Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v5.14.15
  1// SPDX-License-Identifier: MIT
  2/*
 
 
  3 * Copyright © 2019 Intel Corporation
  4 */
  5
  6#include "i915_drv.h"
  7#include "intel_lrc_reg.h"
  8#include "intel_sseu.h"
  9
 10void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices,
 11			 u8 max_subslices, u8 max_eus_per_subslice)
 12{
 13	sseu->max_slices = max_slices;
 14	sseu->max_subslices = max_subslices;
 15	sseu->max_eus_per_subslice = max_eus_per_subslice;
 16
 17	sseu->ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices);
 18	GEM_BUG_ON(sseu->ss_stride > GEN_MAX_SUBSLICE_STRIDE);
 19	sseu->eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
 20	GEM_BUG_ON(sseu->eu_stride > GEN_MAX_EU_STRIDE);
 21}
 22
 23unsigned int
 24intel_sseu_subslice_total(const struct sseu_dev_info *sseu)
 25{
 26	unsigned int i, total = 0;
 27
 28	for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask); i++)
 29		total += hweight8(sseu->subslice_mask[i]);
 30
 31	return total;
 32}
 33
 34u32 intel_sseu_get_subslices(const struct sseu_dev_info *sseu, u8 slice)
 35{
 36	int i, offset = slice * sseu->ss_stride;
 37	u32 mask = 0;
 38
 39	GEM_BUG_ON(slice >= sseu->max_slices);
 40
 41	for (i = 0; i < sseu->ss_stride; i++)
 42		mask |= (u32)sseu->subslice_mask[offset + i] <<
 43			i * BITS_PER_BYTE;
 44
 45	return mask;
 46}
 47
 48void intel_sseu_set_subslices(struct sseu_dev_info *sseu, int slice,
 49			      u32 ss_mask)
 50{
 51	int offset = slice * sseu->ss_stride;
 52
 53	memcpy(&sseu->subslice_mask[offset], &ss_mask, sseu->ss_stride);
 54}
 55
 56unsigned int
 57intel_sseu_subslices_per_slice(const struct sseu_dev_info *sseu, u8 slice)
 58{
 59	return hweight32(intel_sseu_get_subslices(sseu, slice));
 60}
 61
 62static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
 63		       int subslice)
 64{
 65	int slice_stride = sseu->max_subslices * sseu->eu_stride;
 66
 67	return slice * slice_stride + subslice * sseu->eu_stride;
 68}
 69
 70static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
 71			int subslice)
 72{
 73	int i, offset = sseu_eu_idx(sseu, slice, subslice);
 74	u16 eu_mask = 0;
 75
 76	for (i = 0; i < sseu->eu_stride; i++)
 77		eu_mask |=
 78			((u16)sseu->eu_mask[offset + i]) << (i * BITS_PER_BYTE);
 79
 80	return eu_mask;
 81}
 82
 83static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
 84			 u16 eu_mask)
 85{
 86	int i, offset = sseu_eu_idx(sseu, slice, subslice);
 87
 88	for (i = 0; i < sseu->eu_stride; i++)
 89		sseu->eu_mask[offset + i] =
 90			(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
 91}
 92
 93static u16 compute_eu_total(const struct sseu_dev_info *sseu)
 94{
 95	u16 i, total = 0;
 96
 97	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
 98		total += hweight8(sseu->eu_mask[i]);
 99
100	return total;
101}
102
103static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
104				    u8 s_en, u32 ss_en, u16 eu_en)
105{
106	int s, ss;
107
108	/* ss_en represents entire subslice mask across all slices */
109	GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
110		   sizeof(ss_en) * BITS_PER_BYTE);
111
112	for (s = 0; s < sseu->max_slices; s++) {
113		if ((s_en & BIT(s)) == 0)
114			continue;
115
116		sseu->slice_mask |= BIT(s);
117
118		intel_sseu_set_subslices(sseu, s, ss_en);
119
120		for (ss = 0; ss < sseu->max_subslices; ss++)
121			if (intel_sseu_has_subslice(sseu, s, ss))
122				sseu_set_eus(sseu, s, ss, eu_en);
123	}
124	sseu->eu_per_subslice = hweight16(eu_en);
125	sseu->eu_total = compute_eu_total(sseu);
126}
127
128static void gen12_sseu_info_init(struct intel_gt *gt)
129{
130	struct sseu_dev_info *sseu = &gt->info.sseu;
131	struct intel_uncore *uncore = gt->uncore;
132	u32 dss_en;
133	u16 eu_en = 0;
134	u8 eu_en_fuse;
135	u8 s_en;
136	int eu;
137
138	/*
139	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
140	 * Instead of splitting these, provide userspace with an array
141	 * of DSS to more closely represent the hardware resource.
142	 */
143	intel_sseu_set_info(sseu, 1, 6, 16);
144
145	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
146		GEN11_GT_S_ENA_MASK;
147
148	dss_en = intel_uncore_read(uncore, GEN12_GT_DSS_ENABLE);
149
150	/* one bit per pair of EUs */
151	eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
152		       GEN11_EU_DIS_MASK);
153	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
154		if (eu_en_fuse & BIT(eu))
155			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
156
157	gen11_compute_sseu_info(sseu, s_en, dss_en, eu_en);
158
159	/* TGL only supports slice-level power gating */
160	sseu->has_slice_pg = 1;
161}
162
163static void gen11_sseu_info_init(struct intel_gt *gt)
164{
165	struct sseu_dev_info *sseu = &gt->info.sseu;
166	struct intel_uncore *uncore = gt->uncore;
167	u32 ss_en;
168	u8 eu_en;
169	u8 s_en;
170
171	if (IS_JSL_EHL(gt->i915))
172		intel_sseu_set_info(sseu, 1, 4, 8);
173	else
174		intel_sseu_set_info(sseu, 1, 8, 8);
175
176	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
177		GEN11_GT_S_ENA_MASK;
178	ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);
179
180	eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
181		  GEN11_EU_DIS_MASK);
182
183	gen11_compute_sseu_info(sseu, s_en, ss_en, eu_en);
184
185	/* ICL has no power gating restrictions. */
186	sseu->has_slice_pg = 1;
187	sseu->has_subslice_pg = 1;
188	sseu->has_eu_pg = 1;
189}
190
191static void gen10_sseu_info_init(struct intel_gt *gt)
192{
193	struct intel_uncore *uncore = gt->uncore;
194	struct sseu_dev_info *sseu = &gt->info.sseu;
195	const u32 fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
196	const int eu_mask = 0xff;
197	u32 subslice_mask, eu_en;
198	int s, ss;
199
200	intel_sseu_set_info(sseu, 6, 4, 8);
201
202	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
203		GEN10_F2_S_ENA_SHIFT;
204
205	/* Slice0 */
206	eu_en = ~intel_uncore_read(uncore, GEN8_EU_DISABLE0);
207	for (ss = 0; ss < sseu->max_subslices; ss++)
208		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
209	/* Slice1 */
210	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
211	eu_en = ~intel_uncore_read(uncore, GEN8_EU_DISABLE1);
212	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
213	/* Slice2 */
214	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
215	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
216	/* Slice3 */
217	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
218	eu_en = ~intel_uncore_read(uncore, GEN8_EU_DISABLE2);
219	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
220	/* Slice4 */
221	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
222	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
223	/* Slice5 */
224	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
225	eu_en = ~intel_uncore_read(uncore, GEN10_EU_DISABLE3);
226	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
227
228	subslice_mask = (1 << 4) - 1;
229	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
230			   GEN10_F2_SS_DIS_SHIFT);
231
232	for (s = 0; s < sseu->max_slices; s++) {
233		u32 subslice_mask_with_eus = subslice_mask;
234
235		for (ss = 0; ss < sseu->max_subslices; ss++) {
236			if (sseu_get_eus(sseu, s, ss) == 0)
237				subslice_mask_with_eus &= ~BIT(ss);
238		}
239
240		/*
241		 * Slice0 can have up to 3 subslices, but there are only 2 in
242		 * slice1/2.
243		 */
244		intel_sseu_set_subslices(sseu, s, s == 0 ?
245					 subslice_mask_with_eus :
246					 subslice_mask_with_eus & 0x3);
247	}
248
249	sseu->eu_total = compute_eu_total(sseu);
250
251	/*
252	 * CNL is expected to always have a uniform distribution
253	 * of EU across subslices with the exception that any one
254	 * EU in any one subslice may be fused off for die
255	 * recovery.
256	 */
257	sseu->eu_per_subslice =
258		intel_sseu_subslice_total(sseu) ?
259		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
260		0;
261
262	/* No restrictions on Power Gating */
263	sseu->has_slice_pg = 1;
264	sseu->has_subslice_pg = 1;
265	sseu->has_eu_pg = 1;
266}
267
268static void cherryview_sseu_info_init(struct intel_gt *gt)
269{
270	struct sseu_dev_info *sseu = &gt->info.sseu;
271	u32 fuse;
272	u8 subslice_mask = 0;
273
274	fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT);
275
276	sseu->slice_mask = BIT(0);
277	intel_sseu_set_info(sseu, 1, 2, 8);
278
279	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
280		u8 disabled_mask =
281			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
282			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
283			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
284			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
285
286		subslice_mask |= BIT(0);
287		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
288	}
289
290	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
291		u8 disabled_mask =
292			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
293			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
294			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
295			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
296
297		subslice_mask |= BIT(1);
298		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
299	}
300
301	intel_sseu_set_subslices(sseu, 0, subslice_mask);
302
303	sseu->eu_total = compute_eu_total(sseu);
304
305	/*
306	 * CHV expected to always have a uniform distribution of EU
307	 * across subslices.
308	 */
309	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
310		sseu->eu_total /
311		intel_sseu_subslice_total(sseu) :
312		0;
313	/*
314	 * CHV supports subslice power gating on devices with more than
315	 * one subslice, and supports EU power gating on devices with
316	 * more than one EU pair per subslice.
317	 */
318	sseu->has_slice_pg = 0;
319	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
320	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
321}
322
323static void gen9_sseu_info_init(struct intel_gt *gt)
324{
325	struct drm_i915_private *i915 = gt->i915;
326	struct intel_device_info *info = mkwrite_device_info(i915);
327	struct sseu_dev_info *sseu = &gt->info.sseu;
328	struct intel_uncore *uncore = gt->uncore;
329	u32 fuse2, eu_disable, subslice_mask;
330	const u8 eu_mask = 0xff;
331	int s, ss;
332
333	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
334	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
335
336	/* BXT has a single slice and at most 3 subslices. */
337	intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3,
338			    IS_GEN9_LP(i915) ? 3 : 4, 8);
339
340	/*
341	 * The subslice disable field is global, i.e. it applies
342	 * to each of the enabled slices.
343	 */
344	subslice_mask = (1 << sseu->max_subslices) - 1;
345	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
346			   GEN9_F2_SS_DIS_SHIFT);
347
348	/*
349	 * Iterate through enabled slices and subslices to
350	 * count the total enabled EU.
351	 */
352	for (s = 0; s < sseu->max_slices; s++) {
353		if (!(sseu->slice_mask & BIT(s)))
354			/* skip disabled slice */
355			continue;
356
357		intel_sseu_set_subslices(sseu, s, subslice_mask);
358
359		eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
360		for (ss = 0; ss < sseu->max_subslices; ss++) {
361			int eu_per_ss;
362			u8 eu_disabled_mask;
363
364			if (!intel_sseu_has_subslice(sseu, s, ss))
365				/* skip disabled subslice */
366				continue;
367
368			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
369
370			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
371
372			eu_per_ss = sseu->max_eus_per_subslice -
373				hweight8(eu_disabled_mask);
374
375			/*
376			 * Record which subslice(s) has(have) 7 EUs. we
377			 * can tune the hash used to spread work among
378			 * subslices if they are unbalanced.
379			 */
380			if (eu_per_ss == 7)
381				sseu->subslice_7eu[s] |= BIT(ss);
382		}
383	}
384
385	sseu->eu_total = compute_eu_total(sseu);
386
387	/*
388	 * SKL is expected to always have a uniform distribution
389	 * of EU across subslices with the exception that any one
390	 * EU in any one subslice may be fused off for die
391	 * recovery. BXT is expected to be perfectly uniform in EU
392	 * distribution.
393	 */
394	sseu->eu_per_subslice =
395		intel_sseu_subslice_total(sseu) ?
396		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
397		0;
398
399	/*
400	 * SKL+ supports slice power gating on devices with more than
401	 * one slice, and supports EU power gating on devices with
402	 * more than one EU pair per subslice. BXT+ supports subslice
403	 * power gating on devices with more than one subslice, and
404	 * supports EU power gating on devices with more than one EU
405	 * pair per subslice.
406	 */
407	sseu->has_slice_pg =
408		!IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1;
409	sseu->has_subslice_pg =
410		IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1;
411	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
412
413	if (IS_GEN9_LP(i915)) {
414#define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
415		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
416
417		sseu->min_eu_in_pool = 0;
418		if (info->has_pooled_eu) {
419			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
420				sseu->min_eu_in_pool = 3;
421			else if (IS_SS_DISABLED(1))
422				sseu->min_eu_in_pool = 6;
423			else
424				sseu->min_eu_in_pool = 9;
425		}
426#undef IS_SS_DISABLED
427	}
428}
429
430static void bdw_sseu_info_init(struct intel_gt *gt)
431{
432	struct sseu_dev_info *sseu = &gt->info.sseu;
433	struct intel_uncore *uncore = gt->uncore;
434	int s, ss;
435	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
436	u32 eu_disable0, eu_disable1, eu_disable2;
437
438	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
439	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
440	intel_sseu_set_info(sseu, 3, 3, 8);
441
442	/*
443	 * The subslice disable field is global, i.e. it applies
444	 * to each of the enabled slices.
445	 */
446	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
447	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
448			   GEN8_F2_SS_DIS_SHIFT);
449	eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
450	eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
451	eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
452	eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK;
453	eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) |
454		((eu_disable1 & GEN8_EU_DIS1_S1_MASK) <<
455		 (32 - GEN8_EU_DIS0_S1_SHIFT));
456	eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) |
457		((eu_disable2 & GEN8_EU_DIS2_S2_MASK) <<
458		 (32 - GEN8_EU_DIS1_S2_SHIFT));
459
460	/*
461	 * Iterate through enabled slices and subslices to
462	 * count the total enabled EU.
463	 */
464	for (s = 0; s < sseu->max_slices; s++) {
465		if (!(sseu->slice_mask & BIT(s)))
466			/* skip disabled slice */
467			continue;
468
469		intel_sseu_set_subslices(sseu, s, subslice_mask);
470
471		for (ss = 0; ss < sseu->max_subslices; ss++) {
472			u8 eu_disabled_mask;
473			u32 n_disabled;
474
475			if (!intel_sseu_has_subslice(sseu, s, ss))
476				/* skip disabled subslice */
477				continue;
478
479			eu_disabled_mask =
480				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
481
482			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
483
484			n_disabled = hweight8(eu_disabled_mask);
485
486			/*
487			 * Record which subslices have 7 EUs.
488			 */
489			if (sseu->max_eus_per_subslice - n_disabled == 7)
490				sseu->subslice_7eu[s] |= 1 << ss;
491		}
492	}
493
494	sseu->eu_total = compute_eu_total(sseu);
495
496	/*
497	 * BDW is expected to always have a uniform distribution of EU across
498	 * subslices with the exception that any one EU in any one subslice may
499	 * be fused off for die recovery.
500	 */
501	sseu->eu_per_subslice =
502		intel_sseu_subslice_total(sseu) ?
503		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
504		0;
505
506	/*
507	 * BDW supports slice power gating on devices with more than
508	 * one slice.
509	 */
510	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
511	sseu->has_subslice_pg = 0;
512	sseu->has_eu_pg = 0;
513}
514
515static void hsw_sseu_info_init(struct intel_gt *gt)
516{
517	struct drm_i915_private *i915 = gt->i915;
518	struct sseu_dev_info *sseu = &gt->info.sseu;
519	u32 fuse1;
520	u8 subslice_mask = 0;
521	int s, ss;
522
523	/*
524	 * There isn't a register to tell us how many slices/subslices. We
525	 * work off the PCI-ids here.
526	 */
527	switch (INTEL_INFO(i915)->gt) {
528	default:
529		MISSING_CASE(INTEL_INFO(i915)->gt);
530		fallthrough;
531	case 1:
532		sseu->slice_mask = BIT(0);
533		subslice_mask = BIT(0);
534		break;
535	case 2:
536		sseu->slice_mask = BIT(0);
537		subslice_mask = BIT(0) | BIT(1);
538		break;
539	case 3:
540		sseu->slice_mask = BIT(0) | BIT(1);
541		subslice_mask = BIT(0) | BIT(1);
542		break;
543	}
544
545	fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
546	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
547	default:
548		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
549			     HSW_F1_EU_DIS_SHIFT);
550		fallthrough;
551	case HSW_F1_EU_DIS_10EUS:
552		sseu->eu_per_subslice = 10;
553		break;
554	case HSW_F1_EU_DIS_8EUS:
555		sseu->eu_per_subslice = 8;
556		break;
557	case HSW_F1_EU_DIS_6EUS:
558		sseu->eu_per_subslice = 6;
559		break;
560	}
561
562	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
563			    hweight8(subslice_mask),
564			    sseu->eu_per_subslice);
565
566	for (s = 0; s < sseu->max_slices; s++) {
567		intel_sseu_set_subslices(sseu, s, subslice_mask);
568
569		for (ss = 0; ss < sseu->max_subslices; ss++) {
570			sseu_set_eus(sseu, s, ss,
571				     (1UL << sseu->eu_per_subslice) - 1);
572		}
573	}
574
575	sseu->eu_total = compute_eu_total(sseu);
576
577	/* No powergating for you. */
578	sseu->has_slice_pg = 0;
579	sseu->has_subslice_pg = 0;
580	sseu->has_eu_pg = 0;
581}
582
583void intel_sseu_info_init(struct intel_gt *gt)
584{
585	struct drm_i915_private *i915 = gt->i915;
586
587	if (IS_HASWELL(i915))
588		hsw_sseu_info_init(gt);
589	else if (IS_CHERRYVIEW(i915))
590		cherryview_sseu_info_init(gt);
591	else if (IS_BROADWELL(i915))
592		bdw_sseu_info_init(gt);
593	else if (GRAPHICS_VER(i915) == 9)
594		gen9_sseu_info_init(gt);
595	else if (GRAPHICS_VER(i915) == 10)
596		gen10_sseu_info_init(gt);
597	else if (GRAPHICS_VER(i915) == 11)
598		gen11_sseu_info_init(gt);
599	else if (GRAPHICS_VER(i915) >= 12)
600		gen12_sseu_info_init(gt);
601}
602
603u32 intel_sseu_make_rpcs(struct intel_gt *gt,
604			 const struct intel_sseu *req_sseu)
605{
606	struct drm_i915_private *i915 = gt->i915;
607	const struct sseu_dev_info *sseu = &gt->info.sseu;
608	bool subslice_pg = sseu->has_subslice_pg;
609	u8 slices, subslices;
610	u32 rpcs = 0;
611
612	/*
613	 * No explicit RPCS request is needed to ensure full
614	 * slice/subslice/EU enablement prior to Gen9.
615	 */
616	if (GRAPHICS_VER(i915) < 9)
617		return 0;
618
619	/*
620	 * If i915/perf is active, we want a stable powergating configuration
621	 * on the system. Use the configuration pinned by i915/perf.
622	 */
623	if (i915->perf.exclusive_stream)
624		req_sseu = &i915->perf.sseu;
625
626	slices = hweight8(req_sseu->slice_mask);
627	subslices = hweight8(req_sseu->subslice_mask);
628
629	/*
630	 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
631	 * wide and Icelake has up to eight subslices, specfial programming is
632	 * needed in order to correctly enable all subslices.
633	 *
634	 * According to documentation software must consider the configuration
635	 * as 2x4x8 and hardware will translate this to 1x8x8.
636	 *
637	 * Furthemore, even though SScount is three bits, maximum documented
638	 * value for it is four. From this some rules/restrictions follow:
639	 *
640	 * 1.
641	 * If enabled subslice count is greater than four, two whole slices must
642	 * be enabled instead.
643	 *
644	 * 2.
645	 * When more than one slice is enabled, hardware ignores the subslice
646	 * count altogether.
647	 *
648	 * From these restrictions it follows that it is not possible to enable
649	 * a count of subslices between the SScount maximum of four restriction,
650	 * and the maximum available number on a particular SKU. Either all
651	 * subslices are enabled, or a count between one and four on the first
652	 * slice.
653	 */
654	if (GRAPHICS_VER(i915) == 11 &&
655	    slices == 1 &&
656	    subslices > min_t(u8, 4, hweight8(sseu->subslice_mask[0]) / 2)) {
657		GEM_BUG_ON(subslices & 1);
658
659		subslice_pg = false;
660		slices *= 2;
661	}
662
663	/*
664	 * Starting in Gen9, render power gating can leave
665	 * slice/subslice/EU in a partially enabled state. We
666	 * must make an explicit request through RPCS for full
667	 * enablement.
668	 */
669	if (sseu->has_slice_pg) {
670		u32 mask, val = slices;
671
672		if (GRAPHICS_VER(i915) >= 11) {
673			mask = GEN11_RPCS_S_CNT_MASK;
674			val <<= GEN11_RPCS_S_CNT_SHIFT;
675		} else {
676			mask = GEN8_RPCS_S_CNT_MASK;
677			val <<= GEN8_RPCS_S_CNT_SHIFT;
678		}
679
680		GEM_BUG_ON(val & ~mask);
681		val &= mask;
682
683		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
684	}
685
686	if (subslice_pg) {
687		u32 val = subslices;
688
689		val <<= GEN8_RPCS_SS_CNT_SHIFT;
690
691		GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
692		val &= GEN8_RPCS_SS_CNT_MASK;
693
694		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
695	}
696
697	if (sseu->has_eu_pg) {
698		u32 val;
699
700		val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
701		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
702		val &= GEN8_RPCS_EU_MIN_MASK;
703
704		rpcs |= val;
705
706		val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
707		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
708		val &= GEN8_RPCS_EU_MAX_MASK;
709
710		rpcs |= val;
711
712		rpcs |= GEN8_RPCS_ENABLE;
713	}
714
715	return rpcs;
716}
717
718void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
719{
720	int s;
721
722	drm_printf(p, "slice total: %u, mask=%04x\n",
723		   hweight8(sseu->slice_mask), sseu->slice_mask);
724	drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
725	for (s = 0; s < sseu->max_slices; s++) {
726		drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
727			   s, intel_sseu_subslices_per_slice(sseu, s),
728			   intel_sseu_get_subslices(sseu, s));
729	}
730	drm_printf(p, "EU total: %u\n", sseu->eu_total);
731	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
732	drm_printf(p, "has slice power gating: %s\n",
733		   yesno(sseu->has_slice_pg));
734	drm_printf(p, "has subslice power gating: %s\n",
735		   yesno(sseu->has_subslice_pg));
736	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
737}
738
739void intel_sseu_print_topology(const struct sseu_dev_info *sseu,
740			       struct drm_printer *p)
741{
742	int s, ss;
743
744	if (sseu->max_slices == 0) {
745		drm_printf(p, "Unavailable\n");
746		return;
747	}
748
749	for (s = 0; s < sseu->max_slices; s++) {
750		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
751			   s, intel_sseu_subslices_per_slice(sseu, s),
752			   intel_sseu_get_subslices(sseu, s));
753
754		for (ss = 0; ss < sseu->max_subslices; ss++) {
755			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
756
757			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
758				   ss, hweight16(enabled_eus), enabled_eus);
759		}
760	}
761}
v5.9
 
  1/*
  2 * SPDX-License-Identifier: MIT
  3 *
  4 * Copyright © 2019 Intel Corporation
  5 */
  6
  7#include "i915_drv.h"
  8#include "intel_lrc_reg.h"
  9#include "intel_sseu.h"
 10
 11void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices,
 12			 u8 max_subslices, u8 max_eus_per_subslice)
 13{
 14	sseu->max_slices = max_slices;
 15	sseu->max_subslices = max_subslices;
 16	sseu->max_eus_per_subslice = max_eus_per_subslice;
 17
 18	sseu->ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices);
 19	GEM_BUG_ON(sseu->ss_stride > GEN_MAX_SUBSLICE_STRIDE);
 20	sseu->eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
 21	GEM_BUG_ON(sseu->eu_stride > GEN_MAX_EU_STRIDE);
 22}
 23
 24unsigned int
 25intel_sseu_subslice_total(const struct sseu_dev_info *sseu)
 26{
 27	unsigned int i, total = 0;
 28
 29	for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask); i++)
 30		total += hweight8(sseu->subslice_mask[i]);
 31
 32	return total;
 33}
 34
 35u32 intel_sseu_get_subslices(const struct sseu_dev_info *sseu, u8 slice)
 36{
 37	int i, offset = slice * sseu->ss_stride;
 38	u32 mask = 0;
 39
 40	GEM_BUG_ON(slice >= sseu->max_slices);
 41
 42	for (i = 0; i < sseu->ss_stride; i++)
 43		mask |= (u32)sseu->subslice_mask[offset + i] <<
 44			i * BITS_PER_BYTE;
 45
 46	return mask;
 47}
 48
 49void intel_sseu_set_subslices(struct sseu_dev_info *sseu, int slice,
 50			      u32 ss_mask)
 51{
 52	int offset = slice * sseu->ss_stride;
 53
 54	memcpy(&sseu->subslice_mask[offset], &ss_mask, sseu->ss_stride);
 55}
 56
 57unsigned int
 58intel_sseu_subslices_per_slice(const struct sseu_dev_info *sseu, u8 slice)
 59{
 60	return hweight32(intel_sseu_get_subslices(sseu, slice));
 61}
 62
 63static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
 64		       int subslice)
 65{
 66	int slice_stride = sseu->max_subslices * sseu->eu_stride;
 67
 68	return slice * slice_stride + subslice * sseu->eu_stride;
 69}
 70
 71static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
 72			int subslice)
 73{
 74	int i, offset = sseu_eu_idx(sseu, slice, subslice);
 75	u16 eu_mask = 0;
 76
 77	for (i = 0; i < sseu->eu_stride; i++)
 78		eu_mask |=
 79			((u16)sseu->eu_mask[offset + i]) << (i * BITS_PER_BYTE);
 80
 81	return eu_mask;
 82}
 83
 84static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
 85			 u16 eu_mask)
 86{
 87	int i, offset = sseu_eu_idx(sseu, slice, subslice);
 88
 89	for (i = 0; i < sseu->eu_stride; i++)
 90		sseu->eu_mask[offset + i] =
 91			(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
 92}
 93
 94static u16 compute_eu_total(const struct sseu_dev_info *sseu)
 95{
 96	u16 i, total = 0;
 97
 98	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
 99		total += hweight8(sseu->eu_mask[i]);
100
101	return total;
102}
103
104static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
105				    u8 s_en, u32 ss_en, u16 eu_en)
106{
107	int s, ss;
108
109	/* ss_en represents entire subslice mask across all slices */
110	GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
111		   sizeof(ss_en) * BITS_PER_BYTE);
112
113	for (s = 0; s < sseu->max_slices; s++) {
114		if ((s_en & BIT(s)) == 0)
115			continue;
116
117		sseu->slice_mask |= BIT(s);
118
119		intel_sseu_set_subslices(sseu, s, ss_en);
120
121		for (ss = 0; ss < sseu->max_subslices; ss++)
122			if (intel_sseu_has_subslice(sseu, s, ss))
123				sseu_set_eus(sseu, s, ss, eu_en);
124	}
125	sseu->eu_per_subslice = hweight16(eu_en);
126	sseu->eu_total = compute_eu_total(sseu);
127}
128
129static void gen12_sseu_info_init(struct intel_gt *gt)
130{
131	struct sseu_dev_info *sseu = &gt->info.sseu;
132	struct intel_uncore *uncore = gt->uncore;
133	u32 dss_en;
134	u16 eu_en = 0;
135	u8 eu_en_fuse;
136	u8 s_en;
137	int eu;
138
139	/*
140	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
141	 * Instead of splitting these, provide userspace with an array
142	 * of DSS to more closely represent the hardware resource.
143	 */
144	intel_sseu_set_info(sseu, 1, 6, 16);
145
146	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
147		GEN11_GT_S_ENA_MASK;
148
149	dss_en = intel_uncore_read(uncore, GEN12_GT_DSS_ENABLE);
150
151	/* one bit per pair of EUs */
152	eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
153		       GEN11_EU_DIS_MASK);
154	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
155		if (eu_en_fuse & BIT(eu))
156			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
157
158	gen11_compute_sseu_info(sseu, s_en, dss_en, eu_en);
159
160	/* TGL only supports slice-level power gating */
161	sseu->has_slice_pg = 1;
162}
163
164static void gen11_sseu_info_init(struct intel_gt *gt)
165{
166	struct sseu_dev_info *sseu = &gt->info.sseu;
167	struct intel_uncore *uncore = gt->uncore;
168	u32 ss_en;
169	u8 eu_en;
170	u8 s_en;
171
172	if (IS_ELKHARTLAKE(gt->i915))
173		intel_sseu_set_info(sseu, 1, 4, 8);
174	else
175		intel_sseu_set_info(sseu, 1, 8, 8);
176
177	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
178		GEN11_GT_S_ENA_MASK;
179	ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);
180
181	eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
182		  GEN11_EU_DIS_MASK);
183
184	gen11_compute_sseu_info(sseu, s_en, ss_en, eu_en);
185
186	/* ICL has no power gating restrictions. */
187	sseu->has_slice_pg = 1;
188	sseu->has_subslice_pg = 1;
189	sseu->has_eu_pg = 1;
190}
191
192static void gen10_sseu_info_init(struct intel_gt *gt)
193{
194	struct intel_uncore *uncore = gt->uncore;
195	struct sseu_dev_info *sseu = &gt->info.sseu;
196	const u32 fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
197	const int eu_mask = 0xff;
198	u32 subslice_mask, eu_en;
199	int s, ss;
200
201	intel_sseu_set_info(sseu, 6, 4, 8);
202
203	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
204		GEN10_F2_S_ENA_SHIFT;
205
206	/* Slice0 */
207	eu_en = ~intel_uncore_read(uncore, GEN8_EU_DISABLE0);
208	for (ss = 0; ss < sseu->max_subslices; ss++)
209		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
210	/* Slice1 */
211	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
212	eu_en = ~intel_uncore_read(uncore, GEN8_EU_DISABLE1);
213	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
214	/* Slice2 */
215	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
216	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
217	/* Slice3 */
218	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
219	eu_en = ~intel_uncore_read(uncore, GEN8_EU_DISABLE2);
220	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
221	/* Slice4 */
222	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
223	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
224	/* Slice5 */
225	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
226	eu_en = ~intel_uncore_read(uncore, GEN10_EU_DISABLE3);
227	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
228
229	subslice_mask = (1 << 4) - 1;
230	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
231			   GEN10_F2_SS_DIS_SHIFT);
232
233	for (s = 0; s < sseu->max_slices; s++) {
234		u32 subslice_mask_with_eus = subslice_mask;
235
236		for (ss = 0; ss < sseu->max_subslices; ss++) {
237			if (sseu_get_eus(sseu, s, ss) == 0)
238				subslice_mask_with_eus &= ~BIT(ss);
239		}
240
241		/*
242		 * Slice0 can have up to 3 subslices, but there are only 2 in
243		 * slice1/2.
244		 */
245		intel_sseu_set_subslices(sseu, s, s == 0 ?
246					 subslice_mask_with_eus :
247					 subslice_mask_with_eus & 0x3);
248	}
249
250	sseu->eu_total = compute_eu_total(sseu);
251
252	/*
253	 * CNL is expected to always have a uniform distribution
254	 * of EU across subslices with the exception that any one
255	 * EU in any one subslice may be fused off for die
256	 * recovery.
257	 */
258	sseu->eu_per_subslice =
259		intel_sseu_subslice_total(sseu) ?
260		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
261		0;
262
263	/* No restrictions on Power Gating */
264	sseu->has_slice_pg = 1;
265	sseu->has_subslice_pg = 1;
266	sseu->has_eu_pg = 1;
267}
268
269static void cherryview_sseu_info_init(struct intel_gt *gt)
270{
271	struct sseu_dev_info *sseu = &gt->info.sseu;
272	u32 fuse;
273	u8 subslice_mask = 0;
274
275	fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT);
276
277	sseu->slice_mask = BIT(0);
278	intel_sseu_set_info(sseu, 1, 2, 8);
279
280	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
281		u8 disabled_mask =
282			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
283			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
284			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
285			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
286
287		subslice_mask |= BIT(0);
288		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
289	}
290
291	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
292		u8 disabled_mask =
293			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
294			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
295			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
296			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
297
298		subslice_mask |= BIT(1);
299		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
300	}
301
302	intel_sseu_set_subslices(sseu, 0, subslice_mask);
303
304	sseu->eu_total = compute_eu_total(sseu);
305
306	/*
307	 * CHV expected to always have a uniform distribution of EU
308	 * across subslices.
309	 */
310	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
311		sseu->eu_total /
312		intel_sseu_subslice_total(sseu) :
313		0;
314	/*
315	 * CHV supports subslice power gating on devices with more than
316	 * one subslice, and supports EU power gating on devices with
317	 * more than one EU pair per subslice.
318	 */
319	sseu->has_slice_pg = 0;
320	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
321	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
322}
323
324static void gen9_sseu_info_init(struct intel_gt *gt)
325{
326	struct drm_i915_private *i915 = gt->i915;
327	struct intel_device_info *info = mkwrite_device_info(i915);
328	struct sseu_dev_info *sseu = &gt->info.sseu;
329	struct intel_uncore *uncore = gt->uncore;
330	u32 fuse2, eu_disable, subslice_mask;
331	const u8 eu_mask = 0xff;
332	int s, ss;
333
334	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
335	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
336
337	/* BXT has a single slice and at most 3 subslices. */
338	intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3,
339			    IS_GEN9_LP(i915) ? 3 : 4, 8);
340
341	/*
342	 * The subslice disable field is global, i.e. it applies
343	 * to each of the enabled slices.
344	 */
345	subslice_mask = (1 << sseu->max_subslices) - 1;
346	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
347			   GEN9_F2_SS_DIS_SHIFT);
348
349	/*
350	 * Iterate through enabled slices and subslices to
351	 * count the total enabled EU.
352	 */
353	for (s = 0; s < sseu->max_slices; s++) {
354		if (!(sseu->slice_mask & BIT(s)))
355			/* skip disabled slice */
356			continue;
357
358		intel_sseu_set_subslices(sseu, s, subslice_mask);
359
360		eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
361		for (ss = 0; ss < sseu->max_subslices; ss++) {
362			int eu_per_ss;
363			u8 eu_disabled_mask;
364
365			if (!intel_sseu_has_subslice(sseu, s, ss))
366				/* skip disabled subslice */
367				continue;
368
369			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
370
371			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
372
373			eu_per_ss = sseu->max_eus_per_subslice -
374				hweight8(eu_disabled_mask);
375
376			/*
377			 * Record which subslice(s) has(have) 7 EUs. we
378			 * can tune the hash used to spread work among
379			 * subslices if they are unbalanced.
380			 */
381			if (eu_per_ss == 7)
382				sseu->subslice_7eu[s] |= BIT(ss);
383		}
384	}
385
386	sseu->eu_total = compute_eu_total(sseu);
387
388	/*
389	 * SKL is expected to always have a uniform distribution
390	 * of EU across subslices with the exception that any one
391	 * EU in any one subslice may be fused off for die
392	 * recovery. BXT is expected to be perfectly uniform in EU
393	 * distribution.
394	 */
395	sseu->eu_per_subslice =
396		intel_sseu_subslice_total(sseu) ?
397		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
398		0;
399
400	/*
401	 * SKL+ supports slice power gating on devices with more than
402	 * one slice, and supports EU power gating on devices with
403	 * more than one EU pair per subslice. BXT+ supports subslice
404	 * power gating on devices with more than one subslice, and
405	 * supports EU power gating on devices with more than one EU
406	 * pair per subslice.
407	 */
408	sseu->has_slice_pg =
409		!IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1;
410	sseu->has_subslice_pg =
411		IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1;
412	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
413
414	if (IS_GEN9_LP(i915)) {
415#define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
416		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
417
418		sseu->min_eu_in_pool = 0;
419		if (info->has_pooled_eu) {
420			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
421				sseu->min_eu_in_pool = 3;
422			else if (IS_SS_DISABLED(1))
423				sseu->min_eu_in_pool = 6;
424			else
425				sseu->min_eu_in_pool = 9;
426		}
427#undef IS_SS_DISABLED
428	}
429}
430
431static void bdw_sseu_info_init(struct intel_gt *gt)
432{
433	struct sseu_dev_info *sseu = &gt->info.sseu;
434	struct intel_uncore *uncore = gt->uncore;
435	int s, ss;
436	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
437	u32 eu_disable0, eu_disable1, eu_disable2;
438
439	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
440	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
441	intel_sseu_set_info(sseu, 3, 3, 8);
442
443	/*
444	 * The subslice disable field is global, i.e. it applies
445	 * to each of the enabled slices.
446	 */
447	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
448	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
449			   GEN8_F2_SS_DIS_SHIFT);
450	eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
451	eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
452	eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
453	eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK;
454	eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) |
455		((eu_disable1 & GEN8_EU_DIS1_S1_MASK) <<
456		 (32 - GEN8_EU_DIS0_S1_SHIFT));
457	eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) |
458		((eu_disable2 & GEN8_EU_DIS2_S2_MASK) <<
459		 (32 - GEN8_EU_DIS1_S2_SHIFT));
460
461	/*
462	 * Iterate through enabled slices and subslices to
463	 * count the total enabled EU.
464	 */
465	for (s = 0; s < sseu->max_slices; s++) {
466		if (!(sseu->slice_mask & BIT(s)))
467			/* skip disabled slice */
468			continue;
469
470		intel_sseu_set_subslices(sseu, s, subslice_mask);
471
472		for (ss = 0; ss < sseu->max_subslices; ss++) {
473			u8 eu_disabled_mask;
474			u32 n_disabled;
475
476			if (!intel_sseu_has_subslice(sseu, s, ss))
477				/* skip disabled subslice */
478				continue;
479
480			eu_disabled_mask =
481				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
482
483			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
484
485			n_disabled = hweight8(eu_disabled_mask);
486
487			/*
488			 * Record which subslices have 7 EUs.
489			 */
490			if (sseu->max_eus_per_subslice - n_disabled == 7)
491				sseu->subslice_7eu[s] |= 1 << ss;
492		}
493	}
494
495	sseu->eu_total = compute_eu_total(sseu);
496
497	/*
498	 * BDW is expected to always have a uniform distribution of EU across
499	 * subslices with the exception that any one EU in any one subslice may
500	 * be fused off for die recovery.
501	 */
502	sseu->eu_per_subslice =
503		intel_sseu_subslice_total(sseu) ?
504		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
505		0;
506
507	/*
508	 * BDW supports slice power gating on devices with more than
509	 * one slice.
510	 */
511	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
512	sseu->has_subslice_pg = 0;
513	sseu->has_eu_pg = 0;
514}
515
516static void hsw_sseu_info_init(struct intel_gt *gt)
517{
518	struct drm_i915_private *i915 = gt->i915;
519	struct sseu_dev_info *sseu = &gt->info.sseu;
520	u32 fuse1;
521	u8 subslice_mask = 0;
522	int s, ss;
523
524	/*
525	 * There isn't a register to tell us how many slices/subslices. We
526	 * work off the PCI-ids here.
527	 */
528	switch (INTEL_INFO(i915)->gt) {
529	default:
530		MISSING_CASE(INTEL_INFO(i915)->gt);
531		fallthrough;
532	case 1:
533		sseu->slice_mask = BIT(0);
534		subslice_mask = BIT(0);
535		break;
536	case 2:
537		sseu->slice_mask = BIT(0);
538		subslice_mask = BIT(0) | BIT(1);
539		break;
540	case 3:
541		sseu->slice_mask = BIT(0) | BIT(1);
542		subslice_mask = BIT(0) | BIT(1);
543		break;
544	}
545
546	fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
547	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
548	default:
549		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
550			     HSW_F1_EU_DIS_SHIFT);
551		fallthrough;
552	case HSW_F1_EU_DIS_10EUS:
553		sseu->eu_per_subslice = 10;
554		break;
555	case HSW_F1_EU_DIS_8EUS:
556		sseu->eu_per_subslice = 8;
557		break;
558	case HSW_F1_EU_DIS_6EUS:
559		sseu->eu_per_subslice = 6;
560		break;
561	}
562
563	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
564			    hweight8(subslice_mask),
565			    sseu->eu_per_subslice);
566
567	for (s = 0; s < sseu->max_slices; s++) {
568		intel_sseu_set_subslices(sseu, s, subslice_mask);
569
570		for (ss = 0; ss < sseu->max_subslices; ss++) {
571			sseu_set_eus(sseu, s, ss,
572				     (1UL << sseu->eu_per_subslice) - 1);
573		}
574	}
575
576	sseu->eu_total = compute_eu_total(sseu);
577
578	/* No powergating for you. */
579	sseu->has_slice_pg = 0;
580	sseu->has_subslice_pg = 0;
581	sseu->has_eu_pg = 0;
582}
583
584void intel_sseu_info_init(struct intel_gt *gt)
585{
586	struct drm_i915_private *i915 = gt->i915;
587
588	if (IS_HASWELL(i915))
589		hsw_sseu_info_init(gt);
590	else if (IS_CHERRYVIEW(i915))
591		cherryview_sseu_info_init(gt);
592	else if (IS_BROADWELL(i915))
593		bdw_sseu_info_init(gt);
594	else if (IS_GEN(i915, 9))
595		gen9_sseu_info_init(gt);
596	else if (IS_GEN(i915, 10))
597		gen10_sseu_info_init(gt);
598	else if (IS_GEN(i915, 11))
599		gen11_sseu_info_init(gt);
600	else if (INTEL_GEN(i915) >= 12)
601		gen12_sseu_info_init(gt);
602}
603
604u32 intel_sseu_make_rpcs(struct intel_gt *gt,
605			 const struct intel_sseu *req_sseu)
606{
607	struct drm_i915_private *i915 = gt->i915;
608	const struct sseu_dev_info *sseu = &gt->info.sseu;
609	bool subslice_pg = sseu->has_subslice_pg;
610	u8 slices, subslices;
611	u32 rpcs = 0;
612
613	/*
614	 * No explicit RPCS request is needed to ensure full
615	 * slice/subslice/EU enablement prior to Gen9.
616	 */
617	if (INTEL_GEN(i915) < 9)
618		return 0;
619
620	/*
621	 * If i915/perf is active, we want a stable powergating configuration
622	 * on the system. Use the configuration pinned by i915/perf.
623	 */
624	if (i915->perf.exclusive_stream)
625		req_sseu = &i915->perf.sseu;
626
627	slices = hweight8(req_sseu->slice_mask);
628	subslices = hweight8(req_sseu->subslice_mask);
629
630	/*
631	 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
632	 * wide and Icelake has up to eight subslices, specfial programming is
633	 * needed in order to correctly enable all subslices.
634	 *
635	 * According to documentation software must consider the configuration
636	 * as 2x4x8 and hardware will translate this to 1x8x8.
637	 *
638	 * Furthemore, even though SScount is three bits, maximum documented
639	 * value for it is four. From this some rules/restrictions follow:
640	 *
641	 * 1.
642	 * If enabled subslice count is greater than four, two whole slices must
643	 * be enabled instead.
644	 *
645	 * 2.
646	 * When more than one slice is enabled, hardware ignores the subslice
647	 * count altogether.
648	 *
649	 * From these restrictions it follows that it is not possible to enable
650	 * a count of subslices between the SScount maximum of four restriction,
651	 * and the maximum available number on a particular SKU. Either all
652	 * subslices are enabled, or a count between one and four on the first
653	 * slice.
654	 */
655	if (IS_GEN(i915, 11) &&
656	    slices == 1 &&
657	    subslices > min_t(u8, 4, hweight8(sseu->subslice_mask[0]) / 2)) {
658		GEM_BUG_ON(subslices & 1);
659
660		subslice_pg = false;
661		slices *= 2;
662	}
663
664	/*
665	 * Starting in Gen9, render power gating can leave
666	 * slice/subslice/EU in a partially enabled state. We
667	 * must make an explicit request through RPCS for full
668	 * enablement.
669	 */
670	if (sseu->has_slice_pg) {
671		u32 mask, val = slices;
672
673		if (INTEL_GEN(i915) >= 11) {
674			mask = GEN11_RPCS_S_CNT_MASK;
675			val <<= GEN11_RPCS_S_CNT_SHIFT;
676		} else {
677			mask = GEN8_RPCS_S_CNT_MASK;
678			val <<= GEN8_RPCS_S_CNT_SHIFT;
679		}
680
681		GEM_BUG_ON(val & ~mask);
682		val &= mask;
683
684		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
685	}
686
687	if (subslice_pg) {
688		u32 val = subslices;
689
690		val <<= GEN8_RPCS_SS_CNT_SHIFT;
691
692		GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
693		val &= GEN8_RPCS_SS_CNT_MASK;
694
695		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
696	}
697
698	if (sseu->has_eu_pg) {
699		u32 val;
700
701		val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
702		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
703		val &= GEN8_RPCS_EU_MIN_MASK;
704
705		rpcs |= val;
706
707		val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
708		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
709		val &= GEN8_RPCS_EU_MAX_MASK;
710
711		rpcs |= val;
712
713		rpcs |= GEN8_RPCS_ENABLE;
714	}
715
716	return rpcs;
717}
718
719void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
720{
721	int s;
722
723	drm_printf(p, "slice total: %u, mask=%04x\n",
724		   hweight8(sseu->slice_mask), sseu->slice_mask);
725	drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
726	for (s = 0; s < sseu->max_slices; s++) {
727		drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
728			   s, intel_sseu_subslices_per_slice(sseu, s),
729			   intel_sseu_get_subslices(sseu, s));
730	}
731	drm_printf(p, "EU total: %u\n", sseu->eu_total);
732	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
733	drm_printf(p, "has slice power gating: %s\n",
734		   yesno(sseu->has_slice_pg));
735	drm_printf(p, "has subslice power gating: %s\n",
736		   yesno(sseu->has_subslice_pg));
737	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
738}
739
740void intel_sseu_print_topology(const struct sseu_dev_info *sseu,
741			       struct drm_printer *p)
742{
743	int s, ss;
744
745	if (sseu->max_slices == 0) {
746		drm_printf(p, "Unavailable\n");
747		return;
748	}
749
750	for (s = 0; s < sseu->max_slices; s++) {
751		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
752			   s, intel_sseu_subslices_per_slice(sseu, s),
753			   intel_sseu_get_subslices(sseu, s));
754
755		for (ss = 0; ss < sseu->max_subslices; ss++) {
756			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
757
758			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
759				   ss, hweight16(enabled_eus), enabled_eus);
760		}
761	}
762}