Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* bpf/cpumap.c
  3 *
  4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
  5 */
  6
  7/* The 'cpumap' is primarily used as a backend map for XDP BPF helper
  8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
  9 *
 10 * Unlike devmap which redirects XDP frames out another NIC device,
 11 * this map type redirects raw XDP frames to another CPU.  The remote
 12 * CPU will do SKB-allocation and call the normal network stack.
 13 *
 14 * This is a scalability and isolation mechanism, that allow
 15 * separating the early driver network XDP layer, from the rest of the
 16 * netstack, and assigning dedicated CPUs for this stage.  This
 17 * basically allows for 10G wirespeed pre-filtering via bpf.
 18 */
 19#include <linux/bpf.h>
 20#include <linux/filter.h>
 21#include <linux/ptr_ring.h>
 22#include <net/xdp.h>
 23
 24#include <linux/sched.h>
 25#include <linux/workqueue.h>
 26#include <linux/kthread.h>
 27#include <linux/capability.h>
 28#include <trace/events/xdp.h>
 29
 30#include <linux/netdevice.h>   /* netif_receive_skb_list */
 31#include <linux/etherdevice.h> /* eth_type_trans */
 32
 33/* General idea: XDP packets getting XDP redirected to another CPU,
 34 * will maximum be stored/queued for one driver ->poll() call.  It is
 35 * guaranteed that queueing the frame and the flush operation happen on
 36 * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
 37 * which queue in bpf_cpu_map_entry contains packets.
 38 */
 39
 40#define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
 41struct bpf_cpu_map_entry;
 42struct bpf_cpu_map;
 43
 44struct xdp_bulk_queue {
 45	void *q[CPU_MAP_BULK_SIZE];
 46	struct list_head flush_node;
 47	struct bpf_cpu_map_entry *obj;
 48	unsigned int count;
 49};
 50
 51/* Struct for every remote "destination" CPU in map */
 52struct bpf_cpu_map_entry {
 53	u32 cpu;    /* kthread CPU and map index */
 54	int map_id; /* Back reference to map */
 55
 56	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
 57	struct xdp_bulk_queue __percpu *bulkq;
 58
 59	struct bpf_cpu_map *cmap;
 60
 61	/* Queue with potential multi-producers, and single-consumer kthread */
 62	struct ptr_ring *queue;
 63	struct task_struct *kthread;
 64
 65	struct bpf_cpumap_val value;
 66	struct bpf_prog *prog;
 67
 68	atomic_t refcnt; /* Control when this struct can be free'ed */
 69	struct rcu_head rcu;
 70
 71	struct work_struct kthread_stop_wq;
 72};
 73
 74struct bpf_cpu_map {
 75	struct bpf_map map;
 76	/* Below members specific for map type */
 77	struct bpf_cpu_map_entry __rcu **cpu_map;
 78};
 79
 80static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
 81
 
 
 82static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
 83{
 84	u32 value_size = attr->value_size;
 85	struct bpf_cpu_map *cmap;
 86	int err = -ENOMEM;
 
 
 87
 88	if (!bpf_capable())
 89		return ERR_PTR(-EPERM);
 90
 91	/* check sanity of attributes */
 92	if (attr->max_entries == 0 || attr->key_size != 4 ||
 93	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
 94	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
 95	    attr->map_flags & ~BPF_F_NUMA_NODE)
 96		return ERR_PTR(-EINVAL);
 97
 98	cmap = kzalloc(sizeof(*cmap), GFP_USER | __GFP_ACCOUNT);
 99	if (!cmap)
100		return ERR_PTR(-ENOMEM);
101
102	bpf_map_init_from_attr(&cmap->map, attr);
103
104	/* Pre-limit array size based on NR_CPUS, not final CPU check */
105	if (cmap->map.max_entries > NR_CPUS) {
106		err = -E2BIG;
107		goto free_cmap;
108	}
109
 
 
 
 
 
 
 
 
 
 
110	/* Alloc array for possible remote "destination" CPUs */
111	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
112					   sizeof(struct bpf_cpu_map_entry *),
113					   cmap->map.numa_node);
114	if (!cmap->cpu_map)
115		goto free_cmap;
116
117	return &cmap->map;
 
 
118free_cmap:
119	kfree(cmap);
120	return ERR_PTR(err);
121}
122
123static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
124{
125	atomic_inc(&rcpu->refcnt);
126}
127
128/* called from workqueue, to workaround syscall using preempt_disable */
129static void cpu_map_kthread_stop(struct work_struct *work)
130{
131	struct bpf_cpu_map_entry *rcpu;
132
133	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
134
135	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
136	 * as it waits until all in-flight call_rcu() callbacks complete.
137	 */
138	rcu_barrier();
139
140	/* kthread_stop will wake_up_process and wait for it to complete */
141	kthread_stop(rcpu->kthread);
142}
143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
145{
146	/* The tear-down procedure should have made sure that queue is
147	 * empty.  See __cpu_map_entry_replace() and work-queue
148	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
149	 * gracefully and warn once.
150	 */
151	struct xdp_frame *xdpf;
152
153	while ((xdpf = ptr_ring_consume(ring)))
154		if (WARN_ON_ONCE(xdpf))
155			xdp_return_frame(xdpf);
156}
157
158static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
159{
160	if (atomic_dec_and_test(&rcpu->refcnt)) {
161		if (rcpu->prog)
162			bpf_prog_put(rcpu->prog);
163		/* The queue should be empty at this point */
164		__cpu_map_ring_cleanup(rcpu->queue);
165		ptr_ring_cleanup(rcpu->queue, NULL);
166		kfree(rcpu->queue);
167		kfree(rcpu);
168	}
169}
170
171static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
172				    void **frames, int n,
173				    struct xdp_cpumap_stats *stats)
174{
175	struct xdp_rxq_info rxq;
176	struct xdp_buff xdp;
177	int i, nframes = 0;
178
179	if (!rcpu->prog)
180		return n;
181
182	rcu_read_lock_bh();
183
184	xdp_set_return_frame_no_direct();
185	xdp.rxq = &rxq;
186
187	for (i = 0; i < n; i++) {
188		struct xdp_frame *xdpf = frames[i];
189		u32 act;
190		int err;
191
192		rxq.dev = xdpf->dev_rx;
193		rxq.mem = xdpf->mem;
194		/* TODO: report queue_index to xdp_rxq_info */
195
196		xdp_convert_frame_to_buff(xdpf, &xdp);
197
198		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
199		switch (act) {
200		case XDP_PASS:
201			err = xdp_update_frame_from_buff(&xdp, xdpf);
202			if (err < 0) {
203				xdp_return_frame(xdpf);
204				stats->drop++;
205			} else {
206				frames[nframes++] = xdpf;
207				stats->pass++;
208			}
209			break;
210		case XDP_REDIRECT:
211			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
212					      rcpu->prog);
213			if (unlikely(err)) {
214				xdp_return_frame(xdpf);
215				stats->drop++;
216			} else {
217				stats->redirect++;
218			}
219			break;
220		default:
221			bpf_warn_invalid_xdp_action(act);
222			fallthrough;
223		case XDP_DROP:
224			xdp_return_frame(xdpf);
225			stats->drop++;
226			break;
227		}
228	}
229
230	if (stats->redirect)
231		xdp_do_flush_map();
232
233	xdp_clear_return_frame_no_direct();
234
235	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
236
237	return nframes;
238}
239
240#define CPUMAP_BATCH 8
241
242static int cpu_map_kthread_run(void *data)
243{
244	struct bpf_cpu_map_entry *rcpu = data;
245
246	set_current_state(TASK_INTERRUPTIBLE);
247
248	/* When kthread gives stop order, then rcpu have been disconnected
249	 * from map, thus no new packets can enter. Remaining in-flight
250	 * per CPU stored packets are flushed to this queue.  Wait honoring
251	 * kthread_stop signal until queue is empty.
252	 */
253	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
254		struct xdp_cpumap_stats stats = {}; /* zero stats */
255		unsigned int kmem_alloc_drops = 0, sched = 0;
256		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
 
257		void *frames[CPUMAP_BATCH];
258		void *skbs[CPUMAP_BATCH];
259		int i, n, m, nframes;
260		LIST_HEAD(list);
261
262		/* Release CPU reschedule checks */
263		if (__ptr_ring_empty(rcpu->queue)) {
264			set_current_state(TASK_INTERRUPTIBLE);
265			/* Recheck to avoid lost wake-up */
266			if (__ptr_ring_empty(rcpu->queue)) {
267				schedule();
268				sched = 1;
269			} else {
270				__set_current_state(TASK_RUNNING);
271			}
272		} else {
273			sched = cond_resched();
274		}
275
276		/*
277		 * The bpf_cpu_map_entry is single consumer, with this
278		 * kthread CPU pinned. Lockless access to ptr_ring
279		 * consume side valid as no-resize allowed of queue.
280		 */
281		n = __ptr_ring_consume_batched(rcpu->queue, frames,
282					       CPUMAP_BATCH);
283		for (i = 0; i < n; i++) {
284			void *f = frames[i];
285			struct page *page = virt_to_page(f);
286
287			/* Bring struct page memory area to curr CPU. Read by
288			 * build_skb_around via page_is_pfmemalloc(), and when
289			 * freed written by page_frag_free call.
290			 */
291			prefetchw(page);
292		}
293
294		/* Support running another XDP prog on this CPU */
295		nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, n, &stats);
296		if (nframes) {
297			m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
298			if (unlikely(m == 0)) {
299				for (i = 0; i < nframes; i++)
300					skbs[i] = NULL; /* effect: xdp_return_frame */
301				kmem_alloc_drops += nframes;
302			}
303		}
304
305		local_bh_disable();
306		for (i = 0; i < nframes; i++) {
307			struct xdp_frame *xdpf = frames[i];
308			struct sk_buff *skb = skbs[i];
 
309
310			skb = __xdp_build_skb_from_frame(xdpf, skb,
311							 xdpf->dev_rx);
312			if (!skb) {
313				xdp_return_frame(xdpf);
314				continue;
315			}
316
317			list_add_tail(&skb->list, &list);
 
 
 
318		}
319		netif_receive_skb_list(&list);
320
321		/* Feedback loop via tracepoint */
322		trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
323					 sched, &stats);
324
325		local_bh_enable(); /* resched point, may call do_softirq() */
326	}
327	__set_current_state(TASK_RUNNING);
328
329	put_cpu_map_entry(rcpu);
330	return 0;
331}
332
333bool cpu_map_prog_allowed(struct bpf_map *map)
334{
335	return map->map_type == BPF_MAP_TYPE_CPUMAP &&
336	       map->value_size != offsetofend(struct bpf_cpumap_val, qsize);
337}
338
339static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd)
340{
341	struct bpf_prog *prog;
342
343	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
344	if (IS_ERR(prog))
345		return PTR_ERR(prog);
346
347	if (prog->expected_attach_type != BPF_XDP_CPUMAP) {
348		bpf_prog_put(prog);
349		return -EINVAL;
350	}
351
352	rcpu->value.bpf_prog.id = prog->aux->id;
353	rcpu->prog = prog;
354
355	return 0;
356}
357
358static struct bpf_cpu_map_entry *
359__cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
360		      u32 cpu)
361{
362	int numa, err, i, fd = value->bpf_prog.fd;
363	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
364	struct bpf_cpu_map_entry *rcpu;
365	struct xdp_bulk_queue *bq;
366
367	/* Have map->numa_node, but choose node of redirect target CPU */
368	numa = cpu_to_node(cpu);
369
370	rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
371	if (!rcpu)
372		return NULL;
373
374	/* Alloc percpu bulkq */
375	rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
376					   sizeof(void *), gfp);
377	if (!rcpu->bulkq)
378		goto free_rcu;
379
380	for_each_possible_cpu(i) {
381		bq = per_cpu_ptr(rcpu->bulkq, i);
382		bq->obj = rcpu;
383	}
384
385	/* Alloc queue */
386	rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
387					   numa);
388	if (!rcpu->queue)
389		goto free_bulkq;
390
391	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
392	if (err)
393		goto free_queue;
394
395	rcpu->cpu    = cpu;
396	rcpu->map_id = map->id;
397	rcpu->value.qsize  = value->qsize;
398
399	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd))
400		goto free_ptr_ring;
401
402	/* Setup kthread */
403	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
404					       "cpumap/%d/map:%d", cpu,
405					       map->id);
406	if (IS_ERR(rcpu->kthread))
407		goto free_prog;
408
409	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
410	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
411
412	/* Make sure kthread runs on a single CPU */
413	kthread_bind(rcpu->kthread, cpu);
414	wake_up_process(rcpu->kthread);
415
416	return rcpu;
417
418free_prog:
419	if (rcpu->prog)
420		bpf_prog_put(rcpu->prog);
421free_ptr_ring:
422	ptr_ring_cleanup(rcpu->queue, NULL);
423free_queue:
424	kfree(rcpu->queue);
425free_bulkq:
426	free_percpu(rcpu->bulkq);
427free_rcu:
428	kfree(rcpu);
429	return NULL;
430}
431
432static void __cpu_map_entry_free(struct rcu_head *rcu)
433{
434	struct bpf_cpu_map_entry *rcpu;
435
436	/* This cpu_map_entry have been disconnected from map and one
437	 * RCU grace-period have elapsed.  Thus, XDP cannot queue any
438	 * new packets and cannot change/set flush_needed that can
439	 * find this entry.
440	 */
441	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
442
443	free_percpu(rcpu->bulkq);
444	/* Cannot kthread_stop() here, last put free rcpu resources */
445	put_cpu_map_entry(rcpu);
446}
447
448/* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
449 * ensure any driver rcu critical sections have completed, but this
450 * does not guarantee a flush has happened yet. Because driver side
451 * rcu_read_lock/unlock only protects the running XDP program.  The
452 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
453 * pending flush op doesn't fail.
454 *
455 * The bpf_cpu_map_entry is still used by the kthread, and there can
456 * still be pending packets (in queue and percpu bulkq).  A refcnt
457 * makes sure to last user (kthread_stop vs. call_rcu) free memory
458 * resources.
459 *
460 * The rcu callback __cpu_map_entry_free flush remaining packets in
461 * percpu bulkq to queue.  Due to caller map_delete_elem() disable
462 * preemption, cannot call kthread_stop() to make sure queue is empty.
463 * Instead a work_queue is started for stopping kthread,
464 * cpu_map_kthread_stop, which waits for an RCU grace period before
465 * stopping kthread, emptying the queue.
466 */
467static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
468				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
469{
470	struct bpf_cpu_map_entry *old_rcpu;
471
472	old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
473	if (old_rcpu) {
474		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
475		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
476		schedule_work(&old_rcpu->kthread_stop_wq);
477	}
478}
479
480static int cpu_map_delete_elem(struct bpf_map *map, void *key)
481{
482	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
483	u32 key_cpu = *(u32 *)key;
484
485	if (key_cpu >= map->max_entries)
486		return -EINVAL;
487
488	/* notice caller map_delete_elem() use preempt_disable() */
489	__cpu_map_entry_replace(cmap, key_cpu, NULL);
490	return 0;
491}
492
493static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
494			       u64 map_flags)
495{
496	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
497	struct bpf_cpumap_val cpumap_value = {};
498	struct bpf_cpu_map_entry *rcpu;
499	/* Array index key correspond to CPU number */
500	u32 key_cpu = *(u32 *)key;
501
502	memcpy(&cpumap_value, value, map->value_size);
503
504	if (unlikely(map_flags > BPF_EXIST))
505		return -EINVAL;
506	if (unlikely(key_cpu >= cmap->map.max_entries))
507		return -E2BIG;
508	if (unlikely(map_flags == BPF_NOEXIST))
509		return -EEXIST;
510	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
511		return -EOVERFLOW;
512
513	/* Make sure CPU is a valid possible cpu */
514	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
515		return -ENODEV;
516
517	if (cpumap_value.qsize == 0) {
518		rcpu = NULL; /* Same as deleting */
519	} else {
520		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
521		rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
522		if (!rcpu)
523			return -ENOMEM;
524		rcpu->cmap = cmap;
525	}
526	rcu_read_lock();
527	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
528	rcu_read_unlock();
529	return 0;
530}
531
532static void cpu_map_free(struct bpf_map *map)
533{
534	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
535	u32 i;
536
537	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
538	 * so the bpf programs (can be more than one that used this map) were
539	 * disconnected from events. Wait for outstanding critical sections in
540	 * these programs to complete. The rcu critical section only guarantees
541	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
542	 * It does __not__ ensure pending flush operations (if any) are
543	 * complete.
544	 */
545
 
546	synchronize_rcu();
547
548	/* For cpu_map the remote CPUs can still be using the entries
549	 * (struct bpf_cpu_map_entry).
550	 */
551	for (i = 0; i < cmap->map.max_entries; i++) {
552		struct bpf_cpu_map_entry *rcpu;
553
554		rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
555		if (!rcpu)
556			continue;
557
558		/* bq flush and cleanup happens after RCU grace-period */
559		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
560	}
561	bpf_map_area_free(cmap->cpu_map);
562	kfree(cmap);
563}
564
565/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
566 * by local_bh_disable() (from XDP calls inside NAPI). The
567 * rcu_read_lock_bh_held() below makes lockdep accept both.
568 */
569static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
570{
571	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
572	struct bpf_cpu_map_entry *rcpu;
573
574	if (key >= map->max_entries)
575		return NULL;
576
577	rcpu = rcu_dereference_check(cmap->cpu_map[key],
578				     rcu_read_lock_bh_held());
579	return rcpu;
580}
581
582static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
583{
584	struct bpf_cpu_map_entry *rcpu =
585		__cpu_map_lookup_elem(map, *(u32 *)key);
586
587	return rcpu ? &rcpu->value : NULL;
588}
589
590static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
591{
592	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
593	u32 index = key ? *(u32 *)key : U32_MAX;
594	u32 *next = next_key;
595
596	if (index >= cmap->map.max_entries) {
597		*next = 0;
598		return 0;
599	}
600
601	if (index == cmap->map.max_entries - 1)
602		return -ENOENT;
603	*next = index + 1;
604	return 0;
605}
606
607static int cpu_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
608{
609	return __bpf_xdp_redirect_map(map, ifindex, flags, 0,
610				      __cpu_map_lookup_elem);
611}
612
613static int cpu_map_btf_id;
614const struct bpf_map_ops cpu_map_ops = {
615	.map_meta_equal		= bpf_map_meta_equal,
616	.map_alloc		= cpu_map_alloc,
617	.map_free		= cpu_map_free,
618	.map_delete_elem	= cpu_map_delete_elem,
619	.map_update_elem	= cpu_map_update_elem,
620	.map_lookup_elem	= cpu_map_lookup_elem,
621	.map_get_next_key	= cpu_map_get_next_key,
622	.map_check_btf		= map_check_no_btf,
623	.map_btf_name		= "bpf_cpu_map",
624	.map_btf_id		= &cpu_map_btf_id,
625	.map_redirect		= cpu_map_redirect,
626};
627
628static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
629{
630	struct bpf_cpu_map_entry *rcpu = bq->obj;
631	unsigned int processed = 0, drops = 0;
632	const int to_cpu = rcpu->cpu;
633	struct ptr_ring *q;
634	int i;
635
636	if (unlikely(!bq->count))
637		return;
638
639	q = rcpu->queue;
640	spin_lock(&q->producer_lock);
641
642	for (i = 0; i < bq->count; i++) {
643		struct xdp_frame *xdpf = bq->q[i];
644		int err;
645
646		err = __ptr_ring_produce(q, xdpf);
647		if (err) {
648			drops++;
649			xdp_return_frame_rx_napi(xdpf);
650		}
651		processed++;
652	}
653	bq->count = 0;
654	spin_unlock(&q->producer_lock);
655
656	__list_del_clearprev(&bq->flush_node);
657
658	/* Feedback loop via tracepoints */
659	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
 
660}
661
662/* Runs under RCU-read-side, plus in softirq under NAPI protection.
663 * Thus, safe percpu variable access.
664 */
665static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
666{
667	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
668	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
669
670	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
671		bq_flush_to_queue(bq);
672
673	/* Notice, xdp_buff/page MUST be queued here, long enough for
674	 * driver to code invoking us to finished, due to driver
675	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
676	 *
677	 * Thus, incoming xdp_frame is always queued here (else we race
678	 * with another CPU on page-refcnt and remaining driver code).
679	 * Queue time is very short, as driver will invoke flush
680	 * operation, when completing napi->poll call.
681	 */
682	bq->q[bq->count++] = xdpf;
683
684	if (!bq->flush_node.prev)
685		list_add(&bq->flush_node, flush_list);
 
 
686}
687
688int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
689		    struct net_device *dev_rx)
690{
691	struct xdp_frame *xdpf;
692
693	xdpf = xdp_convert_buff_to_frame(xdp);
694	if (unlikely(!xdpf))
695		return -EOVERFLOW;
696
697	/* Info needed when constructing SKB on remote CPU */
698	xdpf->dev_rx = dev_rx;
699
700	bq_enqueue(rcpu, xdpf);
701	return 0;
702}
703
704void __cpu_map_flush(void)
705{
706	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
707	struct xdp_bulk_queue *bq, *tmp;
708
709	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
710		bq_flush_to_queue(bq);
711
712		/* If already running, costs spin_lock_irqsave + smb_mb */
713		wake_up_process(bq->obj->kthread);
714	}
715}
716
717static int __init cpu_map_init(void)
718{
719	int cpu;
720
721	for_each_possible_cpu(cpu)
722		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
723	return 0;
724}
725
726subsys_initcall(cpu_map_init);
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* bpf/cpumap.c
  3 *
  4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
  5 */
  6
  7/* The 'cpumap' is primarily used as a backend map for XDP BPF helper
  8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
  9 *
 10 * Unlike devmap which redirects XDP frames out another NIC device,
 11 * this map type redirects raw XDP frames to another CPU.  The remote
 12 * CPU will do SKB-allocation and call the normal network stack.
 13 *
 14 * This is a scalability and isolation mechanism, that allow
 15 * separating the early driver network XDP layer, from the rest of the
 16 * netstack, and assigning dedicated CPUs for this stage.  This
 17 * basically allows for 10G wirespeed pre-filtering via bpf.
 18 */
 19#include <linux/bpf.h>
 20#include <linux/filter.h>
 21#include <linux/ptr_ring.h>
 22#include <net/xdp.h>
 23
 24#include <linux/sched.h>
 25#include <linux/workqueue.h>
 26#include <linux/kthread.h>
 27#include <linux/capability.h>
 28#include <trace/events/xdp.h>
 29
 30#include <linux/netdevice.h>   /* netif_receive_skb_core */
 31#include <linux/etherdevice.h> /* eth_type_trans */
 32
 33/* General idea: XDP packets getting XDP redirected to another CPU,
 34 * will maximum be stored/queued for one driver ->poll() call.  It is
 35 * guaranteed that queueing the frame and the flush operation happen on
 36 * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
 37 * which queue in bpf_cpu_map_entry contains packets.
 38 */
 39
 40#define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
 41struct bpf_cpu_map_entry;
 42struct bpf_cpu_map;
 43
 44struct xdp_bulk_queue {
 45	void *q[CPU_MAP_BULK_SIZE];
 46	struct list_head flush_node;
 47	struct bpf_cpu_map_entry *obj;
 48	unsigned int count;
 49};
 50
 51/* Struct for every remote "destination" CPU in map */
 52struct bpf_cpu_map_entry {
 53	u32 cpu;    /* kthread CPU and map index */
 54	int map_id; /* Back reference to map */
 55
 56	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
 57	struct xdp_bulk_queue __percpu *bulkq;
 58
 59	struct bpf_cpu_map *cmap;
 60
 61	/* Queue with potential multi-producers, and single-consumer kthread */
 62	struct ptr_ring *queue;
 63	struct task_struct *kthread;
 64
 65	struct bpf_cpumap_val value;
 66	struct bpf_prog *prog;
 67
 68	atomic_t refcnt; /* Control when this struct can be free'ed */
 69	struct rcu_head rcu;
 70
 71	struct work_struct kthread_stop_wq;
 72};
 73
 74struct bpf_cpu_map {
 75	struct bpf_map map;
 76	/* Below members specific for map type */
 77	struct bpf_cpu_map_entry **cpu_map;
 78};
 79
 80static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
 81
 82static int bq_flush_to_queue(struct xdp_bulk_queue *bq);
 83
 84static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
 85{
 86	u32 value_size = attr->value_size;
 87	struct bpf_cpu_map *cmap;
 88	int err = -ENOMEM;
 89	u64 cost;
 90	int ret;
 91
 92	if (!bpf_capable())
 93		return ERR_PTR(-EPERM);
 94
 95	/* check sanity of attributes */
 96	if (attr->max_entries == 0 || attr->key_size != 4 ||
 97	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
 98	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
 99	    attr->map_flags & ~BPF_F_NUMA_NODE)
100		return ERR_PTR(-EINVAL);
101
102	cmap = kzalloc(sizeof(*cmap), GFP_USER);
103	if (!cmap)
104		return ERR_PTR(-ENOMEM);
105
106	bpf_map_init_from_attr(&cmap->map, attr);
107
108	/* Pre-limit array size based on NR_CPUS, not final CPU check */
109	if (cmap->map.max_entries > NR_CPUS) {
110		err = -E2BIG;
111		goto free_cmap;
112	}
113
114	/* make sure page count doesn't overflow */
115	cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
116
117	/* Notice returns -EPERM on if map size is larger than memlock limit */
118	ret = bpf_map_charge_init(&cmap->map.memory, cost);
119	if (ret) {
120		err = ret;
121		goto free_cmap;
122	}
123
124	/* Alloc array for possible remote "destination" CPUs */
125	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
126					   sizeof(struct bpf_cpu_map_entry *),
127					   cmap->map.numa_node);
128	if (!cmap->cpu_map)
129		goto free_charge;
130
131	return &cmap->map;
132free_charge:
133	bpf_map_charge_finish(&cmap->map.memory);
134free_cmap:
135	kfree(cmap);
136	return ERR_PTR(err);
137}
138
139static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
140{
141	atomic_inc(&rcpu->refcnt);
142}
143
144/* called from workqueue, to workaround syscall using preempt_disable */
145static void cpu_map_kthread_stop(struct work_struct *work)
146{
147	struct bpf_cpu_map_entry *rcpu;
148
149	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
150
151	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
152	 * as it waits until all in-flight call_rcu() callbacks complete.
153	 */
154	rcu_barrier();
155
156	/* kthread_stop will wake_up_process and wait for it to complete */
157	kthread_stop(rcpu->kthread);
158}
159
160static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
161					 struct xdp_frame *xdpf,
162					 struct sk_buff *skb)
163{
164	unsigned int hard_start_headroom;
165	unsigned int frame_size;
166	void *pkt_data_start;
167
168	/* Part of headroom was reserved to xdpf */
169	hard_start_headroom = sizeof(struct xdp_frame) +  xdpf->headroom;
170
171	/* Memory size backing xdp_frame data already have reserved
172	 * room for build_skb to place skb_shared_info in tailroom.
173	 */
174	frame_size = xdpf->frame_sz;
175
176	pkt_data_start = xdpf->data - hard_start_headroom;
177	skb = build_skb_around(skb, pkt_data_start, frame_size);
178	if (unlikely(!skb))
179		return NULL;
180
181	skb_reserve(skb, hard_start_headroom);
182	__skb_put(skb, xdpf->len);
183	if (xdpf->metasize)
184		skb_metadata_set(skb, xdpf->metasize);
185
186	/* Essential SKB info: protocol and skb->dev */
187	skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
188
189	/* Optional SKB info, currently missing:
190	 * - HW checksum info		(skb->ip_summed)
191	 * - HW RX hash			(skb_set_hash)
192	 * - RX ring dev queue index	(skb_record_rx_queue)
193	 */
194
195	/* Until page_pool get SKB return path, release DMA here */
196	xdp_release_frame(xdpf);
197
198	/* Allow SKB to reuse area used by xdp_frame */
199	xdp_scrub_frame(xdpf);
200
201	return skb;
202}
203
204static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
205{
206	/* The tear-down procedure should have made sure that queue is
207	 * empty.  See __cpu_map_entry_replace() and work-queue
208	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
209	 * gracefully and warn once.
210	 */
211	struct xdp_frame *xdpf;
212
213	while ((xdpf = ptr_ring_consume(ring)))
214		if (WARN_ON_ONCE(xdpf))
215			xdp_return_frame(xdpf);
216}
217
218static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
219{
220	if (atomic_dec_and_test(&rcpu->refcnt)) {
221		if (rcpu->prog)
222			bpf_prog_put(rcpu->prog);
223		/* The queue should be empty at this point */
224		__cpu_map_ring_cleanup(rcpu->queue);
225		ptr_ring_cleanup(rcpu->queue, NULL);
226		kfree(rcpu->queue);
227		kfree(rcpu);
228	}
229}
230
231static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
232				    void **frames, int n,
233				    struct xdp_cpumap_stats *stats)
234{
235	struct xdp_rxq_info rxq;
236	struct xdp_buff xdp;
237	int i, nframes = 0;
238
239	if (!rcpu->prog)
240		return n;
241
242	rcu_read_lock_bh();
243
244	xdp_set_return_frame_no_direct();
245	xdp.rxq = &rxq;
246
247	for (i = 0; i < n; i++) {
248		struct xdp_frame *xdpf = frames[i];
249		u32 act;
250		int err;
251
252		rxq.dev = xdpf->dev_rx;
253		rxq.mem = xdpf->mem;
254		/* TODO: report queue_index to xdp_rxq_info */
255
256		xdp_convert_frame_to_buff(xdpf, &xdp);
257
258		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
259		switch (act) {
260		case XDP_PASS:
261			err = xdp_update_frame_from_buff(&xdp, xdpf);
262			if (err < 0) {
263				xdp_return_frame(xdpf);
264				stats->drop++;
265			} else {
266				frames[nframes++] = xdpf;
267				stats->pass++;
268			}
269			break;
270		case XDP_REDIRECT:
271			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
272					      rcpu->prog);
273			if (unlikely(err)) {
274				xdp_return_frame(xdpf);
275				stats->drop++;
276			} else {
277				stats->redirect++;
278			}
279			break;
280		default:
281			bpf_warn_invalid_xdp_action(act);
282			fallthrough;
283		case XDP_DROP:
284			xdp_return_frame(xdpf);
285			stats->drop++;
286			break;
287		}
288	}
289
290	if (stats->redirect)
291		xdp_do_flush_map();
292
293	xdp_clear_return_frame_no_direct();
294
295	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
296
297	return nframes;
298}
299
300#define CPUMAP_BATCH 8
301
302static int cpu_map_kthread_run(void *data)
303{
304	struct bpf_cpu_map_entry *rcpu = data;
305
306	set_current_state(TASK_INTERRUPTIBLE);
307
308	/* When kthread gives stop order, then rcpu have been disconnected
309	 * from map, thus no new packets can enter. Remaining in-flight
310	 * per CPU stored packets are flushed to this queue.  Wait honoring
311	 * kthread_stop signal until queue is empty.
312	 */
313	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
314		struct xdp_cpumap_stats stats = {}; /* zero stats */
 
315		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
316		unsigned int drops = 0, sched = 0;
317		void *frames[CPUMAP_BATCH];
318		void *skbs[CPUMAP_BATCH];
319		int i, n, m, nframes;
 
320
321		/* Release CPU reschedule checks */
322		if (__ptr_ring_empty(rcpu->queue)) {
323			set_current_state(TASK_INTERRUPTIBLE);
324			/* Recheck to avoid lost wake-up */
325			if (__ptr_ring_empty(rcpu->queue)) {
326				schedule();
327				sched = 1;
328			} else {
329				__set_current_state(TASK_RUNNING);
330			}
331		} else {
332			sched = cond_resched();
333		}
334
335		/*
336		 * The bpf_cpu_map_entry is single consumer, with this
337		 * kthread CPU pinned. Lockless access to ptr_ring
338		 * consume side valid as no-resize allowed of queue.
339		 */
340		n = __ptr_ring_consume_batched(rcpu->queue, frames,
341					       CPUMAP_BATCH);
342		for (i = 0; i < n; i++) {
343			void *f = frames[i];
344			struct page *page = virt_to_page(f);
345
346			/* Bring struct page memory area to curr CPU. Read by
347			 * build_skb_around via page_is_pfmemalloc(), and when
348			 * freed written by page_frag_free call.
349			 */
350			prefetchw(page);
351		}
352
353		/* Support running another XDP prog on this CPU */
354		nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, n, &stats);
355		if (nframes) {
356			m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
357			if (unlikely(m == 0)) {
358				for (i = 0; i < nframes; i++)
359					skbs[i] = NULL; /* effect: xdp_return_frame */
360				drops += nframes;
361			}
362		}
363
364		local_bh_disable();
365		for (i = 0; i < nframes; i++) {
366			struct xdp_frame *xdpf = frames[i];
367			struct sk_buff *skb = skbs[i];
368			int ret;
369
370			skb = cpu_map_build_skb(rcpu, xdpf, skb);
 
371			if (!skb) {
372				xdp_return_frame(xdpf);
373				continue;
374			}
375
376			/* Inject into network stack */
377			ret = netif_receive_skb_core(skb);
378			if (ret == NET_RX_DROP)
379				drops++;
380		}
 
 
381		/* Feedback loop via tracepoint */
382		trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched, &stats);
 
383
384		local_bh_enable(); /* resched point, may call do_softirq() */
385	}
386	__set_current_state(TASK_RUNNING);
387
388	put_cpu_map_entry(rcpu);
389	return 0;
390}
391
392bool cpu_map_prog_allowed(struct bpf_map *map)
393{
394	return map->map_type == BPF_MAP_TYPE_CPUMAP &&
395	       map->value_size != offsetofend(struct bpf_cpumap_val, qsize);
396}
397
398static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd)
399{
400	struct bpf_prog *prog;
401
402	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
403	if (IS_ERR(prog))
404		return PTR_ERR(prog);
405
406	if (prog->expected_attach_type != BPF_XDP_CPUMAP) {
407		bpf_prog_put(prog);
408		return -EINVAL;
409	}
410
411	rcpu->value.bpf_prog.id = prog->aux->id;
412	rcpu->prog = prog;
413
414	return 0;
415}
416
417static struct bpf_cpu_map_entry *
418__cpu_map_entry_alloc(struct bpf_cpumap_val *value, u32 cpu, int map_id)
 
419{
420	int numa, err, i, fd = value->bpf_prog.fd;
421	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
422	struct bpf_cpu_map_entry *rcpu;
423	struct xdp_bulk_queue *bq;
424
425	/* Have map->numa_node, but choose node of redirect target CPU */
426	numa = cpu_to_node(cpu);
427
428	rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
429	if (!rcpu)
430		return NULL;
431
432	/* Alloc percpu bulkq */
433	rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
434					 sizeof(void *), gfp);
435	if (!rcpu->bulkq)
436		goto free_rcu;
437
438	for_each_possible_cpu(i) {
439		bq = per_cpu_ptr(rcpu->bulkq, i);
440		bq->obj = rcpu;
441	}
442
443	/* Alloc queue */
444	rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
 
445	if (!rcpu->queue)
446		goto free_bulkq;
447
448	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
449	if (err)
450		goto free_queue;
451
452	rcpu->cpu    = cpu;
453	rcpu->map_id = map_id;
454	rcpu->value.qsize  = value->qsize;
455
456	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd))
457		goto free_ptr_ring;
458
459	/* Setup kthread */
460	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
461					       "cpumap/%d/map:%d", cpu, map_id);
 
462	if (IS_ERR(rcpu->kthread))
463		goto free_prog;
464
465	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
466	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
467
468	/* Make sure kthread runs on a single CPU */
469	kthread_bind(rcpu->kthread, cpu);
470	wake_up_process(rcpu->kthread);
471
472	return rcpu;
473
474free_prog:
475	if (rcpu->prog)
476		bpf_prog_put(rcpu->prog);
477free_ptr_ring:
478	ptr_ring_cleanup(rcpu->queue, NULL);
479free_queue:
480	kfree(rcpu->queue);
481free_bulkq:
482	free_percpu(rcpu->bulkq);
483free_rcu:
484	kfree(rcpu);
485	return NULL;
486}
487
488static void __cpu_map_entry_free(struct rcu_head *rcu)
489{
490	struct bpf_cpu_map_entry *rcpu;
491
492	/* This cpu_map_entry have been disconnected from map and one
493	 * RCU grace-period have elapsed.  Thus, XDP cannot queue any
494	 * new packets and cannot change/set flush_needed that can
495	 * find this entry.
496	 */
497	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
498
499	free_percpu(rcpu->bulkq);
500	/* Cannot kthread_stop() here, last put free rcpu resources */
501	put_cpu_map_entry(rcpu);
502}
503
504/* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
505 * ensure any driver rcu critical sections have completed, but this
506 * does not guarantee a flush has happened yet. Because driver side
507 * rcu_read_lock/unlock only protects the running XDP program.  The
508 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
509 * pending flush op doesn't fail.
510 *
511 * The bpf_cpu_map_entry is still used by the kthread, and there can
512 * still be pending packets (in queue and percpu bulkq).  A refcnt
513 * makes sure to last user (kthread_stop vs. call_rcu) free memory
514 * resources.
515 *
516 * The rcu callback __cpu_map_entry_free flush remaining packets in
517 * percpu bulkq to queue.  Due to caller map_delete_elem() disable
518 * preemption, cannot call kthread_stop() to make sure queue is empty.
519 * Instead a work_queue is started for stopping kthread,
520 * cpu_map_kthread_stop, which waits for an RCU grace period before
521 * stopping kthread, emptying the queue.
522 */
523static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
524				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
525{
526	struct bpf_cpu_map_entry *old_rcpu;
527
528	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
529	if (old_rcpu) {
530		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
531		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
532		schedule_work(&old_rcpu->kthread_stop_wq);
533	}
534}
535
536static int cpu_map_delete_elem(struct bpf_map *map, void *key)
537{
538	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
539	u32 key_cpu = *(u32 *)key;
540
541	if (key_cpu >= map->max_entries)
542		return -EINVAL;
543
544	/* notice caller map_delete_elem() use preempt_disable() */
545	__cpu_map_entry_replace(cmap, key_cpu, NULL);
546	return 0;
547}
548
549static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
550			       u64 map_flags)
551{
552	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
553	struct bpf_cpumap_val cpumap_value = {};
554	struct bpf_cpu_map_entry *rcpu;
555	/* Array index key correspond to CPU number */
556	u32 key_cpu = *(u32 *)key;
557
558	memcpy(&cpumap_value, value, map->value_size);
559
560	if (unlikely(map_flags > BPF_EXIST))
561		return -EINVAL;
562	if (unlikely(key_cpu >= cmap->map.max_entries))
563		return -E2BIG;
564	if (unlikely(map_flags == BPF_NOEXIST))
565		return -EEXIST;
566	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
567		return -EOVERFLOW;
568
569	/* Make sure CPU is a valid possible cpu */
570	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
571		return -ENODEV;
572
573	if (cpumap_value.qsize == 0) {
574		rcpu = NULL; /* Same as deleting */
575	} else {
576		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
577		rcpu = __cpu_map_entry_alloc(&cpumap_value, key_cpu, map->id);
578		if (!rcpu)
579			return -ENOMEM;
580		rcpu->cmap = cmap;
581	}
582	rcu_read_lock();
583	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
584	rcu_read_unlock();
585	return 0;
586}
587
588static void cpu_map_free(struct bpf_map *map)
589{
590	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
591	u32 i;
592
593	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
594	 * so the bpf programs (can be more than one that used this map) were
595	 * disconnected from events. Wait for outstanding critical sections in
596	 * these programs to complete. The rcu critical section only guarantees
597	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
598	 * It does __not__ ensure pending flush operations (if any) are
599	 * complete.
600	 */
601
602	bpf_clear_redirect_map(map);
603	synchronize_rcu();
604
605	/* For cpu_map the remote CPUs can still be using the entries
606	 * (struct bpf_cpu_map_entry).
607	 */
608	for (i = 0; i < cmap->map.max_entries; i++) {
609		struct bpf_cpu_map_entry *rcpu;
610
611		rcpu = READ_ONCE(cmap->cpu_map[i]);
612		if (!rcpu)
613			continue;
614
615		/* bq flush and cleanup happens after RCU grace-period */
616		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
617	}
618	bpf_map_area_free(cmap->cpu_map);
619	kfree(cmap);
620}
621
622struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
 
 
 
 
623{
624	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
625	struct bpf_cpu_map_entry *rcpu;
626
627	if (key >= map->max_entries)
628		return NULL;
629
630	rcpu = READ_ONCE(cmap->cpu_map[key]);
 
631	return rcpu;
632}
633
634static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
635{
636	struct bpf_cpu_map_entry *rcpu =
637		__cpu_map_lookup_elem(map, *(u32 *)key);
638
639	return rcpu ? &rcpu->value : NULL;
640}
641
642static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
643{
644	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
645	u32 index = key ? *(u32 *)key : U32_MAX;
646	u32 *next = next_key;
647
648	if (index >= cmap->map.max_entries) {
649		*next = 0;
650		return 0;
651	}
652
653	if (index == cmap->map.max_entries - 1)
654		return -ENOENT;
655	*next = index + 1;
656	return 0;
657}
658
 
 
 
 
 
 
659static int cpu_map_btf_id;
660const struct bpf_map_ops cpu_map_ops = {
 
661	.map_alloc		= cpu_map_alloc,
662	.map_free		= cpu_map_free,
663	.map_delete_elem	= cpu_map_delete_elem,
664	.map_update_elem	= cpu_map_update_elem,
665	.map_lookup_elem	= cpu_map_lookup_elem,
666	.map_get_next_key	= cpu_map_get_next_key,
667	.map_check_btf		= map_check_no_btf,
668	.map_btf_name		= "bpf_cpu_map",
669	.map_btf_id		= &cpu_map_btf_id,
 
670};
671
672static int bq_flush_to_queue(struct xdp_bulk_queue *bq)
673{
674	struct bpf_cpu_map_entry *rcpu = bq->obj;
675	unsigned int processed = 0, drops = 0;
676	const int to_cpu = rcpu->cpu;
677	struct ptr_ring *q;
678	int i;
679
680	if (unlikely(!bq->count))
681		return 0;
682
683	q = rcpu->queue;
684	spin_lock(&q->producer_lock);
685
686	for (i = 0; i < bq->count; i++) {
687		struct xdp_frame *xdpf = bq->q[i];
688		int err;
689
690		err = __ptr_ring_produce(q, xdpf);
691		if (err) {
692			drops++;
693			xdp_return_frame_rx_napi(xdpf);
694		}
695		processed++;
696	}
697	bq->count = 0;
698	spin_unlock(&q->producer_lock);
699
700	__list_del_clearprev(&bq->flush_node);
701
702	/* Feedback loop via tracepoints */
703	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
704	return 0;
705}
706
707/* Runs under RCU-read-side, plus in softirq under NAPI protection.
708 * Thus, safe percpu variable access.
709 */
710static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
711{
712	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
713	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
714
715	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
716		bq_flush_to_queue(bq);
717
718	/* Notice, xdp_buff/page MUST be queued here, long enough for
719	 * driver to code invoking us to finished, due to driver
720	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
721	 *
722	 * Thus, incoming xdp_frame is always queued here (else we race
723	 * with another CPU on page-refcnt and remaining driver code).
724	 * Queue time is very short, as driver will invoke flush
725	 * operation, when completing napi->poll call.
726	 */
727	bq->q[bq->count++] = xdpf;
728
729	if (!bq->flush_node.prev)
730		list_add(&bq->flush_node, flush_list);
731
732	return 0;
733}
734
735int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
736		    struct net_device *dev_rx)
737{
738	struct xdp_frame *xdpf;
739
740	xdpf = xdp_convert_buff_to_frame(xdp);
741	if (unlikely(!xdpf))
742		return -EOVERFLOW;
743
744	/* Info needed when constructing SKB on remote CPU */
745	xdpf->dev_rx = dev_rx;
746
747	bq_enqueue(rcpu, xdpf);
748	return 0;
749}
750
751void __cpu_map_flush(void)
752{
753	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
754	struct xdp_bulk_queue *bq, *tmp;
755
756	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
757		bq_flush_to_queue(bq);
758
759		/* If already running, costs spin_lock_irqsave + smb_mb */
760		wake_up_process(bq->obj->kthread);
761	}
762}
763
764static int __init cpu_map_init(void)
765{
766	int cpu;
767
768	for_each_possible_cpu(cpu)
769		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
770	return 0;
771}
772
773subsys_initcall(cpu_map_init);