Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  4 * Copyright (c) 2016-2018 Christoph Hellwig.
  5 * All Rights Reserved.
  6 */
  7#include "xfs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_inode.h"
 14#include "xfs_trans.h"
 15#include "xfs_iomap.h"
 16#include "xfs_trace.h"
 17#include "xfs_bmap.h"
 18#include "xfs_bmap_util.h"
 19#include "xfs_reflink.h"
 20
 21struct xfs_writepage_ctx {
 22	struct iomap_writepage_ctx ctx;
 23	unsigned int		data_seq;
 24	unsigned int		cow_seq;
 25};
 26
 27static inline struct xfs_writepage_ctx *
 28XFS_WPC(struct iomap_writepage_ctx *ctx)
 29{
 30	return container_of(ctx, struct xfs_writepage_ctx, ctx);
 31}
 32
 33/*
 34 * Fast and loose check if this write could update the on-disk inode size.
 35 */
 36static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
 37{
 38	return ioend->io_offset + ioend->io_size >
 39		XFS_I(ioend->io_inode)->i_disk_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40}
 41
 42/*
 43 * Update on-disk file size now that data has been written to disk.
 44 */
 45int
 46xfs_setfilesize(
 47	struct xfs_inode	*ip,
 
 48	xfs_off_t		offset,
 49	size_t			size)
 50{
 51	struct xfs_mount	*mp = ip->i_mount;
 52	struct xfs_trans	*tp;
 53	xfs_fsize_t		isize;
 54	int			error;
 55
 56	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
 57	if (error)
 58		return error;
 59
 60	xfs_ilock(ip, XFS_ILOCK_EXCL);
 61	isize = xfs_new_eof(ip, offset + size);
 62	if (!isize) {
 63		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 64		xfs_trans_cancel(tp);
 65		return 0;
 66	}
 67
 68	trace_xfs_setfilesize(ip, offset, size);
 69
 70	ip->i_disk_size = isize;
 71	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 72	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 73
 74	return xfs_trans_commit(tp);
 75}
 76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 77/*
 78 * IO write completion.
 79 */
 80STATIC void
 81xfs_end_ioend(
 82	struct iomap_ioend	*ioend)
 83{
 84	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 85	xfs_off_t		offset = ioend->io_offset;
 86	size_t			size = ioend->io_size;
 87	unsigned int		nofs_flag;
 88	int			error;
 89
 90	/*
 91	 * We can allocate memory here while doing writeback on behalf of
 92	 * memory reclaim.  To avoid memory allocation deadlocks set the
 93	 * task-wide nofs context for the following operations.
 94	 */
 95	nofs_flag = memalloc_nofs_save();
 96
 97	/*
 98	 * Just clean up the in-memory structures if the fs has been shut down.
 99	 */
100	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
101		error = -EIO;
102		goto done;
103	}
104
105	/*
106	 * Clean up any COW blocks on an I/O error.
107	 */
108	error = blk_status_to_errno(ioend->io_bio->bi_status);
109	if (unlikely(error)) {
110		if (ioend->io_flags & IOMAP_F_SHARED)
111			xfs_reflink_cancel_cow_range(ip, offset, size, true);
112		goto done;
113	}
114
115	/*
116	 * Success: commit the COW or unwritten blocks if needed.
117	 */
118	if (ioend->io_flags & IOMAP_F_SHARED)
119		error = xfs_reflink_end_cow(ip, offset, size);
120	else if (ioend->io_type == IOMAP_UNWRITTEN)
121		error = xfs_iomap_write_unwritten(ip, offset, size, false);
 
 
122
123	if (!error && xfs_ioend_is_append(ioend))
124		error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
125done:
 
 
126	iomap_finish_ioends(ioend, error);
127	memalloc_nofs_restore(nofs_flag);
128}
129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130/* Finish all pending io completions. */
131void
132xfs_end_io(
133	struct work_struct	*work)
134{
135	struct xfs_inode	*ip =
136		container_of(work, struct xfs_inode, i_ioend_work);
137	struct iomap_ioend	*ioend;
138	struct list_head	tmp;
139	unsigned long		flags;
140
141	spin_lock_irqsave(&ip->i_ioend_lock, flags);
142	list_replace_init(&ip->i_ioend_list, &tmp);
143	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
144
145	iomap_sort_ioends(&tmp);
146	while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
147			io_list))) {
148		list_del_init(&ioend->io_list);
149		iomap_ioend_try_merge(ioend, &tmp);
150		xfs_end_ioend(ioend);
151	}
152}
153
 
 
 
 
 
 
 
154STATIC void
155xfs_end_bio(
156	struct bio		*bio)
157{
158	struct iomap_ioend	*ioend = bio->bi_private;
159	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
160	unsigned long		flags;
161
 
 
162	spin_lock_irqsave(&ip->i_ioend_lock, flags);
163	if (list_empty(&ip->i_ioend_list))
164		WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
165					 &ip->i_ioend_work));
166	list_add_tail(&ioend->io_list, &ip->i_ioend_list);
167	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
168}
169
170/*
171 * Fast revalidation of the cached writeback mapping. Return true if the current
172 * mapping is valid, false otherwise.
173 */
174static bool
175xfs_imap_valid(
176	struct iomap_writepage_ctx	*wpc,
177	struct xfs_inode		*ip,
178	loff_t				offset)
179{
180	if (offset < wpc->iomap.offset ||
181	    offset >= wpc->iomap.offset + wpc->iomap.length)
182		return false;
183	/*
184	 * If this is a COW mapping, it is sufficient to check that the mapping
185	 * covers the offset. Be careful to check this first because the caller
186	 * can revalidate a COW mapping without updating the data seqno.
187	 */
188	if (wpc->iomap.flags & IOMAP_F_SHARED)
189		return true;
190
191	/*
192	 * This is not a COW mapping. Check the sequence number of the data fork
193	 * because concurrent changes could have invalidated the extent. Check
194	 * the COW fork because concurrent changes since the last time we
195	 * checked (and found nothing at this offset) could have added
196	 * overlapping blocks.
197	 */
198	if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq))
199		return false;
200	if (xfs_inode_has_cow_data(ip) &&
201	    XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq))
202		return false;
203	return true;
204}
205
206/*
207 * Pass in a dellalloc extent and convert it to real extents, return the real
208 * extent that maps offset_fsb in wpc->iomap.
209 *
210 * The current page is held locked so nothing could have removed the block
211 * backing offset_fsb, although it could have moved from the COW to the data
212 * fork by another thread.
213 */
214static int
215xfs_convert_blocks(
216	struct iomap_writepage_ctx *wpc,
217	struct xfs_inode	*ip,
218	int			whichfork,
219	loff_t			offset)
220{
221	int			error;
222	unsigned		*seq;
223
224	if (whichfork == XFS_COW_FORK)
225		seq = &XFS_WPC(wpc)->cow_seq;
226	else
227		seq = &XFS_WPC(wpc)->data_seq;
228
229	/*
230	 * Attempt to allocate whatever delalloc extent currently backs offset
231	 * and put the result into wpc->iomap.  Allocate in a loop because it
232	 * may take several attempts to allocate real blocks for a contiguous
233	 * delalloc extent if free space is sufficiently fragmented.
234	 */
235	do {
236		error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
237				&wpc->iomap, seq);
238		if (error)
239			return error;
240	} while (wpc->iomap.offset + wpc->iomap.length <= offset);
241
242	return 0;
243}
244
245static int
246xfs_map_blocks(
247	struct iomap_writepage_ctx *wpc,
248	struct inode		*inode,
249	loff_t			offset)
250{
251	struct xfs_inode	*ip = XFS_I(inode);
252	struct xfs_mount	*mp = ip->i_mount;
253	ssize_t			count = i_blocksize(inode);
254	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
255	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
256	xfs_fileoff_t		cow_fsb;
257	int			whichfork;
258	struct xfs_bmbt_irec	imap;
259	struct xfs_iext_cursor	icur;
260	int			retries = 0;
261	int			error = 0;
262
263	if (XFS_FORCED_SHUTDOWN(mp))
264		return -EIO;
265
266	/*
267	 * COW fork blocks can overlap data fork blocks even if the blocks
268	 * aren't shared.  COW I/O always takes precedent, so we must always
269	 * check for overlap on reflink inodes unless the mapping is already a
270	 * COW one, or the COW fork hasn't changed from the last time we looked
271	 * at it.
272	 *
273	 * It's safe to check the COW fork if_seq here without the ILOCK because
274	 * we've indirectly protected against concurrent updates: writeback has
275	 * the page locked, which prevents concurrent invalidations by reflink
276	 * and directio and prevents concurrent buffered writes to the same
277	 * page.  Changes to if_seq always happen under i_lock, which protects
278	 * against concurrent updates and provides a memory barrier on the way
279	 * out that ensures that we always see the current value.
280	 */
281	if (xfs_imap_valid(wpc, ip, offset))
282		return 0;
283
284	/*
285	 * If we don't have a valid map, now it's time to get a new one for this
286	 * offset.  This will convert delayed allocations (including COW ones)
287	 * into real extents.  If we return without a valid map, it means we
288	 * landed in a hole and we skip the block.
289	 */
290retry:
291	cow_fsb = NULLFILEOFF;
292	whichfork = XFS_DATA_FORK;
293	xfs_ilock(ip, XFS_ILOCK_SHARED);
294	ASSERT(!xfs_need_iread_extents(&ip->i_df));
 
295
296	/*
297	 * Check if this is offset is covered by a COW extents, and if yes use
298	 * it directly instead of looking up anything in the data fork.
299	 */
300	if (xfs_inode_has_cow_data(ip) &&
301	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
302		cow_fsb = imap.br_startoff;
303	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
304		XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
305		xfs_iunlock(ip, XFS_ILOCK_SHARED);
306
307		whichfork = XFS_COW_FORK;
308		goto allocate_blocks;
309	}
310
311	/*
312	 * No COW extent overlap. Revalidate now that we may have updated
313	 * ->cow_seq. If the data mapping is still valid, we're done.
314	 */
315	if (xfs_imap_valid(wpc, ip, offset)) {
316		xfs_iunlock(ip, XFS_ILOCK_SHARED);
317		return 0;
318	}
319
320	/*
321	 * If we don't have a valid map, now it's time to get a new one for this
322	 * offset.  This will convert delayed allocations (including COW ones)
323	 * into real extents.
324	 */
325	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
326		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
327	XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
328	xfs_iunlock(ip, XFS_ILOCK_SHARED);
329
330	/* landed in a hole or beyond EOF? */
331	if (imap.br_startoff > offset_fsb) {
332		imap.br_blockcount = imap.br_startoff - offset_fsb;
333		imap.br_startoff = offset_fsb;
334		imap.br_startblock = HOLESTARTBLOCK;
335		imap.br_state = XFS_EXT_NORM;
336	}
337
338	/*
339	 * Truncate to the next COW extent if there is one.  This is the only
340	 * opportunity to do this because we can skip COW fork lookups for the
341	 * subsequent blocks in the mapping; however, the requirement to treat
342	 * the COW range separately remains.
343	 */
344	if (cow_fsb != NULLFILEOFF &&
345	    cow_fsb < imap.br_startoff + imap.br_blockcount)
346		imap.br_blockcount = cow_fsb - imap.br_startoff;
347
348	/* got a delalloc extent? */
349	if (imap.br_startblock != HOLESTARTBLOCK &&
350	    isnullstartblock(imap.br_startblock))
351		goto allocate_blocks;
352
353	xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0);
354	trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
355	return 0;
356allocate_blocks:
357	error = xfs_convert_blocks(wpc, ip, whichfork, offset);
358	if (error) {
359		/*
360		 * If we failed to find the extent in the COW fork we might have
361		 * raced with a COW to data fork conversion or truncate.
362		 * Restart the lookup to catch the extent in the data fork for
363		 * the former case, but prevent additional retries to avoid
364		 * looping forever for the latter case.
365		 */
366		if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
367			goto retry;
368		ASSERT(error != -EAGAIN);
369		return error;
370	}
371
372	/*
373	 * Due to merging the return real extent might be larger than the
374	 * original delalloc one.  Trim the return extent to the next COW
375	 * boundary again to force a re-lookup.
376	 */
377	if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
378		loff_t		cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
379
380		if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
381			wpc->iomap.length = cow_offset - wpc->iomap.offset;
382	}
383
384	ASSERT(wpc->iomap.offset <= offset);
385	ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
386	trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
387	return 0;
388}
389
390static int
391xfs_prepare_ioend(
392	struct iomap_ioend	*ioend,
393	int			status)
394{
395	unsigned int		nofs_flag;
396
397	/*
398	 * We can allocate memory here while doing writeback on behalf of
399	 * memory reclaim.  To avoid memory allocation deadlocks set the
400	 * task-wide nofs context for the following operations.
401	 */
402	nofs_flag = memalloc_nofs_save();
403
404	/* Convert CoW extents to regular */
405	if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
406		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
407				ioend->io_offset, ioend->io_size);
408	}
409
 
 
 
 
 
 
 
 
410	memalloc_nofs_restore(nofs_flag);
411
412	/* send ioends that might require a transaction to the completion wq */
413	if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN ||
414	    (ioend->io_flags & IOMAP_F_SHARED))
415		ioend->io_bio->bi_end_io = xfs_end_bio;
416	return status;
417}
418
419/*
420 * If the page has delalloc blocks on it, we need to punch them out before we
421 * invalidate the page.  If we don't, we leave a stale delalloc mapping on the
422 * inode that can trip up a later direct I/O read operation on the same region.
423 *
424 * We prevent this by truncating away the delalloc regions on the page.  Because
425 * they are delalloc, we can do this without needing a transaction. Indeed - if
426 * we get ENOSPC errors, we have to be able to do this truncation without a
427 * transaction as there is no space left for block reservation (typically why we
428 * see a ENOSPC in writeback).
429 */
430static void
431xfs_discard_page(
432	struct page		*page,
433	loff_t			fileoff)
434{
435	struct inode		*inode = page->mapping->host;
436	struct xfs_inode	*ip = XFS_I(inode);
437	struct xfs_mount	*mp = ip->i_mount;
438	unsigned int		pageoff = offset_in_page(fileoff);
439	xfs_fileoff_t		start_fsb = XFS_B_TO_FSBT(mp, fileoff);
440	xfs_fileoff_t		pageoff_fsb = XFS_B_TO_FSBT(mp, pageoff);
441	int			error;
442
443	if (XFS_FORCED_SHUTDOWN(mp))
444		goto out_invalidate;
445
446	xfs_alert_ratelimited(mp,
447		"page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
448			page, ip->i_ino, fileoff);
449
450	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
451			i_blocks_per_page(inode, page) - pageoff_fsb);
452	if (error && !XFS_FORCED_SHUTDOWN(mp))
453		xfs_alert(mp, "page discard unable to remove delalloc mapping.");
454out_invalidate:
455	iomap_invalidatepage(page, pageoff, PAGE_SIZE - pageoff);
456}
457
458static const struct iomap_writeback_ops xfs_writeback_ops = {
459	.map_blocks		= xfs_map_blocks,
460	.prepare_ioend		= xfs_prepare_ioend,
461	.discard_page		= xfs_discard_page,
462};
463
464STATIC int
465xfs_vm_writepage(
466	struct page		*page,
467	struct writeback_control *wbc)
468{
469	struct xfs_writepage_ctx wpc = { };
470
471	if (WARN_ON_ONCE(current->journal_info)) {
472		redirty_page_for_writepage(wbc, page);
473		unlock_page(page);
474		return 0;
475	}
476
477	return iomap_writepage(page, wbc, &wpc.ctx, &xfs_writeback_ops);
478}
479
480STATIC int
481xfs_vm_writepages(
482	struct address_space	*mapping,
483	struct writeback_control *wbc)
484{
485	struct xfs_writepage_ctx wpc = { };
486
487	/*
488	 * Writing back data in a transaction context can result in recursive
489	 * transactions. This is bad, so issue a warning and get out of here.
490	 */
491	if (WARN_ON_ONCE(current->journal_info))
492		return 0;
493
494	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
495	return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
496}
497
498STATIC int
499xfs_dax_writepages(
500	struct address_space	*mapping,
501	struct writeback_control *wbc)
502{
503	struct xfs_inode	*ip = XFS_I(mapping->host);
504
505	xfs_iflags_clear(ip, XFS_ITRUNCATED);
506	return dax_writeback_mapping_range(mapping,
507			xfs_inode_buftarg(ip)->bt_daxdev, wbc);
508}
509
510STATIC sector_t
511xfs_vm_bmap(
512	struct address_space	*mapping,
513	sector_t		block)
514{
515	struct xfs_inode	*ip = XFS_I(mapping->host);
516
517	trace_xfs_vm_bmap(ip);
518
519	/*
520	 * The swap code (ab-)uses ->bmap to get a block mapping and then
521	 * bypasses the file system for actual I/O.  We really can't allow
522	 * that on reflinks inodes, so we have to skip out here.  And yes,
523	 * 0 is the magic code for a bmap error.
524	 *
525	 * Since we don't pass back blockdev info, we can't return bmap
526	 * information for rt files either.
527	 */
528	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
529		return 0;
530	return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
531}
532
533STATIC int
534xfs_vm_readpage(
535	struct file		*unused,
536	struct page		*page)
537{
538	return iomap_readpage(page, &xfs_read_iomap_ops);
539}
540
541STATIC void
542xfs_vm_readahead(
543	struct readahead_control	*rac)
544{
545	iomap_readahead(rac, &xfs_read_iomap_ops);
546}
547
548static int
549xfs_iomap_swapfile_activate(
550	struct swap_info_struct		*sis,
551	struct file			*swap_file,
552	sector_t			*span)
553{
554	sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev;
555	return iomap_swapfile_activate(sis, swap_file, span,
556			&xfs_read_iomap_ops);
557}
558
559const struct address_space_operations xfs_address_space_operations = {
560	.readpage		= xfs_vm_readpage,
561	.readahead		= xfs_vm_readahead,
562	.writepage		= xfs_vm_writepage,
563	.writepages		= xfs_vm_writepages,
564	.set_page_dirty		= __set_page_dirty_nobuffers,
565	.releasepage		= iomap_releasepage,
566	.invalidatepage		= iomap_invalidatepage,
567	.bmap			= xfs_vm_bmap,
568	.direct_IO		= noop_direct_IO,
569	.migratepage		= iomap_migrate_page,
570	.is_partially_uptodate  = iomap_is_partially_uptodate,
571	.error_remove_page	= generic_error_remove_page,
572	.swap_activate		= xfs_iomap_swapfile_activate,
573};
574
575const struct address_space_operations xfs_dax_aops = {
576	.writepages		= xfs_dax_writepages,
577	.direct_IO		= noop_direct_IO,
578	.set_page_dirty		= __set_page_dirty_no_writeback,
579	.invalidatepage		= noop_invalidatepage,
580	.swap_activate		= xfs_iomap_swapfile_activate,
581};
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  4 * Copyright (c) 2016-2018 Christoph Hellwig.
  5 * All Rights Reserved.
  6 */
  7#include "xfs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_inode.h"
 14#include "xfs_trans.h"
 15#include "xfs_iomap.h"
 16#include "xfs_trace.h"
 17#include "xfs_bmap.h"
 18#include "xfs_bmap_util.h"
 19#include "xfs_reflink.h"
 20
 21struct xfs_writepage_ctx {
 22	struct iomap_writepage_ctx ctx;
 23	unsigned int		data_seq;
 24	unsigned int		cow_seq;
 25};
 26
 27static inline struct xfs_writepage_ctx *
 28XFS_WPC(struct iomap_writepage_ctx *ctx)
 29{
 30	return container_of(ctx, struct xfs_writepage_ctx, ctx);
 31}
 32
 33/*
 34 * Fast and loose check if this write could update the on-disk inode size.
 35 */
 36static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
 37{
 38	return ioend->io_offset + ioend->io_size >
 39		XFS_I(ioend->io_inode)->i_d.di_size;
 40}
 41
 42STATIC int
 43xfs_setfilesize_trans_alloc(
 44	struct iomap_ioend	*ioend)
 45{
 46	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
 47	struct xfs_trans	*tp;
 48	int			error;
 49
 50	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
 51	if (error)
 52		return error;
 53
 54	ioend->io_private = tp;
 55
 56	/*
 57	 * We may pass freeze protection with a transaction.  So tell lockdep
 58	 * we released it.
 59	 */
 60	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
 61	/*
 62	 * We hand off the transaction to the completion thread now, so
 63	 * clear the flag here.
 64	 */
 65	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
 66	return 0;
 67}
 68
 69/*
 70 * Update on-disk file size now that data has been written to disk.
 71 */
 72STATIC int
 73__xfs_setfilesize(
 74	struct xfs_inode	*ip,
 75	struct xfs_trans	*tp,
 76	xfs_off_t		offset,
 77	size_t			size)
 78{
 
 
 79	xfs_fsize_t		isize;
 
 
 
 
 
 80
 81	xfs_ilock(ip, XFS_ILOCK_EXCL);
 82	isize = xfs_new_eof(ip, offset + size);
 83	if (!isize) {
 84		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 85		xfs_trans_cancel(tp);
 86		return 0;
 87	}
 88
 89	trace_xfs_setfilesize(ip, offset, size);
 90
 91	ip->i_d.di_size = isize;
 92	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 93	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 94
 95	return xfs_trans_commit(tp);
 96}
 97
 98int
 99xfs_setfilesize(
100	struct xfs_inode	*ip,
101	xfs_off_t		offset,
102	size_t			size)
103{
104	struct xfs_mount	*mp = ip->i_mount;
105	struct xfs_trans	*tp;
106	int			error;
107
108	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
109	if (error)
110		return error;
111
112	return __xfs_setfilesize(ip, tp, offset, size);
113}
114
115STATIC int
116xfs_setfilesize_ioend(
117	struct iomap_ioend	*ioend,
118	int			error)
119{
120	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
121	struct xfs_trans	*tp = ioend->io_private;
122
123	/*
124	 * The transaction may have been allocated in the I/O submission thread,
125	 * thus we need to mark ourselves as being in a transaction manually.
126	 * Similarly for freeze protection.
127	 */
128	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
129	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
130
131	/* we abort the update if there was an IO error */
132	if (error) {
133		xfs_trans_cancel(tp);
134		return error;
135	}
136
137	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
138}
139
140/*
141 * IO write completion.
142 */
143STATIC void
144xfs_end_ioend(
145	struct iomap_ioend	*ioend)
146{
147	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
148	xfs_off_t		offset = ioend->io_offset;
149	size_t			size = ioend->io_size;
150	unsigned int		nofs_flag;
151	int			error;
152
153	/*
154	 * We can allocate memory here while doing writeback on behalf of
155	 * memory reclaim.  To avoid memory allocation deadlocks set the
156	 * task-wide nofs context for the following operations.
157	 */
158	nofs_flag = memalloc_nofs_save();
159
160	/*
161	 * Just clean up the in-memory strutures if the fs has been shut down.
162	 */
163	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
164		error = -EIO;
165		goto done;
166	}
167
168	/*
169	 * Clean up any COW blocks on an I/O error.
170	 */
171	error = blk_status_to_errno(ioend->io_bio->bi_status);
172	if (unlikely(error)) {
173		if (ioend->io_flags & IOMAP_F_SHARED)
174			xfs_reflink_cancel_cow_range(ip, offset, size, true);
175		goto done;
176	}
177
178	/*
179	 * Success: commit the COW or unwritten blocks if needed.
180	 */
181	if (ioend->io_flags & IOMAP_F_SHARED)
182		error = xfs_reflink_end_cow(ip, offset, size);
183	else if (ioend->io_type == IOMAP_UNWRITTEN)
184		error = xfs_iomap_write_unwritten(ip, offset, size, false);
185	else
186		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_private);
187
 
 
188done:
189	if (ioend->io_private)
190		error = xfs_setfilesize_ioend(ioend, error);
191	iomap_finish_ioends(ioend, error);
192	memalloc_nofs_restore(nofs_flag);
193}
194
195/*
196 * If the to be merged ioend has a preallocated transaction for file
197 * size updates we need to ensure the ioend it is merged into also
198 * has one.  If it already has one we can simply cancel the transaction
199 * as it is guaranteed to be clean.
200 */
201static void
202xfs_ioend_merge_private(
203	struct iomap_ioend	*ioend,
204	struct iomap_ioend	*next)
205{
206	if (!ioend->io_private) {
207		ioend->io_private = next->io_private;
208		next->io_private = NULL;
209	} else {
210		xfs_setfilesize_ioend(next, -ECANCELED);
211	}
212}
213
214/* Finish all pending io completions. */
215void
216xfs_end_io(
217	struct work_struct	*work)
218{
219	struct xfs_inode	*ip =
220		container_of(work, struct xfs_inode, i_ioend_work);
221	struct iomap_ioend	*ioend;
222	struct list_head	tmp;
223	unsigned long		flags;
224
225	spin_lock_irqsave(&ip->i_ioend_lock, flags);
226	list_replace_init(&ip->i_ioend_list, &tmp);
227	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
228
229	iomap_sort_ioends(&tmp);
230	while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
231			io_list))) {
232		list_del_init(&ioend->io_list);
233		iomap_ioend_try_merge(ioend, &tmp, xfs_ioend_merge_private);
234		xfs_end_ioend(ioend);
235	}
236}
237
238static inline bool xfs_ioend_needs_workqueue(struct iomap_ioend *ioend)
239{
240	return ioend->io_private ||
241		ioend->io_type == IOMAP_UNWRITTEN ||
242		(ioend->io_flags & IOMAP_F_SHARED);
243}
244
245STATIC void
246xfs_end_bio(
247	struct bio		*bio)
248{
249	struct iomap_ioend	*ioend = bio->bi_private;
250	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
251	unsigned long		flags;
252
253	ASSERT(xfs_ioend_needs_workqueue(ioend));
254
255	spin_lock_irqsave(&ip->i_ioend_lock, flags);
256	if (list_empty(&ip->i_ioend_list))
257		WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
258					 &ip->i_ioend_work));
259	list_add_tail(&ioend->io_list, &ip->i_ioend_list);
260	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
261}
262
263/*
264 * Fast revalidation of the cached writeback mapping. Return true if the current
265 * mapping is valid, false otherwise.
266 */
267static bool
268xfs_imap_valid(
269	struct iomap_writepage_ctx	*wpc,
270	struct xfs_inode		*ip,
271	loff_t				offset)
272{
273	if (offset < wpc->iomap.offset ||
274	    offset >= wpc->iomap.offset + wpc->iomap.length)
275		return false;
276	/*
277	 * If this is a COW mapping, it is sufficient to check that the mapping
278	 * covers the offset. Be careful to check this first because the caller
279	 * can revalidate a COW mapping without updating the data seqno.
280	 */
281	if (wpc->iomap.flags & IOMAP_F_SHARED)
282		return true;
283
284	/*
285	 * This is not a COW mapping. Check the sequence number of the data fork
286	 * because concurrent changes could have invalidated the extent. Check
287	 * the COW fork because concurrent changes since the last time we
288	 * checked (and found nothing at this offset) could have added
289	 * overlapping blocks.
290	 */
291	if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq))
292		return false;
293	if (xfs_inode_has_cow_data(ip) &&
294	    XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq))
295		return false;
296	return true;
297}
298
299/*
300 * Pass in a dellalloc extent and convert it to real extents, return the real
301 * extent that maps offset_fsb in wpc->iomap.
302 *
303 * The current page is held locked so nothing could have removed the block
304 * backing offset_fsb, although it could have moved from the COW to the data
305 * fork by another thread.
306 */
307static int
308xfs_convert_blocks(
309	struct iomap_writepage_ctx *wpc,
310	struct xfs_inode	*ip,
311	int			whichfork,
312	loff_t			offset)
313{
314	int			error;
315	unsigned		*seq;
316
317	if (whichfork == XFS_COW_FORK)
318		seq = &XFS_WPC(wpc)->cow_seq;
319	else
320		seq = &XFS_WPC(wpc)->data_seq;
321
322	/*
323	 * Attempt to allocate whatever delalloc extent currently backs offset
324	 * and put the result into wpc->iomap.  Allocate in a loop because it
325	 * may take several attempts to allocate real blocks for a contiguous
326	 * delalloc extent if free space is sufficiently fragmented.
327	 */
328	do {
329		error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
330				&wpc->iomap, seq);
331		if (error)
332			return error;
333	} while (wpc->iomap.offset + wpc->iomap.length <= offset);
334
335	return 0;
336}
337
338static int
339xfs_map_blocks(
340	struct iomap_writepage_ctx *wpc,
341	struct inode		*inode,
342	loff_t			offset)
343{
344	struct xfs_inode	*ip = XFS_I(inode);
345	struct xfs_mount	*mp = ip->i_mount;
346	ssize_t			count = i_blocksize(inode);
347	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
348	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
349	xfs_fileoff_t		cow_fsb = NULLFILEOFF;
350	int			whichfork = XFS_DATA_FORK;
351	struct xfs_bmbt_irec	imap;
352	struct xfs_iext_cursor	icur;
353	int			retries = 0;
354	int			error = 0;
355
356	if (XFS_FORCED_SHUTDOWN(mp))
357		return -EIO;
358
359	/*
360	 * COW fork blocks can overlap data fork blocks even if the blocks
361	 * aren't shared.  COW I/O always takes precedent, so we must always
362	 * check for overlap on reflink inodes unless the mapping is already a
363	 * COW one, or the COW fork hasn't changed from the last time we looked
364	 * at it.
365	 *
366	 * It's safe to check the COW fork if_seq here without the ILOCK because
367	 * we've indirectly protected against concurrent updates: writeback has
368	 * the page locked, which prevents concurrent invalidations by reflink
369	 * and directio and prevents concurrent buffered writes to the same
370	 * page.  Changes to if_seq always happen under i_lock, which protects
371	 * against concurrent updates and provides a memory barrier on the way
372	 * out that ensures that we always see the current value.
373	 */
374	if (xfs_imap_valid(wpc, ip, offset))
375		return 0;
376
377	/*
378	 * If we don't have a valid map, now it's time to get a new one for this
379	 * offset.  This will convert delayed allocations (including COW ones)
380	 * into real extents.  If we return without a valid map, it means we
381	 * landed in a hole and we skip the block.
382	 */
383retry:
 
 
384	xfs_ilock(ip, XFS_ILOCK_SHARED);
385	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
386	       (ip->i_df.if_flags & XFS_IFEXTENTS));
387
388	/*
389	 * Check if this is offset is covered by a COW extents, and if yes use
390	 * it directly instead of looking up anything in the data fork.
391	 */
392	if (xfs_inode_has_cow_data(ip) &&
393	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
394		cow_fsb = imap.br_startoff;
395	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
396		XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
397		xfs_iunlock(ip, XFS_ILOCK_SHARED);
398
399		whichfork = XFS_COW_FORK;
400		goto allocate_blocks;
401	}
402
403	/*
404	 * No COW extent overlap. Revalidate now that we may have updated
405	 * ->cow_seq. If the data mapping is still valid, we're done.
406	 */
407	if (xfs_imap_valid(wpc, ip, offset)) {
408		xfs_iunlock(ip, XFS_ILOCK_SHARED);
409		return 0;
410	}
411
412	/*
413	 * If we don't have a valid map, now it's time to get a new one for this
414	 * offset.  This will convert delayed allocations (including COW ones)
415	 * into real extents.
416	 */
417	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
418		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
419	XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
420	xfs_iunlock(ip, XFS_ILOCK_SHARED);
421
422	/* landed in a hole or beyond EOF? */
423	if (imap.br_startoff > offset_fsb) {
424		imap.br_blockcount = imap.br_startoff - offset_fsb;
425		imap.br_startoff = offset_fsb;
426		imap.br_startblock = HOLESTARTBLOCK;
427		imap.br_state = XFS_EXT_NORM;
428	}
429
430	/*
431	 * Truncate to the next COW extent if there is one.  This is the only
432	 * opportunity to do this because we can skip COW fork lookups for the
433	 * subsequent blocks in the mapping; however, the requirement to treat
434	 * the COW range separately remains.
435	 */
436	if (cow_fsb != NULLFILEOFF &&
437	    cow_fsb < imap.br_startoff + imap.br_blockcount)
438		imap.br_blockcount = cow_fsb - imap.br_startoff;
439
440	/* got a delalloc extent? */
441	if (imap.br_startblock != HOLESTARTBLOCK &&
442	    isnullstartblock(imap.br_startblock))
443		goto allocate_blocks;
444
445	xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0);
446	trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
447	return 0;
448allocate_blocks:
449	error = xfs_convert_blocks(wpc, ip, whichfork, offset);
450	if (error) {
451		/*
452		 * If we failed to find the extent in the COW fork we might have
453		 * raced with a COW to data fork conversion or truncate.
454		 * Restart the lookup to catch the extent in the data fork for
455		 * the former case, but prevent additional retries to avoid
456		 * looping forever for the latter case.
457		 */
458		if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
459			goto retry;
460		ASSERT(error != -EAGAIN);
461		return error;
462	}
463
464	/*
465	 * Due to merging the return real extent might be larger than the
466	 * original delalloc one.  Trim the return extent to the next COW
467	 * boundary again to force a re-lookup.
468	 */
469	if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
470		loff_t		cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
471
472		if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
473			wpc->iomap.length = cow_offset - wpc->iomap.offset;
474	}
475
476	ASSERT(wpc->iomap.offset <= offset);
477	ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
478	trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
479	return 0;
480}
481
482static int
483xfs_prepare_ioend(
484	struct iomap_ioend	*ioend,
485	int			status)
486{
487	unsigned int		nofs_flag;
488
489	/*
490	 * We can allocate memory here while doing writeback on behalf of
491	 * memory reclaim.  To avoid memory allocation deadlocks set the
492	 * task-wide nofs context for the following operations.
493	 */
494	nofs_flag = memalloc_nofs_save();
495
496	/* Convert CoW extents to regular */
497	if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
498		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
499				ioend->io_offset, ioend->io_size);
500	}
501
502	/* Reserve log space if we might write beyond the on-disk inode size. */
503	if (!status &&
504	    ((ioend->io_flags & IOMAP_F_SHARED) ||
505	     ioend->io_type != IOMAP_UNWRITTEN) &&
506	    xfs_ioend_is_append(ioend) &&
507	    !ioend->io_private)
508		status = xfs_setfilesize_trans_alloc(ioend);
509
510	memalloc_nofs_restore(nofs_flag);
511
512	if (xfs_ioend_needs_workqueue(ioend))
 
 
513		ioend->io_bio->bi_end_io = xfs_end_bio;
514	return status;
515}
516
517/*
518 * If the page has delalloc blocks on it, we need to punch them out before we
519 * invalidate the page.  If we don't, we leave a stale delalloc mapping on the
520 * inode that can trip up a later direct I/O read operation on the same region.
521 *
522 * We prevent this by truncating away the delalloc regions on the page.  Because
523 * they are delalloc, we can do this without needing a transaction. Indeed - if
524 * we get ENOSPC errors, we have to be able to do this truncation without a
525 * transaction as there is no space left for block reservation (typically why we
526 * see a ENOSPC in writeback).
527 */
528static void
529xfs_discard_page(
530	struct page		*page)
 
531{
532	struct inode		*inode = page->mapping->host;
533	struct xfs_inode	*ip = XFS_I(inode);
534	struct xfs_mount	*mp = ip->i_mount;
535	loff_t			offset = page_offset(page);
536	xfs_fileoff_t		start_fsb = XFS_B_TO_FSBT(mp, offset);
 
537	int			error;
538
539	if (XFS_FORCED_SHUTDOWN(mp))
540		goto out_invalidate;
541
542	xfs_alert_ratelimited(mp,
543		"page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
544			page, ip->i_ino, offset);
545
546	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
547			PAGE_SIZE / i_blocksize(inode));
548	if (error && !XFS_FORCED_SHUTDOWN(mp))
549		xfs_alert(mp, "page discard unable to remove delalloc mapping.");
550out_invalidate:
551	iomap_invalidatepage(page, 0, PAGE_SIZE);
552}
553
554static const struct iomap_writeback_ops xfs_writeback_ops = {
555	.map_blocks		= xfs_map_blocks,
556	.prepare_ioend		= xfs_prepare_ioend,
557	.discard_page		= xfs_discard_page,
558};
559
560STATIC int
561xfs_vm_writepage(
562	struct page		*page,
563	struct writeback_control *wbc)
564{
565	struct xfs_writepage_ctx wpc = { };
566
 
 
 
 
 
 
567	return iomap_writepage(page, wbc, &wpc.ctx, &xfs_writeback_ops);
568}
569
570STATIC int
571xfs_vm_writepages(
572	struct address_space	*mapping,
573	struct writeback_control *wbc)
574{
575	struct xfs_writepage_ctx wpc = { };
576
 
 
 
 
 
 
 
577	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
578	return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
579}
580
581STATIC int
582xfs_dax_writepages(
583	struct address_space	*mapping,
584	struct writeback_control *wbc)
585{
586	struct xfs_inode	*ip = XFS_I(mapping->host);
587
588	xfs_iflags_clear(ip, XFS_ITRUNCATED);
589	return dax_writeback_mapping_range(mapping,
590			xfs_inode_buftarg(ip)->bt_daxdev, wbc);
591}
592
593STATIC sector_t
594xfs_vm_bmap(
595	struct address_space	*mapping,
596	sector_t		block)
597{
598	struct xfs_inode	*ip = XFS_I(mapping->host);
599
600	trace_xfs_vm_bmap(ip);
601
602	/*
603	 * The swap code (ab-)uses ->bmap to get a block mapping and then
604	 * bypasses the file system for actual I/O.  We really can't allow
605	 * that on reflinks inodes, so we have to skip out here.  And yes,
606	 * 0 is the magic code for a bmap error.
607	 *
608	 * Since we don't pass back blockdev info, we can't return bmap
609	 * information for rt files either.
610	 */
611	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
612		return 0;
613	return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
614}
615
616STATIC int
617xfs_vm_readpage(
618	struct file		*unused,
619	struct page		*page)
620{
621	return iomap_readpage(page, &xfs_read_iomap_ops);
622}
623
624STATIC void
625xfs_vm_readahead(
626	struct readahead_control	*rac)
627{
628	iomap_readahead(rac, &xfs_read_iomap_ops);
629}
630
631static int
632xfs_iomap_swapfile_activate(
633	struct swap_info_struct		*sis,
634	struct file			*swap_file,
635	sector_t			*span)
636{
637	sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev;
638	return iomap_swapfile_activate(sis, swap_file, span,
639			&xfs_read_iomap_ops);
640}
641
642const struct address_space_operations xfs_address_space_operations = {
643	.readpage		= xfs_vm_readpage,
644	.readahead		= xfs_vm_readahead,
645	.writepage		= xfs_vm_writepage,
646	.writepages		= xfs_vm_writepages,
647	.set_page_dirty		= iomap_set_page_dirty,
648	.releasepage		= iomap_releasepage,
649	.invalidatepage		= iomap_invalidatepage,
650	.bmap			= xfs_vm_bmap,
651	.direct_IO		= noop_direct_IO,
652	.migratepage		= iomap_migrate_page,
653	.is_partially_uptodate  = iomap_is_partially_uptodate,
654	.error_remove_page	= generic_error_remove_page,
655	.swap_activate		= xfs_iomap_swapfile_activate,
656};
657
658const struct address_space_operations xfs_dax_aops = {
659	.writepages		= xfs_dax_writepages,
660	.direct_IO		= noop_direct_IO,
661	.set_page_dirty		= noop_set_page_dirty,
662	.invalidatepage		= noop_invalidatepage,
663	.swap_activate		= xfs_iomap_swapfile_activate,
664};