Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright (C) 1995  Linus Torvalds
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 *
  8 *  X86-64 port
  9 *	Andi Kleen.
 10 *
 11 *	CPU hotplug support - ashok.raj@intel.com
 12 */
 13
 14/*
 15 * This file handles the architecture-dependent parts of process handling..
 16 */
 17
 18#include <linux/cpu.h>
 19#include <linux/errno.h>
 20#include <linux/sched.h>
 21#include <linux/sched/task.h>
 22#include <linux/sched/task_stack.h>
 23#include <linux/fs.h>
 24#include <linux/kernel.h>
 25#include <linux/mm.h>
 26#include <linux/elfcore.h>
 27#include <linux/smp.h>
 28#include <linux/slab.h>
 29#include <linux/user.h>
 30#include <linux/interrupt.h>
 31#include <linux/delay.h>
 32#include <linux/export.h>
 33#include <linux/ptrace.h>
 34#include <linux/notifier.h>
 35#include <linux/kprobes.h>
 36#include <linux/kdebug.h>
 37#include <linux/prctl.h>
 38#include <linux/uaccess.h>
 39#include <linux/io.h>
 40#include <linux/ftrace.h>
 41#include <linux/syscalls.h>
 42
 43#include <asm/processor.h>
 44#include <asm/pkru.h>
 45#include <asm/fpu/internal.h>
 46#include <asm/mmu_context.h>
 47#include <asm/prctl.h>
 48#include <asm/desc.h>
 49#include <asm/proto.h>
 50#include <asm/ia32.h>
 51#include <asm/debugreg.h>
 52#include <asm/switch_to.h>
 53#include <asm/xen/hypervisor.h>
 54#include <asm/vdso.h>
 55#include <asm/resctrl.h>
 56#include <asm/unistd.h>
 57#include <asm/fsgsbase.h>
 58#ifdef CONFIG_IA32_EMULATION
 59/* Not included via unistd.h */
 60#include <asm/unistd_32_ia32.h>
 61#endif
 62
 63#include "process.h"
 64
 65/* Prints also some state that isn't saved in the pt_regs */
 66void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
 67		 const char *log_lvl)
 68{
 69	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
 70	unsigned long d0, d1, d2, d3, d6, d7;
 71	unsigned int fsindex, gsindex;
 72	unsigned int ds, es;
 73
 74	show_iret_regs(regs, log_lvl);
 75
 76	if (regs->orig_ax != -1)
 77		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
 78	else
 79		pr_cont("\n");
 80
 81	printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
 82	       log_lvl, regs->ax, regs->bx, regs->cx);
 83	printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
 84	       log_lvl, regs->dx, regs->si, regs->di);
 85	printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
 86	       log_lvl, regs->bp, regs->r8, regs->r9);
 87	printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
 88	       log_lvl, regs->r10, regs->r11, regs->r12);
 89	printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
 90	       log_lvl, regs->r13, regs->r14, regs->r15);
 91
 92	if (mode == SHOW_REGS_SHORT)
 93		return;
 94
 95	if (mode == SHOW_REGS_USER) {
 96		rdmsrl(MSR_FS_BASE, fs);
 97		rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 98		printk("%sFS:  %016lx GS:  %016lx\n",
 99		       log_lvl, fs, shadowgs);
100		return;
101	}
102
103	asm("movl %%ds,%0" : "=r" (ds));
104	asm("movl %%es,%0" : "=r" (es));
105	asm("movl %%fs,%0" : "=r" (fsindex));
106	asm("movl %%gs,%0" : "=r" (gsindex));
107
108	rdmsrl(MSR_FS_BASE, fs);
109	rdmsrl(MSR_GS_BASE, gs);
110	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
111
112	cr0 = read_cr0();
113	cr2 = read_cr2();
114	cr3 = __read_cr3();
115	cr4 = __read_cr4();
116
117	printk("%sFS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
118	       log_lvl, fs, fsindex, gs, gsindex, shadowgs);
119	printk("%sCS:  %04lx DS: %04x ES: %04x CR0: %016lx\n",
120		log_lvl, regs->cs, ds, es, cr0);
121	printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
122		log_lvl, cr2, cr3, cr4);
123
124	get_debugreg(d0, 0);
125	get_debugreg(d1, 1);
126	get_debugreg(d2, 2);
127	get_debugreg(d3, 3);
128	get_debugreg(d6, 6);
129	get_debugreg(d7, 7);
130
131	/* Only print out debug registers if they are in their non-default state. */
132	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
133	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
134		printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
135		       log_lvl, d0, d1, d2);
136		printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
137		       log_lvl, d3, d6, d7);
138	}
139
140	if (cpu_feature_enabled(X86_FEATURE_OSPKE))
141		printk("%sPKRU: %08x\n", log_lvl, read_pkru());
142}
143
144void release_thread(struct task_struct *dead_task)
145{
146	WARN_ON(dead_task->mm);
147}
148
149enum which_selector {
150	FS,
151	GS
152};
153
154/*
155 * Out of line to be protected from kprobes and tracing. If this would be
156 * traced or probed than any access to a per CPU variable happens with
157 * the wrong GS.
158 *
159 * It is not used on Xen paravirt. When paravirt support is needed, it
160 * needs to be renamed with native_ prefix.
161 */
162static noinstr unsigned long __rdgsbase_inactive(void)
163{
164	unsigned long gsbase;
165
166	lockdep_assert_irqs_disabled();
167
168	if (!static_cpu_has(X86_FEATURE_XENPV)) {
169		native_swapgs();
170		gsbase = rdgsbase();
171		native_swapgs();
172	} else {
173		instrumentation_begin();
174		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
175		instrumentation_end();
176	}
177
178	return gsbase;
179}
180
181/*
182 * Out of line to be protected from kprobes and tracing. If this would be
183 * traced or probed than any access to a per CPU variable happens with
184 * the wrong GS.
185 *
186 * It is not used on Xen paravirt. When paravirt support is needed, it
187 * needs to be renamed with native_ prefix.
188 */
189static noinstr void __wrgsbase_inactive(unsigned long gsbase)
190{
191	lockdep_assert_irqs_disabled();
192
193	if (!static_cpu_has(X86_FEATURE_XENPV)) {
194		native_swapgs();
195		wrgsbase(gsbase);
196		native_swapgs();
197	} else {
198		instrumentation_begin();
199		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
200		instrumentation_end();
201	}
202}
203
204/*
205 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
206 * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
207 * It's forcibly inlined because it'll generate better code and this function
208 * is hot.
209 */
210static __always_inline void save_base_legacy(struct task_struct *prev_p,
211					     unsigned short selector,
212					     enum which_selector which)
213{
214	if (likely(selector == 0)) {
215		/*
216		 * On Intel (without X86_BUG_NULL_SEG), the segment base could
217		 * be the pre-existing saved base or it could be zero.  On AMD
218		 * (with X86_BUG_NULL_SEG), the segment base could be almost
219		 * anything.
220		 *
221		 * This branch is very hot (it's hit twice on almost every
222		 * context switch between 64-bit programs), and avoiding
223		 * the RDMSR helps a lot, so we just assume that whatever
224		 * value is already saved is correct.  This matches historical
225		 * Linux behavior, so it won't break existing applications.
226		 *
227		 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
228		 * report that the base is zero, it needs to actually be zero:
229		 * see the corresponding logic in load_seg_legacy.
230		 */
231	} else {
232		/*
233		 * If the selector is 1, 2, or 3, then the base is zero on
234		 * !X86_BUG_NULL_SEG CPUs and could be anything on
235		 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
236		 * has never attempted to preserve the base across context
237		 * switches.
238		 *
239		 * If selector > 3, then it refers to a real segment, and
240		 * saving the base isn't necessary.
241		 */
242		if (which == FS)
243			prev_p->thread.fsbase = 0;
244		else
245			prev_p->thread.gsbase = 0;
246	}
247}
248
249static __always_inline void save_fsgs(struct task_struct *task)
250{
251	savesegment(fs, task->thread.fsindex);
252	savesegment(gs, task->thread.gsindex);
253	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
254		/*
255		 * If FSGSBASE is enabled, we can't make any useful guesses
256		 * about the base, and user code expects us to save the current
257		 * value.  Fortunately, reading the base directly is efficient.
258		 */
259		task->thread.fsbase = rdfsbase();
260		task->thread.gsbase = __rdgsbase_inactive();
261	} else {
262		save_base_legacy(task, task->thread.fsindex, FS);
263		save_base_legacy(task, task->thread.gsindex, GS);
264	}
265}
266
267/*
268 * While a process is running,current->thread.fsbase and current->thread.gsbase
269 * may not match the corresponding CPU registers (see save_base_legacy()).
270 */
271void current_save_fsgs(void)
272{
273	unsigned long flags;
274
275	/* Interrupts need to be off for FSGSBASE */
276	local_irq_save(flags);
277	save_fsgs(current);
278	local_irq_restore(flags);
279}
280#if IS_ENABLED(CONFIG_KVM)
281EXPORT_SYMBOL_GPL(current_save_fsgs);
282#endif
283
284static __always_inline void loadseg(enum which_selector which,
285				    unsigned short sel)
286{
287	if (which == FS)
288		loadsegment(fs, sel);
289	else
290		load_gs_index(sel);
291}
292
293static __always_inline void load_seg_legacy(unsigned short prev_index,
294					    unsigned long prev_base,
295					    unsigned short next_index,
296					    unsigned long next_base,
297					    enum which_selector which)
298{
299	if (likely(next_index <= 3)) {
300		/*
301		 * The next task is using 64-bit TLS, is not using this
302		 * segment at all, or is having fun with arcane CPU features.
303		 */
304		if (next_base == 0) {
305			/*
306			 * Nasty case: on AMD CPUs, we need to forcibly zero
307			 * the base.
308			 */
309			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
310				loadseg(which, __USER_DS);
311				loadseg(which, next_index);
312			} else {
313				/*
314				 * We could try to exhaustively detect cases
315				 * under which we can skip the segment load,
316				 * but there's really only one case that matters
317				 * for performance: if both the previous and
318				 * next states are fully zeroed, we can skip
319				 * the load.
320				 *
321				 * (This assumes that prev_base == 0 has no
322				 * false positives.  This is the case on
323				 * Intel-style CPUs.)
324				 */
325				if (likely(prev_index | next_index | prev_base))
326					loadseg(which, next_index);
327			}
328		} else {
329			if (prev_index != next_index)
330				loadseg(which, next_index);
331			wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
332			       next_base);
333		}
334	} else {
335		/*
336		 * The next task is using a real segment.  Loading the selector
337		 * is sufficient.
338		 */
339		loadseg(which, next_index);
340	}
341}
342
343/*
344 * Store prev's PKRU value and load next's PKRU value if they differ. PKRU
345 * is not XSTATE managed on context switch because that would require a
346 * lookup in the task's FPU xsave buffer and require to keep that updated
347 * in various places.
348 */
349static __always_inline void x86_pkru_load(struct thread_struct *prev,
350					  struct thread_struct *next)
351{
352	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
353		return;
354
355	/* Stash the prev task's value: */
356	prev->pkru = rdpkru();
357
358	/*
359	 * PKRU writes are slightly expensive.  Avoid them when not
360	 * strictly necessary:
361	 */
362	if (prev->pkru != next->pkru)
363		wrpkru(next->pkru);
364}
365
366static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
367					      struct thread_struct *next)
368{
369	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
370		/* Update the FS and GS selectors if they could have changed. */
371		if (unlikely(prev->fsindex || next->fsindex))
372			loadseg(FS, next->fsindex);
373		if (unlikely(prev->gsindex || next->gsindex))
374			loadseg(GS, next->gsindex);
375
376		/* Update the bases. */
377		wrfsbase(next->fsbase);
378		__wrgsbase_inactive(next->gsbase);
379	} else {
380		load_seg_legacy(prev->fsindex, prev->fsbase,
381				next->fsindex, next->fsbase, FS);
382		load_seg_legacy(prev->gsindex, prev->gsbase,
383				next->gsindex, next->gsbase, GS);
384	}
385}
386
387unsigned long x86_fsgsbase_read_task(struct task_struct *task,
388				     unsigned short selector)
389{
390	unsigned short idx = selector >> 3;
391	unsigned long base;
392
393	if (likely((selector & SEGMENT_TI_MASK) == 0)) {
394		if (unlikely(idx >= GDT_ENTRIES))
395			return 0;
396
397		/*
398		 * There are no user segments in the GDT with nonzero bases
399		 * other than the TLS segments.
400		 */
401		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
402			return 0;
403
404		idx -= GDT_ENTRY_TLS_MIN;
405		base = get_desc_base(&task->thread.tls_array[idx]);
406	} else {
407#ifdef CONFIG_MODIFY_LDT_SYSCALL
408		struct ldt_struct *ldt;
409
410		/*
411		 * If performance here mattered, we could protect the LDT
412		 * with RCU.  This is a slow path, though, so we can just
413		 * take the mutex.
414		 */
415		mutex_lock(&task->mm->context.lock);
416		ldt = task->mm->context.ldt;
417		if (unlikely(!ldt || idx >= ldt->nr_entries))
418			base = 0;
419		else
420			base = get_desc_base(ldt->entries + idx);
421		mutex_unlock(&task->mm->context.lock);
422#else
423		base = 0;
424#endif
425	}
426
427	return base;
428}
429
430unsigned long x86_gsbase_read_cpu_inactive(void)
431{
432	unsigned long gsbase;
433
434	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
435		unsigned long flags;
436
437		local_irq_save(flags);
438		gsbase = __rdgsbase_inactive();
439		local_irq_restore(flags);
440	} else {
441		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
442	}
443
444	return gsbase;
445}
446
447void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
448{
449	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
450		unsigned long flags;
451
452		local_irq_save(flags);
453		__wrgsbase_inactive(gsbase);
454		local_irq_restore(flags);
455	} else {
456		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
457	}
458}
459
460unsigned long x86_fsbase_read_task(struct task_struct *task)
461{
462	unsigned long fsbase;
463
464	if (task == current)
465		fsbase = x86_fsbase_read_cpu();
466	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
467		 (task->thread.fsindex == 0))
468		fsbase = task->thread.fsbase;
469	else
470		fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
471
472	return fsbase;
473}
474
475unsigned long x86_gsbase_read_task(struct task_struct *task)
476{
477	unsigned long gsbase;
478
479	if (task == current)
480		gsbase = x86_gsbase_read_cpu_inactive();
481	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
482		 (task->thread.gsindex == 0))
483		gsbase = task->thread.gsbase;
484	else
485		gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
486
487	return gsbase;
488}
489
490void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
491{
492	WARN_ON_ONCE(task == current);
493
494	task->thread.fsbase = fsbase;
495}
496
497void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
498{
499	WARN_ON_ONCE(task == current);
500
501	task->thread.gsbase = gsbase;
502}
503
504static void
505start_thread_common(struct pt_regs *regs, unsigned long new_ip,
506		    unsigned long new_sp,
507		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
508{
509	WARN_ON_ONCE(regs != current_pt_regs());
510
511	if (static_cpu_has(X86_BUG_NULL_SEG)) {
512		/* Loading zero below won't clear the base. */
513		loadsegment(fs, __USER_DS);
514		load_gs_index(__USER_DS);
515	}
516
517	loadsegment(fs, 0);
518	loadsegment(es, _ds);
519	loadsegment(ds, _ds);
520	load_gs_index(0);
521
522	regs->ip		= new_ip;
523	regs->sp		= new_sp;
524	regs->cs		= _cs;
525	regs->ss		= _ss;
526	regs->flags		= X86_EFLAGS_IF;
527}
528
529void
530start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
531{
532	start_thread_common(regs, new_ip, new_sp,
533			    __USER_CS, __USER_DS, 0);
534}
535EXPORT_SYMBOL_GPL(start_thread);
536
537#ifdef CONFIG_COMPAT
538void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32)
539{
540	start_thread_common(regs, new_ip, new_sp,
541			    x32 ? __USER_CS : __USER32_CS,
 
542			    __USER_DS, __USER_DS);
543}
544#endif
545
546/*
547 *	switch_to(x,y) should switch tasks from x to y.
548 *
549 * This could still be optimized:
550 * - fold all the options into a flag word and test it with a single test.
551 * - could test fs/gs bitsliced
552 *
553 * Kprobes not supported here. Set the probe on schedule instead.
554 * Function graph tracer not supported too.
555 */
556__visible __notrace_funcgraph struct task_struct *
557__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
558{
559	struct thread_struct *prev = &prev_p->thread;
560	struct thread_struct *next = &next_p->thread;
561	struct fpu *prev_fpu = &prev->fpu;
562	struct fpu *next_fpu = &next->fpu;
563	int cpu = smp_processor_id();
564
565	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
566		     this_cpu_read(hardirq_stack_inuse));
567
568	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
569		switch_fpu_prepare(prev_fpu, cpu);
570
571	/* We must save %fs and %gs before load_TLS() because
572	 * %fs and %gs may be cleared by load_TLS().
573	 *
574	 * (e.g. xen_load_tls())
575	 */
576	save_fsgs(prev_p);
577
578	/*
579	 * Load TLS before restoring any segments so that segment loads
580	 * reference the correct GDT entries.
581	 */
582	load_TLS(next, cpu);
583
584	/*
585	 * Leave lazy mode, flushing any hypercalls made here.  This
586	 * must be done after loading TLS entries in the GDT but before
587	 * loading segments that might reference them.
588	 */
589	arch_end_context_switch(next_p);
590
591	/* Switch DS and ES.
592	 *
593	 * Reading them only returns the selectors, but writing them (if
594	 * nonzero) loads the full descriptor from the GDT or LDT.  The
595	 * LDT for next is loaded in switch_mm, and the GDT is loaded
596	 * above.
597	 *
598	 * We therefore need to write new values to the segment
599	 * registers on every context switch unless both the new and old
600	 * values are zero.
601	 *
602	 * Note that we don't need to do anything for CS and SS, as
603	 * those are saved and restored as part of pt_regs.
604	 */
605	savesegment(es, prev->es);
606	if (unlikely(next->es | prev->es))
607		loadsegment(es, next->es);
608
609	savesegment(ds, prev->ds);
610	if (unlikely(next->ds | prev->ds))
611		loadsegment(ds, next->ds);
612
613	x86_fsgsbase_load(prev, next);
614
615	x86_pkru_load(prev, next);
616
617	/*
618	 * Switch the PDA and FPU contexts.
619	 */
620	this_cpu_write(current_task, next_p);
621	this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
622
623	switch_fpu_finish(next_fpu);
624
625	/* Reload sp0. */
626	update_task_stack(next_p);
627
628	switch_to_extra(prev_p, next_p);
629
630	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
631		/*
632		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
633		 * does not update the cached descriptor.  As a result, if we
634		 * do SYSRET while SS is NULL, we'll end up in user mode with
635		 * SS apparently equal to __USER_DS but actually unusable.
636		 *
637		 * The straightforward workaround would be to fix it up just
638		 * before SYSRET, but that would slow down the system call
639		 * fast paths.  Instead, we ensure that SS is never NULL in
640		 * system call context.  We do this by replacing NULL SS
641		 * selectors at every context switch.  SYSCALL sets up a valid
642		 * SS, so the only way to get NULL is to re-enter the kernel
643		 * from CPL 3 through an interrupt.  Since that can't happen
644		 * in the same task as a running syscall, we are guaranteed to
645		 * context switch between every interrupt vector entry and a
646		 * subsequent SYSRET.
647		 *
648		 * We read SS first because SS reads are much faster than
649		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
650		 * it previously had a different non-NULL value.
651		 */
652		unsigned short ss_sel;
653		savesegment(ss, ss_sel);
654		if (ss_sel != __KERNEL_DS)
655			loadsegment(ss, __KERNEL_DS);
656	}
657
658	/* Load the Intel cache allocation PQR MSR. */
659	resctrl_sched_in();
660
661	return prev_p;
662}
663
664void set_personality_64bit(void)
665{
666	/* inherit personality from parent */
667
668	/* Make sure to be in 64bit mode */
 
669	clear_thread_flag(TIF_ADDR32);
 
670	/* Pretend that this comes from a 64bit execve */
671	task_pt_regs(current)->orig_ax = __NR_execve;
672	current_thread_info()->status &= ~TS_COMPAT;
 
 
673	if (current->mm)
674		current->mm->context.flags = MM_CONTEXT_HAS_VSYSCALL;
675
676	/* TBD: overwrites user setup. Should have two bits.
677	   But 64bit processes have always behaved this way,
678	   so it's not too bad. The main problem is just that
679	   32bit children are affected again. */
680	current->personality &= ~READ_IMPLIES_EXEC;
681}
682
683static void __set_personality_x32(void)
684{
685#ifdef CONFIG_X86_X32
 
 
686	if (current->mm)
687		current->mm->context.flags = 0;
688
689	current->personality &= ~READ_IMPLIES_EXEC;
690	/*
691	 * in_32bit_syscall() uses the presence of the x32 syscall bit
692	 * flag to determine compat status.  The x86 mmap() code relies on
693	 * the syscall bitness so set x32 syscall bit right here to make
694	 * in_32bit_syscall() work during exec().
695	 *
696	 * Pretend to come from a x32 execve.
697	 */
698	task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
699	current_thread_info()->status &= ~TS_COMPAT;
700#endif
701}
702
703static void __set_personality_ia32(void)
704{
705#ifdef CONFIG_IA32_EMULATION
706	if (current->mm) {
707		/*
708		 * uprobes applied to this MM need to know this and
709		 * cannot use user_64bit_mode() at that time.
710		 */
711		current->mm->context.flags = MM_CONTEXT_UPROBE_IA32;
712	}
713
714	current->personality |= force_personality32;
715	/* Prepare the first "return" to user space */
716	task_pt_regs(current)->orig_ax = __NR_ia32_execve;
717	current_thread_info()->status |= TS_COMPAT;
718#endif
719}
720
721void set_personality_ia32(bool x32)
722{
723	/* Make sure to be in 32bit mode */
724	set_thread_flag(TIF_ADDR32);
725
726	if (x32)
727		__set_personality_x32();
728	else
729		__set_personality_ia32();
730}
731EXPORT_SYMBOL_GPL(set_personality_ia32);
732
733#ifdef CONFIG_CHECKPOINT_RESTORE
734static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
735{
736	int ret;
737
738	ret = map_vdso_once(image, addr);
739	if (ret)
740		return ret;
741
742	return (long)image->size;
743}
744#endif
745
746long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
747{
748	int ret = 0;
749
750	switch (option) {
751	case ARCH_SET_GS: {
752		if (unlikely(arg2 >= TASK_SIZE_MAX))
753			return -EPERM;
754
755		preempt_disable();
756		/*
757		 * ARCH_SET_GS has always overwritten the index
758		 * and the base. Zero is the most sensible value
759		 * to put in the index, and is the only value that
760		 * makes any sense if FSGSBASE is unavailable.
761		 */
762		if (task == current) {
763			loadseg(GS, 0);
764			x86_gsbase_write_cpu_inactive(arg2);
765
766			/*
767			 * On non-FSGSBASE systems, save_base_legacy() expects
768			 * that we also fill in thread.gsbase.
769			 */
770			task->thread.gsbase = arg2;
771
772		} else {
773			task->thread.gsindex = 0;
774			x86_gsbase_write_task(task, arg2);
775		}
776		preempt_enable();
777		break;
778	}
779	case ARCH_SET_FS: {
780		/*
781		 * Not strictly needed for %fs, but do it for symmetry
782		 * with %gs
783		 */
784		if (unlikely(arg2 >= TASK_SIZE_MAX))
785			return -EPERM;
786
787		preempt_disable();
788		/*
789		 * Set the selector to 0 for the same reason
790		 * as %gs above.
791		 */
792		if (task == current) {
793			loadseg(FS, 0);
794			x86_fsbase_write_cpu(arg2);
795
796			/*
797			 * On non-FSGSBASE systems, save_base_legacy() expects
798			 * that we also fill in thread.fsbase.
799			 */
800			task->thread.fsbase = arg2;
801		} else {
802			task->thread.fsindex = 0;
803			x86_fsbase_write_task(task, arg2);
804		}
805		preempt_enable();
806		break;
807	}
808	case ARCH_GET_FS: {
809		unsigned long base = x86_fsbase_read_task(task);
810
811		ret = put_user(base, (unsigned long __user *)arg2);
812		break;
813	}
814	case ARCH_GET_GS: {
815		unsigned long base = x86_gsbase_read_task(task);
816
817		ret = put_user(base, (unsigned long __user *)arg2);
818		break;
819	}
820
821#ifdef CONFIG_CHECKPOINT_RESTORE
822# ifdef CONFIG_X86_X32_ABI
823	case ARCH_MAP_VDSO_X32:
824		return prctl_map_vdso(&vdso_image_x32, arg2);
825# endif
826# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
827	case ARCH_MAP_VDSO_32:
828		return prctl_map_vdso(&vdso_image_32, arg2);
829# endif
830	case ARCH_MAP_VDSO_64:
831		return prctl_map_vdso(&vdso_image_64, arg2);
832#endif
833
834	default:
835		ret = -EINVAL;
836		break;
837	}
838
839	return ret;
840}
841
842SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
843{
844	long ret;
845
846	ret = do_arch_prctl_64(current, option, arg2);
847	if (ret == -EINVAL)
848		ret = do_arch_prctl_common(current, option, arg2);
849
850	return ret;
851}
852
853#ifdef CONFIG_IA32_EMULATION
854COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
855{
856	return do_arch_prctl_common(current, option, arg2);
857}
858#endif
859
860unsigned long KSTK_ESP(struct task_struct *task)
861{
862	return task_pt_regs(task)->sp;
863}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright (C) 1995  Linus Torvalds
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 *
  8 *  X86-64 port
  9 *	Andi Kleen.
 10 *
 11 *	CPU hotplug support - ashok.raj@intel.com
 12 */
 13
 14/*
 15 * This file handles the architecture-dependent parts of process handling..
 16 */
 17
 18#include <linux/cpu.h>
 19#include <linux/errno.h>
 20#include <linux/sched.h>
 21#include <linux/sched/task.h>
 22#include <linux/sched/task_stack.h>
 23#include <linux/fs.h>
 24#include <linux/kernel.h>
 25#include <linux/mm.h>
 26#include <linux/elfcore.h>
 27#include <linux/smp.h>
 28#include <linux/slab.h>
 29#include <linux/user.h>
 30#include <linux/interrupt.h>
 31#include <linux/delay.h>
 32#include <linux/export.h>
 33#include <linux/ptrace.h>
 34#include <linux/notifier.h>
 35#include <linux/kprobes.h>
 36#include <linux/kdebug.h>
 37#include <linux/prctl.h>
 38#include <linux/uaccess.h>
 39#include <linux/io.h>
 40#include <linux/ftrace.h>
 41#include <linux/syscalls.h>
 42
 43#include <asm/processor.h>
 
 44#include <asm/fpu/internal.h>
 45#include <asm/mmu_context.h>
 46#include <asm/prctl.h>
 47#include <asm/desc.h>
 48#include <asm/proto.h>
 49#include <asm/ia32.h>
 50#include <asm/debugreg.h>
 51#include <asm/switch_to.h>
 52#include <asm/xen/hypervisor.h>
 53#include <asm/vdso.h>
 54#include <asm/resctrl.h>
 55#include <asm/unistd.h>
 56#include <asm/fsgsbase.h>
 57#ifdef CONFIG_IA32_EMULATION
 58/* Not included via unistd.h */
 59#include <asm/unistd_32_ia32.h>
 60#endif
 61
 62#include "process.h"
 63
 64/* Prints also some state that isn't saved in the pt_regs */
 65void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
 66		 const char *log_lvl)
 67{
 68	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
 69	unsigned long d0, d1, d2, d3, d6, d7;
 70	unsigned int fsindex, gsindex;
 71	unsigned int ds, es;
 72
 73	show_iret_regs(regs, log_lvl);
 74
 75	if (regs->orig_ax != -1)
 76		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
 77	else
 78		pr_cont("\n");
 79
 80	printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
 81	       log_lvl, regs->ax, regs->bx, regs->cx);
 82	printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
 83	       log_lvl, regs->dx, regs->si, regs->di);
 84	printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
 85	       log_lvl, regs->bp, regs->r8, regs->r9);
 86	printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
 87	       log_lvl, regs->r10, regs->r11, regs->r12);
 88	printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
 89	       log_lvl, regs->r13, regs->r14, regs->r15);
 90
 91	if (mode == SHOW_REGS_SHORT)
 92		return;
 93
 94	if (mode == SHOW_REGS_USER) {
 95		rdmsrl(MSR_FS_BASE, fs);
 96		rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 97		printk("%sFS:  %016lx GS:  %016lx\n",
 98		       log_lvl, fs, shadowgs);
 99		return;
100	}
101
102	asm("movl %%ds,%0" : "=r" (ds));
103	asm("movl %%es,%0" : "=r" (es));
104	asm("movl %%fs,%0" : "=r" (fsindex));
105	asm("movl %%gs,%0" : "=r" (gsindex));
106
107	rdmsrl(MSR_FS_BASE, fs);
108	rdmsrl(MSR_GS_BASE, gs);
109	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
110
111	cr0 = read_cr0();
112	cr2 = read_cr2();
113	cr3 = __read_cr3();
114	cr4 = __read_cr4();
115
116	printk("%sFS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
117	       log_lvl, fs, fsindex, gs, gsindex, shadowgs);
118	printk("%sCS:  %04lx DS: %04x ES: %04x CR0: %016lx\n",
119		log_lvl, regs->cs, ds, es, cr0);
120	printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
121		log_lvl, cr2, cr3, cr4);
122
123	get_debugreg(d0, 0);
124	get_debugreg(d1, 1);
125	get_debugreg(d2, 2);
126	get_debugreg(d3, 3);
127	get_debugreg(d6, 6);
128	get_debugreg(d7, 7);
129
130	/* Only print out debug registers if they are in their non-default state. */
131	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
132	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
133		printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
134		       log_lvl, d0, d1, d2);
135		printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
136		       log_lvl, d3, d6, d7);
137	}
138
139	if (boot_cpu_has(X86_FEATURE_OSPKE))
140		printk("%sPKRU: %08x\n", log_lvl, read_pkru());
141}
142
143void release_thread(struct task_struct *dead_task)
144{
145	WARN_ON(dead_task->mm);
146}
147
148enum which_selector {
149	FS,
150	GS
151};
152
153/*
154 * Out of line to be protected from kprobes and tracing. If this would be
155 * traced or probed than any access to a per CPU variable happens with
156 * the wrong GS.
157 *
158 * It is not used on Xen paravirt. When paravirt support is needed, it
159 * needs to be renamed with native_ prefix.
160 */
161static noinstr unsigned long __rdgsbase_inactive(void)
162{
163	unsigned long gsbase;
164
165	lockdep_assert_irqs_disabled();
166
167	if (!static_cpu_has(X86_FEATURE_XENPV)) {
168		native_swapgs();
169		gsbase = rdgsbase();
170		native_swapgs();
171	} else {
172		instrumentation_begin();
173		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
174		instrumentation_end();
175	}
176
177	return gsbase;
178}
179
180/*
181 * Out of line to be protected from kprobes and tracing. If this would be
182 * traced or probed than any access to a per CPU variable happens with
183 * the wrong GS.
184 *
185 * It is not used on Xen paravirt. When paravirt support is needed, it
186 * needs to be renamed with native_ prefix.
187 */
188static noinstr void __wrgsbase_inactive(unsigned long gsbase)
189{
190	lockdep_assert_irqs_disabled();
191
192	if (!static_cpu_has(X86_FEATURE_XENPV)) {
193		native_swapgs();
194		wrgsbase(gsbase);
195		native_swapgs();
196	} else {
197		instrumentation_begin();
198		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
199		instrumentation_end();
200	}
201}
202
203/*
204 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
205 * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
206 * It's forcibly inlined because it'll generate better code and this function
207 * is hot.
208 */
209static __always_inline void save_base_legacy(struct task_struct *prev_p,
210					     unsigned short selector,
211					     enum which_selector which)
212{
213	if (likely(selector == 0)) {
214		/*
215		 * On Intel (without X86_BUG_NULL_SEG), the segment base could
216		 * be the pre-existing saved base or it could be zero.  On AMD
217		 * (with X86_BUG_NULL_SEG), the segment base could be almost
218		 * anything.
219		 *
220		 * This branch is very hot (it's hit twice on almost every
221		 * context switch between 64-bit programs), and avoiding
222		 * the RDMSR helps a lot, so we just assume that whatever
223		 * value is already saved is correct.  This matches historical
224		 * Linux behavior, so it won't break existing applications.
225		 *
226		 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
227		 * report that the base is zero, it needs to actually be zero:
228		 * see the corresponding logic in load_seg_legacy.
229		 */
230	} else {
231		/*
232		 * If the selector is 1, 2, or 3, then the base is zero on
233		 * !X86_BUG_NULL_SEG CPUs and could be anything on
234		 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
235		 * has never attempted to preserve the base across context
236		 * switches.
237		 *
238		 * If selector > 3, then it refers to a real segment, and
239		 * saving the base isn't necessary.
240		 */
241		if (which == FS)
242			prev_p->thread.fsbase = 0;
243		else
244			prev_p->thread.gsbase = 0;
245	}
246}
247
248static __always_inline void save_fsgs(struct task_struct *task)
249{
250	savesegment(fs, task->thread.fsindex);
251	savesegment(gs, task->thread.gsindex);
252	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
253		/*
254		 * If FSGSBASE is enabled, we can't make any useful guesses
255		 * about the base, and user code expects us to save the current
256		 * value.  Fortunately, reading the base directly is efficient.
257		 */
258		task->thread.fsbase = rdfsbase();
259		task->thread.gsbase = __rdgsbase_inactive();
260	} else {
261		save_base_legacy(task, task->thread.fsindex, FS);
262		save_base_legacy(task, task->thread.gsindex, GS);
263	}
264}
265
266/*
267 * While a process is running,current->thread.fsbase and current->thread.gsbase
268 * may not match the corresponding CPU registers (see save_base_legacy()).
269 */
270void current_save_fsgs(void)
271{
272	unsigned long flags;
273
274	/* Interrupts need to be off for FSGSBASE */
275	local_irq_save(flags);
276	save_fsgs(current);
277	local_irq_restore(flags);
278}
279#if IS_ENABLED(CONFIG_KVM)
280EXPORT_SYMBOL_GPL(current_save_fsgs);
281#endif
282
283static __always_inline void loadseg(enum which_selector which,
284				    unsigned short sel)
285{
286	if (which == FS)
287		loadsegment(fs, sel);
288	else
289		load_gs_index(sel);
290}
291
292static __always_inline void load_seg_legacy(unsigned short prev_index,
293					    unsigned long prev_base,
294					    unsigned short next_index,
295					    unsigned long next_base,
296					    enum which_selector which)
297{
298	if (likely(next_index <= 3)) {
299		/*
300		 * The next task is using 64-bit TLS, is not using this
301		 * segment at all, or is having fun with arcane CPU features.
302		 */
303		if (next_base == 0) {
304			/*
305			 * Nasty case: on AMD CPUs, we need to forcibly zero
306			 * the base.
307			 */
308			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
309				loadseg(which, __USER_DS);
310				loadseg(which, next_index);
311			} else {
312				/*
313				 * We could try to exhaustively detect cases
314				 * under which we can skip the segment load,
315				 * but there's really only one case that matters
316				 * for performance: if both the previous and
317				 * next states are fully zeroed, we can skip
318				 * the load.
319				 *
320				 * (This assumes that prev_base == 0 has no
321				 * false positives.  This is the case on
322				 * Intel-style CPUs.)
323				 */
324				if (likely(prev_index | next_index | prev_base))
325					loadseg(which, next_index);
326			}
327		} else {
328			if (prev_index != next_index)
329				loadseg(which, next_index);
330			wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
331			       next_base);
332		}
333	} else {
334		/*
335		 * The next task is using a real segment.  Loading the selector
336		 * is sufficient.
337		 */
338		loadseg(which, next_index);
339	}
340}
341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
343					      struct thread_struct *next)
344{
345	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
346		/* Update the FS and GS selectors if they could have changed. */
347		if (unlikely(prev->fsindex || next->fsindex))
348			loadseg(FS, next->fsindex);
349		if (unlikely(prev->gsindex || next->gsindex))
350			loadseg(GS, next->gsindex);
351
352		/* Update the bases. */
353		wrfsbase(next->fsbase);
354		__wrgsbase_inactive(next->gsbase);
355	} else {
356		load_seg_legacy(prev->fsindex, prev->fsbase,
357				next->fsindex, next->fsbase, FS);
358		load_seg_legacy(prev->gsindex, prev->gsbase,
359				next->gsindex, next->gsbase, GS);
360	}
361}
362
363unsigned long x86_fsgsbase_read_task(struct task_struct *task,
364				     unsigned short selector)
365{
366	unsigned short idx = selector >> 3;
367	unsigned long base;
368
369	if (likely((selector & SEGMENT_TI_MASK) == 0)) {
370		if (unlikely(idx >= GDT_ENTRIES))
371			return 0;
372
373		/*
374		 * There are no user segments in the GDT with nonzero bases
375		 * other than the TLS segments.
376		 */
377		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
378			return 0;
379
380		idx -= GDT_ENTRY_TLS_MIN;
381		base = get_desc_base(&task->thread.tls_array[idx]);
382	} else {
383#ifdef CONFIG_MODIFY_LDT_SYSCALL
384		struct ldt_struct *ldt;
385
386		/*
387		 * If performance here mattered, we could protect the LDT
388		 * with RCU.  This is a slow path, though, so we can just
389		 * take the mutex.
390		 */
391		mutex_lock(&task->mm->context.lock);
392		ldt = task->mm->context.ldt;
393		if (unlikely(!ldt || idx >= ldt->nr_entries))
394			base = 0;
395		else
396			base = get_desc_base(ldt->entries + idx);
397		mutex_unlock(&task->mm->context.lock);
398#else
399		base = 0;
400#endif
401	}
402
403	return base;
404}
405
406unsigned long x86_gsbase_read_cpu_inactive(void)
407{
408	unsigned long gsbase;
409
410	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
411		unsigned long flags;
412
413		local_irq_save(flags);
414		gsbase = __rdgsbase_inactive();
415		local_irq_restore(flags);
416	} else {
417		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
418	}
419
420	return gsbase;
421}
422
423void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
424{
425	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
426		unsigned long flags;
427
428		local_irq_save(flags);
429		__wrgsbase_inactive(gsbase);
430		local_irq_restore(flags);
431	} else {
432		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
433	}
434}
435
436unsigned long x86_fsbase_read_task(struct task_struct *task)
437{
438	unsigned long fsbase;
439
440	if (task == current)
441		fsbase = x86_fsbase_read_cpu();
442	else if (static_cpu_has(X86_FEATURE_FSGSBASE) ||
443		 (task->thread.fsindex == 0))
444		fsbase = task->thread.fsbase;
445	else
446		fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
447
448	return fsbase;
449}
450
451unsigned long x86_gsbase_read_task(struct task_struct *task)
452{
453	unsigned long gsbase;
454
455	if (task == current)
456		gsbase = x86_gsbase_read_cpu_inactive();
457	else if (static_cpu_has(X86_FEATURE_FSGSBASE) ||
458		 (task->thread.gsindex == 0))
459		gsbase = task->thread.gsbase;
460	else
461		gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
462
463	return gsbase;
464}
465
466void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
467{
468	WARN_ON_ONCE(task == current);
469
470	task->thread.fsbase = fsbase;
471}
472
473void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
474{
475	WARN_ON_ONCE(task == current);
476
477	task->thread.gsbase = gsbase;
478}
479
480static void
481start_thread_common(struct pt_regs *regs, unsigned long new_ip,
482		    unsigned long new_sp,
483		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
484{
485	WARN_ON_ONCE(regs != current_pt_regs());
486
487	if (static_cpu_has(X86_BUG_NULL_SEG)) {
488		/* Loading zero below won't clear the base. */
489		loadsegment(fs, __USER_DS);
490		load_gs_index(__USER_DS);
491	}
492
493	loadsegment(fs, 0);
494	loadsegment(es, _ds);
495	loadsegment(ds, _ds);
496	load_gs_index(0);
497
498	regs->ip		= new_ip;
499	regs->sp		= new_sp;
500	regs->cs		= _cs;
501	regs->ss		= _ss;
502	regs->flags		= X86_EFLAGS_IF;
503}
504
505void
506start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
507{
508	start_thread_common(regs, new_ip, new_sp,
509			    __USER_CS, __USER_DS, 0);
510}
511EXPORT_SYMBOL_GPL(start_thread);
512
513#ifdef CONFIG_COMPAT
514void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
515{
516	start_thread_common(regs, new_ip, new_sp,
517			    test_thread_flag(TIF_X32)
518			    ? __USER_CS : __USER32_CS,
519			    __USER_DS, __USER_DS);
520}
521#endif
522
523/*
524 *	switch_to(x,y) should switch tasks from x to y.
525 *
526 * This could still be optimized:
527 * - fold all the options into a flag word and test it with a single test.
528 * - could test fs/gs bitsliced
529 *
530 * Kprobes not supported here. Set the probe on schedule instead.
531 * Function graph tracer not supported too.
532 */
533__visible __notrace_funcgraph struct task_struct *
534__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
535{
536	struct thread_struct *prev = &prev_p->thread;
537	struct thread_struct *next = &next_p->thread;
538	struct fpu *prev_fpu = &prev->fpu;
539	struct fpu *next_fpu = &next->fpu;
540	int cpu = smp_processor_id();
541
542	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
543		     this_cpu_read(irq_count) != -1);
544
545	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
546		switch_fpu_prepare(prev_fpu, cpu);
547
548	/* We must save %fs and %gs before load_TLS() because
549	 * %fs and %gs may be cleared by load_TLS().
550	 *
551	 * (e.g. xen_load_tls())
552	 */
553	save_fsgs(prev_p);
554
555	/*
556	 * Load TLS before restoring any segments so that segment loads
557	 * reference the correct GDT entries.
558	 */
559	load_TLS(next, cpu);
560
561	/*
562	 * Leave lazy mode, flushing any hypercalls made here.  This
563	 * must be done after loading TLS entries in the GDT but before
564	 * loading segments that might reference them.
565	 */
566	arch_end_context_switch(next_p);
567
568	/* Switch DS and ES.
569	 *
570	 * Reading them only returns the selectors, but writing them (if
571	 * nonzero) loads the full descriptor from the GDT or LDT.  The
572	 * LDT for next is loaded in switch_mm, and the GDT is loaded
573	 * above.
574	 *
575	 * We therefore need to write new values to the segment
576	 * registers on every context switch unless both the new and old
577	 * values are zero.
578	 *
579	 * Note that we don't need to do anything for CS and SS, as
580	 * those are saved and restored as part of pt_regs.
581	 */
582	savesegment(es, prev->es);
583	if (unlikely(next->es | prev->es))
584		loadsegment(es, next->es);
585
586	savesegment(ds, prev->ds);
587	if (unlikely(next->ds | prev->ds))
588		loadsegment(ds, next->ds);
589
590	x86_fsgsbase_load(prev, next);
591
 
 
592	/*
593	 * Switch the PDA and FPU contexts.
594	 */
595	this_cpu_write(current_task, next_p);
596	this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
597
598	switch_fpu_finish(next_fpu);
599
600	/* Reload sp0. */
601	update_task_stack(next_p);
602
603	switch_to_extra(prev_p, next_p);
604
605	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
606		/*
607		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
608		 * does not update the cached descriptor.  As a result, if we
609		 * do SYSRET while SS is NULL, we'll end up in user mode with
610		 * SS apparently equal to __USER_DS but actually unusable.
611		 *
612		 * The straightforward workaround would be to fix it up just
613		 * before SYSRET, but that would slow down the system call
614		 * fast paths.  Instead, we ensure that SS is never NULL in
615		 * system call context.  We do this by replacing NULL SS
616		 * selectors at every context switch.  SYSCALL sets up a valid
617		 * SS, so the only way to get NULL is to re-enter the kernel
618		 * from CPL 3 through an interrupt.  Since that can't happen
619		 * in the same task as a running syscall, we are guaranteed to
620		 * context switch between every interrupt vector entry and a
621		 * subsequent SYSRET.
622		 *
623		 * We read SS first because SS reads are much faster than
624		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
625		 * it previously had a different non-NULL value.
626		 */
627		unsigned short ss_sel;
628		savesegment(ss, ss_sel);
629		if (ss_sel != __KERNEL_DS)
630			loadsegment(ss, __KERNEL_DS);
631	}
632
633	/* Load the Intel cache allocation PQR MSR. */
634	resctrl_sched_in();
635
636	return prev_p;
637}
638
639void set_personality_64bit(void)
640{
641	/* inherit personality from parent */
642
643	/* Make sure to be in 64bit mode */
644	clear_thread_flag(TIF_IA32);
645	clear_thread_flag(TIF_ADDR32);
646	clear_thread_flag(TIF_X32);
647	/* Pretend that this comes from a 64bit execve */
648	task_pt_regs(current)->orig_ax = __NR_execve;
649	current_thread_info()->status &= ~TS_COMPAT;
650
651	/* Ensure the corresponding mm is not marked. */
652	if (current->mm)
653		current->mm->context.ia32_compat = 0;
654
655	/* TBD: overwrites user setup. Should have two bits.
656	   But 64bit processes have always behaved this way,
657	   so it's not too bad. The main problem is just that
658	   32bit children are affected again. */
659	current->personality &= ~READ_IMPLIES_EXEC;
660}
661
662static void __set_personality_x32(void)
663{
664#ifdef CONFIG_X86_X32
665	clear_thread_flag(TIF_IA32);
666	set_thread_flag(TIF_X32);
667	if (current->mm)
668		current->mm->context.ia32_compat = TIF_X32;
 
669	current->personality &= ~READ_IMPLIES_EXEC;
670	/*
671	 * in_32bit_syscall() uses the presence of the x32 syscall bit
672	 * flag to determine compat status.  The x86 mmap() code relies on
673	 * the syscall bitness so set x32 syscall bit right here to make
674	 * in_32bit_syscall() work during exec().
675	 *
676	 * Pretend to come from a x32 execve.
677	 */
678	task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
679	current_thread_info()->status &= ~TS_COMPAT;
680#endif
681}
682
683static void __set_personality_ia32(void)
684{
685#ifdef CONFIG_IA32_EMULATION
686	set_thread_flag(TIF_IA32);
687	clear_thread_flag(TIF_X32);
688	if (current->mm)
689		current->mm->context.ia32_compat = TIF_IA32;
 
 
 
 
690	current->personality |= force_personality32;
691	/* Prepare the first "return" to user space */
692	task_pt_regs(current)->orig_ax = __NR_ia32_execve;
693	current_thread_info()->status |= TS_COMPAT;
694#endif
695}
696
697void set_personality_ia32(bool x32)
698{
699	/* Make sure to be in 32bit mode */
700	set_thread_flag(TIF_ADDR32);
701
702	if (x32)
703		__set_personality_x32();
704	else
705		__set_personality_ia32();
706}
707EXPORT_SYMBOL_GPL(set_personality_ia32);
708
709#ifdef CONFIG_CHECKPOINT_RESTORE
710static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
711{
712	int ret;
713
714	ret = map_vdso_once(image, addr);
715	if (ret)
716		return ret;
717
718	return (long)image->size;
719}
720#endif
721
722long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
723{
724	int ret = 0;
725
726	switch (option) {
727	case ARCH_SET_GS: {
728		if (unlikely(arg2 >= TASK_SIZE_MAX))
729			return -EPERM;
730
731		preempt_disable();
732		/*
733		 * ARCH_SET_GS has always overwritten the index
734		 * and the base. Zero is the most sensible value
735		 * to put in the index, and is the only value that
736		 * makes any sense if FSGSBASE is unavailable.
737		 */
738		if (task == current) {
739			loadseg(GS, 0);
740			x86_gsbase_write_cpu_inactive(arg2);
741
742			/*
743			 * On non-FSGSBASE systems, save_base_legacy() expects
744			 * that we also fill in thread.gsbase.
745			 */
746			task->thread.gsbase = arg2;
747
748		} else {
749			task->thread.gsindex = 0;
750			x86_gsbase_write_task(task, arg2);
751		}
752		preempt_enable();
753		break;
754	}
755	case ARCH_SET_FS: {
756		/*
757		 * Not strictly needed for %fs, but do it for symmetry
758		 * with %gs
759		 */
760		if (unlikely(arg2 >= TASK_SIZE_MAX))
761			return -EPERM;
762
763		preempt_disable();
764		/*
765		 * Set the selector to 0 for the same reason
766		 * as %gs above.
767		 */
768		if (task == current) {
769			loadseg(FS, 0);
770			x86_fsbase_write_cpu(arg2);
771
772			/*
773			 * On non-FSGSBASE systems, save_base_legacy() expects
774			 * that we also fill in thread.fsbase.
775			 */
776			task->thread.fsbase = arg2;
777		} else {
778			task->thread.fsindex = 0;
779			x86_fsbase_write_task(task, arg2);
780		}
781		preempt_enable();
782		break;
783	}
784	case ARCH_GET_FS: {
785		unsigned long base = x86_fsbase_read_task(task);
786
787		ret = put_user(base, (unsigned long __user *)arg2);
788		break;
789	}
790	case ARCH_GET_GS: {
791		unsigned long base = x86_gsbase_read_task(task);
792
793		ret = put_user(base, (unsigned long __user *)arg2);
794		break;
795	}
796
797#ifdef CONFIG_CHECKPOINT_RESTORE
798# ifdef CONFIG_X86_X32_ABI
799	case ARCH_MAP_VDSO_X32:
800		return prctl_map_vdso(&vdso_image_x32, arg2);
801# endif
802# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
803	case ARCH_MAP_VDSO_32:
804		return prctl_map_vdso(&vdso_image_32, arg2);
805# endif
806	case ARCH_MAP_VDSO_64:
807		return prctl_map_vdso(&vdso_image_64, arg2);
808#endif
809
810	default:
811		ret = -EINVAL;
812		break;
813	}
814
815	return ret;
816}
817
818SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
819{
820	long ret;
821
822	ret = do_arch_prctl_64(current, option, arg2);
823	if (ret == -EINVAL)
824		ret = do_arch_prctl_common(current, option, arg2);
825
826	return ret;
827}
828
829#ifdef CONFIG_IA32_EMULATION
830COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
831{
832	return do_arch_prctl_common(current, option, arg2);
833}
834#endif
835
836unsigned long KSTK_ESP(struct task_struct *task)
837{
838	return task_pt_regs(task)->sp;
839}