Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Linux performance counter support for MIPS.
   4 *
   5 * Copyright (C) 2010 MIPS Technologies, Inc.
   6 * Copyright (C) 2011 Cavium Networks, Inc.
   7 * Author: Deng-Cheng Zhu
   8 *
   9 * This code is based on the implementation for ARM, which is in turn
  10 * based on the sparc64 perf event code and the x86 code. Performance
  11 * counter access is based on the MIPS Oprofile code. And the callchain
  12 * support references the code of MIPS stacktrace.c.
  13 */
  14
  15#include <linux/cpumask.h>
  16#include <linux/interrupt.h>
  17#include <linux/smp.h>
  18#include <linux/kernel.h>
  19#include <linux/perf_event.h>
  20#include <linux/uaccess.h>
  21
  22#include <asm/irq.h>
  23#include <asm/irq_regs.h>
  24#include <asm/stacktrace.h>
  25#include <asm/time.h> /* For perf_irq */
  26
  27#define MIPS_MAX_HWEVENTS 4
  28#define MIPS_TCS_PER_COUNTER 2
  29#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
  30
  31struct cpu_hw_events {
  32	/* Array of events on this cpu. */
  33	struct perf_event	*events[MIPS_MAX_HWEVENTS];
  34
  35	/*
  36	 * Set the bit (indexed by the counter number) when the counter
  37	 * is used for an event.
  38	 */
  39	unsigned long		used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
  40
  41	/*
  42	 * Software copy of the control register for each performance counter.
  43	 * MIPS CPUs vary in performance counters. They use this differently,
  44	 * and even may not use it.
  45	 */
  46	unsigned int		saved_ctrl[MIPS_MAX_HWEVENTS];
  47};
  48DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  49	.saved_ctrl = {0},
  50};
  51
  52/* The description of MIPS performance events. */
  53struct mips_perf_event {
  54	unsigned int event_id;
  55	/*
  56	 * MIPS performance counters are indexed starting from 0.
  57	 * CNTR_EVEN indicates the indexes of the counters to be used are
  58	 * even numbers.
  59	 */
  60	unsigned int cntr_mask;
  61	#define CNTR_EVEN	0x55555555
  62	#define CNTR_ODD	0xaaaaaaaa
  63	#define CNTR_ALL	0xffffffff
  64	enum {
  65		T  = 0,
  66		V  = 1,
  67		P  = 2,
  68	} range;
  69};
  70
  71static struct mips_perf_event raw_event;
  72static DEFINE_MUTEX(raw_event_mutex);
  73
  74#define C(x) PERF_COUNT_HW_CACHE_##x
  75
  76struct mips_pmu {
  77	u64		max_period;
  78	u64		valid_count;
  79	u64		overflow;
  80	const char	*name;
  81	int		irq;
  82	u64		(*read_counter)(unsigned int idx);
  83	void		(*write_counter)(unsigned int idx, u64 val);
  84	const struct mips_perf_event *(*map_raw_event)(u64 config);
  85	const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
  86	const struct mips_perf_event (*cache_event_map)
  87				[PERF_COUNT_HW_CACHE_MAX]
  88				[PERF_COUNT_HW_CACHE_OP_MAX]
  89				[PERF_COUNT_HW_CACHE_RESULT_MAX];
  90	unsigned int	num_counters;
  91};
  92
  93static int counter_bits;
  94static struct mips_pmu mipspmu;
  95
  96#define M_PERFCTL_EVENT(event)		(((event) << MIPS_PERFCTRL_EVENT_S) & \
  97					 MIPS_PERFCTRL_EVENT)
  98#define M_PERFCTL_VPEID(vpe)		((vpe)	  << MIPS_PERFCTRL_VPEID_S)
  99
 100#ifdef CONFIG_CPU_BMIPS5000
 101#define M_PERFCTL_MT_EN(filter)		0
 102#else /* !CONFIG_CPU_BMIPS5000 */
 103#define M_PERFCTL_MT_EN(filter)		(filter)
 104#endif /* CONFIG_CPU_BMIPS5000 */
 105
 106#define	   M_TC_EN_ALL			M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
 107#define	   M_TC_EN_VPE			M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
 108#define	   M_TC_EN_TC			M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
 109
 110#define M_PERFCTL_COUNT_EVENT_WHENEVER	(MIPS_PERFCTRL_EXL |		\
 111					 MIPS_PERFCTRL_K |		\
 112					 MIPS_PERFCTRL_U |		\
 113					 MIPS_PERFCTRL_S |		\
 114					 MIPS_PERFCTRL_IE)
 115
 116#ifdef CONFIG_MIPS_MT_SMP
 117#define M_PERFCTL_CONFIG_MASK		0x3fff801f
 118#else
 119#define M_PERFCTL_CONFIG_MASK		0x1f
 120#endif
 121
 122#define CNTR_BIT_MASK(n)	(((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
 123
 124#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 125static DEFINE_RWLOCK(pmuint_rwlock);
 126
 127#if defined(CONFIG_CPU_BMIPS5000)
 128#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
 129			 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
 130#else
 131#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
 132			 0 : cpu_vpe_id(&current_cpu_data))
 133#endif
 134
 135/* Copied from op_model_mipsxx.c */
 136static unsigned int vpe_shift(void)
 137{
 138	if (num_possible_cpus() > 1)
 139		return 1;
 140
 141	return 0;
 142}
 143
 144static unsigned int counters_total_to_per_cpu(unsigned int counters)
 145{
 146	return counters >> vpe_shift();
 147}
 148
 149#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
 150#define vpe_id()	0
 151
 152#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
 153
 154static void resume_local_counters(void);
 155static void pause_local_counters(void);
 156static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
 157static int mipsxx_pmu_handle_shared_irq(void);
 158
 159/* 0: Not Loongson-3
 160 * 1: Loongson-3A1000/3B1000/3B1500
 161 * 2: Loongson-3A2000/3A3000
 162 * 3: Loongson-3A4000+
 163 */
 164
 165#define LOONGSON_PMU_TYPE0 0
 166#define LOONGSON_PMU_TYPE1 1
 167#define LOONGSON_PMU_TYPE2 2
 168#define LOONGSON_PMU_TYPE3 3
 169
 170static inline int get_loongson3_pmu_type(void)
 171{
 172	if (boot_cpu_type() != CPU_LOONGSON64)
 173		return LOONGSON_PMU_TYPE0;
 174	if ((boot_cpu_data.processor_id & PRID_COMP_MASK) == PRID_COMP_LEGACY)
 175		return LOONGSON_PMU_TYPE1;
 176	if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64C)
 177		return LOONGSON_PMU_TYPE2;
 178	if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64G)
 179		return LOONGSON_PMU_TYPE3;
 180
 181	return LOONGSON_PMU_TYPE0;
 182}
 183
 184static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
 185{
 186	if (vpe_id() == 1)
 187		idx = (idx + 2) & 3;
 188	return idx;
 189}
 190
 191static u64 mipsxx_pmu_read_counter(unsigned int idx)
 192{
 193	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 194
 195	switch (idx) {
 196	case 0:
 197		/*
 198		 * The counters are unsigned, we must cast to truncate
 199		 * off the high bits.
 200		 */
 201		return (u32)read_c0_perfcntr0();
 202	case 1:
 203		return (u32)read_c0_perfcntr1();
 204	case 2:
 205		return (u32)read_c0_perfcntr2();
 206	case 3:
 207		return (u32)read_c0_perfcntr3();
 208	default:
 209		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 210		return 0;
 211	}
 212}
 213
 214static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
 215{
 216	u64 mask = CNTR_BIT_MASK(counter_bits);
 217	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 218
 219	switch (idx) {
 220	case 0:
 221		return read_c0_perfcntr0_64() & mask;
 222	case 1:
 223		return read_c0_perfcntr1_64() & mask;
 224	case 2:
 225		return read_c0_perfcntr2_64() & mask;
 226	case 3:
 227		return read_c0_perfcntr3_64() & mask;
 228	default:
 229		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 230		return 0;
 231	}
 232}
 233
 234static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
 235{
 236	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 237
 238	switch (idx) {
 239	case 0:
 240		write_c0_perfcntr0(val);
 241		return;
 242	case 1:
 243		write_c0_perfcntr1(val);
 244		return;
 245	case 2:
 246		write_c0_perfcntr2(val);
 247		return;
 248	case 3:
 249		write_c0_perfcntr3(val);
 250		return;
 251	}
 252}
 253
 254static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
 255{
 256	val &= CNTR_BIT_MASK(counter_bits);
 257	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 258
 259	switch (idx) {
 260	case 0:
 261		write_c0_perfcntr0_64(val);
 262		return;
 263	case 1:
 264		write_c0_perfcntr1_64(val);
 265		return;
 266	case 2:
 267		write_c0_perfcntr2_64(val);
 268		return;
 269	case 3:
 270		write_c0_perfcntr3_64(val);
 271		return;
 272	}
 273}
 274
 275static unsigned int mipsxx_pmu_read_control(unsigned int idx)
 276{
 277	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 278
 279	switch (idx) {
 280	case 0:
 281		return read_c0_perfctrl0();
 282	case 1:
 283		return read_c0_perfctrl1();
 284	case 2:
 285		return read_c0_perfctrl2();
 286	case 3:
 287		return read_c0_perfctrl3();
 288	default:
 289		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 290		return 0;
 291	}
 292}
 293
 294static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
 295{
 296	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 297
 298	switch (idx) {
 299	case 0:
 300		write_c0_perfctrl0(val);
 301		return;
 302	case 1:
 303		write_c0_perfctrl1(val);
 304		return;
 305	case 2:
 306		write_c0_perfctrl2(val);
 307		return;
 308	case 3:
 309		write_c0_perfctrl3(val);
 310		return;
 311	}
 312}
 313
 314static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
 315				    struct hw_perf_event *hwc)
 316{
 317	int i;
 318	unsigned long cntr_mask;
 319
 320	/*
 321	 * We only need to care the counter mask. The range has been
 322	 * checked definitely.
 323	 */
 324	if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
 325		cntr_mask = (hwc->event_base >> 10) & 0xffff;
 326	else
 327		cntr_mask = (hwc->event_base >> 8) & 0xffff;
 328
 329	for (i = mipspmu.num_counters - 1; i >= 0; i--) {
 330		/*
 331		 * Note that some MIPS perf events can be counted by both
 332		 * even and odd counters, wheresas many other are only by
 333		 * even _or_ odd counters. This introduces an issue that
 334		 * when the former kind of event takes the counter the
 335		 * latter kind of event wants to use, then the "counter
 336		 * allocation" for the latter event will fail. In fact if
 337		 * they can be dynamically swapped, they both feel happy.
 338		 * But here we leave this issue alone for now.
 339		 */
 340		if (test_bit(i, &cntr_mask) &&
 341			!test_and_set_bit(i, cpuc->used_mask))
 342			return i;
 343	}
 344
 345	return -EAGAIN;
 346}
 347
 348static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
 349{
 350	struct perf_event *event = container_of(evt, struct perf_event, hw);
 351	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 352	unsigned int range = evt->event_base >> 24;
 353
 354	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 355
 356	if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
 357		cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0x3ff) |
 358			(evt->config_base & M_PERFCTL_CONFIG_MASK) |
 359			/* Make sure interrupt enabled. */
 360			MIPS_PERFCTRL_IE;
 361	else
 362		cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
 363			(evt->config_base & M_PERFCTL_CONFIG_MASK) |
 364			/* Make sure interrupt enabled. */
 365			MIPS_PERFCTRL_IE;
 366
 367	if (IS_ENABLED(CONFIG_CPU_BMIPS5000)) {
 368		/* enable the counter for the calling thread */
 369		cpuc->saved_ctrl[idx] |=
 370			(1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC;
 371	} else if (IS_ENABLED(CONFIG_MIPS_MT_SMP) && range > V) {
 372		/* The counter is processor wide. Set it up to count all TCs. */
 373		pr_debug("Enabling perf counter for all TCs\n");
 374		cpuc->saved_ctrl[idx] |= M_TC_EN_ALL;
 375	} else {
 376		unsigned int cpu, ctrl;
 377
 378		/*
 379		 * Set up the counter for a particular CPU when event->cpu is
 380		 * a valid CPU number. Otherwise set up the counter for the CPU
 381		 * scheduling this thread.
 382		 */
 383		cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id();
 384
 385		ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu]));
 386		ctrl |= M_TC_EN_VPE;
 387		cpuc->saved_ctrl[idx] |= ctrl;
 388		pr_debug("Enabling perf counter for CPU%d\n", cpu);
 389	}
 390	/*
 391	 * We do not actually let the counter run. Leave it until start().
 392	 */
 393}
 394
 395static void mipsxx_pmu_disable_event(int idx)
 396{
 397	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 398	unsigned long flags;
 399
 400	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 401
 402	local_irq_save(flags);
 403	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
 404		~M_PERFCTL_COUNT_EVENT_WHENEVER;
 405	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
 406	local_irq_restore(flags);
 407}
 408
 409static int mipspmu_event_set_period(struct perf_event *event,
 410				    struct hw_perf_event *hwc,
 411				    int idx)
 412{
 413	u64 left = local64_read(&hwc->period_left);
 414	u64 period = hwc->sample_period;
 415	int ret = 0;
 416
 417	if (unlikely((left + period) & (1ULL << 63))) {
 418		/* left underflowed by more than period. */
 419		left = period;
 420		local64_set(&hwc->period_left, left);
 421		hwc->last_period = period;
 422		ret = 1;
 423	} else	if (unlikely((left + period) <= period)) {
 424		/* left underflowed by less than period. */
 425		left += period;
 426		local64_set(&hwc->period_left, left);
 427		hwc->last_period = period;
 428		ret = 1;
 429	}
 430
 431	if (left > mipspmu.max_period) {
 432		left = mipspmu.max_period;
 433		local64_set(&hwc->period_left, left);
 434	}
 435
 436	local64_set(&hwc->prev_count, mipspmu.overflow - left);
 437
 438	if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
 439		mipsxx_pmu_write_control(idx,
 440				M_PERFCTL_EVENT(hwc->event_base & 0x3ff));
 441
 442	mipspmu.write_counter(idx, mipspmu.overflow - left);
 443
 444	perf_event_update_userpage(event);
 445
 446	return ret;
 447}
 448
 449static void mipspmu_event_update(struct perf_event *event,
 450				 struct hw_perf_event *hwc,
 451				 int idx)
 452{
 453	u64 prev_raw_count, new_raw_count;
 454	u64 delta;
 455
 456again:
 457	prev_raw_count = local64_read(&hwc->prev_count);
 458	new_raw_count = mipspmu.read_counter(idx);
 459
 460	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 461				new_raw_count) != prev_raw_count)
 462		goto again;
 463
 464	delta = new_raw_count - prev_raw_count;
 465
 466	local64_add(delta, &event->count);
 467	local64_sub(delta, &hwc->period_left);
 468}
 469
 470static void mipspmu_start(struct perf_event *event, int flags)
 471{
 472	struct hw_perf_event *hwc = &event->hw;
 473
 474	if (flags & PERF_EF_RELOAD)
 475		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
 476
 477	hwc->state = 0;
 478
 479	/* Set the period for the event. */
 480	mipspmu_event_set_period(event, hwc, hwc->idx);
 481
 482	/* Enable the event. */
 483	mipsxx_pmu_enable_event(hwc, hwc->idx);
 484}
 485
 486static void mipspmu_stop(struct perf_event *event, int flags)
 487{
 488	struct hw_perf_event *hwc = &event->hw;
 489
 490	if (!(hwc->state & PERF_HES_STOPPED)) {
 491		/* We are working on a local event. */
 492		mipsxx_pmu_disable_event(hwc->idx);
 493		barrier();
 494		mipspmu_event_update(event, hwc, hwc->idx);
 495		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 496	}
 497}
 498
 499static int mipspmu_add(struct perf_event *event, int flags)
 500{
 501	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 502	struct hw_perf_event *hwc = &event->hw;
 503	int idx;
 504	int err = 0;
 505
 506	perf_pmu_disable(event->pmu);
 507
 508	/* To look for a free counter for this event. */
 509	idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
 510	if (idx < 0) {
 511		err = idx;
 512		goto out;
 513	}
 514
 515	/*
 516	 * If there is an event in the counter we are going to use then
 517	 * make sure it is disabled.
 518	 */
 519	event->hw.idx = idx;
 520	mipsxx_pmu_disable_event(idx);
 521	cpuc->events[idx] = event;
 522
 523	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 524	if (flags & PERF_EF_START)
 525		mipspmu_start(event, PERF_EF_RELOAD);
 526
 527	/* Propagate our changes to the userspace mapping. */
 528	perf_event_update_userpage(event);
 529
 530out:
 531	perf_pmu_enable(event->pmu);
 532	return err;
 533}
 534
 535static void mipspmu_del(struct perf_event *event, int flags)
 536{
 537	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 538	struct hw_perf_event *hwc = &event->hw;
 539	int idx = hwc->idx;
 540
 541	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 542
 543	mipspmu_stop(event, PERF_EF_UPDATE);
 544	cpuc->events[idx] = NULL;
 545	clear_bit(idx, cpuc->used_mask);
 546
 547	perf_event_update_userpage(event);
 548}
 549
 550static void mipspmu_read(struct perf_event *event)
 551{
 552	struct hw_perf_event *hwc = &event->hw;
 553
 554	/* Don't read disabled counters! */
 555	if (hwc->idx < 0)
 556		return;
 557
 558	mipspmu_event_update(event, hwc, hwc->idx);
 559}
 560
 561static void mipspmu_enable(struct pmu *pmu)
 562{
 563#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 564	write_unlock(&pmuint_rwlock);
 565#endif
 566	resume_local_counters();
 567}
 568
 569/*
 570 * MIPS performance counters can be per-TC. The control registers can
 571 * not be directly accessed across CPUs. Hence if we want to do global
 572 * control, we need cross CPU calls. on_each_cpu() can help us, but we
 573 * can not make sure this function is called with interrupts enabled. So
 574 * here we pause local counters and then grab a rwlock and leave the
 575 * counters on other CPUs alone. If any counter interrupt raises while
 576 * we own the write lock, simply pause local counters on that CPU and
 577 * spin in the handler. Also we know we won't be switched to another
 578 * CPU after pausing local counters and before grabbing the lock.
 579 */
 580static void mipspmu_disable(struct pmu *pmu)
 581{
 582	pause_local_counters();
 583#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 584	write_lock(&pmuint_rwlock);
 585#endif
 586}
 587
 588static atomic_t active_events = ATOMIC_INIT(0);
 589static DEFINE_MUTEX(pmu_reserve_mutex);
 590static int (*save_perf_irq)(void);
 591
 592static int mipspmu_get_irq(void)
 593{
 594	int err;
 595
 596	if (mipspmu.irq >= 0) {
 597		/* Request my own irq handler. */
 598		err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
 599				  IRQF_PERCPU | IRQF_NOBALANCING |
 600				  IRQF_NO_THREAD | IRQF_NO_SUSPEND |
 601				  IRQF_SHARED,
 602				  "mips_perf_pmu", &mipspmu);
 603		if (err) {
 604			pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
 605				mipspmu.irq);
 606		}
 607	} else if (cp0_perfcount_irq < 0) {
 608		/*
 609		 * We are sharing the irq number with the timer interrupt.
 610		 */
 611		save_perf_irq = perf_irq;
 612		perf_irq = mipsxx_pmu_handle_shared_irq;
 613		err = 0;
 614	} else {
 615		pr_warn("The platform hasn't properly defined its interrupt controller\n");
 616		err = -ENOENT;
 617	}
 618
 619	return err;
 620}
 621
 622static void mipspmu_free_irq(void)
 623{
 624	if (mipspmu.irq >= 0)
 625		free_irq(mipspmu.irq, &mipspmu);
 626	else if (cp0_perfcount_irq < 0)
 627		perf_irq = save_perf_irq;
 628}
 629
 630/*
 631 * mipsxx/rm9000/loongson2 have different performance counters, they have
 632 * specific low-level init routines.
 633 */
 634static void reset_counters(void *arg);
 635static int __hw_perf_event_init(struct perf_event *event);
 636
 637static void hw_perf_event_destroy(struct perf_event *event)
 638{
 639	if (atomic_dec_and_mutex_lock(&active_events,
 640				&pmu_reserve_mutex)) {
 641		/*
 642		 * We must not call the destroy function with interrupts
 643		 * disabled.
 644		 */
 645		on_each_cpu(reset_counters,
 646			(void *)(long)mipspmu.num_counters, 1);
 647		mipspmu_free_irq();
 648		mutex_unlock(&pmu_reserve_mutex);
 649	}
 650}
 651
 652static int mipspmu_event_init(struct perf_event *event)
 653{
 654	int err = 0;
 655
 656	/* does not support taken branch sampling */
 657	if (has_branch_stack(event))
 658		return -EOPNOTSUPP;
 659
 660	switch (event->attr.type) {
 661	case PERF_TYPE_RAW:
 662	case PERF_TYPE_HARDWARE:
 663	case PERF_TYPE_HW_CACHE:
 664		break;
 665
 666	default:
 667		return -ENOENT;
 668	}
 669
 670	if (event->cpu >= 0 && !cpu_online(event->cpu))
 671		return -ENODEV;
 672
 673	if (!atomic_inc_not_zero(&active_events)) {
 674		mutex_lock(&pmu_reserve_mutex);
 675		if (atomic_read(&active_events) == 0)
 676			err = mipspmu_get_irq();
 677
 678		if (!err)
 679			atomic_inc(&active_events);
 680		mutex_unlock(&pmu_reserve_mutex);
 681	}
 682
 683	if (err)
 684		return err;
 685
 686	return __hw_perf_event_init(event);
 687}
 688
 689static struct pmu pmu = {
 690	.pmu_enable	= mipspmu_enable,
 691	.pmu_disable	= mipspmu_disable,
 692	.event_init	= mipspmu_event_init,
 693	.add		= mipspmu_add,
 694	.del		= mipspmu_del,
 695	.start		= mipspmu_start,
 696	.stop		= mipspmu_stop,
 697	.read		= mipspmu_read,
 698};
 699
 700static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
 701{
 702/*
 703 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
 704 * event_id.
 705 */
 706#ifdef CONFIG_MIPS_MT_SMP
 707	if (num_possible_cpus() > 1)
 708		return ((unsigned int)pev->range << 24) |
 709			(pev->cntr_mask & 0xffff00) |
 710			(pev->event_id & 0xff);
 711	else
 712#endif /* CONFIG_MIPS_MT_SMP */
 713	{
 714		if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
 715			return (pev->cntr_mask & 0xfffc00) |
 716				(pev->event_id & 0x3ff);
 717		else
 718			return (pev->cntr_mask & 0xffff00) |
 719				(pev->event_id & 0xff);
 720	}
 721}
 722
 723static const struct mips_perf_event *mipspmu_map_general_event(int idx)
 724{
 725
 726	if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
 727		return ERR_PTR(-EOPNOTSUPP);
 728	return &(*mipspmu.general_event_map)[idx];
 729}
 730
 731static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
 732{
 733	unsigned int cache_type, cache_op, cache_result;
 734	const struct mips_perf_event *pev;
 735
 736	cache_type = (config >> 0) & 0xff;
 737	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 738		return ERR_PTR(-EINVAL);
 739
 740	cache_op = (config >> 8) & 0xff;
 741	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 742		return ERR_PTR(-EINVAL);
 743
 744	cache_result = (config >> 16) & 0xff;
 745	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 746		return ERR_PTR(-EINVAL);
 747
 748	pev = &((*mipspmu.cache_event_map)
 749					[cache_type]
 750					[cache_op]
 751					[cache_result]);
 752
 753	if (pev->cntr_mask == 0)
 754		return ERR_PTR(-EOPNOTSUPP);
 755
 756	return pev;
 757
 758}
 759
 760static int validate_group(struct perf_event *event)
 761{
 762	struct perf_event *sibling, *leader = event->group_leader;
 763	struct cpu_hw_events fake_cpuc;
 764
 765	memset(&fake_cpuc, 0, sizeof(fake_cpuc));
 766
 767	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
 768		return -EINVAL;
 769
 770	for_each_sibling_event(sibling, leader) {
 771		if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
 772			return -EINVAL;
 773	}
 774
 775	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
 776		return -EINVAL;
 777
 778	return 0;
 779}
 780
 781/* This is needed by specific irq handlers in perf_event_*.c */
 782static void handle_associated_event(struct cpu_hw_events *cpuc,
 783				    int idx, struct perf_sample_data *data,
 784				    struct pt_regs *regs)
 785{
 786	struct perf_event *event = cpuc->events[idx];
 787	struct hw_perf_event *hwc = &event->hw;
 788
 789	mipspmu_event_update(event, hwc, idx);
 790	data->period = event->hw.last_period;
 791	if (!mipspmu_event_set_period(event, hwc, idx))
 792		return;
 793
 794	if (perf_event_overflow(event, data, regs))
 795		mipsxx_pmu_disable_event(idx);
 796}
 797
 798
 799static int __n_counters(void)
 800{
 801	if (!cpu_has_perf)
 802		return 0;
 803	if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M))
 804		return 1;
 805	if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M))
 806		return 2;
 807	if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M))
 808		return 3;
 809
 810	return 4;
 811}
 812
 813static int n_counters(void)
 814{
 815	int counters;
 816
 817	switch (current_cpu_type()) {
 818	case CPU_R10000:
 819		counters = 2;
 820		break;
 821
 822	case CPU_R12000:
 823	case CPU_R14000:
 824	case CPU_R16000:
 825		counters = 4;
 826		break;
 827
 828	default:
 829		counters = __n_counters();
 830	}
 831
 832	return counters;
 833}
 834
 835static void loongson3_reset_counters(void *arg)
 836{
 837	int counters = (int)(long)arg;
 838
 839	switch (counters) {
 840	case 4:
 841		mipsxx_pmu_write_control(3, 0);
 842		mipspmu.write_counter(3, 0);
 843		mipsxx_pmu_write_control(3, 127<<5);
 844		mipspmu.write_counter(3, 0);
 845		mipsxx_pmu_write_control(3, 191<<5);
 846		mipspmu.write_counter(3, 0);
 847		mipsxx_pmu_write_control(3, 255<<5);
 848		mipspmu.write_counter(3, 0);
 849		mipsxx_pmu_write_control(3, 319<<5);
 850		mipspmu.write_counter(3, 0);
 851		mipsxx_pmu_write_control(3, 383<<5);
 852		mipspmu.write_counter(3, 0);
 853		mipsxx_pmu_write_control(3, 575<<5);
 854		mipspmu.write_counter(3, 0);
 855		fallthrough;
 856	case 3:
 857		mipsxx_pmu_write_control(2, 0);
 858		mipspmu.write_counter(2, 0);
 859		mipsxx_pmu_write_control(2, 127<<5);
 860		mipspmu.write_counter(2, 0);
 861		mipsxx_pmu_write_control(2, 191<<5);
 862		mipspmu.write_counter(2, 0);
 863		mipsxx_pmu_write_control(2, 255<<5);
 864		mipspmu.write_counter(2, 0);
 865		mipsxx_pmu_write_control(2, 319<<5);
 866		mipspmu.write_counter(2, 0);
 867		mipsxx_pmu_write_control(2, 383<<5);
 868		mipspmu.write_counter(2, 0);
 869		mipsxx_pmu_write_control(2, 575<<5);
 870		mipspmu.write_counter(2, 0);
 871		fallthrough;
 872	case 2:
 873		mipsxx_pmu_write_control(1, 0);
 874		mipspmu.write_counter(1, 0);
 875		mipsxx_pmu_write_control(1, 127<<5);
 876		mipspmu.write_counter(1, 0);
 877		mipsxx_pmu_write_control(1, 191<<5);
 878		mipspmu.write_counter(1, 0);
 879		mipsxx_pmu_write_control(1, 255<<5);
 880		mipspmu.write_counter(1, 0);
 881		mipsxx_pmu_write_control(1, 319<<5);
 882		mipspmu.write_counter(1, 0);
 883		mipsxx_pmu_write_control(1, 383<<5);
 884		mipspmu.write_counter(1, 0);
 885		mipsxx_pmu_write_control(1, 575<<5);
 886		mipspmu.write_counter(1, 0);
 887		fallthrough;
 888	case 1:
 889		mipsxx_pmu_write_control(0, 0);
 890		mipspmu.write_counter(0, 0);
 891		mipsxx_pmu_write_control(0, 127<<5);
 892		mipspmu.write_counter(0, 0);
 893		mipsxx_pmu_write_control(0, 191<<5);
 894		mipspmu.write_counter(0, 0);
 895		mipsxx_pmu_write_control(0, 255<<5);
 896		mipspmu.write_counter(0, 0);
 897		mipsxx_pmu_write_control(0, 319<<5);
 898		mipspmu.write_counter(0, 0);
 899		mipsxx_pmu_write_control(0, 383<<5);
 900		mipspmu.write_counter(0, 0);
 901		mipsxx_pmu_write_control(0, 575<<5);
 902		mipspmu.write_counter(0, 0);
 903		break;
 904	}
 905}
 906
 907static void reset_counters(void *arg)
 908{
 909	int counters = (int)(long)arg;
 910
 911	if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
 912		loongson3_reset_counters(arg);
 913		return;
 914	}
 915
 916	switch (counters) {
 917	case 4:
 918		mipsxx_pmu_write_control(3, 0);
 919		mipspmu.write_counter(3, 0);
 920		fallthrough;
 921	case 3:
 922		mipsxx_pmu_write_control(2, 0);
 923		mipspmu.write_counter(2, 0);
 924		fallthrough;
 925	case 2:
 926		mipsxx_pmu_write_control(1, 0);
 927		mipspmu.write_counter(1, 0);
 928		fallthrough;
 929	case 1:
 930		mipsxx_pmu_write_control(0, 0);
 931		mipspmu.write_counter(0, 0);
 932		break;
 933	}
 934}
 935
 936/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
 937static const struct mips_perf_event mipsxxcore_event_map
 938				[PERF_COUNT_HW_MAX] = {
 939	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 940	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 941	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
 942	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
 943};
 944
 945/* 74K/proAptiv core has different branch event code. */
 946static const struct mips_perf_event mipsxxcore_event_map2
 947				[PERF_COUNT_HW_MAX] = {
 948	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 949	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 950	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
 951	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
 952};
 953
 954static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = {
 955	[PERF_COUNT_HW_CPU_CYCLES]          = { 0x00, CNTR_EVEN | CNTR_ODD },
 956	[PERF_COUNT_HW_INSTRUCTIONS]        = { 0x01, CNTR_EVEN | CNTR_ODD },
 957	/* These only count dcache, not icache */
 958	[PERF_COUNT_HW_CACHE_REFERENCES]    = { 0x45, CNTR_EVEN | CNTR_ODD },
 959	[PERF_COUNT_HW_CACHE_MISSES]        = { 0x48, CNTR_EVEN | CNTR_ODD },
 960	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
 961	[PERF_COUNT_HW_BRANCH_MISSES]       = { 0x16, CNTR_EVEN | CNTR_ODD },
 962};
 963
 964static const struct mips_perf_event loongson3_event_map1[PERF_COUNT_HW_MAX] = {
 965	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
 966	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
 967	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
 968	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
 969};
 970
 971static const struct mips_perf_event loongson3_event_map2[PERF_COUNT_HW_MAX] = {
 972	[PERF_COUNT_HW_CPU_CYCLES] = { 0x80, CNTR_ALL },
 973	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x81, CNTR_ALL },
 974	[PERF_COUNT_HW_CACHE_MISSES] = { 0x18, CNTR_ALL },
 975	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x94, CNTR_ALL },
 976	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x9c, CNTR_ALL },
 977};
 978
 979static const struct mips_perf_event loongson3_event_map3[PERF_COUNT_HW_MAX] = {
 980	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_ALL },
 981	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_ALL },
 982	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x1c, CNTR_ALL },
 983	[PERF_COUNT_HW_CACHE_MISSES] = { 0x1d, CNTR_ALL },
 984	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_ALL },
 985	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x08, CNTR_ALL },
 986};
 987
 988static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
 989	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
 990	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
 991	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
 992	[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL	 },
 993	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
 994	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
 995	[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
 996};
 997
 998static const struct mips_perf_event bmips5000_event_map
 999				[PERF_COUNT_HW_MAX] = {
1000	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
1001	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
1002	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
1003};
1004
1005static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
1006	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
1007	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
1008	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1009	[PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1010	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
1011	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
1012};
1013
1014/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
1015static const struct mips_perf_event mipsxxcore_cache_map
1016				[PERF_COUNT_HW_CACHE_MAX]
1017				[PERF_COUNT_HW_CACHE_OP_MAX]
1018				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1019[C(L1D)] = {
1020	/*
1021	 * Like some other architectures (e.g. ARM), the performance
1022	 * counters don't differentiate between read and write
1023	 * accesses/misses, so this isn't strictly correct, but it's the
1024	 * best we can do. Writes and reads get combined.
1025	 */
1026	[C(OP_READ)] = {
1027		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
1028		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
1029	},
1030	[C(OP_WRITE)] = {
1031		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
1032		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
1033	},
1034},
1035[C(L1I)] = {
1036	[C(OP_READ)] = {
1037		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
1038		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
1039	},
1040	[C(OP_WRITE)] = {
1041		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
1042		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
1043	},
1044	[C(OP_PREFETCH)] = {
1045		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
1046		/*
1047		 * Note that MIPS has only "hit" events countable for
1048		 * the prefetch operation.
1049		 */
1050	},
1051},
1052[C(LL)] = {
1053	[C(OP_READ)] = {
1054		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
1055		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
1056	},
1057	[C(OP_WRITE)] = {
1058		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
1059		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
1060	},
1061},
1062[C(DTLB)] = {
1063	[C(OP_READ)] = {
1064		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
1065		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
1066	},
1067	[C(OP_WRITE)] = {
1068		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
1069		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
1070	},
1071},
1072[C(ITLB)] = {
1073	[C(OP_READ)] = {
1074		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
1075		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
1076	},
1077	[C(OP_WRITE)] = {
1078		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
1079		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
1080	},
1081},
1082[C(BPU)] = {
1083	/* Using the same code for *HW_BRANCH* */
1084	[C(OP_READ)] = {
1085		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
1086		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1087	},
1088	[C(OP_WRITE)] = {
1089		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
1090		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1091	},
1092},
1093};
1094
1095/* 74K/proAptiv core has completely different cache event map. */
1096static const struct mips_perf_event mipsxxcore_cache_map2
1097				[PERF_COUNT_HW_CACHE_MAX]
1098				[PERF_COUNT_HW_CACHE_OP_MAX]
1099				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1100[C(L1D)] = {
1101	/*
1102	 * Like some other architectures (e.g. ARM), the performance
1103	 * counters don't differentiate between read and write
1104	 * accesses/misses, so this isn't strictly correct, but it's the
1105	 * best we can do. Writes and reads get combined.
1106	 */
1107	[C(OP_READ)] = {
1108		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
1109		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
1110	},
1111	[C(OP_WRITE)] = {
1112		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
1113		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
1114	},
1115},
1116[C(L1I)] = {
1117	[C(OP_READ)] = {
1118		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
1119		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
1120	},
1121	[C(OP_WRITE)] = {
1122		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
1123		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
1124	},
1125	[C(OP_PREFETCH)] = {
1126		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
1127		/*
1128		 * Note that MIPS has only "hit" events countable for
1129		 * the prefetch operation.
1130		 */
1131	},
1132},
1133[C(LL)] = {
1134	[C(OP_READ)] = {
1135		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
1136		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
1137	},
1138	[C(OP_WRITE)] = {
1139		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
1140		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
1141	},
1142},
1143/*
1144 * 74K core does not have specific DTLB events. proAptiv core has
1145 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
1146 * not included here. One can use raw events if really needed.
1147 */
1148[C(ITLB)] = {
1149	[C(OP_READ)] = {
1150		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1151		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1152	},
1153	[C(OP_WRITE)] = {
1154		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1155		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1156	},
1157},
1158[C(BPU)] = {
1159	/* Using the same code for *HW_BRANCH* */
1160	[C(OP_READ)] = {
1161		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1162		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1163	},
1164	[C(OP_WRITE)] = {
1165		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1166		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1167	},
1168},
1169};
1170
1171static const struct mips_perf_event i6x00_cache_map
1172				[PERF_COUNT_HW_CACHE_MAX]
1173				[PERF_COUNT_HW_CACHE_OP_MAX]
1174				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1175[C(L1D)] = {
1176	[C(OP_READ)] = {
1177		[C(RESULT_ACCESS)]	= { 0x46, CNTR_EVEN | CNTR_ODD },
1178		[C(RESULT_MISS)]	= { 0x49, CNTR_EVEN | CNTR_ODD },
1179	},
1180	[C(OP_WRITE)] = {
1181		[C(RESULT_ACCESS)]	= { 0x47, CNTR_EVEN | CNTR_ODD },
1182		[C(RESULT_MISS)]	= { 0x4a, CNTR_EVEN | CNTR_ODD },
1183	},
1184},
1185[C(L1I)] = {
1186	[C(OP_READ)] = {
1187		[C(RESULT_ACCESS)]	= { 0x84, CNTR_EVEN | CNTR_ODD },
1188		[C(RESULT_MISS)]	= { 0x85, CNTR_EVEN | CNTR_ODD },
1189	},
1190},
1191[C(DTLB)] = {
1192	/* Can't distinguish read & write */
1193	[C(OP_READ)] = {
1194		[C(RESULT_ACCESS)]	= { 0x40, CNTR_EVEN | CNTR_ODD },
1195		[C(RESULT_MISS)]	= { 0x41, CNTR_EVEN | CNTR_ODD },
1196	},
1197	[C(OP_WRITE)] = {
1198		[C(RESULT_ACCESS)]	= { 0x40, CNTR_EVEN | CNTR_ODD },
1199		[C(RESULT_MISS)]	= { 0x41, CNTR_EVEN | CNTR_ODD },
1200	},
1201},
1202[C(BPU)] = {
1203	/* Conditional branches / mispredicted */
1204	[C(OP_READ)] = {
1205		[C(RESULT_ACCESS)]	= { 0x15, CNTR_EVEN | CNTR_ODD },
1206		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN | CNTR_ODD },
1207	},
1208},
1209};
1210
1211static const struct mips_perf_event loongson3_cache_map1
1212				[PERF_COUNT_HW_CACHE_MAX]
1213				[PERF_COUNT_HW_CACHE_OP_MAX]
1214				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1215[C(L1D)] = {
1216	/*
1217	 * Like some other architectures (e.g. ARM), the performance
1218	 * counters don't differentiate between read and write
1219	 * accesses/misses, so this isn't strictly correct, but it's the
1220	 * best we can do. Writes and reads get combined.
1221	 */
1222	[C(OP_READ)] = {
1223		[C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1224	},
1225	[C(OP_WRITE)] = {
1226		[C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1227	},
1228},
1229[C(L1I)] = {
1230	[C(OP_READ)] = {
1231		[C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1232	},
1233	[C(OP_WRITE)] = {
1234		[C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1235	},
1236},
1237[C(DTLB)] = {
1238	[C(OP_READ)] = {
1239		[C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1240	},
1241	[C(OP_WRITE)] = {
1242		[C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1243	},
1244},
1245[C(ITLB)] = {
1246	[C(OP_READ)] = {
1247		[C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1248	},
1249	[C(OP_WRITE)] = {
1250		[C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1251	},
1252},
1253[C(BPU)] = {
1254	/* Using the same code for *HW_BRANCH* */
1255	[C(OP_READ)] = {
1256		[C(RESULT_ACCESS)]      = { 0x01, CNTR_EVEN },
1257		[C(RESULT_MISS)]        = { 0x01, CNTR_ODD },
1258	},
1259	[C(OP_WRITE)] = {
1260		[C(RESULT_ACCESS)]      = { 0x01, CNTR_EVEN },
1261		[C(RESULT_MISS)]        = { 0x01, CNTR_ODD },
1262	},
1263},
1264};
1265
1266static const struct mips_perf_event loongson3_cache_map2
1267				[PERF_COUNT_HW_CACHE_MAX]
1268				[PERF_COUNT_HW_CACHE_OP_MAX]
1269				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1270[C(L1D)] = {
1271	/*
1272	 * Like some other architectures (e.g. ARM), the performance
1273	 * counters don't differentiate between read and write
1274	 * accesses/misses, so this isn't strictly correct, but it's the
1275	 * best we can do. Writes and reads get combined.
1276	 */
1277	[C(OP_READ)] = {
1278		[C(RESULT_ACCESS)]	= { 0x156, CNTR_ALL },
1279	},
1280	[C(OP_WRITE)] = {
1281		[C(RESULT_ACCESS)]	= { 0x155, CNTR_ALL },
1282		[C(RESULT_MISS)]        = { 0x153, CNTR_ALL },
1283	},
1284},
1285[C(L1I)] = {
1286	[C(OP_READ)] = {
1287		[C(RESULT_MISS)]	= { 0x18, CNTR_ALL },
1288	},
1289	[C(OP_WRITE)] = {
1290		[C(RESULT_MISS)]        = { 0x18, CNTR_ALL },
1291	},
1292},
1293[C(LL)] = {
1294	[C(OP_READ)] = {
1295		[C(RESULT_ACCESS)]	= { 0x1b6, CNTR_ALL },
1296	},
1297	[C(OP_WRITE)] = {
1298		[C(RESULT_ACCESS)]	= { 0x1b7, CNTR_ALL },
1299	},
1300	[C(OP_PREFETCH)] = {
1301		[C(RESULT_ACCESS)]	= { 0x1bf, CNTR_ALL },
1302	},
1303},
1304[C(DTLB)] = {
1305	[C(OP_READ)] = {
1306		[C(RESULT_MISS)]        = { 0x92, CNTR_ALL },
1307	},
1308	[C(OP_WRITE)] = {
1309		[C(RESULT_MISS)]        = { 0x92, CNTR_ALL },
1310	},
1311},
1312[C(ITLB)] = {
1313	[C(OP_READ)] = {
1314		[C(RESULT_MISS)]	= { 0x1a, CNTR_ALL },
1315	},
1316	[C(OP_WRITE)] = {
1317		[C(RESULT_MISS)]	= { 0x1a, CNTR_ALL },
1318	},
1319},
1320[C(BPU)] = {
1321	/* Using the same code for *HW_BRANCH* */
1322	[C(OP_READ)] = {
1323		[C(RESULT_ACCESS)]      = { 0x94, CNTR_ALL },
1324		[C(RESULT_MISS)]        = { 0x9c, CNTR_ALL },
1325	},
1326},
1327};
1328
1329static const struct mips_perf_event loongson3_cache_map3
1330				[PERF_COUNT_HW_CACHE_MAX]
1331				[PERF_COUNT_HW_CACHE_OP_MAX]
1332				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1333[C(L1D)] = {
1334	/*
1335	 * Like some other architectures (e.g. ARM), the performance
1336	 * counters don't differentiate between read and write
1337	 * accesses/misses, so this isn't strictly correct, but it's the
1338	 * best we can do. Writes and reads get combined.
1339	 */
1340	[C(OP_READ)] = {
1341		[C(RESULT_ACCESS)]      = { 0x1e, CNTR_ALL },
1342		[C(RESULT_MISS)]        = { 0x1f, CNTR_ALL },
1343	},
1344	[C(OP_PREFETCH)] = {
1345		[C(RESULT_ACCESS)]	= { 0xaa, CNTR_ALL },
1346		[C(RESULT_MISS)]	= { 0xa9, CNTR_ALL },
1347	},
1348},
1349[C(L1I)] = {
1350	[C(OP_READ)] = {
1351		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ALL },
1352		[C(RESULT_MISS)]	= { 0x1d, CNTR_ALL },
1353	},
1354},
1355[C(LL)] = {
1356	[C(OP_READ)] = {
1357		[C(RESULT_ACCESS)]	= { 0x2e, CNTR_ALL },
1358		[C(RESULT_MISS)]	= { 0x2f, CNTR_ALL },
1359	},
1360},
1361[C(DTLB)] = {
1362	[C(OP_READ)] = {
1363		[C(RESULT_ACCESS)]      = { 0x14, CNTR_ALL },
1364		[C(RESULT_MISS)]	= { 0x1b, CNTR_ALL },
1365	},
1366},
1367[C(ITLB)] = {
1368	[C(OP_READ)] = {
1369		[C(RESULT_MISS)]	= { 0x1a, CNTR_ALL },
1370	},
1371},
1372[C(BPU)] = {
1373	/* Using the same code for *HW_BRANCH* */
1374	[C(OP_READ)] = {
1375		[C(RESULT_ACCESS)]      = { 0x02, CNTR_ALL },
1376		[C(RESULT_MISS)]        = { 0x08, CNTR_ALL },
1377	},
1378},
1379};
1380
1381/* BMIPS5000 */
1382static const struct mips_perf_event bmips5000_cache_map
1383				[PERF_COUNT_HW_CACHE_MAX]
1384				[PERF_COUNT_HW_CACHE_OP_MAX]
1385				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1386[C(L1D)] = {
1387	/*
1388	 * Like some other architectures (e.g. ARM), the performance
1389	 * counters don't differentiate between read and write
1390	 * accesses/misses, so this isn't strictly correct, but it's the
1391	 * best we can do. Writes and reads get combined.
1392	 */
1393	[C(OP_READ)] = {
1394		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1395		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1396	},
1397	[C(OP_WRITE)] = {
1398		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1399		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1400	},
1401},
1402[C(L1I)] = {
1403	[C(OP_READ)] = {
1404		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1405		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1406	},
1407	[C(OP_WRITE)] = {
1408		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1409		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1410	},
1411	[C(OP_PREFETCH)] = {
1412		[C(RESULT_ACCESS)]	= { 23, CNTR_EVEN, T },
1413		/*
1414		 * Note that MIPS has only "hit" events countable for
1415		 * the prefetch operation.
1416		 */
1417	},
1418},
1419[C(LL)] = {
1420	[C(OP_READ)] = {
1421		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1422		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1423	},
1424	[C(OP_WRITE)] = {
1425		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1426		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1427	},
1428},
1429[C(BPU)] = {
1430	/* Using the same code for *HW_BRANCH* */
1431	[C(OP_READ)] = {
1432		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1433	},
1434	[C(OP_WRITE)] = {
1435		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1436	},
1437},
1438};
1439
1440static const struct mips_perf_event octeon_cache_map
1441				[PERF_COUNT_HW_CACHE_MAX]
1442				[PERF_COUNT_HW_CACHE_OP_MAX]
1443				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1444[C(L1D)] = {
1445	[C(OP_READ)] = {
1446		[C(RESULT_ACCESS)]	= { 0x2b, CNTR_ALL },
1447		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL },
1448	},
1449	[C(OP_WRITE)] = {
1450		[C(RESULT_ACCESS)]	= { 0x30, CNTR_ALL },
1451	},
1452},
1453[C(L1I)] = {
1454	[C(OP_READ)] = {
1455		[C(RESULT_ACCESS)]	= { 0x18, CNTR_ALL },
1456	},
1457	[C(OP_PREFETCH)] = {
1458		[C(RESULT_ACCESS)]	= { 0x19, CNTR_ALL },
1459	},
1460},
1461[C(DTLB)] = {
1462	/*
1463	 * Only general DTLB misses are counted use the same event for
1464	 * read and write.
1465	 */
1466	[C(OP_READ)] = {
1467		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1468	},
1469	[C(OP_WRITE)] = {
1470		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1471	},
1472},
1473[C(ITLB)] = {
1474	[C(OP_READ)] = {
1475		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL },
1476	},
1477},
1478};
1479
1480static const struct mips_perf_event xlp_cache_map
1481				[PERF_COUNT_HW_CACHE_MAX]
1482				[PERF_COUNT_HW_CACHE_OP_MAX]
1483				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1484[C(L1D)] = {
1485	[C(OP_READ)] = {
1486		[C(RESULT_ACCESS)]	= { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1487		[C(RESULT_MISS)]	= { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1488	},
1489	[C(OP_WRITE)] = {
1490		[C(RESULT_ACCESS)]	= { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1491		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1492	},
1493},
1494[C(L1I)] = {
1495	[C(OP_READ)] = {
1496		[C(RESULT_ACCESS)]	= { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1497		[C(RESULT_MISS)]	= { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1498	},
1499},
1500[C(LL)] = {
1501	[C(OP_READ)] = {
1502		[C(RESULT_ACCESS)]	= { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1503		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1504	},
1505	[C(OP_WRITE)] = {
1506		[C(RESULT_ACCESS)]	= { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1507		[C(RESULT_MISS)]	= { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1508	},
1509},
1510[C(DTLB)] = {
1511	/*
1512	 * Only general DTLB misses are counted use the same event for
1513	 * read and write.
1514	 */
1515	[C(OP_READ)] = {
1516		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1517	},
1518	[C(OP_WRITE)] = {
1519		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1520	},
1521},
1522[C(ITLB)] = {
1523	[C(OP_READ)] = {
1524		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1525	},
1526	[C(OP_WRITE)] = {
1527		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1528	},
1529},
1530[C(BPU)] = {
1531	[C(OP_READ)] = {
1532		[C(RESULT_MISS)]	= { 0x25, CNTR_ALL },
1533	},
1534},
1535};
1536
1537static int __hw_perf_event_init(struct perf_event *event)
1538{
1539	struct perf_event_attr *attr = &event->attr;
1540	struct hw_perf_event *hwc = &event->hw;
1541	const struct mips_perf_event *pev;
1542	int err;
1543
1544	/* Returning MIPS event descriptor for generic perf event. */
1545	if (PERF_TYPE_HARDWARE == event->attr.type) {
1546		if (event->attr.config >= PERF_COUNT_HW_MAX)
1547			return -EINVAL;
1548		pev = mipspmu_map_general_event(event->attr.config);
1549	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1550		pev = mipspmu_map_cache_event(event->attr.config);
1551	} else if (PERF_TYPE_RAW == event->attr.type) {
1552		/* We are working on the global raw event. */
1553		mutex_lock(&raw_event_mutex);
1554		pev = mipspmu.map_raw_event(event->attr.config);
1555	} else {
1556		/* The event type is not (yet) supported. */
1557		return -EOPNOTSUPP;
1558	}
1559
1560	if (IS_ERR(pev)) {
1561		if (PERF_TYPE_RAW == event->attr.type)
1562			mutex_unlock(&raw_event_mutex);
1563		return PTR_ERR(pev);
1564	}
1565
1566	/*
1567	 * We allow max flexibility on how each individual counter shared
1568	 * by the single CPU operates (the mode exclusion and the range).
1569	 */
1570	hwc->config_base = MIPS_PERFCTRL_IE;
1571
1572	hwc->event_base = mipspmu_perf_event_encode(pev);
1573	if (PERF_TYPE_RAW == event->attr.type)
1574		mutex_unlock(&raw_event_mutex);
1575
1576	if (!attr->exclude_user)
1577		hwc->config_base |= MIPS_PERFCTRL_U;
1578	if (!attr->exclude_kernel) {
1579		hwc->config_base |= MIPS_PERFCTRL_K;
1580		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1581		hwc->config_base |= MIPS_PERFCTRL_EXL;
1582	}
1583	if (!attr->exclude_hv)
1584		hwc->config_base |= MIPS_PERFCTRL_S;
1585
1586	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1587	/*
1588	 * The event can belong to another cpu. We do not assign a local
1589	 * counter for it for now.
1590	 */
1591	hwc->idx = -1;
1592	hwc->config = 0;
1593
1594	if (!hwc->sample_period) {
1595		hwc->sample_period  = mipspmu.max_period;
1596		hwc->last_period    = hwc->sample_period;
1597		local64_set(&hwc->period_left, hwc->sample_period);
1598	}
1599
1600	err = 0;
1601	if (event->group_leader != event)
1602		err = validate_group(event);
1603
1604	event->destroy = hw_perf_event_destroy;
1605
1606	if (err)
1607		event->destroy(event);
1608
1609	return err;
1610}
1611
1612static void pause_local_counters(void)
1613{
1614	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1615	int ctr = mipspmu.num_counters;
1616	unsigned long flags;
1617
1618	local_irq_save(flags);
1619	do {
1620		ctr--;
1621		cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1622		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1623					 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1624	} while (ctr > 0);
1625	local_irq_restore(flags);
1626}
1627
1628static void resume_local_counters(void)
1629{
1630	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1631	int ctr = mipspmu.num_counters;
1632
1633	do {
1634		ctr--;
1635		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1636	} while (ctr > 0);
1637}
1638
1639static int mipsxx_pmu_handle_shared_irq(void)
1640{
1641	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1642	struct perf_sample_data data;
1643	unsigned int counters = mipspmu.num_counters;
1644	u64 counter;
1645	int n, handled = IRQ_NONE;
1646	struct pt_regs *regs;
1647
1648	if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1649		return handled;
1650	/*
1651	 * First we pause the local counters, so that when we are locked
1652	 * here, the counters are all paused. When it gets locked due to
1653	 * perf_disable(), the timer interrupt handler will be delayed.
1654	 *
1655	 * See also mipsxx_pmu_start().
1656	 */
1657	pause_local_counters();
1658#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1659	read_lock(&pmuint_rwlock);
1660#endif
1661
1662	regs = get_irq_regs();
1663
1664	perf_sample_data_init(&data, 0, 0);
1665
1666	for (n = counters - 1; n >= 0; n--) {
1667		if (!test_bit(n, cpuc->used_mask))
1668			continue;
1669
1670		counter = mipspmu.read_counter(n);
1671		if (!(counter & mipspmu.overflow))
1672			continue;
1673
1674		handle_associated_event(cpuc, n, &data, regs);
1675		handled = IRQ_HANDLED;
1676	}
1677
1678#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1679	read_unlock(&pmuint_rwlock);
1680#endif
1681	resume_local_counters();
1682
1683	/*
1684	 * Do all the work for the pending perf events. We can do this
1685	 * in here because the performance counter interrupt is a regular
1686	 * interrupt, not NMI.
1687	 */
1688	if (handled == IRQ_HANDLED)
1689		irq_work_run();
1690
1691	return handled;
1692}
1693
1694static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1695{
1696	return mipsxx_pmu_handle_shared_irq();
1697}
1698
1699/* 24K */
1700#define IS_BOTH_COUNTERS_24K_EVENT(b)					\
1701	((b) == 0 || (b) == 1 || (b) == 11)
1702
1703/* 34K */
1704#define IS_BOTH_COUNTERS_34K_EVENT(b)					\
1705	((b) == 0 || (b) == 1 || (b) == 11)
1706#ifdef CONFIG_MIPS_MT_SMP
1707#define IS_RANGE_P_34K_EVENT(r, b)					\
1708	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1709	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
1710	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
1711	 ((b) >= 64 && (b) <= 67))
1712#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1713#endif
1714
1715/* 74K */
1716#define IS_BOTH_COUNTERS_74K_EVENT(b)					\
1717	((b) == 0 || (b) == 1)
1718
1719/* proAptiv */
1720#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)				\
1721	((b) == 0 || (b) == 1)
1722/* P5600 */
1723#define IS_BOTH_COUNTERS_P5600_EVENT(b)					\
1724	((b) == 0 || (b) == 1)
1725
1726/* 1004K */
1727#define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
1728	((b) == 0 || (b) == 1 || (b) == 11)
1729#ifdef CONFIG_MIPS_MT_SMP
1730#define IS_RANGE_P_1004K_EVENT(r, b)					\
1731	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1732	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
1733	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
1734	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
1735	 ((b) >= 64 && (b) <= 67))
1736#define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
1737#endif
1738
1739/* interAptiv */
1740#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)				\
1741	((b) == 0 || (b) == 1 || (b) == 11)
1742#ifdef CONFIG_MIPS_MT_SMP
1743/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1744#define IS_RANGE_P_INTERAPTIV_EVENT(r, b)				\
1745	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1746	 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||		\
1747	 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&		\
1748	 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||		\
1749	 ((b) >= 64 && (b) <= 67))
1750#define IS_RANGE_V_INTERAPTIV_EVENT(r)	((r) == 47 || (r) == 175)
1751#endif
1752
1753/* BMIPS5000 */
1754#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)				\
1755	((b) == 0 || (b) == 1)
1756
1757
1758/*
1759 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1760 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1761 * indicate the even/odd bank selector. So, for example, when user wants to take
1762 * the Event Num of 15 for odd counters (by referring to the user manual), then
1763 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1764 * to be used.
1765 *
1766 * Some newer cores have even more events, in which case the user can use raw
1767 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1768 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1769 */
1770static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1771{
1772	/* currently most cores have 7-bit event numbers */
1773	int pmu_type;
1774	unsigned int raw_id = config & 0xff;
1775	unsigned int base_id = raw_id & 0x7f;
1776
1777	switch (current_cpu_type()) {
1778	case CPU_24K:
1779		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1780			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1781		else
1782			raw_event.cntr_mask =
1783				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1784#ifdef CONFIG_MIPS_MT_SMP
1785		/*
1786		 * This is actually doing nothing. Non-multithreading
1787		 * CPUs will not check and calculate the range.
1788		 */
1789		raw_event.range = P;
1790#endif
1791		break;
1792	case CPU_34K:
1793		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1794			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1795		else
1796			raw_event.cntr_mask =
1797				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1798#ifdef CONFIG_MIPS_MT_SMP
1799		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1800			raw_event.range = P;
1801		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1802			raw_event.range = V;
1803		else
1804			raw_event.range = T;
1805#endif
1806		break;
1807	case CPU_74K:
1808	case CPU_1074K:
1809		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1810			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1811		else
1812			raw_event.cntr_mask =
1813				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1814#ifdef CONFIG_MIPS_MT_SMP
1815		raw_event.range = P;
1816#endif
1817		break;
1818	case CPU_PROAPTIV:
1819		if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1820			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1821		else
1822			raw_event.cntr_mask =
1823				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1824#ifdef CONFIG_MIPS_MT_SMP
1825		raw_event.range = P;
1826#endif
1827		break;
1828	case CPU_P5600:
1829	case CPU_P6600:
1830		/* 8-bit event numbers */
1831		raw_id = config & 0x1ff;
1832		base_id = raw_id & 0xff;
1833		if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1834			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1835		else
1836			raw_event.cntr_mask =
1837				raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1838#ifdef CONFIG_MIPS_MT_SMP
1839		raw_event.range = P;
1840#endif
1841		break;
1842	case CPU_I6400:
1843	case CPU_I6500:
1844		/* 8-bit event numbers */
1845		base_id = config & 0xff;
1846		raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1847		break;
1848	case CPU_1004K:
1849		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1850			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1851		else
1852			raw_event.cntr_mask =
1853				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1854#ifdef CONFIG_MIPS_MT_SMP
1855		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1856			raw_event.range = P;
1857		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1858			raw_event.range = V;
1859		else
1860			raw_event.range = T;
1861#endif
1862		break;
1863	case CPU_INTERAPTIV:
1864		if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1865			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1866		else
1867			raw_event.cntr_mask =
1868				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1869#ifdef CONFIG_MIPS_MT_SMP
1870		if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1871			raw_event.range = P;
1872		else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1873			raw_event.range = V;
1874		else
1875			raw_event.range = T;
1876#endif
1877		break;
1878	case CPU_BMIPS5000:
1879		if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1880			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1881		else
1882			raw_event.cntr_mask =
1883				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1884		break;
1885	case CPU_LOONGSON64:
1886		pmu_type = get_loongson3_pmu_type();
1887
1888		switch (pmu_type) {
1889		case LOONGSON_PMU_TYPE1:
1890			raw_event.cntr_mask =
1891				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1892			break;
1893		case LOONGSON_PMU_TYPE2:
1894			base_id = config & 0x3ff;
1895			raw_event.cntr_mask = CNTR_ALL;
1896
1897			if ((base_id >= 1 && base_id < 28) ||
1898				(base_id >= 64 && base_id < 90) ||
1899				(base_id >= 128 && base_id < 164) ||
1900				(base_id >= 192 && base_id < 200) ||
1901				(base_id >= 256 && base_id < 275) ||
1902				(base_id >= 320 && base_id < 361) ||
1903				(base_id >= 384 && base_id < 574))
1904				break;
1905
1906			return ERR_PTR(-EOPNOTSUPP);
1907		case LOONGSON_PMU_TYPE3:
1908			base_id = raw_id;
1909			raw_event.cntr_mask = CNTR_ALL;
1910			break;
1911		}
1912		break;
1913	}
1914
1915	raw_event.event_id = base_id;
1916
1917	return &raw_event;
1918}
1919
1920static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1921{
1922	unsigned int base_id = config & 0x7f;
1923	unsigned int event_max;
1924
1925
1926	raw_event.cntr_mask = CNTR_ALL;
1927	raw_event.event_id = base_id;
1928
1929	if (current_cpu_type() == CPU_CAVIUM_OCTEON3)
1930		event_max = 0x5f;
1931	else if (current_cpu_type() == CPU_CAVIUM_OCTEON2)
1932		event_max = 0x42;
1933	else
1934		event_max = 0x3a;
1935
1936	if (base_id > event_max) {
1937		return ERR_PTR(-EOPNOTSUPP);
1938	}
1939
1940	switch (base_id) {
1941	case 0x00:
1942	case 0x0f:
1943	case 0x1e:
1944	case 0x1f:
1945	case 0x2f:
1946	case 0x34:
1947	case 0x3e ... 0x3f:
1948		return ERR_PTR(-EOPNOTSUPP);
1949	default:
1950		break;
1951	}
1952
1953	return &raw_event;
1954}
1955
1956static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1957{
1958	unsigned int raw_id = config & 0xff;
1959
1960	/* Only 1-63 are defined */
1961	if ((raw_id < 0x01) || (raw_id > 0x3f))
1962		return ERR_PTR(-EOPNOTSUPP);
1963
1964	raw_event.cntr_mask = CNTR_ALL;
1965	raw_event.event_id = raw_id;
1966
1967	return &raw_event;
1968}
1969
1970static int __init
1971init_hw_perf_events(void)
1972{
1973	int counters, irq, pmu_type;
1974
1975	pr_info("Performance counters: ");
1976
1977	counters = n_counters();
1978	if (counters == 0) {
1979		pr_cont("No available PMU.\n");
1980		return -ENODEV;
1981	}
1982
1983#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1984	if (!cpu_has_mipsmt_pertccounters)
1985		counters = counters_total_to_per_cpu(counters);
1986#endif
1987
1988	if (get_c0_perfcount_int)
1989		irq = get_c0_perfcount_int();
1990	else if (cp0_perfcount_irq >= 0)
1991		irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1992	else
1993		irq = -1;
1994
1995	mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1996
1997	switch (current_cpu_type()) {
1998	case CPU_24K:
1999		mipspmu.name = "mips/24K";
2000		mipspmu.general_event_map = &mipsxxcore_event_map;
2001		mipspmu.cache_event_map = &mipsxxcore_cache_map;
2002		break;
2003	case CPU_34K:
2004		mipspmu.name = "mips/34K";
2005		mipspmu.general_event_map = &mipsxxcore_event_map;
2006		mipspmu.cache_event_map = &mipsxxcore_cache_map;
2007		break;
2008	case CPU_74K:
2009		mipspmu.name = "mips/74K";
2010		mipspmu.general_event_map = &mipsxxcore_event_map2;
2011		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
2012		break;
2013	case CPU_PROAPTIV:
2014		mipspmu.name = "mips/proAptiv";
2015		mipspmu.general_event_map = &mipsxxcore_event_map2;
2016		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
2017		break;
2018	case CPU_P5600:
2019		mipspmu.name = "mips/P5600";
2020		mipspmu.general_event_map = &mipsxxcore_event_map2;
2021		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
2022		break;
2023	case CPU_P6600:
2024		mipspmu.name = "mips/P6600";
2025		mipspmu.general_event_map = &mipsxxcore_event_map2;
2026		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
2027		break;
2028	case CPU_I6400:
2029		mipspmu.name = "mips/I6400";
2030		mipspmu.general_event_map = &i6x00_event_map;
2031		mipspmu.cache_event_map = &i6x00_cache_map;
2032		break;
2033	case CPU_I6500:
2034		mipspmu.name = "mips/I6500";
2035		mipspmu.general_event_map = &i6x00_event_map;
2036		mipspmu.cache_event_map = &i6x00_cache_map;
2037		break;
2038	case CPU_1004K:
2039		mipspmu.name = "mips/1004K";
2040		mipspmu.general_event_map = &mipsxxcore_event_map;
2041		mipspmu.cache_event_map = &mipsxxcore_cache_map;
2042		break;
2043	case CPU_1074K:
2044		mipspmu.name = "mips/1074K";
2045		mipspmu.general_event_map = &mipsxxcore_event_map;
2046		mipspmu.cache_event_map = &mipsxxcore_cache_map;
2047		break;
2048	case CPU_INTERAPTIV:
2049		mipspmu.name = "mips/interAptiv";
2050		mipspmu.general_event_map = &mipsxxcore_event_map;
2051		mipspmu.cache_event_map = &mipsxxcore_cache_map;
2052		break;
2053	case CPU_LOONGSON32:
2054		mipspmu.name = "mips/loongson1";
2055		mipspmu.general_event_map = &mipsxxcore_event_map;
2056		mipspmu.cache_event_map = &mipsxxcore_cache_map;
2057		break;
2058	case CPU_LOONGSON64:
2059		mipspmu.name = "mips/loongson3";
2060		pmu_type = get_loongson3_pmu_type();
2061
2062		switch (pmu_type) {
2063		case LOONGSON_PMU_TYPE1:
2064			counters = 2;
2065			mipspmu.general_event_map = &loongson3_event_map1;
2066			mipspmu.cache_event_map = &loongson3_cache_map1;
2067			break;
2068		case LOONGSON_PMU_TYPE2:
2069			counters = 4;
2070			mipspmu.general_event_map = &loongson3_event_map2;
2071			mipspmu.cache_event_map = &loongson3_cache_map2;
2072			break;
2073		case LOONGSON_PMU_TYPE3:
2074			counters = 4;
2075			mipspmu.general_event_map = &loongson3_event_map3;
2076			mipspmu.cache_event_map = &loongson3_cache_map3;
2077			break;
2078		}
2079		break;
2080	case CPU_CAVIUM_OCTEON:
2081	case CPU_CAVIUM_OCTEON_PLUS:
2082	case CPU_CAVIUM_OCTEON2:
2083	case CPU_CAVIUM_OCTEON3:
2084		mipspmu.name = "octeon";
2085		mipspmu.general_event_map = &octeon_event_map;
2086		mipspmu.cache_event_map = &octeon_cache_map;
2087		mipspmu.map_raw_event = octeon_pmu_map_raw_event;
2088		break;
2089	case CPU_BMIPS5000:
2090		mipspmu.name = "BMIPS5000";
2091		mipspmu.general_event_map = &bmips5000_event_map;
2092		mipspmu.cache_event_map = &bmips5000_cache_map;
2093		break;
2094	case CPU_XLP:
2095		mipspmu.name = "xlp";
2096		mipspmu.general_event_map = &xlp_event_map;
2097		mipspmu.cache_event_map = &xlp_cache_map;
2098		mipspmu.map_raw_event = xlp_pmu_map_raw_event;
2099		break;
2100	default:
2101		pr_cont("Either hardware does not support performance "
2102			"counters, or not yet implemented.\n");
2103		return -ENODEV;
2104	}
2105
2106	mipspmu.num_counters = counters;
2107	mipspmu.irq = irq;
2108
2109	if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) {
2110		if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
2111			counter_bits = 48;
2112			mipspmu.max_period = (1ULL << 47) - 1;
2113			mipspmu.valid_count = (1ULL << 47) - 1;
2114			mipspmu.overflow = 1ULL << 47;
2115		} else {
2116			counter_bits = 64;
2117			mipspmu.max_period = (1ULL << 63) - 1;
2118			mipspmu.valid_count = (1ULL << 63) - 1;
2119			mipspmu.overflow = 1ULL << 63;
2120		}
2121		mipspmu.read_counter = mipsxx_pmu_read_counter_64;
2122		mipspmu.write_counter = mipsxx_pmu_write_counter_64;
2123	} else {
2124		counter_bits = 32;
2125		mipspmu.max_period = (1ULL << 31) - 1;
2126		mipspmu.valid_count = (1ULL << 31) - 1;
2127		mipspmu.overflow = 1ULL << 31;
2128		mipspmu.read_counter = mipsxx_pmu_read_counter;
2129		mipspmu.write_counter = mipsxx_pmu_write_counter;
2130	}
2131
2132	on_each_cpu(reset_counters, (void *)(long)counters, 1);
2133
2134	pr_cont("%s PMU enabled, %d %d-bit counters available to each "
2135		"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
2136		irq < 0 ? " (share with timer interrupt)" : "");
2137
2138	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2139
2140	return 0;
2141}
2142early_initcall(init_hw_perf_events);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Linux performance counter support for MIPS.
   4 *
   5 * Copyright (C) 2010 MIPS Technologies, Inc.
   6 * Copyright (C) 2011 Cavium Networks, Inc.
   7 * Author: Deng-Cheng Zhu
   8 *
   9 * This code is based on the implementation for ARM, which is in turn
  10 * based on the sparc64 perf event code and the x86 code. Performance
  11 * counter access is based on the MIPS Oprofile code. And the callchain
  12 * support references the code of MIPS stacktrace.c.
  13 */
  14
  15#include <linux/cpumask.h>
  16#include <linux/interrupt.h>
  17#include <linux/smp.h>
  18#include <linux/kernel.h>
  19#include <linux/perf_event.h>
  20#include <linux/uaccess.h>
  21
  22#include <asm/irq.h>
  23#include <asm/irq_regs.h>
  24#include <asm/stacktrace.h>
  25#include <asm/time.h> /* For perf_irq */
  26
  27#define MIPS_MAX_HWEVENTS 4
  28#define MIPS_TCS_PER_COUNTER 2
  29#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
  30
  31struct cpu_hw_events {
  32	/* Array of events on this cpu. */
  33	struct perf_event	*events[MIPS_MAX_HWEVENTS];
  34
  35	/*
  36	 * Set the bit (indexed by the counter number) when the counter
  37	 * is used for an event.
  38	 */
  39	unsigned long		used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
  40
  41	/*
  42	 * Software copy of the control register for each performance counter.
  43	 * MIPS CPUs vary in performance counters. They use this differently,
  44	 * and even may not use it.
  45	 */
  46	unsigned int		saved_ctrl[MIPS_MAX_HWEVENTS];
  47};
  48DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  49	.saved_ctrl = {0},
  50};
  51
  52/* The description of MIPS performance events. */
  53struct mips_perf_event {
  54	unsigned int event_id;
  55	/*
  56	 * MIPS performance counters are indexed starting from 0.
  57	 * CNTR_EVEN indicates the indexes of the counters to be used are
  58	 * even numbers.
  59	 */
  60	unsigned int cntr_mask;
  61	#define CNTR_EVEN	0x55555555
  62	#define CNTR_ODD	0xaaaaaaaa
  63	#define CNTR_ALL	0xffffffff
  64	enum {
  65		T  = 0,
  66		V  = 1,
  67		P  = 2,
  68	} range;
  69};
  70
  71static struct mips_perf_event raw_event;
  72static DEFINE_MUTEX(raw_event_mutex);
  73
  74#define C(x) PERF_COUNT_HW_CACHE_##x
  75
  76struct mips_pmu {
  77	u64		max_period;
  78	u64		valid_count;
  79	u64		overflow;
  80	const char	*name;
  81	int		irq;
  82	u64		(*read_counter)(unsigned int idx);
  83	void		(*write_counter)(unsigned int idx, u64 val);
  84	const struct mips_perf_event *(*map_raw_event)(u64 config);
  85	const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
  86	const struct mips_perf_event (*cache_event_map)
  87				[PERF_COUNT_HW_CACHE_MAX]
  88				[PERF_COUNT_HW_CACHE_OP_MAX]
  89				[PERF_COUNT_HW_CACHE_RESULT_MAX];
  90	unsigned int	num_counters;
  91};
  92
  93static int counter_bits;
  94static struct mips_pmu mipspmu;
  95
  96#define M_PERFCTL_EVENT(event)		(((event) << MIPS_PERFCTRL_EVENT_S) & \
  97					 MIPS_PERFCTRL_EVENT)
  98#define M_PERFCTL_VPEID(vpe)		((vpe)	  << MIPS_PERFCTRL_VPEID_S)
  99
 100#ifdef CONFIG_CPU_BMIPS5000
 101#define M_PERFCTL_MT_EN(filter)		0
 102#else /* !CONFIG_CPU_BMIPS5000 */
 103#define M_PERFCTL_MT_EN(filter)		(filter)
 104#endif /* CONFIG_CPU_BMIPS5000 */
 105
 106#define	   M_TC_EN_ALL			M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
 107#define	   M_TC_EN_VPE			M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
 108#define	   M_TC_EN_TC			M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
 109
 110#define M_PERFCTL_COUNT_EVENT_WHENEVER	(MIPS_PERFCTRL_EXL |		\
 111					 MIPS_PERFCTRL_K |		\
 112					 MIPS_PERFCTRL_U |		\
 113					 MIPS_PERFCTRL_S |		\
 114					 MIPS_PERFCTRL_IE)
 115
 116#ifdef CONFIG_MIPS_MT_SMP
 117#define M_PERFCTL_CONFIG_MASK		0x3fff801f
 118#else
 119#define M_PERFCTL_CONFIG_MASK		0x1f
 120#endif
 121
 122#define CNTR_BIT_MASK(n)	(((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
 123
 124#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 125static DEFINE_RWLOCK(pmuint_rwlock);
 126
 127#if defined(CONFIG_CPU_BMIPS5000)
 128#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
 129			 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
 130#else
 131#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
 132			 0 : cpu_vpe_id(&current_cpu_data))
 133#endif
 134
 135/* Copied from op_model_mipsxx.c */
 136static unsigned int vpe_shift(void)
 137{
 138	if (num_possible_cpus() > 1)
 139		return 1;
 140
 141	return 0;
 142}
 143
 144static unsigned int counters_total_to_per_cpu(unsigned int counters)
 145{
 146	return counters >> vpe_shift();
 147}
 148
 149#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
 150#define vpe_id()	0
 151
 152#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
 153
 154static void resume_local_counters(void);
 155static void pause_local_counters(void);
 156static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
 157static int mipsxx_pmu_handle_shared_irq(void);
 158
 159/* 0: Not Loongson-3
 160 * 1: Loongson-3A1000/3B1000/3B1500
 161 * 2: Loongson-3A2000/3A3000
 162 * 3: Loongson-3A4000+
 163 */
 164
 165#define LOONGSON_PMU_TYPE0 0
 166#define LOONGSON_PMU_TYPE1 1
 167#define LOONGSON_PMU_TYPE2 2
 168#define LOONGSON_PMU_TYPE3 3
 169
 170static inline int get_loongson3_pmu_type(void)
 171{
 172	if (boot_cpu_type() != CPU_LOONGSON64)
 173		return LOONGSON_PMU_TYPE0;
 174	if ((boot_cpu_data.processor_id & PRID_COMP_MASK) == PRID_COMP_LEGACY)
 175		return LOONGSON_PMU_TYPE1;
 176	if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64C)
 177		return LOONGSON_PMU_TYPE2;
 178	if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64G)
 179		return LOONGSON_PMU_TYPE3;
 180
 181	return LOONGSON_PMU_TYPE0;
 182}
 183
 184static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
 185{
 186	if (vpe_id() == 1)
 187		idx = (idx + 2) & 3;
 188	return idx;
 189}
 190
 191static u64 mipsxx_pmu_read_counter(unsigned int idx)
 192{
 193	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 194
 195	switch (idx) {
 196	case 0:
 197		/*
 198		 * The counters are unsigned, we must cast to truncate
 199		 * off the high bits.
 200		 */
 201		return (u32)read_c0_perfcntr0();
 202	case 1:
 203		return (u32)read_c0_perfcntr1();
 204	case 2:
 205		return (u32)read_c0_perfcntr2();
 206	case 3:
 207		return (u32)read_c0_perfcntr3();
 208	default:
 209		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 210		return 0;
 211	}
 212}
 213
 214static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
 215{
 216	u64 mask = CNTR_BIT_MASK(counter_bits);
 217	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 218
 219	switch (idx) {
 220	case 0:
 221		return read_c0_perfcntr0_64() & mask;
 222	case 1:
 223		return read_c0_perfcntr1_64() & mask;
 224	case 2:
 225		return read_c0_perfcntr2_64() & mask;
 226	case 3:
 227		return read_c0_perfcntr3_64() & mask;
 228	default:
 229		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 230		return 0;
 231	}
 232}
 233
 234static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
 235{
 236	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 237
 238	switch (idx) {
 239	case 0:
 240		write_c0_perfcntr0(val);
 241		return;
 242	case 1:
 243		write_c0_perfcntr1(val);
 244		return;
 245	case 2:
 246		write_c0_perfcntr2(val);
 247		return;
 248	case 3:
 249		write_c0_perfcntr3(val);
 250		return;
 251	}
 252}
 253
 254static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
 255{
 256	val &= CNTR_BIT_MASK(counter_bits);
 257	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 258
 259	switch (idx) {
 260	case 0:
 261		write_c0_perfcntr0_64(val);
 262		return;
 263	case 1:
 264		write_c0_perfcntr1_64(val);
 265		return;
 266	case 2:
 267		write_c0_perfcntr2_64(val);
 268		return;
 269	case 3:
 270		write_c0_perfcntr3_64(val);
 271		return;
 272	}
 273}
 274
 275static unsigned int mipsxx_pmu_read_control(unsigned int idx)
 276{
 277	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 278
 279	switch (idx) {
 280	case 0:
 281		return read_c0_perfctrl0();
 282	case 1:
 283		return read_c0_perfctrl1();
 284	case 2:
 285		return read_c0_perfctrl2();
 286	case 3:
 287		return read_c0_perfctrl3();
 288	default:
 289		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 290		return 0;
 291	}
 292}
 293
 294static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
 295{
 296	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 297
 298	switch (idx) {
 299	case 0:
 300		write_c0_perfctrl0(val);
 301		return;
 302	case 1:
 303		write_c0_perfctrl1(val);
 304		return;
 305	case 2:
 306		write_c0_perfctrl2(val);
 307		return;
 308	case 3:
 309		write_c0_perfctrl3(val);
 310		return;
 311	}
 312}
 313
 314static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
 315				    struct hw_perf_event *hwc)
 316{
 317	int i;
 318	unsigned long cntr_mask;
 319
 320	/*
 321	 * We only need to care the counter mask. The range has been
 322	 * checked definitely.
 323	 */
 324	if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
 325		cntr_mask = (hwc->event_base >> 10) & 0xffff;
 326	else
 327		cntr_mask = (hwc->event_base >> 8) & 0xffff;
 328
 329	for (i = mipspmu.num_counters - 1; i >= 0; i--) {
 330		/*
 331		 * Note that some MIPS perf events can be counted by both
 332		 * even and odd counters, wheresas many other are only by
 333		 * even _or_ odd counters. This introduces an issue that
 334		 * when the former kind of event takes the counter the
 335		 * latter kind of event wants to use, then the "counter
 336		 * allocation" for the latter event will fail. In fact if
 337		 * they can be dynamically swapped, they both feel happy.
 338		 * But here we leave this issue alone for now.
 339		 */
 340		if (test_bit(i, &cntr_mask) &&
 341			!test_and_set_bit(i, cpuc->used_mask))
 342			return i;
 343	}
 344
 345	return -EAGAIN;
 346}
 347
 348static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
 349{
 350	struct perf_event *event = container_of(evt, struct perf_event, hw);
 351	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 352	unsigned int range = evt->event_base >> 24;
 353
 354	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 355
 356	if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
 357		cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0x3ff) |
 358			(evt->config_base & M_PERFCTL_CONFIG_MASK) |
 359			/* Make sure interrupt enabled. */
 360			MIPS_PERFCTRL_IE;
 361	else
 362		cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
 363			(evt->config_base & M_PERFCTL_CONFIG_MASK) |
 364			/* Make sure interrupt enabled. */
 365			MIPS_PERFCTRL_IE;
 366
 367	if (IS_ENABLED(CONFIG_CPU_BMIPS5000)) {
 368		/* enable the counter for the calling thread */
 369		cpuc->saved_ctrl[idx] |=
 370			(1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC;
 371	} else if (IS_ENABLED(CONFIG_MIPS_MT_SMP) && range > V) {
 372		/* The counter is processor wide. Set it up to count all TCs. */
 373		pr_debug("Enabling perf counter for all TCs\n");
 374		cpuc->saved_ctrl[idx] |= M_TC_EN_ALL;
 375	} else {
 376		unsigned int cpu, ctrl;
 377
 378		/*
 379		 * Set up the counter for a particular CPU when event->cpu is
 380		 * a valid CPU number. Otherwise set up the counter for the CPU
 381		 * scheduling this thread.
 382		 */
 383		cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id();
 384
 385		ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu]));
 386		ctrl |= M_TC_EN_VPE;
 387		cpuc->saved_ctrl[idx] |= ctrl;
 388		pr_debug("Enabling perf counter for CPU%d\n", cpu);
 389	}
 390	/*
 391	 * We do not actually let the counter run. Leave it until start().
 392	 */
 393}
 394
 395static void mipsxx_pmu_disable_event(int idx)
 396{
 397	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 398	unsigned long flags;
 399
 400	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 401
 402	local_irq_save(flags);
 403	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
 404		~M_PERFCTL_COUNT_EVENT_WHENEVER;
 405	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
 406	local_irq_restore(flags);
 407}
 408
 409static int mipspmu_event_set_period(struct perf_event *event,
 410				    struct hw_perf_event *hwc,
 411				    int idx)
 412{
 413	u64 left = local64_read(&hwc->period_left);
 414	u64 period = hwc->sample_period;
 415	int ret = 0;
 416
 417	if (unlikely((left + period) & (1ULL << 63))) {
 418		/* left underflowed by more than period. */
 419		left = period;
 420		local64_set(&hwc->period_left, left);
 421		hwc->last_period = period;
 422		ret = 1;
 423	} else	if (unlikely((left + period) <= period)) {
 424		/* left underflowed by less than period. */
 425		left += period;
 426		local64_set(&hwc->period_left, left);
 427		hwc->last_period = period;
 428		ret = 1;
 429	}
 430
 431	if (left > mipspmu.max_period) {
 432		left = mipspmu.max_period;
 433		local64_set(&hwc->period_left, left);
 434	}
 435
 436	local64_set(&hwc->prev_count, mipspmu.overflow - left);
 437
 438	if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
 439		mipsxx_pmu_write_control(idx,
 440				M_PERFCTL_EVENT(hwc->event_base & 0x3ff));
 441
 442	mipspmu.write_counter(idx, mipspmu.overflow - left);
 443
 444	perf_event_update_userpage(event);
 445
 446	return ret;
 447}
 448
 449static void mipspmu_event_update(struct perf_event *event,
 450				 struct hw_perf_event *hwc,
 451				 int idx)
 452{
 453	u64 prev_raw_count, new_raw_count;
 454	u64 delta;
 455
 456again:
 457	prev_raw_count = local64_read(&hwc->prev_count);
 458	new_raw_count = mipspmu.read_counter(idx);
 459
 460	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 461				new_raw_count) != prev_raw_count)
 462		goto again;
 463
 464	delta = new_raw_count - prev_raw_count;
 465
 466	local64_add(delta, &event->count);
 467	local64_sub(delta, &hwc->period_left);
 468}
 469
 470static void mipspmu_start(struct perf_event *event, int flags)
 471{
 472	struct hw_perf_event *hwc = &event->hw;
 473
 474	if (flags & PERF_EF_RELOAD)
 475		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
 476
 477	hwc->state = 0;
 478
 479	/* Set the period for the event. */
 480	mipspmu_event_set_period(event, hwc, hwc->idx);
 481
 482	/* Enable the event. */
 483	mipsxx_pmu_enable_event(hwc, hwc->idx);
 484}
 485
 486static void mipspmu_stop(struct perf_event *event, int flags)
 487{
 488	struct hw_perf_event *hwc = &event->hw;
 489
 490	if (!(hwc->state & PERF_HES_STOPPED)) {
 491		/* We are working on a local event. */
 492		mipsxx_pmu_disable_event(hwc->idx);
 493		barrier();
 494		mipspmu_event_update(event, hwc, hwc->idx);
 495		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 496	}
 497}
 498
 499static int mipspmu_add(struct perf_event *event, int flags)
 500{
 501	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 502	struct hw_perf_event *hwc = &event->hw;
 503	int idx;
 504	int err = 0;
 505
 506	perf_pmu_disable(event->pmu);
 507
 508	/* To look for a free counter for this event. */
 509	idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
 510	if (idx < 0) {
 511		err = idx;
 512		goto out;
 513	}
 514
 515	/*
 516	 * If there is an event in the counter we are going to use then
 517	 * make sure it is disabled.
 518	 */
 519	event->hw.idx = idx;
 520	mipsxx_pmu_disable_event(idx);
 521	cpuc->events[idx] = event;
 522
 523	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 524	if (flags & PERF_EF_START)
 525		mipspmu_start(event, PERF_EF_RELOAD);
 526
 527	/* Propagate our changes to the userspace mapping. */
 528	perf_event_update_userpage(event);
 529
 530out:
 531	perf_pmu_enable(event->pmu);
 532	return err;
 533}
 534
 535static void mipspmu_del(struct perf_event *event, int flags)
 536{
 537	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 538	struct hw_perf_event *hwc = &event->hw;
 539	int idx = hwc->idx;
 540
 541	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 542
 543	mipspmu_stop(event, PERF_EF_UPDATE);
 544	cpuc->events[idx] = NULL;
 545	clear_bit(idx, cpuc->used_mask);
 546
 547	perf_event_update_userpage(event);
 548}
 549
 550static void mipspmu_read(struct perf_event *event)
 551{
 552	struct hw_perf_event *hwc = &event->hw;
 553
 554	/* Don't read disabled counters! */
 555	if (hwc->idx < 0)
 556		return;
 557
 558	mipspmu_event_update(event, hwc, hwc->idx);
 559}
 560
 561static void mipspmu_enable(struct pmu *pmu)
 562{
 563#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 564	write_unlock(&pmuint_rwlock);
 565#endif
 566	resume_local_counters();
 567}
 568
 569/*
 570 * MIPS performance counters can be per-TC. The control registers can
 571 * not be directly accessed across CPUs. Hence if we want to do global
 572 * control, we need cross CPU calls. on_each_cpu() can help us, but we
 573 * can not make sure this function is called with interrupts enabled. So
 574 * here we pause local counters and then grab a rwlock and leave the
 575 * counters on other CPUs alone. If any counter interrupt raises while
 576 * we own the write lock, simply pause local counters on that CPU and
 577 * spin in the handler. Also we know we won't be switched to another
 578 * CPU after pausing local counters and before grabbing the lock.
 579 */
 580static void mipspmu_disable(struct pmu *pmu)
 581{
 582	pause_local_counters();
 583#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 584	write_lock(&pmuint_rwlock);
 585#endif
 586}
 587
 588static atomic_t active_events = ATOMIC_INIT(0);
 589static DEFINE_MUTEX(pmu_reserve_mutex);
 590static int (*save_perf_irq)(void);
 591
 592static int mipspmu_get_irq(void)
 593{
 594	int err;
 595
 596	if (mipspmu.irq >= 0) {
 597		/* Request my own irq handler. */
 598		err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
 599				  IRQF_PERCPU | IRQF_NOBALANCING |
 600				  IRQF_NO_THREAD | IRQF_NO_SUSPEND |
 601				  IRQF_SHARED,
 602				  "mips_perf_pmu", &mipspmu);
 603		if (err) {
 604			pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
 605				mipspmu.irq);
 606		}
 607	} else if (cp0_perfcount_irq < 0) {
 608		/*
 609		 * We are sharing the irq number with the timer interrupt.
 610		 */
 611		save_perf_irq = perf_irq;
 612		perf_irq = mipsxx_pmu_handle_shared_irq;
 613		err = 0;
 614	} else {
 615		pr_warn("The platform hasn't properly defined its interrupt controller\n");
 616		err = -ENOENT;
 617	}
 618
 619	return err;
 620}
 621
 622static void mipspmu_free_irq(void)
 623{
 624	if (mipspmu.irq >= 0)
 625		free_irq(mipspmu.irq, &mipspmu);
 626	else if (cp0_perfcount_irq < 0)
 627		perf_irq = save_perf_irq;
 628}
 629
 630/*
 631 * mipsxx/rm9000/loongson2 have different performance counters, they have
 632 * specific low-level init routines.
 633 */
 634static void reset_counters(void *arg);
 635static int __hw_perf_event_init(struct perf_event *event);
 636
 637static void hw_perf_event_destroy(struct perf_event *event)
 638{
 639	if (atomic_dec_and_mutex_lock(&active_events,
 640				&pmu_reserve_mutex)) {
 641		/*
 642		 * We must not call the destroy function with interrupts
 643		 * disabled.
 644		 */
 645		on_each_cpu(reset_counters,
 646			(void *)(long)mipspmu.num_counters, 1);
 647		mipspmu_free_irq();
 648		mutex_unlock(&pmu_reserve_mutex);
 649	}
 650}
 651
 652static int mipspmu_event_init(struct perf_event *event)
 653{
 654	int err = 0;
 655
 656	/* does not support taken branch sampling */
 657	if (has_branch_stack(event))
 658		return -EOPNOTSUPP;
 659
 660	switch (event->attr.type) {
 661	case PERF_TYPE_RAW:
 662	case PERF_TYPE_HARDWARE:
 663	case PERF_TYPE_HW_CACHE:
 664		break;
 665
 666	default:
 667		return -ENOENT;
 668	}
 669
 670	if (event->cpu >= 0 && !cpu_online(event->cpu))
 671		return -ENODEV;
 672
 673	if (!atomic_inc_not_zero(&active_events)) {
 674		mutex_lock(&pmu_reserve_mutex);
 675		if (atomic_read(&active_events) == 0)
 676			err = mipspmu_get_irq();
 677
 678		if (!err)
 679			atomic_inc(&active_events);
 680		mutex_unlock(&pmu_reserve_mutex);
 681	}
 682
 683	if (err)
 684		return err;
 685
 686	return __hw_perf_event_init(event);
 687}
 688
 689static struct pmu pmu = {
 690	.pmu_enable	= mipspmu_enable,
 691	.pmu_disable	= mipspmu_disable,
 692	.event_init	= mipspmu_event_init,
 693	.add		= mipspmu_add,
 694	.del		= mipspmu_del,
 695	.start		= mipspmu_start,
 696	.stop		= mipspmu_stop,
 697	.read		= mipspmu_read,
 698};
 699
 700static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
 701{
 702/*
 703 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
 704 * event_id.
 705 */
 706#ifdef CONFIG_MIPS_MT_SMP
 707	if (num_possible_cpus() > 1)
 708		return ((unsigned int)pev->range << 24) |
 709			(pev->cntr_mask & 0xffff00) |
 710			(pev->event_id & 0xff);
 711	else
 712#endif /* CONFIG_MIPS_MT_SMP */
 713	{
 714		if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
 715			return (pev->cntr_mask & 0xfffc00) |
 716				(pev->event_id & 0x3ff);
 717		else
 718			return (pev->cntr_mask & 0xffff00) |
 719				(pev->event_id & 0xff);
 720	}
 721}
 722
 723static const struct mips_perf_event *mipspmu_map_general_event(int idx)
 724{
 725
 726	if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
 727		return ERR_PTR(-EOPNOTSUPP);
 728	return &(*mipspmu.general_event_map)[idx];
 729}
 730
 731static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
 732{
 733	unsigned int cache_type, cache_op, cache_result;
 734	const struct mips_perf_event *pev;
 735
 736	cache_type = (config >> 0) & 0xff;
 737	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 738		return ERR_PTR(-EINVAL);
 739
 740	cache_op = (config >> 8) & 0xff;
 741	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 742		return ERR_PTR(-EINVAL);
 743
 744	cache_result = (config >> 16) & 0xff;
 745	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 746		return ERR_PTR(-EINVAL);
 747
 748	pev = &((*mipspmu.cache_event_map)
 749					[cache_type]
 750					[cache_op]
 751					[cache_result]);
 752
 753	if (pev->cntr_mask == 0)
 754		return ERR_PTR(-EOPNOTSUPP);
 755
 756	return pev;
 757
 758}
 759
 760static int validate_group(struct perf_event *event)
 761{
 762	struct perf_event *sibling, *leader = event->group_leader;
 763	struct cpu_hw_events fake_cpuc;
 764
 765	memset(&fake_cpuc, 0, sizeof(fake_cpuc));
 766
 767	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
 768		return -EINVAL;
 769
 770	for_each_sibling_event(sibling, leader) {
 771		if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
 772			return -EINVAL;
 773	}
 774
 775	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
 776		return -EINVAL;
 777
 778	return 0;
 779}
 780
 781/* This is needed by specific irq handlers in perf_event_*.c */
 782static void handle_associated_event(struct cpu_hw_events *cpuc,
 783				    int idx, struct perf_sample_data *data,
 784				    struct pt_regs *regs)
 785{
 786	struct perf_event *event = cpuc->events[idx];
 787	struct hw_perf_event *hwc = &event->hw;
 788
 789	mipspmu_event_update(event, hwc, idx);
 790	data->period = event->hw.last_period;
 791	if (!mipspmu_event_set_period(event, hwc, idx))
 792		return;
 793
 794	if (perf_event_overflow(event, data, regs))
 795		mipsxx_pmu_disable_event(idx);
 796}
 797
 798
 799static int __n_counters(void)
 800{
 801	if (!cpu_has_perf)
 802		return 0;
 803	if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M))
 804		return 1;
 805	if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M))
 806		return 2;
 807	if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M))
 808		return 3;
 809
 810	return 4;
 811}
 812
 813static int n_counters(void)
 814{
 815	int counters;
 816
 817	switch (current_cpu_type()) {
 818	case CPU_R10000:
 819		counters = 2;
 820		break;
 821
 822	case CPU_R12000:
 823	case CPU_R14000:
 824	case CPU_R16000:
 825		counters = 4;
 826		break;
 827
 828	default:
 829		counters = __n_counters();
 830	}
 831
 832	return counters;
 833}
 834
 835static void loongson3_reset_counters(void *arg)
 836{
 837	int counters = (int)(long)arg;
 838
 839	switch (counters) {
 840	case 4:
 841		mipsxx_pmu_write_control(3, 0);
 842		mipspmu.write_counter(3, 0);
 843		mipsxx_pmu_write_control(3, 127<<5);
 844		mipspmu.write_counter(3, 0);
 845		mipsxx_pmu_write_control(3, 191<<5);
 846		mipspmu.write_counter(3, 0);
 847		mipsxx_pmu_write_control(3, 255<<5);
 848		mipspmu.write_counter(3, 0);
 849		mipsxx_pmu_write_control(3, 319<<5);
 850		mipspmu.write_counter(3, 0);
 851		mipsxx_pmu_write_control(3, 383<<5);
 852		mipspmu.write_counter(3, 0);
 853		mipsxx_pmu_write_control(3, 575<<5);
 854		mipspmu.write_counter(3, 0);
 855		fallthrough;
 856	case 3:
 857		mipsxx_pmu_write_control(2, 0);
 858		mipspmu.write_counter(2, 0);
 859		mipsxx_pmu_write_control(2, 127<<5);
 860		mipspmu.write_counter(2, 0);
 861		mipsxx_pmu_write_control(2, 191<<5);
 862		mipspmu.write_counter(2, 0);
 863		mipsxx_pmu_write_control(2, 255<<5);
 864		mipspmu.write_counter(2, 0);
 865		mipsxx_pmu_write_control(2, 319<<5);
 866		mipspmu.write_counter(2, 0);
 867		mipsxx_pmu_write_control(2, 383<<5);
 868		mipspmu.write_counter(2, 0);
 869		mipsxx_pmu_write_control(2, 575<<5);
 870		mipspmu.write_counter(2, 0);
 871		fallthrough;
 872	case 2:
 873		mipsxx_pmu_write_control(1, 0);
 874		mipspmu.write_counter(1, 0);
 875		mipsxx_pmu_write_control(1, 127<<5);
 876		mipspmu.write_counter(1, 0);
 877		mipsxx_pmu_write_control(1, 191<<5);
 878		mipspmu.write_counter(1, 0);
 879		mipsxx_pmu_write_control(1, 255<<5);
 880		mipspmu.write_counter(1, 0);
 881		mipsxx_pmu_write_control(1, 319<<5);
 882		mipspmu.write_counter(1, 0);
 883		mipsxx_pmu_write_control(1, 383<<5);
 884		mipspmu.write_counter(1, 0);
 885		mipsxx_pmu_write_control(1, 575<<5);
 886		mipspmu.write_counter(1, 0);
 887		fallthrough;
 888	case 1:
 889		mipsxx_pmu_write_control(0, 0);
 890		mipspmu.write_counter(0, 0);
 891		mipsxx_pmu_write_control(0, 127<<5);
 892		mipspmu.write_counter(0, 0);
 893		mipsxx_pmu_write_control(0, 191<<5);
 894		mipspmu.write_counter(0, 0);
 895		mipsxx_pmu_write_control(0, 255<<5);
 896		mipspmu.write_counter(0, 0);
 897		mipsxx_pmu_write_control(0, 319<<5);
 898		mipspmu.write_counter(0, 0);
 899		mipsxx_pmu_write_control(0, 383<<5);
 900		mipspmu.write_counter(0, 0);
 901		mipsxx_pmu_write_control(0, 575<<5);
 902		mipspmu.write_counter(0, 0);
 903		break;
 904	}
 905}
 906
 907static void reset_counters(void *arg)
 908{
 909	int counters = (int)(long)arg;
 910
 911	if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
 912		loongson3_reset_counters(arg);
 913		return;
 914	}
 915
 916	switch (counters) {
 917	case 4:
 918		mipsxx_pmu_write_control(3, 0);
 919		mipspmu.write_counter(3, 0);
 920		fallthrough;
 921	case 3:
 922		mipsxx_pmu_write_control(2, 0);
 923		mipspmu.write_counter(2, 0);
 924		fallthrough;
 925	case 2:
 926		mipsxx_pmu_write_control(1, 0);
 927		mipspmu.write_counter(1, 0);
 928		fallthrough;
 929	case 1:
 930		mipsxx_pmu_write_control(0, 0);
 931		mipspmu.write_counter(0, 0);
 932		break;
 933	}
 934}
 935
 936/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
 937static const struct mips_perf_event mipsxxcore_event_map
 938				[PERF_COUNT_HW_MAX] = {
 939	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 940	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 941	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
 942	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
 943};
 944
 945/* 74K/proAptiv core has different branch event code. */
 946static const struct mips_perf_event mipsxxcore_event_map2
 947				[PERF_COUNT_HW_MAX] = {
 948	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 949	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 950	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
 951	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
 952};
 953
 954static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = {
 955	[PERF_COUNT_HW_CPU_CYCLES]          = { 0x00, CNTR_EVEN | CNTR_ODD },
 956	[PERF_COUNT_HW_INSTRUCTIONS]        = { 0x01, CNTR_EVEN | CNTR_ODD },
 957	/* These only count dcache, not icache */
 958	[PERF_COUNT_HW_CACHE_REFERENCES]    = { 0x45, CNTR_EVEN | CNTR_ODD },
 959	[PERF_COUNT_HW_CACHE_MISSES]        = { 0x48, CNTR_EVEN | CNTR_ODD },
 960	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
 961	[PERF_COUNT_HW_BRANCH_MISSES]       = { 0x16, CNTR_EVEN | CNTR_ODD },
 962};
 963
 964static const struct mips_perf_event loongson3_event_map1[PERF_COUNT_HW_MAX] = {
 965	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
 966	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
 967	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
 968	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
 969};
 970
 971static const struct mips_perf_event loongson3_event_map2[PERF_COUNT_HW_MAX] = {
 972	[PERF_COUNT_HW_CPU_CYCLES] = { 0x80, CNTR_ALL },
 973	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x81, CNTR_ALL },
 974	[PERF_COUNT_HW_CACHE_MISSES] = { 0x18, CNTR_ALL },
 975	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x94, CNTR_ALL },
 976	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x9c, CNTR_ALL },
 977};
 978
 979static const struct mips_perf_event loongson3_event_map3[PERF_COUNT_HW_MAX] = {
 980	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_ALL },
 981	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_ALL },
 982	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x1c, CNTR_ALL },
 983	[PERF_COUNT_HW_CACHE_MISSES] = { 0x1d, CNTR_ALL },
 984	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_ALL },
 985	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x08, CNTR_ALL },
 986};
 987
 988static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
 989	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
 990	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
 991	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
 992	[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL	 },
 993	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
 994	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
 995	[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
 996};
 997
 998static const struct mips_perf_event bmips5000_event_map
 999				[PERF_COUNT_HW_MAX] = {
1000	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
1001	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
1002	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
1003};
1004
1005static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
1006	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
1007	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
1008	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1009	[PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1010	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
1011	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
1012};
1013
1014/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
1015static const struct mips_perf_event mipsxxcore_cache_map
1016				[PERF_COUNT_HW_CACHE_MAX]
1017				[PERF_COUNT_HW_CACHE_OP_MAX]
1018				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1019[C(L1D)] = {
1020	/*
1021	 * Like some other architectures (e.g. ARM), the performance
1022	 * counters don't differentiate between read and write
1023	 * accesses/misses, so this isn't strictly correct, but it's the
1024	 * best we can do. Writes and reads get combined.
1025	 */
1026	[C(OP_READ)] = {
1027		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
1028		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
1029	},
1030	[C(OP_WRITE)] = {
1031		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
1032		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
1033	},
1034},
1035[C(L1I)] = {
1036	[C(OP_READ)] = {
1037		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
1038		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
1039	},
1040	[C(OP_WRITE)] = {
1041		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
1042		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
1043	},
1044	[C(OP_PREFETCH)] = {
1045		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
1046		/*
1047		 * Note that MIPS has only "hit" events countable for
1048		 * the prefetch operation.
1049		 */
1050	},
1051},
1052[C(LL)] = {
1053	[C(OP_READ)] = {
1054		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
1055		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
1056	},
1057	[C(OP_WRITE)] = {
1058		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
1059		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
1060	},
1061},
1062[C(DTLB)] = {
1063	[C(OP_READ)] = {
1064		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
1065		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
1066	},
1067	[C(OP_WRITE)] = {
1068		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
1069		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
1070	},
1071},
1072[C(ITLB)] = {
1073	[C(OP_READ)] = {
1074		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
1075		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
1076	},
1077	[C(OP_WRITE)] = {
1078		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
1079		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
1080	},
1081},
1082[C(BPU)] = {
1083	/* Using the same code for *HW_BRANCH* */
1084	[C(OP_READ)] = {
1085		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
1086		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1087	},
1088	[C(OP_WRITE)] = {
1089		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
1090		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1091	},
1092},
1093};
1094
1095/* 74K/proAptiv core has completely different cache event map. */
1096static const struct mips_perf_event mipsxxcore_cache_map2
1097				[PERF_COUNT_HW_CACHE_MAX]
1098				[PERF_COUNT_HW_CACHE_OP_MAX]
1099				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1100[C(L1D)] = {
1101	/*
1102	 * Like some other architectures (e.g. ARM), the performance
1103	 * counters don't differentiate between read and write
1104	 * accesses/misses, so this isn't strictly correct, but it's the
1105	 * best we can do. Writes and reads get combined.
1106	 */
1107	[C(OP_READ)] = {
1108		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
1109		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
1110	},
1111	[C(OP_WRITE)] = {
1112		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
1113		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
1114	},
1115},
1116[C(L1I)] = {
1117	[C(OP_READ)] = {
1118		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
1119		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
1120	},
1121	[C(OP_WRITE)] = {
1122		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
1123		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
1124	},
1125	[C(OP_PREFETCH)] = {
1126		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
1127		/*
1128		 * Note that MIPS has only "hit" events countable for
1129		 * the prefetch operation.
1130		 */
1131	},
1132},
1133[C(LL)] = {
1134	[C(OP_READ)] = {
1135		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
1136		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
1137	},
1138	[C(OP_WRITE)] = {
1139		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
1140		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
1141	},
1142},
1143/*
1144 * 74K core does not have specific DTLB events. proAptiv core has
1145 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
1146 * not included here. One can use raw events if really needed.
1147 */
1148[C(ITLB)] = {
1149	[C(OP_READ)] = {
1150		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1151		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1152	},
1153	[C(OP_WRITE)] = {
1154		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1155		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1156	},
1157},
1158[C(BPU)] = {
1159	/* Using the same code for *HW_BRANCH* */
1160	[C(OP_READ)] = {
1161		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1162		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1163	},
1164	[C(OP_WRITE)] = {
1165		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1166		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1167	},
1168},
1169};
1170
1171static const struct mips_perf_event i6x00_cache_map
1172				[PERF_COUNT_HW_CACHE_MAX]
1173				[PERF_COUNT_HW_CACHE_OP_MAX]
1174				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1175[C(L1D)] = {
1176	[C(OP_READ)] = {
1177		[C(RESULT_ACCESS)]	= { 0x46, CNTR_EVEN | CNTR_ODD },
1178		[C(RESULT_MISS)]	= { 0x49, CNTR_EVEN | CNTR_ODD },
1179	},
1180	[C(OP_WRITE)] = {
1181		[C(RESULT_ACCESS)]	= { 0x47, CNTR_EVEN | CNTR_ODD },
1182		[C(RESULT_MISS)]	= { 0x4a, CNTR_EVEN | CNTR_ODD },
1183	},
1184},
1185[C(L1I)] = {
1186	[C(OP_READ)] = {
1187		[C(RESULT_ACCESS)]	= { 0x84, CNTR_EVEN | CNTR_ODD },
1188		[C(RESULT_MISS)]	= { 0x85, CNTR_EVEN | CNTR_ODD },
1189	},
1190},
1191[C(DTLB)] = {
1192	/* Can't distinguish read & write */
1193	[C(OP_READ)] = {
1194		[C(RESULT_ACCESS)]	= { 0x40, CNTR_EVEN | CNTR_ODD },
1195		[C(RESULT_MISS)]	= { 0x41, CNTR_EVEN | CNTR_ODD },
1196	},
1197	[C(OP_WRITE)] = {
1198		[C(RESULT_ACCESS)]	= { 0x40, CNTR_EVEN | CNTR_ODD },
1199		[C(RESULT_MISS)]	= { 0x41, CNTR_EVEN | CNTR_ODD },
1200	},
1201},
1202[C(BPU)] = {
1203	/* Conditional branches / mispredicted */
1204	[C(OP_READ)] = {
1205		[C(RESULT_ACCESS)]	= { 0x15, CNTR_EVEN | CNTR_ODD },
1206		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN | CNTR_ODD },
1207	},
1208},
1209};
1210
1211static const struct mips_perf_event loongson3_cache_map1
1212				[PERF_COUNT_HW_CACHE_MAX]
1213				[PERF_COUNT_HW_CACHE_OP_MAX]
1214				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1215[C(L1D)] = {
1216	/*
1217	 * Like some other architectures (e.g. ARM), the performance
1218	 * counters don't differentiate between read and write
1219	 * accesses/misses, so this isn't strictly correct, but it's the
1220	 * best we can do. Writes and reads get combined.
1221	 */
1222	[C(OP_READ)] = {
1223		[C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1224	},
1225	[C(OP_WRITE)] = {
1226		[C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1227	},
1228},
1229[C(L1I)] = {
1230	[C(OP_READ)] = {
1231		[C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1232	},
1233	[C(OP_WRITE)] = {
1234		[C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1235	},
1236},
1237[C(DTLB)] = {
1238	[C(OP_READ)] = {
1239		[C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1240	},
1241	[C(OP_WRITE)] = {
1242		[C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1243	},
1244},
1245[C(ITLB)] = {
1246	[C(OP_READ)] = {
1247		[C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1248	},
1249	[C(OP_WRITE)] = {
1250		[C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1251	},
1252},
1253[C(BPU)] = {
1254	/* Using the same code for *HW_BRANCH* */
1255	[C(OP_READ)] = {
1256		[C(RESULT_ACCESS)]      = { 0x01, CNTR_EVEN },
1257		[C(RESULT_MISS)]        = { 0x01, CNTR_ODD },
1258	},
1259	[C(OP_WRITE)] = {
1260		[C(RESULT_ACCESS)]      = { 0x01, CNTR_EVEN },
1261		[C(RESULT_MISS)]        = { 0x01, CNTR_ODD },
1262	},
1263},
1264};
1265
1266static const struct mips_perf_event loongson3_cache_map2
1267				[PERF_COUNT_HW_CACHE_MAX]
1268				[PERF_COUNT_HW_CACHE_OP_MAX]
1269				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1270[C(L1D)] = {
1271	/*
1272	 * Like some other architectures (e.g. ARM), the performance
1273	 * counters don't differentiate between read and write
1274	 * accesses/misses, so this isn't strictly correct, but it's the
1275	 * best we can do. Writes and reads get combined.
1276	 */
1277	[C(OP_READ)] = {
1278		[C(RESULT_ACCESS)]	= { 0x156, CNTR_ALL },
1279	},
1280	[C(OP_WRITE)] = {
1281		[C(RESULT_ACCESS)]	= { 0x155, CNTR_ALL },
1282		[C(RESULT_MISS)]        = { 0x153, CNTR_ALL },
1283	},
1284},
1285[C(L1I)] = {
1286	[C(OP_READ)] = {
1287		[C(RESULT_MISS)]	= { 0x18, CNTR_ALL },
1288	},
1289	[C(OP_WRITE)] = {
1290		[C(RESULT_MISS)]        = { 0x18, CNTR_ALL },
1291	},
1292},
1293[C(LL)] = {
1294	[C(OP_READ)] = {
1295		[C(RESULT_ACCESS)]	= { 0x1b6, CNTR_ALL },
1296	},
1297	[C(OP_WRITE)] = {
1298		[C(RESULT_ACCESS)]	= { 0x1b7, CNTR_ALL },
1299	},
1300	[C(OP_PREFETCH)] = {
1301		[C(RESULT_ACCESS)]	= { 0x1bf, CNTR_ALL },
1302	},
1303},
1304[C(DTLB)] = {
1305	[C(OP_READ)] = {
1306		[C(RESULT_MISS)]        = { 0x92, CNTR_ALL },
1307	},
1308	[C(OP_WRITE)] = {
1309		[C(RESULT_MISS)]        = { 0x92, CNTR_ALL },
1310	},
1311},
1312[C(ITLB)] = {
1313	[C(OP_READ)] = {
1314		[C(RESULT_MISS)]	= { 0x1a, CNTR_ALL },
1315	},
1316	[C(OP_WRITE)] = {
1317		[C(RESULT_MISS)]	= { 0x1a, CNTR_ALL },
1318	},
1319},
1320[C(BPU)] = {
1321	/* Using the same code for *HW_BRANCH* */
1322	[C(OP_READ)] = {
1323		[C(RESULT_ACCESS)]      = { 0x94, CNTR_ALL },
1324		[C(RESULT_MISS)]        = { 0x9c, CNTR_ALL },
1325	},
1326},
1327};
1328
1329static const struct mips_perf_event loongson3_cache_map3
1330				[PERF_COUNT_HW_CACHE_MAX]
1331				[PERF_COUNT_HW_CACHE_OP_MAX]
1332				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1333[C(L1D)] = {
1334	/*
1335	 * Like some other architectures (e.g. ARM), the performance
1336	 * counters don't differentiate between read and write
1337	 * accesses/misses, so this isn't strictly correct, but it's the
1338	 * best we can do. Writes and reads get combined.
1339	 */
1340	[C(OP_READ)] = {
1341		[C(RESULT_ACCESS)]      = { 0x1e, CNTR_ALL },
1342		[C(RESULT_MISS)]        = { 0x1f, CNTR_ALL },
1343	},
1344	[C(OP_PREFETCH)] = {
1345		[C(RESULT_ACCESS)]	= { 0xaa, CNTR_ALL },
1346		[C(RESULT_MISS)]	= { 0xa9, CNTR_ALL },
1347	},
1348},
1349[C(L1I)] = {
1350	[C(OP_READ)] = {
1351		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ALL },
1352		[C(RESULT_MISS)]	= { 0x1d, CNTR_ALL },
1353	},
1354},
1355[C(LL)] = {
1356	[C(OP_READ)] = {
1357		[C(RESULT_ACCESS)]	= { 0x2e, CNTR_ALL },
1358		[C(RESULT_MISS)]	= { 0x2f, CNTR_ALL },
1359	},
1360},
1361[C(DTLB)] = {
1362	[C(OP_READ)] = {
1363		[C(RESULT_ACCESS)]      = { 0x14, CNTR_ALL },
1364		[C(RESULT_MISS)]	= { 0x1b, CNTR_ALL },
1365	},
1366},
1367[C(ITLB)] = {
1368	[C(OP_READ)] = {
1369		[C(RESULT_MISS)]	= { 0x1a, CNTR_ALL },
1370	},
1371},
1372[C(BPU)] = {
1373	/* Using the same code for *HW_BRANCH* */
1374	[C(OP_READ)] = {
1375		[C(RESULT_ACCESS)]      = { 0x02, CNTR_ALL },
1376		[C(RESULT_MISS)]        = { 0x08, CNTR_ALL },
1377	},
1378},
1379};
1380
1381/* BMIPS5000 */
1382static const struct mips_perf_event bmips5000_cache_map
1383				[PERF_COUNT_HW_CACHE_MAX]
1384				[PERF_COUNT_HW_CACHE_OP_MAX]
1385				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1386[C(L1D)] = {
1387	/*
1388	 * Like some other architectures (e.g. ARM), the performance
1389	 * counters don't differentiate between read and write
1390	 * accesses/misses, so this isn't strictly correct, but it's the
1391	 * best we can do. Writes and reads get combined.
1392	 */
1393	[C(OP_READ)] = {
1394		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1395		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1396	},
1397	[C(OP_WRITE)] = {
1398		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1399		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1400	},
1401},
1402[C(L1I)] = {
1403	[C(OP_READ)] = {
1404		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1405		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1406	},
1407	[C(OP_WRITE)] = {
1408		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1409		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1410	},
1411	[C(OP_PREFETCH)] = {
1412		[C(RESULT_ACCESS)]	= { 23, CNTR_EVEN, T },
1413		/*
1414		 * Note that MIPS has only "hit" events countable for
1415		 * the prefetch operation.
1416		 */
1417	},
1418},
1419[C(LL)] = {
1420	[C(OP_READ)] = {
1421		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1422		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1423	},
1424	[C(OP_WRITE)] = {
1425		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1426		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1427	},
1428},
1429[C(BPU)] = {
1430	/* Using the same code for *HW_BRANCH* */
1431	[C(OP_READ)] = {
1432		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1433	},
1434	[C(OP_WRITE)] = {
1435		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1436	},
1437},
1438};
1439
1440static const struct mips_perf_event octeon_cache_map
1441				[PERF_COUNT_HW_CACHE_MAX]
1442				[PERF_COUNT_HW_CACHE_OP_MAX]
1443				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1444[C(L1D)] = {
1445	[C(OP_READ)] = {
1446		[C(RESULT_ACCESS)]	= { 0x2b, CNTR_ALL },
1447		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL },
1448	},
1449	[C(OP_WRITE)] = {
1450		[C(RESULT_ACCESS)]	= { 0x30, CNTR_ALL },
1451	},
1452},
1453[C(L1I)] = {
1454	[C(OP_READ)] = {
1455		[C(RESULT_ACCESS)]	= { 0x18, CNTR_ALL },
1456	},
1457	[C(OP_PREFETCH)] = {
1458		[C(RESULT_ACCESS)]	= { 0x19, CNTR_ALL },
1459	},
1460},
1461[C(DTLB)] = {
1462	/*
1463	 * Only general DTLB misses are counted use the same event for
1464	 * read and write.
1465	 */
1466	[C(OP_READ)] = {
1467		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1468	},
1469	[C(OP_WRITE)] = {
1470		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1471	},
1472},
1473[C(ITLB)] = {
1474	[C(OP_READ)] = {
1475		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL },
1476	},
1477},
1478};
1479
1480static const struct mips_perf_event xlp_cache_map
1481				[PERF_COUNT_HW_CACHE_MAX]
1482				[PERF_COUNT_HW_CACHE_OP_MAX]
1483				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1484[C(L1D)] = {
1485	[C(OP_READ)] = {
1486		[C(RESULT_ACCESS)]	= { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1487		[C(RESULT_MISS)]	= { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1488	},
1489	[C(OP_WRITE)] = {
1490		[C(RESULT_ACCESS)]	= { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1491		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1492	},
1493},
1494[C(L1I)] = {
1495	[C(OP_READ)] = {
1496		[C(RESULT_ACCESS)]	= { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1497		[C(RESULT_MISS)]	= { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1498	},
1499},
1500[C(LL)] = {
1501	[C(OP_READ)] = {
1502		[C(RESULT_ACCESS)]	= { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1503		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1504	},
1505	[C(OP_WRITE)] = {
1506		[C(RESULT_ACCESS)]	= { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1507		[C(RESULT_MISS)]	= { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1508	},
1509},
1510[C(DTLB)] = {
1511	/*
1512	 * Only general DTLB misses are counted use the same event for
1513	 * read and write.
1514	 */
1515	[C(OP_READ)] = {
1516		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1517	},
1518	[C(OP_WRITE)] = {
1519		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1520	},
1521},
1522[C(ITLB)] = {
1523	[C(OP_READ)] = {
1524		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1525	},
1526	[C(OP_WRITE)] = {
1527		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1528	},
1529},
1530[C(BPU)] = {
1531	[C(OP_READ)] = {
1532		[C(RESULT_MISS)]	= { 0x25, CNTR_ALL },
1533	},
1534},
1535};
1536
1537static int __hw_perf_event_init(struct perf_event *event)
1538{
1539	struct perf_event_attr *attr = &event->attr;
1540	struct hw_perf_event *hwc = &event->hw;
1541	const struct mips_perf_event *pev;
1542	int err;
1543
1544	/* Returning MIPS event descriptor for generic perf event. */
1545	if (PERF_TYPE_HARDWARE == event->attr.type) {
1546		if (event->attr.config >= PERF_COUNT_HW_MAX)
1547			return -EINVAL;
1548		pev = mipspmu_map_general_event(event->attr.config);
1549	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1550		pev = mipspmu_map_cache_event(event->attr.config);
1551	} else if (PERF_TYPE_RAW == event->attr.type) {
1552		/* We are working on the global raw event. */
1553		mutex_lock(&raw_event_mutex);
1554		pev = mipspmu.map_raw_event(event->attr.config);
1555	} else {
1556		/* The event type is not (yet) supported. */
1557		return -EOPNOTSUPP;
1558	}
1559
1560	if (IS_ERR(pev)) {
1561		if (PERF_TYPE_RAW == event->attr.type)
1562			mutex_unlock(&raw_event_mutex);
1563		return PTR_ERR(pev);
1564	}
1565
1566	/*
1567	 * We allow max flexibility on how each individual counter shared
1568	 * by the single CPU operates (the mode exclusion and the range).
1569	 */
1570	hwc->config_base = MIPS_PERFCTRL_IE;
1571
1572	hwc->event_base = mipspmu_perf_event_encode(pev);
1573	if (PERF_TYPE_RAW == event->attr.type)
1574		mutex_unlock(&raw_event_mutex);
1575
1576	if (!attr->exclude_user)
1577		hwc->config_base |= MIPS_PERFCTRL_U;
1578	if (!attr->exclude_kernel) {
1579		hwc->config_base |= MIPS_PERFCTRL_K;
1580		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1581		hwc->config_base |= MIPS_PERFCTRL_EXL;
1582	}
1583	if (!attr->exclude_hv)
1584		hwc->config_base |= MIPS_PERFCTRL_S;
1585
1586	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1587	/*
1588	 * The event can belong to another cpu. We do not assign a local
1589	 * counter for it for now.
1590	 */
1591	hwc->idx = -1;
1592	hwc->config = 0;
1593
1594	if (!hwc->sample_period) {
1595		hwc->sample_period  = mipspmu.max_period;
1596		hwc->last_period    = hwc->sample_period;
1597		local64_set(&hwc->period_left, hwc->sample_period);
1598	}
1599
1600	err = 0;
1601	if (event->group_leader != event)
1602		err = validate_group(event);
1603
1604	event->destroy = hw_perf_event_destroy;
1605
1606	if (err)
1607		event->destroy(event);
1608
1609	return err;
1610}
1611
1612static void pause_local_counters(void)
1613{
1614	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1615	int ctr = mipspmu.num_counters;
1616	unsigned long flags;
1617
1618	local_irq_save(flags);
1619	do {
1620		ctr--;
1621		cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1622		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1623					 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1624	} while (ctr > 0);
1625	local_irq_restore(flags);
1626}
1627
1628static void resume_local_counters(void)
1629{
1630	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1631	int ctr = mipspmu.num_counters;
1632
1633	do {
1634		ctr--;
1635		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1636	} while (ctr > 0);
1637}
1638
1639static int mipsxx_pmu_handle_shared_irq(void)
1640{
1641	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1642	struct perf_sample_data data;
1643	unsigned int counters = mipspmu.num_counters;
1644	u64 counter;
1645	int n, handled = IRQ_NONE;
1646	struct pt_regs *regs;
1647
1648	if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1649		return handled;
1650	/*
1651	 * First we pause the local counters, so that when we are locked
1652	 * here, the counters are all paused. When it gets locked due to
1653	 * perf_disable(), the timer interrupt handler will be delayed.
1654	 *
1655	 * See also mipsxx_pmu_start().
1656	 */
1657	pause_local_counters();
1658#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1659	read_lock(&pmuint_rwlock);
1660#endif
1661
1662	regs = get_irq_regs();
1663
1664	perf_sample_data_init(&data, 0, 0);
1665
1666	for (n = counters - 1; n >= 0; n--) {
1667		if (!test_bit(n, cpuc->used_mask))
1668			continue;
1669
1670		counter = mipspmu.read_counter(n);
1671		if (!(counter & mipspmu.overflow))
1672			continue;
1673
1674		handle_associated_event(cpuc, n, &data, regs);
1675		handled = IRQ_HANDLED;
1676	}
1677
1678#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1679	read_unlock(&pmuint_rwlock);
1680#endif
1681	resume_local_counters();
1682
1683	/*
1684	 * Do all the work for the pending perf events. We can do this
1685	 * in here because the performance counter interrupt is a regular
1686	 * interrupt, not NMI.
1687	 */
1688	if (handled == IRQ_HANDLED)
1689		irq_work_run();
1690
1691	return handled;
1692}
1693
1694static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1695{
1696	return mipsxx_pmu_handle_shared_irq();
1697}
1698
1699/* 24K */
1700#define IS_BOTH_COUNTERS_24K_EVENT(b)					\
1701	((b) == 0 || (b) == 1 || (b) == 11)
1702
1703/* 34K */
1704#define IS_BOTH_COUNTERS_34K_EVENT(b)					\
1705	((b) == 0 || (b) == 1 || (b) == 11)
1706#ifdef CONFIG_MIPS_MT_SMP
1707#define IS_RANGE_P_34K_EVENT(r, b)					\
1708	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1709	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
1710	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
1711	 ((b) >= 64 && (b) <= 67))
1712#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1713#endif
1714
1715/* 74K */
1716#define IS_BOTH_COUNTERS_74K_EVENT(b)					\
1717	((b) == 0 || (b) == 1)
1718
1719/* proAptiv */
1720#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)				\
1721	((b) == 0 || (b) == 1)
1722/* P5600 */
1723#define IS_BOTH_COUNTERS_P5600_EVENT(b)					\
1724	((b) == 0 || (b) == 1)
1725
1726/* 1004K */
1727#define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
1728	((b) == 0 || (b) == 1 || (b) == 11)
1729#ifdef CONFIG_MIPS_MT_SMP
1730#define IS_RANGE_P_1004K_EVENT(r, b)					\
1731	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1732	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
1733	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
1734	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
1735	 ((b) >= 64 && (b) <= 67))
1736#define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
1737#endif
1738
1739/* interAptiv */
1740#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)				\
1741	((b) == 0 || (b) == 1 || (b) == 11)
1742#ifdef CONFIG_MIPS_MT_SMP
1743/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1744#define IS_RANGE_P_INTERAPTIV_EVENT(r, b)				\
1745	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1746	 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||		\
1747	 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&		\
1748	 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||		\
1749	 ((b) >= 64 && (b) <= 67))
1750#define IS_RANGE_V_INTERAPTIV_EVENT(r)	((r) == 47 || (r) == 175)
1751#endif
1752
1753/* BMIPS5000 */
1754#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)				\
1755	((b) == 0 || (b) == 1)
1756
1757
1758/*
1759 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1760 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1761 * indicate the even/odd bank selector. So, for example, when user wants to take
1762 * the Event Num of 15 for odd counters (by referring to the user manual), then
1763 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1764 * to be used.
1765 *
1766 * Some newer cores have even more events, in which case the user can use raw
1767 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1768 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1769 */
1770static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1771{
1772	/* currently most cores have 7-bit event numbers */
1773	int pmu_type;
1774	unsigned int raw_id = config & 0xff;
1775	unsigned int base_id = raw_id & 0x7f;
1776
1777	switch (current_cpu_type()) {
1778	case CPU_24K:
1779		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1780			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1781		else
1782			raw_event.cntr_mask =
1783				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1784#ifdef CONFIG_MIPS_MT_SMP
1785		/*
1786		 * This is actually doing nothing. Non-multithreading
1787		 * CPUs will not check and calculate the range.
1788		 */
1789		raw_event.range = P;
1790#endif
1791		break;
1792	case CPU_34K:
1793		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1794			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1795		else
1796			raw_event.cntr_mask =
1797				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1798#ifdef CONFIG_MIPS_MT_SMP
1799		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1800			raw_event.range = P;
1801		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1802			raw_event.range = V;
1803		else
1804			raw_event.range = T;
1805#endif
1806		break;
1807	case CPU_74K:
1808	case CPU_1074K:
1809		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1810			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1811		else
1812			raw_event.cntr_mask =
1813				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1814#ifdef CONFIG_MIPS_MT_SMP
1815		raw_event.range = P;
1816#endif
1817		break;
1818	case CPU_PROAPTIV:
1819		if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1820			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1821		else
1822			raw_event.cntr_mask =
1823				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1824#ifdef CONFIG_MIPS_MT_SMP
1825		raw_event.range = P;
1826#endif
1827		break;
1828	case CPU_P5600:
1829	case CPU_P6600:
1830		/* 8-bit event numbers */
1831		raw_id = config & 0x1ff;
1832		base_id = raw_id & 0xff;
1833		if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1834			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1835		else
1836			raw_event.cntr_mask =
1837				raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1838#ifdef CONFIG_MIPS_MT_SMP
1839		raw_event.range = P;
1840#endif
1841		break;
1842	case CPU_I6400:
1843	case CPU_I6500:
1844		/* 8-bit event numbers */
1845		base_id = config & 0xff;
1846		raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1847		break;
1848	case CPU_1004K:
1849		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1850			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1851		else
1852			raw_event.cntr_mask =
1853				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1854#ifdef CONFIG_MIPS_MT_SMP
1855		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1856			raw_event.range = P;
1857		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1858			raw_event.range = V;
1859		else
1860			raw_event.range = T;
1861#endif
1862		break;
1863	case CPU_INTERAPTIV:
1864		if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1865			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1866		else
1867			raw_event.cntr_mask =
1868				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1869#ifdef CONFIG_MIPS_MT_SMP
1870		if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1871			raw_event.range = P;
1872		else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1873			raw_event.range = V;
1874		else
1875			raw_event.range = T;
1876#endif
1877		break;
1878	case CPU_BMIPS5000:
1879		if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1880			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1881		else
1882			raw_event.cntr_mask =
1883				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1884		break;
1885	case CPU_LOONGSON64:
1886		pmu_type = get_loongson3_pmu_type();
1887
1888		switch (pmu_type) {
1889		case LOONGSON_PMU_TYPE1:
1890			raw_event.cntr_mask =
1891				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1892			break;
1893		case LOONGSON_PMU_TYPE2:
1894			base_id = config & 0x3ff;
1895			raw_event.cntr_mask = CNTR_ALL;
1896
1897			if ((base_id >= 1 && base_id < 28) ||
1898				(base_id >= 64 && base_id < 90) ||
1899				(base_id >= 128 && base_id < 164) ||
1900				(base_id >= 192 && base_id < 200) ||
1901				(base_id >= 256 && base_id < 275) ||
1902				(base_id >= 320 && base_id < 361) ||
1903				(base_id >= 384 && base_id < 574))
1904				break;
1905
1906			return ERR_PTR(-EOPNOTSUPP);
1907		case LOONGSON_PMU_TYPE3:
1908			base_id = raw_id;
1909			raw_event.cntr_mask = CNTR_ALL;
1910			break;
1911		}
1912		break;
1913	}
1914
1915	raw_event.event_id = base_id;
1916
1917	return &raw_event;
1918}
1919
1920static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1921{
1922	unsigned int raw_id = config & 0xff;
1923	unsigned int base_id = raw_id & 0x7f;
1924
1925
1926	raw_event.cntr_mask = CNTR_ALL;
1927	raw_event.event_id = base_id;
1928
1929	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1930		if (base_id > 0x42)
1931			return ERR_PTR(-EOPNOTSUPP);
1932	} else {
1933		if (base_id > 0x3a)
1934			return ERR_PTR(-EOPNOTSUPP);
 
 
 
1935	}
1936
1937	switch (base_id) {
1938	case 0x00:
1939	case 0x0f:
1940	case 0x1e:
1941	case 0x1f:
1942	case 0x2f:
1943	case 0x34:
1944	case 0x3b ... 0x3f:
1945		return ERR_PTR(-EOPNOTSUPP);
1946	default:
1947		break;
1948	}
1949
1950	return &raw_event;
1951}
1952
1953static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1954{
1955	unsigned int raw_id = config & 0xff;
1956
1957	/* Only 1-63 are defined */
1958	if ((raw_id < 0x01) || (raw_id > 0x3f))
1959		return ERR_PTR(-EOPNOTSUPP);
1960
1961	raw_event.cntr_mask = CNTR_ALL;
1962	raw_event.event_id = raw_id;
1963
1964	return &raw_event;
1965}
1966
1967static int __init
1968init_hw_perf_events(void)
1969{
1970	int counters, irq, pmu_type;
1971
1972	pr_info("Performance counters: ");
1973
1974	counters = n_counters();
1975	if (counters == 0) {
1976		pr_cont("No available PMU.\n");
1977		return -ENODEV;
1978	}
1979
1980#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1981	if (!cpu_has_mipsmt_pertccounters)
1982		counters = counters_total_to_per_cpu(counters);
1983#endif
1984
1985	if (get_c0_perfcount_int)
1986		irq = get_c0_perfcount_int();
1987	else if (cp0_perfcount_irq >= 0)
1988		irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1989	else
1990		irq = -1;
1991
1992	mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1993
1994	switch (current_cpu_type()) {
1995	case CPU_24K:
1996		mipspmu.name = "mips/24K";
1997		mipspmu.general_event_map = &mipsxxcore_event_map;
1998		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1999		break;
2000	case CPU_34K:
2001		mipspmu.name = "mips/34K";
2002		mipspmu.general_event_map = &mipsxxcore_event_map;
2003		mipspmu.cache_event_map = &mipsxxcore_cache_map;
2004		break;
2005	case CPU_74K:
2006		mipspmu.name = "mips/74K";
2007		mipspmu.general_event_map = &mipsxxcore_event_map2;
2008		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
2009		break;
2010	case CPU_PROAPTIV:
2011		mipspmu.name = "mips/proAptiv";
2012		mipspmu.general_event_map = &mipsxxcore_event_map2;
2013		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
2014		break;
2015	case CPU_P5600:
2016		mipspmu.name = "mips/P5600";
2017		mipspmu.general_event_map = &mipsxxcore_event_map2;
2018		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
2019		break;
2020	case CPU_P6600:
2021		mipspmu.name = "mips/P6600";
2022		mipspmu.general_event_map = &mipsxxcore_event_map2;
2023		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
2024		break;
2025	case CPU_I6400:
2026		mipspmu.name = "mips/I6400";
2027		mipspmu.general_event_map = &i6x00_event_map;
2028		mipspmu.cache_event_map = &i6x00_cache_map;
2029		break;
2030	case CPU_I6500:
2031		mipspmu.name = "mips/I6500";
2032		mipspmu.general_event_map = &i6x00_event_map;
2033		mipspmu.cache_event_map = &i6x00_cache_map;
2034		break;
2035	case CPU_1004K:
2036		mipspmu.name = "mips/1004K";
2037		mipspmu.general_event_map = &mipsxxcore_event_map;
2038		mipspmu.cache_event_map = &mipsxxcore_cache_map;
2039		break;
2040	case CPU_1074K:
2041		mipspmu.name = "mips/1074K";
2042		mipspmu.general_event_map = &mipsxxcore_event_map;
2043		mipspmu.cache_event_map = &mipsxxcore_cache_map;
2044		break;
2045	case CPU_INTERAPTIV:
2046		mipspmu.name = "mips/interAptiv";
2047		mipspmu.general_event_map = &mipsxxcore_event_map;
2048		mipspmu.cache_event_map = &mipsxxcore_cache_map;
2049		break;
2050	case CPU_LOONGSON32:
2051		mipspmu.name = "mips/loongson1";
2052		mipspmu.general_event_map = &mipsxxcore_event_map;
2053		mipspmu.cache_event_map = &mipsxxcore_cache_map;
2054		break;
2055	case CPU_LOONGSON64:
2056		mipspmu.name = "mips/loongson3";
2057		pmu_type = get_loongson3_pmu_type();
2058
2059		switch (pmu_type) {
2060		case LOONGSON_PMU_TYPE1:
2061			counters = 2;
2062			mipspmu.general_event_map = &loongson3_event_map1;
2063			mipspmu.cache_event_map = &loongson3_cache_map1;
2064			break;
2065		case LOONGSON_PMU_TYPE2:
2066			counters = 4;
2067			mipspmu.general_event_map = &loongson3_event_map2;
2068			mipspmu.cache_event_map = &loongson3_cache_map2;
2069			break;
2070		case LOONGSON_PMU_TYPE3:
2071			counters = 4;
2072			mipspmu.general_event_map = &loongson3_event_map3;
2073			mipspmu.cache_event_map = &loongson3_cache_map3;
2074			break;
2075		}
2076		break;
2077	case CPU_CAVIUM_OCTEON:
2078	case CPU_CAVIUM_OCTEON_PLUS:
2079	case CPU_CAVIUM_OCTEON2:
 
2080		mipspmu.name = "octeon";
2081		mipspmu.general_event_map = &octeon_event_map;
2082		mipspmu.cache_event_map = &octeon_cache_map;
2083		mipspmu.map_raw_event = octeon_pmu_map_raw_event;
2084		break;
2085	case CPU_BMIPS5000:
2086		mipspmu.name = "BMIPS5000";
2087		mipspmu.general_event_map = &bmips5000_event_map;
2088		mipspmu.cache_event_map = &bmips5000_cache_map;
2089		break;
2090	case CPU_XLP:
2091		mipspmu.name = "xlp";
2092		mipspmu.general_event_map = &xlp_event_map;
2093		mipspmu.cache_event_map = &xlp_cache_map;
2094		mipspmu.map_raw_event = xlp_pmu_map_raw_event;
2095		break;
2096	default:
2097		pr_cont("Either hardware does not support performance "
2098			"counters, or not yet implemented.\n");
2099		return -ENODEV;
2100	}
2101
2102	mipspmu.num_counters = counters;
2103	mipspmu.irq = irq;
2104
2105	if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) {
2106		if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
2107			counter_bits = 48;
2108			mipspmu.max_period = (1ULL << 47) - 1;
2109			mipspmu.valid_count = (1ULL << 47) - 1;
2110			mipspmu.overflow = 1ULL << 47;
2111		} else {
2112			counter_bits = 64;
2113			mipspmu.max_period = (1ULL << 63) - 1;
2114			mipspmu.valid_count = (1ULL << 63) - 1;
2115			mipspmu.overflow = 1ULL << 63;
2116		}
2117		mipspmu.read_counter = mipsxx_pmu_read_counter_64;
2118		mipspmu.write_counter = mipsxx_pmu_write_counter_64;
2119	} else {
2120		counter_bits = 32;
2121		mipspmu.max_period = (1ULL << 31) - 1;
2122		mipspmu.valid_count = (1ULL << 31) - 1;
2123		mipspmu.overflow = 1ULL << 31;
2124		mipspmu.read_counter = mipsxx_pmu_read_counter;
2125		mipspmu.write_counter = mipsxx_pmu_write_counter;
2126	}
2127
2128	on_each_cpu(reset_counters, (void *)(long)counters, 1);
2129
2130	pr_cont("%s PMU enabled, %d %d-bit counters available to each "
2131		"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
2132		irq < 0 ? " (share with timer interrupt)" : "");
2133
2134	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2135
2136	return 0;
2137}
2138early_initcall(init_hw_perf_events);