Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/* handling of writes to regular files and writing back to the server
  3 *
  4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
  5 * Written by David Howells (dhowells@redhat.com)
  6 */
  7
  8#include <linux/backing-dev.h>
  9#include <linux/slab.h>
 10#include <linux/fs.h>
 11#include <linux/pagemap.h>
 12#include <linux/writeback.h>
 13#include <linux/pagevec.h>
 14#include <linux/netfs.h>
 15#include <linux/fscache.h>
 16#include "internal.h"
 17
 18/*
 19 * mark a page as having been made dirty and thus needing writeback
 20 */
 21int afs_set_page_dirty(struct page *page)
 22{
 23	_enter("");
 24	return __set_page_dirty_nobuffers(page);
 25}
 26
 27/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 28 * prepare to perform part of a write to a page
 29 */
 30int afs_write_begin(struct file *file, struct address_space *mapping,
 31		    loff_t pos, unsigned len, unsigned flags,
 32		    struct page **_page, void **fsdata)
 33{
 34	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
 35	struct page *page;
 
 36	unsigned long priv;
 37	unsigned f, from;
 38	unsigned t, to;
 39	pgoff_t index;
 40	int ret;
 41
 42	_enter("{%llx:%llu},%llx,%x",
 43	       vnode->fid.vid, vnode->fid.vnode, pos, len);
 44
 45	/* Prefetch area to be written into the cache if we're caching this
 46	 * file.  We need to do this before we get a lock on the page in case
 47	 * there's more than one writer competing for the same cache block.
 48	 */
 49	ret = netfs_write_begin(file, mapping, pos, len, flags, &page, fsdata,
 50				&afs_req_ops, NULL);
 51	if (ret < 0)
 52		return ret;
 53
 54	index = page->index;
 55	from = pos - index * PAGE_SIZE;
 56	to = from + len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 57
 58try_again:
 59	/* See if this page is already partially written in a way that we can
 60	 * merge the new write with.
 61	 */
 
 62	if (PagePrivate(page)) {
 63		priv = page_private(page);
 64		f = afs_page_dirty_from(page, priv);
 65		t = afs_page_dirty_to(page, priv);
 66		ASSERTCMP(f, <=, t);
 
 67
 
 68		if (PageWriteback(page)) {
 69			trace_afs_page_dirty(vnode, tracepoint_string("alrdy"), page);
 
 70			goto flush_conflicting_write;
 71		}
 72		/* If the file is being filled locally, allow inter-write
 73		 * spaces to be merged into writes.  If it's not, only write
 74		 * back what the user gives us.
 75		 */
 76		if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
 77		    (to < f || from > t))
 78			goto flush_conflicting_write;
 
 
 
 
 
 
 
 79	}
 80
 81	*_page = page;
 
 
 
 
 
 82	_leave(" = 0");
 83	return 0;
 84
 85	/* The previous write and this write aren't adjacent or overlapping, so
 86	 * flush the page out.
 87	 */
 88flush_conflicting_write:
 89	_debug("flush conflict");
 90	ret = write_one_page(page);
 91	if (ret < 0)
 92		goto error;
 
 
 93
 94	ret = lock_page_killable(page);
 95	if (ret < 0)
 96		goto error;
 
 
 97	goto try_again;
 98
 99error:
100	put_page(page);
101	_leave(" = %d", ret);
102	return ret;
103}
104
105/*
106 * finalise part of a write to a page
107 */
108int afs_write_end(struct file *file, struct address_space *mapping,
109		  loff_t pos, unsigned len, unsigned copied,
110		  struct page *page, void *fsdata)
111{
112	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
113	unsigned long priv;
114	unsigned int f, from = pos & (thp_size(page) - 1);
115	unsigned int t, to = from + copied;
116	loff_t i_size, maybe_i_size;
 
117
118	_enter("{%llx:%llu},{%lx}",
119	       vnode->fid.vid, vnode->fid.vnode, page->index);
120
121	if (!PageUptodate(page)) {
122		if (copied < len) {
123			copied = 0;
124			goto out;
125		}
126
127		SetPageUptodate(page);
128	}
129
130	if (copied == 0)
131		goto out;
132
133	maybe_i_size = pos + copied;
134
135	i_size = i_size_read(&vnode->vfs_inode);
136	if (maybe_i_size > i_size) {
137		write_seqlock(&vnode->cb_lock);
138		i_size = i_size_read(&vnode->vfs_inode);
139		if (maybe_i_size > i_size)
140			afs_set_i_size(vnode, maybe_i_size);
141		write_sequnlock(&vnode->cb_lock);
142	}
143
144	if (PagePrivate(page)) {
145		priv = page_private(page);
146		f = afs_page_dirty_from(page, priv);
147		t = afs_page_dirty_to(page, priv);
148		if (from < f)
149			f = from;
150		if (to > t)
151			t = to;
152		priv = afs_page_dirty(page, f, t);
153		set_page_private(page, priv);
154		trace_afs_page_dirty(vnode, tracepoint_string("dirty+"), page);
155	} else {
156		priv = afs_page_dirty(page, from, to);
157		attach_page_private(page, (void *)priv);
158		trace_afs_page_dirty(vnode, tracepoint_string("dirty"), page);
159	}
160
161	if (set_page_dirty(page))
162		_debug("dirtied %lx", page->index);
 
 
163
164out:
165	unlock_page(page);
166	put_page(page);
167	return copied;
168}
169
170/*
171 * kill all the pages in the given range
172 */
173static void afs_kill_pages(struct address_space *mapping,
174			   loff_t start, loff_t len)
175{
176	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
177	struct pagevec pv;
178	unsigned int loop, psize;
179
180	_enter("{%llx:%llu},%llx @%llx",
181	       vnode->fid.vid, vnode->fid.vnode, len, start);
182
183	pagevec_init(&pv);
184
185	do {
186		_debug("kill %llx @%llx", len, start);
187
188		pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
189					      PAGEVEC_SIZE, pv.pages);
190		if (pv.nr == 0)
191			break;
 
192
193		for (loop = 0; loop < pv.nr; loop++) {
194			struct page *page = pv.pages[loop];
195
196			if (page->index * PAGE_SIZE >= start + len)
197				break;
198
199			psize = thp_size(page);
200			start += psize;
201			len -= psize;
202			ClearPageUptodate(page);
 
203			end_page_writeback(page);
 
 
204			lock_page(page);
205			generic_error_remove_page(mapping, page);
206			unlock_page(page);
207		}
208
209		__pagevec_release(&pv);
210	} while (len > 0);
211
212	_leave("");
213}
214
215/*
216 * Redirty all the pages in a given range.
217 */
218static void afs_redirty_pages(struct writeback_control *wbc,
219			      struct address_space *mapping,
220			      loff_t start, loff_t len)
221{
222	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
223	struct pagevec pv;
224	unsigned int loop, psize;
225
226	_enter("{%llx:%llu},%llx @%llx",
227	       vnode->fid.vid, vnode->fid.vnode, len, start);
228
229	pagevec_init(&pv);
230
231	do {
232		_debug("redirty %llx @%llx", len, start);
233
234		pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
235					      PAGEVEC_SIZE, pv.pages);
236		if (pv.nr == 0)
237			break;
 
238
239		for (loop = 0; loop < pv.nr; loop++) {
240			struct page *page = pv.pages[loop];
241
242			if (page->index * PAGE_SIZE >= start + len)
243				break;
244
245			psize = thp_size(page);
246			start += psize;
247			len -= psize;
248			redirty_page_for_writepage(wbc, page);
249			end_page_writeback(page);
 
 
250		}
251
252		__pagevec_release(&pv);
253	} while (len > 0);
254
255	_leave("");
256}
257
258/*
259 * completion of write to server
260 */
261static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
 
262{
263	struct address_space *mapping = vnode->vfs_inode.i_mapping;
264	struct page *page;
265	pgoff_t end;
266
267	XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE);
 
268
269	_enter("{%llx:%llu},{%x @%llx}",
270	       vnode->fid.vid, vnode->fid.vnode, len, start);
271
272	rcu_read_lock();
 
273
274	end = (start + len - 1) / PAGE_SIZE;
275	xas_for_each(&xas, page, end) {
276		if (!PageWriteback(page)) {
277			kdebug("bad %x @%llx page %lx %lx", len, start, page->index, end);
278			ASSERT(PageWriteback(page));
 
 
 
 
 
 
 
 
279		}
280
281		trace_afs_page_dirty(vnode, tracepoint_string("clear"), page);
282		detach_page_private(page);
283		page_endio(page, true, 0);
284	}
285
286	rcu_read_unlock();
287
288	afs_prune_wb_keys(vnode);
289	_leave("");
290}
291
292/*
293 * Find a key to use for the writeback.  We cached the keys used to author the
294 * writes on the vnode.  *_wbk will contain the last writeback key used or NULL
295 * and we need to start from there if it's set.
296 */
297static int afs_get_writeback_key(struct afs_vnode *vnode,
298				 struct afs_wb_key **_wbk)
299{
300	struct afs_wb_key *wbk = NULL;
301	struct list_head *p;
302	int ret = -ENOKEY, ret2;
303
304	spin_lock(&vnode->wb_lock);
305	if (*_wbk)
306		p = (*_wbk)->vnode_link.next;
307	else
308		p = vnode->wb_keys.next;
309
310	while (p != &vnode->wb_keys) {
311		wbk = list_entry(p, struct afs_wb_key, vnode_link);
312		_debug("wbk %u", key_serial(wbk->key));
313		ret2 = key_validate(wbk->key);
314		if (ret2 == 0) {
315			refcount_inc(&wbk->usage);
316			_debug("USE WB KEY %u", key_serial(wbk->key));
317			break;
318		}
319
320		wbk = NULL;
321		if (ret == -ENOKEY)
322			ret = ret2;
323		p = p->next;
324	}
325
326	spin_unlock(&vnode->wb_lock);
327	if (*_wbk)
328		afs_put_wb_key(*_wbk);
329	*_wbk = wbk;
330	return 0;
331}
332
333static void afs_store_data_success(struct afs_operation *op)
334{
335	struct afs_vnode *vnode = op->file[0].vnode;
336
337	op->ctime = op->file[0].scb.status.mtime_client;
338	afs_vnode_commit_status(op, &op->file[0]);
339	if (op->error == 0) {
340		if (!op->store.laundering)
341			afs_pages_written_back(vnode, op->store.pos, op->store.size);
342		afs_stat_v(vnode, n_stores);
343		atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
 
 
344	}
345}
346
347static const struct afs_operation_ops afs_store_data_operation = {
348	.issue_afs_rpc	= afs_fs_store_data,
349	.issue_yfs_rpc	= yfs_fs_store_data,
350	.success	= afs_store_data_success,
351};
352
353/*
354 * write to a file
355 */
356static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos,
357			  bool laundering)
 
358{
 
359	struct afs_operation *op;
360	struct afs_wb_key *wbk = NULL;
361	loff_t size = iov_iter_count(iter), i_size;
362	int ret = -ENOKEY;
363
364	_enter("%s{%llx:%llu.%u},%llx,%llx",
365	       vnode->volume->name,
366	       vnode->fid.vid,
367	       vnode->fid.vnode,
368	       vnode->fid.unique,
369	       size, pos);
370
371	ret = afs_get_writeback_key(vnode, &wbk);
372	if (ret) {
373		_leave(" = %d [no keys]", ret);
374		return ret;
375	}
376
377	op = afs_alloc_operation(wbk->key, vnode->volume);
378	if (IS_ERR(op)) {
379		afs_put_wb_key(wbk);
380		return -ENOMEM;
381	}
382
383	i_size = i_size_read(&vnode->vfs_inode);
384
385	afs_op_set_vnode(op, 0, vnode);
386	op->file[0].dv_delta = 1;
387	op->file[0].modification = true;
388	op->store.write_iter = iter;
389	op->store.pos = pos;
390	op->store.size = size;
391	op->store.i_size = max(pos + size, i_size);
392	op->store.laundering = laundering;
393	op->mtime = vnode->vfs_inode.i_mtime;
394	op->flags |= AFS_OPERATION_UNINTR;
395	op->ops = &afs_store_data_operation;
396
397try_next_key:
398	afs_begin_vnode_operation(op);
399	afs_wait_for_operation(op);
400
401	switch (op->error) {
402	case -EACCES:
403	case -EPERM:
404	case -ENOKEY:
405	case -EKEYEXPIRED:
406	case -EKEYREJECTED:
407	case -EKEYREVOKED:
408		_debug("next");
409
410		ret = afs_get_writeback_key(vnode, &wbk);
411		if (ret == 0) {
412			key_put(op->key);
413			op->key = key_get(wbk->key);
414			goto try_next_key;
415		}
416		break;
417	}
418
419	afs_put_wb_key(wbk);
420	_leave(" = %d", op->error);
421	return afs_put_operation(op);
422}
423
424/*
425 * Extend the region to be written back to include subsequent contiguously
426 * dirty pages if possible, but don't sleep while doing so.
427 *
428 * If this page holds new content, then we can include filler zeros in the
429 * writeback.
430 */
431static void afs_extend_writeback(struct address_space *mapping,
432				 struct afs_vnode *vnode,
433				 long *_count,
434				 loff_t start,
435				 loff_t max_len,
436				 bool new_content,
437				 unsigned int *_len)
438{
439	struct pagevec pvec;
440	struct page *page;
441	unsigned long priv;
442	unsigned int psize, filler = 0;
443	unsigned int f, t;
444	loff_t len = *_len;
445	pgoff_t index = (start + len) / PAGE_SIZE;
446	bool stop = true;
447	unsigned int i;
448
449	XA_STATE(xas, &mapping->i_pages, index);
450	pagevec_init(&pvec);
451
452	do {
453		/* Firstly, we gather up a batch of contiguous dirty pages
454		 * under the RCU read lock - but we can't clear the dirty flags
455		 * there if any of those pages are mapped.
456		 */
457		rcu_read_lock();
458
459		xas_for_each(&xas, page, ULONG_MAX) {
460			stop = true;
461			if (xas_retry(&xas, page))
462				continue;
463			if (xa_is_value(page))
464				break;
465			if (page->index != index)
466				break;
467
468			if (!page_cache_get_speculative(page)) {
469				xas_reset(&xas);
470				continue;
471			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472
473			/* Has the page moved or been split? */
474			if (unlikely(page != xas_reload(&xas))) {
475				put_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
476				break;
477			}
478
479			if (!trylock_page(page)) {
480				put_page(page);
481				break;
482			}
483			if (!PageDirty(page) || PageWriteback(page)) {
484				unlock_page(page);
485				put_page(page);
486				break;
487			}
488
489			psize = thp_size(page);
490			priv = page_private(page);
491			f = afs_page_dirty_from(page, priv);
492			t = afs_page_dirty_to(page, priv);
493			if (f != 0 && !new_content) {
 
494				unlock_page(page);
495				put_page(page);
496				break;
497			}
 
498
499			len += filler + t;
500			filler = psize - t;
501			if (len >= max_len || *_count <= 0)
502				stop = true;
503			else if (t == psize || new_content)
504				stop = false;
505
506			index += thp_nr_pages(page);
507			if (!pagevec_add(&pvec, page))
508				break;
509			if (stop)
510				break;
511		}
512
513		if (!stop)
514			xas_pause(&xas);
515		rcu_read_unlock();
516
517		/* Now, if we obtained any pages, we can shift them to being
518		 * writable and mark them for caching.
519		 */
520		if (!pagevec_count(&pvec))
521			break;
522
523		for (i = 0; i < pagevec_count(&pvec); i++) {
524			page = pvec.pages[i];
525			trace_afs_page_dirty(vnode, tracepoint_string("store+"), page);
526
527			if (!clear_page_dirty_for_io(page))
528				BUG();
529			if (test_set_page_writeback(page))
530				BUG();
531
532			*_count -= thp_nr_pages(page);
533			unlock_page(page);
 
 
 
 
 
 
 
534		}
535
536		pagevec_release(&pvec);
537		cond_resched();
538	} while (!stop);
539
540	*_len = len;
541}
542
543/*
544 * Synchronously write back the locked page and any subsequent non-locked dirty
545 * pages.
546 */
547static ssize_t afs_write_back_from_locked_page(struct address_space *mapping,
548					       struct writeback_control *wbc,
549					       struct page *page,
550					       loff_t start, loff_t end)
551{
552	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
553	struct iov_iter iter;
554	unsigned long priv;
555	unsigned int offset, to, len, max_len;
556	loff_t i_size = i_size_read(&vnode->vfs_inode);
557	bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
558	long count = wbc->nr_to_write;
559	int ret;
560
561	_enter(",%lx,%llx-%llx", page->index, start, end);
562
563	if (test_set_page_writeback(page))
564		BUG();
565
566	count -= thp_nr_pages(page);
567
568	/* Find all consecutive lockable dirty pages that have contiguous
569	 * written regions, stopping when we find a page that is not
570	 * immediately lockable, is not dirty or is missing, or we reach the
571	 * end of the range.
572	 */
573	priv = page_private(page);
574	offset = afs_page_dirty_from(page, priv);
575	to = afs_page_dirty_to(page, priv);
576	trace_afs_page_dirty(vnode, tracepoint_string("store"), page);
577
578	len = to - offset;
579	start += offset;
580	if (start < i_size) {
581		/* Trim the write to the EOF; the extra data is ignored.  Also
582		 * put an upper limit on the size of a single storedata op.
583		 */
584		max_len = 65536 * 4096;
585		max_len = min_t(unsigned long long, max_len, end - start + 1);
586		max_len = min_t(unsigned long long, max_len, i_size - start);
587
588		if (len < max_len &&
589		    (to == thp_size(page) || new_content))
590			afs_extend_writeback(mapping, vnode, &count,
591					     start, max_len, new_content, &len);
592		len = min_t(loff_t, len, max_len);
593	}
594
 
595	/* We now have a contiguous set of dirty pages, each with writeback
596	 * set; the first page is still locked at this point, but all the rest
597	 * have been unlocked.
598	 */
599	unlock_page(page);
600
601	if (start < i_size) {
602		_debug("write back %x @%llx [%llx]", len, start, i_size);
603
604		iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len);
605		ret = afs_store_data(vnode, &iter, start, false);
606	} else {
607		_debug("write discard %x @%llx [%llx]", len, start, i_size);
608
609		/* The dirty region was entirely beyond the EOF. */
610		afs_pages_written_back(vnode, start, len);
611		ret = 0;
612	}
613
 
614	switch (ret) {
615	case 0:
616		wbc->nr_to_write = count;
617		ret = len;
618		break;
619
620	default:
621		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
622		fallthrough;
623	case -EACCES:
624	case -EPERM:
625	case -ENOKEY:
626	case -EKEYEXPIRED:
627	case -EKEYREJECTED:
628	case -EKEYREVOKED:
629		afs_redirty_pages(wbc, mapping, start, len);
630		mapping_set_error(mapping, ret);
631		break;
632
633	case -EDQUOT:
634	case -ENOSPC:
635		afs_redirty_pages(wbc, mapping, start, len);
636		mapping_set_error(mapping, -ENOSPC);
637		break;
638
639	case -EROFS:
640	case -EIO:
641	case -EREMOTEIO:
642	case -EFBIG:
643	case -ENOENT:
644	case -ENOMEDIUM:
645	case -ENXIO:
646		trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
647		afs_kill_pages(mapping, start, len);
648		mapping_set_error(mapping, ret);
649		break;
650	}
651
652	_leave(" = %d", ret);
653	return ret;
654}
655
656/*
657 * write a page back to the server
658 * - the caller locked the page for us
659 */
660int afs_writepage(struct page *page, struct writeback_control *wbc)
661{
662	ssize_t ret;
663	loff_t start;
664
665	_enter("{%lx},", page->index);
666
667	start = page->index * PAGE_SIZE;
668	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
669					      start, LLONG_MAX - start);
670	if (ret < 0) {
671		_leave(" = %zd", ret);
672		return ret;
673	}
674
 
 
675	_leave(" = 0");
676	return 0;
677}
678
679/*
680 * write a region of pages back to the server
681 */
682static int afs_writepages_region(struct address_space *mapping,
683				 struct writeback_control *wbc,
684				 loff_t start, loff_t end, loff_t *_next)
685{
686	struct page *page;
687	ssize_t ret;
688	int n;
689
690	_enter("%llx,%llx,", start, end);
691
692	do {
693		pgoff_t index = start / PAGE_SIZE;
694
695		n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE,
696					     PAGECACHE_TAG_DIRTY, 1, &page);
697		if (!n)
698			break;
699
700		start = (loff_t)page->index * PAGE_SIZE; /* May regress with THPs */
701
702		_debug("wback %lx", page->index);
703
704		/* At this point we hold neither the i_pages lock nor the
 
705		 * page lock: the page may be truncated or invalidated
706		 * (changing page->mapping to NULL), or even swizzled
707		 * back from swapper_space to tmpfs file mapping
708		 */
709		if (wbc->sync_mode != WB_SYNC_NONE) {
710			ret = lock_page_killable(page);
711			if (ret < 0) {
712				put_page(page);
713				return ret;
714			}
715		} else {
716			if (!trylock_page(page)) {
717				put_page(page);
718				return 0;
719			}
720		}
721
722		if (page->mapping != mapping || !PageDirty(page)) {
723			start += thp_size(page);
724			unlock_page(page);
725			put_page(page);
726			continue;
727		}
728
729		if (PageWriteback(page)) {
730			unlock_page(page);
731			if (wbc->sync_mode != WB_SYNC_NONE)
732				wait_on_page_writeback(page);
733			put_page(page);
734			continue;
735		}
736
737		if (!clear_page_dirty_for_io(page))
738			BUG();
739		ret = afs_write_back_from_locked_page(mapping, wbc, page, start, end);
740		put_page(page);
741		if (ret < 0) {
742			_leave(" = %zd", ret);
743			return ret;
744		}
745
746		start += ret;
747
748		cond_resched();
749	} while (wbc->nr_to_write > 0);
750
751	*_next = start;
752	_leave(" = 0 [%llx]", *_next);
753	return 0;
754}
755
756/*
757 * write some of the pending data back to the server
758 */
759int afs_writepages(struct address_space *mapping,
760		   struct writeback_control *wbc)
761{
762	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
763	loff_t start, next;
764	int ret;
765
766	_enter("");
767
768	/* We have to be careful as we can end up racing with setattr()
769	 * truncating the pagecache since the caller doesn't take a lock here
770	 * to prevent it.
771	 */
772	if (wbc->sync_mode == WB_SYNC_ALL)
773		down_read(&vnode->validate_lock);
774	else if (!down_read_trylock(&vnode->validate_lock))
775		return 0;
776
777	if (wbc->range_cyclic) {
778		start = mapping->writeback_index * PAGE_SIZE;
779		ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next);
780		if (ret == 0) {
781			mapping->writeback_index = next / PAGE_SIZE;
782			if (start > 0 && wbc->nr_to_write > 0) {
783				ret = afs_writepages_region(mapping, wbc, 0,
784							    start, &next);
785				if (ret == 0)
786					mapping->writeback_index =
787						next / PAGE_SIZE;
788			}
789		}
790	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
791		ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next);
792		if (wbc->nr_to_write > 0 && ret == 0)
793			mapping->writeback_index = next / PAGE_SIZE;
 
794	} else {
795		ret = afs_writepages_region(mapping, wbc,
796					    wbc->range_start, wbc->range_end, &next);
 
797	}
798
799	up_read(&vnode->validate_lock);
800	_leave(" = %d", ret);
801	return ret;
802}
803
804/*
805 * write to an AFS file
806 */
807ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
808{
809	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
810	struct afs_file *af = iocb->ki_filp->private_data;
811	ssize_t result;
812	size_t count = iov_iter_count(from);
813
814	_enter("{%llx:%llu},{%zu},",
815	       vnode->fid.vid, vnode->fid.vnode, count);
816
817	if (IS_SWAPFILE(&vnode->vfs_inode)) {
818		printk(KERN_INFO
819		       "AFS: Attempt to write to active swap file!\n");
820		return -EBUSY;
821	}
822
823	if (!count)
824		return 0;
825
826	result = afs_validate(vnode, af->key);
827	if (result < 0)
828		return result;
829
830	result = generic_file_write_iter(iocb, from);
831
832	_leave(" = %zd", result);
833	return result;
834}
835
836/*
837 * flush any dirty pages for this process, and check for write errors.
838 * - the return status from this call provides a reliable indication of
839 *   whether any write errors occurred for this process.
840 */
841int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
842{
843	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
844	struct afs_file *af = file->private_data;
845	int ret;
846
847	_enter("{%llx:%llu},{n=%pD},%d",
848	       vnode->fid.vid, vnode->fid.vnode, file,
849	       datasync);
850
851	ret = afs_validate(vnode, af->key);
852	if (ret < 0)
853		return ret;
854
855	return file_write_and_wait_range(file, start, end);
856}
857
858/*
859 * notification that a previously read-only page is about to become writable
860 * - if it returns an error, the caller will deliver a bus error signal
861 */
862vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
863{
864	struct page *page = thp_head(vmf->page);
865	struct file *file = vmf->vma->vm_file;
866	struct inode *inode = file_inode(file);
867	struct afs_vnode *vnode = AFS_FS_I(inode);
868	struct afs_file *af = file->private_data;
869	unsigned long priv;
870	vm_fault_t ret = VM_FAULT_RETRY;
871
872	_enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, page->index);
873
874	afs_validate(vnode, af->key);
 
875
876	sb_start_pagefault(inode->i_sb);
877
878	/* Wait for the page to be written to the cache before we allow it to
879	 * be modified.  We then assume the entire page will need writing back.
880	 */
881#ifdef CONFIG_AFS_FSCACHE
882	if (PageFsCache(page) &&
883	    wait_on_page_fscache_killable(page) < 0)
884		goto out;
885#endif
886
887	if (wait_on_page_writeback_killable(page))
888		goto out;
 
889
890	if (lock_page_killable(page) < 0)
891		goto out;
892
893	/* We mustn't change page->private until writeback is complete as that
894	 * details the portion of the page we need to write back and we might
895	 * need to redirty the page if there's a problem.
896	 */
897	if (wait_on_page_writeback_killable(page) < 0) {
898		unlock_page(page);
899		goto out;
900	}
901
902	priv = afs_page_dirty(page, 0, thp_size(page));
903	priv = afs_page_dirty_mmapped(priv);
904	if (PagePrivate(page)) {
905		set_page_private(page, priv);
906		trace_afs_page_dirty(vnode, tracepoint_string("mkwrite+"), page);
907	} else {
908		attach_page_private(page, (void *)priv);
909		trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"), page);
910	}
911	file_update_time(file);
912
913	ret = VM_FAULT_LOCKED;
914out:
915	sb_end_pagefault(inode->i_sb);
916	return ret;
917}
918
919/*
920 * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
921 */
922void afs_prune_wb_keys(struct afs_vnode *vnode)
923{
924	LIST_HEAD(graveyard);
925	struct afs_wb_key *wbk, *tmp;
926
927	/* Discard unused keys */
928	spin_lock(&vnode->wb_lock);
929
930	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
931	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
932		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
933			if (refcount_read(&wbk->usage) == 1)
934				list_move(&wbk->vnode_link, &graveyard);
935		}
936	}
937
938	spin_unlock(&vnode->wb_lock);
939
940	while (!list_empty(&graveyard)) {
941		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
942		list_del(&wbk->vnode_link);
943		afs_put_wb_key(wbk);
944	}
945}
946
947/*
948 * Clean up a page during invalidation.
949 */
950int afs_launder_page(struct page *page)
951{
952	struct address_space *mapping = page->mapping;
953	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
954	struct iov_iter iter;
955	struct bio_vec bv[1];
956	unsigned long priv;
957	unsigned int f, t;
958	int ret = 0;
959
960	_enter("{%lx}", page->index);
961
962	priv = page_private(page);
963	if (clear_page_dirty_for_io(page)) {
964		f = 0;
965		t = thp_size(page);
966		if (PagePrivate(page)) {
967			f = afs_page_dirty_from(page, priv);
968			t = afs_page_dirty_to(page, priv);
969		}
970
971		bv[0].bv_page = page;
972		bv[0].bv_offset = f;
973		bv[0].bv_len = t - f;
974		iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len);
975
976		trace_afs_page_dirty(vnode, tracepoint_string("launder"), page);
977		ret = afs_store_data(vnode, &iter, page_offset(page) + f, true);
978	}
979
980	trace_afs_page_dirty(vnode, tracepoint_string("laundered"), page);
981	detach_page_private(page);
982	wait_on_page_fscache(page);
 
 
 
 
 
 
 
 
983	return ret;
984}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/* handling of writes to regular files and writing back to the server
  3 *
  4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
  5 * Written by David Howells (dhowells@redhat.com)
  6 */
  7
  8#include <linux/backing-dev.h>
  9#include <linux/slab.h>
 10#include <linux/fs.h>
 11#include <linux/pagemap.h>
 12#include <linux/writeback.h>
 13#include <linux/pagevec.h>
 
 
 14#include "internal.h"
 15
 16/*
 17 * mark a page as having been made dirty and thus needing writeback
 18 */
 19int afs_set_page_dirty(struct page *page)
 20{
 21	_enter("");
 22	return __set_page_dirty_nobuffers(page);
 23}
 24
 25/*
 26 * partly or wholly fill a page that's under preparation for writing
 27 */
 28static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
 29			 loff_t pos, unsigned int len, struct page *page)
 30{
 31	struct afs_read *req;
 32	size_t p;
 33	void *data;
 34	int ret;
 35
 36	_enter(",,%llu", (unsigned long long)pos);
 37
 38	if (pos >= vnode->vfs_inode.i_size) {
 39		p = pos & ~PAGE_MASK;
 40		ASSERTCMP(p + len, <=, PAGE_SIZE);
 41		data = kmap(page);
 42		memset(data + p, 0, len);
 43		kunmap(page);
 44		return 0;
 45	}
 46
 47	req = kzalloc(struct_size(req, array, 1), GFP_KERNEL);
 48	if (!req)
 49		return -ENOMEM;
 50
 51	refcount_set(&req->usage, 1);
 52	req->pos = pos;
 53	req->len = len;
 54	req->nr_pages = 1;
 55	req->pages = req->array;
 56	req->pages[0] = page;
 57	get_page(page);
 58
 59	ret = afs_fetch_data(vnode, key, req);
 60	afs_put_read(req);
 61	if (ret < 0) {
 62		if (ret == -ENOENT) {
 63			_debug("got NOENT from server"
 64			       " - marking file deleted and stale");
 65			set_bit(AFS_VNODE_DELETED, &vnode->flags);
 66			ret = -ESTALE;
 67		}
 68	}
 69
 70	_leave(" = %d", ret);
 71	return ret;
 72}
 73
 74/*
 75 * prepare to perform part of a write to a page
 76 */
 77int afs_write_begin(struct file *file, struct address_space *mapping,
 78		    loff_t pos, unsigned len, unsigned flags,
 79		    struct page **pagep, void **fsdata)
 80{
 81	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
 82	struct page *page;
 83	struct key *key = afs_file_key(file);
 84	unsigned long priv;
 85	unsigned f, from = pos & (PAGE_SIZE - 1);
 86	unsigned t, to = from + len;
 87	pgoff_t index = pos >> PAGE_SHIFT;
 88	int ret;
 89
 90	_enter("{%llx:%llu},{%lx},%u,%u",
 91	       vnode->fid.vid, vnode->fid.vnode, index, from, to);
 92
 93	/* We want to store information about how much of a page is altered in
 94	 * page->private.
 
 95	 */
 96	BUILD_BUG_ON(PAGE_SIZE > 32768 && sizeof(page->private) < 8);
 
 
 
 97
 98	page = grab_cache_page_write_begin(mapping, index, flags);
 99	if (!page)
100		return -ENOMEM;
101
102	if (!PageUptodate(page) && len != PAGE_SIZE) {
103		ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
104		if (ret < 0) {
105			unlock_page(page);
106			put_page(page);
107			_leave(" = %d [prep]", ret);
108			return ret;
109		}
110		SetPageUptodate(page);
111	}
112
113	/* page won't leak in error case: it eventually gets cleaned off LRU */
114	*pagep = page;
115
116try_again:
117	/* See if this page is already partially written in a way that we can
118	 * merge the new write with.
119	 */
120	t = f = 0;
121	if (PagePrivate(page)) {
122		priv = page_private(page);
123		f = priv & AFS_PRIV_MAX;
124		t = priv >> AFS_PRIV_SHIFT;
125		ASSERTCMP(f, <=, t);
126	}
127
128	if (f != t) {
129		if (PageWriteback(page)) {
130			trace_afs_page_dirty(vnode, tracepoint_string("alrdy"),
131					     page->index, priv);
132			goto flush_conflicting_write;
133		}
134		/* If the file is being filled locally, allow inter-write
135		 * spaces to be merged into writes.  If it's not, only write
136		 * back what the user gives us.
137		 */
138		if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
139		    (to < f || from > t))
140			goto flush_conflicting_write;
141		if (from < f)
142			f = from;
143		if (to > t)
144			t = to;
145	} else {
146		f = from;
147		t = to;
148	}
149
150	priv = (unsigned long)t << AFS_PRIV_SHIFT;
151	priv |= f;
152	trace_afs_page_dirty(vnode, tracepoint_string("begin"),
153			     page->index, priv);
154	SetPagePrivate(page);
155	set_page_private(page, priv);
156	_leave(" = 0");
157	return 0;
158
159	/* The previous write and this write aren't adjacent or overlapping, so
160	 * flush the page out.
161	 */
162flush_conflicting_write:
163	_debug("flush conflict");
164	ret = write_one_page(page);
165	if (ret < 0) {
166		_leave(" = %d", ret);
167		return ret;
168	}
169
170	ret = lock_page_killable(page);
171	if (ret < 0) {
172		_leave(" = %d", ret);
173		return ret;
174	}
175	goto try_again;
 
 
 
 
 
176}
177
178/*
179 * finalise part of a write to a page
180 */
181int afs_write_end(struct file *file, struct address_space *mapping,
182		  loff_t pos, unsigned len, unsigned copied,
183		  struct page *page, void *fsdata)
184{
185	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
186	struct key *key = afs_file_key(file);
 
 
187	loff_t i_size, maybe_i_size;
188	int ret;
189
190	_enter("{%llx:%llu},{%lx}",
191	       vnode->fid.vid, vnode->fid.vnode, page->index);
192
 
 
 
 
 
 
 
 
 
 
 
 
193	maybe_i_size = pos + copied;
194
195	i_size = i_size_read(&vnode->vfs_inode);
196	if (maybe_i_size > i_size) {
197		write_seqlock(&vnode->cb_lock);
198		i_size = i_size_read(&vnode->vfs_inode);
199		if (maybe_i_size > i_size)
200			i_size_write(&vnode->vfs_inode, maybe_i_size);
201		write_sequnlock(&vnode->cb_lock);
202	}
203
204	if (!PageUptodate(page)) {
205		if (copied < len) {
206			/* Try and load any missing data from the server.  The
207			 * unmarshalling routine will take care of clearing any
208			 * bits that are beyond the EOF.
209			 */
210			ret = afs_fill_page(vnode, key, pos + copied,
211					    len - copied, page);
212			if (ret < 0)
213				goto out;
214		}
215		SetPageUptodate(page);
 
 
 
216	}
217
218	set_page_dirty(page);
219	if (PageDirty(page))
220		_debug("dirtied");
221	ret = copied;
222
223out:
224	unlock_page(page);
225	put_page(page);
226	return ret;
227}
228
229/*
230 * kill all the pages in the given range
231 */
232static void afs_kill_pages(struct address_space *mapping,
233			   pgoff_t first, pgoff_t last)
234{
235	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
236	struct pagevec pv;
237	unsigned count, loop;
238
239	_enter("{%llx:%llu},%lx-%lx",
240	       vnode->fid.vid, vnode->fid.vnode, first, last);
241
242	pagevec_init(&pv);
243
244	do {
245		_debug("kill %lx-%lx", first, last);
246
247		count = last - first + 1;
248		if (count > PAGEVEC_SIZE)
249			count = PAGEVEC_SIZE;
250		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
251		ASSERTCMP(pv.nr, ==, count);
252
253		for (loop = 0; loop < count; loop++) {
254			struct page *page = pv.pages[loop];
 
 
 
 
 
 
 
255			ClearPageUptodate(page);
256			SetPageError(page);
257			end_page_writeback(page);
258			if (page->index >= first)
259				first = page->index + 1;
260			lock_page(page);
261			generic_error_remove_page(mapping, page);
262			unlock_page(page);
263		}
264
265		__pagevec_release(&pv);
266	} while (first <= last);
267
268	_leave("");
269}
270
271/*
272 * Redirty all the pages in a given range.
273 */
274static void afs_redirty_pages(struct writeback_control *wbc,
275			      struct address_space *mapping,
276			      pgoff_t first, pgoff_t last)
277{
278	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
279	struct pagevec pv;
280	unsigned count, loop;
281
282	_enter("{%llx:%llu},%lx-%lx",
283	       vnode->fid.vid, vnode->fid.vnode, first, last);
284
285	pagevec_init(&pv);
286
287	do {
288		_debug("redirty %lx-%lx", first, last);
289
290		count = last - first + 1;
291		if (count > PAGEVEC_SIZE)
292			count = PAGEVEC_SIZE;
293		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
294		ASSERTCMP(pv.nr, ==, count);
295
296		for (loop = 0; loop < count; loop++) {
297			struct page *page = pv.pages[loop];
298
 
 
 
 
 
 
299			redirty_page_for_writepage(wbc, page);
300			end_page_writeback(page);
301			if (page->index >= first)
302				first = page->index + 1;
303		}
304
305		__pagevec_release(&pv);
306	} while (first <= last);
307
308	_leave("");
309}
310
311/*
312 * completion of write to server
313 */
314static void afs_pages_written_back(struct afs_vnode *vnode,
315				   pgoff_t first, pgoff_t last)
316{
317	struct pagevec pv;
318	unsigned long priv;
319	unsigned count, loop;
320
321	_enter("{%llx:%llu},{%lx-%lx}",
322	       vnode->fid.vid, vnode->fid.vnode, first, last);
323
324	pagevec_init(&pv);
 
325
326	do {
327		_debug("done %lx-%lx", first, last);
328
329		count = last - first + 1;
330		if (count > PAGEVEC_SIZE)
331			count = PAGEVEC_SIZE;
332		pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
333					      first, count, pv.pages);
334		ASSERTCMP(pv.nr, ==, count);
335
336		for (loop = 0; loop < count; loop++) {
337			priv = page_private(pv.pages[loop]);
338			trace_afs_page_dirty(vnode, tracepoint_string("clear"),
339					     pv.pages[loop]->index, priv);
340			set_page_private(pv.pages[loop], 0);
341			end_page_writeback(pv.pages[loop]);
342		}
343		first += count;
344		__pagevec_release(&pv);
345	} while (first <= last);
 
 
 
 
346
347	afs_prune_wb_keys(vnode);
348	_leave("");
349}
350
351/*
352 * Find a key to use for the writeback.  We cached the keys used to author the
353 * writes on the vnode.  *_wbk will contain the last writeback key used or NULL
354 * and we need to start from there if it's set.
355 */
356static int afs_get_writeback_key(struct afs_vnode *vnode,
357				 struct afs_wb_key **_wbk)
358{
359	struct afs_wb_key *wbk = NULL;
360	struct list_head *p;
361	int ret = -ENOKEY, ret2;
362
363	spin_lock(&vnode->wb_lock);
364	if (*_wbk)
365		p = (*_wbk)->vnode_link.next;
366	else
367		p = vnode->wb_keys.next;
368
369	while (p != &vnode->wb_keys) {
370		wbk = list_entry(p, struct afs_wb_key, vnode_link);
371		_debug("wbk %u", key_serial(wbk->key));
372		ret2 = key_validate(wbk->key);
373		if (ret2 == 0) {
374			refcount_inc(&wbk->usage);
375			_debug("USE WB KEY %u", key_serial(wbk->key));
376			break;
377		}
378
379		wbk = NULL;
380		if (ret == -ENOKEY)
381			ret = ret2;
382		p = p->next;
383	}
384
385	spin_unlock(&vnode->wb_lock);
386	if (*_wbk)
387		afs_put_wb_key(*_wbk);
388	*_wbk = wbk;
389	return 0;
390}
391
392static void afs_store_data_success(struct afs_operation *op)
393{
394	struct afs_vnode *vnode = op->file[0].vnode;
395
396	op->ctime = op->file[0].scb.status.mtime_client;
397	afs_vnode_commit_status(op, &op->file[0]);
398	if (op->error == 0) {
399		afs_pages_written_back(vnode, op->store.first, op->store.last);
 
400		afs_stat_v(vnode, n_stores);
401		atomic_long_add((op->store.last * PAGE_SIZE + op->store.last_to) -
402				(op->store.first * PAGE_SIZE + op->store.first_offset),
403				&afs_v2net(vnode)->n_store_bytes);
404	}
405}
406
407static const struct afs_operation_ops afs_store_data_operation = {
408	.issue_afs_rpc	= afs_fs_store_data,
409	.issue_yfs_rpc	= yfs_fs_store_data,
410	.success	= afs_store_data_success,
411};
412
413/*
414 * write to a file
415 */
416static int afs_store_data(struct address_space *mapping,
417			  pgoff_t first, pgoff_t last,
418			  unsigned offset, unsigned to)
419{
420	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
421	struct afs_operation *op;
422	struct afs_wb_key *wbk = NULL;
423	int ret;
 
424
425	_enter("%s{%llx:%llu.%u},%lx,%lx,%x,%x",
426	       vnode->volume->name,
427	       vnode->fid.vid,
428	       vnode->fid.vnode,
429	       vnode->fid.unique,
430	       first, last, offset, to);
431
432	ret = afs_get_writeback_key(vnode, &wbk);
433	if (ret) {
434		_leave(" = %d [no keys]", ret);
435		return ret;
436	}
437
438	op = afs_alloc_operation(wbk->key, vnode->volume);
439	if (IS_ERR(op)) {
440		afs_put_wb_key(wbk);
441		return -ENOMEM;
442	}
443
 
 
444	afs_op_set_vnode(op, 0, vnode);
445	op->file[0].dv_delta = 1;
446	op->store.mapping = mapping;
447	op->store.first = first;
448	op->store.last = last;
449	op->store.first_offset = offset;
450	op->store.last_to = to;
 
451	op->mtime = vnode->vfs_inode.i_mtime;
452	op->flags |= AFS_OPERATION_UNINTR;
453	op->ops = &afs_store_data_operation;
454
455try_next_key:
456	afs_begin_vnode_operation(op);
457	afs_wait_for_operation(op);
458
459	switch (op->error) {
460	case -EACCES:
461	case -EPERM:
462	case -ENOKEY:
463	case -EKEYEXPIRED:
464	case -EKEYREJECTED:
465	case -EKEYREVOKED:
466		_debug("next");
467
468		ret = afs_get_writeback_key(vnode, &wbk);
469		if (ret == 0) {
470			key_put(op->key);
471			op->key = key_get(wbk->key);
472			goto try_next_key;
473		}
474		break;
475	}
476
477	afs_put_wb_key(wbk);
478	_leave(" = %d", op->error);
479	return afs_put_operation(op);
480}
481
482/*
483 * Synchronously write back the locked page and any subsequent non-locked dirty
484 * pages.
485 */
486static int afs_write_back_from_locked_page(struct address_space *mapping,
487					   struct writeback_control *wbc,
488					   struct page *primary_page,
489					   pgoff_t final_page)
 
 
 
 
 
 
490{
491	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
492	struct page *pages[8], *page;
493	unsigned long count, priv;
494	unsigned n, offset, to, f, t;
495	pgoff_t start, first, last;
496	loff_t i_size, end;
497	int loop, ret;
 
 
 
 
 
498
499	_enter(",%lx", primary_page->index);
 
 
 
 
 
500
501	count = 1;
502	if (test_set_page_writeback(primary_page))
503		BUG();
 
 
 
 
 
504
505	/* Find all consecutive lockable dirty pages that have contiguous
506	 * written regions, stopping when we find a page that is not
507	 * immediately lockable, is not dirty or is missing, or we reach the
508	 * end of the range.
509	 */
510	start = primary_page->index;
511	priv = page_private(primary_page);
512	offset = priv & AFS_PRIV_MAX;
513	to = priv >> AFS_PRIV_SHIFT;
514	trace_afs_page_dirty(vnode, tracepoint_string("store"),
515			     primary_page->index, priv);
516
517	WARN_ON(offset == to);
518	if (offset == to)
519		trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
520				     primary_page->index, priv);
521
522	if (start >= final_page ||
523	    (to < PAGE_SIZE && !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)))
524		goto no_more;
525
526	start++;
527	do {
528		_debug("more %lx [%lx]", start, count);
529		n = final_page - start + 1;
530		if (n > ARRAY_SIZE(pages))
531			n = ARRAY_SIZE(pages);
532		n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
533		_debug("fgpc %u", n);
534		if (n == 0)
535			goto no_more;
536		if (pages[0]->index != start) {
537			do {
538				put_page(pages[--n]);
539			} while (n > 0);
540			goto no_more;
541		}
542
543		for (loop = 0; loop < n; loop++) {
544			page = pages[loop];
545			if (to != PAGE_SIZE &&
546			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags))
547				break;
548			if (page->index > final_page)
549				break;
550			if (!trylock_page(page))
 
551				break;
 
552			if (!PageDirty(page) || PageWriteback(page)) {
553				unlock_page(page);
 
554				break;
555			}
556
 
557			priv = page_private(page);
558			f = priv & AFS_PRIV_MAX;
559			t = priv >> AFS_PRIV_SHIFT;
560			if (f != 0 &&
561			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)) {
562				unlock_page(page);
 
563				break;
564			}
565			to = t;
566
567			trace_afs_page_dirty(vnode, tracepoint_string("store+"),
568					     page->index, priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
569
570			if (!clear_page_dirty_for_io(page))
571				BUG();
572			if (test_set_page_writeback(page))
573				BUG();
 
 
574			unlock_page(page);
575			put_page(page);
576		}
577		count += loop;
578		if (loop < n) {
579			for (; loop < n; loop++)
580				put_page(pages[loop]);
581			goto no_more;
582		}
583
584		start += loop;
585	} while (start <= final_page && count < 65536);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586
587no_more:
588	/* We now have a contiguous set of dirty pages, each with writeback
589	 * set; the first page is still locked at this point, but all the rest
590	 * have been unlocked.
591	 */
592	unlock_page(primary_page);
593
594	first = primary_page->index;
595	last = first + count - 1;
596
597	end = (loff_t)last * PAGE_SIZE + to;
598	i_size = i_size_read(&vnode->vfs_inode);
 
 
599
600	_debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
601	if (end > i_size)
602		to = i_size & ~PAGE_MASK;
 
603
604	ret = afs_store_data(mapping, first, last, offset, to);
605	switch (ret) {
606	case 0:
607		ret = count;
 
608		break;
609
610	default:
611		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
612		fallthrough;
613	case -EACCES:
614	case -EPERM:
615	case -ENOKEY:
616	case -EKEYEXPIRED:
617	case -EKEYREJECTED:
618	case -EKEYREVOKED:
619		afs_redirty_pages(wbc, mapping, first, last);
620		mapping_set_error(mapping, ret);
621		break;
622
623	case -EDQUOT:
624	case -ENOSPC:
625		afs_redirty_pages(wbc, mapping, first, last);
626		mapping_set_error(mapping, -ENOSPC);
627		break;
628
629	case -EROFS:
630	case -EIO:
631	case -EREMOTEIO:
632	case -EFBIG:
633	case -ENOENT:
634	case -ENOMEDIUM:
635	case -ENXIO:
636		trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
637		afs_kill_pages(mapping, first, last);
638		mapping_set_error(mapping, ret);
639		break;
640	}
641
642	_leave(" = %d", ret);
643	return ret;
644}
645
646/*
647 * write a page back to the server
648 * - the caller locked the page for us
649 */
650int afs_writepage(struct page *page, struct writeback_control *wbc)
651{
652	int ret;
 
653
654	_enter("{%lx},", page->index);
655
 
656	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
657					      wbc->range_end >> PAGE_SHIFT);
658	if (ret < 0) {
659		_leave(" = %d", ret);
660		return 0;
661	}
662
663	wbc->nr_to_write -= ret;
664
665	_leave(" = 0");
666	return 0;
667}
668
669/*
670 * write a region of pages back to the server
671 */
672static int afs_writepages_region(struct address_space *mapping,
673				 struct writeback_control *wbc,
674				 pgoff_t index, pgoff_t end, pgoff_t *_next)
675{
676	struct page *page;
677	int ret, n;
 
678
679	_enter(",,%lx,%lx,", index, end);
680
681	do {
682		n = find_get_pages_range_tag(mapping, &index, end,
683					PAGECACHE_TAG_DIRTY, 1, &page);
 
 
684		if (!n)
685			break;
686
 
 
687		_debug("wback %lx", page->index);
688
689		/*
690		 * at this point we hold neither the i_pages lock nor the
691		 * page lock: the page may be truncated or invalidated
692		 * (changing page->mapping to NULL), or even swizzled
693		 * back from swapper_space to tmpfs file mapping
694		 */
695		ret = lock_page_killable(page);
696		if (ret < 0) {
697			put_page(page);
698			_leave(" = %d", ret);
699			return ret;
 
 
 
 
 
 
700		}
701
702		if (page->mapping != mapping || !PageDirty(page)) {
 
703			unlock_page(page);
704			put_page(page);
705			continue;
706		}
707
708		if (PageWriteback(page)) {
709			unlock_page(page);
710			if (wbc->sync_mode != WB_SYNC_NONE)
711				wait_on_page_writeback(page);
712			put_page(page);
713			continue;
714		}
715
716		if (!clear_page_dirty_for_io(page))
717			BUG();
718		ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
719		put_page(page);
720		if (ret < 0) {
721			_leave(" = %d", ret);
722			return ret;
723		}
724
725		wbc->nr_to_write -= ret;
726
727		cond_resched();
728	} while (index < end && wbc->nr_to_write > 0);
729
730	*_next = index;
731	_leave(" = 0 [%lx]", *_next);
732	return 0;
733}
734
735/*
736 * write some of the pending data back to the server
737 */
738int afs_writepages(struct address_space *mapping,
739		   struct writeback_control *wbc)
740{
741	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
742	pgoff_t start, end, next;
743	int ret;
744
745	_enter("");
746
747	/* We have to be careful as we can end up racing with setattr()
748	 * truncating the pagecache since the caller doesn't take a lock here
749	 * to prevent it.
750	 */
751	if (wbc->sync_mode == WB_SYNC_ALL)
752		down_read(&vnode->validate_lock);
753	else if (!down_read_trylock(&vnode->validate_lock))
754		return 0;
755
756	if (wbc->range_cyclic) {
757		start = mapping->writeback_index;
758		end = -1;
759		ret = afs_writepages_region(mapping, wbc, start, end, &next);
760		if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
761			ret = afs_writepages_region(mapping, wbc, 0, start,
762						    &next);
763		mapping->writeback_index = next;
 
 
 
 
 
764	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
765		end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
766		ret = afs_writepages_region(mapping, wbc, 0, end, &next);
767		if (wbc->nr_to_write > 0)
768			mapping->writeback_index = next;
769	} else {
770		start = wbc->range_start >> PAGE_SHIFT;
771		end = wbc->range_end >> PAGE_SHIFT;
772		ret = afs_writepages_region(mapping, wbc, start, end, &next);
773	}
774
775	up_read(&vnode->validate_lock);
776	_leave(" = %d", ret);
777	return ret;
778}
779
780/*
781 * write to an AFS file
782 */
783ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
784{
785	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
 
786	ssize_t result;
787	size_t count = iov_iter_count(from);
788
789	_enter("{%llx:%llu},{%zu},",
790	       vnode->fid.vid, vnode->fid.vnode, count);
791
792	if (IS_SWAPFILE(&vnode->vfs_inode)) {
793		printk(KERN_INFO
794		       "AFS: Attempt to write to active swap file!\n");
795		return -EBUSY;
796	}
797
798	if (!count)
799		return 0;
800
 
 
 
 
801	result = generic_file_write_iter(iocb, from);
802
803	_leave(" = %zd", result);
804	return result;
805}
806
807/*
808 * flush any dirty pages for this process, and check for write errors.
809 * - the return status from this call provides a reliable indication of
810 *   whether any write errors occurred for this process.
811 */
812int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
813{
814	struct inode *inode = file_inode(file);
815	struct afs_vnode *vnode = AFS_FS_I(inode);
 
816
817	_enter("{%llx:%llu},{n=%pD},%d",
818	       vnode->fid.vid, vnode->fid.vnode, file,
819	       datasync);
820
 
 
 
 
821	return file_write_and_wait_range(file, start, end);
822}
823
824/*
825 * notification that a previously read-only page is about to become writable
826 * - if it returns an error, the caller will deliver a bus error signal
827 */
828vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
829{
 
830	struct file *file = vmf->vma->vm_file;
831	struct inode *inode = file_inode(file);
832	struct afs_vnode *vnode = AFS_FS_I(inode);
 
833	unsigned long priv;
 
 
 
834
835	_enter("{{%llx:%llu}},{%lx}",
836	       vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
837
838	sb_start_pagefault(inode->i_sb);
839
840	/* Wait for the page to be written to the cache before we allow it to
841	 * be modified.  We then assume the entire page will need writing back.
842	 */
843#ifdef CONFIG_AFS_FSCACHE
844	fscache_wait_on_page_write(vnode->cache, vmf->page);
 
 
845#endif
846
847	if (PageWriteback(vmf->page) &&
848	    wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
849		return VM_FAULT_RETRY;
850
851	if (lock_page_killable(vmf->page) < 0)
852		return VM_FAULT_RETRY;
853
854	/* We mustn't change page->private until writeback is complete as that
855	 * details the portion of the page we need to write back and we might
856	 * need to redirty the page if there's a problem.
857	 */
858	wait_on_page_writeback(vmf->page);
 
 
 
859
860	priv = (unsigned long)PAGE_SIZE << AFS_PRIV_SHIFT; /* To */
861	priv |= 0; /* From */
862	trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
863			     vmf->page->index, priv);
864	SetPagePrivate(vmf->page);
865	set_page_private(vmf->page, priv);
 
 
 
866	file_update_time(file);
867
 
 
868	sb_end_pagefault(inode->i_sb);
869	return VM_FAULT_LOCKED;
870}
871
872/*
873 * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
874 */
875void afs_prune_wb_keys(struct afs_vnode *vnode)
876{
877	LIST_HEAD(graveyard);
878	struct afs_wb_key *wbk, *tmp;
879
880	/* Discard unused keys */
881	spin_lock(&vnode->wb_lock);
882
883	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
884	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
885		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
886			if (refcount_read(&wbk->usage) == 1)
887				list_move(&wbk->vnode_link, &graveyard);
888		}
889	}
890
891	spin_unlock(&vnode->wb_lock);
892
893	while (!list_empty(&graveyard)) {
894		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
895		list_del(&wbk->vnode_link);
896		afs_put_wb_key(wbk);
897	}
898}
899
900/*
901 * Clean up a page during invalidation.
902 */
903int afs_launder_page(struct page *page)
904{
905	struct address_space *mapping = page->mapping;
906	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
 
 
907	unsigned long priv;
908	unsigned int f, t;
909	int ret = 0;
910
911	_enter("{%lx}", page->index);
912
913	priv = page_private(page);
914	if (clear_page_dirty_for_io(page)) {
915		f = 0;
916		t = PAGE_SIZE;
917		if (PagePrivate(page)) {
918			f = priv & AFS_PRIV_MAX;
919			t = priv >> AFS_PRIV_SHIFT;
920		}
921
922		trace_afs_page_dirty(vnode, tracepoint_string("launder"),
923				     page->index, priv);
924		ret = afs_store_data(mapping, page->index, page->index, t, f);
 
 
 
 
925	}
926
927	trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
928			     page->index, priv);
929	set_page_private(page, 0);
930	ClearPagePrivate(page);
931
932#ifdef CONFIG_AFS_FSCACHE
933	if (PageFsCache(page)) {
934		fscache_wait_on_page_write(vnode->cache, page);
935		fscache_uncache_page(vnode->cache, page);
936	}
937#endif
938	return ret;
939}