Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/nfs/dir.c
   4 *
   5 *  Copyright (C) 1992  Rick Sladkey
   6 *
   7 *  nfs directory handling functions
   8 *
   9 * 10 Apr 1996	Added silly rename for unlink	--okir
  10 * 28 Sep 1996	Improved directory cache --okir
  11 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  12 *              Re-implemented silly rename for unlink, newly implemented
  13 *              silly rename for nfs_rename() following the suggestions
  14 *              of Olaf Kirch (okir) found in this file.
  15 *              Following Linus comments on my original hack, this version
  16 *              depends only on the dcache stuff and doesn't touch the inode
  17 *              layer (iput() and friends).
  18 *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
  19 */
  20
  21#include <linux/module.h>
  22#include <linux/time.h>
  23#include <linux/errno.h>
  24#include <linux/stat.h>
  25#include <linux/fcntl.h>
  26#include <linux/string.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/mm.h>
  30#include <linux/sunrpc/clnt.h>
  31#include <linux/nfs_fs.h>
  32#include <linux/nfs_mount.h>
  33#include <linux/pagemap.h>
  34#include <linux/pagevec.h>
  35#include <linux/namei.h>
  36#include <linux/mount.h>
  37#include <linux/swap.h>
  38#include <linux/sched.h>
  39#include <linux/kmemleak.h>
  40#include <linux/xattr.h>
  41
  42#include "delegation.h"
  43#include "iostat.h"
  44#include "internal.h"
  45#include "fscache.h"
  46
  47#include "nfstrace.h"
  48
  49/* #define NFS_DEBUG_VERBOSE 1 */
  50
  51static int nfs_opendir(struct inode *, struct file *);
  52static int nfs_closedir(struct inode *, struct file *);
  53static int nfs_readdir(struct file *, struct dir_context *);
  54static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  55static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  56static void nfs_readdir_clear_array(struct page*);
  57
  58const struct file_operations nfs_dir_operations = {
  59	.llseek		= nfs_llseek_dir,
  60	.read		= generic_read_dir,
  61	.iterate_shared	= nfs_readdir,
  62	.open		= nfs_opendir,
  63	.release	= nfs_closedir,
  64	.fsync		= nfs_fsync_dir,
  65};
  66
  67const struct address_space_operations nfs_dir_aops = {
  68	.freepage = nfs_readdir_clear_array,
  69};
  70
  71static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
  72{
  73	struct nfs_inode *nfsi = NFS_I(dir);
  74	struct nfs_open_dir_context *ctx;
  75	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
  76	if (ctx != NULL) {
  77		ctx->duped = 0;
  78		ctx->attr_gencount = nfsi->attr_gencount;
  79		ctx->dir_cookie = 0;
  80		ctx->dup_cookie = 0;
 
  81		spin_lock(&dir->i_lock);
  82		if (list_empty(&nfsi->open_files) &&
  83		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
  84			nfs_set_cache_invalid(dir,
  85					      NFS_INO_INVALID_DATA |
  86						      NFS_INO_REVAL_FORCED);
  87		list_add(&ctx->list, &nfsi->open_files);
  88		spin_unlock(&dir->i_lock);
  89		return ctx;
  90	}
  91	return  ERR_PTR(-ENOMEM);
  92}
  93
  94static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
  95{
  96	spin_lock(&dir->i_lock);
  97	list_del(&ctx->list);
  98	spin_unlock(&dir->i_lock);
 
  99	kfree(ctx);
 100}
 101
 102/*
 103 * Open file
 104 */
 105static int
 106nfs_opendir(struct inode *inode, struct file *filp)
 107{
 108	int res = 0;
 109	struct nfs_open_dir_context *ctx;
 110
 111	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
 112
 113	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 114
 115	ctx = alloc_nfs_open_dir_context(inode);
 116	if (IS_ERR(ctx)) {
 117		res = PTR_ERR(ctx);
 118		goto out;
 119	}
 120	filp->private_data = ctx;
 121out:
 122	return res;
 123}
 124
 125static int
 126nfs_closedir(struct inode *inode, struct file *filp)
 127{
 128	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
 129	return 0;
 130}
 131
 132struct nfs_cache_array_entry {
 133	u64 cookie;
 134	u64 ino;
 135	const char *name;
 136	unsigned int name_len;
 137	unsigned char d_type;
 138};
 139
 140struct nfs_cache_array {
 
 
 141	u64 last_cookie;
 142	unsigned int size;
 143	unsigned char page_full : 1,
 144		      page_is_eof : 1,
 145		      cookies_are_ordered : 1;
 146	struct nfs_cache_array_entry array[];
 147};
 148
 149struct nfs_readdir_descriptor {
 150	struct file	*file;
 151	struct page	*page;
 152	struct dir_context *ctx;
 153	pgoff_t		page_index;
 154	u64		dir_cookie;
 155	u64		last_cookie;
 156	u64		dup_cookie;
 157	loff_t		current_index;
 158	loff_t		prev_index;
 159
 160	__be32		verf[NFS_DIR_VERIFIER_SIZE];
 161	unsigned long	dir_verifier;
 162	unsigned long	timestamp;
 163	unsigned long	gencount;
 164	unsigned long	attr_gencount;
 165	unsigned int	cache_entry_index;
 166	signed char duped;
 167	bool plus;
 168	bool eof;
 169};
 170
 171static void nfs_readdir_array_init(struct nfs_cache_array *array)
 172{
 173	memset(array, 0, sizeof(struct nfs_cache_array));
 174}
 175
 176static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
 177{
 178	struct nfs_cache_array *array;
 179
 180	array = kmap_atomic(page);
 181	nfs_readdir_array_init(array);
 182	array->last_cookie = last_cookie;
 183	array->cookies_are_ordered = 1;
 184	kunmap_atomic(array);
 185}
 186
 187/*
 188 * we are freeing strings created by nfs_add_to_readdir_array()
 189 */
 190static
 191void nfs_readdir_clear_array(struct page *page)
 192{
 193	struct nfs_cache_array *array;
 194	int i;
 195
 196	array = kmap_atomic(page);
 197	for (i = 0; i < array->size; i++)
 198		kfree(array->array[i].name);
 199	nfs_readdir_array_init(array);
 200	kunmap_atomic(array);
 201}
 202
 203static struct page *
 204nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
 205{
 206	struct page *page = alloc_page(gfp_flags);
 207	if (page)
 208		nfs_readdir_page_init_array(page, last_cookie);
 209	return page;
 210}
 211
 212static void nfs_readdir_page_array_free(struct page *page)
 213{
 214	if (page) {
 215		nfs_readdir_clear_array(page);
 216		put_page(page);
 217	}
 218}
 219
 220static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
 221{
 222	array->page_is_eof = 1;
 223	array->page_full = 1;
 224}
 225
 226static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
 227{
 228	return array->page_full;
 229}
 230
 231/*
 232 * the caller is responsible for freeing qstr.name
 233 * when called by nfs_readdir_add_to_array, the strings will be freed in
 234 * nfs_clear_readdir_array()
 235 */
 236static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
 
 237{
 238	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
 239
 
 
 240	/*
 241	 * Avoid a kmemleak false positive. The pointer to the name is stored
 242	 * in a page cache page which kmemleak does not scan.
 243	 */
 244	if (ret != NULL)
 245		kmemleak_not_leak(ret);
 246	return ret;
 247}
 248
 249/*
 250 * Check that the next array entry lies entirely within the page bounds
 251 */
 252static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
 253{
 254	struct nfs_cache_array_entry *cache_entry;
 255
 256	if (array->page_full)
 257		return -ENOSPC;
 258	cache_entry = &array->array[array->size + 1];
 259	if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
 260		array->page_full = 1;
 261		return -ENOSPC;
 262	}
 263	return 0;
 264}
 265
 266static
 267int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
 268{
 269	struct nfs_cache_array *array;
 270	struct nfs_cache_array_entry *cache_entry;
 271	const char *name;
 272	int ret;
 273
 274	name = nfs_readdir_copy_name(entry->name, entry->len);
 275	if (!name)
 276		return -ENOMEM;
 277
 278	array = kmap_atomic(page);
 279	ret = nfs_readdir_array_can_expand(array);
 280	if (ret) {
 281		kfree(name);
 282		goto out;
 283	}
 284
 285	cache_entry = &array->array[array->size];
 286	cache_entry->cookie = entry->prev_cookie;
 287	cache_entry->ino = entry->ino;
 288	cache_entry->d_type = entry->d_type;
 289	cache_entry->name_len = entry->len;
 290	cache_entry->name = name;
 
 291	array->last_cookie = entry->cookie;
 292	if (array->last_cookie <= cache_entry->cookie)
 293		array->cookies_are_ordered = 0;
 294	array->size++;
 295	if (entry->eof != 0)
 296		nfs_readdir_array_set_eof(array);
 297out:
 298	kunmap_atomic(array);
 299	return ret;
 300}
 301
 302static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
 303						pgoff_t index, u64 last_cookie)
 304{
 305	struct page *page;
 306
 307	page = grab_cache_page(mapping, index);
 308	if (page && !PageUptodate(page)) {
 309		nfs_readdir_page_init_array(page, last_cookie);
 310		if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
 311			nfs_zap_mapping(mapping->host, mapping);
 312		SetPageUptodate(page);
 313	}
 314
 315	return page;
 316}
 317
 318static u64 nfs_readdir_page_last_cookie(struct page *page)
 319{
 320	struct nfs_cache_array *array;
 321	u64 ret;
 322
 323	array = kmap_atomic(page);
 324	ret = array->last_cookie;
 325	kunmap_atomic(array);
 326	return ret;
 327}
 328
 329static bool nfs_readdir_page_needs_filling(struct page *page)
 330{
 331	struct nfs_cache_array *array;
 332	bool ret;
 333
 334	array = kmap_atomic(page);
 335	ret = !nfs_readdir_array_is_full(array);
 336	kunmap_atomic(array);
 337	return ret;
 338}
 339
 340static void nfs_readdir_page_set_eof(struct page *page)
 341{
 342	struct nfs_cache_array *array;
 343
 344	array = kmap_atomic(page);
 345	nfs_readdir_array_set_eof(array);
 346	kunmap_atomic(array);
 347}
 348
 349static void nfs_readdir_page_unlock_and_put(struct page *page)
 350{
 351	unlock_page(page);
 352	put_page(page);
 353}
 354
 355static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
 356					      pgoff_t index, u64 cookie)
 357{
 358	struct page *page;
 359
 360	page = nfs_readdir_page_get_locked(mapping, index, cookie);
 361	if (page) {
 362		if (nfs_readdir_page_last_cookie(page) == cookie)
 363			return page;
 364		nfs_readdir_page_unlock_and_put(page);
 365	}
 366	return NULL;
 367}
 368
 369static inline
 370int is_32bit_api(void)
 371{
 372#ifdef CONFIG_COMPAT
 373	return in_compat_syscall();
 374#else
 375	return (BITS_PER_LONG == 32);
 376#endif
 377}
 378
 379static
 380bool nfs_readdir_use_cookie(const struct file *filp)
 381{
 382	if ((filp->f_mode & FMODE_32BITHASH) ||
 383	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
 384		return false;
 385	return true;
 386}
 387
 388static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
 389				      struct nfs_readdir_descriptor *desc)
 390{
 391	loff_t diff = desc->ctx->pos - desc->current_index;
 392	unsigned int index;
 393
 394	if (diff < 0)
 395		goto out_eof;
 396	if (diff >= array->size) {
 397		if (array->page_is_eof)
 398			goto out_eof;
 399		return -EAGAIN;
 400	}
 401
 402	index = (unsigned int)diff;
 403	desc->dir_cookie = array->array[index].cookie;
 404	desc->cache_entry_index = index;
 405	return 0;
 406out_eof:
 407	desc->eof = true;
 408	return -EBADCOOKIE;
 409}
 410
 411static bool
 412nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
 413{
 414	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
 415		return false;
 416	smp_rmb();
 417	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
 418}
 419
 420static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
 421					      u64 cookie)
 422{
 423	if (!array->cookies_are_ordered)
 424		return true;
 425	/* Optimisation for monotonically increasing cookies */
 426	if (cookie >= array->last_cookie)
 427		return false;
 428	if (array->size && cookie < array->array[0].cookie)
 429		return false;
 430	return true;
 431}
 432
 433static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
 434					 struct nfs_readdir_descriptor *desc)
 435{
 436	int i;
 437	loff_t new_pos;
 438	int status = -EAGAIN;
 439
 440	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
 441		goto check_eof;
 442
 443	for (i = 0; i < array->size; i++) {
 444		if (array->array[i].cookie == desc->dir_cookie) {
 445			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
 
 446
 447			new_pos = desc->current_index + i;
 448			if (desc->attr_gencount != nfsi->attr_gencount ||
 449			    !nfs_readdir_inode_mapping_valid(nfsi)) {
 450				desc->duped = 0;
 451				desc->attr_gencount = nfsi->attr_gencount;
 452			} else if (new_pos < desc->prev_index) {
 453				if (desc->duped > 0
 454				    && desc->dup_cookie == desc->dir_cookie) {
 455					if (printk_ratelimit()) {
 456						pr_notice("NFS: directory %pD2 contains a readdir loop."
 457								"Please contact your server vendor.  "
 458								"The file: %s has duplicate cookie %llu\n",
 459								desc->file, array->array[i].name, desc->dir_cookie);
 
 460					}
 461					status = -ELOOP;
 462					goto out;
 463				}
 464				desc->dup_cookie = desc->dir_cookie;
 465				desc->duped = -1;
 466			}
 467			if (nfs_readdir_use_cookie(desc->file))
 468				desc->ctx->pos = desc->dir_cookie;
 469			else
 470				desc->ctx->pos = new_pos;
 471			desc->prev_index = new_pos;
 472			desc->cache_entry_index = i;
 473			return 0;
 474		}
 475	}
 476check_eof:
 477	if (array->page_is_eof) {
 478		status = -EBADCOOKIE;
 479		if (desc->dir_cookie == array->last_cookie)
 480			desc->eof = true;
 481	}
 482out:
 483	return status;
 484}
 485
 486static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
 
 487{
 488	struct nfs_cache_array *array;
 489	int status;
 490
 491	array = kmap_atomic(desc->page);
 492
 493	if (desc->dir_cookie == 0)
 494		status = nfs_readdir_search_for_pos(array, desc);
 495	else
 496		status = nfs_readdir_search_for_cookie(array, desc);
 497
 498	if (status == -EAGAIN) {
 499		desc->last_cookie = array->last_cookie;
 500		desc->current_index += array->size;
 501		desc->page_index++;
 502	}
 503	kunmap_atomic(array);
 504	return status;
 505}
 506
 507/* Fill a page with xdr information before transferring to the cache page */
 508static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
 509				  __be32 *verf, u64 cookie,
 510				  struct page **pages, size_t bufsize,
 511				  __be32 *verf_res)
 512{
 513	struct inode *inode = file_inode(desc->file);
 514	struct nfs_readdir_arg arg = {
 515		.dentry = file_dentry(desc->file),
 516		.cred = desc->file->f_cred,
 517		.verf = verf,
 518		.cookie = cookie,
 519		.pages = pages,
 520		.page_len = bufsize,
 521		.plus = desc->plus,
 522	};
 523	struct nfs_readdir_res res = {
 524		.verf = verf_res,
 525	};
 526	unsigned long	timestamp, gencount;
 527	int		error;
 528
 529 again:
 530	timestamp = jiffies;
 531	gencount = nfs_inc_attr_generation_counter();
 532	desc->dir_verifier = nfs_save_change_attribute(inode);
 533	error = NFS_PROTO(inode)->readdir(&arg, &res);
 
 534	if (error < 0) {
 535		/* We requested READDIRPLUS, but the server doesn't grok it */
 536		if (error == -ENOTSUPP && desc->plus) {
 537			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 538			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 539			desc->plus = arg.plus = false;
 540			goto again;
 541		}
 542		goto error;
 543	}
 544	desc->timestamp = timestamp;
 545	desc->gencount = gencount;
 546error:
 547	return error;
 548}
 549
 550static int xdr_decode(struct nfs_readdir_descriptor *desc,
 551		      struct nfs_entry *entry, struct xdr_stream *xdr)
 552{
 553	struct inode *inode = file_inode(desc->file);
 554	int error;
 555
 556	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
 557	if (error)
 558		return error;
 559	entry->fattr->time_start = desc->timestamp;
 560	entry->fattr->gencount = desc->gencount;
 561	return 0;
 562}
 563
 564/* Match file and dirent using either filehandle or fileid
 565 * Note: caller is responsible for checking the fsid
 566 */
 567static
 568int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 569{
 570	struct inode *inode;
 571	struct nfs_inode *nfsi;
 572
 573	if (d_really_is_negative(dentry))
 574		return 0;
 575
 576	inode = d_inode(dentry);
 577	if (is_bad_inode(inode) || NFS_STALE(inode))
 578		return 0;
 579
 580	nfsi = NFS_I(inode);
 581	if (entry->fattr->fileid != nfsi->fileid)
 582		return 0;
 583	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
 584		return 0;
 585	return 1;
 586}
 587
 588static
 589bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
 590{
 591	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 592		return false;
 593	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
 594		return true;
 595	if (ctx->pos == 0)
 596		return true;
 597	return false;
 598}
 599
 600/*
 601 * This function is called by the lookup and getattr code to request the
 602 * use of readdirplus to accelerate any future lookups in the same
 603 * directory.
 604 */
 605void nfs_advise_use_readdirplus(struct inode *dir)
 606{
 607	struct nfs_inode *nfsi = NFS_I(dir);
 608
 609	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 610	    !list_empty(&nfsi->open_files))
 611		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 612}
 613
 614/*
 615 * This function is mainly for use by nfs_getattr().
 616 *
 617 * If this is an 'ls -l', we want to force use of readdirplus.
 618 * Do this by checking if there is an active file descriptor
 619 * and calling nfs_advise_use_readdirplus, then forcing a
 620 * cache flush.
 621 */
 622void nfs_force_use_readdirplus(struct inode *dir)
 623{
 624	struct nfs_inode *nfsi = NFS_I(dir);
 625
 626	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 627	    !list_empty(&nfsi->open_files)) {
 628		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 629		invalidate_mapping_pages(dir->i_mapping,
 630			nfsi->page_index + 1, -1);
 631	}
 632}
 633
 634static
 635void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
 636		unsigned long dir_verifier)
 637{
 638	struct qstr filename = QSTR_INIT(entry->name, entry->len);
 639	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
 640	struct dentry *dentry;
 641	struct dentry *alias;
 642	struct inode *inode;
 643	int status;
 644
 645	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
 646		return;
 647	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
 648		return;
 649	if (filename.len == 0)
 650		return;
 651	/* Validate that the name doesn't contain any illegal '\0' */
 652	if (strnlen(filename.name, filename.len) != filename.len)
 653		return;
 654	/* ...or '/' */
 655	if (strnchr(filename.name, filename.len, '/'))
 656		return;
 657	if (filename.name[0] == '.') {
 658		if (filename.len == 1)
 659			return;
 660		if (filename.len == 2 && filename.name[1] == '.')
 661			return;
 662	}
 663	filename.hash = full_name_hash(parent, filename.name, filename.len);
 664
 665	dentry = d_lookup(parent, &filename);
 666again:
 667	if (!dentry) {
 668		dentry = d_alloc_parallel(parent, &filename, &wq);
 669		if (IS_ERR(dentry))
 670			return;
 671	}
 672	if (!d_in_lookup(dentry)) {
 673		/* Is there a mountpoint here? If so, just exit */
 674		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
 675					&entry->fattr->fsid))
 676			goto out;
 677		if (nfs_same_file(dentry, entry)) {
 678			if (!entry->fh->size)
 679				goto out;
 680			nfs_set_verifier(dentry, dir_verifier);
 681			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
 682			if (!status)
 683				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
 684			goto out;
 685		} else {
 686			d_invalidate(dentry);
 687			dput(dentry);
 688			dentry = NULL;
 689			goto again;
 690		}
 691	}
 692	if (!entry->fh->size) {
 693		d_lookup_done(dentry);
 694		goto out;
 695	}
 696
 697	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
 698	alias = d_splice_alias(inode, dentry);
 699	d_lookup_done(dentry);
 700	if (alias) {
 701		if (IS_ERR(alias))
 702			goto out;
 703		dput(dentry);
 704		dentry = alias;
 705	}
 706	nfs_set_verifier(dentry, dir_verifier);
 707out:
 708	dput(dentry);
 709}
 710
 711/* Perform conversion from xdr to cache array */
 712static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
 713				   struct nfs_entry *entry,
 714				   struct page **xdr_pages,
 715				   unsigned int buflen,
 716				   struct page **arrays,
 717				   size_t narrays)
 718{
 719	struct address_space *mapping = desc->file->f_mapping;
 720	struct xdr_stream stream;
 721	struct xdr_buf buf;
 722	struct page *scratch, *new, *page = *arrays;
 
 
 723	int status;
 724
 725	scratch = alloc_page(GFP_KERNEL);
 726	if (scratch == NULL)
 727		return -ENOMEM;
 728
 
 
 
 729	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 730	xdr_set_scratch_page(&stream, scratch);
 731
 732	do {
 733		if (entry->label)
 734			entry->label->len = NFS4_MAXLABELLEN;
 735
 736		status = xdr_decode(desc, entry, &stream);
 737		if (status != 0)
 
 
 738			break;
 
 
 
 739
 740		if (desc->plus)
 741			nfs_prime_dcache(file_dentry(desc->file), entry,
 742					desc->dir_verifier);
 743
 744		status = nfs_readdir_add_to_array(entry, page);
 745		if (status != -ENOSPC)
 746			continue;
 747
 748		if (page->mapping != mapping) {
 749			if (!--narrays)
 750				break;
 751			new = nfs_readdir_page_array_alloc(entry->prev_cookie,
 752							   GFP_KERNEL);
 753			if (!new)
 754				break;
 755			arrays++;
 756			*arrays = page = new;
 757		} else {
 758			new = nfs_readdir_page_get_next(mapping,
 759							page->index + 1,
 760							entry->prev_cookie);
 761			if (!new)
 762				break;
 763			if (page != *arrays)
 764				nfs_readdir_page_unlock_and_put(page);
 765			page = new;
 766		}
 767		status = nfs_readdir_add_to_array(entry, page);
 768	} while (!status && !entry->eof);
 769
 770	switch (status) {
 771	case -EBADCOOKIE:
 772		if (entry->eof) {
 773			nfs_readdir_page_set_eof(page);
 774			status = 0;
 775		}
 776		break;
 777	case -ENOSPC:
 778	case -EAGAIN:
 779		status = 0;
 780		break;
 781	}
 782
 783	if (page != *arrays)
 784		nfs_readdir_page_unlock_and_put(page);
 785
 786	put_page(scratch);
 787	return status;
 788}
 789
 790static void nfs_readdir_free_pages(struct page **pages, size_t npages)
 
 791{
 792	while (npages--)
 793		put_page(pages[npages]);
 794	kfree(pages);
 795}
 796
 797/*
 798 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
 799 * to nfs_readdir_free_pages()
 800 */
 801static struct page **nfs_readdir_alloc_pages(size_t npages)
 
 802{
 803	struct page **pages;
 804	size_t i;
 805
 806	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
 807	if (!pages)
 808		return NULL;
 809	for (i = 0; i < npages; i++) {
 810		struct page *page = alloc_page(GFP_KERNEL);
 811		if (page == NULL)
 812			goto out_freepages;
 813		pages[i] = page;
 814	}
 815	return pages;
 816
 817out_freepages:
 818	nfs_readdir_free_pages(pages, i);
 819	return NULL;
 820}
 821
 822static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
 823				    __be32 *verf_arg, __be32 *verf_res,
 824				    struct page **arrays, size_t narrays)
 825{
 826	struct page **pages;
 827	struct page *page = *arrays;
 828	struct nfs_entry *entry;
 829	size_t array_size;
 830	struct inode *inode = file_inode(desc->file);
 831	size_t dtsize = NFS_SERVER(inode)->dtsize;
 832	int status = -ENOMEM;
 
 833
 834	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 835	if (!entry)
 836		return -ENOMEM;
 837	entry->cookie = nfs_readdir_page_last_cookie(page);
 838	entry->fh = nfs_alloc_fhandle();
 839	entry->fattr = nfs_alloc_fattr();
 840	entry->server = NFS_SERVER(inode);
 841	if (entry->fh == NULL || entry->fattr == NULL)
 
 842		goto out;
 843
 844	entry->label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
 845	if (IS_ERR(entry->label)) {
 846		status = PTR_ERR(entry->label);
 847		goto out;
 848	}
 849
 850	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
 851	pages = nfs_readdir_alloc_pages(array_size);
 852	if (!pages)
 853		goto out_release_label;
 854
 
 
 
 855	do {
 856		unsigned int pglen;
 857		status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
 858						pages, dtsize,
 859						verf_res);
 860		if (status < 0)
 861			break;
 862
 863		pglen = status;
 864		if (pglen == 0) {
 865			nfs_readdir_page_set_eof(page);
 
 
 866			break;
 867		}
 868
 869		verf_arg = verf_res;
 870
 871		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
 872						 arrays, narrays);
 873	} while (!status && nfs_readdir_page_needs_filling(page));
 874
 875	nfs_readdir_free_pages(pages, array_size);
 876out_release_label:
 877	nfs4_label_free(entry->label);
 
 878out:
 879	nfs_free_fattr(entry->fattr);
 880	nfs_free_fhandle(entry->fh);
 881	kfree(entry);
 882	return status;
 883}
 884
 885static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
 
 
 
 
 
 
 
 886{
 887	put_page(desc->page);
 888	desc->page = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889}
 890
 891static void
 892nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
 893{
 894	unlock_page(desc->page);
 895	nfs_readdir_page_put(desc);
 896}
 897
 898static struct page *
 899nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
 900{
 901	return nfs_readdir_page_get_locked(desc->file->f_mapping,
 902					   desc->page_index,
 903					   desc->last_cookie);
 904}
 905
 906/*
 907 * Returns 0 if desc->dir_cookie was found on page desc->page_index
 908 * and locks the page to prevent removal from the page cache.
 909 */
 910static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
 
 911{
 912	struct inode *inode = file_inode(desc->file);
 913	struct nfs_inode *nfsi = NFS_I(inode);
 914	__be32 verf[NFS_DIR_VERIFIER_SIZE];
 915	int res;
 916
 917	desc->page = nfs_readdir_page_get_cached(desc);
 918	if (!desc->page)
 919		return -ENOMEM;
 920	if (nfs_readdir_page_needs_filling(desc->page)) {
 921		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
 922					       &desc->page, 1);
 923		if (res < 0) {
 924			nfs_readdir_page_unlock_and_put_cached(desc);
 925			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
 926				invalidate_inode_pages2(desc->file->f_mapping);
 927				desc->page_index = 0;
 928				return -EAGAIN;
 929			}
 930			return res;
 931		}
 932		/*
 933		 * Set the cookie verifier if the page cache was empty
 934		 */
 935		if (desc->page_index == 0)
 936			memcpy(nfsi->cookieverf, verf,
 937			       sizeof(nfsi->cookieverf));
 938	}
 939	res = nfs_readdir_search_array(desc);
 940	if (res == 0) {
 941		nfsi->page_index = desc->page_index;
 942		return 0;
 943	}
 944	nfs_readdir_page_unlock_and_put_cached(desc);
 
 
 945	return res;
 946}
 947
 948static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
 949{
 950	struct address_space *mapping = desc->file->f_mapping;
 951	struct inode *dir = file_inode(desc->file);
 952	unsigned int dtsize = NFS_SERVER(dir)->dtsize;
 953	loff_t size = i_size_read(dir);
 954
 955	/*
 956	 * Default to uncached readdir if the page cache is empty, and
 957	 * we're looking for a non-zero cookie in a large directory.
 958	 */
 959	return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
 960}
 961
 962/* Search for desc->dir_cookie from the beginning of the page cache */
 963static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
 
 964{
 965	int res;
 966
 967	if (nfs_readdir_dont_search_cache(desc))
 968		return -EBADCOOKIE;
 969
 
 
 970	do {
 971		if (desc->page_index == 0) {
 972			desc->current_index = 0;
 973			desc->prev_index = 0;
 974			desc->last_cookie = 0;
 975		}
 976		res = find_and_lock_cache_page(desc);
 977	} while (res == -EAGAIN);
 978	return res;
 979}
 980
 981/*
 982 * Once we've found the start of the dirent within a page: fill 'er up...
 983 */
 984static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
 985			   const __be32 *verf)
 986{
 987	struct file	*file = desc->file;
 988	struct nfs_cache_array *array;
 989	unsigned int i = 0;
 
 
 990
 991	array = kmap(desc->page);
 992	for (i = desc->cache_entry_index; i < array->size; i++) {
 993		struct nfs_cache_array_entry *ent;
 994
 995		ent = &array->array[i];
 996		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
 997		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
 998			desc->eof = true;
 999			break;
1000		}
1001		memcpy(desc->verf, verf, sizeof(desc->verf));
1002		if (i < (array->size-1))
1003			desc->dir_cookie = array->array[i+1].cookie;
1004		else
1005			desc->dir_cookie = array->last_cookie;
1006		if (nfs_readdir_use_cookie(file))
1007			desc->ctx->pos = desc->dir_cookie;
1008		else
1009			desc->ctx->pos++;
1010		if (desc->duped != 0)
1011			desc->duped = 1;
1012	}
1013	if (array->page_is_eof)
1014		desc->eof = true;
1015
1016	kunmap(desc->page);
1017	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1018			(unsigned long long)desc->dir_cookie);
 
1019}
1020
1021/*
1022 * If we cannot find a cookie in our cache, we suspect that this is
1023 * because it points to a deleted file, so we ask the server to return
1024 * whatever it thinks is the next entry. We then feed this to filldir.
1025 * If all goes well, we should then be able to find our way round the
1026 * cache on the next call to readdir_search_pagecache();
1027 *
1028 * NOTE: we cannot add the anonymous page to the pagecache because
1029 *	 the data it contains might not be page aligned. Besides,
1030 *	 we should already have a complete representation of the
1031 *	 directory in the page cache by the time we get here.
1032 */
1033static int uncached_readdir(struct nfs_readdir_descriptor *desc)
 
1034{
1035	struct page	**arrays;
1036	size_t		i, sz = 512;
1037	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1038	int		status = -ENOMEM;
1039
1040	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1041			(unsigned long long)desc->dir_cookie);
1042
1043	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1044	if (!arrays)
1045		goto out;
1046	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1047	if (!arrays[0])
1048		goto out;
1049
1050	desc->page_index = 0;
1051	desc->last_cookie = desc->dir_cookie;
1052	desc->duped = 0;
1053
1054	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1055
1056	for (i = 0; !desc->eof && i < sz && arrays[i]; i++) {
1057		desc->page = arrays[i];
1058		nfs_do_filldir(desc, verf);
1059	}
1060	desc->page = NULL;
1061
1062
1063	for (i = 0; i < sz && arrays[i]; i++)
1064		nfs_readdir_page_array_free(arrays[i]);
1065out:
1066	kfree(arrays);
1067	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
 
 
 
 
 
 
 
 
 
 
 
 
1068	return status;
1069}
1070
1071/* The file offset position represents the dirent entry number.  A
1072   last cookie cache takes care of the common case of reading the
1073   whole directory.
1074 */
1075static int nfs_readdir(struct file *file, struct dir_context *ctx)
1076{
1077	struct dentry	*dentry = file_dentry(file);
1078	struct inode	*inode = d_inode(dentry);
1079	struct nfs_inode *nfsi = NFS_I(inode);
1080	struct nfs_open_dir_context *dir_ctx = file->private_data;
1081	struct nfs_readdir_descriptor *desc;
1082	int res;
 
 
 
 
 
 
1083
1084	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1085			file, (long long)ctx->pos);
1086	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1087
1088	/*
1089	 * ctx->pos points to the dirent entry number.
1090	 * *desc->dir_cookie has the cookie for the next entry. We have
1091	 * to either find the entry with the appropriate number or
1092	 * revalidate the cookie.
1093	 */
1094	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1095		res = nfs_revalidate_mapping(inode, file->f_mapping);
1096		if (res < 0)
1097			goto out;
1098	}
1099
1100	res = -ENOMEM;
1101	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1102	if (!desc)
1103		goto out;
1104	desc->file = file;
1105	desc->ctx = ctx;
1106	desc->plus = nfs_use_readdirplus(inode, ctx);
1107
1108	spin_lock(&file->f_lock);
1109	desc->dir_cookie = dir_ctx->dir_cookie;
1110	desc->dup_cookie = dir_ctx->dup_cookie;
1111	desc->duped = dir_ctx->duped;
1112	desc->attr_gencount = dir_ctx->attr_gencount;
1113	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1114	spin_unlock(&file->f_lock);
1115
1116	do {
1117		res = readdir_search_pagecache(desc);
1118
1119		if (res == -EBADCOOKIE) {
1120			res = 0;
1121			/* This means either end of directory */
1122			if (desc->dir_cookie && !desc->eof) {
1123				/* Or that the server has 'lost' a cookie */
1124				res = uncached_readdir(desc);
1125				if (res == 0)
1126					continue;
1127				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1128					res = 0;
1129			}
1130			break;
1131		}
1132		if (res == -ETOOSMALL && desc->plus) {
1133			clear_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
1134			nfs_zap_caches(inode);
1135			desc->page_index = 0;
1136			desc->plus = false;
1137			desc->eof = false;
1138			continue;
1139		}
1140		if (res < 0)
1141			break;
1142
1143		nfs_do_filldir(desc, nfsi->cookieverf);
1144		nfs_readdir_page_unlock_and_put_cached(desc);
 
 
 
1145	} while (!desc->eof);
1146
1147	spin_lock(&file->f_lock);
1148	dir_ctx->dir_cookie = desc->dir_cookie;
1149	dir_ctx->dup_cookie = desc->dup_cookie;
1150	dir_ctx->duped = desc->duped;
1151	dir_ctx->attr_gencount = desc->attr_gencount;
1152	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1153	spin_unlock(&file->f_lock);
1154
1155	kfree(desc);
1156
1157out:
 
 
1158	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1159	return res;
1160}
1161
1162static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1163{
 
1164	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1165
1166	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1167			filp, offset, whence);
1168
1169	switch (whence) {
1170	default:
1171		return -EINVAL;
1172	case SEEK_SET:
1173		if (offset < 0)
1174			return -EINVAL;
1175		spin_lock(&filp->f_lock);
1176		break;
1177	case SEEK_CUR:
1178		if (offset == 0)
1179			return filp->f_pos;
1180		spin_lock(&filp->f_lock);
1181		offset += filp->f_pos;
1182		if (offset < 0) {
1183			spin_unlock(&filp->f_lock);
1184			return -EINVAL;
1185		}
1186	}
1187	if (offset != filp->f_pos) {
1188		filp->f_pos = offset;
1189		if (nfs_readdir_use_cookie(filp))
1190			dir_ctx->dir_cookie = offset;
1191		else
1192			dir_ctx->dir_cookie = 0;
1193		if (offset == 0)
1194			memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1195		dir_ctx->duped = 0;
1196	}
1197	spin_unlock(&filp->f_lock);
1198	return offset;
1199}
1200
1201/*
1202 * All directory operations under NFS are synchronous, so fsync()
1203 * is a dummy operation.
1204 */
1205static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1206			 int datasync)
1207{
 
 
1208	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1209
1210	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
 
 
1211	return 0;
1212}
1213
1214/**
1215 * nfs_force_lookup_revalidate - Mark the directory as having changed
1216 * @dir: pointer to directory inode
1217 *
1218 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1219 * full lookup on all child dentries of 'dir' whenever a change occurs
1220 * on the server that might have invalidated our dcache.
1221 *
1222 * Note that we reserve bit '0' as a tag to let us know when a dentry
1223 * was revalidated while holding a delegation on its inode.
1224 *
1225 * The caller should be holding dir->i_lock
1226 */
1227void nfs_force_lookup_revalidate(struct inode *dir)
1228{
1229	NFS_I(dir)->cache_change_attribute += 2;
1230}
1231EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1232
1233/**
1234 * nfs_verify_change_attribute - Detects NFS remote directory changes
1235 * @dir: pointer to parent directory inode
1236 * @verf: previously saved change attribute
1237 *
1238 * Return "false" if the verifiers doesn't match the change attribute.
1239 * This would usually indicate that the directory contents have changed on
1240 * the server, and that any dentries need revalidating.
1241 */
1242static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1243{
1244	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1245}
1246
1247static void nfs_set_verifier_delegated(unsigned long *verf)
1248{
1249	*verf |= 1UL;
1250}
1251
1252#if IS_ENABLED(CONFIG_NFS_V4)
1253static void nfs_unset_verifier_delegated(unsigned long *verf)
1254{
1255	*verf &= ~1UL;
1256}
1257#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1258
1259static bool nfs_test_verifier_delegated(unsigned long verf)
1260{
1261	return verf & 1;
1262}
1263
1264static bool nfs_verifier_is_delegated(struct dentry *dentry)
1265{
1266	return nfs_test_verifier_delegated(dentry->d_time);
1267}
1268
1269static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1270{
1271	struct inode *inode = d_inode(dentry);
1272
1273	if (!nfs_verifier_is_delegated(dentry) &&
1274	    !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1275		goto out;
1276	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1277		nfs_set_verifier_delegated(&verf);
1278out:
1279	dentry->d_time = verf;
1280}
1281
1282/**
1283 * nfs_set_verifier - save a parent directory verifier in the dentry
1284 * @dentry: pointer to dentry
1285 * @verf: verifier to save
1286 *
1287 * Saves the parent directory verifier in @dentry. If the inode has
1288 * a delegation, we also tag the dentry as having been revalidated
1289 * while holding a delegation so that we know we don't have to
1290 * look it up again after a directory change.
1291 */
1292void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1293{
1294
1295	spin_lock(&dentry->d_lock);
1296	nfs_set_verifier_locked(dentry, verf);
1297	spin_unlock(&dentry->d_lock);
1298}
1299EXPORT_SYMBOL_GPL(nfs_set_verifier);
1300
1301#if IS_ENABLED(CONFIG_NFS_V4)
1302/**
1303 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1304 * @inode: pointer to inode
1305 *
1306 * Iterates through the dentries in the inode alias list and clears
1307 * the tag used to indicate that the dentry has been revalidated
1308 * while holding a delegation.
1309 * This function is intended for use when the delegation is being
1310 * returned or revoked.
1311 */
1312void nfs_clear_verifier_delegated(struct inode *inode)
1313{
1314	struct dentry *alias;
1315
1316	if (!inode)
1317		return;
1318	spin_lock(&inode->i_lock);
1319	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1320		spin_lock(&alias->d_lock);
1321		nfs_unset_verifier_delegated(&alias->d_time);
1322		spin_unlock(&alias->d_lock);
1323	}
1324	spin_unlock(&inode->i_lock);
1325}
1326EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1327#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1328
1329/*
1330 * A check for whether or not the parent directory has changed.
1331 * In the case it has, we assume that the dentries are untrustworthy
1332 * and may need to be looked up again.
1333 * If rcu_walk prevents us from performing a full check, return 0.
1334 */
1335static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1336			      int rcu_walk)
1337{
1338	if (IS_ROOT(dentry))
1339		return 1;
1340	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1341		return 0;
1342	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1343		return 0;
1344	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1345	if (nfs_mapping_need_revalidate_inode(dir)) {
1346		if (rcu_walk)
1347			return 0;
1348		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1349			return 0;
1350	}
1351	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1352		return 0;
1353	return 1;
1354}
1355
1356/*
1357 * Use intent information to check whether or not we're going to do
1358 * an O_EXCL create using this path component.
1359 */
1360static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1361{
1362	if (NFS_PROTO(dir)->version == 2)
1363		return 0;
1364	return flags & LOOKUP_EXCL;
1365}
1366
1367/*
1368 * Inode and filehandle revalidation for lookups.
1369 *
1370 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1371 * or if the intent information indicates that we're about to open this
1372 * particular file and the "nocto" mount flag is not set.
1373 *
1374 */
1375static
1376int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1377{
1378	struct nfs_server *server = NFS_SERVER(inode);
1379	int ret;
1380
1381	if (IS_AUTOMOUNT(inode))
1382		return 0;
1383
1384	if (flags & LOOKUP_OPEN) {
1385		switch (inode->i_mode & S_IFMT) {
1386		case S_IFREG:
1387			/* A NFSv4 OPEN will revalidate later */
1388			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1389				goto out;
1390			fallthrough;
1391		case S_IFDIR:
1392			if (server->flags & NFS_MOUNT_NOCTO)
1393				break;
1394			/* NFS close-to-open cache consistency validation */
1395			goto out_force;
1396		}
1397	}
1398
1399	/* VFS wants an on-the-wire revalidation */
1400	if (flags & LOOKUP_REVAL)
1401		goto out_force;
1402out:
1403	return (inode->i_nlink == 0) ? -ESTALE : 0;
1404out_force:
1405	if (flags & LOOKUP_RCU)
1406		return -ECHILD;
1407	ret = __nfs_revalidate_inode(server, inode);
1408	if (ret != 0)
1409		return ret;
1410	goto out;
1411}
1412
1413static void nfs_mark_dir_for_revalidate(struct inode *inode)
1414{
1415	spin_lock(&inode->i_lock);
1416	nfs_set_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE);
1417	spin_unlock(&inode->i_lock);
1418}
1419
1420/*
1421 * We judge how long we want to trust negative
1422 * dentries by looking at the parent inode mtime.
1423 *
1424 * If parent mtime has changed, we revalidate, else we wait for a
1425 * period corresponding to the parent's attribute cache timeout value.
1426 *
1427 * If LOOKUP_RCU prevents us from performing a full check, return 1
1428 * suggesting a reval is needed.
1429 *
1430 * Note that when creating a new file, or looking up a rename target,
1431 * then it shouldn't be necessary to revalidate a negative dentry.
1432 */
1433static inline
1434int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1435		       unsigned int flags)
1436{
1437	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1438		return 0;
1439	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1440		return 1;
1441	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1442}
1443
1444static int
1445nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1446			   struct inode *inode, int error)
1447{
1448	switch (error) {
1449	case 1:
1450		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1451			__func__, dentry);
1452		return 1;
1453	case 0:
1454		/*
1455		 * We can't d_drop the root of a disconnected tree:
1456		 * its d_hash is on the s_anon list and d_drop() would hide
1457		 * it from shrink_dcache_for_unmount(), leading to busy
1458		 * inodes on unmount and further oopses.
1459		 */
1460		if (inode && IS_ROOT(dentry))
1461			return 1;
 
 
 
 
 
1462		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1463				__func__, dentry);
1464		return 0;
1465	}
1466	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1467				__func__, dentry, error);
1468	return error;
1469}
1470
1471static int
1472nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1473			       unsigned int flags)
1474{
1475	int ret = 1;
1476	if (nfs_neg_need_reval(dir, dentry, flags)) {
1477		if (flags & LOOKUP_RCU)
1478			return -ECHILD;
1479		ret = 0;
1480	}
1481	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1482}
1483
1484static int
1485nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1486				struct inode *inode)
1487{
1488	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1489	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1490}
1491
1492static int
1493nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1494			     struct inode *inode)
1495{
1496	struct nfs_fh *fhandle;
1497	struct nfs_fattr *fattr;
1498	struct nfs4_label *label;
1499	unsigned long dir_verifier;
1500	int ret;
1501
1502	ret = -ENOMEM;
1503	fhandle = nfs_alloc_fhandle();
1504	fattr = nfs_alloc_fattr();
1505	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1506	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1507		goto out;
1508
1509	dir_verifier = nfs_save_change_attribute(dir);
1510	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1511	if (ret < 0) {
1512		switch (ret) {
1513		case -ESTALE:
1514		case -ENOENT:
1515			ret = 0;
1516			break;
1517		case -ETIMEDOUT:
1518			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1519				ret = 1;
1520		}
1521		goto out;
1522	}
1523	ret = 0;
1524	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1525		goto out;
1526	if (nfs_refresh_inode(inode, fattr) < 0)
1527		goto out;
1528
1529	nfs_setsecurity(inode, fattr, label);
1530	nfs_set_verifier(dentry, dir_verifier);
1531
1532	/* set a readdirplus hint that we had a cache miss */
1533	nfs_force_use_readdirplus(dir);
1534	ret = 1;
1535out:
1536	nfs_free_fattr(fattr);
1537	nfs_free_fhandle(fhandle);
1538	nfs4_label_free(label);
1539
1540	/*
1541	 * If the lookup failed despite the dentry change attribute being
1542	 * a match, then we should revalidate the directory cache.
1543	 */
1544	if (!ret && nfs_verify_change_attribute(dir, dentry->d_time))
1545		nfs_mark_dir_for_revalidate(dir);
1546	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1547}
1548
1549/*
1550 * This is called every time the dcache has a lookup hit,
1551 * and we should check whether we can really trust that
1552 * lookup.
1553 *
1554 * NOTE! The hit can be a negative hit too, don't assume
1555 * we have an inode!
1556 *
1557 * If the parent directory is seen to have changed, we throw out the
1558 * cached dentry and do a new lookup.
1559 */
1560static int
1561nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1562			 unsigned int flags)
1563{
1564	struct inode *inode;
1565	int error;
1566
1567	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1568	inode = d_inode(dentry);
1569
1570	if (!inode)
1571		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1572
1573	if (is_bad_inode(inode)) {
1574		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1575				__func__, dentry);
1576		goto out_bad;
1577	}
1578
1579	if (nfs_verifier_is_delegated(dentry))
1580		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1581
1582	/* Force a full look up iff the parent directory has changed */
1583	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1584	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1585		error = nfs_lookup_verify_inode(inode, flags);
1586		if (error) {
1587			if (error == -ESTALE)
1588				nfs_mark_dir_for_revalidate(dir);
1589			goto out_bad;
1590		}
1591		nfs_advise_use_readdirplus(dir);
1592		goto out_valid;
1593	}
1594
1595	if (flags & LOOKUP_RCU)
1596		return -ECHILD;
1597
1598	if (NFS_STALE(inode))
1599		goto out_bad;
1600
1601	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1602	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1603	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1604	return error;
1605out_valid:
1606	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1607out_bad:
1608	if (flags & LOOKUP_RCU)
1609		return -ECHILD;
1610	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1611}
1612
1613static int
1614__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1615			int (*reval)(struct inode *, struct dentry *, unsigned int))
1616{
1617	struct dentry *parent;
1618	struct inode *dir;
1619	int ret;
1620
1621	if (flags & LOOKUP_RCU) {
1622		parent = READ_ONCE(dentry->d_parent);
1623		dir = d_inode_rcu(parent);
1624		if (!dir)
1625			return -ECHILD;
1626		ret = reval(dir, dentry, flags);
1627		if (parent != READ_ONCE(dentry->d_parent))
1628			return -ECHILD;
1629	} else {
1630		parent = dget_parent(dentry);
1631		ret = reval(d_inode(parent), dentry, flags);
1632		dput(parent);
1633	}
1634	return ret;
1635}
1636
1637static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1638{
1639	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1640}
1641
1642/*
1643 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1644 * when we don't really care about the dentry name. This is called when a
1645 * pathwalk ends on a dentry that was not found via a normal lookup in the
1646 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1647 *
1648 * In this situation, we just want to verify that the inode itself is OK
1649 * since the dentry might have changed on the server.
1650 */
1651static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1652{
1653	struct inode *inode = d_inode(dentry);
1654	int error = 0;
1655
1656	/*
1657	 * I believe we can only get a negative dentry here in the case of a
1658	 * procfs-style symlink. Just assume it's correct for now, but we may
1659	 * eventually need to do something more here.
1660	 */
1661	if (!inode) {
1662		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1663				__func__, dentry);
1664		return 1;
1665	}
1666
1667	if (is_bad_inode(inode)) {
1668		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1669				__func__, dentry);
1670		return 0;
1671	}
1672
1673	error = nfs_lookup_verify_inode(inode, flags);
1674	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1675			__func__, inode->i_ino, error ? "invalid" : "valid");
1676	return !error;
1677}
1678
1679/*
1680 * This is called from dput() when d_count is going to 0.
1681 */
1682static int nfs_dentry_delete(const struct dentry *dentry)
1683{
1684	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1685		dentry, dentry->d_flags);
1686
1687	/* Unhash any dentry with a stale inode */
1688	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1689		return 1;
1690
1691	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1692		/* Unhash it, so that ->d_iput() would be called */
1693		return 1;
1694	}
1695	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1696		/* Unhash it, so that ancestors of killed async unlink
1697		 * files will be cleaned up during umount */
1698		return 1;
1699	}
1700	return 0;
1701
1702}
1703
1704/* Ensure that we revalidate inode->i_nlink */
1705static void nfs_drop_nlink(struct inode *inode)
1706{
1707	spin_lock(&inode->i_lock);
1708	/* drop the inode if we're reasonably sure this is the last link */
1709	if (inode->i_nlink > 0)
1710		drop_nlink(inode);
1711	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1712	nfs_set_cache_invalid(
1713		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1714			       NFS_INO_INVALID_NLINK);
 
1715	spin_unlock(&inode->i_lock);
1716}
1717
1718/*
1719 * Called when the dentry loses inode.
1720 * We use it to clean up silly-renamed files.
1721 */
1722static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1723{
1724	if (S_ISDIR(inode->i_mode))
1725		/* drop any readdir cache as it could easily be old */
1726		nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA);
1727
1728	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1729		nfs_complete_unlink(dentry, inode);
1730		nfs_drop_nlink(inode);
1731	}
1732	iput(inode);
1733}
1734
1735static void nfs_d_release(struct dentry *dentry)
1736{
1737	/* free cached devname value, if it survived that far */
1738	if (unlikely(dentry->d_fsdata)) {
1739		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1740			WARN_ON(1);
1741		else
1742			kfree(dentry->d_fsdata);
1743	}
1744}
1745
1746const struct dentry_operations nfs_dentry_operations = {
1747	.d_revalidate	= nfs_lookup_revalidate,
1748	.d_weak_revalidate	= nfs_weak_revalidate,
1749	.d_delete	= nfs_dentry_delete,
1750	.d_iput		= nfs_dentry_iput,
1751	.d_automount	= nfs_d_automount,
1752	.d_release	= nfs_d_release,
1753};
1754EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1755
1756struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1757{
1758	struct dentry *res;
1759	struct inode *inode = NULL;
1760	struct nfs_fh *fhandle = NULL;
1761	struct nfs_fattr *fattr = NULL;
1762	struct nfs4_label *label = NULL;
1763	unsigned long dir_verifier;
1764	int error;
1765
1766	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1767	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1768
1769	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1770		return ERR_PTR(-ENAMETOOLONG);
1771
1772	/*
1773	 * If we're doing an exclusive create, optimize away the lookup
1774	 * but don't hash the dentry.
1775	 */
1776	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1777		return NULL;
1778
1779	res = ERR_PTR(-ENOMEM);
1780	fhandle = nfs_alloc_fhandle();
1781	fattr = nfs_alloc_fattr();
1782	if (fhandle == NULL || fattr == NULL)
1783		goto out;
1784
1785	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1786	if (IS_ERR(label))
1787		goto out;
1788
1789	dir_verifier = nfs_save_change_attribute(dir);
1790	trace_nfs_lookup_enter(dir, dentry, flags);
1791	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1792	if (error == -ENOENT)
1793		goto no_entry;
1794	if (error < 0) {
1795		res = ERR_PTR(error);
1796		goto out_label;
1797	}
1798	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1799	res = ERR_CAST(inode);
1800	if (IS_ERR(res))
1801		goto out_label;
1802
1803	/* Notify readdir to use READDIRPLUS */
1804	nfs_force_use_readdirplus(dir);
1805
1806no_entry:
1807	res = d_splice_alias(inode, dentry);
1808	if (res != NULL) {
1809		if (IS_ERR(res))
1810			goto out_label;
1811		dentry = res;
1812	}
1813	nfs_set_verifier(dentry, dir_verifier);
1814out_label:
1815	trace_nfs_lookup_exit(dir, dentry, flags, error);
1816	nfs4_label_free(label);
1817out:
1818	nfs_free_fattr(fattr);
1819	nfs_free_fhandle(fhandle);
1820	return res;
1821}
1822EXPORT_SYMBOL_GPL(nfs_lookup);
1823
1824#if IS_ENABLED(CONFIG_NFS_V4)
1825static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1826
1827const struct dentry_operations nfs4_dentry_operations = {
1828	.d_revalidate	= nfs4_lookup_revalidate,
1829	.d_weak_revalidate	= nfs_weak_revalidate,
1830	.d_delete	= nfs_dentry_delete,
1831	.d_iput		= nfs_dentry_iput,
1832	.d_automount	= nfs_d_automount,
1833	.d_release	= nfs_d_release,
1834};
1835EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1836
1837static fmode_t flags_to_mode(int flags)
1838{
1839	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1840	if ((flags & O_ACCMODE) != O_WRONLY)
1841		res |= FMODE_READ;
1842	if ((flags & O_ACCMODE) != O_RDONLY)
1843		res |= FMODE_WRITE;
1844	return res;
1845}
1846
1847static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1848{
1849	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1850}
1851
1852static int do_open(struct inode *inode, struct file *filp)
1853{
1854	nfs_fscache_open_file(inode, filp);
1855	return 0;
1856}
1857
1858static int nfs_finish_open(struct nfs_open_context *ctx,
1859			   struct dentry *dentry,
1860			   struct file *file, unsigned open_flags)
1861{
1862	int err;
1863
1864	err = finish_open(file, dentry, do_open);
1865	if (err)
1866		goto out;
1867	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1868		nfs_file_set_open_context(file, ctx);
1869	else
1870		err = -EOPENSTALE;
1871out:
1872	return err;
1873}
1874
1875int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1876		    struct file *file, unsigned open_flags,
1877		    umode_t mode)
1878{
1879	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1880	struct nfs_open_context *ctx;
1881	struct dentry *res;
1882	struct iattr attr = { .ia_valid = ATTR_OPEN };
1883	struct inode *inode;
1884	unsigned int lookup_flags = 0;
1885	bool switched = false;
1886	int created = 0;
1887	int err;
1888
1889	/* Expect a negative dentry */
1890	BUG_ON(d_inode(dentry));
1891
1892	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1893			dir->i_sb->s_id, dir->i_ino, dentry);
1894
1895	err = nfs_check_flags(open_flags);
1896	if (err)
1897		return err;
1898
1899	/* NFS only supports OPEN on regular files */
1900	if ((open_flags & O_DIRECTORY)) {
1901		if (!d_in_lookup(dentry)) {
1902			/*
1903			 * Hashed negative dentry with O_DIRECTORY: dentry was
1904			 * revalidated and is fine, no need to perform lookup
1905			 * again
1906			 */
1907			return -ENOENT;
1908		}
1909		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1910		goto no_open;
1911	}
1912
1913	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1914		return -ENAMETOOLONG;
1915
1916	if (open_flags & O_CREAT) {
1917		struct nfs_server *server = NFS_SERVER(dir);
1918
1919		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1920			mode &= ~current_umask();
1921
1922		attr.ia_valid |= ATTR_MODE;
1923		attr.ia_mode = mode;
1924	}
1925	if (open_flags & O_TRUNC) {
1926		attr.ia_valid |= ATTR_SIZE;
1927		attr.ia_size = 0;
1928	}
1929
1930	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1931		d_drop(dentry);
1932		switched = true;
1933		dentry = d_alloc_parallel(dentry->d_parent,
1934					  &dentry->d_name, &wq);
1935		if (IS_ERR(dentry))
1936			return PTR_ERR(dentry);
1937		if (unlikely(!d_in_lookup(dentry)))
1938			return finish_no_open(file, dentry);
1939	}
1940
1941	ctx = create_nfs_open_context(dentry, open_flags, file);
1942	err = PTR_ERR(ctx);
1943	if (IS_ERR(ctx))
1944		goto out;
1945
1946	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1947	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1948	if (created)
1949		file->f_mode |= FMODE_CREATED;
1950	if (IS_ERR(inode)) {
1951		err = PTR_ERR(inode);
1952		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1953		put_nfs_open_context(ctx);
1954		d_drop(dentry);
1955		switch (err) {
1956		case -ENOENT:
1957			d_splice_alias(NULL, dentry);
1958			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1959			break;
1960		case -EISDIR:
1961		case -ENOTDIR:
1962			goto no_open;
1963		case -ELOOP:
1964			if (!(open_flags & O_NOFOLLOW))
1965				goto no_open;
1966			break;
1967			/* case -EINVAL: */
1968		default:
1969			break;
1970		}
1971		goto out;
1972	}
1973
1974	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1975	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1976	put_nfs_open_context(ctx);
1977out:
1978	if (unlikely(switched)) {
1979		d_lookup_done(dentry);
1980		dput(dentry);
1981	}
1982	return err;
1983
1984no_open:
1985	res = nfs_lookup(dir, dentry, lookup_flags);
1986	if (switched) {
1987		d_lookup_done(dentry);
1988		if (!res)
1989			res = dentry;
1990		else
1991			dput(dentry);
1992	}
1993	if (IS_ERR(res))
1994		return PTR_ERR(res);
1995	return finish_no_open(file, res);
1996}
1997EXPORT_SYMBOL_GPL(nfs_atomic_open);
1998
1999static int
2000nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2001			  unsigned int flags)
2002{
2003	struct inode *inode;
2004
2005	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2006		goto full_reval;
2007	if (d_mountpoint(dentry))
2008		goto full_reval;
2009
2010	inode = d_inode(dentry);
2011
2012	/* We can't create new files in nfs_open_revalidate(), so we
2013	 * optimize away revalidation of negative dentries.
2014	 */
2015	if (inode == NULL)
2016		goto full_reval;
2017
2018	if (nfs_verifier_is_delegated(dentry))
2019		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2020
2021	/* NFS only supports OPEN on regular files */
2022	if (!S_ISREG(inode->i_mode))
2023		goto full_reval;
2024
2025	/* We cannot do exclusive creation on a positive dentry */
2026	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2027		goto reval_dentry;
2028
2029	/* Check if the directory changed */
2030	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2031		goto reval_dentry;
2032
2033	/* Let f_op->open() actually open (and revalidate) the file */
2034	return 1;
2035reval_dentry:
2036	if (flags & LOOKUP_RCU)
2037		return -ECHILD;
2038	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2039
2040full_reval:
2041	return nfs_do_lookup_revalidate(dir, dentry, flags);
2042}
2043
2044static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2045{
2046	return __nfs_lookup_revalidate(dentry, flags,
2047			nfs4_do_lookup_revalidate);
2048}
2049
2050#endif /* CONFIG_NFSV4 */
2051
2052struct dentry *
2053nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2054				struct nfs_fattr *fattr,
2055				struct nfs4_label *label)
2056{
2057	struct dentry *parent = dget_parent(dentry);
2058	struct inode *dir = d_inode(parent);
2059	struct inode *inode;
2060	struct dentry *d;
2061	int error;
2062
2063	d_drop(dentry);
2064
2065	if (fhandle->size == 0) {
2066		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
2067		if (error)
2068			goto out_error;
2069	}
2070	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2071	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2072		struct nfs_server *server = NFS_SB(dentry->d_sb);
2073		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2074				fattr, NULL, NULL);
2075		if (error < 0)
2076			goto out_error;
2077	}
2078	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
2079	d = d_splice_alias(inode, dentry);
2080out:
2081	dput(parent);
2082	return d;
2083out_error:
 
2084	d = ERR_PTR(error);
2085	goto out;
2086}
2087EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2088
2089/*
2090 * Code common to create, mkdir, and mknod.
2091 */
2092int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2093				struct nfs_fattr *fattr,
2094				struct nfs4_label *label)
2095{
2096	struct dentry *d;
2097
2098	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
2099	if (IS_ERR(d))
2100		return PTR_ERR(d);
2101
2102	/* Callers don't care */
2103	dput(d);
2104	return 0;
2105}
2106EXPORT_SYMBOL_GPL(nfs_instantiate);
2107
2108/*
2109 * Following a failed create operation, we drop the dentry rather
2110 * than retain a negative dentry. This avoids a problem in the event
2111 * that the operation succeeded on the server, but an error in the
2112 * reply path made it appear to have failed.
2113 */
2114int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2115	       struct dentry *dentry, umode_t mode, bool excl)
2116{
2117	struct iattr attr;
2118	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2119	int error;
2120
2121	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2122			dir->i_sb->s_id, dir->i_ino, dentry);
2123
2124	attr.ia_mode = mode;
2125	attr.ia_valid = ATTR_MODE;
2126
2127	trace_nfs_create_enter(dir, dentry, open_flags);
2128	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2129	trace_nfs_create_exit(dir, dentry, open_flags, error);
2130	if (error != 0)
2131		goto out_err;
2132	return 0;
2133out_err:
2134	d_drop(dentry);
2135	return error;
2136}
2137EXPORT_SYMBOL_GPL(nfs_create);
2138
2139/*
2140 * See comments for nfs_proc_create regarding failed operations.
2141 */
2142int
2143nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2144	  struct dentry *dentry, umode_t mode, dev_t rdev)
2145{
2146	struct iattr attr;
2147	int status;
2148
2149	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2150			dir->i_sb->s_id, dir->i_ino, dentry);
2151
2152	attr.ia_mode = mode;
2153	attr.ia_valid = ATTR_MODE;
2154
2155	trace_nfs_mknod_enter(dir, dentry);
2156	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2157	trace_nfs_mknod_exit(dir, dentry, status);
2158	if (status != 0)
2159		goto out_err;
2160	return 0;
2161out_err:
2162	d_drop(dentry);
2163	return status;
2164}
2165EXPORT_SYMBOL_GPL(nfs_mknod);
2166
2167/*
2168 * See comments for nfs_proc_create regarding failed operations.
2169 */
2170int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2171	      struct dentry *dentry, umode_t mode)
2172{
2173	struct iattr attr;
2174	int error;
2175
2176	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2177			dir->i_sb->s_id, dir->i_ino, dentry);
2178
2179	attr.ia_valid = ATTR_MODE;
2180	attr.ia_mode = mode | S_IFDIR;
2181
2182	trace_nfs_mkdir_enter(dir, dentry);
2183	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2184	trace_nfs_mkdir_exit(dir, dentry, error);
2185	if (error != 0)
2186		goto out_err;
2187	return 0;
2188out_err:
2189	d_drop(dentry);
2190	return error;
2191}
2192EXPORT_SYMBOL_GPL(nfs_mkdir);
2193
2194static void nfs_dentry_handle_enoent(struct dentry *dentry)
2195{
2196	if (simple_positive(dentry))
2197		d_delete(dentry);
2198}
2199
2200int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2201{
2202	int error;
2203
2204	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2205			dir->i_sb->s_id, dir->i_ino, dentry);
2206
2207	trace_nfs_rmdir_enter(dir, dentry);
2208	if (d_really_is_positive(dentry)) {
2209		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2210		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2211		/* Ensure the VFS deletes this inode */
2212		switch (error) {
2213		case 0:
2214			clear_nlink(d_inode(dentry));
2215			break;
2216		case -ENOENT:
2217			nfs_dentry_handle_enoent(dentry);
2218		}
2219		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2220	} else
2221		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2222	trace_nfs_rmdir_exit(dir, dentry, error);
2223
2224	return error;
2225}
2226EXPORT_SYMBOL_GPL(nfs_rmdir);
2227
2228/*
2229 * Remove a file after making sure there are no pending writes,
2230 * and after checking that the file has only one user. 
2231 *
2232 * We invalidate the attribute cache and free the inode prior to the operation
2233 * to avoid possible races if the server reuses the inode.
2234 */
2235static int nfs_safe_remove(struct dentry *dentry)
2236{
2237	struct inode *dir = d_inode(dentry->d_parent);
2238	struct inode *inode = d_inode(dentry);
2239	int error = -EBUSY;
2240		
2241	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2242
2243	/* If the dentry was sillyrenamed, we simply call d_delete() */
2244	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2245		error = 0;
2246		goto out;
2247	}
2248
2249	trace_nfs_remove_enter(dir, dentry);
2250	if (inode != NULL) {
2251		error = NFS_PROTO(dir)->remove(dir, dentry);
2252		if (error == 0)
2253			nfs_drop_nlink(inode);
2254	} else
2255		error = NFS_PROTO(dir)->remove(dir, dentry);
2256	if (error == -ENOENT)
2257		nfs_dentry_handle_enoent(dentry);
2258	trace_nfs_remove_exit(dir, dentry, error);
2259out:
2260	return error;
2261}
2262
2263/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2264 *  belongs to an active ".nfs..." file and we return -EBUSY.
2265 *
2266 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2267 */
2268int nfs_unlink(struct inode *dir, struct dentry *dentry)
2269{
2270	int error;
2271	int need_rehash = 0;
2272
2273	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2274		dir->i_ino, dentry);
2275
2276	trace_nfs_unlink_enter(dir, dentry);
2277	spin_lock(&dentry->d_lock);
2278	if (d_count(dentry) > 1) {
2279		spin_unlock(&dentry->d_lock);
2280		/* Start asynchronous writeout of the inode */
2281		write_inode_now(d_inode(dentry), 0);
2282		error = nfs_sillyrename(dir, dentry);
2283		goto out;
2284	}
2285	if (!d_unhashed(dentry)) {
2286		__d_drop(dentry);
2287		need_rehash = 1;
2288	}
2289	spin_unlock(&dentry->d_lock);
2290	error = nfs_safe_remove(dentry);
2291	if (!error || error == -ENOENT) {
2292		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2293	} else if (need_rehash)
2294		d_rehash(dentry);
2295out:
2296	trace_nfs_unlink_exit(dir, dentry, error);
2297	return error;
2298}
2299EXPORT_SYMBOL_GPL(nfs_unlink);
2300
2301/*
2302 * To create a symbolic link, most file systems instantiate a new inode,
2303 * add a page to it containing the path, then write it out to the disk
2304 * using prepare_write/commit_write.
2305 *
2306 * Unfortunately the NFS client can't create the in-core inode first
2307 * because it needs a file handle to create an in-core inode (see
2308 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2309 * symlink request has completed on the server.
2310 *
2311 * So instead we allocate a raw page, copy the symname into it, then do
2312 * the SYMLINK request with the page as the buffer.  If it succeeds, we
2313 * now have a new file handle and can instantiate an in-core NFS inode
2314 * and move the raw page into its mapping.
2315 */
2316int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2317		struct dentry *dentry, const char *symname)
2318{
2319	struct page *page;
2320	char *kaddr;
2321	struct iattr attr;
2322	unsigned int pathlen = strlen(symname);
2323	int error;
2324
2325	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2326		dir->i_ino, dentry, symname);
2327
2328	if (pathlen > PAGE_SIZE)
2329		return -ENAMETOOLONG;
2330
2331	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2332	attr.ia_valid = ATTR_MODE;
2333
2334	page = alloc_page(GFP_USER);
2335	if (!page)
2336		return -ENOMEM;
2337
2338	kaddr = page_address(page);
2339	memcpy(kaddr, symname, pathlen);
2340	if (pathlen < PAGE_SIZE)
2341		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2342
2343	trace_nfs_symlink_enter(dir, dentry);
2344	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2345	trace_nfs_symlink_exit(dir, dentry, error);
2346	if (error != 0) {
2347		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2348			dir->i_sb->s_id, dir->i_ino,
2349			dentry, symname, error);
2350		d_drop(dentry);
2351		__free_page(page);
2352		return error;
2353	}
2354
2355	/*
2356	 * No big deal if we can't add this page to the page cache here.
2357	 * READLINK will get the missing page from the server if needed.
2358	 */
2359	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2360							GFP_KERNEL)) {
2361		SetPageUptodate(page);
2362		unlock_page(page);
2363		/*
2364		 * add_to_page_cache_lru() grabs an extra page refcount.
2365		 * Drop it here to avoid leaking this page later.
2366		 */
2367		put_page(page);
2368	} else
2369		__free_page(page);
2370
2371	return 0;
2372}
2373EXPORT_SYMBOL_GPL(nfs_symlink);
2374
2375int
2376nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2377{
2378	struct inode *inode = d_inode(old_dentry);
2379	int error;
2380
2381	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2382		old_dentry, dentry);
2383
2384	trace_nfs_link_enter(inode, dir, dentry);
2385	d_drop(dentry);
2386	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2387	if (error == 0) {
2388		ihold(inode);
2389		d_add(dentry, inode);
2390	}
2391	trace_nfs_link_exit(inode, dir, dentry, error);
2392	return error;
2393}
2394EXPORT_SYMBOL_GPL(nfs_link);
2395
2396/*
2397 * RENAME
2398 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2399 * different file handle for the same inode after a rename (e.g. when
2400 * moving to a different directory). A fail-safe method to do so would
2401 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2402 * rename the old file using the sillyrename stuff. This way, the original
2403 * file in old_dir will go away when the last process iput()s the inode.
2404 *
2405 * FIXED.
2406 * 
2407 * It actually works quite well. One needs to have the possibility for
2408 * at least one ".nfs..." file in each directory the file ever gets
2409 * moved or linked to which happens automagically with the new
2410 * implementation that only depends on the dcache stuff instead of
2411 * using the inode layer
2412 *
2413 * Unfortunately, things are a little more complicated than indicated
2414 * above. For a cross-directory move, we want to make sure we can get
2415 * rid of the old inode after the operation.  This means there must be
2416 * no pending writes (if it's a file), and the use count must be 1.
2417 * If these conditions are met, we can drop the dentries before doing
2418 * the rename.
2419 */
2420int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2421	       struct dentry *old_dentry, struct inode *new_dir,
2422	       struct dentry *new_dentry, unsigned int flags)
2423{
2424	struct inode *old_inode = d_inode(old_dentry);
2425	struct inode *new_inode = d_inode(new_dentry);
2426	struct dentry *dentry = NULL, *rehash = NULL;
2427	struct rpc_task *task;
2428	int error = -EBUSY;
2429
2430	if (flags)
2431		return -EINVAL;
2432
2433	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2434		 old_dentry, new_dentry,
2435		 d_count(new_dentry));
2436
2437	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2438	/*
2439	 * For non-directories, check whether the target is busy and if so,
2440	 * make a copy of the dentry and then do a silly-rename. If the
2441	 * silly-rename succeeds, the copied dentry is hashed and becomes
2442	 * the new target.
2443	 */
2444	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2445		/*
2446		 * To prevent any new references to the target during the
2447		 * rename, we unhash the dentry in advance.
2448		 */
2449		if (!d_unhashed(new_dentry)) {
2450			d_drop(new_dentry);
2451			rehash = new_dentry;
2452		}
2453
2454		if (d_count(new_dentry) > 2) {
2455			int err;
2456
2457			/* copy the target dentry's name */
2458			dentry = d_alloc(new_dentry->d_parent,
2459					 &new_dentry->d_name);
2460			if (!dentry)
2461				goto out;
2462
2463			/* silly-rename the existing target ... */
2464			err = nfs_sillyrename(new_dir, new_dentry);
2465			if (err)
2466				goto out;
2467
2468			new_dentry = dentry;
2469			rehash = NULL;
2470			new_inode = NULL;
2471		}
2472	}
2473
2474	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2475	if (IS_ERR(task)) {
2476		error = PTR_ERR(task);
2477		goto out;
2478	}
2479
2480	error = rpc_wait_for_completion_task(task);
2481	if (error != 0) {
2482		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2483		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2484		smp_wmb();
2485	} else
2486		error = task->tk_status;
2487	rpc_put_task(task);
2488	/* Ensure the inode attributes are revalidated */
2489	if (error == 0) {
2490		spin_lock(&old_inode->i_lock);
2491		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2492		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2493							 NFS_INO_INVALID_CTIME |
2494							 NFS_INO_REVAL_FORCED);
2495		spin_unlock(&old_inode->i_lock);
2496	}
2497out:
2498	if (rehash)
2499		d_rehash(rehash);
2500	trace_nfs_rename_exit(old_dir, old_dentry,
2501			new_dir, new_dentry, error);
2502	if (!error) {
2503		if (new_inode != NULL)
2504			nfs_drop_nlink(new_inode);
2505		/*
2506		 * The d_move() should be here instead of in an async RPC completion
2507		 * handler because we need the proper locks to move the dentry.  If
2508		 * we're interrupted by a signal, the async RPC completion handler
2509		 * should mark the directories for revalidation.
2510		 */
2511		d_move(old_dentry, new_dentry);
2512		nfs_set_verifier(old_dentry,
2513					nfs_save_change_attribute(new_dir));
2514	} else if (error == -ENOENT)
2515		nfs_dentry_handle_enoent(old_dentry);
2516
2517	/* new dentry created? */
2518	if (dentry)
2519		dput(dentry);
2520	return error;
2521}
2522EXPORT_SYMBOL_GPL(nfs_rename);
2523
2524static DEFINE_SPINLOCK(nfs_access_lru_lock);
2525static LIST_HEAD(nfs_access_lru_list);
2526static atomic_long_t nfs_access_nr_entries;
2527
2528static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2529module_param(nfs_access_max_cachesize, ulong, 0644);
2530MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2531
2532static void nfs_access_free_entry(struct nfs_access_entry *entry)
2533{
2534	put_cred(entry->cred);
2535	kfree_rcu(entry, rcu_head);
2536	smp_mb__before_atomic();
2537	atomic_long_dec(&nfs_access_nr_entries);
2538	smp_mb__after_atomic();
2539}
2540
2541static void nfs_access_free_list(struct list_head *head)
2542{
2543	struct nfs_access_entry *cache;
2544
2545	while (!list_empty(head)) {
2546		cache = list_entry(head->next, struct nfs_access_entry, lru);
2547		list_del(&cache->lru);
2548		nfs_access_free_entry(cache);
2549	}
2550}
2551
2552static unsigned long
2553nfs_do_access_cache_scan(unsigned int nr_to_scan)
2554{
2555	LIST_HEAD(head);
2556	struct nfs_inode *nfsi, *next;
2557	struct nfs_access_entry *cache;
2558	long freed = 0;
2559
2560	spin_lock(&nfs_access_lru_lock);
2561	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2562		struct inode *inode;
2563
2564		if (nr_to_scan-- == 0)
2565			break;
2566		inode = &nfsi->vfs_inode;
2567		spin_lock(&inode->i_lock);
2568		if (list_empty(&nfsi->access_cache_entry_lru))
2569			goto remove_lru_entry;
2570		cache = list_entry(nfsi->access_cache_entry_lru.next,
2571				struct nfs_access_entry, lru);
2572		list_move(&cache->lru, &head);
2573		rb_erase(&cache->rb_node, &nfsi->access_cache);
2574		freed++;
2575		if (!list_empty(&nfsi->access_cache_entry_lru))
2576			list_move_tail(&nfsi->access_cache_inode_lru,
2577					&nfs_access_lru_list);
2578		else {
2579remove_lru_entry:
2580			list_del_init(&nfsi->access_cache_inode_lru);
2581			smp_mb__before_atomic();
2582			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2583			smp_mb__after_atomic();
2584		}
2585		spin_unlock(&inode->i_lock);
2586	}
2587	spin_unlock(&nfs_access_lru_lock);
2588	nfs_access_free_list(&head);
2589	return freed;
2590}
2591
2592unsigned long
2593nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2594{
2595	int nr_to_scan = sc->nr_to_scan;
2596	gfp_t gfp_mask = sc->gfp_mask;
2597
2598	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2599		return SHRINK_STOP;
2600	return nfs_do_access_cache_scan(nr_to_scan);
2601}
2602
2603
2604unsigned long
2605nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2606{
2607	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2608}
2609
2610static void
2611nfs_access_cache_enforce_limit(void)
2612{
2613	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2614	unsigned long diff;
2615	unsigned int nr_to_scan;
2616
2617	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2618		return;
2619	nr_to_scan = 100;
2620	diff = nr_entries - nfs_access_max_cachesize;
2621	if (diff < nr_to_scan)
2622		nr_to_scan = diff;
2623	nfs_do_access_cache_scan(nr_to_scan);
2624}
2625
2626static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2627{
2628	struct rb_root *root_node = &nfsi->access_cache;
2629	struct rb_node *n;
2630	struct nfs_access_entry *entry;
2631
2632	/* Unhook entries from the cache */
2633	while ((n = rb_first(root_node)) != NULL) {
2634		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2635		rb_erase(n, root_node);
2636		list_move(&entry->lru, head);
2637	}
2638	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2639}
2640
2641void nfs_access_zap_cache(struct inode *inode)
2642{
2643	LIST_HEAD(head);
2644
2645	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2646		return;
2647	/* Remove from global LRU init */
2648	spin_lock(&nfs_access_lru_lock);
2649	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2650		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2651
2652	spin_lock(&inode->i_lock);
2653	__nfs_access_zap_cache(NFS_I(inode), &head);
2654	spin_unlock(&inode->i_lock);
2655	spin_unlock(&nfs_access_lru_lock);
2656	nfs_access_free_list(&head);
2657}
2658EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2659
2660static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2661{
2662	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2663
2664	while (n != NULL) {
2665		struct nfs_access_entry *entry =
2666			rb_entry(n, struct nfs_access_entry, rb_node);
2667		int cmp = cred_fscmp(cred, entry->cred);
2668
2669		if (cmp < 0)
2670			n = n->rb_left;
2671		else if (cmp > 0)
2672			n = n->rb_right;
2673		else
2674			return entry;
2675	}
2676	return NULL;
2677}
2678
2679static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2680{
2681	struct nfs_inode *nfsi = NFS_I(inode);
2682	struct nfs_access_entry *cache;
2683	bool retry = true;
2684	int err;
2685
2686	spin_lock(&inode->i_lock);
2687	for(;;) {
2688		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2689			goto out_zap;
2690		cache = nfs_access_search_rbtree(inode, cred);
2691		err = -ENOENT;
2692		if (cache == NULL)
2693			goto out;
2694		/* Found an entry, is our attribute cache valid? */
2695		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2696			break;
2697		if (!retry)
2698			break;
2699		err = -ECHILD;
2700		if (!may_block)
2701			goto out;
2702		spin_unlock(&inode->i_lock);
2703		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2704		if (err)
2705			return err;
2706		spin_lock(&inode->i_lock);
2707		retry = false;
2708	}
2709	res->cred = cache->cred;
2710	res->mask = cache->mask;
2711	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2712	err = 0;
2713out:
2714	spin_unlock(&inode->i_lock);
2715	return err;
2716out_zap:
2717	spin_unlock(&inode->i_lock);
2718	nfs_access_zap_cache(inode);
2719	return -ENOENT;
2720}
2721
2722static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2723{
2724	/* Only check the most recently returned cache entry,
2725	 * but do it without locking.
2726	 */
2727	struct nfs_inode *nfsi = NFS_I(inode);
2728	struct nfs_access_entry *cache;
2729	int err = -ECHILD;
2730	struct list_head *lh;
2731
2732	rcu_read_lock();
2733	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2734		goto out;
2735	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2736	cache = list_entry(lh, struct nfs_access_entry, lru);
2737	if (lh == &nfsi->access_cache_entry_lru ||
2738	    cred_fscmp(cred, cache->cred) != 0)
2739		cache = NULL;
2740	if (cache == NULL)
2741		goto out;
2742	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2743		goto out;
2744	res->cred = cache->cred;
2745	res->mask = cache->mask;
2746	err = 0;
2747out:
2748	rcu_read_unlock();
2749	return err;
2750}
2751
2752int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2753nfs_access_entry *res, bool may_block)
2754{
2755	int status;
2756
2757	status = nfs_access_get_cached_rcu(inode, cred, res);
2758	if (status != 0)
2759		status = nfs_access_get_cached_locked(inode, cred, res,
2760		    may_block);
2761
2762	return status;
2763}
2764EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2765
2766static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2767{
2768	struct nfs_inode *nfsi = NFS_I(inode);
2769	struct rb_root *root_node = &nfsi->access_cache;
2770	struct rb_node **p = &root_node->rb_node;
2771	struct rb_node *parent = NULL;
2772	struct nfs_access_entry *entry;
2773	int cmp;
2774
2775	spin_lock(&inode->i_lock);
2776	while (*p != NULL) {
2777		parent = *p;
2778		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2779		cmp = cred_fscmp(set->cred, entry->cred);
2780
2781		if (cmp < 0)
2782			p = &parent->rb_left;
2783		else if (cmp > 0)
2784			p = &parent->rb_right;
2785		else
2786			goto found;
2787	}
2788	rb_link_node(&set->rb_node, parent, p);
2789	rb_insert_color(&set->rb_node, root_node);
2790	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2791	spin_unlock(&inode->i_lock);
2792	return;
2793found:
2794	rb_replace_node(parent, &set->rb_node, root_node);
2795	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2796	list_del(&entry->lru);
2797	spin_unlock(&inode->i_lock);
2798	nfs_access_free_entry(entry);
2799}
2800
2801void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2802{
2803	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2804	if (cache == NULL)
2805		return;
2806	RB_CLEAR_NODE(&cache->rb_node);
2807	cache->cred = get_cred(set->cred);
2808	cache->mask = set->mask;
2809
2810	/* The above field assignments must be visible
2811	 * before this item appears on the lru.  We cannot easily
2812	 * use rcu_assign_pointer, so just force the memory barrier.
2813	 */
2814	smp_wmb();
2815	nfs_access_add_rbtree(inode, cache);
2816
2817	/* Update accounting */
2818	smp_mb__before_atomic();
2819	atomic_long_inc(&nfs_access_nr_entries);
2820	smp_mb__after_atomic();
2821
2822	/* Add inode to global LRU list */
2823	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2824		spin_lock(&nfs_access_lru_lock);
2825		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2826			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2827					&nfs_access_lru_list);
2828		spin_unlock(&nfs_access_lru_lock);
2829	}
2830	nfs_access_cache_enforce_limit();
2831}
2832EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2833
2834#define NFS_MAY_READ (NFS_ACCESS_READ)
2835#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2836		NFS_ACCESS_EXTEND | \
2837		NFS_ACCESS_DELETE)
2838#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2839		NFS_ACCESS_EXTEND)
2840#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2841#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2842#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2843static int
2844nfs_access_calc_mask(u32 access_result, umode_t umode)
2845{
2846	int mask = 0;
2847
2848	if (access_result & NFS_MAY_READ)
2849		mask |= MAY_READ;
2850	if (S_ISDIR(umode)) {
2851		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2852			mask |= MAY_WRITE;
2853		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2854			mask |= MAY_EXEC;
2855	} else if (S_ISREG(umode)) {
2856		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2857			mask |= MAY_WRITE;
2858		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2859			mask |= MAY_EXEC;
2860	} else if (access_result & NFS_MAY_WRITE)
2861			mask |= MAY_WRITE;
2862	return mask;
2863}
2864
2865void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2866{
2867	entry->mask = access_result;
2868}
2869EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2870
2871static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2872{
2873	struct nfs_access_entry cache;
2874	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2875	int cache_mask = -1;
2876	int status;
2877
2878	trace_nfs_access_enter(inode);
2879
2880	status = nfs_access_get_cached(inode, cred, &cache, may_block);
2881	if (status == 0)
2882		goto out_cached;
2883
2884	status = -ECHILD;
2885	if (!may_block)
2886		goto out;
2887
2888	/*
2889	 * Determine which access bits we want to ask for...
2890	 */
2891	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2892	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2893		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2894		    NFS_ACCESS_XALIST;
2895	}
2896	if (S_ISDIR(inode->i_mode))
2897		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2898	else
2899		cache.mask |= NFS_ACCESS_EXECUTE;
2900	cache.cred = cred;
2901	status = NFS_PROTO(inode)->access(inode, &cache);
2902	if (status != 0) {
2903		if (status == -ESTALE) {
2904			if (!S_ISDIR(inode->i_mode))
2905				nfs_set_inode_stale(inode);
2906			else
2907				nfs_zap_caches(inode);
2908		}
2909		goto out;
2910	}
2911	nfs_access_add_cache(inode, &cache);
2912out_cached:
2913	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2914	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2915		status = -EACCES;
2916out:
2917	trace_nfs_access_exit(inode, mask, cache_mask, status);
2918	return status;
2919}
2920
2921static int nfs_open_permission_mask(int openflags)
2922{
2923	int mask = 0;
2924
2925	if (openflags & __FMODE_EXEC) {
2926		/* ONLY check exec rights */
2927		mask = MAY_EXEC;
2928	} else {
2929		if ((openflags & O_ACCMODE) != O_WRONLY)
2930			mask |= MAY_READ;
2931		if ((openflags & O_ACCMODE) != O_RDONLY)
2932			mask |= MAY_WRITE;
2933	}
2934
2935	return mask;
2936}
2937
2938int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2939{
2940	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2941}
2942EXPORT_SYMBOL_GPL(nfs_may_open);
2943
2944static int nfs_execute_ok(struct inode *inode, int mask)
2945{
2946	struct nfs_server *server = NFS_SERVER(inode);
2947	int ret = 0;
2948
2949	if (S_ISDIR(inode->i_mode))
2950		return 0;
2951	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
2952		if (mask & MAY_NOT_BLOCK)
2953			return -ECHILD;
2954		ret = __nfs_revalidate_inode(server, inode);
2955	}
2956	if (ret == 0 && !execute_ok(inode))
2957		ret = -EACCES;
2958	return ret;
2959}
2960
2961int nfs_permission(struct user_namespace *mnt_userns,
2962		   struct inode *inode,
2963		   int mask)
2964{
2965	const struct cred *cred = current_cred();
2966	int res = 0;
2967
2968	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2969
2970	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2971		goto out;
2972	/* Is this sys_access() ? */
2973	if (mask & (MAY_ACCESS | MAY_CHDIR))
2974		goto force_lookup;
2975
2976	switch (inode->i_mode & S_IFMT) {
2977		case S_IFLNK:
2978			goto out;
2979		case S_IFREG:
2980			if ((mask & MAY_OPEN) &&
2981			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2982				return 0;
2983			break;
2984		case S_IFDIR:
2985			/*
2986			 * Optimize away all write operations, since the server
2987			 * will check permissions when we perform the op.
2988			 */
2989			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2990				goto out;
2991	}
2992
2993force_lookup:
2994	if (!NFS_PROTO(inode)->access)
2995		goto out_notsup;
2996
2997	res = nfs_do_access(inode, cred, mask);
2998out:
2999	if (!res && (mask & MAY_EXEC))
3000		res = nfs_execute_ok(inode, mask);
3001
3002	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3003		inode->i_sb->s_id, inode->i_ino, mask, res);
3004	return res;
3005out_notsup:
3006	if (mask & MAY_NOT_BLOCK)
3007		return -ECHILD;
3008
3009	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3010						  NFS_INO_INVALID_OTHER);
3011	if (res == 0)
3012		res = generic_permission(&init_user_ns, inode, mask);
3013	goto out;
3014}
3015EXPORT_SYMBOL_GPL(nfs_permission);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/nfs/dir.c
   4 *
   5 *  Copyright (C) 1992  Rick Sladkey
   6 *
   7 *  nfs directory handling functions
   8 *
   9 * 10 Apr 1996	Added silly rename for unlink	--okir
  10 * 28 Sep 1996	Improved directory cache --okir
  11 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  12 *              Re-implemented silly rename for unlink, newly implemented
  13 *              silly rename for nfs_rename() following the suggestions
  14 *              of Olaf Kirch (okir) found in this file.
  15 *              Following Linus comments on my original hack, this version
  16 *              depends only on the dcache stuff and doesn't touch the inode
  17 *              layer (iput() and friends).
  18 *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
  19 */
  20
  21#include <linux/module.h>
  22#include <linux/time.h>
  23#include <linux/errno.h>
  24#include <linux/stat.h>
  25#include <linux/fcntl.h>
  26#include <linux/string.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/mm.h>
  30#include <linux/sunrpc/clnt.h>
  31#include <linux/nfs_fs.h>
  32#include <linux/nfs_mount.h>
  33#include <linux/pagemap.h>
  34#include <linux/pagevec.h>
  35#include <linux/namei.h>
  36#include <linux/mount.h>
  37#include <linux/swap.h>
  38#include <linux/sched.h>
  39#include <linux/kmemleak.h>
  40#include <linux/xattr.h>
  41
  42#include "delegation.h"
  43#include "iostat.h"
  44#include "internal.h"
  45#include "fscache.h"
  46
  47#include "nfstrace.h"
  48
  49/* #define NFS_DEBUG_VERBOSE 1 */
  50
  51static int nfs_opendir(struct inode *, struct file *);
  52static int nfs_closedir(struct inode *, struct file *);
  53static int nfs_readdir(struct file *, struct dir_context *);
  54static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  55static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  56static void nfs_readdir_clear_array(struct page*);
  57
  58const struct file_operations nfs_dir_operations = {
  59	.llseek		= nfs_llseek_dir,
  60	.read		= generic_read_dir,
  61	.iterate_shared	= nfs_readdir,
  62	.open		= nfs_opendir,
  63	.release	= nfs_closedir,
  64	.fsync		= nfs_fsync_dir,
  65};
  66
  67const struct address_space_operations nfs_dir_aops = {
  68	.freepage = nfs_readdir_clear_array,
  69};
  70
  71static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
  72{
  73	struct nfs_inode *nfsi = NFS_I(dir);
  74	struct nfs_open_dir_context *ctx;
  75	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
  76	if (ctx != NULL) {
  77		ctx->duped = 0;
  78		ctx->attr_gencount = nfsi->attr_gencount;
  79		ctx->dir_cookie = 0;
  80		ctx->dup_cookie = 0;
  81		ctx->cred = get_cred(cred);
  82		spin_lock(&dir->i_lock);
  83		if (list_empty(&nfsi->open_files) &&
  84		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
  85			nfsi->cache_validity |= NFS_INO_INVALID_DATA |
  86				NFS_INO_REVAL_FORCED;
 
  87		list_add(&ctx->list, &nfsi->open_files);
  88		spin_unlock(&dir->i_lock);
  89		return ctx;
  90	}
  91	return  ERR_PTR(-ENOMEM);
  92}
  93
  94static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
  95{
  96	spin_lock(&dir->i_lock);
  97	list_del(&ctx->list);
  98	spin_unlock(&dir->i_lock);
  99	put_cred(ctx->cred);
 100	kfree(ctx);
 101}
 102
 103/*
 104 * Open file
 105 */
 106static int
 107nfs_opendir(struct inode *inode, struct file *filp)
 108{
 109	int res = 0;
 110	struct nfs_open_dir_context *ctx;
 111
 112	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
 113
 114	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 115
 116	ctx = alloc_nfs_open_dir_context(inode, current_cred());
 117	if (IS_ERR(ctx)) {
 118		res = PTR_ERR(ctx);
 119		goto out;
 120	}
 121	filp->private_data = ctx;
 122out:
 123	return res;
 124}
 125
 126static int
 127nfs_closedir(struct inode *inode, struct file *filp)
 128{
 129	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
 130	return 0;
 131}
 132
 133struct nfs_cache_array_entry {
 134	u64 cookie;
 135	u64 ino;
 136	struct qstr string;
 
 137	unsigned char d_type;
 138};
 139
 140struct nfs_cache_array {
 141	int size;
 142	int eof_index;
 143	u64 last_cookie;
 
 
 
 
 144	struct nfs_cache_array_entry array[];
 145};
 146
 147typedef struct {
 148	struct file	*file;
 149	struct page	*page;
 150	struct dir_context *ctx;
 151	unsigned long	page_index;
 152	u64		*dir_cookie;
 153	u64		last_cookie;
 
 154	loff_t		current_index;
 155	loff_t		prev_index;
 156
 
 157	unsigned long	dir_verifier;
 158	unsigned long	timestamp;
 159	unsigned long	gencount;
 
 160	unsigned int	cache_entry_index;
 
 161	bool plus;
 162	bool eof;
 163} nfs_readdir_descriptor_t;
 164
 165static
 166void nfs_readdir_init_array(struct page *page)
 
 
 
 
 167{
 168	struct nfs_cache_array *array;
 169
 170	array = kmap_atomic(page);
 171	memset(array, 0, sizeof(struct nfs_cache_array));
 172	array->eof_index = -1;
 
 173	kunmap_atomic(array);
 174}
 175
 176/*
 177 * we are freeing strings created by nfs_add_to_readdir_array()
 178 */
 179static
 180void nfs_readdir_clear_array(struct page *page)
 181{
 182	struct nfs_cache_array *array;
 183	int i;
 184
 185	array = kmap_atomic(page);
 186	for (i = 0; i < array->size; i++)
 187		kfree(array->array[i].string.name);
 188	array->size = 0;
 189	kunmap_atomic(array);
 190}
 191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 192/*
 193 * the caller is responsible for freeing qstr.name
 194 * when called by nfs_readdir_add_to_array, the strings will be freed in
 195 * nfs_clear_readdir_array()
 196 */
 197static
 198int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
 199{
 200	string->len = len;
 201	string->name = kmemdup_nul(name, len, GFP_KERNEL);
 202	if (string->name == NULL)
 203		return -ENOMEM;
 204	/*
 205	 * Avoid a kmemleak false positive. The pointer to the name is stored
 206	 * in a page cache page which kmemleak does not scan.
 207	 */
 208	kmemleak_not_leak(string->name);
 209	string->hash = full_name_hash(NULL, name, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 210	return 0;
 211}
 212
 213static
 214int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
 215{
 216	struct nfs_cache_array *array = kmap(page);
 217	struct nfs_cache_array_entry *cache_entry;
 
 218	int ret;
 219
 220	cache_entry = &array->array[array->size];
 
 
 221
 222	/* Check that this entry lies within the page bounds */
 223	ret = -ENOSPC;
 224	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
 
 225		goto out;
 
 226
 
 227	cache_entry->cookie = entry->prev_cookie;
 228	cache_entry->ino = entry->ino;
 229	cache_entry->d_type = entry->d_type;
 230	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
 231	if (ret)
 232		goto out;
 233	array->last_cookie = entry->cookie;
 
 
 234	array->size++;
 235	if (entry->eof != 0)
 236		array->eof_index = array->size;
 237out:
 238	kunmap(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 239	return ret;
 240}
 241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 242static inline
 243int is_32bit_api(void)
 244{
 245#ifdef CONFIG_COMPAT
 246	return in_compat_syscall();
 247#else
 248	return (BITS_PER_LONG == 32);
 249#endif
 250}
 251
 252static
 253bool nfs_readdir_use_cookie(const struct file *filp)
 254{
 255	if ((filp->f_mode & FMODE_32BITHASH) ||
 256	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
 257		return false;
 258	return true;
 259}
 260
 261static
 262int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 263{
 264	loff_t diff = desc->ctx->pos - desc->current_index;
 265	unsigned int index;
 266
 267	if (diff < 0)
 268		goto out_eof;
 269	if (diff >= array->size) {
 270		if (array->eof_index >= 0)
 271			goto out_eof;
 272		return -EAGAIN;
 273	}
 274
 275	index = (unsigned int)diff;
 276	*desc->dir_cookie = array->array[index].cookie;
 277	desc->cache_entry_index = index;
 278	return 0;
 279out_eof:
 280	desc->eof = true;
 281	return -EBADCOOKIE;
 282}
 283
 284static bool
 285nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
 286{
 287	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
 288		return false;
 289	smp_rmb();
 290	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
 291}
 292
 293static
 294int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 295{
 296	int i;
 297	loff_t new_pos;
 298	int status = -EAGAIN;
 299
 
 
 
 300	for (i = 0; i < array->size; i++) {
 301		if (array->array[i].cookie == *desc->dir_cookie) {
 302			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
 303			struct nfs_open_dir_context *ctx = desc->file->private_data;
 304
 305			new_pos = desc->current_index + i;
 306			if (ctx->attr_gencount != nfsi->attr_gencount ||
 307			    !nfs_readdir_inode_mapping_valid(nfsi)) {
 308				ctx->duped = 0;
 309				ctx->attr_gencount = nfsi->attr_gencount;
 310			} else if (new_pos < desc->prev_index) {
 311				if (ctx->duped > 0
 312				    && ctx->dup_cookie == *desc->dir_cookie) {
 313					if (printk_ratelimit()) {
 314						pr_notice("NFS: directory %pD2 contains a readdir loop."
 315								"Please contact your server vendor.  "
 316								"The file: %.*s has duplicate cookie %llu\n",
 317								desc->file, array->array[i].string.len,
 318								array->array[i].string.name, *desc->dir_cookie);
 319					}
 320					status = -ELOOP;
 321					goto out;
 322				}
 323				ctx->dup_cookie = *desc->dir_cookie;
 324				ctx->duped = -1;
 325			}
 326			if (nfs_readdir_use_cookie(desc->file))
 327				desc->ctx->pos = *desc->dir_cookie;
 328			else
 329				desc->ctx->pos = new_pos;
 330			desc->prev_index = new_pos;
 331			desc->cache_entry_index = i;
 332			return 0;
 333		}
 334	}
 335	if (array->eof_index >= 0) {
 
 336		status = -EBADCOOKIE;
 337		if (*desc->dir_cookie == array->last_cookie)
 338			desc->eof = true;
 339	}
 340out:
 341	return status;
 342}
 343
 344static
 345int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
 346{
 347	struct nfs_cache_array *array;
 348	int status;
 349
 350	array = kmap(desc->page);
 351
 352	if (*desc->dir_cookie == 0)
 353		status = nfs_readdir_search_for_pos(array, desc);
 354	else
 355		status = nfs_readdir_search_for_cookie(array, desc);
 356
 357	if (status == -EAGAIN) {
 358		desc->last_cookie = array->last_cookie;
 359		desc->current_index += array->size;
 360		desc->page_index++;
 361	}
 362	kunmap(desc->page);
 363	return status;
 364}
 365
 366/* Fill a page with xdr information before transferring to the cache page */
 367static
 368int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
 369			struct nfs_entry *entry, struct file *file, struct inode *inode)
 
 370{
 371	struct nfs_open_dir_context *ctx = file->private_data;
 372	const struct cred *cred = ctx->cred;
 
 
 
 
 
 
 
 
 
 
 
 373	unsigned long	timestamp, gencount;
 374	int		error;
 375
 376 again:
 377	timestamp = jiffies;
 378	gencount = nfs_inc_attr_generation_counter();
 379	desc->dir_verifier = nfs_save_change_attribute(inode);
 380	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
 381					  NFS_SERVER(inode)->dtsize, desc->plus);
 382	if (error < 0) {
 383		/* We requested READDIRPLUS, but the server doesn't grok it */
 384		if (error == -ENOTSUPP && desc->plus) {
 385			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 386			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 387			desc->plus = false;
 388			goto again;
 389		}
 390		goto error;
 391	}
 392	desc->timestamp = timestamp;
 393	desc->gencount = gencount;
 394error:
 395	return error;
 396}
 397
 398static int xdr_decode(nfs_readdir_descriptor_t *desc,
 399		      struct nfs_entry *entry, struct xdr_stream *xdr)
 400{
 401	struct inode *inode = file_inode(desc->file);
 402	int error;
 403
 404	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
 405	if (error)
 406		return error;
 407	entry->fattr->time_start = desc->timestamp;
 408	entry->fattr->gencount = desc->gencount;
 409	return 0;
 410}
 411
 412/* Match file and dirent using either filehandle or fileid
 413 * Note: caller is responsible for checking the fsid
 414 */
 415static
 416int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 417{
 418	struct inode *inode;
 419	struct nfs_inode *nfsi;
 420
 421	if (d_really_is_negative(dentry))
 422		return 0;
 423
 424	inode = d_inode(dentry);
 425	if (is_bad_inode(inode) || NFS_STALE(inode))
 426		return 0;
 427
 428	nfsi = NFS_I(inode);
 429	if (entry->fattr->fileid != nfsi->fileid)
 430		return 0;
 431	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
 432		return 0;
 433	return 1;
 434}
 435
 436static
 437bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
 438{
 439	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 440		return false;
 441	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
 442		return true;
 443	if (ctx->pos == 0)
 444		return true;
 445	return false;
 446}
 447
 448/*
 449 * This function is called by the lookup and getattr code to request the
 450 * use of readdirplus to accelerate any future lookups in the same
 451 * directory.
 452 */
 453void nfs_advise_use_readdirplus(struct inode *dir)
 454{
 455	struct nfs_inode *nfsi = NFS_I(dir);
 456
 457	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 458	    !list_empty(&nfsi->open_files))
 459		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 460}
 461
 462/*
 463 * This function is mainly for use by nfs_getattr().
 464 *
 465 * If this is an 'ls -l', we want to force use of readdirplus.
 466 * Do this by checking if there is an active file descriptor
 467 * and calling nfs_advise_use_readdirplus, then forcing a
 468 * cache flush.
 469 */
 470void nfs_force_use_readdirplus(struct inode *dir)
 471{
 472	struct nfs_inode *nfsi = NFS_I(dir);
 473
 474	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 475	    !list_empty(&nfsi->open_files)) {
 476		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 477		invalidate_mapping_pages(dir->i_mapping,
 478			nfsi->page_index + 1, -1);
 479	}
 480}
 481
 482static
 483void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
 484		unsigned long dir_verifier)
 485{
 486	struct qstr filename = QSTR_INIT(entry->name, entry->len);
 487	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
 488	struct dentry *dentry;
 489	struct dentry *alias;
 490	struct inode *inode;
 491	int status;
 492
 493	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
 494		return;
 495	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
 496		return;
 497	if (filename.len == 0)
 498		return;
 499	/* Validate that the name doesn't contain any illegal '\0' */
 500	if (strnlen(filename.name, filename.len) != filename.len)
 501		return;
 502	/* ...or '/' */
 503	if (strnchr(filename.name, filename.len, '/'))
 504		return;
 505	if (filename.name[0] == '.') {
 506		if (filename.len == 1)
 507			return;
 508		if (filename.len == 2 && filename.name[1] == '.')
 509			return;
 510	}
 511	filename.hash = full_name_hash(parent, filename.name, filename.len);
 512
 513	dentry = d_lookup(parent, &filename);
 514again:
 515	if (!dentry) {
 516		dentry = d_alloc_parallel(parent, &filename, &wq);
 517		if (IS_ERR(dentry))
 518			return;
 519	}
 520	if (!d_in_lookup(dentry)) {
 521		/* Is there a mountpoint here? If so, just exit */
 522		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
 523					&entry->fattr->fsid))
 524			goto out;
 525		if (nfs_same_file(dentry, entry)) {
 526			if (!entry->fh->size)
 527				goto out;
 528			nfs_set_verifier(dentry, dir_verifier);
 529			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
 530			if (!status)
 531				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
 532			goto out;
 533		} else {
 534			d_invalidate(dentry);
 535			dput(dentry);
 536			dentry = NULL;
 537			goto again;
 538		}
 539	}
 540	if (!entry->fh->size) {
 541		d_lookup_done(dentry);
 542		goto out;
 543	}
 544
 545	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
 546	alias = d_splice_alias(inode, dentry);
 547	d_lookup_done(dentry);
 548	if (alias) {
 549		if (IS_ERR(alias))
 550			goto out;
 551		dput(dentry);
 552		dentry = alias;
 553	}
 554	nfs_set_verifier(dentry, dir_verifier);
 555out:
 556	dput(dentry);
 557}
 558
 559/* Perform conversion from xdr to cache array */
 560static
 561int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
 562				struct page **xdr_pages, struct page *page, unsigned int buflen)
 
 
 
 563{
 
 564	struct xdr_stream stream;
 565	struct xdr_buf buf;
 566	struct page *scratch;
 567	struct nfs_cache_array *array;
 568	unsigned int count = 0;
 569	int status;
 570
 571	scratch = alloc_page(GFP_KERNEL);
 572	if (scratch == NULL)
 573		return -ENOMEM;
 574
 575	if (buflen == 0)
 576		goto out_nopages;
 577
 578	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 579	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
 580
 581	do {
 582		if (entry->label)
 583			entry->label->len = NFS4_MAXLABELLEN;
 584
 585		status = xdr_decode(desc, entry, &stream);
 586		if (status != 0) {
 587			if (status == -EAGAIN)
 588				status = 0;
 589			break;
 590		}
 591
 592		count++;
 593
 594		if (desc->plus)
 595			nfs_prime_dcache(file_dentry(desc->file), entry,
 596					desc->dir_verifier);
 597
 598		status = nfs_readdir_add_to_array(entry, page);
 599		if (status != 0)
 600			break;
 601	} while (!entry->eof);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 602
 603out_nopages:
 604	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
 605		array = kmap(page);
 606		array->eof_index = array->size;
 
 
 
 
 
 607		status = 0;
 608		kunmap(page);
 609	}
 610
 
 
 
 611	put_page(scratch);
 612	return status;
 613}
 614
 615static
 616void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
 617{
 618	unsigned int i;
 619	for (i = 0; i < npages; i++)
 620		put_page(pages[i]);
 621}
 622
 623/*
 624 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
 625 * to nfs_readdir_free_pages()
 626 */
 627static
 628int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
 629{
 630	unsigned int i;
 
 631
 
 
 
 632	for (i = 0; i < npages; i++) {
 633		struct page *page = alloc_page(GFP_KERNEL);
 634		if (page == NULL)
 635			goto out_freepages;
 636		pages[i] = page;
 637	}
 638	return 0;
 639
 640out_freepages:
 641	nfs_readdir_free_pages(pages, i);
 642	return -ENOMEM;
 643}
 644
 645static
 646int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
 647{
 648	struct page *pages[NFS_MAX_READDIR_PAGES];
 649	struct nfs_entry entry;
 650	struct file	*file = desc->file;
 651	struct nfs_cache_array *array;
 
 
 
 652	int status = -ENOMEM;
 653	unsigned int array_size = ARRAY_SIZE(pages);
 654
 655	nfs_readdir_init_array(page);
 656
 657	entry.prev_cookie = 0;
 658	entry.cookie = desc->last_cookie;
 659	entry.eof = 0;
 660	entry.fh = nfs_alloc_fhandle();
 661	entry.fattr = nfs_alloc_fattr();
 662	entry.server = NFS_SERVER(inode);
 663	if (entry.fh == NULL || entry.fattr == NULL)
 664		goto out;
 665
 666	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
 667	if (IS_ERR(entry.label)) {
 668		status = PTR_ERR(entry.label);
 669		goto out;
 670	}
 671
 672	array = kmap(page);
 
 
 
 673
 674	status = nfs_readdir_alloc_pages(pages, array_size);
 675	if (status < 0)
 676		goto out_release_array;
 677	do {
 678		unsigned int pglen;
 679		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
 680
 
 681		if (status < 0)
 682			break;
 
 683		pglen = status;
 684		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
 685		if (status < 0) {
 686			if (status == -ENOSPC)
 687				status = 0;
 688			break;
 689		}
 690	} while (array->eof_index < 0);
 
 
 
 
 
 691
 692	nfs_readdir_free_pages(pages, array_size);
 693out_release_array:
 694	kunmap(page);
 695	nfs4_label_free(entry.label);
 696out:
 697	nfs_free_fattr(entry.fattr);
 698	nfs_free_fhandle(entry.fh);
 
 699	return status;
 700}
 701
 702/*
 703 * Now we cache directories properly, by converting xdr information
 704 * to an array that can be used for lookups later.  This results in
 705 * fewer cache pages, since we can store more information on each page.
 706 * We only need to convert from xdr once so future lookups are much simpler
 707 */
 708static
 709int nfs_readdir_filler(void *data, struct page* page)
 710{
 711	nfs_readdir_descriptor_t *desc = data;
 712	struct inode	*inode = file_inode(desc->file);
 713	int ret;
 714
 715	ret = nfs_readdir_xdr_to_array(desc, page, inode);
 716	if (ret < 0)
 717		goto error;
 718	SetPageUptodate(page);
 719
 720	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
 721		/* Should never happen */
 722		nfs_zap_mapping(inode, inode->i_mapping);
 723	}
 724	unlock_page(page);
 725	return 0;
 726 error:
 727	nfs_readdir_clear_array(page);
 728	unlock_page(page);
 729	return ret;
 730}
 731
 732static
 733void cache_page_release(nfs_readdir_descriptor_t *desc)
 734{
 735	put_page(desc->page);
 736	desc->page = NULL;
 737}
 738
 739static
 740struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
 741{
 742	return read_cache_page(desc->file->f_mapping, desc->page_index,
 743			nfs_readdir_filler, desc);
 
 744}
 745
 746/*
 747 * Returns 0 if desc->dir_cookie was found on page desc->page_index
 748 * and locks the page to prevent removal from the page cache.
 749 */
 750static
 751int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
 752{
 753	struct inode *inode = file_inode(desc->file);
 754	struct nfs_inode *nfsi = NFS_I(inode);
 
 755	int res;
 756
 757	desc->page = get_cache_page(desc);
 758	if (IS_ERR(desc->page))
 759		return PTR_ERR(desc->page);
 760	res = lock_page_killable(desc->page);
 761	if (res != 0)
 762		goto error;
 763	res = -EAGAIN;
 764	if (desc->page->mapping != NULL) {
 765		res = nfs_readdir_search_array(desc);
 766		if (res == 0) {
 767			nfsi->page_index = desc->page_index;
 768			return 0;
 
 
 769		}
 
 
 
 
 
 
 
 
 
 
 
 770	}
 771	unlock_page(desc->page);
 772error:
 773	cache_page_release(desc);
 774	return res;
 775}
 776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 777/* Search for desc->dir_cookie from the beginning of the page cache */
 778static inline
 779int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
 780{
 781	int res;
 782
 783	if (desc->page_index == 0) {
 784		desc->current_index = 0;
 785		desc->prev_index = 0;
 786		desc->last_cookie = 0;
 787	}
 788	do {
 
 
 
 
 
 789		res = find_and_lock_cache_page(desc);
 790	} while (res == -EAGAIN);
 791	return res;
 792}
 793
 794/*
 795 * Once we've found the start of the dirent within a page: fill 'er up...
 796 */
 797static 
 798int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
 799{
 800	struct file	*file = desc->file;
 801	int i = 0;
 802	int res = 0;
 803	struct nfs_cache_array *array = NULL;
 804	struct nfs_open_dir_context *ctx = file->private_data;
 805
 806	array = kmap(desc->page);
 807	for (i = desc->cache_entry_index; i < array->size; i++) {
 808		struct nfs_cache_array_entry *ent;
 809
 810		ent = &array->array[i];
 811		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
 812		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
 813			desc->eof = true;
 814			break;
 815		}
 
 816		if (i < (array->size-1))
 817			*desc->dir_cookie = array->array[i+1].cookie;
 818		else
 819			*desc->dir_cookie = array->last_cookie;
 820		if (nfs_readdir_use_cookie(file))
 821			desc->ctx->pos = *desc->dir_cookie;
 822		else
 823			desc->ctx->pos++;
 824		if (ctx->duped != 0)
 825			ctx->duped = 1;
 826	}
 827	if (array->eof_index >= 0)
 828		desc->eof = true;
 829
 830	kunmap(desc->page);
 831	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
 832			(unsigned long long)*desc->dir_cookie, res);
 833	return res;
 834}
 835
 836/*
 837 * If we cannot find a cookie in our cache, we suspect that this is
 838 * because it points to a deleted file, so we ask the server to return
 839 * whatever it thinks is the next entry. We then feed this to filldir.
 840 * If all goes well, we should then be able to find our way round the
 841 * cache on the next call to readdir_search_pagecache();
 842 *
 843 * NOTE: we cannot add the anonymous page to the pagecache because
 844 *	 the data it contains might not be page aligned. Besides,
 845 *	 we should already have a complete representation of the
 846 *	 directory in the page cache by the time we get here.
 847 */
 848static inline
 849int uncached_readdir(nfs_readdir_descriptor_t *desc)
 850{
 851	struct page	*page = NULL;
 852	int		status;
 853	struct inode *inode = file_inode(desc->file);
 854	struct nfs_open_dir_context *ctx = desc->file->private_data;
 855
 856	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
 857			(unsigned long long)*desc->dir_cookie);
 858
 859	page = alloc_page(GFP_HIGHUSER);
 860	if (!page) {
 861		status = -ENOMEM;
 
 
 862		goto out;
 
 
 
 
 
 
 
 
 
 
 863	}
 
 
 864
 865	desc->page_index = 0;
 866	desc->last_cookie = *desc->dir_cookie;
 867	desc->page = page;
 868	ctx->duped = 0;
 869
 870	status = nfs_readdir_xdr_to_array(desc, page, inode);
 871	if (status < 0)
 872		goto out_release;
 873
 874	status = nfs_do_filldir(desc);
 875
 876 out_release:
 877	nfs_readdir_clear_array(desc->page);
 878	cache_page_release(desc);
 879 out:
 880	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
 881			__func__, status);
 882	return status;
 883}
 884
 885/* The file offset position represents the dirent entry number.  A
 886   last cookie cache takes care of the common case of reading the
 887   whole directory.
 888 */
 889static int nfs_readdir(struct file *file, struct dir_context *ctx)
 890{
 891	struct dentry	*dentry = file_dentry(file);
 892	struct inode	*inode = d_inode(dentry);
 
 893	struct nfs_open_dir_context *dir_ctx = file->private_data;
 894	nfs_readdir_descriptor_t my_desc = {
 895		.file = file,
 896		.ctx = ctx,
 897		.dir_cookie = &dir_ctx->dir_cookie,
 898		.plus = nfs_use_readdirplus(inode, ctx),
 899	},
 900			*desc = &my_desc;
 901	int res = 0;
 902
 903	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
 904			file, (long long)ctx->pos);
 905	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
 906
 907	/*
 908	 * ctx->pos points to the dirent entry number.
 909	 * *desc->dir_cookie has the cookie for the next entry. We have
 910	 * to either find the entry with the appropriate number or
 911	 * revalidate the cookie.
 912	 */
 913	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
 914		res = nfs_revalidate_mapping(inode, file->f_mapping);
 915	if (res < 0)
 916		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917
 918	do {
 919		res = readdir_search_pagecache(desc);
 920
 921		if (res == -EBADCOOKIE) {
 922			res = 0;
 923			/* This means either end of directory */
 924			if (*desc->dir_cookie && !desc->eof) {
 925				/* Or that the server has 'lost' a cookie */
 926				res = uncached_readdir(desc);
 927				if (res == 0)
 928					continue;
 
 
 929			}
 930			break;
 931		}
 932		if (res == -ETOOSMALL && desc->plus) {
 933			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 934			nfs_zap_caches(inode);
 935			desc->page_index = 0;
 936			desc->plus = false;
 937			desc->eof = false;
 938			continue;
 939		}
 940		if (res < 0)
 941			break;
 942
 943		res = nfs_do_filldir(desc);
 944		unlock_page(desc->page);
 945		cache_page_release(desc);
 946		if (res < 0)
 947			break;
 948	} while (!desc->eof);
 
 
 
 
 
 
 
 
 
 
 
 949out:
 950	if (res > 0)
 951		res = 0;
 952	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
 953	return res;
 954}
 955
 956static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
 957{
 958	struct inode *inode = file_inode(filp);
 959	struct nfs_open_dir_context *dir_ctx = filp->private_data;
 960
 961	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
 962			filp, offset, whence);
 963
 964	switch (whence) {
 965	default:
 966		return -EINVAL;
 967	case SEEK_SET:
 968		if (offset < 0)
 969			return -EINVAL;
 970		inode_lock(inode);
 971		break;
 972	case SEEK_CUR:
 973		if (offset == 0)
 974			return filp->f_pos;
 975		inode_lock(inode);
 976		offset += filp->f_pos;
 977		if (offset < 0) {
 978			inode_unlock(inode);
 979			return -EINVAL;
 980		}
 981	}
 982	if (offset != filp->f_pos) {
 983		filp->f_pos = offset;
 984		if (nfs_readdir_use_cookie(filp))
 985			dir_ctx->dir_cookie = offset;
 986		else
 987			dir_ctx->dir_cookie = 0;
 
 
 988		dir_ctx->duped = 0;
 989	}
 990	inode_unlock(inode);
 991	return offset;
 992}
 993
 994/*
 995 * All directory operations under NFS are synchronous, so fsync()
 996 * is a dummy operation.
 997 */
 998static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
 999			 int datasync)
1000{
1001	struct inode *inode = file_inode(filp);
1002
1003	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1004
1005	inode_lock(inode);
1006	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
1007	inode_unlock(inode);
1008	return 0;
1009}
1010
1011/**
1012 * nfs_force_lookup_revalidate - Mark the directory as having changed
1013 * @dir: pointer to directory inode
1014 *
1015 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1016 * full lookup on all child dentries of 'dir' whenever a change occurs
1017 * on the server that might have invalidated our dcache.
1018 *
1019 * Note that we reserve bit '0' as a tag to let us know when a dentry
1020 * was revalidated while holding a delegation on its inode.
1021 *
1022 * The caller should be holding dir->i_lock
1023 */
1024void nfs_force_lookup_revalidate(struct inode *dir)
1025{
1026	NFS_I(dir)->cache_change_attribute += 2;
1027}
1028EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1029
1030/**
1031 * nfs_verify_change_attribute - Detects NFS remote directory changes
1032 * @dir: pointer to parent directory inode
1033 * @verf: previously saved change attribute
1034 *
1035 * Return "false" if the verifiers doesn't match the change attribute.
1036 * This would usually indicate that the directory contents have changed on
1037 * the server, and that any dentries need revalidating.
1038 */
1039static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1040{
1041	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1042}
1043
1044static void nfs_set_verifier_delegated(unsigned long *verf)
1045{
1046	*verf |= 1UL;
1047}
1048
1049#if IS_ENABLED(CONFIG_NFS_V4)
1050static void nfs_unset_verifier_delegated(unsigned long *verf)
1051{
1052	*verf &= ~1UL;
1053}
1054#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1055
1056static bool nfs_test_verifier_delegated(unsigned long verf)
1057{
1058	return verf & 1;
1059}
1060
1061static bool nfs_verifier_is_delegated(struct dentry *dentry)
1062{
1063	return nfs_test_verifier_delegated(dentry->d_time);
1064}
1065
1066static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1067{
1068	struct inode *inode = d_inode(dentry);
1069
1070	if (!nfs_verifier_is_delegated(dentry) &&
1071	    !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1072		goto out;
1073	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1074		nfs_set_verifier_delegated(&verf);
1075out:
1076	dentry->d_time = verf;
1077}
1078
1079/**
1080 * nfs_set_verifier - save a parent directory verifier in the dentry
1081 * @dentry: pointer to dentry
1082 * @verf: verifier to save
1083 *
1084 * Saves the parent directory verifier in @dentry. If the inode has
1085 * a delegation, we also tag the dentry as having been revalidated
1086 * while holding a delegation so that we know we don't have to
1087 * look it up again after a directory change.
1088 */
1089void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1090{
1091
1092	spin_lock(&dentry->d_lock);
1093	nfs_set_verifier_locked(dentry, verf);
1094	spin_unlock(&dentry->d_lock);
1095}
1096EXPORT_SYMBOL_GPL(nfs_set_verifier);
1097
1098#if IS_ENABLED(CONFIG_NFS_V4)
1099/**
1100 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1101 * @inode: pointer to inode
1102 *
1103 * Iterates through the dentries in the inode alias list and clears
1104 * the tag used to indicate that the dentry has been revalidated
1105 * while holding a delegation.
1106 * This function is intended for use when the delegation is being
1107 * returned or revoked.
1108 */
1109void nfs_clear_verifier_delegated(struct inode *inode)
1110{
1111	struct dentry *alias;
1112
1113	if (!inode)
1114		return;
1115	spin_lock(&inode->i_lock);
1116	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1117		spin_lock(&alias->d_lock);
1118		nfs_unset_verifier_delegated(&alias->d_time);
1119		spin_unlock(&alias->d_lock);
1120	}
1121	spin_unlock(&inode->i_lock);
1122}
1123EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1124#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1125
1126/*
1127 * A check for whether or not the parent directory has changed.
1128 * In the case it has, we assume that the dentries are untrustworthy
1129 * and may need to be looked up again.
1130 * If rcu_walk prevents us from performing a full check, return 0.
1131 */
1132static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1133			      int rcu_walk)
1134{
1135	if (IS_ROOT(dentry))
1136		return 1;
1137	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1138		return 0;
1139	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1140		return 0;
1141	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1142	if (nfs_mapping_need_revalidate_inode(dir)) {
1143		if (rcu_walk)
1144			return 0;
1145		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1146			return 0;
1147	}
1148	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1149		return 0;
1150	return 1;
1151}
1152
1153/*
1154 * Use intent information to check whether or not we're going to do
1155 * an O_EXCL create using this path component.
1156 */
1157static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1158{
1159	if (NFS_PROTO(dir)->version == 2)
1160		return 0;
1161	return flags & LOOKUP_EXCL;
1162}
1163
1164/*
1165 * Inode and filehandle revalidation for lookups.
1166 *
1167 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1168 * or if the intent information indicates that we're about to open this
1169 * particular file and the "nocto" mount flag is not set.
1170 *
1171 */
1172static
1173int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1174{
1175	struct nfs_server *server = NFS_SERVER(inode);
1176	int ret;
1177
1178	if (IS_AUTOMOUNT(inode))
1179		return 0;
1180
1181	if (flags & LOOKUP_OPEN) {
1182		switch (inode->i_mode & S_IFMT) {
1183		case S_IFREG:
1184			/* A NFSv4 OPEN will revalidate later */
1185			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1186				goto out;
1187			fallthrough;
1188		case S_IFDIR:
1189			if (server->flags & NFS_MOUNT_NOCTO)
1190				break;
1191			/* NFS close-to-open cache consistency validation */
1192			goto out_force;
1193		}
1194	}
1195
1196	/* VFS wants an on-the-wire revalidation */
1197	if (flags & LOOKUP_REVAL)
1198		goto out_force;
1199out:
1200	return (inode->i_nlink == 0) ? -ESTALE : 0;
1201out_force:
1202	if (flags & LOOKUP_RCU)
1203		return -ECHILD;
1204	ret = __nfs_revalidate_inode(server, inode);
1205	if (ret != 0)
1206		return ret;
1207	goto out;
1208}
1209
 
 
 
 
 
 
 
1210/*
1211 * We judge how long we want to trust negative
1212 * dentries by looking at the parent inode mtime.
1213 *
1214 * If parent mtime has changed, we revalidate, else we wait for a
1215 * period corresponding to the parent's attribute cache timeout value.
1216 *
1217 * If LOOKUP_RCU prevents us from performing a full check, return 1
1218 * suggesting a reval is needed.
1219 *
1220 * Note that when creating a new file, or looking up a rename target,
1221 * then it shouldn't be necessary to revalidate a negative dentry.
1222 */
1223static inline
1224int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1225		       unsigned int flags)
1226{
1227	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1228		return 0;
1229	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1230		return 1;
1231	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1232}
1233
1234static int
1235nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1236			   struct inode *inode, int error)
1237{
1238	switch (error) {
1239	case 1:
1240		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1241			__func__, dentry);
1242		return 1;
1243	case 0:
1244		nfs_mark_for_revalidate(dir);
1245		if (inode && S_ISDIR(inode->i_mode)) {
1246			/* Purge readdir caches. */
1247			nfs_zap_caches(inode);
1248			/*
1249			 * We can't d_drop the root of a disconnected tree:
1250			 * its d_hash is on the s_anon list and d_drop() would hide
1251			 * it from shrink_dcache_for_unmount(), leading to busy
1252			 * inodes on unmount and further oopses.
1253			 */
1254			if (IS_ROOT(dentry))
1255				return 1;
1256		}
1257		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1258				__func__, dentry);
1259		return 0;
1260	}
1261	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1262				__func__, dentry, error);
1263	return error;
1264}
1265
1266static int
1267nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1268			       unsigned int flags)
1269{
1270	int ret = 1;
1271	if (nfs_neg_need_reval(dir, dentry, flags)) {
1272		if (flags & LOOKUP_RCU)
1273			return -ECHILD;
1274		ret = 0;
1275	}
1276	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1277}
1278
1279static int
1280nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1281				struct inode *inode)
1282{
1283	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1284	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1285}
1286
1287static int
1288nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1289			     struct inode *inode)
1290{
1291	struct nfs_fh *fhandle;
1292	struct nfs_fattr *fattr;
1293	struct nfs4_label *label;
1294	unsigned long dir_verifier;
1295	int ret;
1296
1297	ret = -ENOMEM;
1298	fhandle = nfs_alloc_fhandle();
1299	fattr = nfs_alloc_fattr();
1300	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1301	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1302		goto out;
1303
1304	dir_verifier = nfs_save_change_attribute(dir);
1305	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1306	if (ret < 0) {
1307		switch (ret) {
1308		case -ESTALE:
1309		case -ENOENT:
1310			ret = 0;
1311			break;
1312		case -ETIMEDOUT:
1313			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1314				ret = 1;
1315		}
1316		goto out;
1317	}
1318	ret = 0;
1319	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1320		goto out;
1321	if (nfs_refresh_inode(inode, fattr) < 0)
1322		goto out;
1323
1324	nfs_setsecurity(inode, fattr, label);
1325	nfs_set_verifier(dentry, dir_verifier);
1326
1327	/* set a readdirplus hint that we had a cache miss */
1328	nfs_force_use_readdirplus(dir);
1329	ret = 1;
1330out:
1331	nfs_free_fattr(fattr);
1332	nfs_free_fhandle(fhandle);
1333	nfs4_label_free(label);
 
 
 
 
 
 
 
1334	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1335}
1336
1337/*
1338 * This is called every time the dcache has a lookup hit,
1339 * and we should check whether we can really trust that
1340 * lookup.
1341 *
1342 * NOTE! The hit can be a negative hit too, don't assume
1343 * we have an inode!
1344 *
1345 * If the parent directory is seen to have changed, we throw out the
1346 * cached dentry and do a new lookup.
1347 */
1348static int
1349nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1350			 unsigned int flags)
1351{
1352	struct inode *inode;
1353	int error;
1354
1355	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1356	inode = d_inode(dentry);
1357
1358	if (!inode)
1359		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1360
1361	if (is_bad_inode(inode)) {
1362		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1363				__func__, dentry);
1364		goto out_bad;
1365	}
1366
1367	if (nfs_verifier_is_delegated(dentry))
1368		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1369
1370	/* Force a full look up iff the parent directory has changed */
1371	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1372	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1373		error = nfs_lookup_verify_inode(inode, flags);
1374		if (error) {
1375			if (error == -ESTALE)
1376				nfs_zap_caches(dir);
1377			goto out_bad;
1378		}
1379		nfs_advise_use_readdirplus(dir);
1380		goto out_valid;
1381	}
1382
1383	if (flags & LOOKUP_RCU)
1384		return -ECHILD;
1385
1386	if (NFS_STALE(inode))
1387		goto out_bad;
1388
1389	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1390	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1391	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1392	return error;
1393out_valid:
1394	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1395out_bad:
1396	if (flags & LOOKUP_RCU)
1397		return -ECHILD;
1398	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1399}
1400
1401static int
1402__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1403			int (*reval)(struct inode *, struct dentry *, unsigned int))
1404{
1405	struct dentry *parent;
1406	struct inode *dir;
1407	int ret;
1408
1409	if (flags & LOOKUP_RCU) {
1410		parent = READ_ONCE(dentry->d_parent);
1411		dir = d_inode_rcu(parent);
1412		if (!dir)
1413			return -ECHILD;
1414		ret = reval(dir, dentry, flags);
1415		if (parent != READ_ONCE(dentry->d_parent))
1416			return -ECHILD;
1417	} else {
1418		parent = dget_parent(dentry);
1419		ret = reval(d_inode(parent), dentry, flags);
1420		dput(parent);
1421	}
1422	return ret;
1423}
1424
1425static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1426{
1427	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1428}
1429
1430/*
1431 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1432 * when we don't really care about the dentry name. This is called when a
1433 * pathwalk ends on a dentry that was not found via a normal lookup in the
1434 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1435 *
1436 * In this situation, we just want to verify that the inode itself is OK
1437 * since the dentry might have changed on the server.
1438 */
1439static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1440{
1441	struct inode *inode = d_inode(dentry);
1442	int error = 0;
1443
1444	/*
1445	 * I believe we can only get a negative dentry here in the case of a
1446	 * procfs-style symlink. Just assume it's correct for now, but we may
1447	 * eventually need to do something more here.
1448	 */
1449	if (!inode) {
1450		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1451				__func__, dentry);
1452		return 1;
1453	}
1454
1455	if (is_bad_inode(inode)) {
1456		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1457				__func__, dentry);
1458		return 0;
1459	}
1460
1461	error = nfs_lookup_verify_inode(inode, flags);
1462	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1463			__func__, inode->i_ino, error ? "invalid" : "valid");
1464	return !error;
1465}
1466
1467/*
1468 * This is called from dput() when d_count is going to 0.
1469 */
1470static int nfs_dentry_delete(const struct dentry *dentry)
1471{
1472	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1473		dentry, dentry->d_flags);
1474
1475	/* Unhash any dentry with a stale inode */
1476	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1477		return 1;
1478
1479	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1480		/* Unhash it, so that ->d_iput() would be called */
1481		return 1;
1482	}
1483	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1484		/* Unhash it, so that ancestors of killed async unlink
1485		 * files will be cleaned up during umount */
1486		return 1;
1487	}
1488	return 0;
1489
1490}
1491
1492/* Ensure that we revalidate inode->i_nlink */
1493static void nfs_drop_nlink(struct inode *inode)
1494{
1495	spin_lock(&inode->i_lock);
1496	/* drop the inode if we're reasonably sure this is the last link */
1497	if (inode->i_nlink > 0)
1498		drop_nlink(inode);
1499	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1500	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1501		| NFS_INO_INVALID_CTIME
1502		| NFS_INO_INVALID_OTHER
1503		| NFS_INO_REVAL_FORCED;
1504	spin_unlock(&inode->i_lock);
1505}
1506
1507/*
1508 * Called when the dentry loses inode.
1509 * We use it to clean up silly-renamed files.
1510 */
1511static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1512{
1513	if (S_ISDIR(inode->i_mode))
1514		/* drop any readdir cache as it could easily be old */
1515		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1516
1517	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1518		nfs_complete_unlink(dentry, inode);
1519		nfs_drop_nlink(inode);
1520	}
1521	iput(inode);
1522}
1523
1524static void nfs_d_release(struct dentry *dentry)
1525{
1526	/* free cached devname value, if it survived that far */
1527	if (unlikely(dentry->d_fsdata)) {
1528		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1529			WARN_ON(1);
1530		else
1531			kfree(dentry->d_fsdata);
1532	}
1533}
1534
1535const struct dentry_operations nfs_dentry_operations = {
1536	.d_revalidate	= nfs_lookup_revalidate,
1537	.d_weak_revalidate	= nfs_weak_revalidate,
1538	.d_delete	= nfs_dentry_delete,
1539	.d_iput		= nfs_dentry_iput,
1540	.d_automount	= nfs_d_automount,
1541	.d_release	= nfs_d_release,
1542};
1543EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1544
1545struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1546{
1547	struct dentry *res;
1548	struct inode *inode = NULL;
1549	struct nfs_fh *fhandle = NULL;
1550	struct nfs_fattr *fattr = NULL;
1551	struct nfs4_label *label = NULL;
1552	unsigned long dir_verifier;
1553	int error;
1554
1555	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1556	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1557
1558	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1559		return ERR_PTR(-ENAMETOOLONG);
1560
1561	/*
1562	 * If we're doing an exclusive create, optimize away the lookup
1563	 * but don't hash the dentry.
1564	 */
1565	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1566		return NULL;
1567
1568	res = ERR_PTR(-ENOMEM);
1569	fhandle = nfs_alloc_fhandle();
1570	fattr = nfs_alloc_fattr();
1571	if (fhandle == NULL || fattr == NULL)
1572		goto out;
1573
1574	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1575	if (IS_ERR(label))
1576		goto out;
1577
1578	dir_verifier = nfs_save_change_attribute(dir);
1579	trace_nfs_lookup_enter(dir, dentry, flags);
1580	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1581	if (error == -ENOENT)
1582		goto no_entry;
1583	if (error < 0) {
1584		res = ERR_PTR(error);
1585		goto out_label;
1586	}
1587	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1588	res = ERR_CAST(inode);
1589	if (IS_ERR(res))
1590		goto out_label;
1591
1592	/* Notify readdir to use READDIRPLUS */
1593	nfs_force_use_readdirplus(dir);
1594
1595no_entry:
1596	res = d_splice_alias(inode, dentry);
1597	if (res != NULL) {
1598		if (IS_ERR(res))
1599			goto out_label;
1600		dentry = res;
1601	}
1602	nfs_set_verifier(dentry, dir_verifier);
1603out_label:
1604	trace_nfs_lookup_exit(dir, dentry, flags, error);
1605	nfs4_label_free(label);
1606out:
1607	nfs_free_fattr(fattr);
1608	nfs_free_fhandle(fhandle);
1609	return res;
1610}
1611EXPORT_SYMBOL_GPL(nfs_lookup);
1612
1613#if IS_ENABLED(CONFIG_NFS_V4)
1614static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1615
1616const struct dentry_operations nfs4_dentry_operations = {
1617	.d_revalidate	= nfs4_lookup_revalidate,
1618	.d_weak_revalidate	= nfs_weak_revalidate,
1619	.d_delete	= nfs_dentry_delete,
1620	.d_iput		= nfs_dentry_iput,
1621	.d_automount	= nfs_d_automount,
1622	.d_release	= nfs_d_release,
1623};
1624EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1625
1626static fmode_t flags_to_mode(int flags)
1627{
1628	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1629	if ((flags & O_ACCMODE) != O_WRONLY)
1630		res |= FMODE_READ;
1631	if ((flags & O_ACCMODE) != O_RDONLY)
1632		res |= FMODE_WRITE;
1633	return res;
1634}
1635
1636static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1637{
1638	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1639}
1640
1641static int do_open(struct inode *inode, struct file *filp)
1642{
1643	nfs_fscache_open_file(inode, filp);
1644	return 0;
1645}
1646
1647static int nfs_finish_open(struct nfs_open_context *ctx,
1648			   struct dentry *dentry,
1649			   struct file *file, unsigned open_flags)
1650{
1651	int err;
1652
1653	err = finish_open(file, dentry, do_open);
1654	if (err)
1655		goto out;
1656	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1657		nfs_file_set_open_context(file, ctx);
1658	else
1659		err = -EOPENSTALE;
1660out:
1661	return err;
1662}
1663
1664int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1665		    struct file *file, unsigned open_flags,
1666		    umode_t mode)
1667{
1668	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1669	struct nfs_open_context *ctx;
1670	struct dentry *res;
1671	struct iattr attr = { .ia_valid = ATTR_OPEN };
1672	struct inode *inode;
1673	unsigned int lookup_flags = 0;
1674	bool switched = false;
1675	int created = 0;
1676	int err;
1677
1678	/* Expect a negative dentry */
1679	BUG_ON(d_inode(dentry));
1680
1681	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1682			dir->i_sb->s_id, dir->i_ino, dentry);
1683
1684	err = nfs_check_flags(open_flags);
1685	if (err)
1686		return err;
1687
1688	/* NFS only supports OPEN on regular files */
1689	if ((open_flags & O_DIRECTORY)) {
1690		if (!d_in_lookup(dentry)) {
1691			/*
1692			 * Hashed negative dentry with O_DIRECTORY: dentry was
1693			 * revalidated and is fine, no need to perform lookup
1694			 * again
1695			 */
1696			return -ENOENT;
1697		}
1698		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1699		goto no_open;
1700	}
1701
1702	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1703		return -ENAMETOOLONG;
1704
1705	if (open_flags & O_CREAT) {
1706		struct nfs_server *server = NFS_SERVER(dir);
1707
1708		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1709			mode &= ~current_umask();
1710
1711		attr.ia_valid |= ATTR_MODE;
1712		attr.ia_mode = mode;
1713	}
1714	if (open_flags & O_TRUNC) {
1715		attr.ia_valid |= ATTR_SIZE;
1716		attr.ia_size = 0;
1717	}
1718
1719	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1720		d_drop(dentry);
1721		switched = true;
1722		dentry = d_alloc_parallel(dentry->d_parent,
1723					  &dentry->d_name, &wq);
1724		if (IS_ERR(dentry))
1725			return PTR_ERR(dentry);
1726		if (unlikely(!d_in_lookup(dentry)))
1727			return finish_no_open(file, dentry);
1728	}
1729
1730	ctx = create_nfs_open_context(dentry, open_flags, file);
1731	err = PTR_ERR(ctx);
1732	if (IS_ERR(ctx))
1733		goto out;
1734
1735	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1736	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1737	if (created)
1738		file->f_mode |= FMODE_CREATED;
1739	if (IS_ERR(inode)) {
1740		err = PTR_ERR(inode);
1741		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1742		put_nfs_open_context(ctx);
1743		d_drop(dentry);
1744		switch (err) {
1745		case -ENOENT:
1746			d_splice_alias(NULL, dentry);
1747			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1748			break;
1749		case -EISDIR:
1750		case -ENOTDIR:
1751			goto no_open;
1752		case -ELOOP:
1753			if (!(open_flags & O_NOFOLLOW))
1754				goto no_open;
1755			break;
1756			/* case -EINVAL: */
1757		default:
1758			break;
1759		}
1760		goto out;
1761	}
1762
1763	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1764	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1765	put_nfs_open_context(ctx);
1766out:
1767	if (unlikely(switched)) {
1768		d_lookup_done(dentry);
1769		dput(dentry);
1770	}
1771	return err;
1772
1773no_open:
1774	res = nfs_lookup(dir, dentry, lookup_flags);
1775	if (switched) {
1776		d_lookup_done(dentry);
1777		if (!res)
1778			res = dentry;
1779		else
1780			dput(dentry);
1781	}
1782	if (IS_ERR(res))
1783		return PTR_ERR(res);
1784	return finish_no_open(file, res);
1785}
1786EXPORT_SYMBOL_GPL(nfs_atomic_open);
1787
1788static int
1789nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1790			  unsigned int flags)
1791{
1792	struct inode *inode;
1793
1794	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1795		goto full_reval;
1796	if (d_mountpoint(dentry))
1797		goto full_reval;
1798
1799	inode = d_inode(dentry);
1800
1801	/* We can't create new files in nfs_open_revalidate(), so we
1802	 * optimize away revalidation of negative dentries.
1803	 */
1804	if (inode == NULL)
1805		goto full_reval;
1806
1807	if (nfs_verifier_is_delegated(dentry))
1808		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1809
1810	/* NFS only supports OPEN on regular files */
1811	if (!S_ISREG(inode->i_mode))
1812		goto full_reval;
1813
1814	/* We cannot do exclusive creation on a positive dentry */
1815	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1816		goto reval_dentry;
1817
1818	/* Check if the directory changed */
1819	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1820		goto reval_dentry;
1821
1822	/* Let f_op->open() actually open (and revalidate) the file */
1823	return 1;
1824reval_dentry:
1825	if (flags & LOOKUP_RCU)
1826		return -ECHILD;
1827	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1828
1829full_reval:
1830	return nfs_do_lookup_revalidate(dir, dentry, flags);
1831}
1832
1833static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1834{
1835	return __nfs_lookup_revalidate(dentry, flags,
1836			nfs4_do_lookup_revalidate);
1837}
1838
1839#endif /* CONFIG_NFSV4 */
1840
1841struct dentry *
1842nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1843				struct nfs_fattr *fattr,
1844				struct nfs4_label *label)
1845{
1846	struct dentry *parent = dget_parent(dentry);
1847	struct inode *dir = d_inode(parent);
1848	struct inode *inode;
1849	struct dentry *d;
1850	int error;
1851
1852	d_drop(dentry);
1853
1854	if (fhandle->size == 0) {
1855		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
1856		if (error)
1857			goto out_error;
1858	}
1859	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1860	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1861		struct nfs_server *server = NFS_SB(dentry->d_sb);
1862		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1863				fattr, NULL, NULL);
1864		if (error < 0)
1865			goto out_error;
1866	}
1867	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1868	d = d_splice_alias(inode, dentry);
1869out:
1870	dput(parent);
1871	return d;
1872out_error:
1873	nfs_mark_for_revalidate(dir);
1874	d = ERR_PTR(error);
1875	goto out;
1876}
1877EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1878
1879/*
1880 * Code common to create, mkdir, and mknod.
1881 */
1882int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1883				struct nfs_fattr *fattr,
1884				struct nfs4_label *label)
1885{
1886	struct dentry *d;
1887
1888	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1889	if (IS_ERR(d))
1890		return PTR_ERR(d);
1891
1892	/* Callers don't care */
1893	dput(d);
1894	return 0;
1895}
1896EXPORT_SYMBOL_GPL(nfs_instantiate);
1897
1898/*
1899 * Following a failed create operation, we drop the dentry rather
1900 * than retain a negative dentry. This avoids a problem in the event
1901 * that the operation succeeded on the server, but an error in the
1902 * reply path made it appear to have failed.
1903 */
1904int nfs_create(struct inode *dir, struct dentry *dentry,
1905		umode_t mode, bool excl)
1906{
1907	struct iattr attr;
1908	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1909	int error;
1910
1911	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1912			dir->i_sb->s_id, dir->i_ino, dentry);
1913
1914	attr.ia_mode = mode;
1915	attr.ia_valid = ATTR_MODE;
1916
1917	trace_nfs_create_enter(dir, dentry, open_flags);
1918	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1919	trace_nfs_create_exit(dir, dentry, open_flags, error);
1920	if (error != 0)
1921		goto out_err;
1922	return 0;
1923out_err:
1924	d_drop(dentry);
1925	return error;
1926}
1927EXPORT_SYMBOL_GPL(nfs_create);
1928
1929/*
1930 * See comments for nfs_proc_create regarding failed operations.
1931 */
1932int
1933nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
 
1934{
1935	struct iattr attr;
1936	int status;
1937
1938	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1939			dir->i_sb->s_id, dir->i_ino, dentry);
1940
1941	attr.ia_mode = mode;
1942	attr.ia_valid = ATTR_MODE;
1943
1944	trace_nfs_mknod_enter(dir, dentry);
1945	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1946	trace_nfs_mknod_exit(dir, dentry, status);
1947	if (status != 0)
1948		goto out_err;
1949	return 0;
1950out_err:
1951	d_drop(dentry);
1952	return status;
1953}
1954EXPORT_SYMBOL_GPL(nfs_mknod);
1955
1956/*
1957 * See comments for nfs_proc_create regarding failed operations.
1958 */
1959int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 
1960{
1961	struct iattr attr;
1962	int error;
1963
1964	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1965			dir->i_sb->s_id, dir->i_ino, dentry);
1966
1967	attr.ia_valid = ATTR_MODE;
1968	attr.ia_mode = mode | S_IFDIR;
1969
1970	trace_nfs_mkdir_enter(dir, dentry);
1971	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1972	trace_nfs_mkdir_exit(dir, dentry, error);
1973	if (error != 0)
1974		goto out_err;
1975	return 0;
1976out_err:
1977	d_drop(dentry);
1978	return error;
1979}
1980EXPORT_SYMBOL_GPL(nfs_mkdir);
1981
1982static void nfs_dentry_handle_enoent(struct dentry *dentry)
1983{
1984	if (simple_positive(dentry))
1985		d_delete(dentry);
1986}
1987
1988int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1989{
1990	int error;
1991
1992	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1993			dir->i_sb->s_id, dir->i_ino, dentry);
1994
1995	trace_nfs_rmdir_enter(dir, dentry);
1996	if (d_really_is_positive(dentry)) {
1997		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1998		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1999		/* Ensure the VFS deletes this inode */
2000		switch (error) {
2001		case 0:
2002			clear_nlink(d_inode(dentry));
2003			break;
2004		case -ENOENT:
2005			nfs_dentry_handle_enoent(dentry);
2006		}
2007		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2008	} else
2009		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2010	trace_nfs_rmdir_exit(dir, dentry, error);
2011
2012	return error;
2013}
2014EXPORT_SYMBOL_GPL(nfs_rmdir);
2015
2016/*
2017 * Remove a file after making sure there are no pending writes,
2018 * and after checking that the file has only one user. 
2019 *
2020 * We invalidate the attribute cache and free the inode prior to the operation
2021 * to avoid possible races if the server reuses the inode.
2022 */
2023static int nfs_safe_remove(struct dentry *dentry)
2024{
2025	struct inode *dir = d_inode(dentry->d_parent);
2026	struct inode *inode = d_inode(dentry);
2027	int error = -EBUSY;
2028		
2029	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2030
2031	/* If the dentry was sillyrenamed, we simply call d_delete() */
2032	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2033		error = 0;
2034		goto out;
2035	}
2036
2037	trace_nfs_remove_enter(dir, dentry);
2038	if (inode != NULL) {
2039		error = NFS_PROTO(dir)->remove(dir, dentry);
2040		if (error == 0)
2041			nfs_drop_nlink(inode);
2042	} else
2043		error = NFS_PROTO(dir)->remove(dir, dentry);
2044	if (error == -ENOENT)
2045		nfs_dentry_handle_enoent(dentry);
2046	trace_nfs_remove_exit(dir, dentry, error);
2047out:
2048	return error;
2049}
2050
2051/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2052 *  belongs to an active ".nfs..." file and we return -EBUSY.
2053 *
2054 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2055 */
2056int nfs_unlink(struct inode *dir, struct dentry *dentry)
2057{
2058	int error;
2059	int need_rehash = 0;
2060
2061	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2062		dir->i_ino, dentry);
2063
2064	trace_nfs_unlink_enter(dir, dentry);
2065	spin_lock(&dentry->d_lock);
2066	if (d_count(dentry) > 1) {
2067		spin_unlock(&dentry->d_lock);
2068		/* Start asynchronous writeout of the inode */
2069		write_inode_now(d_inode(dentry), 0);
2070		error = nfs_sillyrename(dir, dentry);
2071		goto out;
2072	}
2073	if (!d_unhashed(dentry)) {
2074		__d_drop(dentry);
2075		need_rehash = 1;
2076	}
2077	spin_unlock(&dentry->d_lock);
2078	error = nfs_safe_remove(dentry);
2079	if (!error || error == -ENOENT) {
2080		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2081	} else if (need_rehash)
2082		d_rehash(dentry);
2083out:
2084	trace_nfs_unlink_exit(dir, dentry, error);
2085	return error;
2086}
2087EXPORT_SYMBOL_GPL(nfs_unlink);
2088
2089/*
2090 * To create a symbolic link, most file systems instantiate a new inode,
2091 * add a page to it containing the path, then write it out to the disk
2092 * using prepare_write/commit_write.
2093 *
2094 * Unfortunately the NFS client can't create the in-core inode first
2095 * because it needs a file handle to create an in-core inode (see
2096 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2097 * symlink request has completed on the server.
2098 *
2099 * So instead we allocate a raw page, copy the symname into it, then do
2100 * the SYMLINK request with the page as the buffer.  If it succeeds, we
2101 * now have a new file handle and can instantiate an in-core NFS inode
2102 * and move the raw page into its mapping.
2103 */
2104int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
 
2105{
2106	struct page *page;
2107	char *kaddr;
2108	struct iattr attr;
2109	unsigned int pathlen = strlen(symname);
2110	int error;
2111
2112	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2113		dir->i_ino, dentry, symname);
2114
2115	if (pathlen > PAGE_SIZE)
2116		return -ENAMETOOLONG;
2117
2118	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2119	attr.ia_valid = ATTR_MODE;
2120
2121	page = alloc_page(GFP_USER);
2122	if (!page)
2123		return -ENOMEM;
2124
2125	kaddr = page_address(page);
2126	memcpy(kaddr, symname, pathlen);
2127	if (pathlen < PAGE_SIZE)
2128		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2129
2130	trace_nfs_symlink_enter(dir, dentry);
2131	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2132	trace_nfs_symlink_exit(dir, dentry, error);
2133	if (error != 0) {
2134		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2135			dir->i_sb->s_id, dir->i_ino,
2136			dentry, symname, error);
2137		d_drop(dentry);
2138		__free_page(page);
2139		return error;
2140	}
2141
2142	/*
2143	 * No big deal if we can't add this page to the page cache here.
2144	 * READLINK will get the missing page from the server if needed.
2145	 */
2146	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2147							GFP_KERNEL)) {
2148		SetPageUptodate(page);
2149		unlock_page(page);
2150		/*
2151		 * add_to_page_cache_lru() grabs an extra page refcount.
2152		 * Drop it here to avoid leaking this page later.
2153		 */
2154		put_page(page);
2155	} else
2156		__free_page(page);
2157
2158	return 0;
2159}
2160EXPORT_SYMBOL_GPL(nfs_symlink);
2161
2162int
2163nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2164{
2165	struct inode *inode = d_inode(old_dentry);
2166	int error;
2167
2168	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2169		old_dentry, dentry);
2170
2171	trace_nfs_link_enter(inode, dir, dentry);
2172	d_drop(dentry);
2173	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2174	if (error == 0) {
2175		ihold(inode);
2176		d_add(dentry, inode);
2177	}
2178	trace_nfs_link_exit(inode, dir, dentry, error);
2179	return error;
2180}
2181EXPORT_SYMBOL_GPL(nfs_link);
2182
2183/*
2184 * RENAME
2185 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2186 * different file handle for the same inode after a rename (e.g. when
2187 * moving to a different directory). A fail-safe method to do so would
2188 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2189 * rename the old file using the sillyrename stuff. This way, the original
2190 * file in old_dir will go away when the last process iput()s the inode.
2191 *
2192 * FIXED.
2193 * 
2194 * It actually works quite well. One needs to have the possibility for
2195 * at least one ".nfs..." file in each directory the file ever gets
2196 * moved or linked to which happens automagically with the new
2197 * implementation that only depends on the dcache stuff instead of
2198 * using the inode layer
2199 *
2200 * Unfortunately, things are a little more complicated than indicated
2201 * above. For a cross-directory move, we want to make sure we can get
2202 * rid of the old inode after the operation.  This means there must be
2203 * no pending writes (if it's a file), and the use count must be 1.
2204 * If these conditions are met, we can drop the dentries before doing
2205 * the rename.
2206 */
2207int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2208	       struct inode *new_dir, struct dentry *new_dentry,
2209	       unsigned int flags)
2210{
2211	struct inode *old_inode = d_inode(old_dentry);
2212	struct inode *new_inode = d_inode(new_dentry);
2213	struct dentry *dentry = NULL, *rehash = NULL;
2214	struct rpc_task *task;
2215	int error = -EBUSY;
2216
2217	if (flags)
2218		return -EINVAL;
2219
2220	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2221		 old_dentry, new_dentry,
2222		 d_count(new_dentry));
2223
2224	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2225	/*
2226	 * For non-directories, check whether the target is busy and if so,
2227	 * make a copy of the dentry and then do a silly-rename. If the
2228	 * silly-rename succeeds, the copied dentry is hashed and becomes
2229	 * the new target.
2230	 */
2231	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2232		/*
2233		 * To prevent any new references to the target during the
2234		 * rename, we unhash the dentry in advance.
2235		 */
2236		if (!d_unhashed(new_dentry)) {
2237			d_drop(new_dentry);
2238			rehash = new_dentry;
2239		}
2240
2241		if (d_count(new_dentry) > 2) {
2242			int err;
2243
2244			/* copy the target dentry's name */
2245			dentry = d_alloc(new_dentry->d_parent,
2246					 &new_dentry->d_name);
2247			if (!dentry)
2248				goto out;
2249
2250			/* silly-rename the existing target ... */
2251			err = nfs_sillyrename(new_dir, new_dentry);
2252			if (err)
2253				goto out;
2254
2255			new_dentry = dentry;
2256			rehash = NULL;
2257			new_inode = NULL;
2258		}
2259	}
2260
2261	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2262	if (IS_ERR(task)) {
2263		error = PTR_ERR(task);
2264		goto out;
2265	}
2266
2267	error = rpc_wait_for_completion_task(task);
2268	if (error != 0) {
2269		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2270		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2271		smp_wmb();
2272	} else
2273		error = task->tk_status;
2274	rpc_put_task(task);
2275	/* Ensure the inode attributes are revalidated */
2276	if (error == 0) {
2277		spin_lock(&old_inode->i_lock);
2278		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2279		NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2280			| NFS_INO_INVALID_CTIME
2281			| NFS_INO_REVAL_FORCED;
2282		spin_unlock(&old_inode->i_lock);
2283	}
2284out:
2285	if (rehash)
2286		d_rehash(rehash);
2287	trace_nfs_rename_exit(old_dir, old_dentry,
2288			new_dir, new_dentry, error);
2289	if (!error) {
2290		if (new_inode != NULL)
2291			nfs_drop_nlink(new_inode);
2292		/*
2293		 * The d_move() should be here instead of in an async RPC completion
2294		 * handler because we need the proper locks to move the dentry.  If
2295		 * we're interrupted by a signal, the async RPC completion handler
2296		 * should mark the directories for revalidation.
2297		 */
2298		d_move(old_dentry, new_dentry);
2299		nfs_set_verifier(old_dentry,
2300					nfs_save_change_attribute(new_dir));
2301	} else if (error == -ENOENT)
2302		nfs_dentry_handle_enoent(old_dentry);
2303
2304	/* new dentry created? */
2305	if (dentry)
2306		dput(dentry);
2307	return error;
2308}
2309EXPORT_SYMBOL_GPL(nfs_rename);
2310
2311static DEFINE_SPINLOCK(nfs_access_lru_lock);
2312static LIST_HEAD(nfs_access_lru_list);
2313static atomic_long_t nfs_access_nr_entries;
2314
2315static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2316module_param(nfs_access_max_cachesize, ulong, 0644);
2317MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2318
2319static void nfs_access_free_entry(struct nfs_access_entry *entry)
2320{
2321	put_cred(entry->cred);
2322	kfree_rcu(entry, rcu_head);
2323	smp_mb__before_atomic();
2324	atomic_long_dec(&nfs_access_nr_entries);
2325	smp_mb__after_atomic();
2326}
2327
2328static void nfs_access_free_list(struct list_head *head)
2329{
2330	struct nfs_access_entry *cache;
2331
2332	while (!list_empty(head)) {
2333		cache = list_entry(head->next, struct nfs_access_entry, lru);
2334		list_del(&cache->lru);
2335		nfs_access_free_entry(cache);
2336	}
2337}
2338
2339static unsigned long
2340nfs_do_access_cache_scan(unsigned int nr_to_scan)
2341{
2342	LIST_HEAD(head);
2343	struct nfs_inode *nfsi, *next;
2344	struct nfs_access_entry *cache;
2345	long freed = 0;
2346
2347	spin_lock(&nfs_access_lru_lock);
2348	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2349		struct inode *inode;
2350
2351		if (nr_to_scan-- == 0)
2352			break;
2353		inode = &nfsi->vfs_inode;
2354		spin_lock(&inode->i_lock);
2355		if (list_empty(&nfsi->access_cache_entry_lru))
2356			goto remove_lru_entry;
2357		cache = list_entry(nfsi->access_cache_entry_lru.next,
2358				struct nfs_access_entry, lru);
2359		list_move(&cache->lru, &head);
2360		rb_erase(&cache->rb_node, &nfsi->access_cache);
2361		freed++;
2362		if (!list_empty(&nfsi->access_cache_entry_lru))
2363			list_move_tail(&nfsi->access_cache_inode_lru,
2364					&nfs_access_lru_list);
2365		else {
2366remove_lru_entry:
2367			list_del_init(&nfsi->access_cache_inode_lru);
2368			smp_mb__before_atomic();
2369			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2370			smp_mb__after_atomic();
2371		}
2372		spin_unlock(&inode->i_lock);
2373	}
2374	spin_unlock(&nfs_access_lru_lock);
2375	nfs_access_free_list(&head);
2376	return freed;
2377}
2378
2379unsigned long
2380nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2381{
2382	int nr_to_scan = sc->nr_to_scan;
2383	gfp_t gfp_mask = sc->gfp_mask;
2384
2385	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2386		return SHRINK_STOP;
2387	return nfs_do_access_cache_scan(nr_to_scan);
2388}
2389
2390
2391unsigned long
2392nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2393{
2394	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2395}
2396
2397static void
2398nfs_access_cache_enforce_limit(void)
2399{
2400	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2401	unsigned long diff;
2402	unsigned int nr_to_scan;
2403
2404	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2405		return;
2406	nr_to_scan = 100;
2407	diff = nr_entries - nfs_access_max_cachesize;
2408	if (diff < nr_to_scan)
2409		nr_to_scan = diff;
2410	nfs_do_access_cache_scan(nr_to_scan);
2411}
2412
2413static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2414{
2415	struct rb_root *root_node = &nfsi->access_cache;
2416	struct rb_node *n;
2417	struct nfs_access_entry *entry;
2418
2419	/* Unhook entries from the cache */
2420	while ((n = rb_first(root_node)) != NULL) {
2421		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2422		rb_erase(n, root_node);
2423		list_move(&entry->lru, head);
2424	}
2425	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2426}
2427
2428void nfs_access_zap_cache(struct inode *inode)
2429{
2430	LIST_HEAD(head);
2431
2432	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2433		return;
2434	/* Remove from global LRU init */
2435	spin_lock(&nfs_access_lru_lock);
2436	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2437		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2438
2439	spin_lock(&inode->i_lock);
2440	__nfs_access_zap_cache(NFS_I(inode), &head);
2441	spin_unlock(&inode->i_lock);
2442	spin_unlock(&nfs_access_lru_lock);
2443	nfs_access_free_list(&head);
2444}
2445EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2446
2447static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2448{
2449	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2450
2451	while (n != NULL) {
2452		struct nfs_access_entry *entry =
2453			rb_entry(n, struct nfs_access_entry, rb_node);
2454		int cmp = cred_fscmp(cred, entry->cred);
2455
2456		if (cmp < 0)
2457			n = n->rb_left;
2458		else if (cmp > 0)
2459			n = n->rb_right;
2460		else
2461			return entry;
2462	}
2463	return NULL;
2464}
2465
2466static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2467{
2468	struct nfs_inode *nfsi = NFS_I(inode);
2469	struct nfs_access_entry *cache;
2470	bool retry = true;
2471	int err;
2472
2473	spin_lock(&inode->i_lock);
2474	for(;;) {
2475		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2476			goto out_zap;
2477		cache = nfs_access_search_rbtree(inode, cred);
2478		err = -ENOENT;
2479		if (cache == NULL)
2480			goto out;
2481		/* Found an entry, is our attribute cache valid? */
2482		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2483			break;
2484		if (!retry)
2485			break;
2486		err = -ECHILD;
2487		if (!may_block)
2488			goto out;
2489		spin_unlock(&inode->i_lock);
2490		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2491		if (err)
2492			return err;
2493		spin_lock(&inode->i_lock);
2494		retry = false;
2495	}
2496	res->cred = cache->cred;
2497	res->mask = cache->mask;
2498	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2499	err = 0;
2500out:
2501	spin_unlock(&inode->i_lock);
2502	return err;
2503out_zap:
2504	spin_unlock(&inode->i_lock);
2505	nfs_access_zap_cache(inode);
2506	return -ENOENT;
2507}
2508
2509static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2510{
2511	/* Only check the most recently returned cache entry,
2512	 * but do it without locking.
2513	 */
2514	struct nfs_inode *nfsi = NFS_I(inode);
2515	struct nfs_access_entry *cache;
2516	int err = -ECHILD;
2517	struct list_head *lh;
2518
2519	rcu_read_lock();
2520	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2521		goto out;
2522	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2523	cache = list_entry(lh, struct nfs_access_entry, lru);
2524	if (lh == &nfsi->access_cache_entry_lru ||
2525	    cred_fscmp(cred, cache->cred) != 0)
2526		cache = NULL;
2527	if (cache == NULL)
2528		goto out;
2529	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2530		goto out;
2531	res->cred = cache->cred;
2532	res->mask = cache->mask;
2533	err = 0;
2534out:
2535	rcu_read_unlock();
2536	return err;
2537}
2538
2539int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2540nfs_access_entry *res, bool may_block)
2541{
2542	int status;
2543
2544	status = nfs_access_get_cached_rcu(inode, cred, res);
2545	if (status != 0)
2546		status = nfs_access_get_cached_locked(inode, cred, res,
2547		    may_block);
2548
2549	return status;
2550}
2551EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2552
2553static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2554{
2555	struct nfs_inode *nfsi = NFS_I(inode);
2556	struct rb_root *root_node = &nfsi->access_cache;
2557	struct rb_node **p = &root_node->rb_node;
2558	struct rb_node *parent = NULL;
2559	struct nfs_access_entry *entry;
2560	int cmp;
2561
2562	spin_lock(&inode->i_lock);
2563	while (*p != NULL) {
2564		parent = *p;
2565		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2566		cmp = cred_fscmp(set->cred, entry->cred);
2567
2568		if (cmp < 0)
2569			p = &parent->rb_left;
2570		else if (cmp > 0)
2571			p = &parent->rb_right;
2572		else
2573			goto found;
2574	}
2575	rb_link_node(&set->rb_node, parent, p);
2576	rb_insert_color(&set->rb_node, root_node);
2577	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2578	spin_unlock(&inode->i_lock);
2579	return;
2580found:
2581	rb_replace_node(parent, &set->rb_node, root_node);
2582	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2583	list_del(&entry->lru);
2584	spin_unlock(&inode->i_lock);
2585	nfs_access_free_entry(entry);
2586}
2587
2588void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2589{
2590	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2591	if (cache == NULL)
2592		return;
2593	RB_CLEAR_NODE(&cache->rb_node);
2594	cache->cred = get_cred(set->cred);
2595	cache->mask = set->mask;
2596
2597	/* The above field assignments must be visible
2598	 * before this item appears on the lru.  We cannot easily
2599	 * use rcu_assign_pointer, so just force the memory barrier.
2600	 */
2601	smp_wmb();
2602	nfs_access_add_rbtree(inode, cache);
2603
2604	/* Update accounting */
2605	smp_mb__before_atomic();
2606	atomic_long_inc(&nfs_access_nr_entries);
2607	smp_mb__after_atomic();
2608
2609	/* Add inode to global LRU list */
2610	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2611		spin_lock(&nfs_access_lru_lock);
2612		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2613			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2614					&nfs_access_lru_list);
2615		spin_unlock(&nfs_access_lru_lock);
2616	}
2617	nfs_access_cache_enforce_limit();
2618}
2619EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2620
2621#define NFS_MAY_READ (NFS_ACCESS_READ)
2622#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2623		NFS_ACCESS_EXTEND | \
2624		NFS_ACCESS_DELETE)
2625#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2626		NFS_ACCESS_EXTEND)
2627#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2628#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2629#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2630static int
2631nfs_access_calc_mask(u32 access_result, umode_t umode)
2632{
2633	int mask = 0;
2634
2635	if (access_result & NFS_MAY_READ)
2636		mask |= MAY_READ;
2637	if (S_ISDIR(umode)) {
2638		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2639			mask |= MAY_WRITE;
2640		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2641			mask |= MAY_EXEC;
2642	} else if (S_ISREG(umode)) {
2643		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2644			mask |= MAY_WRITE;
2645		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2646			mask |= MAY_EXEC;
2647	} else if (access_result & NFS_MAY_WRITE)
2648			mask |= MAY_WRITE;
2649	return mask;
2650}
2651
2652void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2653{
2654	entry->mask = access_result;
2655}
2656EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2657
2658static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2659{
2660	struct nfs_access_entry cache;
2661	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2662	int cache_mask = -1;
2663	int status;
2664
2665	trace_nfs_access_enter(inode);
2666
2667	status = nfs_access_get_cached(inode, cred, &cache, may_block);
2668	if (status == 0)
2669		goto out_cached;
2670
2671	status = -ECHILD;
2672	if (!may_block)
2673		goto out;
2674
2675	/*
2676	 * Determine which access bits we want to ask for...
2677	 */
2678	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2679	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2680		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2681		    NFS_ACCESS_XALIST;
2682	}
2683	if (S_ISDIR(inode->i_mode))
2684		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2685	else
2686		cache.mask |= NFS_ACCESS_EXECUTE;
2687	cache.cred = cred;
2688	status = NFS_PROTO(inode)->access(inode, &cache);
2689	if (status != 0) {
2690		if (status == -ESTALE) {
2691			if (!S_ISDIR(inode->i_mode))
2692				nfs_set_inode_stale(inode);
2693			else
2694				nfs_zap_caches(inode);
2695		}
2696		goto out;
2697	}
2698	nfs_access_add_cache(inode, &cache);
2699out_cached:
2700	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2701	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2702		status = -EACCES;
2703out:
2704	trace_nfs_access_exit(inode, mask, cache_mask, status);
2705	return status;
2706}
2707
2708static int nfs_open_permission_mask(int openflags)
2709{
2710	int mask = 0;
2711
2712	if (openflags & __FMODE_EXEC) {
2713		/* ONLY check exec rights */
2714		mask = MAY_EXEC;
2715	} else {
2716		if ((openflags & O_ACCMODE) != O_WRONLY)
2717			mask |= MAY_READ;
2718		if ((openflags & O_ACCMODE) != O_RDONLY)
2719			mask |= MAY_WRITE;
2720	}
2721
2722	return mask;
2723}
2724
2725int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2726{
2727	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2728}
2729EXPORT_SYMBOL_GPL(nfs_may_open);
2730
2731static int nfs_execute_ok(struct inode *inode, int mask)
2732{
2733	struct nfs_server *server = NFS_SERVER(inode);
2734	int ret = 0;
2735
2736	if (S_ISDIR(inode->i_mode))
2737		return 0;
2738	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2739		if (mask & MAY_NOT_BLOCK)
2740			return -ECHILD;
2741		ret = __nfs_revalidate_inode(server, inode);
2742	}
2743	if (ret == 0 && !execute_ok(inode))
2744		ret = -EACCES;
2745	return ret;
2746}
2747
2748int nfs_permission(struct inode *inode, int mask)
 
 
2749{
2750	const struct cred *cred = current_cred();
2751	int res = 0;
2752
2753	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2754
2755	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2756		goto out;
2757	/* Is this sys_access() ? */
2758	if (mask & (MAY_ACCESS | MAY_CHDIR))
2759		goto force_lookup;
2760
2761	switch (inode->i_mode & S_IFMT) {
2762		case S_IFLNK:
2763			goto out;
2764		case S_IFREG:
2765			if ((mask & MAY_OPEN) &&
2766			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2767				return 0;
2768			break;
2769		case S_IFDIR:
2770			/*
2771			 * Optimize away all write operations, since the server
2772			 * will check permissions when we perform the op.
2773			 */
2774			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2775				goto out;
2776	}
2777
2778force_lookup:
2779	if (!NFS_PROTO(inode)->access)
2780		goto out_notsup;
2781
2782	res = nfs_do_access(inode, cred, mask);
2783out:
2784	if (!res && (mask & MAY_EXEC))
2785		res = nfs_execute_ok(inode, mask);
2786
2787	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2788		inode->i_sb->s_id, inode->i_ino, mask, res);
2789	return res;
2790out_notsup:
2791	if (mask & MAY_NOT_BLOCK)
2792		return -ECHILD;
2793
2794	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
 
2795	if (res == 0)
2796		res = generic_permission(inode, mask);
2797	goto out;
2798}
2799EXPORT_SYMBOL_GPL(nfs_permission);
2800
2801/*
2802 * Local variables:
2803 *  version-control: t
2804 *  kept-new-versions: 5
2805 * End:
2806 */