Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Common code for Intel Running Average Power Limit (RAPL) support.
4 * Copyright (c) 2019, Intel Corporation.
5 */
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/list.h>
11#include <linux/types.h>
12#include <linux/device.h>
13#include <linux/slab.h>
14#include <linux/log2.h>
15#include <linux/bitmap.h>
16#include <linux/delay.h>
17#include <linux/sysfs.h>
18#include <linux/cpu.h>
19#include <linux/powercap.h>
20#include <linux/suspend.h>
21#include <linux/intel_rapl.h>
22#include <linux/processor.h>
23#include <linux/platform_device.h>
24
25#include <asm/iosf_mbi.h>
26#include <asm/cpu_device_id.h>
27#include <asm/intel-family.h>
28
29/* bitmasks for RAPL MSRs, used by primitive access functions */
30#define ENERGY_STATUS_MASK 0xffffffff
31
32#define POWER_LIMIT1_MASK 0x7FFF
33#define POWER_LIMIT1_ENABLE BIT(15)
34#define POWER_LIMIT1_CLAMP BIT(16)
35
36#define POWER_LIMIT2_MASK (0x7FFFULL<<32)
37#define POWER_LIMIT2_ENABLE BIT_ULL(47)
38#define POWER_LIMIT2_CLAMP BIT_ULL(48)
39#define POWER_HIGH_LOCK BIT_ULL(63)
40#define POWER_LOW_LOCK BIT(31)
41
42#define POWER_LIMIT4_MASK 0x1FFF
43
44#define TIME_WINDOW1_MASK (0x7FULL<<17)
45#define TIME_WINDOW2_MASK (0x7FULL<<49)
46
47#define POWER_UNIT_OFFSET 0
48#define POWER_UNIT_MASK 0x0F
49
50#define ENERGY_UNIT_OFFSET 0x08
51#define ENERGY_UNIT_MASK 0x1F00
52
53#define TIME_UNIT_OFFSET 0x10
54#define TIME_UNIT_MASK 0xF0000
55
56#define POWER_INFO_MAX_MASK (0x7fffULL<<32)
57#define POWER_INFO_MIN_MASK (0x7fffULL<<16)
58#define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
59#define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
60
61#define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
62#define PP_POLICY_MASK 0x1F
63
64/* Non HW constants */
65#define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
66#define RAPL_PRIMITIVE_DUMMY BIT(2)
67
68#define TIME_WINDOW_MAX_MSEC 40000
69#define TIME_WINDOW_MIN_MSEC 250
70#define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
71enum unit_type {
72 ARBITRARY_UNIT, /* no translation */
73 POWER_UNIT,
74 ENERGY_UNIT,
75 TIME_UNIT,
76};
77
78/* per domain data, some are optional */
79#define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
80
81#define DOMAIN_STATE_INACTIVE BIT(0)
82#define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
83#define DOMAIN_STATE_BIOS_LOCKED BIT(2)
84
85static const char pl1_name[] = "long_term";
86static const char pl2_name[] = "short_term";
87static const char pl4_name[] = "peak_power";
88
89#define power_zone_to_rapl_domain(_zone) \
90 container_of(_zone, struct rapl_domain, power_zone)
91
92struct rapl_defaults {
93 u8 floor_freq_reg_addr;
94 int (*check_unit)(struct rapl_package *rp, int cpu);
95 void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
96 u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
97 bool to_raw);
98 unsigned int dram_domain_energy_unit;
99 unsigned int psys_domain_energy_unit;
100};
101static struct rapl_defaults *rapl_defaults;
102
103/* Sideband MBI registers */
104#define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
105#define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
106
107#define PACKAGE_PLN_INT_SAVED BIT(0)
108#define MAX_PRIM_NAME (32)
109
110/* per domain data. used to describe individual knobs such that access function
111 * can be consolidated into one instead of many inline functions.
112 */
113struct rapl_primitive_info {
114 const char *name;
115 u64 mask;
116 int shift;
117 enum rapl_domain_reg_id id;
118 enum unit_type unit;
119 u32 flag;
120};
121
122#define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
123 .name = #p, \
124 .mask = m, \
125 .shift = s, \
126 .id = i, \
127 .unit = u, \
128 .flag = f \
129 }
130
131static void rapl_init_domains(struct rapl_package *rp);
132static int rapl_read_data_raw(struct rapl_domain *rd,
133 enum rapl_primitives prim,
134 bool xlate, u64 *data);
135static int rapl_write_data_raw(struct rapl_domain *rd,
136 enum rapl_primitives prim,
137 unsigned long long value);
138static u64 rapl_unit_xlate(struct rapl_domain *rd,
139 enum unit_type type, u64 value, int to_raw);
140static void package_power_limit_irq_save(struct rapl_package *rp);
141
142static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
143
144static const char *const rapl_domain_names[] = {
145 "package",
146 "core",
147 "uncore",
148 "dram",
149 "psys",
150};
151
152static int get_energy_counter(struct powercap_zone *power_zone,
153 u64 *energy_raw)
154{
155 struct rapl_domain *rd;
156 u64 energy_now;
157
158 /* prevent CPU hotplug, make sure the RAPL domain does not go
159 * away while reading the counter.
160 */
161 get_online_cpus();
162 rd = power_zone_to_rapl_domain(power_zone);
163
164 if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
165 *energy_raw = energy_now;
166 put_online_cpus();
167
168 return 0;
169 }
170 put_online_cpus();
171
172 return -EIO;
173}
174
175static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
176{
177 struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
178
179 *energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
180 return 0;
181}
182
183static int release_zone(struct powercap_zone *power_zone)
184{
185 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
186 struct rapl_package *rp = rd->rp;
187
188 /* package zone is the last zone of a package, we can free
189 * memory here since all children has been unregistered.
190 */
191 if (rd->id == RAPL_DOMAIN_PACKAGE) {
192 kfree(rd);
193 rp->domains = NULL;
194 }
195
196 return 0;
197
198}
199
200static int find_nr_power_limit(struct rapl_domain *rd)
201{
202 int i, nr_pl = 0;
203
204 for (i = 0; i < NR_POWER_LIMITS; i++) {
205 if (rd->rpl[i].name)
206 nr_pl++;
207 }
208
209 return nr_pl;
210}
211
212static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
213{
214 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
215
216 if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
217 return -EACCES;
218
219 get_online_cpus();
220 rapl_write_data_raw(rd, PL1_ENABLE, mode);
221 if (rapl_defaults->set_floor_freq)
222 rapl_defaults->set_floor_freq(rd, mode);
223 put_online_cpus();
224
225 return 0;
226}
227
228static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
229{
230 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
231 u64 val;
232
233 if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
234 *mode = false;
235 return 0;
236 }
237 get_online_cpus();
238 if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
239 put_online_cpus();
240 return -EIO;
241 }
242 *mode = val;
243 put_online_cpus();
244
245 return 0;
246}
247
248/* per RAPL domain ops, in the order of rapl_domain_type */
249static const struct powercap_zone_ops zone_ops[] = {
250 /* RAPL_DOMAIN_PACKAGE */
251 {
252 .get_energy_uj = get_energy_counter,
253 .get_max_energy_range_uj = get_max_energy_counter,
254 .release = release_zone,
255 .set_enable = set_domain_enable,
256 .get_enable = get_domain_enable,
257 },
258 /* RAPL_DOMAIN_PP0 */
259 {
260 .get_energy_uj = get_energy_counter,
261 .get_max_energy_range_uj = get_max_energy_counter,
262 .release = release_zone,
263 .set_enable = set_domain_enable,
264 .get_enable = get_domain_enable,
265 },
266 /* RAPL_DOMAIN_PP1 */
267 {
268 .get_energy_uj = get_energy_counter,
269 .get_max_energy_range_uj = get_max_energy_counter,
270 .release = release_zone,
271 .set_enable = set_domain_enable,
272 .get_enable = get_domain_enable,
273 },
274 /* RAPL_DOMAIN_DRAM */
275 {
276 .get_energy_uj = get_energy_counter,
277 .get_max_energy_range_uj = get_max_energy_counter,
278 .release = release_zone,
279 .set_enable = set_domain_enable,
280 .get_enable = get_domain_enable,
281 },
282 /* RAPL_DOMAIN_PLATFORM */
283 {
284 .get_energy_uj = get_energy_counter,
285 .get_max_energy_range_uj = get_max_energy_counter,
286 .release = release_zone,
287 .set_enable = set_domain_enable,
288 .get_enable = get_domain_enable,
289 },
290};
291
292/*
293 * Constraint index used by powercap can be different than power limit (PL)
294 * index in that some PLs maybe missing due to non-existent MSRs. So we
295 * need to convert here by finding the valid PLs only (name populated).
296 */
297static int contraint_to_pl(struct rapl_domain *rd, int cid)
298{
299 int i, j;
300
301 for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
302 if ((rd->rpl[i].name) && j++ == cid) {
303 pr_debug("%s: index %d\n", __func__, i);
304 return i;
305 }
306 }
307 pr_err("Cannot find matching power limit for constraint %d\n", cid);
308
309 return -EINVAL;
310}
311
312static int set_power_limit(struct powercap_zone *power_zone, int cid,
313 u64 power_limit)
314{
315 struct rapl_domain *rd;
316 struct rapl_package *rp;
317 int ret = 0;
318 int id;
319
320 get_online_cpus();
321 rd = power_zone_to_rapl_domain(power_zone);
322 id = contraint_to_pl(rd, cid);
323 if (id < 0) {
324 ret = id;
325 goto set_exit;
326 }
327
328 rp = rd->rp;
329
330 if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
331 dev_warn(&power_zone->dev,
332 "%s locked by BIOS, monitoring only\n", rd->name);
333 ret = -EACCES;
334 goto set_exit;
335 }
336
337 switch (rd->rpl[id].prim_id) {
338 case PL1_ENABLE:
339 rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
340 break;
341 case PL2_ENABLE:
342 rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
343 break;
344 case PL4_ENABLE:
345 rapl_write_data_raw(rd, POWER_LIMIT4, power_limit);
346 break;
347 default:
348 ret = -EINVAL;
349 }
350 if (!ret)
351 package_power_limit_irq_save(rp);
352set_exit:
353 put_online_cpus();
354 return ret;
355}
356
357static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
358 u64 *data)
359{
360 struct rapl_domain *rd;
361 u64 val;
362 int prim;
363 int ret = 0;
364 int id;
365
366 get_online_cpus();
367 rd = power_zone_to_rapl_domain(power_zone);
368 id = contraint_to_pl(rd, cid);
369 if (id < 0) {
370 ret = id;
371 goto get_exit;
372 }
373
374 switch (rd->rpl[id].prim_id) {
375 case PL1_ENABLE:
376 prim = POWER_LIMIT1;
377 break;
378 case PL2_ENABLE:
379 prim = POWER_LIMIT2;
380 break;
381 case PL4_ENABLE:
382 prim = POWER_LIMIT4;
383 break;
384 default:
385 put_online_cpus();
386 return -EINVAL;
387 }
388 if (rapl_read_data_raw(rd, prim, true, &val))
389 ret = -EIO;
390 else
391 *data = val;
392
393get_exit:
394 put_online_cpus();
395
396 return ret;
397}
398
399static int set_time_window(struct powercap_zone *power_zone, int cid,
400 u64 window)
401{
402 struct rapl_domain *rd;
403 int ret = 0;
404 int id;
405
406 get_online_cpus();
407 rd = power_zone_to_rapl_domain(power_zone);
408 id = contraint_to_pl(rd, cid);
409 if (id < 0) {
410 ret = id;
411 goto set_time_exit;
412 }
413
414 switch (rd->rpl[id].prim_id) {
415 case PL1_ENABLE:
416 rapl_write_data_raw(rd, TIME_WINDOW1, window);
417 break;
418 case PL2_ENABLE:
419 rapl_write_data_raw(rd, TIME_WINDOW2, window);
420 break;
421 default:
422 ret = -EINVAL;
423 }
424
425set_time_exit:
426 put_online_cpus();
427 return ret;
428}
429
430static int get_time_window(struct powercap_zone *power_zone, int cid,
431 u64 *data)
432{
433 struct rapl_domain *rd;
434 u64 val;
435 int ret = 0;
436 int id;
437
438 get_online_cpus();
439 rd = power_zone_to_rapl_domain(power_zone);
440 id = contraint_to_pl(rd, cid);
441 if (id < 0) {
442 ret = id;
443 goto get_time_exit;
444 }
445
446 switch (rd->rpl[id].prim_id) {
447 case PL1_ENABLE:
448 ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
449 break;
450 case PL2_ENABLE:
451 ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
452 break;
453 case PL4_ENABLE:
454 /*
455 * Time window parameter is not applicable for PL4 entry
456 * so assigining '0' as default value.
457 */
458 val = 0;
459 break;
460 default:
461 put_online_cpus();
462 return -EINVAL;
463 }
464 if (!ret)
465 *data = val;
466
467get_time_exit:
468 put_online_cpus();
469
470 return ret;
471}
472
473static const char *get_constraint_name(struct powercap_zone *power_zone,
474 int cid)
475{
476 struct rapl_domain *rd;
477 int id;
478
479 rd = power_zone_to_rapl_domain(power_zone);
480 id = contraint_to_pl(rd, cid);
481 if (id >= 0)
482 return rd->rpl[id].name;
483
484 return NULL;
485}
486
487static int get_max_power(struct powercap_zone *power_zone, int id, u64 *data)
488{
489 struct rapl_domain *rd;
490 u64 val;
491 int prim;
492 int ret = 0;
493
494 get_online_cpus();
495 rd = power_zone_to_rapl_domain(power_zone);
496 switch (rd->rpl[id].prim_id) {
497 case PL1_ENABLE:
498 prim = THERMAL_SPEC_POWER;
499 break;
500 case PL2_ENABLE:
501 prim = MAX_POWER;
502 break;
503 case PL4_ENABLE:
504 prim = MAX_POWER;
505 break;
506 default:
507 put_online_cpus();
508 return -EINVAL;
509 }
510 if (rapl_read_data_raw(rd, prim, true, &val))
511 ret = -EIO;
512 else
513 *data = val;
514
515 /* As a generalization rule, PL4 would be around two times PL2. */
516 if (rd->rpl[id].prim_id == PL4_ENABLE)
517 *data = *data * 2;
518
519 put_online_cpus();
520
521 return ret;
522}
523
524static const struct powercap_zone_constraint_ops constraint_ops = {
525 .set_power_limit_uw = set_power_limit,
526 .get_power_limit_uw = get_current_power_limit,
527 .set_time_window_us = set_time_window,
528 .get_time_window_us = get_time_window,
529 .get_max_power_uw = get_max_power,
530 .get_name = get_constraint_name,
531};
532
533/* called after domain detection and package level data are set */
534static void rapl_init_domains(struct rapl_package *rp)
535{
536 enum rapl_domain_type i;
537 enum rapl_domain_reg_id j;
538 struct rapl_domain *rd = rp->domains;
539
540 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
541 unsigned int mask = rp->domain_map & (1 << i);
542
543 if (!mask)
544 continue;
545
546 rd->rp = rp;
547
548 if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
549 snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
550 topology_physical_package_id(rp->lead_cpu));
551 } else
552 snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
553 rapl_domain_names[i]);
554
555 rd->id = i;
556 rd->rpl[0].prim_id = PL1_ENABLE;
557 rd->rpl[0].name = pl1_name;
558
559 /*
560 * The PL2 power domain is applicable for limits two
561 * and limits three
562 */
563 if (rp->priv->limits[i] >= 2) {
564 rd->rpl[1].prim_id = PL2_ENABLE;
565 rd->rpl[1].name = pl2_name;
566 }
567
568 /* Enable PL4 domain if the total power limits are three */
569 if (rp->priv->limits[i] == 3) {
570 rd->rpl[2].prim_id = PL4_ENABLE;
571 rd->rpl[2].name = pl4_name;
572 }
573
574 for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
575 rd->regs[j] = rp->priv->regs[i][j];
576
577 switch (i) {
578 case RAPL_DOMAIN_DRAM:
579 rd->domain_energy_unit =
580 rapl_defaults->dram_domain_energy_unit;
581 if (rd->domain_energy_unit)
582 pr_info("DRAM domain energy unit %dpj\n",
583 rd->domain_energy_unit);
584 break;
585 case RAPL_DOMAIN_PLATFORM:
586 rd->domain_energy_unit =
587 rapl_defaults->psys_domain_energy_unit;
588 if (rd->domain_energy_unit)
589 pr_info("Platform domain energy unit %dpj\n",
590 rd->domain_energy_unit);
591 break;
592 default:
593 break;
594 }
595 rd++;
596 }
597}
598
599static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
600 u64 value, int to_raw)
601{
602 u64 units = 1;
603 struct rapl_package *rp = rd->rp;
604 u64 scale = 1;
605
606 switch (type) {
607 case POWER_UNIT:
608 units = rp->power_unit;
609 break;
610 case ENERGY_UNIT:
611 scale = ENERGY_UNIT_SCALE;
612 /* per domain unit takes precedence */
613 if (rd->domain_energy_unit)
614 units = rd->domain_energy_unit;
615 else
616 units = rp->energy_unit;
617 break;
618 case TIME_UNIT:
619 return rapl_defaults->compute_time_window(rp, value, to_raw);
620 case ARBITRARY_UNIT:
621 default:
622 return value;
623 }
624
625 if (to_raw)
626 return div64_u64(value, units) * scale;
627
628 value *= units;
629
630 return div64_u64(value, scale);
631}
632
633/* in the order of enum rapl_primitives */
634static struct rapl_primitive_info rpi[] = {
635 /* name, mask, shift, msr index, unit divisor */
636 PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
637 RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
638 PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
639 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
640 PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
641 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
642 PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
643 RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
644 PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
645 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
646 PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
647 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
648 PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
649 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
650 PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
651 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
652 PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
653 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
654 PRIMITIVE_INFO_INIT(PL4_ENABLE, POWER_LIMIT4_MASK, 0,
655 RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
656 PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
657 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
658 PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
659 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
660 PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
661 0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
662 PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
663 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
664 PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
665 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
666 PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
667 RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
668 PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
669 RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
670 PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
671 RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
672 /* non-hardware */
673 PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
674 RAPL_PRIMITIVE_DERIVED),
675 {NULL, 0, 0, 0},
676};
677
678/* Read primitive data based on its related struct rapl_primitive_info.
679 * if xlate flag is set, return translated data based on data units, i.e.
680 * time, energy, and power.
681 * RAPL MSRs are non-architectual and are laid out not consistently across
682 * domains. Here we use primitive info to allow writing consolidated access
683 * functions.
684 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
685 * is pre-assigned based on RAPL unit MSRs read at init time.
686 * 63-------------------------- 31--------------------------- 0
687 * | xxxxx (mask) |
688 * | |<- shift ----------------|
689 * 63-------------------------- 31--------------------------- 0
690 */
691static int rapl_read_data_raw(struct rapl_domain *rd,
692 enum rapl_primitives prim, bool xlate, u64 *data)
693{
694 u64 value;
695 struct rapl_primitive_info *rp = &rpi[prim];
696 struct reg_action ra;
697 int cpu;
698
699 if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
700 return -EINVAL;
701
702 ra.reg = rd->regs[rp->id];
703 if (!ra.reg)
704 return -EINVAL;
705
706 cpu = rd->rp->lead_cpu;
707
708 /* domain with 2 limits has different bit */
709 if (prim == FW_LOCK && rd->rp->priv->limits[rd->id] == 2) {
710 rp->mask = POWER_HIGH_LOCK;
711 rp->shift = 63;
712 }
713 /* non-hardware data are collected by the polling thread */
714 if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
715 *data = rd->rdd.primitives[prim];
716 return 0;
717 }
718
719 ra.mask = rp->mask;
720
721 if (rd->rp->priv->read_raw(cpu, &ra)) {
722 pr_debug("failed to read reg 0x%llx on cpu %d\n", ra.reg, cpu);
723 return -EIO;
724 }
725
726 value = ra.value >> rp->shift;
727
728 if (xlate)
729 *data = rapl_unit_xlate(rd, rp->unit, value, 0);
730 else
731 *data = value;
732
733 return 0;
734}
735
736/* Similar use of primitive info in the read counterpart */
737static int rapl_write_data_raw(struct rapl_domain *rd,
738 enum rapl_primitives prim,
739 unsigned long long value)
740{
741 struct rapl_primitive_info *rp = &rpi[prim];
742 int cpu;
743 u64 bits;
744 struct reg_action ra;
745 int ret;
746
747 cpu = rd->rp->lead_cpu;
748 bits = rapl_unit_xlate(rd, rp->unit, value, 1);
749 bits <<= rp->shift;
750 bits &= rp->mask;
751
752 memset(&ra, 0, sizeof(ra));
753
754 ra.reg = rd->regs[rp->id];
755 ra.mask = rp->mask;
756 ra.value = bits;
757
758 ret = rd->rp->priv->write_raw(cpu, &ra);
759
760 return ret;
761}
762
763/*
764 * Raw RAPL data stored in MSRs are in certain scales. We need to
765 * convert them into standard units based on the units reported in
766 * the RAPL unit MSRs. This is specific to CPUs as the method to
767 * calculate units differ on different CPUs.
768 * We convert the units to below format based on CPUs.
769 * i.e.
770 * energy unit: picoJoules : Represented in picoJoules by default
771 * power unit : microWatts : Represented in milliWatts by default
772 * time unit : microseconds: Represented in seconds by default
773 */
774static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
775{
776 struct reg_action ra;
777 u32 value;
778
779 ra.reg = rp->priv->reg_unit;
780 ra.mask = ~0;
781 if (rp->priv->read_raw(cpu, &ra)) {
782 pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
783 rp->priv->reg_unit, cpu);
784 return -ENODEV;
785 }
786
787 value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
788 rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
789
790 value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
791 rp->power_unit = 1000000 / (1 << value);
792
793 value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
794 rp->time_unit = 1000000 / (1 << value);
795
796 pr_debug("Core CPU %s energy=%dpJ, time=%dus, power=%duW\n",
797 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
798
799 return 0;
800}
801
802static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
803{
804 struct reg_action ra;
805 u32 value;
806
807 ra.reg = rp->priv->reg_unit;
808 ra.mask = ~0;
809 if (rp->priv->read_raw(cpu, &ra)) {
810 pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
811 rp->priv->reg_unit, cpu);
812 return -ENODEV;
813 }
814
815 value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
816 rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
817
818 value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
819 rp->power_unit = (1 << value) * 1000;
820
821 value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
822 rp->time_unit = 1000000 / (1 << value);
823
824 pr_debug("Atom %s energy=%dpJ, time=%dus, power=%duW\n",
825 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
826
827 return 0;
828}
829
830static void power_limit_irq_save_cpu(void *info)
831{
832 u32 l, h = 0;
833 struct rapl_package *rp = (struct rapl_package *)info;
834
835 /* save the state of PLN irq mask bit before disabling it */
836 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
837 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
838 rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
839 rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
840 }
841 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
842 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
843}
844
845/* REVISIT:
846 * When package power limit is set artificially low by RAPL, LVT
847 * thermal interrupt for package power limit should be ignored
848 * since we are not really exceeding the real limit. The intention
849 * is to avoid excessive interrupts while we are trying to save power.
850 * A useful feature might be routing the package_power_limit interrupt
851 * to userspace via eventfd. once we have a usecase, this is simple
852 * to do by adding an atomic notifier.
853 */
854
855static void package_power_limit_irq_save(struct rapl_package *rp)
856{
857 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
858 return;
859
860 smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
861}
862
863/*
864 * Restore per package power limit interrupt enable state. Called from cpu
865 * hotplug code on package removal.
866 */
867static void package_power_limit_irq_restore(struct rapl_package *rp)
868{
869 u32 l, h;
870
871 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
872 return;
873
874 /* irq enable state not saved, nothing to restore */
875 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
876 return;
877
878 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
879
880 if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
881 l |= PACKAGE_THERM_INT_PLN_ENABLE;
882 else
883 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
884
885 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
886}
887
888static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
889{
890 int nr_powerlimit = find_nr_power_limit(rd);
891
892 /* always enable clamp such that p-state can go below OS requested
893 * range. power capping priority over guranteed frequency.
894 */
895 rapl_write_data_raw(rd, PL1_CLAMP, mode);
896
897 /* some domains have pl2 */
898 if (nr_powerlimit > 1) {
899 rapl_write_data_raw(rd, PL2_ENABLE, mode);
900 rapl_write_data_raw(rd, PL2_CLAMP, mode);
901 }
902}
903
904static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
905{
906 static u32 power_ctrl_orig_val;
907 u32 mdata;
908
909 if (!rapl_defaults->floor_freq_reg_addr) {
910 pr_err("Invalid floor frequency config register\n");
911 return;
912 }
913
914 if (!power_ctrl_orig_val)
915 iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
916 rapl_defaults->floor_freq_reg_addr,
917 &power_ctrl_orig_val);
918 mdata = power_ctrl_orig_val;
919 if (enable) {
920 mdata &= ~(0x7f << 8);
921 mdata |= 1 << 8;
922 }
923 iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
924 rapl_defaults->floor_freq_reg_addr, mdata);
925}
926
927static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
928 bool to_raw)
929{
930 u64 f, y; /* fraction and exp. used for time unit */
931
932 /*
933 * Special processing based on 2^Y*(1+F/4), refer
934 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
935 */
936 if (!to_raw) {
937 f = (value & 0x60) >> 5;
938 y = value & 0x1f;
939 value = (1 << y) * (4 + f) * rp->time_unit / 4;
940 } else {
941 do_div(value, rp->time_unit);
942 y = ilog2(value);
943 f = div64_u64(4 * (value - (1 << y)), 1 << y);
944 value = (y & 0x1f) | ((f & 0x3) << 5);
945 }
946 return value;
947}
948
949static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
950 bool to_raw)
951{
952 /*
953 * Atom time unit encoding is straight forward val * time_unit,
954 * where time_unit is default to 1 sec. Never 0.
955 */
956 if (!to_raw)
957 return (value) ? value *= rp->time_unit : rp->time_unit;
958
959 value = div64_u64(value, rp->time_unit);
960
961 return value;
962}
963
964static const struct rapl_defaults rapl_defaults_core = {
965 .floor_freq_reg_addr = 0,
966 .check_unit = rapl_check_unit_core,
967 .set_floor_freq = set_floor_freq_default,
968 .compute_time_window = rapl_compute_time_window_core,
969};
970
971static const struct rapl_defaults rapl_defaults_hsw_server = {
972 .check_unit = rapl_check_unit_core,
973 .set_floor_freq = set_floor_freq_default,
974 .compute_time_window = rapl_compute_time_window_core,
975 .dram_domain_energy_unit = 15300,
976};
977
978static const struct rapl_defaults rapl_defaults_spr_server = {
979 .check_unit = rapl_check_unit_core,
980 .set_floor_freq = set_floor_freq_default,
981 .compute_time_window = rapl_compute_time_window_core,
982 .dram_domain_energy_unit = 15300,
983 .psys_domain_energy_unit = 1000000000,
984};
985
986static const struct rapl_defaults rapl_defaults_byt = {
987 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
988 .check_unit = rapl_check_unit_atom,
989 .set_floor_freq = set_floor_freq_atom,
990 .compute_time_window = rapl_compute_time_window_atom,
991};
992
993static const struct rapl_defaults rapl_defaults_tng = {
994 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
995 .check_unit = rapl_check_unit_atom,
996 .set_floor_freq = set_floor_freq_atom,
997 .compute_time_window = rapl_compute_time_window_atom,
998};
999
1000static const struct rapl_defaults rapl_defaults_ann = {
1001 .floor_freq_reg_addr = 0,
1002 .check_unit = rapl_check_unit_atom,
1003 .set_floor_freq = NULL,
1004 .compute_time_window = rapl_compute_time_window_atom,
1005};
1006
1007static const struct rapl_defaults rapl_defaults_cht = {
1008 .floor_freq_reg_addr = 0,
1009 .check_unit = rapl_check_unit_atom,
1010 .set_floor_freq = NULL,
1011 .compute_time_window = rapl_compute_time_window_atom,
1012};
1013
1014static const struct rapl_defaults rapl_defaults_amd = {
1015 .check_unit = rapl_check_unit_core,
1016};
1017
1018static const struct x86_cpu_id rapl_ids[] __initconst = {
1019 X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE, &rapl_defaults_core),
1020 X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &rapl_defaults_core),
1021
1022 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE, &rapl_defaults_core),
1023 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &rapl_defaults_core),
1024
1025 X86_MATCH_INTEL_FAM6_MODEL(HASWELL, &rapl_defaults_core),
1026 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L, &rapl_defaults_core),
1027 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G, &rapl_defaults_core),
1028 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &rapl_defaults_hsw_server),
1029
1030 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL, &rapl_defaults_core),
1031 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G, &rapl_defaults_core),
1032 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &rapl_defaults_core),
1033 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &rapl_defaults_hsw_server),
1034
1035 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, &rapl_defaults_core),
1036 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, &rapl_defaults_core),
1037 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &rapl_defaults_hsw_server),
1038 X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, &rapl_defaults_core),
1039 X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, &rapl_defaults_core),
1040 X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L, &rapl_defaults_core),
1041 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, &rapl_defaults_core),
1042 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE, &rapl_defaults_core),
1043 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI, &rapl_defaults_core),
1044 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &rapl_defaults_hsw_server),
1045 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &rapl_defaults_hsw_server),
1046 X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, &rapl_defaults_core),
1047 X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, &rapl_defaults_core),
1048 X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, &rapl_defaults_core),
1049 X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, &rapl_defaults_core),
1050 X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE, &rapl_defaults_core),
1051 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, &rapl_defaults_core),
1052 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, &rapl_defaults_core),
1053 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &rapl_defaults_spr_server),
1054 X86_MATCH_INTEL_FAM6_MODEL(LAKEFIELD, &rapl_defaults_core),
1055
1056 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, &rapl_defaults_byt),
1057 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, &rapl_defaults_cht),
1058 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID, &rapl_defaults_tng),
1059 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID, &rapl_defaults_ann),
1060 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT, &rapl_defaults_core),
1061 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS, &rapl_defaults_core),
1062 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D, &rapl_defaults_core),
1063 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, &rapl_defaults_core),
1064 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, &rapl_defaults_core),
1065 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, &rapl_defaults_core),
1066
1067 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &rapl_defaults_hsw_server),
1068 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &rapl_defaults_hsw_server),
1069
1070 X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
1071 X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
1072 X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
1073 {}
1074};
1075MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1076
1077/* Read once for all raw primitive data for domains */
1078static void rapl_update_domain_data(struct rapl_package *rp)
1079{
1080 int dmn, prim;
1081 u64 val;
1082
1083 for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1084 pr_debug("update %s domain %s data\n", rp->name,
1085 rp->domains[dmn].name);
1086 /* exclude non-raw primitives */
1087 for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1088 if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1089 rpi[prim].unit, &val))
1090 rp->domains[dmn].rdd.primitives[prim] = val;
1091 }
1092 }
1093
1094}
1095
1096static int rapl_package_register_powercap(struct rapl_package *rp)
1097{
1098 struct rapl_domain *rd;
1099 struct powercap_zone *power_zone = NULL;
1100 int nr_pl, ret;
1101
1102 /* Update the domain data of the new package */
1103 rapl_update_domain_data(rp);
1104
1105 /* first we register package domain as the parent zone */
1106 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1107 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1108 nr_pl = find_nr_power_limit(rd);
1109 pr_debug("register package domain %s\n", rp->name);
1110 power_zone = powercap_register_zone(&rd->power_zone,
1111 rp->priv->control_type, rp->name,
1112 NULL, &zone_ops[rd->id], nr_pl,
1113 &constraint_ops);
1114 if (IS_ERR(power_zone)) {
1115 pr_debug("failed to register power zone %s\n",
1116 rp->name);
1117 return PTR_ERR(power_zone);
1118 }
1119 /* track parent zone in per package/socket data */
1120 rp->power_zone = power_zone;
1121 /* done, only one package domain per socket */
1122 break;
1123 }
1124 }
1125 if (!power_zone) {
1126 pr_err("no package domain found, unknown topology!\n");
1127 return -ENODEV;
1128 }
1129 /* now register domains as children of the socket/package */
1130 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1131 struct powercap_zone *parent = rp->power_zone;
1132
1133 if (rd->id == RAPL_DOMAIN_PACKAGE)
1134 continue;
1135 if (rd->id == RAPL_DOMAIN_PLATFORM)
1136 parent = NULL;
1137 /* number of power limits per domain varies */
1138 nr_pl = find_nr_power_limit(rd);
1139 power_zone = powercap_register_zone(&rd->power_zone,
1140 rp->priv->control_type,
1141 rd->name, parent,
1142 &zone_ops[rd->id], nr_pl,
1143 &constraint_ops);
1144
1145 if (IS_ERR(power_zone)) {
1146 pr_debug("failed to register power_zone, %s:%s\n",
1147 rp->name, rd->name);
1148 ret = PTR_ERR(power_zone);
1149 goto err_cleanup;
1150 }
1151 }
1152 return 0;
1153
1154err_cleanup:
1155 /*
1156 * Clean up previously initialized domains within the package if we
1157 * failed after the first domain setup.
1158 */
1159 while (--rd >= rp->domains) {
1160 pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1161 powercap_unregister_zone(rp->priv->control_type,
1162 &rd->power_zone);
1163 }
1164
1165 return ret;
1166}
1167
1168static int rapl_check_domain(int cpu, int domain, struct rapl_package *rp)
1169{
1170 struct reg_action ra;
1171
1172 switch (domain) {
1173 case RAPL_DOMAIN_PACKAGE:
1174 case RAPL_DOMAIN_PP0:
1175 case RAPL_DOMAIN_PP1:
1176 case RAPL_DOMAIN_DRAM:
1177 case RAPL_DOMAIN_PLATFORM:
1178 ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1179 break;
1180 default:
1181 pr_err("invalid domain id %d\n", domain);
1182 return -EINVAL;
1183 }
1184 /* make sure domain counters are available and contains non-zero
1185 * values, otherwise skip it.
1186 */
1187
1188 ra.mask = ENERGY_STATUS_MASK;
1189 if (rp->priv->read_raw(cpu, &ra) || !ra.value)
1190 return -ENODEV;
1191
1192 return 0;
1193}
1194
1195/*
1196 * Check if power limits are available. Two cases when they are not available:
1197 * 1. Locked by BIOS, in this case we still provide read-only access so that
1198 * users can see what limit is set by the BIOS.
1199 * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1200 * exist at all. In this case, we do not show the constraints in powercap.
1201 *
1202 * Called after domains are detected and initialized.
1203 */
1204static void rapl_detect_powerlimit(struct rapl_domain *rd)
1205{
1206 u64 val64;
1207 int i;
1208
1209 /* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
1210 if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
1211 if (val64) {
1212 pr_info("RAPL %s domain %s locked by BIOS\n",
1213 rd->rp->name, rd->name);
1214 rd->state |= DOMAIN_STATE_BIOS_LOCKED;
1215 }
1216 }
1217 /* check if power limit MSR exists, otherwise domain is monitoring only */
1218 for (i = 0; i < NR_POWER_LIMITS; i++) {
1219 int prim = rd->rpl[i].prim_id;
1220
1221 if (rapl_read_data_raw(rd, prim, false, &val64))
1222 rd->rpl[i].name = NULL;
1223 }
1224}
1225
1226/* Detect active and valid domains for the given CPU, caller must
1227 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1228 */
1229static int rapl_detect_domains(struct rapl_package *rp, int cpu)
1230{
1231 struct rapl_domain *rd;
1232 int i;
1233
1234 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1235 /* use physical package id to read counters */
1236 if (!rapl_check_domain(cpu, i, rp)) {
1237 rp->domain_map |= 1 << i;
1238 pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1239 }
1240 }
1241 rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1242 if (!rp->nr_domains) {
1243 pr_debug("no valid rapl domains found in %s\n", rp->name);
1244 return -ENODEV;
1245 }
1246 pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1247
1248 rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
1249 GFP_KERNEL);
1250 if (!rp->domains)
1251 return -ENOMEM;
1252
1253 rapl_init_domains(rp);
1254
1255 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
1256 rapl_detect_powerlimit(rd);
1257
1258 return 0;
1259}
1260
1261/* called from CPU hotplug notifier, hotplug lock held */
1262void rapl_remove_package(struct rapl_package *rp)
1263{
1264 struct rapl_domain *rd, *rd_package = NULL;
1265
1266 package_power_limit_irq_restore(rp);
1267
1268 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1269 rapl_write_data_raw(rd, PL1_ENABLE, 0);
1270 rapl_write_data_raw(rd, PL1_CLAMP, 0);
1271 if (find_nr_power_limit(rd) > 1) {
1272 rapl_write_data_raw(rd, PL2_ENABLE, 0);
1273 rapl_write_data_raw(rd, PL2_CLAMP, 0);
1274 rapl_write_data_raw(rd, PL4_ENABLE, 0);
1275 }
1276 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1277 rd_package = rd;
1278 continue;
1279 }
1280 pr_debug("remove package, undo power limit on %s: %s\n",
1281 rp->name, rd->name);
1282 powercap_unregister_zone(rp->priv->control_type,
1283 &rd->power_zone);
1284 }
1285 /* do parent zone last */
1286 powercap_unregister_zone(rp->priv->control_type,
1287 &rd_package->power_zone);
1288 list_del(&rp->plist);
1289 kfree(rp);
1290}
1291EXPORT_SYMBOL_GPL(rapl_remove_package);
1292
1293/* caller to ensure CPU hotplug lock is held */
1294struct rapl_package *rapl_find_package_domain(int cpu, struct rapl_if_priv *priv)
1295{
1296 int id = topology_logical_die_id(cpu);
1297 struct rapl_package *rp;
1298
1299 list_for_each_entry(rp, &rapl_packages, plist) {
1300 if (rp->id == id
1301 && rp->priv->control_type == priv->control_type)
1302 return rp;
1303 }
1304
1305 return NULL;
1306}
1307EXPORT_SYMBOL_GPL(rapl_find_package_domain);
1308
1309/* called from CPU hotplug notifier, hotplug lock held */
1310struct rapl_package *rapl_add_package(int cpu, struct rapl_if_priv *priv)
1311{
1312 int id = topology_logical_die_id(cpu);
1313 struct rapl_package *rp;
1314 int ret;
1315
1316 if (!rapl_defaults)
1317 return ERR_PTR(-ENODEV);
1318
1319 rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1320 if (!rp)
1321 return ERR_PTR(-ENOMEM);
1322
1323 /* add the new package to the list */
1324 rp->id = id;
1325 rp->lead_cpu = cpu;
1326 rp->priv = priv;
1327
1328 if (topology_max_die_per_package() > 1)
1329 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH,
1330 "package-%d-die-%d",
1331 topology_physical_package_id(cpu), topology_die_id(cpu));
1332 else
1333 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
1334 topology_physical_package_id(cpu));
1335
1336 /* check if the package contains valid domains */
1337 if (rapl_detect_domains(rp, cpu) || rapl_defaults->check_unit(rp, cpu)) {
1338 ret = -ENODEV;
1339 goto err_free_package;
1340 }
1341 ret = rapl_package_register_powercap(rp);
1342 if (!ret) {
1343 INIT_LIST_HEAD(&rp->plist);
1344 list_add(&rp->plist, &rapl_packages);
1345 return rp;
1346 }
1347
1348err_free_package:
1349 kfree(rp->domains);
1350 kfree(rp);
1351 return ERR_PTR(ret);
1352}
1353EXPORT_SYMBOL_GPL(rapl_add_package);
1354
1355static void power_limit_state_save(void)
1356{
1357 struct rapl_package *rp;
1358 struct rapl_domain *rd;
1359 int nr_pl, ret, i;
1360
1361 get_online_cpus();
1362 list_for_each_entry(rp, &rapl_packages, plist) {
1363 if (!rp->power_zone)
1364 continue;
1365 rd = power_zone_to_rapl_domain(rp->power_zone);
1366 nr_pl = find_nr_power_limit(rd);
1367 for (i = 0; i < nr_pl; i++) {
1368 switch (rd->rpl[i].prim_id) {
1369 case PL1_ENABLE:
1370 ret = rapl_read_data_raw(rd,
1371 POWER_LIMIT1, true,
1372 &rd->rpl[i].last_power_limit);
1373 if (ret)
1374 rd->rpl[i].last_power_limit = 0;
1375 break;
1376 case PL2_ENABLE:
1377 ret = rapl_read_data_raw(rd,
1378 POWER_LIMIT2, true,
1379 &rd->rpl[i].last_power_limit);
1380 if (ret)
1381 rd->rpl[i].last_power_limit = 0;
1382 break;
1383 case PL4_ENABLE:
1384 ret = rapl_read_data_raw(rd,
1385 POWER_LIMIT4, true,
1386 &rd->rpl[i].last_power_limit);
1387 if (ret)
1388 rd->rpl[i].last_power_limit = 0;
1389 break;
1390 }
1391 }
1392 }
1393 put_online_cpus();
1394}
1395
1396static void power_limit_state_restore(void)
1397{
1398 struct rapl_package *rp;
1399 struct rapl_domain *rd;
1400 int nr_pl, i;
1401
1402 get_online_cpus();
1403 list_for_each_entry(rp, &rapl_packages, plist) {
1404 if (!rp->power_zone)
1405 continue;
1406 rd = power_zone_to_rapl_domain(rp->power_zone);
1407 nr_pl = find_nr_power_limit(rd);
1408 for (i = 0; i < nr_pl; i++) {
1409 switch (rd->rpl[i].prim_id) {
1410 case PL1_ENABLE:
1411 if (rd->rpl[i].last_power_limit)
1412 rapl_write_data_raw(rd, POWER_LIMIT1,
1413 rd->rpl[i].last_power_limit);
1414 break;
1415 case PL2_ENABLE:
1416 if (rd->rpl[i].last_power_limit)
1417 rapl_write_data_raw(rd, POWER_LIMIT2,
1418 rd->rpl[i].last_power_limit);
1419 break;
1420 case PL4_ENABLE:
1421 if (rd->rpl[i].last_power_limit)
1422 rapl_write_data_raw(rd, POWER_LIMIT4,
1423 rd->rpl[i].last_power_limit);
1424 break;
1425 }
1426 }
1427 }
1428 put_online_cpus();
1429}
1430
1431static int rapl_pm_callback(struct notifier_block *nb,
1432 unsigned long mode, void *_unused)
1433{
1434 switch (mode) {
1435 case PM_SUSPEND_PREPARE:
1436 power_limit_state_save();
1437 break;
1438 case PM_POST_SUSPEND:
1439 power_limit_state_restore();
1440 break;
1441 }
1442 return NOTIFY_OK;
1443}
1444
1445static struct notifier_block rapl_pm_notifier = {
1446 .notifier_call = rapl_pm_callback,
1447};
1448
1449static struct platform_device *rapl_msr_platdev;
1450
1451static int __init rapl_init(void)
1452{
1453 const struct x86_cpu_id *id;
1454 int ret;
1455
1456 id = x86_match_cpu(rapl_ids);
1457 if (!id) {
1458 pr_err("driver does not support CPU family %d model %d\n",
1459 boot_cpu_data.x86, boot_cpu_data.x86_model);
1460
1461 return -ENODEV;
1462 }
1463
1464 rapl_defaults = (struct rapl_defaults *)id->driver_data;
1465
1466 ret = register_pm_notifier(&rapl_pm_notifier);
1467 if (ret)
1468 return ret;
1469
1470 rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
1471 if (!rapl_msr_platdev) {
1472 ret = -ENOMEM;
1473 goto end;
1474 }
1475
1476 ret = platform_device_add(rapl_msr_platdev);
1477 if (ret)
1478 platform_device_put(rapl_msr_platdev);
1479
1480end:
1481 if (ret)
1482 unregister_pm_notifier(&rapl_pm_notifier);
1483
1484 return ret;
1485}
1486
1487static void __exit rapl_exit(void)
1488{
1489 platform_device_unregister(rapl_msr_platdev);
1490 unregister_pm_notifier(&rapl_pm_notifier);
1491}
1492
1493fs_initcall(rapl_init);
1494module_exit(rapl_exit);
1495
1496MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
1497MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
1498MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Common code for Intel Running Average Power Limit (RAPL) support.
4 * Copyright (c) 2019, Intel Corporation.
5 */
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/list.h>
11#include <linux/types.h>
12#include <linux/device.h>
13#include <linux/slab.h>
14#include <linux/log2.h>
15#include <linux/bitmap.h>
16#include <linux/delay.h>
17#include <linux/sysfs.h>
18#include <linux/cpu.h>
19#include <linux/powercap.h>
20#include <linux/suspend.h>
21#include <linux/intel_rapl.h>
22#include <linux/processor.h>
23#include <linux/platform_device.h>
24
25#include <asm/iosf_mbi.h>
26#include <asm/cpu_device_id.h>
27#include <asm/intel-family.h>
28
29/* bitmasks for RAPL MSRs, used by primitive access functions */
30#define ENERGY_STATUS_MASK 0xffffffff
31
32#define POWER_LIMIT1_MASK 0x7FFF
33#define POWER_LIMIT1_ENABLE BIT(15)
34#define POWER_LIMIT1_CLAMP BIT(16)
35
36#define POWER_LIMIT2_MASK (0x7FFFULL<<32)
37#define POWER_LIMIT2_ENABLE BIT_ULL(47)
38#define POWER_LIMIT2_CLAMP BIT_ULL(48)
39#define POWER_HIGH_LOCK BIT_ULL(63)
40#define POWER_LOW_LOCK BIT(31)
41
42#define POWER_LIMIT4_MASK 0x1FFF
43
44#define TIME_WINDOW1_MASK (0x7FULL<<17)
45#define TIME_WINDOW2_MASK (0x7FULL<<49)
46
47#define POWER_UNIT_OFFSET 0
48#define POWER_UNIT_MASK 0x0F
49
50#define ENERGY_UNIT_OFFSET 0x08
51#define ENERGY_UNIT_MASK 0x1F00
52
53#define TIME_UNIT_OFFSET 0x10
54#define TIME_UNIT_MASK 0xF0000
55
56#define POWER_INFO_MAX_MASK (0x7fffULL<<32)
57#define POWER_INFO_MIN_MASK (0x7fffULL<<16)
58#define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
59#define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
60
61#define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
62#define PP_POLICY_MASK 0x1F
63
64/* Non HW constants */
65#define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
66#define RAPL_PRIMITIVE_DUMMY BIT(2)
67
68#define TIME_WINDOW_MAX_MSEC 40000
69#define TIME_WINDOW_MIN_MSEC 250
70#define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
71enum unit_type {
72 ARBITRARY_UNIT, /* no translation */
73 POWER_UNIT,
74 ENERGY_UNIT,
75 TIME_UNIT,
76};
77
78/* per domain data, some are optional */
79#define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
80
81#define DOMAIN_STATE_INACTIVE BIT(0)
82#define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
83#define DOMAIN_STATE_BIOS_LOCKED BIT(2)
84
85static const char pl1_name[] = "long_term";
86static const char pl2_name[] = "short_term";
87static const char pl4_name[] = "peak_power";
88
89#define power_zone_to_rapl_domain(_zone) \
90 container_of(_zone, struct rapl_domain, power_zone)
91
92struct rapl_defaults {
93 u8 floor_freq_reg_addr;
94 int (*check_unit)(struct rapl_package *rp, int cpu);
95 void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
96 u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
97 bool to_raw);
98 unsigned int dram_domain_energy_unit;
99 unsigned int psys_domain_energy_unit;
100};
101static struct rapl_defaults *rapl_defaults;
102
103/* Sideband MBI registers */
104#define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
105#define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
106
107#define PACKAGE_PLN_INT_SAVED BIT(0)
108#define MAX_PRIM_NAME (32)
109
110/* per domain data. used to describe individual knobs such that access function
111 * can be consolidated into one instead of many inline functions.
112 */
113struct rapl_primitive_info {
114 const char *name;
115 u64 mask;
116 int shift;
117 enum rapl_domain_reg_id id;
118 enum unit_type unit;
119 u32 flag;
120};
121
122#define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
123 .name = #p, \
124 .mask = m, \
125 .shift = s, \
126 .id = i, \
127 .unit = u, \
128 .flag = f \
129 }
130
131static void rapl_init_domains(struct rapl_package *rp);
132static int rapl_read_data_raw(struct rapl_domain *rd,
133 enum rapl_primitives prim,
134 bool xlate, u64 *data);
135static int rapl_write_data_raw(struct rapl_domain *rd,
136 enum rapl_primitives prim,
137 unsigned long long value);
138static u64 rapl_unit_xlate(struct rapl_domain *rd,
139 enum unit_type type, u64 value, int to_raw);
140static void package_power_limit_irq_save(struct rapl_package *rp);
141
142static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
143
144static const char *const rapl_domain_names[] = {
145 "package",
146 "core",
147 "uncore",
148 "dram",
149 "psys",
150};
151
152static int get_energy_counter(struct powercap_zone *power_zone,
153 u64 *energy_raw)
154{
155 struct rapl_domain *rd;
156 u64 energy_now;
157
158 /* prevent CPU hotplug, make sure the RAPL domain does not go
159 * away while reading the counter.
160 */
161 get_online_cpus();
162 rd = power_zone_to_rapl_domain(power_zone);
163
164 if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
165 *energy_raw = energy_now;
166 put_online_cpus();
167
168 return 0;
169 }
170 put_online_cpus();
171
172 return -EIO;
173}
174
175static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
176{
177 struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
178
179 *energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
180 return 0;
181}
182
183static int release_zone(struct powercap_zone *power_zone)
184{
185 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
186 struct rapl_package *rp = rd->rp;
187
188 /* package zone is the last zone of a package, we can free
189 * memory here since all children has been unregistered.
190 */
191 if (rd->id == RAPL_DOMAIN_PACKAGE) {
192 kfree(rd);
193 rp->domains = NULL;
194 }
195
196 return 0;
197
198}
199
200static int find_nr_power_limit(struct rapl_domain *rd)
201{
202 int i, nr_pl = 0;
203
204 for (i = 0; i < NR_POWER_LIMITS; i++) {
205 if (rd->rpl[i].name)
206 nr_pl++;
207 }
208
209 return nr_pl;
210}
211
212static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
213{
214 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
215
216 if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
217 return -EACCES;
218
219 get_online_cpus();
220 rapl_write_data_raw(rd, PL1_ENABLE, mode);
221 if (rapl_defaults->set_floor_freq)
222 rapl_defaults->set_floor_freq(rd, mode);
223 put_online_cpus();
224
225 return 0;
226}
227
228static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
229{
230 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
231 u64 val;
232
233 if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
234 *mode = false;
235 return 0;
236 }
237 get_online_cpus();
238 if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
239 put_online_cpus();
240 return -EIO;
241 }
242 *mode = val;
243 put_online_cpus();
244
245 return 0;
246}
247
248/* per RAPL domain ops, in the order of rapl_domain_type */
249static const struct powercap_zone_ops zone_ops[] = {
250 /* RAPL_DOMAIN_PACKAGE */
251 {
252 .get_energy_uj = get_energy_counter,
253 .get_max_energy_range_uj = get_max_energy_counter,
254 .release = release_zone,
255 .set_enable = set_domain_enable,
256 .get_enable = get_domain_enable,
257 },
258 /* RAPL_DOMAIN_PP0 */
259 {
260 .get_energy_uj = get_energy_counter,
261 .get_max_energy_range_uj = get_max_energy_counter,
262 .release = release_zone,
263 .set_enable = set_domain_enable,
264 .get_enable = get_domain_enable,
265 },
266 /* RAPL_DOMAIN_PP1 */
267 {
268 .get_energy_uj = get_energy_counter,
269 .get_max_energy_range_uj = get_max_energy_counter,
270 .release = release_zone,
271 .set_enable = set_domain_enable,
272 .get_enable = get_domain_enable,
273 },
274 /* RAPL_DOMAIN_DRAM */
275 {
276 .get_energy_uj = get_energy_counter,
277 .get_max_energy_range_uj = get_max_energy_counter,
278 .release = release_zone,
279 .set_enable = set_domain_enable,
280 .get_enable = get_domain_enable,
281 },
282 /* RAPL_DOMAIN_PLATFORM */
283 {
284 .get_energy_uj = get_energy_counter,
285 .get_max_energy_range_uj = get_max_energy_counter,
286 .release = release_zone,
287 .set_enable = set_domain_enable,
288 .get_enable = get_domain_enable,
289 },
290};
291
292/*
293 * Constraint index used by powercap can be different than power limit (PL)
294 * index in that some PLs maybe missing due to non-existent MSRs. So we
295 * need to convert here by finding the valid PLs only (name populated).
296 */
297static int contraint_to_pl(struct rapl_domain *rd, int cid)
298{
299 int i, j;
300
301 for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
302 if ((rd->rpl[i].name) && j++ == cid) {
303 pr_debug("%s: index %d\n", __func__, i);
304 return i;
305 }
306 }
307 pr_err("Cannot find matching power limit for constraint %d\n", cid);
308
309 return -EINVAL;
310}
311
312static int set_power_limit(struct powercap_zone *power_zone, int cid,
313 u64 power_limit)
314{
315 struct rapl_domain *rd;
316 struct rapl_package *rp;
317 int ret = 0;
318 int id;
319
320 get_online_cpus();
321 rd = power_zone_to_rapl_domain(power_zone);
322 id = contraint_to_pl(rd, cid);
323 if (id < 0) {
324 ret = id;
325 goto set_exit;
326 }
327
328 rp = rd->rp;
329
330 if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
331 dev_warn(&power_zone->dev,
332 "%s locked by BIOS, monitoring only\n", rd->name);
333 ret = -EACCES;
334 goto set_exit;
335 }
336
337 switch (rd->rpl[id].prim_id) {
338 case PL1_ENABLE:
339 rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
340 break;
341 case PL2_ENABLE:
342 rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
343 break;
344 case PL4_ENABLE:
345 rapl_write_data_raw(rd, POWER_LIMIT4, power_limit);
346 break;
347 default:
348 ret = -EINVAL;
349 }
350 if (!ret)
351 package_power_limit_irq_save(rp);
352set_exit:
353 put_online_cpus();
354 return ret;
355}
356
357static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
358 u64 *data)
359{
360 struct rapl_domain *rd;
361 u64 val;
362 int prim;
363 int ret = 0;
364 int id;
365
366 get_online_cpus();
367 rd = power_zone_to_rapl_domain(power_zone);
368 id = contraint_to_pl(rd, cid);
369 if (id < 0) {
370 ret = id;
371 goto get_exit;
372 }
373
374 switch (rd->rpl[id].prim_id) {
375 case PL1_ENABLE:
376 prim = POWER_LIMIT1;
377 break;
378 case PL2_ENABLE:
379 prim = POWER_LIMIT2;
380 break;
381 case PL4_ENABLE:
382 prim = POWER_LIMIT4;
383 break;
384 default:
385 put_online_cpus();
386 return -EINVAL;
387 }
388 if (rapl_read_data_raw(rd, prim, true, &val))
389 ret = -EIO;
390 else
391 *data = val;
392
393get_exit:
394 put_online_cpus();
395
396 return ret;
397}
398
399static int set_time_window(struct powercap_zone *power_zone, int cid,
400 u64 window)
401{
402 struct rapl_domain *rd;
403 int ret = 0;
404 int id;
405
406 get_online_cpus();
407 rd = power_zone_to_rapl_domain(power_zone);
408 id = contraint_to_pl(rd, cid);
409 if (id < 0) {
410 ret = id;
411 goto set_time_exit;
412 }
413
414 switch (rd->rpl[id].prim_id) {
415 case PL1_ENABLE:
416 rapl_write_data_raw(rd, TIME_WINDOW1, window);
417 break;
418 case PL2_ENABLE:
419 rapl_write_data_raw(rd, TIME_WINDOW2, window);
420 break;
421 default:
422 ret = -EINVAL;
423 }
424
425set_time_exit:
426 put_online_cpus();
427 return ret;
428}
429
430static int get_time_window(struct powercap_zone *power_zone, int cid,
431 u64 *data)
432{
433 struct rapl_domain *rd;
434 u64 val;
435 int ret = 0;
436 int id;
437
438 get_online_cpus();
439 rd = power_zone_to_rapl_domain(power_zone);
440 id = contraint_to_pl(rd, cid);
441 if (id < 0) {
442 ret = id;
443 goto get_time_exit;
444 }
445
446 switch (rd->rpl[id].prim_id) {
447 case PL1_ENABLE:
448 ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
449 break;
450 case PL2_ENABLE:
451 ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
452 break;
453 case PL4_ENABLE:
454 /*
455 * Time window parameter is not applicable for PL4 entry
456 * so assigining '0' as default value.
457 */
458 val = 0;
459 break;
460 default:
461 put_online_cpus();
462 return -EINVAL;
463 }
464 if (!ret)
465 *data = val;
466
467get_time_exit:
468 put_online_cpus();
469
470 return ret;
471}
472
473static const char *get_constraint_name(struct powercap_zone *power_zone,
474 int cid)
475{
476 struct rapl_domain *rd;
477 int id;
478
479 rd = power_zone_to_rapl_domain(power_zone);
480 id = contraint_to_pl(rd, cid);
481 if (id >= 0)
482 return rd->rpl[id].name;
483
484 return NULL;
485}
486
487static int get_max_power(struct powercap_zone *power_zone, int id, u64 *data)
488{
489 struct rapl_domain *rd;
490 u64 val;
491 int prim;
492 int ret = 0;
493
494 get_online_cpus();
495 rd = power_zone_to_rapl_domain(power_zone);
496 switch (rd->rpl[id].prim_id) {
497 case PL1_ENABLE:
498 prim = THERMAL_SPEC_POWER;
499 break;
500 case PL2_ENABLE:
501 prim = MAX_POWER;
502 break;
503 case PL4_ENABLE:
504 prim = MAX_POWER;
505 break;
506 default:
507 put_online_cpus();
508 return -EINVAL;
509 }
510 if (rapl_read_data_raw(rd, prim, true, &val))
511 ret = -EIO;
512 else
513 *data = val;
514
515 /* As a generalization rule, PL4 would be around two times PL2. */
516 if (rd->rpl[id].prim_id == PL4_ENABLE)
517 *data = *data * 2;
518
519 put_online_cpus();
520
521 return ret;
522}
523
524static const struct powercap_zone_constraint_ops constraint_ops = {
525 .set_power_limit_uw = set_power_limit,
526 .get_power_limit_uw = get_current_power_limit,
527 .set_time_window_us = set_time_window,
528 .get_time_window_us = get_time_window,
529 .get_max_power_uw = get_max_power,
530 .get_name = get_constraint_name,
531};
532
533/* called after domain detection and package level data are set */
534static void rapl_init_domains(struct rapl_package *rp)
535{
536 enum rapl_domain_type i;
537 enum rapl_domain_reg_id j;
538 struct rapl_domain *rd = rp->domains;
539
540 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
541 unsigned int mask = rp->domain_map & (1 << i);
542
543 if (!mask)
544 continue;
545
546 rd->rp = rp;
547 rd->name = rapl_domain_names[i];
548 rd->id = i;
549 rd->rpl[0].prim_id = PL1_ENABLE;
550 rd->rpl[0].name = pl1_name;
551
552 /*
553 * The PL2 power domain is applicable for limits two
554 * and limits three
555 */
556 if (rp->priv->limits[i] >= 2) {
557 rd->rpl[1].prim_id = PL2_ENABLE;
558 rd->rpl[1].name = pl2_name;
559 }
560
561 /* Enable PL4 domain if the total power limits are three */
562 if (rp->priv->limits[i] == 3) {
563 rd->rpl[2].prim_id = PL4_ENABLE;
564 rd->rpl[2].name = pl4_name;
565 }
566
567 for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
568 rd->regs[j] = rp->priv->regs[i][j];
569
570 switch (i) {
571 case RAPL_DOMAIN_DRAM:
572 rd->domain_energy_unit =
573 rapl_defaults->dram_domain_energy_unit;
574 if (rd->domain_energy_unit)
575 pr_info("DRAM domain energy unit %dpj\n",
576 rd->domain_energy_unit);
577 break;
578 case RAPL_DOMAIN_PLATFORM:
579 rd->domain_energy_unit =
580 rapl_defaults->psys_domain_energy_unit;
581 if (rd->domain_energy_unit)
582 pr_info("Platform domain energy unit %dpj\n",
583 rd->domain_energy_unit);
584 break;
585 default:
586 break;
587 }
588 rd++;
589 }
590}
591
592static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
593 u64 value, int to_raw)
594{
595 u64 units = 1;
596 struct rapl_package *rp = rd->rp;
597 u64 scale = 1;
598
599 switch (type) {
600 case POWER_UNIT:
601 units = rp->power_unit;
602 break;
603 case ENERGY_UNIT:
604 scale = ENERGY_UNIT_SCALE;
605 /* per domain unit takes precedence */
606 if (rd->domain_energy_unit)
607 units = rd->domain_energy_unit;
608 else
609 units = rp->energy_unit;
610 break;
611 case TIME_UNIT:
612 return rapl_defaults->compute_time_window(rp, value, to_raw);
613 case ARBITRARY_UNIT:
614 default:
615 return value;
616 };
617
618 if (to_raw)
619 return div64_u64(value, units) * scale;
620
621 value *= units;
622
623 return div64_u64(value, scale);
624}
625
626/* in the order of enum rapl_primitives */
627static struct rapl_primitive_info rpi[] = {
628 /* name, mask, shift, msr index, unit divisor */
629 PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
630 RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
631 PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
632 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
633 PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
634 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
635 PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
636 RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
637 PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
638 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
639 PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
640 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
641 PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
642 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
643 PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
644 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
645 PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
646 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
647 PRIMITIVE_INFO_INIT(PL4_ENABLE, POWER_LIMIT4_MASK, 0,
648 RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
649 PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
650 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
651 PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
652 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
653 PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
654 0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
655 PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
656 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
657 PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
658 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
659 PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
660 RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
661 PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
662 RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
663 PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
664 RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
665 /* non-hardware */
666 PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
667 RAPL_PRIMITIVE_DERIVED),
668 {NULL, 0, 0, 0},
669};
670
671/* Read primitive data based on its related struct rapl_primitive_info.
672 * if xlate flag is set, return translated data based on data units, i.e.
673 * time, energy, and power.
674 * RAPL MSRs are non-architectual and are laid out not consistently across
675 * domains. Here we use primitive info to allow writing consolidated access
676 * functions.
677 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
678 * is pre-assigned based on RAPL unit MSRs read at init time.
679 * 63-------------------------- 31--------------------------- 0
680 * | xxxxx (mask) |
681 * | |<- shift ----------------|
682 * 63-------------------------- 31--------------------------- 0
683 */
684static int rapl_read_data_raw(struct rapl_domain *rd,
685 enum rapl_primitives prim, bool xlate, u64 *data)
686{
687 u64 value;
688 struct rapl_primitive_info *rp = &rpi[prim];
689 struct reg_action ra;
690 int cpu;
691
692 if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
693 return -EINVAL;
694
695 ra.reg = rd->regs[rp->id];
696 if (!ra.reg)
697 return -EINVAL;
698
699 cpu = rd->rp->lead_cpu;
700
701 /* domain with 2 limits has different bit */
702 if (prim == FW_LOCK && rd->rp->priv->limits[rd->id] == 2) {
703 rp->mask = POWER_HIGH_LOCK;
704 rp->shift = 63;
705 }
706 /* non-hardware data are collected by the polling thread */
707 if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
708 *data = rd->rdd.primitives[prim];
709 return 0;
710 }
711
712 ra.mask = rp->mask;
713
714 if (rd->rp->priv->read_raw(cpu, &ra)) {
715 pr_debug("failed to read reg 0x%llx on cpu %d\n", ra.reg, cpu);
716 return -EIO;
717 }
718
719 value = ra.value >> rp->shift;
720
721 if (xlate)
722 *data = rapl_unit_xlate(rd, rp->unit, value, 0);
723 else
724 *data = value;
725
726 return 0;
727}
728
729/* Similar use of primitive info in the read counterpart */
730static int rapl_write_data_raw(struct rapl_domain *rd,
731 enum rapl_primitives prim,
732 unsigned long long value)
733{
734 struct rapl_primitive_info *rp = &rpi[prim];
735 int cpu;
736 u64 bits;
737 struct reg_action ra;
738 int ret;
739
740 cpu = rd->rp->lead_cpu;
741 bits = rapl_unit_xlate(rd, rp->unit, value, 1);
742 bits <<= rp->shift;
743 bits &= rp->mask;
744
745 memset(&ra, 0, sizeof(ra));
746
747 ra.reg = rd->regs[rp->id];
748 ra.mask = rp->mask;
749 ra.value = bits;
750
751 ret = rd->rp->priv->write_raw(cpu, &ra);
752
753 return ret;
754}
755
756/*
757 * Raw RAPL data stored in MSRs are in certain scales. We need to
758 * convert them into standard units based on the units reported in
759 * the RAPL unit MSRs. This is specific to CPUs as the method to
760 * calculate units differ on different CPUs.
761 * We convert the units to below format based on CPUs.
762 * i.e.
763 * energy unit: picoJoules : Represented in picoJoules by default
764 * power unit : microWatts : Represented in milliWatts by default
765 * time unit : microseconds: Represented in seconds by default
766 */
767static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
768{
769 struct reg_action ra;
770 u32 value;
771
772 ra.reg = rp->priv->reg_unit;
773 ra.mask = ~0;
774 if (rp->priv->read_raw(cpu, &ra)) {
775 pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
776 rp->priv->reg_unit, cpu);
777 return -ENODEV;
778 }
779
780 value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
781 rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
782
783 value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
784 rp->power_unit = 1000000 / (1 << value);
785
786 value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
787 rp->time_unit = 1000000 / (1 << value);
788
789 pr_debug("Core CPU %s energy=%dpJ, time=%dus, power=%duW\n",
790 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
791
792 return 0;
793}
794
795static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
796{
797 struct reg_action ra;
798 u32 value;
799
800 ra.reg = rp->priv->reg_unit;
801 ra.mask = ~0;
802 if (rp->priv->read_raw(cpu, &ra)) {
803 pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
804 rp->priv->reg_unit, cpu);
805 return -ENODEV;
806 }
807
808 value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
809 rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
810
811 value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
812 rp->power_unit = (1 << value) * 1000;
813
814 value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
815 rp->time_unit = 1000000 / (1 << value);
816
817 pr_debug("Atom %s energy=%dpJ, time=%dus, power=%duW\n",
818 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
819
820 return 0;
821}
822
823static void power_limit_irq_save_cpu(void *info)
824{
825 u32 l, h = 0;
826 struct rapl_package *rp = (struct rapl_package *)info;
827
828 /* save the state of PLN irq mask bit before disabling it */
829 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
830 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
831 rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
832 rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
833 }
834 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
835 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
836}
837
838/* REVISIT:
839 * When package power limit is set artificially low by RAPL, LVT
840 * thermal interrupt for package power limit should be ignored
841 * since we are not really exceeding the real limit. The intention
842 * is to avoid excessive interrupts while we are trying to save power.
843 * A useful feature might be routing the package_power_limit interrupt
844 * to userspace via eventfd. once we have a usecase, this is simple
845 * to do by adding an atomic notifier.
846 */
847
848static void package_power_limit_irq_save(struct rapl_package *rp)
849{
850 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
851 return;
852
853 smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
854}
855
856/*
857 * Restore per package power limit interrupt enable state. Called from cpu
858 * hotplug code on package removal.
859 */
860static void package_power_limit_irq_restore(struct rapl_package *rp)
861{
862 u32 l, h;
863
864 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
865 return;
866
867 /* irq enable state not saved, nothing to restore */
868 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
869 return;
870
871 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
872
873 if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
874 l |= PACKAGE_THERM_INT_PLN_ENABLE;
875 else
876 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
877
878 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
879}
880
881static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
882{
883 int nr_powerlimit = find_nr_power_limit(rd);
884
885 /* always enable clamp such that p-state can go below OS requested
886 * range. power capping priority over guranteed frequency.
887 */
888 rapl_write_data_raw(rd, PL1_CLAMP, mode);
889
890 /* some domains have pl2 */
891 if (nr_powerlimit > 1) {
892 rapl_write_data_raw(rd, PL2_ENABLE, mode);
893 rapl_write_data_raw(rd, PL2_CLAMP, mode);
894 }
895}
896
897static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
898{
899 static u32 power_ctrl_orig_val;
900 u32 mdata;
901
902 if (!rapl_defaults->floor_freq_reg_addr) {
903 pr_err("Invalid floor frequency config register\n");
904 return;
905 }
906
907 if (!power_ctrl_orig_val)
908 iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
909 rapl_defaults->floor_freq_reg_addr,
910 &power_ctrl_orig_val);
911 mdata = power_ctrl_orig_val;
912 if (enable) {
913 mdata &= ~(0x7f << 8);
914 mdata |= 1 << 8;
915 }
916 iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
917 rapl_defaults->floor_freq_reg_addr, mdata);
918}
919
920static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
921 bool to_raw)
922{
923 u64 f, y; /* fraction and exp. used for time unit */
924
925 /*
926 * Special processing based on 2^Y*(1+F/4), refer
927 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
928 */
929 if (!to_raw) {
930 f = (value & 0x60) >> 5;
931 y = value & 0x1f;
932 value = (1 << y) * (4 + f) * rp->time_unit / 4;
933 } else {
934 do_div(value, rp->time_unit);
935 y = ilog2(value);
936 f = div64_u64(4 * (value - (1 << y)), 1 << y);
937 value = (y & 0x1f) | ((f & 0x3) << 5);
938 }
939 return value;
940}
941
942static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
943 bool to_raw)
944{
945 /*
946 * Atom time unit encoding is straight forward val * time_unit,
947 * where time_unit is default to 1 sec. Never 0.
948 */
949 if (!to_raw)
950 return (value) ? value *= rp->time_unit : rp->time_unit;
951
952 value = div64_u64(value, rp->time_unit);
953
954 return value;
955}
956
957static const struct rapl_defaults rapl_defaults_core = {
958 .floor_freq_reg_addr = 0,
959 .check_unit = rapl_check_unit_core,
960 .set_floor_freq = set_floor_freq_default,
961 .compute_time_window = rapl_compute_time_window_core,
962};
963
964static const struct rapl_defaults rapl_defaults_hsw_server = {
965 .check_unit = rapl_check_unit_core,
966 .set_floor_freq = set_floor_freq_default,
967 .compute_time_window = rapl_compute_time_window_core,
968 .dram_domain_energy_unit = 15300,
969};
970
971static const struct rapl_defaults rapl_defaults_spr_server = {
972 .check_unit = rapl_check_unit_core,
973 .set_floor_freq = set_floor_freq_default,
974 .compute_time_window = rapl_compute_time_window_core,
975 .dram_domain_energy_unit = 15300,
976 .psys_domain_energy_unit = 1000000000,
977};
978
979static const struct rapl_defaults rapl_defaults_byt = {
980 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
981 .check_unit = rapl_check_unit_atom,
982 .set_floor_freq = set_floor_freq_atom,
983 .compute_time_window = rapl_compute_time_window_atom,
984};
985
986static const struct rapl_defaults rapl_defaults_tng = {
987 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
988 .check_unit = rapl_check_unit_atom,
989 .set_floor_freq = set_floor_freq_atom,
990 .compute_time_window = rapl_compute_time_window_atom,
991};
992
993static const struct rapl_defaults rapl_defaults_ann = {
994 .floor_freq_reg_addr = 0,
995 .check_unit = rapl_check_unit_atom,
996 .set_floor_freq = NULL,
997 .compute_time_window = rapl_compute_time_window_atom,
998};
999
1000static const struct rapl_defaults rapl_defaults_cht = {
1001 .floor_freq_reg_addr = 0,
1002 .check_unit = rapl_check_unit_atom,
1003 .set_floor_freq = NULL,
1004 .compute_time_window = rapl_compute_time_window_atom,
1005};
1006
1007static const struct x86_cpu_id rapl_ids[] __initconst = {
1008 X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE, &rapl_defaults_core),
1009 X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &rapl_defaults_core),
1010
1011 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE, &rapl_defaults_core),
1012 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &rapl_defaults_core),
1013
1014 X86_MATCH_INTEL_FAM6_MODEL(HASWELL, &rapl_defaults_core),
1015 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L, &rapl_defaults_core),
1016 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G, &rapl_defaults_core),
1017 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &rapl_defaults_hsw_server),
1018
1019 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL, &rapl_defaults_core),
1020 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G, &rapl_defaults_core),
1021 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &rapl_defaults_core),
1022 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &rapl_defaults_hsw_server),
1023
1024 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, &rapl_defaults_core),
1025 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, &rapl_defaults_core),
1026 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &rapl_defaults_hsw_server),
1027 X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, &rapl_defaults_core),
1028 X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, &rapl_defaults_core),
1029 X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L, &rapl_defaults_core),
1030 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, &rapl_defaults_core),
1031 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE, &rapl_defaults_core),
1032 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI, &rapl_defaults_core),
1033 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &rapl_defaults_hsw_server),
1034 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &rapl_defaults_hsw_server),
1035 X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, &rapl_defaults_core),
1036 X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, &rapl_defaults_core),
1037 X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, &rapl_defaults_core),
1038 X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, &rapl_defaults_core),
1039 X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE, &rapl_defaults_core),
1040 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, &rapl_defaults_core),
1041 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &rapl_defaults_spr_server),
1042 X86_MATCH_INTEL_FAM6_MODEL(LAKEFIELD, &rapl_defaults_core),
1043
1044 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, &rapl_defaults_byt),
1045 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, &rapl_defaults_cht),
1046 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID, &rapl_defaults_tng),
1047 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID, &rapl_defaults_ann),
1048 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT, &rapl_defaults_core),
1049 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS, &rapl_defaults_core),
1050 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D, &rapl_defaults_core),
1051 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, &rapl_defaults_core),
1052 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, &rapl_defaults_core),
1053 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, &rapl_defaults_core),
1054
1055 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &rapl_defaults_hsw_server),
1056 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &rapl_defaults_hsw_server),
1057 {}
1058};
1059MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1060
1061/* Read once for all raw primitive data for domains */
1062static void rapl_update_domain_data(struct rapl_package *rp)
1063{
1064 int dmn, prim;
1065 u64 val;
1066
1067 for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1068 pr_debug("update %s domain %s data\n", rp->name,
1069 rp->domains[dmn].name);
1070 /* exclude non-raw primitives */
1071 for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1072 if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1073 rpi[prim].unit, &val))
1074 rp->domains[dmn].rdd.primitives[prim] = val;
1075 }
1076 }
1077
1078}
1079
1080static int rapl_package_register_powercap(struct rapl_package *rp)
1081{
1082 struct rapl_domain *rd;
1083 struct powercap_zone *power_zone = NULL;
1084 int nr_pl, ret;
1085
1086 /* Update the domain data of the new package */
1087 rapl_update_domain_data(rp);
1088
1089 /* first we register package domain as the parent zone */
1090 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1091 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1092 nr_pl = find_nr_power_limit(rd);
1093 pr_debug("register package domain %s\n", rp->name);
1094 power_zone = powercap_register_zone(&rd->power_zone,
1095 rp->priv->control_type, rp->name,
1096 NULL, &zone_ops[rd->id], nr_pl,
1097 &constraint_ops);
1098 if (IS_ERR(power_zone)) {
1099 pr_debug("failed to register power zone %s\n",
1100 rp->name);
1101 return PTR_ERR(power_zone);
1102 }
1103 /* track parent zone in per package/socket data */
1104 rp->power_zone = power_zone;
1105 /* done, only one package domain per socket */
1106 break;
1107 }
1108 }
1109 if (!power_zone) {
1110 pr_err("no package domain found, unknown topology!\n");
1111 return -ENODEV;
1112 }
1113 /* now register domains as children of the socket/package */
1114 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1115 if (rd->id == RAPL_DOMAIN_PACKAGE)
1116 continue;
1117 /* number of power limits per domain varies */
1118 nr_pl = find_nr_power_limit(rd);
1119 power_zone = powercap_register_zone(&rd->power_zone,
1120 rp->priv->control_type,
1121 rd->name, rp->power_zone,
1122 &zone_ops[rd->id], nr_pl,
1123 &constraint_ops);
1124
1125 if (IS_ERR(power_zone)) {
1126 pr_debug("failed to register power_zone, %s:%s\n",
1127 rp->name, rd->name);
1128 ret = PTR_ERR(power_zone);
1129 goto err_cleanup;
1130 }
1131 }
1132 return 0;
1133
1134err_cleanup:
1135 /*
1136 * Clean up previously initialized domains within the package if we
1137 * failed after the first domain setup.
1138 */
1139 while (--rd >= rp->domains) {
1140 pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1141 powercap_unregister_zone(rp->priv->control_type,
1142 &rd->power_zone);
1143 }
1144
1145 return ret;
1146}
1147
1148int rapl_add_platform_domain(struct rapl_if_priv *priv)
1149{
1150 struct rapl_domain *rd;
1151 struct powercap_zone *power_zone;
1152 struct reg_action ra;
1153 int ret;
1154
1155 ra.reg = priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_STATUS];
1156 ra.mask = ~0;
1157 ret = priv->read_raw(0, &ra);
1158 if (ret || !ra.value)
1159 return -ENODEV;
1160
1161 ra.reg = priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_LIMIT];
1162 ra.mask = ~0;
1163 ret = priv->read_raw(0, &ra);
1164 if (ret || !ra.value)
1165 return -ENODEV;
1166
1167 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
1168 if (!rd)
1169 return -ENOMEM;
1170
1171 rd->name = rapl_domain_names[RAPL_DOMAIN_PLATFORM];
1172 rd->id = RAPL_DOMAIN_PLATFORM;
1173 rd->regs[RAPL_DOMAIN_REG_LIMIT] =
1174 priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_LIMIT];
1175 rd->regs[RAPL_DOMAIN_REG_STATUS] =
1176 priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_STATUS];
1177 rd->rpl[0].prim_id = PL1_ENABLE;
1178 rd->rpl[0].name = pl1_name;
1179 rd->rpl[1].prim_id = PL2_ENABLE;
1180 rd->rpl[1].name = pl2_name;
1181 rd->rp = rapl_find_package_domain(0, priv);
1182
1183 power_zone = powercap_register_zone(&rd->power_zone, priv->control_type,
1184 "psys", NULL,
1185 &zone_ops[RAPL_DOMAIN_PLATFORM],
1186 2, &constraint_ops);
1187
1188 if (IS_ERR(power_zone)) {
1189 kfree(rd);
1190 return PTR_ERR(power_zone);
1191 }
1192
1193 priv->platform_rapl_domain = rd;
1194
1195 return 0;
1196}
1197EXPORT_SYMBOL_GPL(rapl_add_platform_domain);
1198
1199void rapl_remove_platform_domain(struct rapl_if_priv *priv)
1200{
1201 if (priv->platform_rapl_domain) {
1202 powercap_unregister_zone(priv->control_type,
1203 &priv->platform_rapl_domain->power_zone);
1204 kfree(priv->platform_rapl_domain);
1205 }
1206}
1207EXPORT_SYMBOL_GPL(rapl_remove_platform_domain);
1208
1209static int rapl_check_domain(int cpu, int domain, struct rapl_package *rp)
1210{
1211 struct reg_action ra;
1212
1213 switch (domain) {
1214 case RAPL_DOMAIN_PACKAGE:
1215 case RAPL_DOMAIN_PP0:
1216 case RAPL_DOMAIN_PP1:
1217 case RAPL_DOMAIN_DRAM:
1218 ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1219 break;
1220 case RAPL_DOMAIN_PLATFORM:
1221 /* PSYS(PLATFORM) is not a CPU domain, so avoid printng error */
1222 return -EINVAL;
1223 default:
1224 pr_err("invalid domain id %d\n", domain);
1225 return -EINVAL;
1226 }
1227 /* make sure domain counters are available and contains non-zero
1228 * values, otherwise skip it.
1229 */
1230
1231 ra.mask = ~0;
1232 if (rp->priv->read_raw(cpu, &ra) || !ra.value)
1233 return -ENODEV;
1234
1235 return 0;
1236}
1237
1238/*
1239 * Check if power limits are available. Two cases when they are not available:
1240 * 1. Locked by BIOS, in this case we still provide read-only access so that
1241 * users can see what limit is set by the BIOS.
1242 * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1243 * exist at all. In this case, we do not show the constraints in powercap.
1244 *
1245 * Called after domains are detected and initialized.
1246 */
1247static void rapl_detect_powerlimit(struct rapl_domain *rd)
1248{
1249 u64 val64;
1250 int i;
1251
1252 /* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
1253 if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
1254 if (val64) {
1255 pr_info("RAPL %s domain %s locked by BIOS\n",
1256 rd->rp->name, rd->name);
1257 rd->state |= DOMAIN_STATE_BIOS_LOCKED;
1258 }
1259 }
1260 /* check if power limit MSR exists, otherwise domain is monitoring only */
1261 for (i = 0; i < NR_POWER_LIMITS; i++) {
1262 int prim = rd->rpl[i].prim_id;
1263
1264 if (rapl_read_data_raw(rd, prim, false, &val64))
1265 rd->rpl[i].name = NULL;
1266 }
1267}
1268
1269/* Detect active and valid domains for the given CPU, caller must
1270 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1271 */
1272static int rapl_detect_domains(struct rapl_package *rp, int cpu)
1273{
1274 struct rapl_domain *rd;
1275 int i;
1276
1277 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1278 /* use physical package id to read counters */
1279 if (!rapl_check_domain(cpu, i, rp)) {
1280 rp->domain_map |= 1 << i;
1281 pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1282 }
1283 }
1284 rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1285 if (!rp->nr_domains) {
1286 pr_debug("no valid rapl domains found in %s\n", rp->name);
1287 return -ENODEV;
1288 }
1289 pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1290
1291 rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
1292 GFP_KERNEL);
1293 if (!rp->domains)
1294 return -ENOMEM;
1295
1296 rapl_init_domains(rp);
1297
1298 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
1299 rapl_detect_powerlimit(rd);
1300
1301 return 0;
1302}
1303
1304/* called from CPU hotplug notifier, hotplug lock held */
1305void rapl_remove_package(struct rapl_package *rp)
1306{
1307 struct rapl_domain *rd, *rd_package = NULL;
1308
1309 package_power_limit_irq_restore(rp);
1310
1311 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1312 rapl_write_data_raw(rd, PL1_ENABLE, 0);
1313 rapl_write_data_raw(rd, PL1_CLAMP, 0);
1314 if (find_nr_power_limit(rd) > 1) {
1315 rapl_write_data_raw(rd, PL2_ENABLE, 0);
1316 rapl_write_data_raw(rd, PL2_CLAMP, 0);
1317 rapl_write_data_raw(rd, PL4_ENABLE, 0);
1318 }
1319 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1320 rd_package = rd;
1321 continue;
1322 }
1323 pr_debug("remove package, undo power limit on %s: %s\n",
1324 rp->name, rd->name);
1325 powercap_unregister_zone(rp->priv->control_type,
1326 &rd->power_zone);
1327 }
1328 /* do parent zone last */
1329 powercap_unregister_zone(rp->priv->control_type,
1330 &rd_package->power_zone);
1331 list_del(&rp->plist);
1332 kfree(rp);
1333}
1334EXPORT_SYMBOL_GPL(rapl_remove_package);
1335
1336/* caller to ensure CPU hotplug lock is held */
1337struct rapl_package *rapl_find_package_domain(int cpu, struct rapl_if_priv *priv)
1338{
1339 int id = topology_logical_die_id(cpu);
1340 struct rapl_package *rp;
1341
1342 list_for_each_entry(rp, &rapl_packages, plist) {
1343 if (rp->id == id
1344 && rp->priv->control_type == priv->control_type)
1345 return rp;
1346 }
1347
1348 return NULL;
1349}
1350EXPORT_SYMBOL_GPL(rapl_find_package_domain);
1351
1352/* called from CPU hotplug notifier, hotplug lock held */
1353struct rapl_package *rapl_add_package(int cpu, struct rapl_if_priv *priv)
1354{
1355 int id = topology_logical_die_id(cpu);
1356 struct rapl_package *rp;
1357 struct cpuinfo_x86 *c = &cpu_data(cpu);
1358 int ret;
1359
1360 if (!rapl_defaults)
1361 return ERR_PTR(-ENODEV);
1362
1363 rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1364 if (!rp)
1365 return ERR_PTR(-ENOMEM);
1366
1367 /* add the new package to the list */
1368 rp->id = id;
1369 rp->lead_cpu = cpu;
1370 rp->priv = priv;
1371
1372 if (topology_max_die_per_package() > 1)
1373 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH,
1374 "package-%d-die-%d", c->phys_proc_id, c->cpu_die_id);
1375 else
1376 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
1377 c->phys_proc_id);
1378
1379 /* check if the package contains valid domains */
1380 if (rapl_detect_domains(rp, cpu) || rapl_defaults->check_unit(rp, cpu)) {
1381 ret = -ENODEV;
1382 goto err_free_package;
1383 }
1384 ret = rapl_package_register_powercap(rp);
1385 if (!ret) {
1386 INIT_LIST_HEAD(&rp->plist);
1387 list_add(&rp->plist, &rapl_packages);
1388 return rp;
1389 }
1390
1391err_free_package:
1392 kfree(rp->domains);
1393 kfree(rp);
1394 return ERR_PTR(ret);
1395}
1396EXPORT_SYMBOL_GPL(rapl_add_package);
1397
1398static void power_limit_state_save(void)
1399{
1400 struct rapl_package *rp;
1401 struct rapl_domain *rd;
1402 int nr_pl, ret, i;
1403
1404 get_online_cpus();
1405 list_for_each_entry(rp, &rapl_packages, plist) {
1406 if (!rp->power_zone)
1407 continue;
1408 rd = power_zone_to_rapl_domain(rp->power_zone);
1409 nr_pl = find_nr_power_limit(rd);
1410 for (i = 0; i < nr_pl; i++) {
1411 switch (rd->rpl[i].prim_id) {
1412 case PL1_ENABLE:
1413 ret = rapl_read_data_raw(rd,
1414 POWER_LIMIT1, true,
1415 &rd->rpl[i].last_power_limit);
1416 if (ret)
1417 rd->rpl[i].last_power_limit = 0;
1418 break;
1419 case PL2_ENABLE:
1420 ret = rapl_read_data_raw(rd,
1421 POWER_LIMIT2, true,
1422 &rd->rpl[i].last_power_limit);
1423 if (ret)
1424 rd->rpl[i].last_power_limit = 0;
1425 break;
1426 case PL4_ENABLE:
1427 ret = rapl_read_data_raw(rd,
1428 POWER_LIMIT4, true,
1429 &rd->rpl[i].last_power_limit);
1430 if (ret)
1431 rd->rpl[i].last_power_limit = 0;
1432 break;
1433 }
1434 }
1435 }
1436 put_online_cpus();
1437}
1438
1439static void power_limit_state_restore(void)
1440{
1441 struct rapl_package *rp;
1442 struct rapl_domain *rd;
1443 int nr_pl, i;
1444
1445 get_online_cpus();
1446 list_for_each_entry(rp, &rapl_packages, plist) {
1447 if (!rp->power_zone)
1448 continue;
1449 rd = power_zone_to_rapl_domain(rp->power_zone);
1450 nr_pl = find_nr_power_limit(rd);
1451 for (i = 0; i < nr_pl; i++) {
1452 switch (rd->rpl[i].prim_id) {
1453 case PL1_ENABLE:
1454 if (rd->rpl[i].last_power_limit)
1455 rapl_write_data_raw(rd, POWER_LIMIT1,
1456 rd->rpl[i].last_power_limit);
1457 break;
1458 case PL2_ENABLE:
1459 if (rd->rpl[i].last_power_limit)
1460 rapl_write_data_raw(rd, POWER_LIMIT2,
1461 rd->rpl[i].last_power_limit);
1462 break;
1463 case PL4_ENABLE:
1464 if (rd->rpl[i].last_power_limit)
1465 rapl_write_data_raw(rd, POWER_LIMIT4,
1466 rd->rpl[i].last_power_limit);
1467 break;
1468 }
1469 }
1470 }
1471 put_online_cpus();
1472}
1473
1474static int rapl_pm_callback(struct notifier_block *nb,
1475 unsigned long mode, void *_unused)
1476{
1477 switch (mode) {
1478 case PM_SUSPEND_PREPARE:
1479 power_limit_state_save();
1480 break;
1481 case PM_POST_SUSPEND:
1482 power_limit_state_restore();
1483 break;
1484 }
1485 return NOTIFY_OK;
1486}
1487
1488static struct notifier_block rapl_pm_notifier = {
1489 .notifier_call = rapl_pm_callback,
1490};
1491
1492static struct platform_device *rapl_msr_platdev;
1493
1494static int __init rapl_init(void)
1495{
1496 const struct x86_cpu_id *id;
1497 int ret;
1498
1499 id = x86_match_cpu(rapl_ids);
1500 if (!id) {
1501 pr_err("driver does not support CPU family %d model %d\n",
1502 boot_cpu_data.x86, boot_cpu_data.x86_model);
1503
1504 return -ENODEV;
1505 }
1506
1507 rapl_defaults = (struct rapl_defaults *)id->driver_data;
1508
1509 ret = register_pm_notifier(&rapl_pm_notifier);
1510 if (ret)
1511 return ret;
1512
1513 rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
1514 if (!rapl_msr_platdev) {
1515 ret = -ENOMEM;
1516 goto end;
1517 }
1518
1519 ret = platform_device_add(rapl_msr_platdev);
1520 if (ret)
1521 platform_device_put(rapl_msr_platdev);
1522
1523end:
1524 if (ret)
1525 unregister_pm_notifier(&rapl_pm_notifier);
1526
1527 return ret;
1528}
1529
1530static void __exit rapl_exit(void)
1531{
1532 platform_device_unregister(rapl_msr_platdev);
1533 unregister_pm_notifier(&rapl_pm_notifier);
1534}
1535
1536fs_initcall(rapl_init);
1537module_exit(rapl_exit);
1538
1539MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
1540MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
1541MODULE_LICENSE("GPL v2");