Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * handle transition of Linux booting another kernel
  4 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
  5 */
  6
  7#define pr_fmt(fmt)	"kexec: " fmt
  8
  9#include <linux/mm.h>
 10#include <linux/kexec.h>
 11#include <linux/string.h>
 12#include <linux/gfp.h>
 13#include <linux/reboot.h>
 14#include <linux/numa.h>
 15#include <linux/ftrace.h>
 16#include <linux/io.h>
 17#include <linux/suspend.h>
 18#include <linux/vmalloc.h>
 19#include <linux/efi.h>
 20
 21#include <asm/init.h>
 22#include <asm/tlbflush.h>
 23#include <asm/mmu_context.h>
 24#include <asm/io_apic.h>
 25#include <asm/debugreg.h>
 26#include <asm/kexec-bzimage64.h>
 27#include <asm/setup.h>
 28#include <asm/set_memory.h>
 29
 30#ifdef CONFIG_ACPI
 31/*
 32 * Used while adding mapping for ACPI tables.
 33 * Can be reused when other iomem regions need be mapped
 34 */
 35struct init_pgtable_data {
 36	struct x86_mapping_info *info;
 37	pgd_t *level4p;
 38};
 39
 40static int mem_region_callback(struct resource *res, void *arg)
 41{
 42	struct init_pgtable_data *data = arg;
 43	unsigned long mstart, mend;
 44
 45	mstart = res->start;
 46	mend = mstart + resource_size(res) - 1;
 47
 48	return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
 49}
 50
 51static int
 52map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
 53{
 54	struct init_pgtable_data data;
 55	unsigned long flags;
 56	int ret;
 57
 58	data.info = info;
 59	data.level4p = level4p;
 60	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 61
 62	ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
 63				  &data, mem_region_callback);
 64	if (ret && ret != -EINVAL)
 65		return ret;
 66
 67	/* ACPI tables could be located in ACPI Non-volatile Storage region */
 68	ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
 69				  &data, mem_region_callback);
 70	if (ret && ret != -EINVAL)
 71		return ret;
 72
 73	return 0;
 74}
 75#else
 76static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
 77#endif
 78
 79#ifdef CONFIG_KEXEC_FILE
 80const struct kexec_file_ops * const kexec_file_loaders[] = {
 81		&kexec_bzImage64_ops,
 82		NULL
 83};
 84#endif
 85
 86static int
 87map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
 88{
 89#ifdef CONFIG_EFI
 90	unsigned long mstart, mend;
 91
 92	if (!efi_enabled(EFI_BOOT))
 93		return 0;
 94
 95	mstart = (boot_params.efi_info.efi_systab |
 96			((u64)boot_params.efi_info.efi_systab_hi<<32));
 97
 98	if (efi_enabled(EFI_64BIT))
 99		mend = mstart + sizeof(efi_system_table_64_t);
100	else
101		mend = mstart + sizeof(efi_system_table_32_t);
102
103	if (!mstart)
104		return 0;
105
106	return kernel_ident_mapping_init(info, level4p, mstart, mend);
107#endif
108	return 0;
109}
110
111static void free_transition_pgtable(struct kimage *image)
112{
113	free_page((unsigned long)image->arch.p4d);
114	image->arch.p4d = NULL;
115	free_page((unsigned long)image->arch.pud);
116	image->arch.pud = NULL;
117	free_page((unsigned long)image->arch.pmd);
118	image->arch.pmd = NULL;
119	free_page((unsigned long)image->arch.pte);
120	image->arch.pte = NULL;
121}
122
123static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
124{
125	pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
126	unsigned long vaddr, paddr;
127	int result = -ENOMEM;
128	p4d_t *p4d;
129	pud_t *pud;
130	pmd_t *pmd;
131	pte_t *pte;
132
133	vaddr = (unsigned long)relocate_kernel;
134	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
135	pgd += pgd_index(vaddr);
136	if (!pgd_present(*pgd)) {
137		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
138		if (!p4d)
139			goto err;
140		image->arch.p4d = p4d;
141		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
142	}
143	p4d = p4d_offset(pgd, vaddr);
144	if (!p4d_present(*p4d)) {
145		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
146		if (!pud)
147			goto err;
148		image->arch.pud = pud;
149		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
150	}
151	pud = pud_offset(p4d, vaddr);
152	if (!pud_present(*pud)) {
153		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
154		if (!pmd)
155			goto err;
156		image->arch.pmd = pmd;
157		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
158	}
159	pmd = pmd_offset(pud, vaddr);
160	if (!pmd_present(*pmd)) {
161		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
162		if (!pte)
163			goto err;
164		image->arch.pte = pte;
165		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
166	}
167	pte = pte_offset_kernel(pmd, vaddr);
168
169	if (sev_active())
170		prot = PAGE_KERNEL_EXEC;
171
172	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
173	return 0;
174err:
175	return result;
176}
177
178static void *alloc_pgt_page(void *data)
179{
180	struct kimage *image = (struct kimage *)data;
181	struct page *page;
182	void *p = NULL;
183
184	page = kimage_alloc_control_pages(image, 0);
185	if (page) {
186		p = page_address(page);
187		clear_page(p);
188	}
189
190	return p;
191}
192
193static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
194{
195	struct x86_mapping_info info = {
196		.alloc_pgt_page	= alloc_pgt_page,
197		.context	= image,
198		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
199		.kernpg_flag	= _KERNPG_TABLE_NOENC,
200	};
201	unsigned long mstart, mend;
202	pgd_t *level4p;
203	int result;
204	int i;
205
206	level4p = (pgd_t *)__va(start_pgtable);
207	clear_page(level4p);
208
209	if (sev_active()) {
210		info.page_flag   |= _PAGE_ENC;
211		info.kernpg_flag |= _PAGE_ENC;
212	}
213
214	if (direct_gbpages)
215		info.direct_gbpages = true;
216
217	for (i = 0; i < nr_pfn_mapped; i++) {
218		mstart = pfn_mapped[i].start << PAGE_SHIFT;
219		mend   = pfn_mapped[i].end << PAGE_SHIFT;
220
221		result = kernel_ident_mapping_init(&info,
222						 level4p, mstart, mend);
223		if (result)
224			return result;
225	}
226
227	/*
228	 * segments's mem ranges could be outside 0 ~ max_pfn,
229	 * for example when jump back to original kernel from kexeced kernel.
230	 * or first kernel is booted with user mem map, and second kernel
231	 * could be loaded out of that range.
232	 */
233	for (i = 0; i < image->nr_segments; i++) {
234		mstart = image->segment[i].mem;
235		mend   = mstart + image->segment[i].memsz;
236
237		result = kernel_ident_mapping_init(&info,
238						 level4p, mstart, mend);
239
240		if (result)
241			return result;
242	}
243
244	/*
245	 * Prepare EFI systab and ACPI tables for kexec kernel since they are
246	 * not covered by pfn_mapped.
247	 */
248	result = map_efi_systab(&info, level4p);
249	if (result)
250		return result;
251
252	result = map_acpi_tables(&info, level4p);
253	if (result)
254		return result;
255
256	return init_transition_pgtable(image, level4p);
257}
258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259static void load_segments(void)
260{
261	__asm__ __volatile__ (
262		"\tmovl %0,%%ds\n"
263		"\tmovl %0,%%es\n"
264		"\tmovl %0,%%ss\n"
265		"\tmovl %0,%%fs\n"
266		"\tmovl %0,%%gs\n"
267		: : "a" (__KERNEL_DS) : "memory"
268		);
269}
270
271int machine_kexec_prepare(struct kimage *image)
272{
273	unsigned long start_pgtable;
274	int result;
275
276	/* Calculate the offsets */
277	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
278
279	/* Setup the identity mapped 64bit page table */
280	result = init_pgtable(image, start_pgtable);
281	if (result)
282		return result;
283
284	return 0;
285}
286
287void machine_kexec_cleanup(struct kimage *image)
288{
289	free_transition_pgtable(image);
290}
291
292/*
293 * Do not allocate memory (or fail in any way) in machine_kexec().
294 * We are past the point of no return, committed to rebooting now.
295 */
296void machine_kexec(struct kimage *image)
297{
298	unsigned long page_list[PAGES_NR];
299	void *control_page;
300	int save_ftrace_enabled;
301
302#ifdef CONFIG_KEXEC_JUMP
303	if (image->preserve_context)
304		save_processor_state();
305#endif
306
307	save_ftrace_enabled = __ftrace_enabled_save();
308
309	/* Interrupts aren't acceptable while we reboot */
310	local_irq_disable();
311	hw_breakpoint_disable();
312
313	if (image->preserve_context) {
314#ifdef CONFIG_X86_IO_APIC
315		/*
316		 * We need to put APICs in legacy mode so that we can
317		 * get timer interrupts in second kernel. kexec/kdump
318		 * paths already have calls to restore_boot_irq_mode()
319		 * in one form or other. kexec jump path also need one.
320		 */
321		clear_IO_APIC();
322		restore_boot_irq_mode();
323#endif
324	}
325
326	control_page = page_address(image->control_code_page) + PAGE_SIZE;
327	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
328
329	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
330	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
331	page_list[PA_TABLE_PAGE] =
332	  (unsigned long)__pa(page_address(image->control_code_page));
333
334	if (image->type == KEXEC_TYPE_DEFAULT)
335		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
336						<< PAGE_SHIFT);
337
338	/*
339	 * The segment registers are funny things, they have both a
340	 * visible and an invisible part.  Whenever the visible part is
341	 * set to a specific selector, the invisible part is loaded
342	 * with from a table in memory.  At no other time is the
343	 * descriptor table in memory accessed.
344	 *
345	 * I take advantage of this here by force loading the
346	 * segments, before I zap the gdt with an invalid value.
347	 */
348	load_segments();
349	/*
350	 * The gdt & idt are now invalid.
351	 * If you want to load them you must set up your own idt & gdt.
352	 */
353	native_idt_invalidate();
354	native_gdt_invalidate();
355
356	/* now call it */
357	image->start = relocate_kernel((unsigned long)image->head,
358				       (unsigned long)page_list,
359				       image->start,
360				       image->preserve_context,
361				       sme_active());
362
363#ifdef CONFIG_KEXEC_JUMP
364	if (image->preserve_context)
365		restore_processor_state();
366#endif
367
368	__ftrace_enabled_restore(save_ftrace_enabled);
369}
370
371/* arch-dependent functionality related to kexec file-based syscall */
372
373#ifdef CONFIG_KEXEC_FILE
374void *arch_kexec_kernel_image_load(struct kimage *image)
375{
376	vfree(image->elf_headers);
377	image->elf_headers = NULL;
378
379	if (!image->fops || !image->fops->load)
380		return ERR_PTR(-ENOEXEC);
381
382	return image->fops->load(image, image->kernel_buf,
383				 image->kernel_buf_len, image->initrd_buf,
384				 image->initrd_buf_len, image->cmdline_buf,
385				 image->cmdline_buf_len);
386}
387
388/*
389 * Apply purgatory relocations.
390 *
391 * @pi:		Purgatory to be relocated.
392 * @section:	Section relocations applying to.
393 * @relsec:	Section containing RELAs.
394 * @symtabsec:	Corresponding symtab.
395 *
396 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
397 */
398int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
399				     Elf_Shdr *section, const Elf_Shdr *relsec,
400				     const Elf_Shdr *symtabsec)
401{
402	unsigned int i;
403	Elf64_Rela *rel;
404	Elf64_Sym *sym;
405	void *location;
406	unsigned long address, sec_base, value;
407	const char *strtab, *name, *shstrtab;
408	const Elf_Shdr *sechdrs;
409
410	/* String & section header string table */
411	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
412	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
413	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
414
415	rel = (void *)pi->ehdr + relsec->sh_offset;
416
417	pr_debug("Applying relocate section %s to %u\n",
418		 shstrtab + relsec->sh_name, relsec->sh_info);
419
420	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
421
422		/*
423		 * rel[i].r_offset contains byte offset from beginning
424		 * of section to the storage unit affected.
425		 *
426		 * This is location to update. This is temporary buffer
427		 * where section is currently loaded. This will finally be
428		 * loaded to a different address later, pointed to by
429		 * ->sh_addr. kexec takes care of moving it
430		 *  (kexec_load_segment()).
431		 */
432		location = pi->purgatory_buf;
433		location += section->sh_offset;
434		location += rel[i].r_offset;
435
436		/* Final address of the location */
437		address = section->sh_addr + rel[i].r_offset;
438
439		/*
440		 * rel[i].r_info contains information about symbol table index
441		 * w.r.t which relocation must be made and type of relocation
442		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
443		 * these respectively.
444		 */
445		sym = (void *)pi->ehdr + symtabsec->sh_offset;
446		sym += ELF64_R_SYM(rel[i].r_info);
447
448		if (sym->st_name)
449			name = strtab + sym->st_name;
450		else
451			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
452
453		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
454			 name, sym->st_info, sym->st_shndx, sym->st_value,
455			 sym->st_size);
456
457		if (sym->st_shndx == SHN_UNDEF) {
458			pr_err("Undefined symbol: %s\n", name);
459			return -ENOEXEC;
460		}
461
462		if (sym->st_shndx == SHN_COMMON) {
463			pr_err("symbol '%s' in common section\n", name);
464			return -ENOEXEC;
465		}
466
467		if (sym->st_shndx == SHN_ABS)
468			sec_base = 0;
469		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
470			pr_err("Invalid section %d for symbol %s\n",
471			       sym->st_shndx, name);
472			return -ENOEXEC;
473		} else
474			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
475
476		value = sym->st_value;
477		value += sec_base;
478		value += rel[i].r_addend;
479
480		switch (ELF64_R_TYPE(rel[i].r_info)) {
481		case R_X86_64_NONE:
482			break;
483		case R_X86_64_64:
484			*(u64 *)location = value;
485			break;
486		case R_X86_64_32:
487			*(u32 *)location = value;
488			if (value != *(u32 *)location)
489				goto overflow;
490			break;
491		case R_X86_64_32S:
492			*(s32 *)location = value;
493			if ((s64)value != *(s32 *)location)
494				goto overflow;
495			break;
496		case R_X86_64_PC32:
497		case R_X86_64_PLT32:
498			value -= (u64)address;
499			*(u32 *)location = value;
500			break;
501		default:
502			pr_err("Unknown rela relocation: %llu\n",
503			       ELF64_R_TYPE(rel[i].r_info));
504			return -ENOEXEC;
505		}
506	}
507	return 0;
508
509overflow:
510	pr_err("Overflow in relocation type %d value 0x%lx\n",
511	       (int)ELF64_R_TYPE(rel[i].r_info), value);
512	return -ENOEXEC;
513}
514#endif /* CONFIG_KEXEC_FILE */
515
516static int
517kexec_mark_range(unsigned long start, unsigned long end, bool protect)
518{
519	struct page *page;
520	unsigned int nr_pages;
521
522	/*
523	 * For physical range: [start, end]. We must skip the unassigned
524	 * crashk resource with zero-valued "end" member.
525	 */
526	if (!end || start > end)
527		return 0;
528
529	page = pfn_to_page(start >> PAGE_SHIFT);
530	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
531	if (protect)
532		return set_pages_ro(page, nr_pages);
533	else
534		return set_pages_rw(page, nr_pages);
535}
536
537static void kexec_mark_crashkres(bool protect)
538{
539	unsigned long control;
540
541	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
542
543	/* Don't touch the control code page used in crash_kexec().*/
544	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
545	/* Control code page is located in the 2nd page. */
546	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
547	control += KEXEC_CONTROL_PAGE_SIZE;
548	kexec_mark_range(control, crashk_res.end, protect);
549}
550
551void arch_kexec_protect_crashkres(void)
552{
553	kexec_mark_crashkres(true);
554}
555
556void arch_kexec_unprotect_crashkres(void)
557{
558	kexec_mark_crashkres(false);
559}
560
561/*
562 * During a traditional boot under SME, SME will encrypt the kernel,
563 * so the SME kexec kernel also needs to be un-encrypted in order to
564 * replicate a normal SME boot.
565 *
566 * During a traditional boot under SEV, the kernel has already been
567 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
568 * order to replicate a normal SEV boot.
569 */
570int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
571{
572	if (sev_active())
573		return 0;
574
575	/*
576	 * If SME is active we need to be sure that kexec pages are
577	 * not encrypted because when we boot to the new kernel the
578	 * pages won't be accessed encrypted (initially).
579	 */
580	return set_memory_decrypted((unsigned long)vaddr, pages);
581}
582
583void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
584{
585	if (sev_active())
586		return;
587
588	/*
589	 * If SME is active we need to reset the pages back to being
590	 * an encrypted mapping before freeing them.
591	 */
592	set_memory_encrypted((unsigned long)vaddr, pages);
593}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * handle transition of Linux booting another kernel
  4 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
  5 */
  6
  7#define pr_fmt(fmt)	"kexec: " fmt
  8
  9#include <linux/mm.h>
 10#include <linux/kexec.h>
 11#include <linux/string.h>
 12#include <linux/gfp.h>
 13#include <linux/reboot.h>
 14#include <linux/numa.h>
 15#include <linux/ftrace.h>
 16#include <linux/io.h>
 17#include <linux/suspend.h>
 18#include <linux/vmalloc.h>
 19#include <linux/efi.h>
 20
 21#include <asm/init.h>
 22#include <asm/tlbflush.h>
 23#include <asm/mmu_context.h>
 24#include <asm/io_apic.h>
 25#include <asm/debugreg.h>
 26#include <asm/kexec-bzimage64.h>
 27#include <asm/setup.h>
 28#include <asm/set_memory.h>
 29
 30#ifdef CONFIG_ACPI
 31/*
 32 * Used while adding mapping for ACPI tables.
 33 * Can be reused when other iomem regions need be mapped
 34 */
 35struct init_pgtable_data {
 36	struct x86_mapping_info *info;
 37	pgd_t *level4p;
 38};
 39
 40static int mem_region_callback(struct resource *res, void *arg)
 41{
 42	struct init_pgtable_data *data = arg;
 43	unsigned long mstart, mend;
 44
 45	mstart = res->start;
 46	mend = mstart + resource_size(res) - 1;
 47
 48	return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
 49}
 50
 51static int
 52map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
 53{
 54	struct init_pgtable_data data;
 55	unsigned long flags;
 56	int ret;
 57
 58	data.info = info;
 59	data.level4p = level4p;
 60	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 61
 62	ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
 63				  &data, mem_region_callback);
 64	if (ret && ret != -EINVAL)
 65		return ret;
 66
 67	/* ACPI tables could be located in ACPI Non-volatile Storage region */
 68	ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
 69				  &data, mem_region_callback);
 70	if (ret && ret != -EINVAL)
 71		return ret;
 72
 73	return 0;
 74}
 75#else
 76static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
 77#endif
 78
 79#ifdef CONFIG_KEXEC_FILE
 80const struct kexec_file_ops * const kexec_file_loaders[] = {
 81		&kexec_bzImage64_ops,
 82		NULL
 83};
 84#endif
 85
 86static int
 87map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
 88{
 89#ifdef CONFIG_EFI
 90	unsigned long mstart, mend;
 91
 92	if (!efi_enabled(EFI_BOOT))
 93		return 0;
 94
 95	mstart = (boot_params.efi_info.efi_systab |
 96			((u64)boot_params.efi_info.efi_systab_hi<<32));
 97
 98	if (efi_enabled(EFI_64BIT))
 99		mend = mstart + sizeof(efi_system_table_64_t);
100	else
101		mend = mstart + sizeof(efi_system_table_32_t);
102
103	if (!mstart)
104		return 0;
105
106	return kernel_ident_mapping_init(info, level4p, mstart, mend);
107#endif
108	return 0;
109}
110
111static void free_transition_pgtable(struct kimage *image)
112{
113	free_page((unsigned long)image->arch.p4d);
114	image->arch.p4d = NULL;
115	free_page((unsigned long)image->arch.pud);
116	image->arch.pud = NULL;
117	free_page((unsigned long)image->arch.pmd);
118	image->arch.pmd = NULL;
119	free_page((unsigned long)image->arch.pte);
120	image->arch.pte = NULL;
121}
122
123static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
124{
125	pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
126	unsigned long vaddr, paddr;
127	int result = -ENOMEM;
128	p4d_t *p4d;
129	pud_t *pud;
130	pmd_t *pmd;
131	pte_t *pte;
132
133	vaddr = (unsigned long)relocate_kernel;
134	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
135	pgd += pgd_index(vaddr);
136	if (!pgd_present(*pgd)) {
137		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
138		if (!p4d)
139			goto err;
140		image->arch.p4d = p4d;
141		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
142	}
143	p4d = p4d_offset(pgd, vaddr);
144	if (!p4d_present(*p4d)) {
145		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
146		if (!pud)
147			goto err;
148		image->arch.pud = pud;
149		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
150	}
151	pud = pud_offset(p4d, vaddr);
152	if (!pud_present(*pud)) {
153		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
154		if (!pmd)
155			goto err;
156		image->arch.pmd = pmd;
157		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
158	}
159	pmd = pmd_offset(pud, vaddr);
160	if (!pmd_present(*pmd)) {
161		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
162		if (!pte)
163			goto err;
164		image->arch.pte = pte;
165		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
166	}
167	pte = pte_offset_kernel(pmd, vaddr);
168
169	if (sev_active())
170		prot = PAGE_KERNEL_EXEC;
171
172	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
173	return 0;
174err:
175	return result;
176}
177
178static void *alloc_pgt_page(void *data)
179{
180	struct kimage *image = (struct kimage *)data;
181	struct page *page;
182	void *p = NULL;
183
184	page = kimage_alloc_control_pages(image, 0);
185	if (page) {
186		p = page_address(page);
187		clear_page(p);
188	}
189
190	return p;
191}
192
193static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
194{
195	struct x86_mapping_info info = {
196		.alloc_pgt_page	= alloc_pgt_page,
197		.context	= image,
198		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
199		.kernpg_flag	= _KERNPG_TABLE_NOENC,
200	};
201	unsigned long mstart, mend;
202	pgd_t *level4p;
203	int result;
204	int i;
205
206	level4p = (pgd_t *)__va(start_pgtable);
207	clear_page(level4p);
208
209	if (sev_active()) {
210		info.page_flag   |= _PAGE_ENC;
211		info.kernpg_flag |= _PAGE_ENC;
212	}
213
214	if (direct_gbpages)
215		info.direct_gbpages = true;
216
217	for (i = 0; i < nr_pfn_mapped; i++) {
218		mstart = pfn_mapped[i].start << PAGE_SHIFT;
219		mend   = pfn_mapped[i].end << PAGE_SHIFT;
220
221		result = kernel_ident_mapping_init(&info,
222						 level4p, mstart, mend);
223		if (result)
224			return result;
225	}
226
227	/*
228	 * segments's mem ranges could be outside 0 ~ max_pfn,
229	 * for example when jump back to original kernel from kexeced kernel.
230	 * or first kernel is booted with user mem map, and second kernel
231	 * could be loaded out of that range.
232	 */
233	for (i = 0; i < image->nr_segments; i++) {
234		mstart = image->segment[i].mem;
235		mend   = mstart + image->segment[i].memsz;
236
237		result = kernel_ident_mapping_init(&info,
238						 level4p, mstart, mend);
239
240		if (result)
241			return result;
242	}
243
244	/*
245	 * Prepare EFI systab and ACPI tables for kexec kernel since they are
246	 * not covered by pfn_mapped.
247	 */
248	result = map_efi_systab(&info, level4p);
249	if (result)
250		return result;
251
252	result = map_acpi_tables(&info, level4p);
253	if (result)
254		return result;
255
256	return init_transition_pgtable(image, level4p);
257}
258
259static void set_idt(void *newidt, u16 limit)
260{
261	struct desc_ptr curidt;
262
263	/* x86-64 supports unaliged loads & stores */
264	curidt.size    = limit;
265	curidt.address = (unsigned long)newidt;
266
267	__asm__ __volatile__ (
268		"lidtq %0\n"
269		: : "m" (curidt)
270		);
271};
272
273
274static void set_gdt(void *newgdt, u16 limit)
275{
276	struct desc_ptr curgdt;
277
278	/* x86-64 supports unaligned loads & stores */
279	curgdt.size    = limit;
280	curgdt.address = (unsigned long)newgdt;
281
282	__asm__ __volatile__ (
283		"lgdtq %0\n"
284		: : "m" (curgdt)
285		);
286};
287
288static void load_segments(void)
289{
290	__asm__ __volatile__ (
291		"\tmovl %0,%%ds\n"
292		"\tmovl %0,%%es\n"
293		"\tmovl %0,%%ss\n"
294		"\tmovl %0,%%fs\n"
295		"\tmovl %0,%%gs\n"
296		: : "a" (__KERNEL_DS) : "memory"
297		);
298}
299
300int machine_kexec_prepare(struct kimage *image)
301{
302	unsigned long start_pgtable;
303	int result;
304
305	/* Calculate the offsets */
306	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
307
308	/* Setup the identity mapped 64bit page table */
309	result = init_pgtable(image, start_pgtable);
310	if (result)
311		return result;
312
313	return 0;
314}
315
316void machine_kexec_cleanup(struct kimage *image)
317{
318	free_transition_pgtable(image);
319}
320
321/*
322 * Do not allocate memory (or fail in any way) in machine_kexec().
323 * We are past the point of no return, committed to rebooting now.
324 */
325void machine_kexec(struct kimage *image)
326{
327	unsigned long page_list[PAGES_NR];
328	void *control_page;
329	int save_ftrace_enabled;
330
331#ifdef CONFIG_KEXEC_JUMP
332	if (image->preserve_context)
333		save_processor_state();
334#endif
335
336	save_ftrace_enabled = __ftrace_enabled_save();
337
338	/* Interrupts aren't acceptable while we reboot */
339	local_irq_disable();
340	hw_breakpoint_disable();
341
342	if (image->preserve_context) {
343#ifdef CONFIG_X86_IO_APIC
344		/*
345		 * We need to put APICs in legacy mode so that we can
346		 * get timer interrupts in second kernel. kexec/kdump
347		 * paths already have calls to restore_boot_irq_mode()
348		 * in one form or other. kexec jump path also need one.
349		 */
350		clear_IO_APIC();
351		restore_boot_irq_mode();
352#endif
353	}
354
355	control_page = page_address(image->control_code_page) + PAGE_SIZE;
356	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
357
358	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
359	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
360	page_list[PA_TABLE_PAGE] =
361	  (unsigned long)__pa(page_address(image->control_code_page));
362
363	if (image->type == KEXEC_TYPE_DEFAULT)
364		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
365						<< PAGE_SHIFT);
366
367	/*
368	 * The segment registers are funny things, they have both a
369	 * visible and an invisible part.  Whenever the visible part is
370	 * set to a specific selector, the invisible part is loaded
371	 * with from a table in memory.  At no other time is the
372	 * descriptor table in memory accessed.
373	 *
374	 * I take advantage of this here by force loading the
375	 * segments, before I zap the gdt with an invalid value.
376	 */
377	load_segments();
378	/*
379	 * The gdt & idt are now invalid.
380	 * If you want to load them you must set up your own idt & gdt.
381	 */
382	set_gdt(phys_to_virt(0), 0);
383	set_idt(phys_to_virt(0), 0);
384
385	/* now call it */
386	image->start = relocate_kernel((unsigned long)image->head,
387				       (unsigned long)page_list,
388				       image->start,
389				       image->preserve_context,
390				       sme_active());
391
392#ifdef CONFIG_KEXEC_JUMP
393	if (image->preserve_context)
394		restore_processor_state();
395#endif
396
397	__ftrace_enabled_restore(save_ftrace_enabled);
398}
399
400/* arch-dependent functionality related to kexec file-based syscall */
401
402#ifdef CONFIG_KEXEC_FILE
403void *arch_kexec_kernel_image_load(struct kimage *image)
404{
405	vfree(image->arch.elf_headers);
406	image->arch.elf_headers = NULL;
407
408	if (!image->fops || !image->fops->load)
409		return ERR_PTR(-ENOEXEC);
410
411	return image->fops->load(image, image->kernel_buf,
412				 image->kernel_buf_len, image->initrd_buf,
413				 image->initrd_buf_len, image->cmdline_buf,
414				 image->cmdline_buf_len);
415}
416
417/*
418 * Apply purgatory relocations.
419 *
420 * @pi:		Purgatory to be relocated.
421 * @section:	Section relocations applying to.
422 * @relsec:	Section containing RELAs.
423 * @symtabsec:	Corresponding symtab.
424 *
425 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
426 */
427int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
428				     Elf_Shdr *section, const Elf_Shdr *relsec,
429				     const Elf_Shdr *symtabsec)
430{
431	unsigned int i;
432	Elf64_Rela *rel;
433	Elf64_Sym *sym;
434	void *location;
435	unsigned long address, sec_base, value;
436	const char *strtab, *name, *shstrtab;
437	const Elf_Shdr *sechdrs;
438
439	/* String & section header string table */
440	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
441	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
442	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
443
444	rel = (void *)pi->ehdr + relsec->sh_offset;
445
446	pr_debug("Applying relocate section %s to %u\n",
447		 shstrtab + relsec->sh_name, relsec->sh_info);
448
449	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
450
451		/*
452		 * rel[i].r_offset contains byte offset from beginning
453		 * of section to the storage unit affected.
454		 *
455		 * This is location to update. This is temporary buffer
456		 * where section is currently loaded. This will finally be
457		 * loaded to a different address later, pointed to by
458		 * ->sh_addr. kexec takes care of moving it
459		 *  (kexec_load_segment()).
460		 */
461		location = pi->purgatory_buf;
462		location += section->sh_offset;
463		location += rel[i].r_offset;
464
465		/* Final address of the location */
466		address = section->sh_addr + rel[i].r_offset;
467
468		/*
469		 * rel[i].r_info contains information about symbol table index
470		 * w.r.t which relocation must be made and type of relocation
471		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
472		 * these respectively.
473		 */
474		sym = (void *)pi->ehdr + symtabsec->sh_offset;
475		sym += ELF64_R_SYM(rel[i].r_info);
476
477		if (sym->st_name)
478			name = strtab + sym->st_name;
479		else
480			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
481
482		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
483			 name, sym->st_info, sym->st_shndx, sym->st_value,
484			 sym->st_size);
485
486		if (sym->st_shndx == SHN_UNDEF) {
487			pr_err("Undefined symbol: %s\n", name);
488			return -ENOEXEC;
489		}
490
491		if (sym->st_shndx == SHN_COMMON) {
492			pr_err("symbol '%s' in common section\n", name);
493			return -ENOEXEC;
494		}
495
496		if (sym->st_shndx == SHN_ABS)
497			sec_base = 0;
498		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
499			pr_err("Invalid section %d for symbol %s\n",
500			       sym->st_shndx, name);
501			return -ENOEXEC;
502		} else
503			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
504
505		value = sym->st_value;
506		value += sec_base;
507		value += rel[i].r_addend;
508
509		switch (ELF64_R_TYPE(rel[i].r_info)) {
510		case R_X86_64_NONE:
511			break;
512		case R_X86_64_64:
513			*(u64 *)location = value;
514			break;
515		case R_X86_64_32:
516			*(u32 *)location = value;
517			if (value != *(u32 *)location)
518				goto overflow;
519			break;
520		case R_X86_64_32S:
521			*(s32 *)location = value;
522			if ((s64)value != *(s32 *)location)
523				goto overflow;
524			break;
525		case R_X86_64_PC32:
526		case R_X86_64_PLT32:
527			value -= (u64)address;
528			*(u32 *)location = value;
529			break;
530		default:
531			pr_err("Unknown rela relocation: %llu\n",
532			       ELF64_R_TYPE(rel[i].r_info));
533			return -ENOEXEC;
534		}
535	}
536	return 0;
537
538overflow:
539	pr_err("Overflow in relocation type %d value 0x%lx\n",
540	       (int)ELF64_R_TYPE(rel[i].r_info), value);
541	return -ENOEXEC;
542}
543#endif /* CONFIG_KEXEC_FILE */
544
545static int
546kexec_mark_range(unsigned long start, unsigned long end, bool protect)
547{
548	struct page *page;
549	unsigned int nr_pages;
550
551	/*
552	 * For physical range: [start, end]. We must skip the unassigned
553	 * crashk resource with zero-valued "end" member.
554	 */
555	if (!end || start > end)
556		return 0;
557
558	page = pfn_to_page(start >> PAGE_SHIFT);
559	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
560	if (protect)
561		return set_pages_ro(page, nr_pages);
562	else
563		return set_pages_rw(page, nr_pages);
564}
565
566static void kexec_mark_crashkres(bool protect)
567{
568	unsigned long control;
569
570	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
571
572	/* Don't touch the control code page used in crash_kexec().*/
573	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
574	/* Control code page is located in the 2nd page. */
575	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
576	control += KEXEC_CONTROL_PAGE_SIZE;
577	kexec_mark_range(control, crashk_res.end, protect);
578}
579
580void arch_kexec_protect_crashkres(void)
581{
582	kexec_mark_crashkres(true);
583}
584
585void arch_kexec_unprotect_crashkres(void)
586{
587	kexec_mark_crashkres(false);
588}
589
590/*
591 * During a traditional boot under SME, SME will encrypt the kernel,
592 * so the SME kexec kernel also needs to be un-encrypted in order to
593 * replicate a normal SME boot.
594 *
595 * During a traditional boot under SEV, the kernel has already been
596 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
597 * order to replicate a normal SEV boot.
598 */
599int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
600{
601	if (sev_active())
602		return 0;
603
604	/*
605	 * If SME is active we need to be sure that kexec pages are
606	 * not encrypted because when we boot to the new kernel the
607	 * pages won't be accessed encrypted (initially).
608	 */
609	return set_memory_decrypted((unsigned long)vaddr, pages);
610}
611
612void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
613{
614	if (sev_active())
615		return;
616
617	/*
618	 * If SME is active we need to reset the pages back to being
619	 * an encrypted mapping before freeing them.
620	 */
621	set_memory_encrypted((unsigned long)vaddr, pages);
622}