833 * same index will not find it again.
834 */
835 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
836 continue;
837 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
838 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
839 done = true;
840 }
841
842 /* unlock now we've grabbed the inodes. */
843 rcu_read_unlock();
844
845 for (i = 0; i < nr_found; i++) {
846 if (!batch[i])
847 continue;
848 if ((iter_flags & XFS_INODE_WALK_INEW_WAIT) &&
849 xfs_iflags_test(batch[i], XFS_INEW))
850 xfs_inew_wait(batch[i]);
851 error = execute(batch[i], args);
852 xfs_irele(batch[i]);
853 if (error == -EAGAIN) {
854 skipped++;
855 continue;
856 }
857 if (error && last_error != -EFSCORRUPTED)
858 last_error = error;
859 }
860
861 /* bail out if the filesystem is corrupted. */
862 if (error == -EFSCORRUPTED)
863 break;
864
865 cond_resched();
866
867 } while (nr_found && !done);
868
869 if (skipped) {
870 delay(1);
871 goto restart;
872 }
873 return last_error;
874}
875
876/* Fetch the next (possibly tagged) per-AG structure. */
877static inline struct xfs_perag *
878xfs_inode_walk_get_perag(
879 struct xfs_mount *mp,
880 xfs_agnumber_t agno,
881 int tag)
882{
883 if (tag == XFS_ICI_NO_TAG)
884 return xfs_perag_get(mp, agno);
885 return xfs_perag_get_tag(mp, agno, tag);
886}
887
888/*
889 * Call the @execute function on all incore inodes matching the radix tree
890 * @tag.
891 */
892int
893xfs_inode_walk(
894 struct xfs_mount *mp,
895 int iter_flags,
896 int (*execute)(struct xfs_inode *ip, void *args),
897 void *args,
898 int tag)
899{
900 struct xfs_perag *pag;
901 int error = 0;
902 int last_error = 0;
903 xfs_agnumber_t ag;
904
905 ag = 0;
906 while ((pag = xfs_inode_walk_get_perag(mp, ag, tag))) {
907 ag = pag->pag_agno + 1;
908 error = xfs_inode_walk_ag(pag, iter_flags, execute, args, tag);
909 xfs_perag_put(pag);
910 if (error) {
911 last_error = error;
912 if (error == -EFSCORRUPTED)
913 break;
914 }
915 }
916 return last_error;
917}
918
919/*
920 * Background scanning to trim post-EOF preallocated space. This is queued
921 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
922 */
923void
924xfs_queue_eofblocks(
925 struct xfs_mount *mp)
926{
927 rcu_read_lock();
928 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
929 queue_delayed_work(mp->m_eofblocks_workqueue,
930 &mp->m_eofblocks_work,
931 msecs_to_jiffies(xfs_eofb_secs * 1000));
932 rcu_read_unlock();
933}
934
935void
936xfs_eofblocks_worker(
937 struct work_struct *work)
938{
939 struct xfs_mount *mp = container_of(to_delayed_work(work),
940 struct xfs_mount, m_eofblocks_work);
941
942 if (!sb_start_write_trylock(mp->m_super))
943 return;
944 xfs_icache_free_eofblocks(mp, NULL);
945 sb_end_write(mp->m_super);
946
947 xfs_queue_eofblocks(mp);
948}
949
950/*
951 * Background scanning to trim preallocated CoW space. This is queued
952 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
953 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
954 */
955void
956xfs_queue_cowblocks(
957 struct xfs_mount *mp)
958{
959 rcu_read_lock();
960 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
961 queue_delayed_work(mp->m_eofblocks_workqueue,
962 &mp->m_cowblocks_work,
963 msecs_to_jiffies(xfs_cowb_secs * 1000));
964 rcu_read_unlock();
965}
966
967void
968xfs_cowblocks_worker(
969 struct work_struct *work)
970{
971 struct xfs_mount *mp = container_of(to_delayed_work(work),
972 struct xfs_mount, m_cowblocks_work);
973
974 if (!sb_start_write_trylock(mp->m_super))
975 return;
976 xfs_icache_free_cowblocks(mp, NULL);
977 sb_end_write(mp->m_super);
978
979 xfs_queue_cowblocks(mp);
980}
981
982/*
983 * Grab the inode for reclaim exclusively.
984 *
985 * We have found this inode via a lookup under RCU, so the inode may have
986 * already been freed, or it may be in the process of being recycled by
987 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
988 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
989 * will not be set. Hence we need to check for both these flag conditions to
990 * avoid inodes that are no longer reclaim candidates.
991 *
992 * Note: checking for other state flags here, under the i_flags_lock or not, is
993 * racy and should be avoided. Those races should be resolved only after we have
994 * ensured that we are able to reclaim this inode and the world can see that we
995 * are going to reclaim it.
996 *
997 * Return true if we grabbed it, false otherwise.
998 */
999static bool
1000xfs_reclaim_inode_grab(
1001 struct xfs_inode *ip)
1002{
1003 ASSERT(rcu_read_lock_held());
1004
1005 spin_lock(&ip->i_flags_lock);
1006 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1007 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1008 /* not a reclaim candidate. */
1009 spin_unlock(&ip->i_flags_lock);
1010 return false;
1011 }
1012 __xfs_iflags_set(ip, XFS_IRECLAIM);
1013 spin_unlock(&ip->i_flags_lock);
1014 return true;
1015}
1016
1017/*
1018 * Inode reclaim is non-blocking, so the default action if progress cannot be
1019 * made is to "requeue" the inode for reclaim by unlocking it and clearing the
1020 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about
1021 * blocking anymore and hence we can wait for the inode to be able to reclaim
1022 * it.
1023 *
1024 * We do no IO here - if callers require inodes to be cleaned they must push the
1025 * AIL first to trigger writeback of dirty inodes. This enables writeback to be
1026 * done in the background in a non-blocking manner, and enables memory reclaim
1027 * to make progress without blocking.
1028 */
1029static void
1030xfs_reclaim_inode(
1031 struct xfs_inode *ip,
1032 struct xfs_perag *pag)
1033{
1034 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
1035
1036 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
1037 goto out;
1038 if (!xfs_iflock_nowait(ip))
1039 goto out_iunlock;
1040
1041 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1042 xfs_iunpin_wait(ip);
1043 /* xfs_iflush_abort() drops the flush lock */
1044 xfs_iflush_abort(ip);
1045 goto reclaim;
1046 }
1047 if (xfs_ipincount(ip))
1048 goto out_ifunlock;
1049 if (!xfs_inode_clean(ip))
1050 goto out_ifunlock;
1051
1052 xfs_ifunlock(ip);
1053reclaim:
1054 ASSERT(!xfs_isiflocked(ip));
1055
1056 /*
1057 * Because we use RCU freeing we need to ensure the inode always appears
1058 * to be reclaimed with an invalid inode number when in the free state.
1059 * We do this as early as possible under the ILOCK so that
1060 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1061 * detect races with us here. By doing this, we guarantee that once
1062 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1063 * it will see either a valid inode that will serialise correctly, or it
1064 * will see an invalid inode that it can skip.
1065 */
1066 spin_lock(&ip->i_flags_lock);
1067 ip->i_flags = XFS_IRECLAIM;
1068 ip->i_ino = 0;
1069 spin_unlock(&ip->i_flags_lock);
1070
1071 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1072
1073 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1074 /*
1075 * Remove the inode from the per-AG radix tree.
1076 *
1077 * Because radix_tree_delete won't complain even if the item was never
1078 * added to the tree assert that it's been there before to catch
1079 * problems with the inode life time early on.
1080 */
1081 spin_lock(&pag->pag_ici_lock);
1082 if (!radix_tree_delete(&pag->pag_ici_root,
1083 XFS_INO_TO_AGINO(ip->i_mount, ino)))
1084 ASSERT(0);
1085 xfs_perag_clear_reclaim_tag(pag);
1086 spin_unlock(&pag->pag_ici_lock);
1087
1088 /*
1089 * Here we do an (almost) spurious inode lock in order to coordinate
1090 * with inode cache radix tree lookups. This is because the lookup
1091 * can reference the inodes in the cache without taking references.
1092 *
1093 * We make that OK here by ensuring that we wait until the inode is
1094 * unlocked after the lookup before we go ahead and free it.
1095 */
1096 xfs_ilock(ip, XFS_ILOCK_EXCL);
1097 xfs_qm_dqdetach(ip);
1098 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1099 ASSERT(xfs_inode_clean(ip));
1100
1101 __xfs_inode_free(ip);
1102 return;
1103
1104out_ifunlock:
1105 xfs_ifunlock(ip);
1106out_iunlock:
1107 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1108out:
1109 xfs_iflags_clear(ip, XFS_IRECLAIM);
1110}
1111
1112/*
1113 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1114 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1115 * then a shut down during filesystem unmount reclaim walk leak all the
1116 * unreclaimed inodes.
1117 *
1118 * Returns non-zero if any AGs or inodes were skipped in the reclaim pass
1119 * so that callers that want to block until all dirty inodes are written back
1120 * and reclaimed can sanely loop.
1121 */
1122static void
1123xfs_reclaim_inodes_ag(
1124 struct xfs_mount *mp,
1125 int *nr_to_scan)
1126{
1127 struct xfs_perag *pag;
1128 xfs_agnumber_t ag = 0;
1129
1130 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1131 unsigned long first_index = 0;
1132 int done = 0;
1133 int nr_found = 0;
1134
1135 ag = pag->pag_agno + 1;
1136
1137 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1138 do {
1139 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1140 int i;
1141
1142 rcu_read_lock();
1143 nr_found = radix_tree_gang_lookup_tag(
1144 &pag->pag_ici_root,
1145 (void **)batch, first_index,
1146 XFS_LOOKUP_BATCH,
1147 XFS_ICI_RECLAIM_TAG);
1148 if (!nr_found) {
1149 done = 1;
1150 rcu_read_unlock();
1151 break;
1152 }
1153
1154 /*
1155 * Grab the inodes before we drop the lock. if we found
1156 * nothing, nr == 0 and the loop will be skipped.
1157 */
1158 for (i = 0; i < nr_found; i++) {
1159 struct xfs_inode *ip = batch[i];
1160
1161 if (done || !xfs_reclaim_inode_grab(ip))
1162 batch[i] = NULL;
1163
1164 /*
1165 * Update the index for the next lookup. Catch
1166 * overflows into the next AG range which can
1167 * occur if we have inodes in the last block of
1168 * the AG and we are currently pointing to the
1169 * last inode.
1170 *
1171 * Because we may see inodes that are from the
1172 * wrong AG due to RCU freeing and
1173 * reallocation, only update the index if it
1174 * lies in this AG. It was a race that lead us
1175 * to see this inode, so another lookup from
1176 * the same index will not find it again.
1177 */
1178 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1179 pag->pag_agno)
1180 continue;
1181 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1182 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1183 done = 1;
1184 }
1185
1186 /* unlock now we've grabbed the inodes. */
1187 rcu_read_unlock();
1188
1189 for (i = 0; i < nr_found; i++) {
1190 if (batch[i])
1191 xfs_reclaim_inode(batch[i], pag);
1192 }
1193
1194 *nr_to_scan -= XFS_LOOKUP_BATCH;
1195 cond_resched();
1196 } while (nr_found && !done && *nr_to_scan > 0);
1197
1198 if (done)
1199 first_index = 0;
1200 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1201 xfs_perag_put(pag);
1202 }
1203}
1204
1205void
1206xfs_reclaim_inodes(
1207 struct xfs_mount *mp)
1208{
1209 int nr_to_scan = INT_MAX;
1210
1211 while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
1212 xfs_ail_push_all_sync(mp->m_ail);
1213 xfs_reclaim_inodes_ag(mp, &nr_to_scan);
1214 };
1215}
1216
1217/*
1218 * The shrinker infrastructure determines how many inodes we should scan for
1219 * reclaim. We want as many clean inodes ready to reclaim as possible, so we
1220 * push the AIL here. We also want to proactively free up memory if we can to
1221 * minimise the amount of work memory reclaim has to do so we kick the
1222 * background reclaim if it isn't already scheduled.
1223 */
1224long
1225xfs_reclaim_inodes_nr(
1226 struct xfs_mount *mp,
1227 int nr_to_scan)
1228{
1229 /* kick background reclaimer and push the AIL */
1230 xfs_reclaim_work_queue(mp);
1231 xfs_ail_push_all(mp->m_ail);
1232
1233 xfs_reclaim_inodes_ag(mp, &nr_to_scan);
1234 return 0;
1235}
1236
1237/*
1238 * Return the number of reclaimable inodes in the filesystem for
1239 * the shrinker to determine how much to reclaim.
1240 */
1241int
1242xfs_reclaim_inodes_count(
1243 struct xfs_mount *mp)
1244{
1245 struct xfs_perag *pag;
1246 xfs_agnumber_t ag = 0;
1247 int reclaimable = 0;
1248
1249 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1250 ag = pag->pag_agno + 1;
1251 reclaimable += pag->pag_ici_reclaimable;
1252 xfs_perag_put(pag);
1253 }
1254 return reclaimable;
1255}
1256
1257STATIC bool
1258xfs_inode_match_id(
1259 struct xfs_inode *ip,
1260 struct xfs_eofblocks *eofb)
1261{
1262 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1263 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1264 return false;
1265
1266 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1267 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1268 return false;
1269
1270 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1271 ip->i_d.di_projid != eofb->eof_prid)
1272 return false;
1273
1274 return true;
1275}
1276
1277/*
1278 * A union-based inode filtering algorithm. Process the inode if any of the
1279 * criteria match. This is for global/internal scans only.
1280 */
1281STATIC bool
1282xfs_inode_match_id_union(
1283 struct xfs_inode *ip,
1284 struct xfs_eofblocks *eofb)
1285{
1286 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1287 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1288 return true;
1289
1290 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1291 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1292 return true;
1293
1294 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1295 ip->i_d.di_projid == eofb->eof_prid)
1296 return true;
1297
1298 return false;
1299}
1300
1301/*
1302 * Is this inode @ip eligible for eof/cow block reclamation, given some
1303 * filtering parameters @eofb? The inode is eligible if @eofb is null or
1304 * if the predicate functions match.
1305 */
1306static bool
1307xfs_inode_matches_eofb(
1308 struct xfs_inode *ip,
1309 struct xfs_eofblocks *eofb)
1310{
1311 bool match;
1312
1313 if (!eofb)
1314 return true;
1315
1316 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1317 match = xfs_inode_match_id_union(ip, eofb);
1318 else
1319 match = xfs_inode_match_id(ip, eofb);
1320 if (!match)
1321 return false;
1322
1323 /* skip the inode if the file size is too small */
1324 if ((eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE) &&
1325 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1326 return false;
1327
1328 return true;
1329}
1330
1331/*
1332 * This is a fast pass over the inode cache to try to get reclaim moving on as
1333 * many inodes as possible in a short period of time. It kicks itself every few
1334 * seconds, as well as being kicked by the inode cache shrinker when memory
1335 * goes low.
1336 */
1337void
1338xfs_reclaim_worker(
1339 struct work_struct *work)
1340{
1341 struct xfs_mount *mp = container_of(to_delayed_work(work),
1342 struct xfs_mount, m_reclaim_work);
1343 int nr_to_scan = INT_MAX;
1344
1345 xfs_reclaim_inodes_ag(mp, &nr_to_scan);
1346 xfs_reclaim_work_queue(mp);
1347}
1348
1349STATIC int
1350xfs_inode_free_eofblocks(
1351 struct xfs_inode *ip,
1352 void *args)
1353{
1354 struct xfs_eofblocks *eofb = args;
1355 bool wait;
1356 int ret;
1357
1358 wait = eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC);
1359
1360 if (!xfs_can_free_eofblocks(ip, false)) {
1361 /* inode could be preallocated or append-only */
1362 trace_xfs_inode_free_eofblocks_invalid(ip);
1363 xfs_inode_clear_eofblocks_tag(ip);
1364 return 0;
1365 }
1366
1367 /*
1368 * If the mapping is dirty the operation can block and wait for some
1369 * time. Unless we are waiting, skip it.
1370 */
1371 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1372 return 0;
1373
1374 if (!xfs_inode_matches_eofb(ip, eofb))
1375 return 0;
1376
1377 /*
1378 * If the caller is waiting, return -EAGAIN to keep the background
1379 * scanner moving and revisit the inode in a subsequent pass.
1380 */
1381 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1382 if (wait)
1383 return -EAGAIN;
1384 return 0;
1385 }
1386
1387 ret = xfs_free_eofblocks(ip);
1388 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1389
1390 return ret;
1391}
1392
1393int
1394xfs_icache_free_eofblocks(
1395 struct xfs_mount *mp,
1396 struct xfs_eofblocks *eofb)
1397{
1398 return xfs_inode_walk(mp, 0, xfs_inode_free_eofblocks, eofb,
1399 XFS_ICI_EOFBLOCKS_TAG);
1400}
1401
1402/*
1403 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1404 * multiple quotas, we don't know exactly which quota caused an allocation
1405 * failure. We make a best effort by including each quota under low free space
1406 * conditions (less than 1% free space) in the scan.
1407 */
1408static int
1409__xfs_inode_free_quota_eofblocks(
1410 struct xfs_inode *ip,
1411 int (*execute)(struct xfs_mount *mp,
1412 struct xfs_eofblocks *eofb))
1413{
1414 int scan = 0;
1415 struct xfs_eofblocks eofb = {0};
1416 struct xfs_dquot *dq;
1417
1418 /*
1419 * Run a sync scan to increase effectiveness and use the union filter to
1420 * cover all applicable quotas in a single scan.
1421 */
1422 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1423
1424 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1425 dq = xfs_inode_dquot(ip, XFS_DQTYPE_USER);
1426 if (dq && xfs_dquot_lowsp(dq)) {
1427 eofb.eof_uid = VFS_I(ip)->i_uid;
1428 eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1429 scan = 1;
1430 }
1431 }
1432
1433 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1434 dq = xfs_inode_dquot(ip, XFS_DQTYPE_GROUP);
1435 if (dq && xfs_dquot_lowsp(dq)) {
1436 eofb.eof_gid = VFS_I(ip)->i_gid;
1437 eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1438 scan = 1;
1439 }
1440 }
1441
1442 if (scan)
1443 execute(ip->i_mount, &eofb);
1444
1445 return scan;
1446}
1447
1448int
1449xfs_inode_free_quota_eofblocks(
1450 struct xfs_inode *ip)
1451{
1452 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1453}
1454
1455static inline unsigned long
1456xfs_iflag_for_tag(
1457 int tag)
1458{
1459 switch (tag) {
1460 case XFS_ICI_EOFBLOCKS_TAG:
1461 return XFS_IEOFBLOCKS;
1462 case XFS_ICI_COWBLOCKS_TAG:
1463 return XFS_ICOWBLOCKS;
1464 default:
1465 ASSERT(0);
1466 return 0;
1467 }
1468}
1469
1470static void
1471__xfs_inode_set_blocks_tag(
1472 xfs_inode_t *ip,
1473 void (*execute)(struct xfs_mount *mp),
1474 void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1475 int error, unsigned long caller_ip),
1476 int tag)
1477{
1478 struct xfs_mount *mp = ip->i_mount;
1479 struct xfs_perag *pag;
1480 int tagged;
1481
1482 /*
1483 * Don't bother locking the AG and looking up in the radix trees
1484 * if we already know that we have the tag set.
1485 */
1486 if (ip->i_flags & xfs_iflag_for_tag(tag))
1487 return;
1488 spin_lock(&ip->i_flags_lock);
1489 ip->i_flags |= xfs_iflag_for_tag(tag);
1490 spin_unlock(&ip->i_flags_lock);
1491
1492 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1493 spin_lock(&pag->pag_ici_lock);
1494
1495 tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1496 radix_tree_tag_set(&pag->pag_ici_root,
1497 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1498 if (!tagged) {
1499 /* propagate the eofblocks tag up into the perag radix tree */
1500 spin_lock(&ip->i_mount->m_perag_lock);
1501 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1502 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1503 tag);
1504 spin_unlock(&ip->i_mount->m_perag_lock);
1505
1506 /* kick off background trimming */
1507 execute(ip->i_mount);
1508
1509 set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1510 }
1511
1512 spin_unlock(&pag->pag_ici_lock);
1513 xfs_perag_put(pag);
1514}
1515
1516void
1517xfs_inode_set_eofblocks_tag(
1518 xfs_inode_t *ip)
1519{
1520 trace_xfs_inode_set_eofblocks_tag(ip);
1521 return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1522 trace_xfs_perag_set_eofblocks,
1523 XFS_ICI_EOFBLOCKS_TAG);
1524}
1525
1526static void
1527__xfs_inode_clear_blocks_tag(
1528 xfs_inode_t *ip,
1529 void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1530 int error, unsigned long caller_ip),
1531 int tag)
1532{
1533 struct xfs_mount *mp = ip->i_mount;
1534 struct xfs_perag *pag;
1535
1536 spin_lock(&ip->i_flags_lock);
1537 ip->i_flags &= ~xfs_iflag_for_tag(tag);
1538 spin_unlock(&ip->i_flags_lock);
1539
1540 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1541 spin_lock(&pag->pag_ici_lock);
1542
1543 radix_tree_tag_clear(&pag->pag_ici_root,
1544 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1545 if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1546 /* clear the eofblocks tag from the perag radix tree */
1547 spin_lock(&ip->i_mount->m_perag_lock);
1548 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1549 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1550 tag);
1551 spin_unlock(&ip->i_mount->m_perag_lock);
1552 clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1553 }
1554
1555 spin_unlock(&pag->pag_ici_lock);
1556 xfs_perag_put(pag);
1557}
1558
1559void
1560xfs_inode_clear_eofblocks_tag(
1561 xfs_inode_t *ip)
1562{
1563 trace_xfs_inode_clear_eofblocks_tag(ip);
1564 return __xfs_inode_clear_blocks_tag(ip,
1565 trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1566}
1567
1568/*
1569 * Set ourselves up to free CoW blocks from this file. If it's already clean
1570 * then we can bail out quickly, but otherwise we must back off if the file
1571 * is undergoing some kind of write.
1572 */
1573static bool
1574xfs_prep_free_cowblocks(
1575 struct xfs_inode *ip)
1576{
1577 /*
1578 * Just clear the tag if we have an empty cow fork or none at all. It's
1579 * possible the inode was fully unshared since it was originally tagged.
1580 */
1581 if (!xfs_inode_has_cow_data(ip)) {
1582 trace_xfs_inode_free_cowblocks_invalid(ip);
1583 xfs_inode_clear_cowblocks_tag(ip);
1584 return false;
1585 }
1586
1587 /*
1588 * If the mapping is dirty or under writeback we cannot touch the
1589 * CoW fork. Leave it alone if we're in the midst of a directio.
1590 */
1591 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1592 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1593 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1594 atomic_read(&VFS_I(ip)->i_dio_count))
1595 return false;
1596
1597 return true;
1598}
1599
1600/*
1601 * Automatic CoW Reservation Freeing
1602 *
1603 * These functions automatically garbage collect leftover CoW reservations
1604 * that were made on behalf of a cowextsize hint when we start to run out
1605 * of quota or when the reservations sit around for too long. If the file
1606 * has dirty pages or is undergoing writeback, its CoW reservations will
1607 * be retained.
1608 *
1609 * The actual garbage collection piggybacks off the same code that runs
1610 * the speculative EOF preallocation garbage collector.
1611 */
1612STATIC int
1613xfs_inode_free_cowblocks(
1614 struct xfs_inode *ip,
1615 void *args)
1616{
1617 struct xfs_eofblocks *eofb = args;
1618 int ret = 0;
1619
1620 if (!xfs_prep_free_cowblocks(ip))
1621 return 0;
1622
1623 if (!xfs_inode_matches_eofb(ip, eofb))
1624 return 0;
1625
1626 /* Free the CoW blocks */
1627 xfs_ilock(ip, XFS_IOLOCK_EXCL);
1628 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1629
1630 /*
1631 * Check again, nobody else should be able to dirty blocks or change
1632 * the reflink iflag now that we have the first two locks held.
1633 */
1634 if (xfs_prep_free_cowblocks(ip))
1635 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1636
1637 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1638 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1639
1640 return ret;
1641}
1642
1643int
1644xfs_icache_free_cowblocks(
1645 struct xfs_mount *mp,
1646 struct xfs_eofblocks *eofb)
1647{
1648 return xfs_inode_walk(mp, 0, xfs_inode_free_cowblocks, eofb,
1649 XFS_ICI_COWBLOCKS_TAG);
1650}
1651
1652int
1653xfs_inode_free_quota_cowblocks(
1654 struct xfs_inode *ip)
1655{
1656 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1657}
1658
1659void
1660xfs_inode_set_cowblocks_tag(
1661 xfs_inode_t *ip)
1662{
1663 trace_xfs_inode_set_cowblocks_tag(ip);
1664 return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1665 trace_xfs_perag_set_cowblocks,
1666 XFS_ICI_COWBLOCKS_TAG);
1667}
1668
1669void
1670xfs_inode_clear_cowblocks_tag(
1671 xfs_inode_t *ip)
1672{
1673 trace_xfs_inode_clear_cowblocks_tag(ip);
1674 return __xfs_inode_clear_blocks_tag(ip,
1675 trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1676}
1677
1678/* Disable post-EOF and CoW block auto-reclamation. */
1679void
1680xfs_stop_block_reaping(
1681 struct xfs_mount *mp)
1682{
1683 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1684 cancel_delayed_work_sync(&mp->m_cowblocks_work);
1685}
1686
1687/* Enable post-EOF and CoW block auto-reclamation. */
1688void
1689xfs_start_block_reaping(
1690 struct xfs_mount *mp)
1691{
1692 xfs_queue_eofblocks(mp);
1693 xfs_queue_cowblocks(mp);
1694}