Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * core.c - Kernel Live Patching Core
   4 *
   5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
   6 * Copyright (C) 2014 SUSE
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/module.h>
  12#include <linux/kernel.h>
  13#include <linux/mutex.h>
  14#include <linux/slab.h>
  15#include <linux/list.h>
  16#include <linux/kallsyms.h>
  17#include <linux/livepatch.h>
  18#include <linux/elf.h>
  19#include <linux/moduleloader.h>
  20#include <linux/completion.h>
  21#include <linux/memory.h>
  22#include <linux/rcupdate.h>
  23#include <asm/cacheflush.h>
  24#include "core.h"
  25#include "patch.h"
  26#include "state.h"
  27#include "transition.h"
  28
  29/*
  30 * klp_mutex is a coarse lock which serializes access to klp data.  All
  31 * accesses to klp-related variables and structures must have mutex protection,
  32 * except within the following functions which carefully avoid the need for it:
  33 *
  34 * - klp_ftrace_handler()
  35 * - klp_update_patch_state()
  36 */
  37DEFINE_MUTEX(klp_mutex);
  38
  39/*
  40 * Actively used patches: enabled or in transition. Note that replaced
  41 * or disabled patches are not listed even though the related kernel
  42 * module still can be loaded.
  43 */
  44LIST_HEAD(klp_patches);
  45
  46static struct kobject *klp_root_kobj;
  47
  48static bool klp_is_module(struct klp_object *obj)
  49{
  50	return obj->name;
  51}
  52
  53/* sets obj->mod if object is not vmlinux and module is found */
  54static void klp_find_object_module(struct klp_object *obj)
  55{
  56	struct module *mod;
  57
  58	if (!klp_is_module(obj))
  59		return;
  60
  61	rcu_read_lock_sched();
  62	/*
  63	 * We do not want to block removal of patched modules and therefore
  64	 * we do not take a reference here. The patches are removed by
  65	 * klp_module_going() instead.
  66	 */
  67	mod = find_module(obj->name);
  68	/*
  69	 * Do not mess work of klp_module_coming() and klp_module_going().
  70	 * Note that the patch might still be needed before klp_module_going()
  71	 * is called. Module functions can be called even in the GOING state
  72	 * until mod->exit() finishes. This is especially important for
  73	 * patches that modify semantic of the functions.
  74	 */
  75	if (mod && mod->klp_alive)
  76		obj->mod = mod;
  77
  78	rcu_read_unlock_sched();
  79}
  80
  81static bool klp_initialized(void)
  82{
  83	return !!klp_root_kobj;
  84}
  85
  86static struct klp_func *klp_find_func(struct klp_object *obj,
  87				      struct klp_func *old_func)
  88{
  89	struct klp_func *func;
  90
  91	klp_for_each_func(obj, func) {
  92		if ((strcmp(old_func->old_name, func->old_name) == 0) &&
  93		    (old_func->old_sympos == func->old_sympos)) {
  94			return func;
  95		}
  96	}
  97
  98	return NULL;
  99}
 100
 101static struct klp_object *klp_find_object(struct klp_patch *patch,
 102					  struct klp_object *old_obj)
 103{
 104	struct klp_object *obj;
 105
 106	klp_for_each_object(patch, obj) {
 107		if (klp_is_module(old_obj)) {
 108			if (klp_is_module(obj) &&
 109			    strcmp(old_obj->name, obj->name) == 0) {
 110				return obj;
 111			}
 112		} else if (!klp_is_module(obj)) {
 113			return obj;
 114		}
 115	}
 116
 117	return NULL;
 118}
 119
 120struct klp_find_arg {
 121	const char *objname;
 122	const char *name;
 123	unsigned long addr;
 124	unsigned long count;
 125	unsigned long pos;
 126};
 127
 128static int klp_find_callback(void *data, const char *name,
 129			     struct module *mod, unsigned long addr)
 130{
 131	struct klp_find_arg *args = data;
 132
 133	if ((mod && !args->objname) || (!mod && args->objname))
 134		return 0;
 135
 136	if (strcmp(args->name, name))
 137		return 0;
 138
 139	if (args->objname && strcmp(args->objname, mod->name))
 140		return 0;
 141
 142	args->addr = addr;
 143	args->count++;
 144
 145	/*
 146	 * Finish the search when the symbol is found for the desired position
 147	 * or the position is not defined for a non-unique symbol.
 148	 */
 149	if ((args->pos && (args->count == args->pos)) ||
 150	    (!args->pos && (args->count > 1)))
 151		return 1;
 152
 153	return 0;
 154}
 155
 156static int klp_find_object_symbol(const char *objname, const char *name,
 157				  unsigned long sympos, unsigned long *addr)
 158{
 159	struct klp_find_arg args = {
 160		.objname = objname,
 161		.name = name,
 162		.addr = 0,
 163		.count = 0,
 164		.pos = sympos,
 165	};
 166
 
 167	if (objname)
 168		module_kallsyms_on_each_symbol(klp_find_callback, &args);
 169	else
 170		kallsyms_on_each_symbol(klp_find_callback, &args);
 
 171
 172	/*
 173	 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
 174	 * otherwise ensure the symbol position count matches sympos.
 175	 */
 176	if (args.addr == 0)
 177		pr_err("symbol '%s' not found in symbol table\n", name);
 178	else if (args.count > 1 && sympos == 0) {
 179		pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
 180		       name, objname);
 181	} else if (sympos != args.count && sympos > 0) {
 182		pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
 183		       sympos, name, objname ? objname : "vmlinux");
 184	} else {
 185		*addr = args.addr;
 186		return 0;
 187	}
 188
 189	*addr = 0;
 190	return -EINVAL;
 191}
 192
 193static int klp_resolve_symbols(Elf64_Shdr *sechdrs, const char *strtab,
 194			       unsigned int symndx, Elf_Shdr *relasec,
 195			       const char *sec_objname)
 196{
 197	int i, cnt, ret;
 198	char sym_objname[MODULE_NAME_LEN];
 199	char sym_name[KSYM_NAME_LEN];
 200	Elf_Rela *relas;
 201	Elf_Sym *sym;
 202	unsigned long sympos, addr;
 203	bool sym_vmlinux;
 204	bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
 205
 206	/*
 207	 * Since the field widths for sym_objname and sym_name in the sscanf()
 208	 * call are hard-coded and correspond to MODULE_NAME_LEN and
 209	 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
 210	 * and KSYM_NAME_LEN have the values we expect them to have.
 211	 *
 212	 * Because the value of MODULE_NAME_LEN can differ among architectures,
 213	 * we use the smallest/strictest upper bound possible (56, based on
 214	 * the current definition of MODULE_NAME_LEN) to prevent overflows.
 215	 */
 216	BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 128);
 217
 218	relas = (Elf_Rela *) relasec->sh_addr;
 219	/* For each rela in this klp relocation section */
 220	for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
 221		sym = (Elf64_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
 222		if (sym->st_shndx != SHN_LIVEPATCH) {
 223			pr_err("symbol %s is not marked as a livepatch symbol\n",
 224			       strtab + sym->st_name);
 225			return -EINVAL;
 226		}
 227
 228		/* Format: .klp.sym.sym_objname.sym_name,sympos */
 229		cnt = sscanf(strtab + sym->st_name,
 230			     ".klp.sym.%55[^.].%127[^,],%lu",
 231			     sym_objname, sym_name, &sympos);
 232		if (cnt != 3) {
 233			pr_err("symbol %s has an incorrectly formatted name\n",
 234			       strtab + sym->st_name);
 235			return -EINVAL;
 236		}
 237
 238		sym_vmlinux = !strcmp(sym_objname, "vmlinux");
 239
 240		/*
 241		 * Prevent module-specific KLP rela sections from referencing
 242		 * vmlinux symbols.  This helps prevent ordering issues with
 243		 * module special section initializations.  Presumably such
 244		 * symbols are exported and normal relas can be used instead.
 245		 */
 246		if (!sec_vmlinux && sym_vmlinux) {
 247			pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section",
 248			       sym_name);
 249			return -EINVAL;
 250		}
 251
 252		/* klp_find_object_symbol() treats a NULL objname as vmlinux */
 253		ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
 254					     sym_name, sympos, &addr);
 255		if (ret)
 256			return ret;
 257
 258		sym->st_value = addr;
 259	}
 260
 261	return 0;
 262}
 263
 264/*
 265 * At a high-level, there are two types of klp relocation sections: those which
 266 * reference symbols which live in vmlinux; and those which reference symbols
 267 * which live in other modules.  This function is called for both types:
 268 *
 269 * 1) When a klp module itself loads, the module code calls this function to
 270 *    write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
 271 *    These relocations are written to the klp module text to allow the patched
 272 *    code/data to reference unexported vmlinux symbols.  They're written as
 273 *    early as possible to ensure that other module init code (.e.g.,
 274 *    jump_label_apply_nops) can access any unexported vmlinux symbols which
 275 *    might be referenced by the klp module's special sections.
 276 *
 277 * 2) When a to-be-patched module loads -- or is already loaded when a
 278 *    corresponding klp module loads -- klp code calls this function to write
 279 *    module-specific klp relocations (.klp.rela.{module}.* sections).  These
 280 *    are written to the klp module text to allow the patched code/data to
 281 *    reference symbols which live in the to-be-patched module or one of its
 282 *    module dependencies.  Exported symbols are supported, in addition to
 283 *    unexported symbols, in order to enable late module patching, which allows
 284 *    the to-be-patched module to be loaded and patched sometime *after* the
 285 *    klp module is loaded.
 286 */
 287int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
 288			     const char *shstrtab, const char *strtab,
 289			     unsigned int symndx, unsigned int secndx,
 290			     const char *objname)
 291{
 292	int cnt, ret;
 293	char sec_objname[MODULE_NAME_LEN];
 294	Elf_Shdr *sec = sechdrs + secndx;
 295
 296	/*
 297	 * Format: .klp.rela.sec_objname.section_name
 298	 * See comment in klp_resolve_symbols() for an explanation
 299	 * of the selected field width value.
 300	 */
 301	cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
 302		     sec_objname);
 303	if (cnt != 1) {
 304		pr_err("section %s has an incorrectly formatted name\n",
 305		       shstrtab + sec->sh_name);
 306		return -EINVAL;
 307	}
 308
 309	if (strcmp(objname ? objname : "vmlinux", sec_objname))
 310		return 0;
 311
 312	ret = klp_resolve_symbols(sechdrs, strtab, symndx, sec, sec_objname);
 313	if (ret)
 314		return ret;
 315
 316	return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
 317}
 318
 319/*
 320 * Sysfs Interface
 321 *
 322 * /sys/kernel/livepatch
 323 * /sys/kernel/livepatch/<patch>
 324 * /sys/kernel/livepatch/<patch>/enabled
 325 * /sys/kernel/livepatch/<patch>/transition
 326 * /sys/kernel/livepatch/<patch>/force
 327 * /sys/kernel/livepatch/<patch>/<object>
 328 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
 329 */
 330static int __klp_disable_patch(struct klp_patch *patch);
 331
 332static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
 333			     const char *buf, size_t count)
 334{
 335	struct klp_patch *patch;
 336	int ret;
 337	bool enabled;
 338
 339	ret = kstrtobool(buf, &enabled);
 340	if (ret)
 341		return ret;
 342
 343	patch = container_of(kobj, struct klp_patch, kobj);
 344
 345	mutex_lock(&klp_mutex);
 346
 347	if (patch->enabled == enabled) {
 348		/* already in requested state */
 349		ret = -EINVAL;
 350		goto out;
 351	}
 352
 353	/*
 354	 * Allow to reverse a pending transition in both ways. It might be
 355	 * necessary to complete the transition without forcing and breaking
 356	 * the system integrity.
 357	 *
 358	 * Do not allow to re-enable a disabled patch.
 359	 */
 360	if (patch == klp_transition_patch)
 361		klp_reverse_transition();
 362	else if (!enabled)
 363		ret = __klp_disable_patch(patch);
 364	else
 365		ret = -EINVAL;
 366
 367out:
 368	mutex_unlock(&klp_mutex);
 369
 370	if (ret)
 371		return ret;
 372	return count;
 373}
 374
 375static ssize_t enabled_show(struct kobject *kobj,
 376			    struct kobj_attribute *attr, char *buf)
 377{
 378	struct klp_patch *patch;
 379
 380	patch = container_of(kobj, struct klp_patch, kobj);
 381	return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled);
 382}
 383
 384static ssize_t transition_show(struct kobject *kobj,
 385			       struct kobj_attribute *attr, char *buf)
 386{
 387	struct klp_patch *patch;
 388
 389	patch = container_of(kobj, struct klp_patch, kobj);
 390	return snprintf(buf, PAGE_SIZE-1, "%d\n",
 391			patch == klp_transition_patch);
 392}
 393
 394static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
 395			   const char *buf, size_t count)
 396{
 397	struct klp_patch *patch;
 398	int ret;
 399	bool val;
 400
 401	ret = kstrtobool(buf, &val);
 402	if (ret)
 403		return ret;
 404
 405	if (!val)
 406		return count;
 407
 408	mutex_lock(&klp_mutex);
 409
 410	patch = container_of(kobj, struct klp_patch, kobj);
 411	if (patch != klp_transition_patch) {
 412		mutex_unlock(&klp_mutex);
 413		return -EINVAL;
 414	}
 415
 416	klp_force_transition();
 417
 418	mutex_unlock(&klp_mutex);
 419
 420	return count;
 421}
 422
 423static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
 424static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
 425static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
 426static struct attribute *klp_patch_attrs[] = {
 427	&enabled_kobj_attr.attr,
 428	&transition_kobj_attr.attr,
 429	&force_kobj_attr.attr,
 430	NULL
 431};
 432ATTRIBUTE_GROUPS(klp_patch);
 433
 434static void klp_free_object_dynamic(struct klp_object *obj)
 435{
 436	kfree(obj->name);
 437	kfree(obj);
 438}
 439
 440static void klp_init_func_early(struct klp_object *obj,
 441				struct klp_func *func);
 442static void klp_init_object_early(struct klp_patch *patch,
 443				  struct klp_object *obj);
 444
 445static struct klp_object *klp_alloc_object_dynamic(const char *name,
 446						   struct klp_patch *patch)
 447{
 448	struct klp_object *obj;
 449
 450	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
 451	if (!obj)
 452		return NULL;
 453
 454	if (name) {
 455		obj->name = kstrdup(name, GFP_KERNEL);
 456		if (!obj->name) {
 457			kfree(obj);
 458			return NULL;
 459		}
 460	}
 461
 462	klp_init_object_early(patch, obj);
 463	obj->dynamic = true;
 464
 465	return obj;
 466}
 467
 468static void klp_free_func_nop(struct klp_func *func)
 469{
 470	kfree(func->old_name);
 471	kfree(func);
 472}
 473
 474static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
 475					   struct klp_object *obj)
 476{
 477	struct klp_func *func;
 478
 479	func = kzalloc(sizeof(*func), GFP_KERNEL);
 480	if (!func)
 481		return NULL;
 482
 483	if (old_func->old_name) {
 484		func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
 485		if (!func->old_name) {
 486			kfree(func);
 487			return NULL;
 488		}
 489	}
 490
 491	klp_init_func_early(obj, func);
 492	/*
 493	 * func->new_func is same as func->old_func. These addresses are
 494	 * set when the object is loaded, see klp_init_object_loaded().
 495	 */
 496	func->old_sympos = old_func->old_sympos;
 497	func->nop = true;
 498
 499	return func;
 500}
 501
 502static int klp_add_object_nops(struct klp_patch *patch,
 503			       struct klp_object *old_obj)
 504{
 505	struct klp_object *obj;
 506	struct klp_func *func, *old_func;
 507
 508	obj = klp_find_object(patch, old_obj);
 509
 510	if (!obj) {
 511		obj = klp_alloc_object_dynamic(old_obj->name, patch);
 512		if (!obj)
 513			return -ENOMEM;
 514	}
 515
 516	klp_for_each_func(old_obj, old_func) {
 517		func = klp_find_func(obj, old_func);
 518		if (func)
 519			continue;
 520
 521		func = klp_alloc_func_nop(old_func, obj);
 522		if (!func)
 523			return -ENOMEM;
 524	}
 525
 526	return 0;
 527}
 528
 529/*
 530 * Add 'nop' functions which simply return to the caller to run
 531 * the original function. The 'nop' functions are added to a
 532 * patch to facilitate a 'replace' mode.
 533 */
 534static int klp_add_nops(struct klp_patch *patch)
 535{
 536	struct klp_patch *old_patch;
 537	struct klp_object *old_obj;
 538
 539	klp_for_each_patch(old_patch) {
 540		klp_for_each_object(old_patch, old_obj) {
 541			int err;
 542
 543			err = klp_add_object_nops(patch, old_obj);
 544			if (err)
 545				return err;
 546		}
 547	}
 548
 549	return 0;
 550}
 551
 552static void klp_kobj_release_patch(struct kobject *kobj)
 553{
 554	struct klp_patch *patch;
 555
 556	patch = container_of(kobj, struct klp_patch, kobj);
 557	complete(&patch->finish);
 558}
 559
 560static struct kobj_type klp_ktype_patch = {
 561	.release = klp_kobj_release_patch,
 562	.sysfs_ops = &kobj_sysfs_ops,
 563	.default_groups = klp_patch_groups,
 564};
 565
 566static void klp_kobj_release_object(struct kobject *kobj)
 567{
 568	struct klp_object *obj;
 569
 570	obj = container_of(kobj, struct klp_object, kobj);
 571
 572	if (obj->dynamic)
 573		klp_free_object_dynamic(obj);
 574}
 575
 576static struct kobj_type klp_ktype_object = {
 577	.release = klp_kobj_release_object,
 578	.sysfs_ops = &kobj_sysfs_ops,
 579};
 580
 581static void klp_kobj_release_func(struct kobject *kobj)
 582{
 583	struct klp_func *func;
 584
 585	func = container_of(kobj, struct klp_func, kobj);
 586
 587	if (func->nop)
 588		klp_free_func_nop(func);
 589}
 590
 591static struct kobj_type klp_ktype_func = {
 592	.release = klp_kobj_release_func,
 593	.sysfs_ops = &kobj_sysfs_ops,
 594};
 595
 596static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
 597{
 598	struct klp_func *func, *tmp_func;
 599
 600	klp_for_each_func_safe(obj, func, tmp_func) {
 601		if (nops_only && !func->nop)
 602			continue;
 603
 604		list_del(&func->node);
 605		kobject_put(&func->kobj);
 606	}
 607}
 608
 609/* Clean up when a patched object is unloaded */
 610static void klp_free_object_loaded(struct klp_object *obj)
 611{
 612	struct klp_func *func;
 613
 614	obj->mod = NULL;
 615
 616	klp_for_each_func(obj, func) {
 617		func->old_func = NULL;
 618
 619		if (func->nop)
 620			func->new_func = NULL;
 621	}
 622}
 623
 624static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
 625{
 626	struct klp_object *obj, *tmp_obj;
 627
 628	klp_for_each_object_safe(patch, obj, tmp_obj) {
 629		__klp_free_funcs(obj, nops_only);
 630
 631		if (nops_only && !obj->dynamic)
 632			continue;
 633
 634		list_del(&obj->node);
 635		kobject_put(&obj->kobj);
 636	}
 637}
 638
 639static void klp_free_objects(struct klp_patch *patch)
 640{
 641	__klp_free_objects(patch, false);
 642}
 643
 644static void klp_free_objects_dynamic(struct klp_patch *patch)
 645{
 646	__klp_free_objects(patch, true);
 647}
 648
 649/*
 650 * This function implements the free operations that can be called safely
 651 * under klp_mutex.
 652 *
 653 * The operation must be completed by calling klp_free_patch_finish()
 654 * outside klp_mutex.
 655 */
 656static void klp_free_patch_start(struct klp_patch *patch)
 657{
 658	if (!list_empty(&patch->list))
 659		list_del(&patch->list);
 660
 661	klp_free_objects(patch);
 662}
 663
 664/*
 665 * This function implements the free part that must be called outside
 666 * klp_mutex.
 667 *
 668 * It must be called after klp_free_patch_start(). And it has to be
 669 * the last function accessing the livepatch structures when the patch
 670 * gets disabled.
 671 */
 672static void klp_free_patch_finish(struct klp_patch *patch)
 673{
 674	/*
 675	 * Avoid deadlock with enabled_store() sysfs callback by
 676	 * calling this outside klp_mutex. It is safe because
 677	 * this is called when the patch gets disabled and it
 678	 * cannot get enabled again.
 679	 */
 680	kobject_put(&patch->kobj);
 681	wait_for_completion(&patch->finish);
 682
 683	/* Put the module after the last access to struct klp_patch. */
 684	if (!patch->forced)
 685		module_put(patch->mod);
 686}
 687
 688/*
 689 * The livepatch might be freed from sysfs interface created by the patch.
 690 * This work allows to wait until the interface is destroyed in a separate
 691 * context.
 692 */
 693static void klp_free_patch_work_fn(struct work_struct *work)
 694{
 695	struct klp_patch *patch =
 696		container_of(work, struct klp_patch, free_work);
 697
 698	klp_free_patch_finish(patch);
 699}
 700
 701void klp_free_patch_async(struct klp_patch *patch)
 702{
 703	klp_free_patch_start(patch);
 704	schedule_work(&patch->free_work);
 705}
 706
 707void klp_free_replaced_patches_async(struct klp_patch *new_patch)
 708{
 709	struct klp_patch *old_patch, *tmp_patch;
 710
 711	klp_for_each_patch_safe(old_patch, tmp_patch) {
 712		if (old_patch == new_patch)
 713			return;
 714		klp_free_patch_async(old_patch);
 715	}
 716}
 717
 718static int klp_init_func(struct klp_object *obj, struct klp_func *func)
 719{
 720	if (!func->old_name)
 721		return -EINVAL;
 722
 723	/*
 724	 * NOPs get the address later. The patched module must be loaded,
 725	 * see klp_init_object_loaded().
 726	 */
 727	if (!func->new_func && !func->nop)
 728		return -EINVAL;
 729
 730	if (strlen(func->old_name) >= KSYM_NAME_LEN)
 731		return -EINVAL;
 732
 733	INIT_LIST_HEAD(&func->stack_node);
 734	func->patched = false;
 735	func->transition = false;
 736
 737	/* The format for the sysfs directory is <function,sympos> where sympos
 738	 * is the nth occurrence of this symbol in kallsyms for the patched
 739	 * object. If the user selects 0 for old_sympos, then 1 will be used
 740	 * since a unique symbol will be the first occurrence.
 741	 */
 742	return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
 743			   func->old_name,
 744			   func->old_sympos ? func->old_sympos : 1);
 745}
 746
 747static int klp_apply_object_relocs(struct klp_patch *patch,
 748				   struct klp_object *obj)
 749{
 750	int i, ret;
 751	struct klp_modinfo *info = patch->mod->klp_info;
 752
 753	for (i = 1; i < info->hdr.e_shnum; i++) {
 754		Elf_Shdr *sec = info->sechdrs + i;
 755
 756		if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
 757			continue;
 758
 759		ret = klp_apply_section_relocs(patch->mod, info->sechdrs,
 760					       info->secstrings,
 761					       patch->mod->core_kallsyms.strtab,
 762					       info->symndx, i, obj->name);
 763		if (ret)
 764			return ret;
 765	}
 766
 767	return 0;
 768}
 769
 770/* parts of the initialization that is done only when the object is loaded */
 771static int klp_init_object_loaded(struct klp_patch *patch,
 772				  struct klp_object *obj)
 773{
 774	struct klp_func *func;
 775	int ret;
 776
 777	if (klp_is_module(obj)) {
 778		/*
 779		 * Only write module-specific relocations here
 780		 * (.klp.rela.{module}.*).  vmlinux-specific relocations were
 781		 * written earlier during the initialization of the klp module
 782		 * itself.
 783		 */
 784		ret = klp_apply_object_relocs(patch, obj);
 785		if (ret)
 786			return ret;
 787	}
 788
 789	klp_for_each_func(obj, func) {
 790		ret = klp_find_object_symbol(obj->name, func->old_name,
 791					     func->old_sympos,
 792					     (unsigned long *)&func->old_func);
 793		if (ret)
 794			return ret;
 795
 796		ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
 797						  &func->old_size, NULL);
 798		if (!ret) {
 799			pr_err("kallsyms size lookup failed for '%s'\n",
 800			       func->old_name);
 801			return -ENOENT;
 802		}
 803
 804		if (func->nop)
 805			func->new_func = func->old_func;
 806
 807		ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
 808						  &func->new_size, NULL);
 809		if (!ret) {
 810			pr_err("kallsyms size lookup failed for '%s' replacement\n",
 811			       func->old_name);
 812			return -ENOENT;
 813		}
 814	}
 815
 816	return 0;
 817}
 818
 819static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
 820{
 821	struct klp_func *func;
 822	int ret;
 823	const char *name;
 824
 825	if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
 826		return -EINVAL;
 827
 828	obj->patched = false;
 829	obj->mod = NULL;
 830
 831	klp_find_object_module(obj);
 832
 833	name = klp_is_module(obj) ? obj->name : "vmlinux";
 834	ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
 835	if (ret)
 836		return ret;
 837
 838	klp_for_each_func(obj, func) {
 839		ret = klp_init_func(obj, func);
 840		if (ret)
 841			return ret;
 842	}
 843
 844	if (klp_is_object_loaded(obj))
 845		ret = klp_init_object_loaded(patch, obj);
 846
 847	return ret;
 848}
 849
 850static void klp_init_func_early(struct klp_object *obj,
 851				struct klp_func *func)
 852{
 853	kobject_init(&func->kobj, &klp_ktype_func);
 854	list_add_tail(&func->node, &obj->func_list);
 855}
 856
 857static void klp_init_object_early(struct klp_patch *patch,
 858				  struct klp_object *obj)
 859{
 860	INIT_LIST_HEAD(&obj->func_list);
 861	kobject_init(&obj->kobj, &klp_ktype_object);
 862	list_add_tail(&obj->node, &patch->obj_list);
 863}
 864
 865static int klp_init_patch_early(struct klp_patch *patch)
 866{
 867	struct klp_object *obj;
 868	struct klp_func *func;
 869
 870	if (!patch->objs)
 871		return -EINVAL;
 872
 873	INIT_LIST_HEAD(&patch->list);
 874	INIT_LIST_HEAD(&patch->obj_list);
 875	kobject_init(&patch->kobj, &klp_ktype_patch);
 876	patch->enabled = false;
 877	patch->forced = false;
 878	INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
 879	init_completion(&patch->finish);
 880
 881	klp_for_each_object_static(patch, obj) {
 882		if (!obj->funcs)
 883			return -EINVAL;
 884
 885		klp_init_object_early(patch, obj);
 886
 887		klp_for_each_func_static(obj, func) {
 888			klp_init_func_early(obj, func);
 889		}
 890	}
 891
 892	if (!try_module_get(patch->mod))
 893		return -ENODEV;
 894
 895	return 0;
 896}
 897
 898static int klp_init_patch(struct klp_patch *patch)
 899{
 900	struct klp_object *obj;
 901	int ret;
 902
 903	ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
 904	if (ret)
 905		return ret;
 906
 907	if (patch->replace) {
 908		ret = klp_add_nops(patch);
 909		if (ret)
 910			return ret;
 911	}
 912
 913	klp_for_each_object(patch, obj) {
 914		ret = klp_init_object(patch, obj);
 915		if (ret)
 916			return ret;
 917	}
 918
 919	list_add_tail(&patch->list, &klp_patches);
 920
 921	return 0;
 922}
 923
 924static int __klp_disable_patch(struct klp_patch *patch)
 925{
 926	struct klp_object *obj;
 927
 928	if (WARN_ON(!patch->enabled))
 929		return -EINVAL;
 930
 931	if (klp_transition_patch)
 932		return -EBUSY;
 933
 934	klp_init_transition(patch, KLP_UNPATCHED);
 935
 936	klp_for_each_object(patch, obj)
 937		if (obj->patched)
 938			klp_pre_unpatch_callback(obj);
 939
 940	/*
 941	 * Enforce the order of the func->transition writes in
 942	 * klp_init_transition() and the TIF_PATCH_PENDING writes in
 943	 * klp_start_transition().  In the rare case where klp_ftrace_handler()
 944	 * is called shortly after klp_update_patch_state() switches the task,
 945	 * this ensures the handler sees that func->transition is set.
 946	 */
 947	smp_wmb();
 948
 949	klp_start_transition();
 950	patch->enabled = false;
 951	klp_try_complete_transition();
 952
 953	return 0;
 954}
 955
 956static int __klp_enable_patch(struct klp_patch *patch)
 957{
 958	struct klp_object *obj;
 959	int ret;
 960
 961	if (klp_transition_patch)
 962		return -EBUSY;
 963
 964	if (WARN_ON(patch->enabled))
 965		return -EINVAL;
 966
 967	pr_notice("enabling patch '%s'\n", patch->mod->name);
 968
 969	klp_init_transition(patch, KLP_PATCHED);
 970
 971	/*
 972	 * Enforce the order of the func->transition writes in
 973	 * klp_init_transition() and the ops->func_stack writes in
 974	 * klp_patch_object(), so that klp_ftrace_handler() will see the
 975	 * func->transition updates before the handler is registered and the
 976	 * new funcs become visible to the handler.
 977	 */
 978	smp_wmb();
 979
 980	klp_for_each_object(patch, obj) {
 981		if (!klp_is_object_loaded(obj))
 982			continue;
 983
 984		ret = klp_pre_patch_callback(obj);
 985		if (ret) {
 986			pr_warn("pre-patch callback failed for object '%s'\n",
 987				klp_is_module(obj) ? obj->name : "vmlinux");
 988			goto err;
 989		}
 990
 991		ret = klp_patch_object(obj);
 992		if (ret) {
 993			pr_warn("failed to patch object '%s'\n",
 994				klp_is_module(obj) ? obj->name : "vmlinux");
 995			goto err;
 996		}
 997	}
 998
 999	klp_start_transition();
1000	patch->enabled = true;
1001	klp_try_complete_transition();
1002
1003	return 0;
1004err:
1005	pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1006
1007	klp_cancel_transition();
1008	return ret;
1009}
1010
1011/**
1012 * klp_enable_patch() - enable the livepatch
1013 * @patch:	patch to be enabled
1014 *
1015 * Initializes the data structure associated with the patch, creates the sysfs
1016 * interface, performs the needed symbol lookups and code relocations,
1017 * registers the patched functions with ftrace.
1018 *
1019 * This function is supposed to be called from the livepatch module_init()
1020 * callback.
1021 *
1022 * Return: 0 on success, otherwise error
1023 */
1024int klp_enable_patch(struct klp_patch *patch)
1025{
1026	int ret;
1027
1028	if (!patch || !patch->mod)
1029		return -EINVAL;
1030
1031	if (!is_livepatch_module(patch->mod)) {
1032		pr_err("module %s is not marked as a livepatch module\n",
1033		       patch->mod->name);
1034		return -EINVAL;
1035	}
1036
1037	if (!klp_initialized())
1038		return -ENODEV;
1039
1040	if (!klp_have_reliable_stack()) {
1041		pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1042		pr_warn("The livepatch transition may never complete.\n");
1043	}
1044
1045	mutex_lock(&klp_mutex);
1046
1047	if (!klp_is_patch_compatible(patch)) {
1048		pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1049			patch->mod->name);
1050		mutex_unlock(&klp_mutex);
1051		return -EINVAL;
1052	}
1053
1054	ret = klp_init_patch_early(patch);
1055	if (ret) {
1056		mutex_unlock(&klp_mutex);
1057		return ret;
1058	}
1059
1060	ret = klp_init_patch(patch);
1061	if (ret)
1062		goto err;
1063
1064	ret = __klp_enable_patch(patch);
1065	if (ret)
1066		goto err;
1067
1068	mutex_unlock(&klp_mutex);
1069
1070	return 0;
1071
1072err:
1073	klp_free_patch_start(patch);
1074
1075	mutex_unlock(&klp_mutex);
1076
1077	klp_free_patch_finish(patch);
1078
1079	return ret;
1080}
1081EXPORT_SYMBOL_GPL(klp_enable_patch);
1082
1083/*
1084 * This function unpatches objects from the replaced livepatches.
1085 *
1086 * We could be pretty aggressive here. It is called in the situation where
1087 * these structures are no longer accessed from the ftrace handler.
1088 * All functions are redirected by the klp_transition_patch. They
1089 * use either a new code or they are in the original code because
1090 * of the special nop function patches.
1091 *
1092 * The only exception is when the transition was forced. In this case,
1093 * klp_ftrace_handler() might still see the replaced patch on the stack.
1094 * Fortunately, it is carefully designed to work with removed functions
1095 * thanks to RCU. We only have to keep the patches on the system. Also
1096 * this is handled transparently by patch->module_put.
1097 */
1098void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1099{
1100	struct klp_patch *old_patch;
1101
1102	klp_for_each_patch(old_patch) {
1103		if (old_patch == new_patch)
1104			return;
1105
1106		old_patch->enabled = false;
1107		klp_unpatch_objects(old_patch);
1108	}
1109}
1110
1111/*
1112 * This function removes the dynamically allocated 'nop' functions.
1113 *
1114 * We could be pretty aggressive. NOPs do not change the existing
1115 * behavior except for adding unnecessary delay by the ftrace handler.
1116 *
1117 * It is safe even when the transition was forced. The ftrace handler
1118 * will see a valid ops->func_stack entry thanks to RCU.
1119 *
1120 * We could even free the NOPs structures. They must be the last entry
1121 * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1122 * It does the same as klp_synchronize_transition() to make sure that
1123 * nobody is inside the ftrace handler once the operation finishes.
1124 *
1125 * IMPORTANT: It must be called right after removing the replaced patches!
1126 */
1127void klp_discard_nops(struct klp_patch *new_patch)
1128{
1129	klp_unpatch_objects_dynamic(klp_transition_patch);
1130	klp_free_objects_dynamic(klp_transition_patch);
1131}
1132
1133/*
1134 * Remove parts of patches that touch a given kernel module. The list of
1135 * patches processed might be limited. When limit is NULL, all patches
1136 * will be handled.
1137 */
1138static void klp_cleanup_module_patches_limited(struct module *mod,
1139					       struct klp_patch *limit)
1140{
1141	struct klp_patch *patch;
1142	struct klp_object *obj;
1143
1144	klp_for_each_patch(patch) {
1145		if (patch == limit)
1146			break;
1147
1148		klp_for_each_object(patch, obj) {
1149			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1150				continue;
1151
1152			if (patch != klp_transition_patch)
1153				klp_pre_unpatch_callback(obj);
1154
1155			pr_notice("reverting patch '%s' on unloading module '%s'\n",
1156				  patch->mod->name, obj->mod->name);
1157			klp_unpatch_object(obj);
1158
1159			klp_post_unpatch_callback(obj);
1160
1161			klp_free_object_loaded(obj);
1162			break;
1163		}
1164	}
1165}
1166
1167int klp_module_coming(struct module *mod)
1168{
1169	int ret;
1170	struct klp_patch *patch;
1171	struct klp_object *obj;
1172
1173	if (WARN_ON(mod->state != MODULE_STATE_COMING))
1174		return -EINVAL;
1175
1176	if (!strcmp(mod->name, "vmlinux")) {
1177		pr_err("vmlinux.ko: invalid module name");
1178		return -EINVAL;
1179	}
1180
1181	mutex_lock(&klp_mutex);
1182	/*
1183	 * Each module has to know that klp_module_coming()
1184	 * has been called. We never know what module will
1185	 * get patched by a new patch.
1186	 */
1187	mod->klp_alive = true;
1188
1189	klp_for_each_patch(patch) {
1190		klp_for_each_object(patch, obj) {
1191			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1192				continue;
1193
1194			obj->mod = mod;
1195
1196			ret = klp_init_object_loaded(patch, obj);
1197			if (ret) {
1198				pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1199					patch->mod->name, obj->mod->name, ret);
1200				goto err;
1201			}
1202
1203			pr_notice("applying patch '%s' to loading module '%s'\n",
1204				  patch->mod->name, obj->mod->name);
1205
1206			ret = klp_pre_patch_callback(obj);
1207			if (ret) {
1208				pr_warn("pre-patch callback failed for object '%s'\n",
1209					obj->name);
1210				goto err;
1211			}
1212
1213			ret = klp_patch_object(obj);
1214			if (ret) {
1215				pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1216					patch->mod->name, obj->mod->name, ret);
1217
1218				klp_post_unpatch_callback(obj);
1219				goto err;
1220			}
1221
1222			if (patch != klp_transition_patch)
1223				klp_post_patch_callback(obj);
1224
1225			break;
1226		}
1227	}
1228
1229	mutex_unlock(&klp_mutex);
1230
1231	return 0;
1232
1233err:
1234	/*
1235	 * If a patch is unsuccessfully applied, return
1236	 * error to the module loader.
1237	 */
1238	pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1239		patch->mod->name, obj->mod->name, obj->mod->name);
1240	mod->klp_alive = false;
1241	obj->mod = NULL;
1242	klp_cleanup_module_patches_limited(mod, patch);
1243	mutex_unlock(&klp_mutex);
1244
1245	return ret;
1246}
1247
1248void klp_module_going(struct module *mod)
1249{
1250	if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1251		    mod->state != MODULE_STATE_COMING))
1252		return;
1253
1254	mutex_lock(&klp_mutex);
1255	/*
1256	 * Each module has to know that klp_module_going()
1257	 * has been called. We never know what module will
1258	 * get patched by a new patch.
1259	 */
1260	mod->klp_alive = false;
1261
1262	klp_cleanup_module_patches_limited(mod, NULL);
1263
1264	mutex_unlock(&klp_mutex);
1265}
1266
1267static int __init klp_init(void)
1268{
1269	klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1270	if (!klp_root_kobj)
1271		return -ENOMEM;
1272
1273	return 0;
1274}
1275
1276module_init(klp_init);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * core.c - Kernel Live Patching Core
   4 *
   5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
   6 * Copyright (C) 2014 SUSE
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/module.h>
  12#include <linux/kernel.h>
  13#include <linux/mutex.h>
  14#include <linux/slab.h>
  15#include <linux/list.h>
  16#include <linux/kallsyms.h>
  17#include <linux/livepatch.h>
  18#include <linux/elf.h>
  19#include <linux/moduleloader.h>
  20#include <linux/completion.h>
  21#include <linux/memory.h>
 
  22#include <asm/cacheflush.h>
  23#include "core.h"
  24#include "patch.h"
  25#include "state.h"
  26#include "transition.h"
  27
  28/*
  29 * klp_mutex is a coarse lock which serializes access to klp data.  All
  30 * accesses to klp-related variables and structures must have mutex protection,
  31 * except within the following functions which carefully avoid the need for it:
  32 *
  33 * - klp_ftrace_handler()
  34 * - klp_update_patch_state()
  35 */
  36DEFINE_MUTEX(klp_mutex);
  37
  38/*
  39 * Actively used patches: enabled or in transition. Note that replaced
  40 * or disabled patches are not listed even though the related kernel
  41 * module still can be loaded.
  42 */
  43LIST_HEAD(klp_patches);
  44
  45static struct kobject *klp_root_kobj;
  46
  47static bool klp_is_module(struct klp_object *obj)
  48{
  49	return obj->name;
  50}
  51
  52/* sets obj->mod if object is not vmlinux and module is found */
  53static void klp_find_object_module(struct klp_object *obj)
  54{
  55	struct module *mod;
  56
  57	if (!klp_is_module(obj))
  58		return;
  59
  60	mutex_lock(&module_mutex);
  61	/*
  62	 * We do not want to block removal of patched modules and therefore
  63	 * we do not take a reference here. The patches are removed by
  64	 * klp_module_going() instead.
  65	 */
  66	mod = find_module(obj->name);
  67	/*
  68	 * Do not mess work of klp_module_coming() and klp_module_going().
  69	 * Note that the patch might still be needed before klp_module_going()
  70	 * is called. Module functions can be called even in the GOING state
  71	 * until mod->exit() finishes. This is especially important for
  72	 * patches that modify semantic of the functions.
  73	 */
  74	if (mod && mod->klp_alive)
  75		obj->mod = mod;
  76
  77	mutex_unlock(&module_mutex);
  78}
  79
  80static bool klp_initialized(void)
  81{
  82	return !!klp_root_kobj;
  83}
  84
  85static struct klp_func *klp_find_func(struct klp_object *obj,
  86				      struct klp_func *old_func)
  87{
  88	struct klp_func *func;
  89
  90	klp_for_each_func(obj, func) {
  91		if ((strcmp(old_func->old_name, func->old_name) == 0) &&
  92		    (old_func->old_sympos == func->old_sympos)) {
  93			return func;
  94		}
  95	}
  96
  97	return NULL;
  98}
  99
 100static struct klp_object *klp_find_object(struct klp_patch *patch,
 101					  struct klp_object *old_obj)
 102{
 103	struct klp_object *obj;
 104
 105	klp_for_each_object(patch, obj) {
 106		if (klp_is_module(old_obj)) {
 107			if (klp_is_module(obj) &&
 108			    strcmp(old_obj->name, obj->name) == 0) {
 109				return obj;
 110			}
 111		} else if (!klp_is_module(obj)) {
 112			return obj;
 113		}
 114	}
 115
 116	return NULL;
 117}
 118
 119struct klp_find_arg {
 120	const char *objname;
 121	const char *name;
 122	unsigned long addr;
 123	unsigned long count;
 124	unsigned long pos;
 125};
 126
 127static int klp_find_callback(void *data, const char *name,
 128			     struct module *mod, unsigned long addr)
 129{
 130	struct klp_find_arg *args = data;
 131
 132	if ((mod && !args->objname) || (!mod && args->objname))
 133		return 0;
 134
 135	if (strcmp(args->name, name))
 136		return 0;
 137
 138	if (args->objname && strcmp(args->objname, mod->name))
 139		return 0;
 140
 141	args->addr = addr;
 142	args->count++;
 143
 144	/*
 145	 * Finish the search when the symbol is found for the desired position
 146	 * or the position is not defined for a non-unique symbol.
 147	 */
 148	if ((args->pos && (args->count == args->pos)) ||
 149	    (!args->pos && (args->count > 1)))
 150		return 1;
 151
 152	return 0;
 153}
 154
 155static int klp_find_object_symbol(const char *objname, const char *name,
 156				  unsigned long sympos, unsigned long *addr)
 157{
 158	struct klp_find_arg args = {
 159		.objname = objname,
 160		.name = name,
 161		.addr = 0,
 162		.count = 0,
 163		.pos = sympos,
 164	};
 165
 166	mutex_lock(&module_mutex);
 167	if (objname)
 168		module_kallsyms_on_each_symbol(klp_find_callback, &args);
 169	else
 170		kallsyms_on_each_symbol(klp_find_callback, &args);
 171	mutex_unlock(&module_mutex);
 172
 173	/*
 174	 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
 175	 * otherwise ensure the symbol position count matches sympos.
 176	 */
 177	if (args.addr == 0)
 178		pr_err("symbol '%s' not found in symbol table\n", name);
 179	else if (args.count > 1 && sympos == 0) {
 180		pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
 181		       name, objname);
 182	} else if (sympos != args.count && sympos > 0) {
 183		pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
 184		       sympos, name, objname ? objname : "vmlinux");
 185	} else {
 186		*addr = args.addr;
 187		return 0;
 188	}
 189
 190	*addr = 0;
 191	return -EINVAL;
 192}
 193
 194static int klp_resolve_symbols(Elf64_Shdr *sechdrs, const char *strtab,
 195			       unsigned int symndx, Elf_Shdr *relasec,
 196			       const char *sec_objname)
 197{
 198	int i, cnt, ret;
 199	char sym_objname[MODULE_NAME_LEN];
 200	char sym_name[KSYM_NAME_LEN];
 201	Elf_Rela *relas;
 202	Elf_Sym *sym;
 203	unsigned long sympos, addr;
 204	bool sym_vmlinux;
 205	bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
 206
 207	/*
 208	 * Since the field widths for sym_objname and sym_name in the sscanf()
 209	 * call are hard-coded and correspond to MODULE_NAME_LEN and
 210	 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
 211	 * and KSYM_NAME_LEN have the values we expect them to have.
 212	 *
 213	 * Because the value of MODULE_NAME_LEN can differ among architectures,
 214	 * we use the smallest/strictest upper bound possible (56, based on
 215	 * the current definition of MODULE_NAME_LEN) to prevent overflows.
 216	 */
 217	BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 128);
 218
 219	relas = (Elf_Rela *) relasec->sh_addr;
 220	/* For each rela in this klp relocation section */
 221	for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
 222		sym = (Elf64_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
 223		if (sym->st_shndx != SHN_LIVEPATCH) {
 224			pr_err("symbol %s is not marked as a livepatch symbol\n",
 225			       strtab + sym->st_name);
 226			return -EINVAL;
 227		}
 228
 229		/* Format: .klp.sym.sym_objname.sym_name,sympos */
 230		cnt = sscanf(strtab + sym->st_name,
 231			     ".klp.sym.%55[^.].%127[^,],%lu",
 232			     sym_objname, sym_name, &sympos);
 233		if (cnt != 3) {
 234			pr_err("symbol %s has an incorrectly formatted name\n",
 235			       strtab + sym->st_name);
 236			return -EINVAL;
 237		}
 238
 239		sym_vmlinux = !strcmp(sym_objname, "vmlinux");
 240
 241		/*
 242		 * Prevent module-specific KLP rela sections from referencing
 243		 * vmlinux symbols.  This helps prevent ordering issues with
 244		 * module special section initializations.  Presumably such
 245		 * symbols are exported and normal relas can be used instead.
 246		 */
 247		if (!sec_vmlinux && sym_vmlinux) {
 248			pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section",
 249			       sym_name);
 250			return -EINVAL;
 251		}
 252
 253		/* klp_find_object_symbol() treats a NULL objname as vmlinux */
 254		ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
 255					     sym_name, sympos, &addr);
 256		if (ret)
 257			return ret;
 258
 259		sym->st_value = addr;
 260	}
 261
 262	return 0;
 263}
 264
 265/*
 266 * At a high-level, there are two types of klp relocation sections: those which
 267 * reference symbols which live in vmlinux; and those which reference symbols
 268 * which live in other modules.  This function is called for both types:
 269 *
 270 * 1) When a klp module itself loads, the module code calls this function to
 271 *    write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
 272 *    These relocations are written to the klp module text to allow the patched
 273 *    code/data to reference unexported vmlinux symbols.  They're written as
 274 *    early as possible to ensure that other module init code (.e.g.,
 275 *    jump_label_apply_nops) can access any unexported vmlinux symbols which
 276 *    might be referenced by the klp module's special sections.
 277 *
 278 * 2) When a to-be-patched module loads -- or is already loaded when a
 279 *    corresponding klp module loads -- klp code calls this function to write
 280 *    module-specific klp relocations (.klp.rela.{module}.* sections).  These
 281 *    are written to the klp module text to allow the patched code/data to
 282 *    reference symbols which live in the to-be-patched module or one of its
 283 *    module dependencies.  Exported symbols are supported, in addition to
 284 *    unexported symbols, in order to enable late module patching, which allows
 285 *    the to-be-patched module to be loaded and patched sometime *after* the
 286 *    klp module is loaded.
 287 */
 288int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
 289			     const char *shstrtab, const char *strtab,
 290			     unsigned int symndx, unsigned int secndx,
 291			     const char *objname)
 292{
 293	int cnt, ret;
 294	char sec_objname[MODULE_NAME_LEN];
 295	Elf_Shdr *sec = sechdrs + secndx;
 296
 297	/*
 298	 * Format: .klp.rela.sec_objname.section_name
 299	 * See comment in klp_resolve_symbols() for an explanation
 300	 * of the selected field width value.
 301	 */
 302	cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
 303		     sec_objname);
 304	if (cnt != 1) {
 305		pr_err("section %s has an incorrectly formatted name\n",
 306		       shstrtab + sec->sh_name);
 307		return -EINVAL;
 308	}
 309
 310	if (strcmp(objname ? objname : "vmlinux", sec_objname))
 311		return 0;
 312
 313	ret = klp_resolve_symbols(sechdrs, strtab, symndx, sec, sec_objname);
 314	if (ret)
 315		return ret;
 316
 317	return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
 318}
 319
 320/*
 321 * Sysfs Interface
 322 *
 323 * /sys/kernel/livepatch
 324 * /sys/kernel/livepatch/<patch>
 325 * /sys/kernel/livepatch/<patch>/enabled
 326 * /sys/kernel/livepatch/<patch>/transition
 327 * /sys/kernel/livepatch/<patch>/force
 328 * /sys/kernel/livepatch/<patch>/<object>
 329 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
 330 */
 331static int __klp_disable_patch(struct klp_patch *patch);
 332
 333static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
 334			     const char *buf, size_t count)
 335{
 336	struct klp_patch *patch;
 337	int ret;
 338	bool enabled;
 339
 340	ret = kstrtobool(buf, &enabled);
 341	if (ret)
 342		return ret;
 343
 344	patch = container_of(kobj, struct klp_patch, kobj);
 345
 346	mutex_lock(&klp_mutex);
 347
 348	if (patch->enabled == enabled) {
 349		/* already in requested state */
 350		ret = -EINVAL;
 351		goto out;
 352	}
 353
 354	/*
 355	 * Allow to reverse a pending transition in both ways. It might be
 356	 * necessary to complete the transition without forcing and breaking
 357	 * the system integrity.
 358	 *
 359	 * Do not allow to re-enable a disabled patch.
 360	 */
 361	if (patch == klp_transition_patch)
 362		klp_reverse_transition();
 363	else if (!enabled)
 364		ret = __klp_disable_patch(patch);
 365	else
 366		ret = -EINVAL;
 367
 368out:
 369	mutex_unlock(&klp_mutex);
 370
 371	if (ret)
 372		return ret;
 373	return count;
 374}
 375
 376static ssize_t enabled_show(struct kobject *kobj,
 377			    struct kobj_attribute *attr, char *buf)
 378{
 379	struct klp_patch *patch;
 380
 381	patch = container_of(kobj, struct klp_patch, kobj);
 382	return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled);
 383}
 384
 385static ssize_t transition_show(struct kobject *kobj,
 386			       struct kobj_attribute *attr, char *buf)
 387{
 388	struct klp_patch *patch;
 389
 390	patch = container_of(kobj, struct klp_patch, kobj);
 391	return snprintf(buf, PAGE_SIZE-1, "%d\n",
 392			patch == klp_transition_patch);
 393}
 394
 395static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
 396			   const char *buf, size_t count)
 397{
 398	struct klp_patch *patch;
 399	int ret;
 400	bool val;
 401
 402	ret = kstrtobool(buf, &val);
 403	if (ret)
 404		return ret;
 405
 406	if (!val)
 407		return count;
 408
 409	mutex_lock(&klp_mutex);
 410
 411	patch = container_of(kobj, struct klp_patch, kobj);
 412	if (patch != klp_transition_patch) {
 413		mutex_unlock(&klp_mutex);
 414		return -EINVAL;
 415	}
 416
 417	klp_force_transition();
 418
 419	mutex_unlock(&klp_mutex);
 420
 421	return count;
 422}
 423
 424static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
 425static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
 426static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
 427static struct attribute *klp_patch_attrs[] = {
 428	&enabled_kobj_attr.attr,
 429	&transition_kobj_attr.attr,
 430	&force_kobj_attr.attr,
 431	NULL
 432};
 433ATTRIBUTE_GROUPS(klp_patch);
 434
 435static void klp_free_object_dynamic(struct klp_object *obj)
 436{
 437	kfree(obj->name);
 438	kfree(obj);
 439}
 440
 441static void klp_init_func_early(struct klp_object *obj,
 442				struct klp_func *func);
 443static void klp_init_object_early(struct klp_patch *patch,
 444				  struct klp_object *obj);
 445
 446static struct klp_object *klp_alloc_object_dynamic(const char *name,
 447						   struct klp_patch *patch)
 448{
 449	struct klp_object *obj;
 450
 451	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
 452	if (!obj)
 453		return NULL;
 454
 455	if (name) {
 456		obj->name = kstrdup(name, GFP_KERNEL);
 457		if (!obj->name) {
 458			kfree(obj);
 459			return NULL;
 460		}
 461	}
 462
 463	klp_init_object_early(patch, obj);
 464	obj->dynamic = true;
 465
 466	return obj;
 467}
 468
 469static void klp_free_func_nop(struct klp_func *func)
 470{
 471	kfree(func->old_name);
 472	kfree(func);
 473}
 474
 475static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
 476					   struct klp_object *obj)
 477{
 478	struct klp_func *func;
 479
 480	func = kzalloc(sizeof(*func), GFP_KERNEL);
 481	if (!func)
 482		return NULL;
 483
 484	if (old_func->old_name) {
 485		func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
 486		if (!func->old_name) {
 487			kfree(func);
 488			return NULL;
 489		}
 490	}
 491
 492	klp_init_func_early(obj, func);
 493	/*
 494	 * func->new_func is same as func->old_func. These addresses are
 495	 * set when the object is loaded, see klp_init_object_loaded().
 496	 */
 497	func->old_sympos = old_func->old_sympos;
 498	func->nop = true;
 499
 500	return func;
 501}
 502
 503static int klp_add_object_nops(struct klp_patch *patch,
 504			       struct klp_object *old_obj)
 505{
 506	struct klp_object *obj;
 507	struct klp_func *func, *old_func;
 508
 509	obj = klp_find_object(patch, old_obj);
 510
 511	if (!obj) {
 512		obj = klp_alloc_object_dynamic(old_obj->name, patch);
 513		if (!obj)
 514			return -ENOMEM;
 515	}
 516
 517	klp_for_each_func(old_obj, old_func) {
 518		func = klp_find_func(obj, old_func);
 519		if (func)
 520			continue;
 521
 522		func = klp_alloc_func_nop(old_func, obj);
 523		if (!func)
 524			return -ENOMEM;
 525	}
 526
 527	return 0;
 528}
 529
 530/*
 531 * Add 'nop' functions which simply return to the caller to run
 532 * the original function. The 'nop' functions are added to a
 533 * patch to facilitate a 'replace' mode.
 534 */
 535static int klp_add_nops(struct klp_patch *patch)
 536{
 537	struct klp_patch *old_patch;
 538	struct klp_object *old_obj;
 539
 540	klp_for_each_patch(old_patch) {
 541		klp_for_each_object(old_patch, old_obj) {
 542			int err;
 543
 544			err = klp_add_object_nops(patch, old_obj);
 545			if (err)
 546				return err;
 547		}
 548	}
 549
 550	return 0;
 551}
 552
 553static void klp_kobj_release_patch(struct kobject *kobj)
 554{
 555	struct klp_patch *patch;
 556
 557	patch = container_of(kobj, struct klp_patch, kobj);
 558	complete(&patch->finish);
 559}
 560
 561static struct kobj_type klp_ktype_patch = {
 562	.release = klp_kobj_release_patch,
 563	.sysfs_ops = &kobj_sysfs_ops,
 564	.default_groups = klp_patch_groups,
 565};
 566
 567static void klp_kobj_release_object(struct kobject *kobj)
 568{
 569	struct klp_object *obj;
 570
 571	obj = container_of(kobj, struct klp_object, kobj);
 572
 573	if (obj->dynamic)
 574		klp_free_object_dynamic(obj);
 575}
 576
 577static struct kobj_type klp_ktype_object = {
 578	.release = klp_kobj_release_object,
 579	.sysfs_ops = &kobj_sysfs_ops,
 580};
 581
 582static void klp_kobj_release_func(struct kobject *kobj)
 583{
 584	struct klp_func *func;
 585
 586	func = container_of(kobj, struct klp_func, kobj);
 587
 588	if (func->nop)
 589		klp_free_func_nop(func);
 590}
 591
 592static struct kobj_type klp_ktype_func = {
 593	.release = klp_kobj_release_func,
 594	.sysfs_ops = &kobj_sysfs_ops,
 595};
 596
 597static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
 598{
 599	struct klp_func *func, *tmp_func;
 600
 601	klp_for_each_func_safe(obj, func, tmp_func) {
 602		if (nops_only && !func->nop)
 603			continue;
 604
 605		list_del(&func->node);
 606		kobject_put(&func->kobj);
 607	}
 608}
 609
 610/* Clean up when a patched object is unloaded */
 611static void klp_free_object_loaded(struct klp_object *obj)
 612{
 613	struct klp_func *func;
 614
 615	obj->mod = NULL;
 616
 617	klp_for_each_func(obj, func) {
 618		func->old_func = NULL;
 619
 620		if (func->nop)
 621			func->new_func = NULL;
 622	}
 623}
 624
 625static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
 626{
 627	struct klp_object *obj, *tmp_obj;
 628
 629	klp_for_each_object_safe(patch, obj, tmp_obj) {
 630		__klp_free_funcs(obj, nops_only);
 631
 632		if (nops_only && !obj->dynamic)
 633			continue;
 634
 635		list_del(&obj->node);
 636		kobject_put(&obj->kobj);
 637	}
 638}
 639
 640static void klp_free_objects(struct klp_patch *patch)
 641{
 642	__klp_free_objects(patch, false);
 643}
 644
 645static void klp_free_objects_dynamic(struct klp_patch *patch)
 646{
 647	__klp_free_objects(patch, true);
 648}
 649
 650/*
 651 * This function implements the free operations that can be called safely
 652 * under klp_mutex.
 653 *
 654 * The operation must be completed by calling klp_free_patch_finish()
 655 * outside klp_mutex.
 656 */
 657static void klp_free_patch_start(struct klp_patch *patch)
 658{
 659	if (!list_empty(&patch->list))
 660		list_del(&patch->list);
 661
 662	klp_free_objects(patch);
 663}
 664
 665/*
 666 * This function implements the free part that must be called outside
 667 * klp_mutex.
 668 *
 669 * It must be called after klp_free_patch_start(). And it has to be
 670 * the last function accessing the livepatch structures when the patch
 671 * gets disabled.
 672 */
 673static void klp_free_patch_finish(struct klp_patch *patch)
 674{
 675	/*
 676	 * Avoid deadlock with enabled_store() sysfs callback by
 677	 * calling this outside klp_mutex. It is safe because
 678	 * this is called when the patch gets disabled and it
 679	 * cannot get enabled again.
 680	 */
 681	kobject_put(&patch->kobj);
 682	wait_for_completion(&patch->finish);
 683
 684	/* Put the module after the last access to struct klp_patch. */
 685	if (!patch->forced)
 686		module_put(patch->mod);
 687}
 688
 689/*
 690 * The livepatch might be freed from sysfs interface created by the patch.
 691 * This work allows to wait until the interface is destroyed in a separate
 692 * context.
 693 */
 694static void klp_free_patch_work_fn(struct work_struct *work)
 695{
 696	struct klp_patch *patch =
 697		container_of(work, struct klp_patch, free_work);
 698
 699	klp_free_patch_finish(patch);
 700}
 701
 702void klp_free_patch_async(struct klp_patch *patch)
 703{
 704	klp_free_patch_start(patch);
 705	schedule_work(&patch->free_work);
 706}
 707
 708void klp_free_replaced_patches_async(struct klp_patch *new_patch)
 709{
 710	struct klp_patch *old_patch, *tmp_patch;
 711
 712	klp_for_each_patch_safe(old_patch, tmp_patch) {
 713		if (old_patch == new_patch)
 714			return;
 715		klp_free_patch_async(old_patch);
 716	}
 717}
 718
 719static int klp_init_func(struct klp_object *obj, struct klp_func *func)
 720{
 721	if (!func->old_name)
 722		return -EINVAL;
 723
 724	/*
 725	 * NOPs get the address later. The patched module must be loaded,
 726	 * see klp_init_object_loaded().
 727	 */
 728	if (!func->new_func && !func->nop)
 729		return -EINVAL;
 730
 731	if (strlen(func->old_name) >= KSYM_NAME_LEN)
 732		return -EINVAL;
 733
 734	INIT_LIST_HEAD(&func->stack_node);
 735	func->patched = false;
 736	func->transition = false;
 737
 738	/* The format for the sysfs directory is <function,sympos> where sympos
 739	 * is the nth occurrence of this symbol in kallsyms for the patched
 740	 * object. If the user selects 0 for old_sympos, then 1 will be used
 741	 * since a unique symbol will be the first occurrence.
 742	 */
 743	return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
 744			   func->old_name,
 745			   func->old_sympos ? func->old_sympos : 1);
 746}
 747
 748static int klp_apply_object_relocs(struct klp_patch *patch,
 749				   struct klp_object *obj)
 750{
 751	int i, ret;
 752	struct klp_modinfo *info = patch->mod->klp_info;
 753
 754	for (i = 1; i < info->hdr.e_shnum; i++) {
 755		Elf_Shdr *sec = info->sechdrs + i;
 756
 757		if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
 758			continue;
 759
 760		ret = klp_apply_section_relocs(patch->mod, info->sechdrs,
 761					       info->secstrings,
 762					       patch->mod->core_kallsyms.strtab,
 763					       info->symndx, i, obj->name);
 764		if (ret)
 765			return ret;
 766	}
 767
 768	return 0;
 769}
 770
 771/* parts of the initialization that is done only when the object is loaded */
 772static int klp_init_object_loaded(struct klp_patch *patch,
 773				  struct klp_object *obj)
 774{
 775	struct klp_func *func;
 776	int ret;
 777
 778	if (klp_is_module(obj)) {
 779		/*
 780		 * Only write module-specific relocations here
 781		 * (.klp.rela.{module}.*).  vmlinux-specific relocations were
 782		 * written earlier during the initialization of the klp module
 783		 * itself.
 784		 */
 785		ret = klp_apply_object_relocs(patch, obj);
 786		if (ret)
 787			return ret;
 788	}
 789
 790	klp_for_each_func(obj, func) {
 791		ret = klp_find_object_symbol(obj->name, func->old_name,
 792					     func->old_sympos,
 793					     (unsigned long *)&func->old_func);
 794		if (ret)
 795			return ret;
 796
 797		ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
 798						  &func->old_size, NULL);
 799		if (!ret) {
 800			pr_err("kallsyms size lookup failed for '%s'\n",
 801			       func->old_name);
 802			return -ENOENT;
 803		}
 804
 805		if (func->nop)
 806			func->new_func = func->old_func;
 807
 808		ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
 809						  &func->new_size, NULL);
 810		if (!ret) {
 811			pr_err("kallsyms size lookup failed for '%s' replacement\n",
 812			       func->old_name);
 813			return -ENOENT;
 814		}
 815	}
 816
 817	return 0;
 818}
 819
 820static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
 821{
 822	struct klp_func *func;
 823	int ret;
 824	const char *name;
 825
 826	if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
 827		return -EINVAL;
 828
 829	obj->patched = false;
 830	obj->mod = NULL;
 831
 832	klp_find_object_module(obj);
 833
 834	name = klp_is_module(obj) ? obj->name : "vmlinux";
 835	ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
 836	if (ret)
 837		return ret;
 838
 839	klp_for_each_func(obj, func) {
 840		ret = klp_init_func(obj, func);
 841		if (ret)
 842			return ret;
 843	}
 844
 845	if (klp_is_object_loaded(obj))
 846		ret = klp_init_object_loaded(patch, obj);
 847
 848	return ret;
 849}
 850
 851static void klp_init_func_early(struct klp_object *obj,
 852				struct klp_func *func)
 853{
 854	kobject_init(&func->kobj, &klp_ktype_func);
 855	list_add_tail(&func->node, &obj->func_list);
 856}
 857
 858static void klp_init_object_early(struct klp_patch *patch,
 859				  struct klp_object *obj)
 860{
 861	INIT_LIST_HEAD(&obj->func_list);
 862	kobject_init(&obj->kobj, &klp_ktype_object);
 863	list_add_tail(&obj->node, &patch->obj_list);
 864}
 865
 866static int klp_init_patch_early(struct klp_patch *patch)
 867{
 868	struct klp_object *obj;
 869	struct klp_func *func;
 870
 871	if (!patch->objs)
 872		return -EINVAL;
 873
 874	INIT_LIST_HEAD(&patch->list);
 875	INIT_LIST_HEAD(&patch->obj_list);
 876	kobject_init(&patch->kobj, &klp_ktype_patch);
 877	patch->enabled = false;
 878	patch->forced = false;
 879	INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
 880	init_completion(&patch->finish);
 881
 882	klp_for_each_object_static(patch, obj) {
 883		if (!obj->funcs)
 884			return -EINVAL;
 885
 886		klp_init_object_early(patch, obj);
 887
 888		klp_for_each_func_static(obj, func) {
 889			klp_init_func_early(obj, func);
 890		}
 891	}
 892
 893	if (!try_module_get(patch->mod))
 894		return -ENODEV;
 895
 896	return 0;
 897}
 898
 899static int klp_init_patch(struct klp_patch *patch)
 900{
 901	struct klp_object *obj;
 902	int ret;
 903
 904	ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
 905	if (ret)
 906		return ret;
 907
 908	if (patch->replace) {
 909		ret = klp_add_nops(patch);
 910		if (ret)
 911			return ret;
 912	}
 913
 914	klp_for_each_object(patch, obj) {
 915		ret = klp_init_object(patch, obj);
 916		if (ret)
 917			return ret;
 918	}
 919
 920	list_add_tail(&patch->list, &klp_patches);
 921
 922	return 0;
 923}
 924
 925static int __klp_disable_patch(struct klp_patch *patch)
 926{
 927	struct klp_object *obj;
 928
 929	if (WARN_ON(!patch->enabled))
 930		return -EINVAL;
 931
 932	if (klp_transition_patch)
 933		return -EBUSY;
 934
 935	klp_init_transition(patch, KLP_UNPATCHED);
 936
 937	klp_for_each_object(patch, obj)
 938		if (obj->patched)
 939			klp_pre_unpatch_callback(obj);
 940
 941	/*
 942	 * Enforce the order of the func->transition writes in
 943	 * klp_init_transition() and the TIF_PATCH_PENDING writes in
 944	 * klp_start_transition().  In the rare case where klp_ftrace_handler()
 945	 * is called shortly after klp_update_patch_state() switches the task,
 946	 * this ensures the handler sees that func->transition is set.
 947	 */
 948	smp_wmb();
 949
 950	klp_start_transition();
 951	patch->enabled = false;
 952	klp_try_complete_transition();
 953
 954	return 0;
 955}
 956
 957static int __klp_enable_patch(struct klp_patch *patch)
 958{
 959	struct klp_object *obj;
 960	int ret;
 961
 962	if (klp_transition_patch)
 963		return -EBUSY;
 964
 965	if (WARN_ON(patch->enabled))
 966		return -EINVAL;
 967
 968	pr_notice("enabling patch '%s'\n", patch->mod->name);
 969
 970	klp_init_transition(patch, KLP_PATCHED);
 971
 972	/*
 973	 * Enforce the order of the func->transition writes in
 974	 * klp_init_transition() and the ops->func_stack writes in
 975	 * klp_patch_object(), so that klp_ftrace_handler() will see the
 976	 * func->transition updates before the handler is registered and the
 977	 * new funcs become visible to the handler.
 978	 */
 979	smp_wmb();
 980
 981	klp_for_each_object(patch, obj) {
 982		if (!klp_is_object_loaded(obj))
 983			continue;
 984
 985		ret = klp_pre_patch_callback(obj);
 986		if (ret) {
 987			pr_warn("pre-patch callback failed for object '%s'\n",
 988				klp_is_module(obj) ? obj->name : "vmlinux");
 989			goto err;
 990		}
 991
 992		ret = klp_patch_object(obj);
 993		if (ret) {
 994			pr_warn("failed to patch object '%s'\n",
 995				klp_is_module(obj) ? obj->name : "vmlinux");
 996			goto err;
 997		}
 998	}
 999
1000	klp_start_transition();
1001	patch->enabled = true;
1002	klp_try_complete_transition();
1003
1004	return 0;
1005err:
1006	pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1007
1008	klp_cancel_transition();
1009	return ret;
1010}
1011
1012/**
1013 * klp_enable_patch() - enable the livepatch
1014 * @patch:	patch to be enabled
1015 *
1016 * Initializes the data structure associated with the patch, creates the sysfs
1017 * interface, performs the needed symbol lookups and code relocations,
1018 * registers the patched functions with ftrace.
1019 *
1020 * This function is supposed to be called from the livepatch module_init()
1021 * callback.
1022 *
1023 * Return: 0 on success, otherwise error
1024 */
1025int klp_enable_patch(struct klp_patch *patch)
1026{
1027	int ret;
1028
1029	if (!patch || !patch->mod)
1030		return -EINVAL;
1031
1032	if (!is_livepatch_module(patch->mod)) {
1033		pr_err("module %s is not marked as a livepatch module\n",
1034		       patch->mod->name);
1035		return -EINVAL;
1036	}
1037
1038	if (!klp_initialized())
1039		return -ENODEV;
1040
1041	if (!klp_have_reliable_stack()) {
1042		pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1043		pr_warn("The livepatch transition may never complete.\n");
1044	}
1045
1046	mutex_lock(&klp_mutex);
1047
1048	if (!klp_is_patch_compatible(patch)) {
1049		pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1050			patch->mod->name);
1051		mutex_unlock(&klp_mutex);
1052		return -EINVAL;
1053	}
1054
1055	ret = klp_init_patch_early(patch);
1056	if (ret) {
1057		mutex_unlock(&klp_mutex);
1058		return ret;
1059	}
1060
1061	ret = klp_init_patch(patch);
1062	if (ret)
1063		goto err;
1064
1065	ret = __klp_enable_patch(patch);
1066	if (ret)
1067		goto err;
1068
1069	mutex_unlock(&klp_mutex);
1070
1071	return 0;
1072
1073err:
1074	klp_free_patch_start(patch);
1075
1076	mutex_unlock(&klp_mutex);
1077
1078	klp_free_patch_finish(patch);
1079
1080	return ret;
1081}
1082EXPORT_SYMBOL_GPL(klp_enable_patch);
1083
1084/*
1085 * This function unpatches objects from the replaced livepatches.
1086 *
1087 * We could be pretty aggressive here. It is called in the situation where
1088 * these structures are no longer accessed from the ftrace handler.
1089 * All functions are redirected by the klp_transition_patch. They
1090 * use either a new code or they are in the original code because
1091 * of the special nop function patches.
1092 *
1093 * The only exception is when the transition was forced. In this case,
1094 * klp_ftrace_handler() might still see the replaced patch on the stack.
1095 * Fortunately, it is carefully designed to work with removed functions
1096 * thanks to RCU. We only have to keep the patches on the system. Also
1097 * this is handled transparently by patch->module_put.
1098 */
1099void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1100{
1101	struct klp_patch *old_patch;
1102
1103	klp_for_each_patch(old_patch) {
1104		if (old_patch == new_patch)
1105			return;
1106
1107		old_patch->enabled = false;
1108		klp_unpatch_objects(old_patch);
1109	}
1110}
1111
1112/*
1113 * This function removes the dynamically allocated 'nop' functions.
1114 *
1115 * We could be pretty aggressive. NOPs do not change the existing
1116 * behavior except for adding unnecessary delay by the ftrace handler.
1117 *
1118 * It is safe even when the transition was forced. The ftrace handler
1119 * will see a valid ops->func_stack entry thanks to RCU.
1120 *
1121 * We could even free the NOPs structures. They must be the last entry
1122 * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1123 * It does the same as klp_synchronize_transition() to make sure that
1124 * nobody is inside the ftrace handler once the operation finishes.
1125 *
1126 * IMPORTANT: It must be called right after removing the replaced patches!
1127 */
1128void klp_discard_nops(struct klp_patch *new_patch)
1129{
1130	klp_unpatch_objects_dynamic(klp_transition_patch);
1131	klp_free_objects_dynamic(klp_transition_patch);
1132}
1133
1134/*
1135 * Remove parts of patches that touch a given kernel module. The list of
1136 * patches processed might be limited. When limit is NULL, all patches
1137 * will be handled.
1138 */
1139static void klp_cleanup_module_patches_limited(struct module *mod,
1140					       struct klp_patch *limit)
1141{
1142	struct klp_patch *patch;
1143	struct klp_object *obj;
1144
1145	klp_for_each_patch(patch) {
1146		if (patch == limit)
1147			break;
1148
1149		klp_for_each_object(patch, obj) {
1150			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1151				continue;
1152
1153			if (patch != klp_transition_patch)
1154				klp_pre_unpatch_callback(obj);
1155
1156			pr_notice("reverting patch '%s' on unloading module '%s'\n",
1157				  patch->mod->name, obj->mod->name);
1158			klp_unpatch_object(obj);
1159
1160			klp_post_unpatch_callback(obj);
1161
1162			klp_free_object_loaded(obj);
1163			break;
1164		}
1165	}
1166}
1167
1168int klp_module_coming(struct module *mod)
1169{
1170	int ret;
1171	struct klp_patch *patch;
1172	struct klp_object *obj;
1173
1174	if (WARN_ON(mod->state != MODULE_STATE_COMING))
1175		return -EINVAL;
1176
1177	if (!strcmp(mod->name, "vmlinux")) {
1178		pr_err("vmlinux.ko: invalid module name");
1179		return -EINVAL;
1180	}
1181
1182	mutex_lock(&klp_mutex);
1183	/*
1184	 * Each module has to know that klp_module_coming()
1185	 * has been called. We never know what module will
1186	 * get patched by a new patch.
1187	 */
1188	mod->klp_alive = true;
1189
1190	klp_for_each_patch(patch) {
1191		klp_for_each_object(patch, obj) {
1192			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1193				continue;
1194
1195			obj->mod = mod;
1196
1197			ret = klp_init_object_loaded(patch, obj);
1198			if (ret) {
1199				pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1200					patch->mod->name, obj->mod->name, ret);
1201				goto err;
1202			}
1203
1204			pr_notice("applying patch '%s' to loading module '%s'\n",
1205				  patch->mod->name, obj->mod->name);
1206
1207			ret = klp_pre_patch_callback(obj);
1208			if (ret) {
1209				pr_warn("pre-patch callback failed for object '%s'\n",
1210					obj->name);
1211				goto err;
1212			}
1213
1214			ret = klp_patch_object(obj);
1215			if (ret) {
1216				pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1217					patch->mod->name, obj->mod->name, ret);
1218
1219				klp_post_unpatch_callback(obj);
1220				goto err;
1221			}
1222
1223			if (patch != klp_transition_patch)
1224				klp_post_patch_callback(obj);
1225
1226			break;
1227		}
1228	}
1229
1230	mutex_unlock(&klp_mutex);
1231
1232	return 0;
1233
1234err:
1235	/*
1236	 * If a patch is unsuccessfully applied, return
1237	 * error to the module loader.
1238	 */
1239	pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1240		patch->mod->name, obj->mod->name, obj->mod->name);
1241	mod->klp_alive = false;
1242	obj->mod = NULL;
1243	klp_cleanup_module_patches_limited(mod, patch);
1244	mutex_unlock(&klp_mutex);
1245
1246	return ret;
1247}
1248
1249void klp_module_going(struct module *mod)
1250{
1251	if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1252		    mod->state != MODULE_STATE_COMING))
1253		return;
1254
1255	mutex_lock(&klp_mutex);
1256	/*
1257	 * Each module has to know that klp_module_going()
1258	 * has been called. We never know what module will
1259	 * get patched by a new patch.
1260	 */
1261	mod->klp_alive = false;
1262
1263	klp_cleanup_module_patches_limited(mod, NULL);
1264
1265	mutex_unlock(&klp_mutex);
1266}
1267
1268static int __init klp_init(void)
1269{
1270	klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1271	if (!klp_root_kobj)
1272		return -ENOMEM;
1273
1274	return 0;
1275}
1276
1277module_init(klp_init);