Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * sd.c Copyright (C) 1992 Drew Eckhardt
4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 *
6 * Linux scsi disk driver
7 * Initial versions: Drew Eckhardt
8 * Subsequent revisions: Eric Youngdale
9 * Modification history:
10 * - Drew Eckhardt <drew@colorado.edu> original
11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 * outstanding request, and other enhancements.
13 * Support loadable low-level scsi drivers.
14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 * eight major numbers.
16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 * sd_init and cleanups.
19 * - Alex Davis <letmein@erols.com> Fix problem where partition info
20 * not being read in sd_open. Fix problem where removable media
21 * could be ejected after sd_open.
22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 * Support 32k/1M disks.
26 *
27 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 * - entering other commands: SCSI_LOG_HLQUEUE level 3
32 * Note: when the logging level is set by the user, it must be greater
33 * than the level indicated above to trigger output.
34 */
35
36#include <linux/module.h>
37#include <linux/fs.h>
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/bio.h>
41#include <linux/genhd.h>
42#include <linux/hdreg.h>
43#include <linux/errno.h>
44#include <linux/idr.h>
45#include <linux/interrupt.h>
46#include <linux/init.h>
47#include <linux/blkdev.h>
48#include <linux/blkpg.h>
49#include <linux/blk-pm.h>
50#include <linux/delay.h>
51#include <linux/mutex.h>
52#include <linux/string_helpers.h>
53#include <linux/async.h>
54#include <linux/slab.h>
55#include <linux/sed-opal.h>
56#include <linux/pm_runtime.h>
57#include <linux/pr.h>
58#include <linux/t10-pi.h>
59#include <linux/uaccess.h>
60#include <asm/unaligned.h>
61
62#include <scsi/scsi.h>
63#include <scsi/scsi_cmnd.h>
64#include <scsi/scsi_dbg.h>
65#include <scsi/scsi_device.h>
66#include <scsi/scsi_driver.h>
67#include <scsi/scsi_eh.h>
68#include <scsi/scsi_host.h>
69#include <scsi/scsi_ioctl.h>
70#include <scsi/scsicam.h>
71
72#include "sd.h"
73#include "scsi_priv.h"
74#include "scsi_logging.h"
75
76MODULE_AUTHOR("Eric Youngdale");
77MODULE_DESCRIPTION("SCSI disk (sd) driver");
78MODULE_LICENSE("GPL");
79
80MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101#define SD_MINORS 16
102
103static void sd_config_discard(struct scsi_disk *, unsigned int);
104static void sd_config_write_same(struct scsi_disk *);
105static int sd_revalidate_disk(struct gendisk *);
106static void sd_unlock_native_capacity(struct gendisk *disk);
107static int sd_probe(struct device *);
108static int sd_remove(struct device *);
109static void sd_shutdown(struct device *);
110static int sd_suspend_system(struct device *);
111static int sd_suspend_runtime(struct device *);
112static int sd_resume(struct device *);
113static void sd_rescan(struct device *);
114static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
115static void sd_uninit_command(struct scsi_cmnd *SCpnt);
116static int sd_done(struct scsi_cmnd *);
117static void sd_eh_reset(struct scsi_cmnd *);
118static int sd_eh_action(struct scsi_cmnd *, int);
119static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
120static void scsi_disk_release(struct device *cdev);
121
122static DEFINE_IDA(sd_index_ida);
123
124/* This semaphore is used to mediate the 0->1 reference get in the
125 * face of object destruction (i.e. we can't allow a get on an
126 * object after last put) */
127static DEFINE_MUTEX(sd_ref_mutex);
128
129static struct kmem_cache *sd_cdb_cache;
130static mempool_t *sd_cdb_pool;
131static mempool_t *sd_page_pool;
132
133static const char *sd_cache_types[] = {
134 "write through", "none", "write back",
135 "write back, no read (daft)"
136};
137
138static void sd_set_flush_flag(struct scsi_disk *sdkp)
139{
140 bool wc = false, fua = false;
141
142 if (sdkp->WCE) {
143 wc = true;
144 if (sdkp->DPOFUA)
145 fua = true;
146 }
147
148 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
149}
150
151static ssize_t
152cache_type_store(struct device *dev, struct device_attribute *attr,
153 const char *buf, size_t count)
154{
155 int ct, rcd, wce, sp;
156 struct scsi_disk *sdkp = to_scsi_disk(dev);
157 struct scsi_device *sdp = sdkp->device;
158 char buffer[64];
159 char *buffer_data;
160 struct scsi_mode_data data;
161 struct scsi_sense_hdr sshdr;
162 static const char temp[] = "temporary ";
163 int len;
164
165 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
166 /* no cache control on RBC devices; theoretically they
167 * can do it, but there's probably so many exceptions
168 * it's not worth the risk */
169 return -EINVAL;
170
171 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
172 buf += sizeof(temp) - 1;
173 sdkp->cache_override = 1;
174 } else {
175 sdkp->cache_override = 0;
176 }
177
178 ct = sysfs_match_string(sd_cache_types, buf);
179 if (ct < 0)
180 return -EINVAL;
181
182 rcd = ct & 0x01 ? 1 : 0;
183 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
184
185 if (sdkp->cache_override) {
186 sdkp->WCE = wce;
187 sdkp->RCD = rcd;
188 sd_set_flush_flag(sdkp);
189 return count;
190 }
191
192 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
193 sdkp->max_retries, &data, NULL))
194 return -EINVAL;
195 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
196 data.block_descriptor_length);
197 buffer_data = buffer + data.header_length +
198 data.block_descriptor_length;
199 buffer_data[2] &= ~0x05;
200 buffer_data[2] |= wce << 2 | rcd;
201 sp = buffer_data[0] & 0x80 ? 1 : 0;
202 buffer_data[0] &= ~0x80;
203
204 /*
205 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
206 * received mode parameter buffer before doing MODE SELECT.
207 */
208 data.device_specific = 0;
209
210 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
211 sdkp->max_retries, &data, &sshdr)) {
212 if (scsi_sense_valid(&sshdr))
213 sd_print_sense_hdr(sdkp, &sshdr);
214 return -EINVAL;
215 }
216 sd_revalidate_disk(sdkp->disk);
217 return count;
218}
219
220static ssize_t
221manage_start_stop_show(struct device *dev, struct device_attribute *attr,
222 char *buf)
223{
224 struct scsi_disk *sdkp = to_scsi_disk(dev);
225 struct scsi_device *sdp = sdkp->device;
226
227 return sprintf(buf, "%u\n", sdp->manage_start_stop);
228}
229
230static ssize_t
231manage_start_stop_store(struct device *dev, struct device_attribute *attr,
232 const char *buf, size_t count)
233{
234 struct scsi_disk *sdkp = to_scsi_disk(dev);
235 struct scsi_device *sdp = sdkp->device;
236 bool v;
237
238 if (!capable(CAP_SYS_ADMIN))
239 return -EACCES;
240
241 if (kstrtobool(buf, &v))
242 return -EINVAL;
243
244 sdp->manage_start_stop = v;
245
246 return count;
247}
248static DEVICE_ATTR_RW(manage_start_stop);
249
250static ssize_t
251allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
252{
253 struct scsi_disk *sdkp = to_scsi_disk(dev);
254
255 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
256}
257
258static ssize_t
259allow_restart_store(struct device *dev, struct device_attribute *attr,
260 const char *buf, size_t count)
261{
262 bool v;
263 struct scsi_disk *sdkp = to_scsi_disk(dev);
264 struct scsi_device *sdp = sdkp->device;
265
266 if (!capable(CAP_SYS_ADMIN))
267 return -EACCES;
268
269 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
270 return -EINVAL;
271
272 if (kstrtobool(buf, &v))
273 return -EINVAL;
274
275 sdp->allow_restart = v;
276
277 return count;
278}
279static DEVICE_ATTR_RW(allow_restart);
280
281static ssize_t
282cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
283{
284 struct scsi_disk *sdkp = to_scsi_disk(dev);
285 int ct = sdkp->RCD + 2*sdkp->WCE;
286
287 return sprintf(buf, "%s\n", sd_cache_types[ct]);
288}
289static DEVICE_ATTR_RW(cache_type);
290
291static ssize_t
292FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
293{
294 struct scsi_disk *sdkp = to_scsi_disk(dev);
295
296 return sprintf(buf, "%u\n", sdkp->DPOFUA);
297}
298static DEVICE_ATTR_RO(FUA);
299
300static ssize_t
301protection_type_show(struct device *dev, struct device_attribute *attr,
302 char *buf)
303{
304 struct scsi_disk *sdkp = to_scsi_disk(dev);
305
306 return sprintf(buf, "%u\n", sdkp->protection_type);
307}
308
309static ssize_t
310protection_type_store(struct device *dev, struct device_attribute *attr,
311 const char *buf, size_t count)
312{
313 struct scsi_disk *sdkp = to_scsi_disk(dev);
314 unsigned int val;
315 int err;
316
317 if (!capable(CAP_SYS_ADMIN))
318 return -EACCES;
319
320 err = kstrtouint(buf, 10, &val);
321
322 if (err)
323 return err;
324
325 if (val <= T10_PI_TYPE3_PROTECTION)
326 sdkp->protection_type = val;
327
328 return count;
329}
330static DEVICE_ATTR_RW(protection_type);
331
332static ssize_t
333protection_mode_show(struct device *dev, struct device_attribute *attr,
334 char *buf)
335{
336 struct scsi_disk *sdkp = to_scsi_disk(dev);
337 struct scsi_device *sdp = sdkp->device;
338 unsigned int dif, dix;
339
340 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
341 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
342
343 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
344 dif = 0;
345 dix = 1;
346 }
347
348 if (!dif && !dix)
349 return sprintf(buf, "none\n");
350
351 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
352}
353static DEVICE_ATTR_RO(protection_mode);
354
355static ssize_t
356app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
357{
358 struct scsi_disk *sdkp = to_scsi_disk(dev);
359
360 return sprintf(buf, "%u\n", sdkp->ATO);
361}
362static DEVICE_ATTR_RO(app_tag_own);
363
364static ssize_t
365thin_provisioning_show(struct device *dev, struct device_attribute *attr,
366 char *buf)
367{
368 struct scsi_disk *sdkp = to_scsi_disk(dev);
369
370 return sprintf(buf, "%u\n", sdkp->lbpme);
371}
372static DEVICE_ATTR_RO(thin_provisioning);
373
374/* sysfs_match_string() requires dense arrays */
375static const char *lbp_mode[] = {
376 [SD_LBP_FULL] = "full",
377 [SD_LBP_UNMAP] = "unmap",
378 [SD_LBP_WS16] = "writesame_16",
379 [SD_LBP_WS10] = "writesame_10",
380 [SD_LBP_ZERO] = "writesame_zero",
381 [SD_LBP_DISABLE] = "disabled",
382};
383
384static ssize_t
385provisioning_mode_show(struct device *dev, struct device_attribute *attr,
386 char *buf)
387{
388 struct scsi_disk *sdkp = to_scsi_disk(dev);
389
390 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
391}
392
393static ssize_t
394provisioning_mode_store(struct device *dev, struct device_attribute *attr,
395 const char *buf, size_t count)
396{
397 struct scsi_disk *sdkp = to_scsi_disk(dev);
398 struct scsi_device *sdp = sdkp->device;
399 int mode;
400
401 if (!capable(CAP_SYS_ADMIN))
402 return -EACCES;
403
404 if (sd_is_zoned(sdkp)) {
405 sd_config_discard(sdkp, SD_LBP_DISABLE);
406 return count;
407 }
408
409 if (sdp->type != TYPE_DISK)
410 return -EINVAL;
411
412 mode = sysfs_match_string(lbp_mode, buf);
413 if (mode < 0)
414 return -EINVAL;
415
416 sd_config_discard(sdkp, mode);
417
418 return count;
419}
420static DEVICE_ATTR_RW(provisioning_mode);
421
422/* sysfs_match_string() requires dense arrays */
423static const char *zeroing_mode[] = {
424 [SD_ZERO_WRITE] = "write",
425 [SD_ZERO_WS] = "writesame",
426 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
427 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
428};
429
430static ssize_t
431zeroing_mode_show(struct device *dev, struct device_attribute *attr,
432 char *buf)
433{
434 struct scsi_disk *sdkp = to_scsi_disk(dev);
435
436 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
437}
438
439static ssize_t
440zeroing_mode_store(struct device *dev, struct device_attribute *attr,
441 const char *buf, size_t count)
442{
443 struct scsi_disk *sdkp = to_scsi_disk(dev);
444 int mode;
445
446 if (!capable(CAP_SYS_ADMIN))
447 return -EACCES;
448
449 mode = sysfs_match_string(zeroing_mode, buf);
450 if (mode < 0)
451 return -EINVAL;
452
453 sdkp->zeroing_mode = mode;
454
455 return count;
456}
457static DEVICE_ATTR_RW(zeroing_mode);
458
459static ssize_t
460max_medium_access_timeouts_show(struct device *dev,
461 struct device_attribute *attr, char *buf)
462{
463 struct scsi_disk *sdkp = to_scsi_disk(dev);
464
465 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
466}
467
468static ssize_t
469max_medium_access_timeouts_store(struct device *dev,
470 struct device_attribute *attr, const char *buf,
471 size_t count)
472{
473 struct scsi_disk *sdkp = to_scsi_disk(dev);
474 int err;
475
476 if (!capable(CAP_SYS_ADMIN))
477 return -EACCES;
478
479 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
480
481 return err ? err : count;
482}
483static DEVICE_ATTR_RW(max_medium_access_timeouts);
484
485static ssize_t
486max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
487 char *buf)
488{
489 struct scsi_disk *sdkp = to_scsi_disk(dev);
490
491 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
492}
493
494static ssize_t
495max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
496 const char *buf, size_t count)
497{
498 struct scsi_disk *sdkp = to_scsi_disk(dev);
499 struct scsi_device *sdp = sdkp->device;
500 unsigned long max;
501 int err;
502
503 if (!capable(CAP_SYS_ADMIN))
504 return -EACCES;
505
506 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
507 return -EINVAL;
508
509 err = kstrtoul(buf, 10, &max);
510
511 if (err)
512 return err;
513
514 if (max == 0)
515 sdp->no_write_same = 1;
516 else if (max <= SD_MAX_WS16_BLOCKS) {
517 sdp->no_write_same = 0;
518 sdkp->max_ws_blocks = max;
519 }
520
521 sd_config_write_same(sdkp);
522
523 return count;
524}
525static DEVICE_ATTR_RW(max_write_same_blocks);
526
527static ssize_t
528zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
529{
530 struct scsi_disk *sdkp = to_scsi_disk(dev);
531
532 if (sdkp->device->type == TYPE_ZBC)
533 return sprintf(buf, "host-managed\n");
534 if (sdkp->zoned == 1)
535 return sprintf(buf, "host-aware\n");
536 if (sdkp->zoned == 2)
537 return sprintf(buf, "drive-managed\n");
538 return sprintf(buf, "none\n");
539}
540static DEVICE_ATTR_RO(zoned_cap);
541
542static ssize_t
543max_retries_store(struct device *dev, struct device_attribute *attr,
544 const char *buf, size_t count)
545{
546 struct scsi_disk *sdkp = to_scsi_disk(dev);
547 struct scsi_device *sdev = sdkp->device;
548 int retries, err;
549
550 err = kstrtoint(buf, 10, &retries);
551 if (err)
552 return err;
553
554 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
555 sdkp->max_retries = retries;
556 return count;
557 }
558
559 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
560 SD_MAX_RETRIES);
561 return -EINVAL;
562}
563
564static ssize_t
565max_retries_show(struct device *dev, struct device_attribute *attr,
566 char *buf)
567{
568 struct scsi_disk *sdkp = to_scsi_disk(dev);
569
570 return sprintf(buf, "%d\n", sdkp->max_retries);
571}
572
573static DEVICE_ATTR_RW(max_retries);
574
575static struct attribute *sd_disk_attrs[] = {
576 &dev_attr_cache_type.attr,
577 &dev_attr_FUA.attr,
578 &dev_attr_allow_restart.attr,
579 &dev_attr_manage_start_stop.attr,
580 &dev_attr_protection_type.attr,
581 &dev_attr_protection_mode.attr,
582 &dev_attr_app_tag_own.attr,
583 &dev_attr_thin_provisioning.attr,
584 &dev_attr_provisioning_mode.attr,
585 &dev_attr_zeroing_mode.attr,
586 &dev_attr_max_write_same_blocks.attr,
587 &dev_attr_max_medium_access_timeouts.attr,
588 &dev_attr_zoned_cap.attr,
589 &dev_attr_max_retries.attr,
590 NULL,
591};
592ATTRIBUTE_GROUPS(sd_disk);
593
594static struct class sd_disk_class = {
595 .name = "scsi_disk",
596 .owner = THIS_MODULE,
597 .dev_release = scsi_disk_release,
598 .dev_groups = sd_disk_groups,
599};
600
601static const struct dev_pm_ops sd_pm_ops = {
602 .suspend = sd_suspend_system,
603 .resume = sd_resume,
604 .poweroff = sd_suspend_system,
605 .restore = sd_resume,
606 .runtime_suspend = sd_suspend_runtime,
607 .runtime_resume = sd_resume,
608};
609
610static struct scsi_driver sd_template = {
611 .gendrv = {
612 .name = "sd",
613 .owner = THIS_MODULE,
614 .probe = sd_probe,
615 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
616 .remove = sd_remove,
617 .shutdown = sd_shutdown,
618 .pm = &sd_pm_ops,
619 },
620 .rescan = sd_rescan,
621 .init_command = sd_init_command,
622 .uninit_command = sd_uninit_command,
623 .done = sd_done,
624 .eh_action = sd_eh_action,
625 .eh_reset = sd_eh_reset,
626};
627
628/*
629 * Don't request a new module, as that could deadlock in multipath
630 * environment.
631 */
632static void sd_default_probe(dev_t devt)
633{
634}
635
636/*
637 * Device no to disk mapping:
638 *
639 * major disc2 disc p1
640 * |............|.............|....|....| <- dev_t
641 * 31 20 19 8 7 4 3 0
642 *
643 * Inside a major, we have 16k disks, however mapped non-
644 * contiguously. The first 16 disks are for major0, the next
645 * ones with major1, ... Disk 256 is for major0 again, disk 272
646 * for major1, ...
647 * As we stay compatible with our numbering scheme, we can reuse
648 * the well-know SCSI majors 8, 65--71, 136--143.
649 */
650static int sd_major(int major_idx)
651{
652 switch (major_idx) {
653 case 0:
654 return SCSI_DISK0_MAJOR;
655 case 1 ... 7:
656 return SCSI_DISK1_MAJOR + major_idx - 1;
657 case 8 ... 15:
658 return SCSI_DISK8_MAJOR + major_idx - 8;
659 default:
660 BUG();
661 return 0; /* shut up gcc */
662 }
663}
664
665static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
666{
667 struct scsi_disk *sdkp = NULL;
668
669 mutex_lock(&sd_ref_mutex);
670
671 if (disk->private_data) {
672 sdkp = scsi_disk(disk);
673 if (scsi_device_get(sdkp->device) == 0)
674 get_device(&sdkp->dev);
675 else
676 sdkp = NULL;
677 }
678 mutex_unlock(&sd_ref_mutex);
679 return sdkp;
680}
681
682static void scsi_disk_put(struct scsi_disk *sdkp)
683{
684 struct scsi_device *sdev = sdkp->device;
685
686 mutex_lock(&sd_ref_mutex);
687 put_device(&sdkp->dev);
688 scsi_device_put(sdev);
689 mutex_unlock(&sd_ref_mutex);
690}
691
692#ifdef CONFIG_BLK_SED_OPAL
693static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
694 size_t len, bool send)
695{
696 struct scsi_disk *sdkp = data;
697 struct scsi_device *sdev = sdkp->device;
698 u8 cdb[12] = { 0, };
699 int ret;
700
701 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
702 cdb[1] = secp;
703 put_unaligned_be16(spsp, &cdb[2]);
704 put_unaligned_be32(len, &cdb[6]);
705
706 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
707 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
708 RQF_PM, NULL);
709 return ret <= 0 ? ret : -EIO;
710}
711#endif /* CONFIG_BLK_SED_OPAL */
712
713/*
714 * Look up the DIX operation based on whether the command is read or
715 * write and whether dix and dif are enabled.
716 */
717static unsigned int sd_prot_op(bool write, bool dix, bool dif)
718{
719 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
720 static const unsigned int ops[] = { /* wrt dix dif */
721 SCSI_PROT_NORMAL, /* 0 0 0 */
722 SCSI_PROT_READ_STRIP, /* 0 0 1 */
723 SCSI_PROT_READ_INSERT, /* 0 1 0 */
724 SCSI_PROT_READ_PASS, /* 0 1 1 */
725 SCSI_PROT_NORMAL, /* 1 0 0 */
726 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
727 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
728 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
729 };
730
731 return ops[write << 2 | dix << 1 | dif];
732}
733
734/*
735 * Returns a mask of the protection flags that are valid for a given DIX
736 * operation.
737 */
738static unsigned int sd_prot_flag_mask(unsigned int prot_op)
739{
740 static const unsigned int flag_mask[] = {
741 [SCSI_PROT_NORMAL] = 0,
742
743 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
744 SCSI_PROT_GUARD_CHECK |
745 SCSI_PROT_REF_CHECK |
746 SCSI_PROT_REF_INCREMENT,
747
748 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
749 SCSI_PROT_IP_CHECKSUM,
750
751 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
752 SCSI_PROT_GUARD_CHECK |
753 SCSI_PROT_REF_CHECK |
754 SCSI_PROT_REF_INCREMENT |
755 SCSI_PROT_IP_CHECKSUM,
756
757 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
758 SCSI_PROT_REF_INCREMENT,
759
760 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
761 SCSI_PROT_REF_CHECK |
762 SCSI_PROT_REF_INCREMENT |
763 SCSI_PROT_IP_CHECKSUM,
764
765 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
766 SCSI_PROT_GUARD_CHECK |
767 SCSI_PROT_REF_CHECK |
768 SCSI_PROT_REF_INCREMENT |
769 SCSI_PROT_IP_CHECKSUM,
770 };
771
772 return flag_mask[prot_op];
773}
774
775static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
776 unsigned int dix, unsigned int dif)
777{
778 struct bio *bio = scmd->request->bio;
779 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
780 unsigned int protect = 0;
781
782 if (dix) { /* DIX Type 0, 1, 2, 3 */
783 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
784 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
785
786 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
787 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
788 }
789
790 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
791 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
792
793 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
794 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
795 }
796
797 if (dif) { /* DIX/DIF Type 1, 2, 3 */
798 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
799
800 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
801 protect = 3 << 5; /* Disable target PI checking */
802 else
803 protect = 1 << 5; /* Enable target PI checking */
804 }
805
806 scsi_set_prot_op(scmd, prot_op);
807 scsi_set_prot_type(scmd, dif);
808 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
809
810 return protect;
811}
812
813static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
814{
815 struct request_queue *q = sdkp->disk->queue;
816 unsigned int logical_block_size = sdkp->device->sector_size;
817 unsigned int max_blocks = 0;
818
819 q->limits.discard_alignment =
820 sdkp->unmap_alignment * logical_block_size;
821 q->limits.discard_granularity =
822 max(sdkp->physical_block_size,
823 sdkp->unmap_granularity * logical_block_size);
824 sdkp->provisioning_mode = mode;
825
826 switch (mode) {
827
828 case SD_LBP_FULL:
829 case SD_LBP_DISABLE:
830 blk_queue_max_discard_sectors(q, 0);
831 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
832 return;
833
834 case SD_LBP_UNMAP:
835 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
836 (u32)SD_MAX_WS16_BLOCKS);
837 break;
838
839 case SD_LBP_WS16:
840 if (sdkp->device->unmap_limit_for_ws)
841 max_blocks = sdkp->max_unmap_blocks;
842 else
843 max_blocks = sdkp->max_ws_blocks;
844
845 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
846 break;
847
848 case SD_LBP_WS10:
849 if (sdkp->device->unmap_limit_for_ws)
850 max_blocks = sdkp->max_unmap_blocks;
851 else
852 max_blocks = sdkp->max_ws_blocks;
853
854 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
855 break;
856
857 case SD_LBP_ZERO:
858 max_blocks = min_not_zero(sdkp->max_ws_blocks,
859 (u32)SD_MAX_WS10_BLOCKS);
860 break;
861 }
862
863 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
864 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
865}
866
867static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
868{
869 struct scsi_device *sdp = cmd->device;
870 struct request *rq = cmd->request;
871 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
872 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
873 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
874 unsigned int data_len = 24;
875 char *buf;
876
877 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
878 if (!rq->special_vec.bv_page)
879 return BLK_STS_RESOURCE;
880 clear_highpage(rq->special_vec.bv_page);
881 rq->special_vec.bv_offset = 0;
882 rq->special_vec.bv_len = data_len;
883 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
884
885 cmd->cmd_len = 10;
886 cmd->cmnd[0] = UNMAP;
887 cmd->cmnd[8] = 24;
888
889 buf = page_address(rq->special_vec.bv_page);
890 put_unaligned_be16(6 + 16, &buf[0]);
891 put_unaligned_be16(16, &buf[2]);
892 put_unaligned_be64(lba, &buf[8]);
893 put_unaligned_be32(nr_blocks, &buf[16]);
894
895 cmd->allowed = sdkp->max_retries;
896 cmd->transfersize = data_len;
897 rq->timeout = SD_TIMEOUT;
898
899 return scsi_alloc_sgtables(cmd);
900}
901
902static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
903 bool unmap)
904{
905 struct scsi_device *sdp = cmd->device;
906 struct request *rq = cmd->request;
907 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
908 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
909 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
910 u32 data_len = sdp->sector_size;
911
912 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
913 if (!rq->special_vec.bv_page)
914 return BLK_STS_RESOURCE;
915 clear_highpage(rq->special_vec.bv_page);
916 rq->special_vec.bv_offset = 0;
917 rq->special_vec.bv_len = data_len;
918 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
919
920 cmd->cmd_len = 16;
921 cmd->cmnd[0] = WRITE_SAME_16;
922 if (unmap)
923 cmd->cmnd[1] = 0x8; /* UNMAP */
924 put_unaligned_be64(lba, &cmd->cmnd[2]);
925 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
926
927 cmd->allowed = sdkp->max_retries;
928 cmd->transfersize = data_len;
929 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
930
931 return scsi_alloc_sgtables(cmd);
932}
933
934static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
935 bool unmap)
936{
937 struct scsi_device *sdp = cmd->device;
938 struct request *rq = cmd->request;
939 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
940 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
941 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
942 u32 data_len = sdp->sector_size;
943
944 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
945 if (!rq->special_vec.bv_page)
946 return BLK_STS_RESOURCE;
947 clear_highpage(rq->special_vec.bv_page);
948 rq->special_vec.bv_offset = 0;
949 rq->special_vec.bv_len = data_len;
950 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
951
952 cmd->cmd_len = 10;
953 cmd->cmnd[0] = WRITE_SAME;
954 if (unmap)
955 cmd->cmnd[1] = 0x8; /* UNMAP */
956 put_unaligned_be32(lba, &cmd->cmnd[2]);
957 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
958
959 cmd->allowed = sdkp->max_retries;
960 cmd->transfersize = data_len;
961 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
962
963 return scsi_alloc_sgtables(cmd);
964}
965
966static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
967{
968 struct request *rq = cmd->request;
969 struct scsi_device *sdp = cmd->device;
970 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
971 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
972 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
973
974 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
975 switch (sdkp->zeroing_mode) {
976 case SD_ZERO_WS16_UNMAP:
977 return sd_setup_write_same16_cmnd(cmd, true);
978 case SD_ZERO_WS10_UNMAP:
979 return sd_setup_write_same10_cmnd(cmd, true);
980 }
981 }
982
983 if (sdp->no_write_same) {
984 rq->rq_flags |= RQF_QUIET;
985 return BLK_STS_TARGET;
986 }
987
988 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
989 return sd_setup_write_same16_cmnd(cmd, false);
990
991 return sd_setup_write_same10_cmnd(cmd, false);
992}
993
994static void sd_config_write_same(struct scsi_disk *sdkp)
995{
996 struct request_queue *q = sdkp->disk->queue;
997 unsigned int logical_block_size = sdkp->device->sector_size;
998
999 if (sdkp->device->no_write_same) {
1000 sdkp->max_ws_blocks = 0;
1001 goto out;
1002 }
1003
1004 /* Some devices can not handle block counts above 0xffff despite
1005 * supporting WRITE SAME(16). Consequently we default to 64k
1006 * blocks per I/O unless the device explicitly advertises a
1007 * bigger limit.
1008 */
1009 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1010 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1011 (u32)SD_MAX_WS16_BLOCKS);
1012 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1013 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1014 (u32)SD_MAX_WS10_BLOCKS);
1015 else {
1016 sdkp->device->no_write_same = 1;
1017 sdkp->max_ws_blocks = 0;
1018 }
1019
1020 if (sdkp->lbprz && sdkp->lbpws)
1021 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1022 else if (sdkp->lbprz && sdkp->lbpws10)
1023 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1024 else if (sdkp->max_ws_blocks)
1025 sdkp->zeroing_mode = SD_ZERO_WS;
1026 else
1027 sdkp->zeroing_mode = SD_ZERO_WRITE;
1028
1029 if (sdkp->max_ws_blocks &&
1030 sdkp->physical_block_size > logical_block_size) {
1031 /*
1032 * Reporting a maximum number of blocks that is not aligned
1033 * on the device physical size would cause a large write same
1034 * request to be split into physically unaligned chunks by
1035 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1036 * even if the caller of these functions took care to align the
1037 * large request. So make sure the maximum reported is aligned
1038 * to the device physical block size. This is only an optional
1039 * optimization for regular disks, but this is mandatory to
1040 * avoid failure of large write same requests directed at
1041 * sequential write required zones of host-managed ZBC disks.
1042 */
1043 sdkp->max_ws_blocks =
1044 round_down(sdkp->max_ws_blocks,
1045 bytes_to_logical(sdkp->device,
1046 sdkp->physical_block_size));
1047 }
1048
1049out:
1050 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1051 (logical_block_size >> 9));
1052 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1053 (logical_block_size >> 9));
1054}
1055
1056/**
1057 * sd_setup_write_same_cmnd - write the same data to multiple blocks
1058 * @cmd: command to prepare
1059 *
1060 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1061 * the preference indicated by the target device.
1062 **/
1063static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1064{
1065 struct request *rq = cmd->request;
1066 struct scsi_device *sdp = cmd->device;
1067 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1068 struct bio *bio = rq->bio;
1069 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1070 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1071 blk_status_t ret;
1072
1073 if (sdkp->device->no_write_same)
1074 return BLK_STS_TARGET;
1075
1076 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1077
1078 rq->timeout = SD_WRITE_SAME_TIMEOUT;
1079
1080 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1081 cmd->cmd_len = 16;
1082 cmd->cmnd[0] = WRITE_SAME_16;
1083 put_unaligned_be64(lba, &cmd->cmnd[2]);
1084 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1085 } else {
1086 cmd->cmd_len = 10;
1087 cmd->cmnd[0] = WRITE_SAME;
1088 put_unaligned_be32(lba, &cmd->cmnd[2]);
1089 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1090 }
1091
1092 cmd->transfersize = sdp->sector_size;
1093 cmd->allowed = sdkp->max_retries;
1094
1095 /*
1096 * For WRITE SAME the data transferred via the DATA OUT buffer is
1097 * different from the amount of data actually written to the target.
1098 *
1099 * We set up __data_len to the amount of data transferred via the
1100 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1101 * to transfer a single sector of data first, but then reset it to
1102 * the amount of data to be written right after so that the I/O path
1103 * knows how much to actually write.
1104 */
1105 rq->__data_len = sdp->sector_size;
1106 ret = scsi_alloc_sgtables(cmd);
1107 rq->__data_len = blk_rq_bytes(rq);
1108
1109 return ret;
1110}
1111
1112static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1113{
1114 struct request *rq = cmd->request;
1115 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1116
1117 /* flush requests don't perform I/O, zero the S/G table */
1118 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1119
1120 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1121 cmd->cmd_len = 10;
1122 cmd->transfersize = 0;
1123 cmd->allowed = sdkp->max_retries;
1124
1125 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1126 return BLK_STS_OK;
1127}
1128
1129static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1130 sector_t lba, unsigned int nr_blocks,
1131 unsigned char flags)
1132{
1133 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1134 if (unlikely(cmd->cmnd == NULL))
1135 return BLK_STS_RESOURCE;
1136
1137 cmd->cmd_len = SD_EXT_CDB_SIZE;
1138 memset(cmd->cmnd, 0, cmd->cmd_len);
1139
1140 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1141 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1142 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1143 cmd->cmnd[10] = flags;
1144 put_unaligned_be64(lba, &cmd->cmnd[12]);
1145 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1146 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1147
1148 return BLK_STS_OK;
1149}
1150
1151static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1152 sector_t lba, unsigned int nr_blocks,
1153 unsigned char flags)
1154{
1155 cmd->cmd_len = 16;
1156 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1157 cmd->cmnd[1] = flags;
1158 cmd->cmnd[14] = 0;
1159 cmd->cmnd[15] = 0;
1160 put_unaligned_be64(lba, &cmd->cmnd[2]);
1161 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1162
1163 return BLK_STS_OK;
1164}
1165
1166static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1167 sector_t lba, unsigned int nr_blocks,
1168 unsigned char flags)
1169{
1170 cmd->cmd_len = 10;
1171 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1172 cmd->cmnd[1] = flags;
1173 cmd->cmnd[6] = 0;
1174 cmd->cmnd[9] = 0;
1175 put_unaligned_be32(lba, &cmd->cmnd[2]);
1176 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1177
1178 return BLK_STS_OK;
1179}
1180
1181static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1182 sector_t lba, unsigned int nr_blocks,
1183 unsigned char flags)
1184{
1185 /* Avoid that 0 blocks gets translated into 256 blocks. */
1186 if (WARN_ON_ONCE(nr_blocks == 0))
1187 return BLK_STS_IOERR;
1188
1189 if (unlikely(flags & 0x8)) {
1190 /*
1191 * This happens only if this drive failed 10byte rw
1192 * command with ILLEGAL_REQUEST during operation and
1193 * thus turned off use_10_for_rw.
1194 */
1195 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1196 return BLK_STS_IOERR;
1197 }
1198
1199 cmd->cmd_len = 6;
1200 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1201 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1202 cmd->cmnd[2] = (lba >> 8) & 0xff;
1203 cmd->cmnd[3] = lba & 0xff;
1204 cmd->cmnd[4] = nr_blocks;
1205 cmd->cmnd[5] = 0;
1206
1207 return BLK_STS_OK;
1208}
1209
1210static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1211{
1212 struct request *rq = cmd->request;
1213 struct scsi_device *sdp = cmd->device;
1214 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1215 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1216 sector_t threshold;
1217 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1218 unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1219 bool write = rq_data_dir(rq) == WRITE;
1220 unsigned char protect, fua;
1221 blk_status_t ret;
1222 unsigned int dif;
1223 bool dix;
1224
1225 ret = scsi_alloc_sgtables(cmd);
1226 if (ret != BLK_STS_OK)
1227 return ret;
1228
1229 ret = BLK_STS_IOERR;
1230 if (!scsi_device_online(sdp) || sdp->changed) {
1231 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1232 goto fail;
1233 }
1234
1235 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1236 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1237 goto fail;
1238 }
1239
1240 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1241 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1242 goto fail;
1243 }
1244
1245 /*
1246 * Some SD card readers can't handle accesses which touch the
1247 * last one or two logical blocks. Split accesses as needed.
1248 */
1249 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1250
1251 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1252 if (lba < threshold) {
1253 /* Access up to the threshold but not beyond */
1254 nr_blocks = threshold - lba;
1255 } else {
1256 /* Access only a single logical block */
1257 nr_blocks = 1;
1258 }
1259 }
1260
1261 if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1262 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1263 if (ret)
1264 goto fail;
1265 }
1266
1267 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1268 dix = scsi_prot_sg_count(cmd);
1269 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1270
1271 if (dif || dix)
1272 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1273 else
1274 protect = 0;
1275
1276 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1277 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1278 protect | fua);
1279 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1280 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1281 protect | fua);
1282 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1283 sdp->use_10_for_rw || protect) {
1284 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1285 protect | fua);
1286 } else {
1287 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1288 protect | fua);
1289 }
1290
1291 if (unlikely(ret != BLK_STS_OK))
1292 goto fail;
1293
1294 /*
1295 * We shouldn't disconnect in the middle of a sector, so with a dumb
1296 * host adapter, it's safe to assume that we can at least transfer
1297 * this many bytes between each connect / disconnect.
1298 */
1299 cmd->transfersize = sdp->sector_size;
1300 cmd->underflow = nr_blocks << 9;
1301 cmd->allowed = sdkp->max_retries;
1302 cmd->sdb.length = nr_blocks * sdp->sector_size;
1303
1304 SCSI_LOG_HLQUEUE(1,
1305 scmd_printk(KERN_INFO, cmd,
1306 "%s: block=%llu, count=%d\n", __func__,
1307 (unsigned long long)blk_rq_pos(rq),
1308 blk_rq_sectors(rq)));
1309 SCSI_LOG_HLQUEUE(2,
1310 scmd_printk(KERN_INFO, cmd,
1311 "%s %d/%u 512 byte blocks.\n",
1312 write ? "writing" : "reading", nr_blocks,
1313 blk_rq_sectors(rq)));
1314
1315 /*
1316 * This indicates that the command is ready from our end to be queued.
1317 */
1318 return BLK_STS_OK;
1319fail:
1320 scsi_free_sgtables(cmd);
1321 return ret;
1322}
1323
1324static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1325{
1326 struct request *rq = cmd->request;
1327
1328 switch (req_op(rq)) {
1329 case REQ_OP_DISCARD:
1330 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1331 case SD_LBP_UNMAP:
1332 return sd_setup_unmap_cmnd(cmd);
1333 case SD_LBP_WS16:
1334 return sd_setup_write_same16_cmnd(cmd, true);
1335 case SD_LBP_WS10:
1336 return sd_setup_write_same10_cmnd(cmd, true);
1337 case SD_LBP_ZERO:
1338 return sd_setup_write_same10_cmnd(cmd, false);
1339 default:
1340 return BLK_STS_TARGET;
1341 }
1342 case REQ_OP_WRITE_ZEROES:
1343 return sd_setup_write_zeroes_cmnd(cmd);
1344 case REQ_OP_WRITE_SAME:
1345 return sd_setup_write_same_cmnd(cmd);
1346 case REQ_OP_FLUSH:
1347 return sd_setup_flush_cmnd(cmd);
1348 case REQ_OP_READ:
1349 case REQ_OP_WRITE:
1350 case REQ_OP_ZONE_APPEND:
1351 return sd_setup_read_write_cmnd(cmd);
1352 case REQ_OP_ZONE_RESET:
1353 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1354 false);
1355 case REQ_OP_ZONE_RESET_ALL:
1356 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1357 true);
1358 case REQ_OP_ZONE_OPEN:
1359 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1360 case REQ_OP_ZONE_CLOSE:
1361 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1362 case REQ_OP_ZONE_FINISH:
1363 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1364 default:
1365 WARN_ON_ONCE(1);
1366 return BLK_STS_NOTSUPP;
1367 }
1368}
1369
1370static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1371{
1372 struct request *rq = SCpnt->request;
1373 u8 *cmnd;
1374
1375 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1376 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1377
1378 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1379 cmnd = SCpnt->cmnd;
1380 SCpnt->cmnd = NULL;
1381 SCpnt->cmd_len = 0;
1382 mempool_free(cmnd, sd_cdb_pool);
1383 }
1384}
1385
1386static bool sd_need_revalidate(struct block_device *bdev,
1387 struct scsi_disk *sdkp)
1388{
1389 if (sdkp->device->removable || sdkp->write_prot) {
1390 if (bdev_check_media_change(bdev))
1391 return true;
1392 }
1393
1394 /*
1395 * Force a full rescan after ioctl(BLKRRPART). While the disk state has
1396 * nothing to do with partitions, BLKRRPART is used to force a full
1397 * revalidate after things like a format for historical reasons.
1398 */
1399 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1400}
1401
1402/**
1403 * sd_open - open a scsi disk device
1404 * @bdev: Block device of the scsi disk to open
1405 * @mode: FMODE_* mask
1406 *
1407 * Returns 0 if successful. Returns a negated errno value in case
1408 * of error.
1409 *
1410 * Note: This can be called from a user context (e.g. fsck(1) )
1411 * or from within the kernel (e.g. as a result of a mount(1) ).
1412 * In the latter case @inode and @filp carry an abridged amount
1413 * of information as noted above.
1414 *
1415 * Locking: called with bdev->bd_disk->open_mutex held.
1416 **/
1417static int sd_open(struct block_device *bdev, fmode_t mode)
1418{
1419 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1420 struct scsi_device *sdev;
1421 int retval;
1422
1423 if (!sdkp)
1424 return -ENXIO;
1425
1426 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1427
1428 sdev = sdkp->device;
1429
1430 /*
1431 * If the device is in error recovery, wait until it is done.
1432 * If the device is offline, then disallow any access to it.
1433 */
1434 retval = -ENXIO;
1435 if (!scsi_block_when_processing_errors(sdev))
1436 goto error_out;
1437
1438 if (sd_need_revalidate(bdev, sdkp))
1439 sd_revalidate_disk(bdev->bd_disk);
1440
1441 /*
1442 * If the drive is empty, just let the open fail.
1443 */
1444 retval = -ENOMEDIUM;
1445 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1446 goto error_out;
1447
1448 /*
1449 * If the device has the write protect tab set, have the open fail
1450 * if the user expects to be able to write to the thing.
1451 */
1452 retval = -EROFS;
1453 if (sdkp->write_prot && (mode & FMODE_WRITE))
1454 goto error_out;
1455
1456 /*
1457 * It is possible that the disk changing stuff resulted in
1458 * the device being taken offline. If this is the case,
1459 * report this to the user, and don't pretend that the
1460 * open actually succeeded.
1461 */
1462 retval = -ENXIO;
1463 if (!scsi_device_online(sdev))
1464 goto error_out;
1465
1466 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1467 if (scsi_block_when_processing_errors(sdev))
1468 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1469 }
1470
1471 return 0;
1472
1473error_out:
1474 scsi_disk_put(sdkp);
1475 return retval;
1476}
1477
1478/**
1479 * sd_release - invoked when the (last) close(2) is called on this
1480 * scsi disk.
1481 * @disk: disk to release
1482 * @mode: FMODE_* mask
1483 *
1484 * Returns 0.
1485 *
1486 * Note: may block (uninterruptible) if error recovery is underway
1487 * on this disk.
1488 *
1489 * Locking: called with bdev->bd_disk->open_mutex held.
1490 **/
1491static void sd_release(struct gendisk *disk, fmode_t mode)
1492{
1493 struct scsi_disk *sdkp = scsi_disk(disk);
1494 struct scsi_device *sdev = sdkp->device;
1495
1496 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1497
1498 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1499 if (scsi_block_when_processing_errors(sdev))
1500 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1501 }
1502
1503 scsi_disk_put(sdkp);
1504}
1505
1506static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1507{
1508 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1509 struct scsi_device *sdp = sdkp->device;
1510 struct Scsi_Host *host = sdp->host;
1511 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1512 int diskinfo[4];
1513
1514 /* default to most commonly used values */
1515 diskinfo[0] = 0x40; /* 1 << 6 */
1516 diskinfo[1] = 0x20; /* 1 << 5 */
1517 diskinfo[2] = capacity >> 11;
1518
1519 /* override with calculated, extended default, or driver values */
1520 if (host->hostt->bios_param)
1521 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1522 else
1523 scsicam_bios_param(bdev, capacity, diskinfo);
1524
1525 geo->heads = diskinfo[0];
1526 geo->sectors = diskinfo[1];
1527 geo->cylinders = diskinfo[2];
1528 return 0;
1529}
1530
1531/**
1532 * sd_ioctl_common - process an ioctl
1533 * @bdev: target block device
1534 * @mode: FMODE_* mask
1535 * @cmd: ioctl command number
1536 * @p: this is third argument given to ioctl(2) system call.
1537 * Often contains a pointer.
1538 *
1539 * Returns 0 if successful (some ioctls return positive numbers on
1540 * success as well). Returns a negated errno value in case of error.
1541 *
1542 * Note: most ioctls are forward onto the block subsystem or further
1543 * down in the scsi subsystem.
1544 **/
1545static int sd_ioctl_common(struct block_device *bdev, fmode_t mode,
1546 unsigned int cmd, void __user *p)
1547{
1548 struct gendisk *disk = bdev->bd_disk;
1549 struct scsi_disk *sdkp = scsi_disk(disk);
1550 struct scsi_device *sdp = sdkp->device;
1551 int error;
1552
1553 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1554 "cmd=0x%x\n", disk->disk_name, cmd));
1555
1556 error = scsi_verify_blk_ioctl(bdev, cmd);
1557 if (error < 0)
1558 return error;
1559
1560 /*
1561 * If we are in the middle of error recovery, don't let anyone
1562 * else try and use this device. Also, if error recovery fails, it
1563 * may try and take the device offline, in which case all further
1564 * access to the device is prohibited.
1565 */
1566 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1567 (mode & FMODE_NDELAY) != 0);
1568 if (error)
1569 goto out;
1570
1571 if (is_sed_ioctl(cmd))
1572 return sed_ioctl(sdkp->opal_dev, cmd, p);
1573
1574 /*
1575 * Send SCSI addressing ioctls directly to mid level, send other
1576 * ioctls to block level and then onto mid level if they can't be
1577 * resolved.
1578 */
1579 switch (cmd) {
1580 case SCSI_IOCTL_GET_IDLUN:
1581 case SCSI_IOCTL_GET_BUS_NUMBER:
1582 error = scsi_ioctl(sdp, cmd, p);
1583 break;
1584 default:
1585 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1586 break;
1587 }
1588out:
1589 return error;
1590}
1591
1592static void set_media_not_present(struct scsi_disk *sdkp)
1593{
1594 if (sdkp->media_present)
1595 sdkp->device->changed = 1;
1596
1597 if (sdkp->device->removable) {
1598 sdkp->media_present = 0;
1599 sdkp->capacity = 0;
1600 }
1601}
1602
1603static int media_not_present(struct scsi_disk *sdkp,
1604 struct scsi_sense_hdr *sshdr)
1605{
1606 if (!scsi_sense_valid(sshdr))
1607 return 0;
1608
1609 /* not invoked for commands that could return deferred errors */
1610 switch (sshdr->sense_key) {
1611 case UNIT_ATTENTION:
1612 case NOT_READY:
1613 /* medium not present */
1614 if (sshdr->asc == 0x3A) {
1615 set_media_not_present(sdkp);
1616 return 1;
1617 }
1618 }
1619 return 0;
1620}
1621
1622/**
1623 * sd_check_events - check media events
1624 * @disk: kernel device descriptor
1625 * @clearing: disk events currently being cleared
1626 *
1627 * Returns mask of DISK_EVENT_*.
1628 *
1629 * Note: this function is invoked from the block subsystem.
1630 **/
1631static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1632{
1633 struct scsi_disk *sdkp = scsi_disk_get(disk);
1634 struct scsi_device *sdp;
1635 int retval;
1636 bool disk_changed;
1637
1638 if (!sdkp)
1639 return 0;
1640
1641 sdp = sdkp->device;
1642 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1643
1644 /*
1645 * If the device is offline, don't send any commands - just pretend as
1646 * if the command failed. If the device ever comes back online, we
1647 * can deal with it then. It is only because of unrecoverable errors
1648 * that we would ever take a device offline in the first place.
1649 */
1650 if (!scsi_device_online(sdp)) {
1651 set_media_not_present(sdkp);
1652 goto out;
1653 }
1654
1655 /*
1656 * Using TEST_UNIT_READY enables differentiation between drive with
1657 * no cartridge loaded - NOT READY, drive with changed cartridge -
1658 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1659 *
1660 * Drives that auto spin down. eg iomega jaz 1G, will be started
1661 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1662 * sd_revalidate() is called.
1663 */
1664 if (scsi_block_when_processing_errors(sdp)) {
1665 struct scsi_sense_hdr sshdr = { 0, };
1666
1667 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1668 &sshdr);
1669
1670 /* failed to execute TUR, assume media not present */
1671 if (retval < 0 || host_byte(retval)) {
1672 set_media_not_present(sdkp);
1673 goto out;
1674 }
1675
1676 if (media_not_present(sdkp, &sshdr))
1677 goto out;
1678 }
1679
1680 /*
1681 * For removable scsi disk we have to recognise the presence
1682 * of a disk in the drive.
1683 */
1684 if (!sdkp->media_present)
1685 sdp->changed = 1;
1686 sdkp->media_present = 1;
1687out:
1688 /*
1689 * sdp->changed is set under the following conditions:
1690 *
1691 * Medium present state has changed in either direction.
1692 * Device has indicated UNIT_ATTENTION.
1693 */
1694 disk_changed = sdp->changed;
1695 sdp->changed = 0;
1696 scsi_disk_put(sdkp);
1697 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1698}
1699
1700static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1701{
1702 int retries, res;
1703 struct scsi_device *sdp = sdkp->device;
1704 const int timeout = sdp->request_queue->rq_timeout
1705 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1706 struct scsi_sense_hdr my_sshdr;
1707
1708 if (!scsi_device_online(sdp))
1709 return -ENODEV;
1710
1711 /* caller might not be interested in sense, but we need it */
1712 if (!sshdr)
1713 sshdr = &my_sshdr;
1714
1715 for (retries = 3; retries > 0; --retries) {
1716 unsigned char cmd[10] = { 0 };
1717
1718 cmd[0] = SYNCHRONIZE_CACHE;
1719 /*
1720 * Leave the rest of the command zero to indicate
1721 * flush everything.
1722 */
1723 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1724 timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1725 if (res == 0)
1726 break;
1727 }
1728
1729 if (res) {
1730 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1731
1732 if (res < 0)
1733 return res;
1734
1735 if (scsi_status_is_check_condition(res) &&
1736 scsi_sense_valid(sshdr)) {
1737 sd_print_sense_hdr(sdkp, sshdr);
1738
1739 /* we need to evaluate the error return */
1740 if (sshdr->asc == 0x3a || /* medium not present */
1741 sshdr->asc == 0x20 || /* invalid command */
1742 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */
1743 /* this is no error here */
1744 return 0;
1745 }
1746
1747 switch (host_byte(res)) {
1748 /* ignore errors due to racing a disconnection */
1749 case DID_BAD_TARGET:
1750 case DID_NO_CONNECT:
1751 return 0;
1752 /* signal the upper layer it might try again */
1753 case DID_BUS_BUSY:
1754 case DID_IMM_RETRY:
1755 case DID_REQUEUE:
1756 case DID_SOFT_ERROR:
1757 return -EBUSY;
1758 default:
1759 return -EIO;
1760 }
1761 }
1762 return 0;
1763}
1764
1765static void sd_rescan(struct device *dev)
1766{
1767 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1768
1769 sd_revalidate_disk(sdkp->disk);
1770}
1771
1772static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1773 unsigned int cmd, unsigned long arg)
1774{
1775 void __user *p = (void __user *)arg;
1776 int ret;
1777
1778 ret = sd_ioctl_common(bdev, mode, cmd, p);
1779 if (ret != -ENOTTY)
1780 return ret;
1781
1782 return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1783}
1784
1785#ifdef CONFIG_COMPAT
1786static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1787 unsigned int cmd, unsigned long arg)
1788{
1789 void __user *p = compat_ptr(arg);
1790 int ret;
1791
1792 ret = sd_ioctl_common(bdev, mode, cmd, p);
1793 if (ret != -ENOTTY)
1794 return ret;
1795
1796 return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1797}
1798#endif
1799
1800static char sd_pr_type(enum pr_type type)
1801{
1802 switch (type) {
1803 case PR_WRITE_EXCLUSIVE:
1804 return 0x01;
1805 case PR_EXCLUSIVE_ACCESS:
1806 return 0x03;
1807 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1808 return 0x05;
1809 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1810 return 0x06;
1811 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1812 return 0x07;
1813 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1814 return 0x08;
1815 default:
1816 return 0;
1817 }
1818};
1819
1820static int sd_pr_command(struct block_device *bdev, u8 sa,
1821 u64 key, u64 sa_key, u8 type, u8 flags)
1822{
1823 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1824 struct scsi_device *sdev = sdkp->device;
1825 struct scsi_sense_hdr sshdr;
1826 int result;
1827 u8 cmd[16] = { 0, };
1828 u8 data[24] = { 0, };
1829
1830 cmd[0] = PERSISTENT_RESERVE_OUT;
1831 cmd[1] = sa;
1832 cmd[2] = type;
1833 put_unaligned_be32(sizeof(data), &cmd[5]);
1834
1835 put_unaligned_be64(key, &data[0]);
1836 put_unaligned_be64(sa_key, &data[8]);
1837 data[20] = flags;
1838
1839 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1840 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1841
1842 if (scsi_status_is_check_condition(result) &&
1843 scsi_sense_valid(&sshdr)) {
1844 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1845 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1846 }
1847
1848 return result;
1849}
1850
1851static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1852 u32 flags)
1853{
1854 if (flags & ~PR_FL_IGNORE_KEY)
1855 return -EOPNOTSUPP;
1856 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1857 old_key, new_key, 0,
1858 (1 << 0) /* APTPL */);
1859}
1860
1861static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1862 u32 flags)
1863{
1864 if (flags)
1865 return -EOPNOTSUPP;
1866 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1867}
1868
1869static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1870{
1871 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1872}
1873
1874static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1875 enum pr_type type, bool abort)
1876{
1877 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1878 sd_pr_type(type), 0);
1879}
1880
1881static int sd_pr_clear(struct block_device *bdev, u64 key)
1882{
1883 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1884}
1885
1886static const struct pr_ops sd_pr_ops = {
1887 .pr_register = sd_pr_register,
1888 .pr_reserve = sd_pr_reserve,
1889 .pr_release = sd_pr_release,
1890 .pr_preempt = sd_pr_preempt,
1891 .pr_clear = sd_pr_clear,
1892};
1893
1894static const struct block_device_operations sd_fops = {
1895 .owner = THIS_MODULE,
1896 .open = sd_open,
1897 .release = sd_release,
1898 .ioctl = sd_ioctl,
1899 .getgeo = sd_getgeo,
1900#ifdef CONFIG_COMPAT
1901 .compat_ioctl = sd_compat_ioctl,
1902#endif
1903 .check_events = sd_check_events,
1904 .unlock_native_capacity = sd_unlock_native_capacity,
1905 .report_zones = sd_zbc_report_zones,
1906 .pr_ops = &sd_pr_ops,
1907};
1908
1909/**
1910 * sd_eh_reset - reset error handling callback
1911 * @scmd: sd-issued command that has failed
1912 *
1913 * This function is called by the SCSI midlayer before starting
1914 * SCSI EH. When counting medium access failures we have to be
1915 * careful to register it only only once per device and SCSI EH run;
1916 * there might be several timed out commands which will cause the
1917 * 'max_medium_access_timeouts' counter to trigger after the first
1918 * SCSI EH run already and set the device to offline.
1919 * So this function resets the internal counter before starting SCSI EH.
1920 **/
1921static void sd_eh_reset(struct scsi_cmnd *scmd)
1922{
1923 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1924
1925 /* New SCSI EH run, reset gate variable */
1926 sdkp->ignore_medium_access_errors = false;
1927}
1928
1929/**
1930 * sd_eh_action - error handling callback
1931 * @scmd: sd-issued command that has failed
1932 * @eh_disp: The recovery disposition suggested by the midlayer
1933 *
1934 * This function is called by the SCSI midlayer upon completion of an
1935 * error test command (currently TEST UNIT READY). The result of sending
1936 * the eh command is passed in eh_disp. We're looking for devices that
1937 * fail medium access commands but are OK with non access commands like
1938 * test unit ready (so wrongly see the device as having a successful
1939 * recovery)
1940 **/
1941static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1942{
1943 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1944 struct scsi_device *sdev = scmd->device;
1945
1946 if (!scsi_device_online(sdev) ||
1947 !scsi_medium_access_command(scmd) ||
1948 host_byte(scmd->result) != DID_TIME_OUT ||
1949 eh_disp != SUCCESS)
1950 return eh_disp;
1951
1952 /*
1953 * The device has timed out executing a medium access command.
1954 * However, the TEST UNIT READY command sent during error
1955 * handling completed successfully. Either the device is in the
1956 * process of recovering or has it suffered an internal failure
1957 * that prevents access to the storage medium.
1958 */
1959 if (!sdkp->ignore_medium_access_errors) {
1960 sdkp->medium_access_timed_out++;
1961 sdkp->ignore_medium_access_errors = true;
1962 }
1963
1964 /*
1965 * If the device keeps failing read/write commands but TEST UNIT
1966 * READY always completes successfully we assume that medium
1967 * access is no longer possible and take the device offline.
1968 */
1969 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1970 scmd_printk(KERN_ERR, scmd,
1971 "Medium access timeout failure. Offlining disk!\n");
1972 mutex_lock(&sdev->state_mutex);
1973 scsi_device_set_state(sdev, SDEV_OFFLINE);
1974 mutex_unlock(&sdev->state_mutex);
1975
1976 return SUCCESS;
1977 }
1978
1979 return eh_disp;
1980}
1981
1982static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1983{
1984 struct request *req = scmd->request;
1985 struct scsi_device *sdev = scmd->device;
1986 unsigned int transferred, good_bytes;
1987 u64 start_lba, end_lba, bad_lba;
1988
1989 /*
1990 * Some commands have a payload smaller than the device logical
1991 * block size (e.g. INQUIRY on a 4K disk).
1992 */
1993 if (scsi_bufflen(scmd) <= sdev->sector_size)
1994 return 0;
1995
1996 /* Check if we have a 'bad_lba' information */
1997 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1998 SCSI_SENSE_BUFFERSIZE,
1999 &bad_lba))
2000 return 0;
2001
2002 /*
2003 * If the bad lba was reported incorrectly, we have no idea where
2004 * the error is.
2005 */
2006 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2007 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2008 if (bad_lba < start_lba || bad_lba >= end_lba)
2009 return 0;
2010
2011 /*
2012 * resid is optional but mostly filled in. When it's unused,
2013 * its value is zero, so we assume the whole buffer transferred
2014 */
2015 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2016
2017 /* This computation should always be done in terms of the
2018 * resolution of the device's medium.
2019 */
2020 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2021
2022 return min(good_bytes, transferred);
2023}
2024
2025/**
2026 * sd_done - bottom half handler: called when the lower level
2027 * driver has completed (successfully or otherwise) a scsi command.
2028 * @SCpnt: mid-level's per command structure.
2029 *
2030 * Note: potentially run from within an ISR. Must not block.
2031 **/
2032static int sd_done(struct scsi_cmnd *SCpnt)
2033{
2034 int result = SCpnt->result;
2035 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2036 unsigned int sector_size = SCpnt->device->sector_size;
2037 unsigned int resid;
2038 struct scsi_sense_hdr sshdr;
2039 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
2040 struct request *req = SCpnt->request;
2041 int sense_valid = 0;
2042 int sense_deferred = 0;
2043
2044 switch (req_op(req)) {
2045 case REQ_OP_DISCARD:
2046 case REQ_OP_WRITE_ZEROES:
2047 case REQ_OP_WRITE_SAME:
2048 case REQ_OP_ZONE_RESET:
2049 case REQ_OP_ZONE_RESET_ALL:
2050 case REQ_OP_ZONE_OPEN:
2051 case REQ_OP_ZONE_CLOSE:
2052 case REQ_OP_ZONE_FINISH:
2053 if (!result) {
2054 good_bytes = blk_rq_bytes(req);
2055 scsi_set_resid(SCpnt, 0);
2056 } else {
2057 good_bytes = 0;
2058 scsi_set_resid(SCpnt, blk_rq_bytes(req));
2059 }
2060 break;
2061 default:
2062 /*
2063 * In case of bogus fw or device, we could end up having
2064 * an unaligned partial completion. Check this here and force
2065 * alignment.
2066 */
2067 resid = scsi_get_resid(SCpnt);
2068 if (resid & (sector_size - 1)) {
2069 sd_printk(KERN_INFO, sdkp,
2070 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2071 resid, sector_size);
2072 scsi_print_command(SCpnt);
2073 resid = min(scsi_bufflen(SCpnt),
2074 round_up(resid, sector_size));
2075 scsi_set_resid(SCpnt, resid);
2076 }
2077 }
2078
2079 if (result) {
2080 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2081 if (sense_valid)
2082 sense_deferred = scsi_sense_is_deferred(&sshdr);
2083 }
2084 sdkp->medium_access_timed_out = 0;
2085
2086 if (!scsi_status_is_check_condition(result) &&
2087 (!sense_valid || sense_deferred))
2088 goto out;
2089
2090 switch (sshdr.sense_key) {
2091 case HARDWARE_ERROR:
2092 case MEDIUM_ERROR:
2093 good_bytes = sd_completed_bytes(SCpnt);
2094 break;
2095 case RECOVERED_ERROR:
2096 good_bytes = scsi_bufflen(SCpnt);
2097 break;
2098 case NO_SENSE:
2099 /* This indicates a false check condition, so ignore it. An
2100 * unknown amount of data was transferred so treat it as an
2101 * error.
2102 */
2103 SCpnt->result = 0;
2104 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2105 break;
2106 case ABORTED_COMMAND:
2107 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2108 good_bytes = sd_completed_bytes(SCpnt);
2109 break;
2110 case ILLEGAL_REQUEST:
2111 switch (sshdr.asc) {
2112 case 0x10: /* DIX: Host detected corruption */
2113 good_bytes = sd_completed_bytes(SCpnt);
2114 break;
2115 case 0x20: /* INVALID COMMAND OPCODE */
2116 case 0x24: /* INVALID FIELD IN CDB */
2117 switch (SCpnt->cmnd[0]) {
2118 case UNMAP:
2119 sd_config_discard(sdkp, SD_LBP_DISABLE);
2120 break;
2121 case WRITE_SAME_16:
2122 case WRITE_SAME:
2123 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2124 sd_config_discard(sdkp, SD_LBP_DISABLE);
2125 } else {
2126 sdkp->device->no_write_same = 1;
2127 sd_config_write_same(sdkp);
2128 req->rq_flags |= RQF_QUIET;
2129 }
2130 break;
2131 }
2132 }
2133 break;
2134 default:
2135 break;
2136 }
2137
2138 out:
2139 if (sd_is_zoned(sdkp))
2140 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2141
2142 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2143 "sd_done: completed %d of %d bytes\n",
2144 good_bytes, scsi_bufflen(SCpnt)));
2145
2146 return good_bytes;
2147}
2148
2149/*
2150 * spinup disk - called only in sd_revalidate_disk()
2151 */
2152static void
2153sd_spinup_disk(struct scsi_disk *sdkp)
2154{
2155 unsigned char cmd[10];
2156 unsigned long spintime_expire = 0;
2157 int retries, spintime;
2158 unsigned int the_result;
2159 struct scsi_sense_hdr sshdr;
2160 int sense_valid = 0;
2161
2162 spintime = 0;
2163
2164 /* Spin up drives, as required. Only do this at boot time */
2165 /* Spinup needs to be done for module loads too. */
2166 do {
2167 retries = 0;
2168
2169 do {
2170 cmd[0] = TEST_UNIT_READY;
2171 memset((void *) &cmd[1], 0, 9);
2172
2173 the_result = scsi_execute_req(sdkp->device, cmd,
2174 DMA_NONE, NULL, 0,
2175 &sshdr, SD_TIMEOUT,
2176 sdkp->max_retries, NULL);
2177
2178 /*
2179 * If the drive has indicated to us that it
2180 * doesn't have any media in it, don't bother
2181 * with any more polling.
2182 */
2183 if (media_not_present(sdkp, &sshdr))
2184 return;
2185
2186 if (the_result)
2187 sense_valid = scsi_sense_valid(&sshdr);
2188 retries++;
2189 } while (retries < 3 &&
2190 (!scsi_status_is_good(the_result) ||
2191 (scsi_status_is_check_condition(the_result) &&
2192 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2193
2194 if (!scsi_status_is_check_condition(the_result)) {
2195 /* no sense, TUR either succeeded or failed
2196 * with a status error */
2197 if(!spintime && !scsi_status_is_good(the_result)) {
2198 sd_print_result(sdkp, "Test Unit Ready failed",
2199 the_result);
2200 }
2201 break;
2202 }
2203
2204 /*
2205 * The device does not want the automatic start to be issued.
2206 */
2207 if (sdkp->device->no_start_on_add)
2208 break;
2209
2210 if (sense_valid && sshdr.sense_key == NOT_READY) {
2211 if (sshdr.asc == 4 && sshdr.ascq == 3)
2212 break; /* manual intervention required */
2213 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2214 break; /* standby */
2215 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2216 break; /* unavailable */
2217 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2218 break; /* sanitize in progress */
2219 /*
2220 * Issue command to spin up drive when not ready
2221 */
2222 if (!spintime) {
2223 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2224 cmd[0] = START_STOP;
2225 cmd[1] = 1; /* Return immediately */
2226 memset((void *) &cmd[2], 0, 8);
2227 cmd[4] = 1; /* Start spin cycle */
2228 if (sdkp->device->start_stop_pwr_cond)
2229 cmd[4] |= 1 << 4;
2230 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2231 NULL, 0, &sshdr,
2232 SD_TIMEOUT, sdkp->max_retries,
2233 NULL);
2234 spintime_expire = jiffies + 100 * HZ;
2235 spintime = 1;
2236 }
2237 /* Wait 1 second for next try */
2238 msleep(1000);
2239 printk(KERN_CONT ".");
2240
2241 /*
2242 * Wait for USB flash devices with slow firmware.
2243 * Yes, this sense key/ASC combination shouldn't
2244 * occur here. It's characteristic of these devices.
2245 */
2246 } else if (sense_valid &&
2247 sshdr.sense_key == UNIT_ATTENTION &&
2248 sshdr.asc == 0x28) {
2249 if (!spintime) {
2250 spintime_expire = jiffies + 5 * HZ;
2251 spintime = 1;
2252 }
2253 /* Wait 1 second for next try */
2254 msleep(1000);
2255 } else {
2256 /* we don't understand the sense code, so it's
2257 * probably pointless to loop */
2258 if(!spintime) {
2259 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2260 sd_print_sense_hdr(sdkp, &sshdr);
2261 }
2262 break;
2263 }
2264
2265 } while (spintime && time_before_eq(jiffies, spintime_expire));
2266
2267 if (spintime) {
2268 if (scsi_status_is_good(the_result))
2269 printk(KERN_CONT "ready\n");
2270 else
2271 printk(KERN_CONT "not responding...\n");
2272 }
2273}
2274
2275/*
2276 * Determine whether disk supports Data Integrity Field.
2277 */
2278static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2279{
2280 struct scsi_device *sdp = sdkp->device;
2281 u8 type;
2282 int ret = 0;
2283
2284 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2285 sdkp->protection_type = 0;
2286 return ret;
2287 }
2288
2289 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2290
2291 if (type > T10_PI_TYPE3_PROTECTION)
2292 ret = -ENODEV;
2293 else if (scsi_host_dif_capable(sdp->host, type))
2294 ret = 1;
2295
2296 if (sdkp->first_scan || type != sdkp->protection_type)
2297 switch (ret) {
2298 case -ENODEV:
2299 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2300 " protection type %u. Disabling disk!\n",
2301 type);
2302 break;
2303 case 1:
2304 sd_printk(KERN_NOTICE, sdkp,
2305 "Enabling DIF Type %u protection\n", type);
2306 break;
2307 case 0:
2308 sd_printk(KERN_NOTICE, sdkp,
2309 "Disabling DIF Type %u protection\n", type);
2310 break;
2311 }
2312
2313 sdkp->protection_type = type;
2314
2315 return ret;
2316}
2317
2318static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2319 struct scsi_sense_hdr *sshdr, int sense_valid,
2320 int the_result)
2321{
2322 if (sense_valid)
2323 sd_print_sense_hdr(sdkp, sshdr);
2324 else
2325 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2326
2327 /*
2328 * Set dirty bit for removable devices if not ready -
2329 * sometimes drives will not report this properly.
2330 */
2331 if (sdp->removable &&
2332 sense_valid && sshdr->sense_key == NOT_READY)
2333 set_media_not_present(sdkp);
2334
2335 /*
2336 * We used to set media_present to 0 here to indicate no media
2337 * in the drive, but some drives fail read capacity even with
2338 * media present, so we can't do that.
2339 */
2340 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2341}
2342
2343#define RC16_LEN 32
2344#if RC16_LEN > SD_BUF_SIZE
2345#error RC16_LEN must not be more than SD_BUF_SIZE
2346#endif
2347
2348#define READ_CAPACITY_RETRIES_ON_RESET 10
2349
2350static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2351 unsigned char *buffer)
2352{
2353 unsigned char cmd[16];
2354 struct scsi_sense_hdr sshdr;
2355 int sense_valid = 0;
2356 int the_result;
2357 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2358 unsigned int alignment;
2359 unsigned long long lba;
2360 unsigned sector_size;
2361
2362 if (sdp->no_read_capacity_16)
2363 return -EINVAL;
2364
2365 do {
2366 memset(cmd, 0, 16);
2367 cmd[0] = SERVICE_ACTION_IN_16;
2368 cmd[1] = SAI_READ_CAPACITY_16;
2369 cmd[13] = RC16_LEN;
2370 memset(buffer, 0, RC16_LEN);
2371
2372 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2373 buffer, RC16_LEN, &sshdr,
2374 SD_TIMEOUT, sdkp->max_retries, NULL);
2375
2376 if (media_not_present(sdkp, &sshdr))
2377 return -ENODEV;
2378
2379 if (the_result > 0) {
2380 sense_valid = scsi_sense_valid(&sshdr);
2381 if (sense_valid &&
2382 sshdr.sense_key == ILLEGAL_REQUEST &&
2383 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2384 sshdr.ascq == 0x00)
2385 /* Invalid Command Operation Code or
2386 * Invalid Field in CDB, just retry
2387 * silently with RC10 */
2388 return -EINVAL;
2389 if (sense_valid &&
2390 sshdr.sense_key == UNIT_ATTENTION &&
2391 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2392 /* Device reset might occur several times,
2393 * give it one more chance */
2394 if (--reset_retries > 0)
2395 continue;
2396 }
2397 retries--;
2398
2399 } while (the_result && retries);
2400
2401 if (the_result) {
2402 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2403 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2404 return -EINVAL;
2405 }
2406
2407 sector_size = get_unaligned_be32(&buffer[8]);
2408 lba = get_unaligned_be64(&buffer[0]);
2409
2410 if (sd_read_protection_type(sdkp, buffer) < 0) {
2411 sdkp->capacity = 0;
2412 return -ENODEV;
2413 }
2414
2415 /* Logical blocks per physical block exponent */
2416 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2417
2418 /* RC basis */
2419 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2420
2421 /* Lowest aligned logical block */
2422 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2423 blk_queue_alignment_offset(sdp->request_queue, alignment);
2424 if (alignment && sdkp->first_scan)
2425 sd_printk(KERN_NOTICE, sdkp,
2426 "physical block alignment offset: %u\n", alignment);
2427
2428 if (buffer[14] & 0x80) { /* LBPME */
2429 sdkp->lbpme = 1;
2430
2431 if (buffer[14] & 0x40) /* LBPRZ */
2432 sdkp->lbprz = 1;
2433
2434 sd_config_discard(sdkp, SD_LBP_WS16);
2435 }
2436
2437 sdkp->capacity = lba + 1;
2438 return sector_size;
2439}
2440
2441static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2442 unsigned char *buffer)
2443{
2444 unsigned char cmd[16];
2445 struct scsi_sense_hdr sshdr;
2446 int sense_valid = 0;
2447 int the_result;
2448 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2449 sector_t lba;
2450 unsigned sector_size;
2451
2452 do {
2453 cmd[0] = READ_CAPACITY;
2454 memset(&cmd[1], 0, 9);
2455 memset(buffer, 0, 8);
2456
2457 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2458 buffer, 8, &sshdr,
2459 SD_TIMEOUT, sdkp->max_retries, NULL);
2460
2461 if (media_not_present(sdkp, &sshdr))
2462 return -ENODEV;
2463
2464 if (the_result > 0) {
2465 sense_valid = scsi_sense_valid(&sshdr);
2466 if (sense_valid &&
2467 sshdr.sense_key == UNIT_ATTENTION &&
2468 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2469 /* Device reset might occur several times,
2470 * give it one more chance */
2471 if (--reset_retries > 0)
2472 continue;
2473 }
2474 retries--;
2475
2476 } while (the_result && retries);
2477
2478 if (the_result) {
2479 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2480 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2481 return -EINVAL;
2482 }
2483
2484 sector_size = get_unaligned_be32(&buffer[4]);
2485 lba = get_unaligned_be32(&buffer[0]);
2486
2487 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2488 /* Some buggy (usb cardreader) devices return an lba of
2489 0xffffffff when the want to report a size of 0 (with
2490 which they really mean no media is present) */
2491 sdkp->capacity = 0;
2492 sdkp->physical_block_size = sector_size;
2493 return sector_size;
2494 }
2495
2496 sdkp->capacity = lba + 1;
2497 sdkp->physical_block_size = sector_size;
2498 return sector_size;
2499}
2500
2501static int sd_try_rc16_first(struct scsi_device *sdp)
2502{
2503 if (sdp->host->max_cmd_len < 16)
2504 return 0;
2505 if (sdp->try_rc_10_first)
2506 return 0;
2507 if (sdp->scsi_level > SCSI_SPC_2)
2508 return 1;
2509 if (scsi_device_protection(sdp))
2510 return 1;
2511 return 0;
2512}
2513
2514/*
2515 * read disk capacity
2516 */
2517static void
2518sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2519{
2520 int sector_size;
2521 struct scsi_device *sdp = sdkp->device;
2522
2523 if (sd_try_rc16_first(sdp)) {
2524 sector_size = read_capacity_16(sdkp, sdp, buffer);
2525 if (sector_size == -EOVERFLOW)
2526 goto got_data;
2527 if (sector_size == -ENODEV)
2528 return;
2529 if (sector_size < 0)
2530 sector_size = read_capacity_10(sdkp, sdp, buffer);
2531 if (sector_size < 0)
2532 return;
2533 } else {
2534 sector_size = read_capacity_10(sdkp, sdp, buffer);
2535 if (sector_size == -EOVERFLOW)
2536 goto got_data;
2537 if (sector_size < 0)
2538 return;
2539 if ((sizeof(sdkp->capacity) > 4) &&
2540 (sdkp->capacity > 0xffffffffULL)) {
2541 int old_sector_size = sector_size;
2542 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2543 "Trying to use READ CAPACITY(16).\n");
2544 sector_size = read_capacity_16(sdkp, sdp, buffer);
2545 if (sector_size < 0) {
2546 sd_printk(KERN_NOTICE, sdkp,
2547 "Using 0xffffffff as device size\n");
2548 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2549 sector_size = old_sector_size;
2550 goto got_data;
2551 }
2552 /* Remember that READ CAPACITY(16) succeeded */
2553 sdp->try_rc_10_first = 0;
2554 }
2555 }
2556
2557 /* Some devices are known to return the total number of blocks,
2558 * not the highest block number. Some devices have versions
2559 * which do this and others which do not. Some devices we might
2560 * suspect of doing this but we don't know for certain.
2561 *
2562 * If we know the reported capacity is wrong, decrement it. If
2563 * we can only guess, then assume the number of blocks is even
2564 * (usually true but not always) and err on the side of lowering
2565 * the capacity.
2566 */
2567 if (sdp->fix_capacity ||
2568 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2569 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2570 "from its reported value: %llu\n",
2571 (unsigned long long) sdkp->capacity);
2572 --sdkp->capacity;
2573 }
2574
2575got_data:
2576 if (sector_size == 0) {
2577 sector_size = 512;
2578 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2579 "assuming 512.\n");
2580 }
2581
2582 if (sector_size != 512 &&
2583 sector_size != 1024 &&
2584 sector_size != 2048 &&
2585 sector_size != 4096) {
2586 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2587 sector_size);
2588 /*
2589 * The user might want to re-format the drive with
2590 * a supported sectorsize. Once this happens, it
2591 * would be relatively trivial to set the thing up.
2592 * For this reason, we leave the thing in the table.
2593 */
2594 sdkp->capacity = 0;
2595 /*
2596 * set a bogus sector size so the normal read/write
2597 * logic in the block layer will eventually refuse any
2598 * request on this device without tripping over power
2599 * of two sector size assumptions
2600 */
2601 sector_size = 512;
2602 }
2603 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2604 blk_queue_physical_block_size(sdp->request_queue,
2605 sdkp->physical_block_size);
2606 sdkp->device->sector_size = sector_size;
2607
2608 if (sdkp->capacity > 0xffffffff)
2609 sdp->use_16_for_rw = 1;
2610
2611}
2612
2613/*
2614 * Print disk capacity
2615 */
2616static void
2617sd_print_capacity(struct scsi_disk *sdkp,
2618 sector_t old_capacity)
2619{
2620 int sector_size = sdkp->device->sector_size;
2621 char cap_str_2[10], cap_str_10[10];
2622
2623 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2624 return;
2625
2626 string_get_size(sdkp->capacity, sector_size,
2627 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2628 string_get_size(sdkp->capacity, sector_size,
2629 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2630
2631 sd_printk(KERN_NOTICE, sdkp,
2632 "%llu %d-byte logical blocks: (%s/%s)\n",
2633 (unsigned long long)sdkp->capacity,
2634 sector_size, cap_str_10, cap_str_2);
2635
2636 if (sdkp->physical_block_size != sector_size)
2637 sd_printk(KERN_NOTICE, sdkp,
2638 "%u-byte physical blocks\n",
2639 sdkp->physical_block_size);
2640}
2641
2642/* called with buffer of length 512 */
2643static inline int
2644sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2645 unsigned char *buffer, int len, struct scsi_mode_data *data,
2646 struct scsi_sense_hdr *sshdr)
2647{
2648 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2649 SD_TIMEOUT, sdkp->max_retries, data,
2650 sshdr);
2651}
2652
2653/*
2654 * read write protect setting, if possible - called only in sd_revalidate_disk()
2655 * called with buffer of length SD_BUF_SIZE
2656 */
2657static void
2658sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2659{
2660 int res;
2661 struct scsi_device *sdp = sdkp->device;
2662 struct scsi_mode_data data;
2663 int old_wp = sdkp->write_prot;
2664
2665 set_disk_ro(sdkp->disk, 0);
2666 if (sdp->skip_ms_page_3f) {
2667 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2668 return;
2669 }
2670
2671 if (sdp->use_192_bytes_for_3f) {
2672 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2673 } else {
2674 /*
2675 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2676 * We have to start carefully: some devices hang if we ask
2677 * for more than is available.
2678 */
2679 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2680
2681 /*
2682 * Second attempt: ask for page 0 When only page 0 is
2683 * implemented, a request for page 3F may return Sense Key
2684 * 5: Illegal Request, Sense Code 24: Invalid field in
2685 * CDB.
2686 */
2687 if (res < 0)
2688 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2689
2690 /*
2691 * Third attempt: ask 255 bytes, as we did earlier.
2692 */
2693 if (res < 0)
2694 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2695 &data, NULL);
2696 }
2697
2698 if (res < 0) {
2699 sd_first_printk(KERN_WARNING, sdkp,
2700 "Test WP failed, assume Write Enabled\n");
2701 } else {
2702 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2703 set_disk_ro(sdkp->disk, sdkp->write_prot);
2704 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2705 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2706 sdkp->write_prot ? "on" : "off");
2707 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2708 }
2709 }
2710}
2711
2712/*
2713 * sd_read_cache_type - called only from sd_revalidate_disk()
2714 * called with buffer of length SD_BUF_SIZE
2715 */
2716static void
2717sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2718{
2719 int len = 0, res;
2720 struct scsi_device *sdp = sdkp->device;
2721
2722 int dbd;
2723 int modepage;
2724 int first_len;
2725 struct scsi_mode_data data;
2726 struct scsi_sense_hdr sshdr;
2727 int old_wce = sdkp->WCE;
2728 int old_rcd = sdkp->RCD;
2729 int old_dpofua = sdkp->DPOFUA;
2730
2731
2732 if (sdkp->cache_override)
2733 return;
2734
2735 first_len = 4;
2736 if (sdp->skip_ms_page_8) {
2737 if (sdp->type == TYPE_RBC)
2738 goto defaults;
2739 else {
2740 if (sdp->skip_ms_page_3f)
2741 goto defaults;
2742 modepage = 0x3F;
2743 if (sdp->use_192_bytes_for_3f)
2744 first_len = 192;
2745 dbd = 0;
2746 }
2747 } else if (sdp->type == TYPE_RBC) {
2748 modepage = 6;
2749 dbd = 8;
2750 } else {
2751 modepage = 8;
2752 dbd = 0;
2753 }
2754
2755 /* cautiously ask */
2756 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2757 &data, &sshdr);
2758
2759 if (res < 0)
2760 goto bad_sense;
2761
2762 if (!data.header_length) {
2763 modepage = 6;
2764 first_len = 0;
2765 sd_first_printk(KERN_ERR, sdkp,
2766 "Missing header in MODE_SENSE response\n");
2767 }
2768
2769 /* that went OK, now ask for the proper length */
2770 len = data.length;
2771
2772 /*
2773 * We're only interested in the first three bytes, actually.
2774 * But the data cache page is defined for the first 20.
2775 */
2776 if (len < 3)
2777 goto bad_sense;
2778 else if (len > SD_BUF_SIZE) {
2779 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2780 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2781 len = SD_BUF_SIZE;
2782 }
2783 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2784 len = 192;
2785
2786 /* Get the data */
2787 if (len > first_len)
2788 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2789 &data, &sshdr);
2790
2791 if (!res) {
2792 int offset = data.header_length + data.block_descriptor_length;
2793
2794 while (offset < len) {
2795 u8 page_code = buffer[offset] & 0x3F;
2796 u8 spf = buffer[offset] & 0x40;
2797
2798 if (page_code == 8 || page_code == 6) {
2799 /* We're interested only in the first 3 bytes.
2800 */
2801 if (len - offset <= 2) {
2802 sd_first_printk(KERN_ERR, sdkp,
2803 "Incomplete mode parameter "
2804 "data\n");
2805 goto defaults;
2806 } else {
2807 modepage = page_code;
2808 goto Page_found;
2809 }
2810 } else {
2811 /* Go to the next page */
2812 if (spf && len - offset > 3)
2813 offset += 4 + (buffer[offset+2] << 8) +
2814 buffer[offset+3];
2815 else if (!spf && len - offset > 1)
2816 offset += 2 + buffer[offset+1];
2817 else {
2818 sd_first_printk(KERN_ERR, sdkp,
2819 "Incomplete mode "
2820 "parameter data\n");
2821 goto defaults;
2822 }
2823 }
2824 }
2825
2826 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2827 goto defaults;
2828
2829 Page_found:
2830 if (modepage == 8) {
2831 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2832 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2833 } else {
2834 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2835 sdkp->RCD = 0;
2836 }
2837
2838 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2839 if (sdp->broken_fua) {
2840 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2841 sdkp->DPOFUA = 0;
2842 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2843 !sdkp->device->use_16_for_rw) {
2844 sd_first_printk(KERN_NOTICE, sdkp,
2845 "Uses READ/WRITE(6), disabling FUA\n");
2846 sdkp->DPOFUA = 0;
2847 }
2848
2849 /* No cache flush allowed for write protected devices */
2850 if (sdkp->WCE && sdkp->write_prot)
2851 sdkp->WCE = 0;
2852
2853 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2854 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2855 sd_printk(KERN_NOTICE, sdkp,
2856 "Write cache: %s, read cache: %s, %s\n",
2857 sdkp->WCE ? "enabled" : "disabled",
2858 sdkp->RCD ? "disabled" : "enabled",
2859 sdkp->DPOFUA ? "supports DPO and FUA"
2860 : "doesn't support DPO or FUA");
2861
2862 return;
2863 }
2864
2865bad_sense:
2866 if (scsi_sense_valid(&sshdr) &&
2867 sshdr.sense_key == ILLEGAL_REQUEST &&
2868 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2869 /* Invalid field in CDB */
2870 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2871 else
2872 sd_first_printk(KERN_ERR, sdkp,
2873 "Asking for cache data failed\n");
2874
2875defaults:
2876 if (sdp->wce_default_on) {
2877 sd_first_printk(KERN_NOTICE, sdkp,
2878 "Assuming drive cache: write back\n");
2879 sdkp->WCE = 1;
2880 } else {
2881 sd_first_printk(KERN_ERR, sdkp,
2882 "Assuming drive cache: write through\n");
2883 sdkp->WCE = 0;
2884 }
2885 sdkp->RCD = 0;
2886 sdkp->DPOFUA = 0;
2887}
2888
2889/*
2890 * The ATO bit indicates whether the DIF application tag is available
2891 * for use by the operating system.
2892 */
2893static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2894{
2895 int res, offset;
2896 struct scsi_device *sdp = sdkp->device;
2897 struct scsi_mode_data data;
2898 struct scsi_sense_hdr sshdr;
2899
2900 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2901 return;
2902
2903 if (sdkp->protection_type == 0)
2904 return;
2905
2906 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2907 sdkp->max_retries, &data, &sshdr);
2908
2909 if (res < 0 || !data.header_length ||
2910 data.length < 6) {
2911 sd_first_printk(KERN_WARNING, sdkp,
2912 "getting Control mode page failed, assume no ATO\n");
2913
2914 if (scsi_sense_valid(&sshdr))
2915 sd_print_sense_hdr(sdkp, &sshdr);
2916
2917 return;
2918 }
2919
2920 offset = data.header_length + data.block_descriptor_length;
2921
2922 if ((buffer[offset] & 0x3f) != 0x0a) {
2923 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2924 return;
2925 }
2926
2927 if ((buffer[offset + 5] & 0x80) == 0)
2928 return;
2929
2930 sdkp->ATO = 1;
2931
2932 return;
2933}
2934
2935/**
2936 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2937 * @sdkp: disk to query
2938 */
2939static void sd_read_block_limits(struct scsi_disk *sdkp)
2940{
2941 unsigned int sector_sz = sdkp->device->sector_size;
2942 const int vpd_len = 64;
2943 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2944
2945 if (!buffer ||
2946 /* Block Limits VPD */
2947 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2948 goto out;
2949
2950 blk_queue_io_min(sdkp->disk->queue,
2951 get_unaligned_be16(&buffer[6]) * sector_sz);
2952
2953 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2954 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2955
2956 if (buffer[3] == 0x3c) {
2957 unsigned int lba_count, desc_count;
2958
2959 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2960
2961 if (!sdkp->lbpme)
2962 goto out;
2963
2964 lba_count = get_unaligned_be32(&buffer[20]);
2965 desc_count = get_unaligned_be32(&buffer[24]);
2966
2967 if (lba_count && desc_count)
2968 sdkp->max_unmap_blocks = lba_count;
2969
2970 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2971
2972 if (buffer[32] & 0x80)
2973 sdkp->unmap_alignment =
2974 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2975
2976 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2977
2978 if (sdkp->max_unmap_blocks)
2979 sd_config_discard(sdkp, SD_LBP_UNMAP);
2980 else
2981 sd_config_discard(sdkp, SD_LBP_WS16);
2982
2983 } else { /* LBP VPD page tells us what to use */
2984 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2985 sd_config_discard(sdkp, SD_LBP_UNMAP);
2986 else if (sdkp->lbpws)
2987 sd_config_discard(sdkp, SD_LBP_WS16);
2988 else if (sdkp->lbpws10)
2989 sd_config_discard(sdkp, SD_LBP_WS10);
2990 else
2991 sd_config_discard(sdkp, SD_LBP_DISABLE);
2992 }
2993 }
2994
2995 out:
2996 kfree(buffer);
2997}
2998
2999/**
3000 * sd_read_block_characteristics - Query block dev. characteristics
3001 * @sdkp: disk to query
3002 */
3003static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3004{
3005 struct request_queue *q = sdkp->disk->queue;
3006 unsigned char *buffer;
3007 u16 rot;
3008 const int vpd_len = 64;
3009
3010 buffer = kmalloc(vpd_len, GFP_KERNEL);
3011
3012 if (!buffer ||
3013 /* Block Device Characteristics VPD */
3014 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
3015 goto out;
3016
3017 rot = get_unaligned_be16(&buffer[4]);
3018
3019 if (rot == 1) {
3020 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3021 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3022 }
3023
3024 if (sdkp->device->type == TYPE_ZBC) {
3025 /* Host-managed */
3026 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
3027 } else {
3028 sdkp->zoned = (buffer[8] >> 4) & 3;
3029 if (sdkp->zoned == 1) {
3030 /* Host-aware */
3031 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
3032 } else {
3033 /* Regular disk or drive managed disk */
3034 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3035 }
3036 }
3037
3038 if (!sdkp->first_scan)
3039 goto out;
3040
3041 if (blk_queue_is_zoned(q)) {
3042 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3043 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3044 } else {
3045 if (sdkp->zoned == 1)
3046 sd_printk(KERN_NOTICE, sdkp,
3047 "Host-aware SMR disk used as regular disk\n");
3048 else if (sdkp->zoned == 2)
3049 sd_printk(KERN_NOTICE, sdkp,
3050 "Drive-managed SMR disk\n");
3051 }
3052
3053 out:
3054 kfree(buffer);
3055}
3056
3057/**
3058 * sd_read_block_provisioning - Query provisioning VPD page
3059 * @sdkp: disk to query
3060 */
3061static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3062{
3063 unsigned char *buffer;
3064 const int vpd_len = 8;
3065
3066 if (sdkp->lbpme == 0)
3067 return;
3068
3069 buffer = kmalloc(vpd_len, GFP_KERNEL);
3070
3071 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3072 goto out;
3073
3074 sdkp->lbpvpd = 1;
3075 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
3076 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
3077 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
3078
3079 out:
3080 kfree(buffer);
3081}
3082
3083static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3084{
3085 struct scsi_device *sdev = sdkp->device;
3086
3087 if (sdev->host->no_write_same) {
3088 sdev->no_write_same = 1;
3089
3090 return;
3091 }
3092
3093 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3094 /* too large values might cause issues with arcmsr */
3095 int vpd_buf_len = 64;
3096
3097 sdev->no_report_opcodes = 1;
3098
3099 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3100 * CODES is unsupported and the device has an ATA
3101 * Information VPD page (SAT).
3102 */
3103 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3104 sdev->no_write_same = 1;
3105 }
3106
3107 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3108 sdkp->ws16 = 1;
3109
3110 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3111 sdkp->ws10 = 1;
3112}
3113
3114static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3115{
3116 struct scsi_device *sdev = sdkp->device;
3117
3118 if (!sdev->security_supported)
3119 return;
3120
3121 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3122 SECURITY_PROTOCOL_IN) == 1 &&
3123 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3124 SECURITY_PROTOCOL_OUT) == 1)
3125 sdkp->security = 1;
3126}
3127
3128/*
3129 * Determine the device's preferred I/O size for reads and writes
3130 * unless the reported value is unreasonably small, large, not a
3131 * multiple of the physical block size, or simply garbage.
3132 */
3133static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3134 unsigned int dev_max)
3135{
3136 struct scsi_device *sdp = sdkp->device;
3137 unsigned int opt_xfer_bytes =
3138 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3139
3140 if (sdkp->opt_xfer_blocks == 0)
3141 return false;
3142
3143 if (sdkp->opt_xfer_blocks > dev_max) {
3144 sd_first_printk(KERN_WARNING, sdkp,
3145 "Optimal transfer size %u logical blocks " \
3146 "> dev_max (%u logical blocks)\n",
3147 sdkp->opt_xfer_blocks, dev_max);
3148 return false;
3149 }
3150
3151 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3152 sd_first_printk(KERN_WARNING, sdkp,
3153 "Optimal transfer size %u logical blocks " \
3154 "> sd driver limit (%u logical blocks)\n",
3155 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3156 return false;
3157 }
3158
3159 if (opt_xfer_bytes < PAGE_SIZE) {
3160 sd_first_printk(KERN_WARNING, sdkp,
3161 "Optimal transfer size %u bytes < " \
3162 "PAGE_SIZE (%u bytes)\n",
3163 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3164 return false;
3165 }
3166
3167 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3168 sd_first_printk(KERN_WARNING, sdkp,
3169 "Optimal transfer size %u bytes not a " \
3170 "multiple of physical block size (%u bytes)\n",
3171 opt_xfer_bytes, sdkp->physical_block_size);
3172 return false;
3173 }
3174
3175 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3176 opt_xfer_bytes);
3177 return true;
3178}
3179
3180/**
3181 * sd_revalidate_disk - called the first time a new disk is seen,
3182 * performs disk spin up, read_capacity, etc.
3183 * @disk: struct gendisk we care about
3184 **/
3185static int sd_revalidate_disk(struct gendisk *disk)
3186{
3187 struct scsi_disk *sdkp = scsi_disk(disk);
3188 struct scsi_device *sdp = sdkp->device;
3189 struct request_queue *q = sdkp->disk->queue;
3190 sector_t old_capacity = sdkp->capacity;
3191 unsigned char *buffer;
3192 unsigned int dev_max, rw_max;
3193
3194 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3195 "sd_revalidate_disk\n"));
3196
3197 /*
3198 * If the device is offline, don't try and read capacity or any
3199 * of the other niceties.
3200 */
3201 if (!scsi_device_online(sdp))
3202 goto out;
3203
3204 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3205 if (!buffer) {
3206 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3207 "allocation failure.\n");
3208 goto out;
3209 }
3210
3211 sd_spinup_disk(sdkp);
3212
3213 /*
3214 * Without media there is no reason to ask; moreover, some devices
3215 * react badly if we do.
3216 */
3217 if (sdkp->media_present) {
3218 sd_read_capacity(sdkp, buffer);
3219
3220 /*
3221 * set the default to rotational. All non-rotational devices
3222 * support the block characteristics VPD page, which will
3223 * cause this to be updated correctly and any device which
3224 * doesn't support it should be treated as rotational.
3225 */
3226 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3227 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3228
3229 if (scsi_device_supports_vpd(sdp)) {
3230 sd_read_block_provisioning(sdkp);
3231 sd_read_block_limits(sdkp);
3232 sd_read_block_characteristics(sdkp);
3233 sd_zbc_read_zones(sdkp, buffer);
3234 }
3235
3236 sd_print_capacity(sdkp, old_capacity);
3237
3238 sd_read_write_protect_flag(sdkp, buffer);
3239 sd_read_cache_type(sdkp, buffer);
3240 sd_read_app_tag_own(sdkp, buffer);
3241 sd_read_write_same(sdkp, buffer);
3242 sd_read_security(sdkp, buffer);
3243 }
3244
3245 /*
3246 * We now have all cache related info, determine how we deal
3247 * with flush requests.
3248 */
3249 sd_set_flush_flag(sdkp);
3250
3251 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3252 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3253
3254 /* Some devices report a maximum block count for READ/WRITE requests. */
3255 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3256 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3257
3258 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3259 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3260 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3261 } else {
3262 q->limits.io_opt = 0;
3263 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3264 (sector_t)BLK_DEF_MAX_SECTORS);
3265 }
3266
3267 /* Do not exceed controller limit */
3268 rw_max = min(rw_max, queue_max_hw_sectors(q));
3269
3270 /*
3271 * Only update max_sectors if previously unset or if the current value
3272 * exceeds the capabilities of the hardware.
3273 */
3274 if (sdkp->first_scan ||
3275 q->limits.max_sectors > q->limits.max_dev_sectors ||
3276 q->limits.max_sectors > q->limits.max_hw_sectors)
3277 q->limits.max_sectors = rw_max;
3278
3279 sdkp->first_scan = 0;
3280
3281 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3282 sd_config_write_same(sdkp);
3283 kfree(buffer);
3284
3285 /*
3286 * For a zoned drive, revalidating the zones can be done only once
3287 * the gendisk capacity is set. So if this fails, set back the gendisk
3288 * capacity to 0.
3289 */
3290 if (sd_zbc_revalidate_zones(sdkp))
3291 set_capacity_and_notify(disk, 0);
3292
3293 out:
3294 return 0;
3295}
3296
3297/**
3298 * sd_unlock_native_capacity - unlock native capacity
3299 * @disk: struct gendisk to set capacity for
3300 *
3301 * Block layer calls this function if it detects that partitions
3302 * on @disk reach beyond the end of the device. If the SCSI host
3303 * implements ->unlock_native_capacity() method, it's invoked to
3304 * give it a chance to adjust the device capacity.
3305 *
3306 * CONTEXT:
3307 * Defined by block layer. Might sleep.
3308 */
3309static void sd_unlock_native_capacity(struct gendisk *disk)
3310{
3311 struct scsi_device *sdev = scsi_disk(disk)->device;
3312
3313 if (sdev->host->hostt->unlock_native_capacity)
3314 sdev->host->hostt->unlock_native_capacity(sdev);
3315}
3316
3317/**
3318 * sd_format_disk_name - format disk name
3319 * @prefix: name prefix - ie. "sd" for SCSI disks
3320 * @index: index of the disk to format name for
3321 * @buf: output buffer
3322 * @buflen: length of the output buffer
3323 *
3324 * SCSI disk names starts at sda. The 26th device is sdz and the
3325 * 27th is sdaa. The last one for two lettered suffix is sdzz
3326 * which is followed by sdaaa.
3327 *
3328 * This is basically 26 base counting with one extra 'nil' entry
3329 * at the beginning from the second digit on and can be
3330 * determined using similar method as 26 base conversion with the
3331 * index shifted -1 after each digit is computed.
3332 *
3333 * CONTEXT:
3334 * Don't care.
3335 *
3336 * RETURNS:
3337 * 0 on success, -errno on failure.
3338 */
3339static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3340{
3341 const int base = 'z' - 'a' + 1;
3342 char *begin = buf + strlen(prefix);
3343 char *end = buf + buflen;
3344 char *p;
3345 int unit;
3346
3347 p = end - 1;
3348 *p = '\0';
3349 unit = base;
3350 do {
3351 if (p == begin)
3352 return -EINVAL;
3353 *--p = 'a' + (index % unit);
3354 index = (index / unit) - 1;
3355 } while (index >= 0);
3356
3357 memmove(begin, p, end - p);
3358 memcpy(buf, prefix, strlen(prefix));
3359
3360 return 0;
3361}
3362
3363/**
3364 * sd_probe - called during driver initialization and whenever a
3365 * new scsi device is attached to the system. It is called once
3366 * for each scsi device (not just disks) present.
3367 * @dev: pointer to device object
3368 *
3369 * Returns 0 if successful (or not interested in this scsi device
3370 * (e.g. scanner)); 1 when there is an error.
3371 *
3372 * Note: this function is invoked from the scsi mid-level.
3373 * This function sets up the mapping between a given
3374 * <host,channel,id,lun> (found in sdp) and new device name
3375 * (e.g. /dev/sda). More precisely it is the block device major
3376 * and minor number that is chosen here.
3377 *
3378 * Assume sd_probe is not re-entrant (for time being)
3379 * Also think about sd_probe() and sd_remove() running coincidentally.
3380 **/
3381static int sd_probe(struct device *dev)
3382{
3383 struct scsi_device *sdp = to_scsi_device(dev);
3384 struct scsi_disk *sdkp;
3385 struct gendisk *gd;
3386 int index;
3387 int error;
3388
3389 scsi_autopm_get_device(sdp);
3390 error = -ENODEV;
3391 if (sdp->type != TYPE_DISK &&
3392 sdp->type != TYPE_ZBC &&
3393 sdp->type != TYPE_MOD &&
3394 sdp->type != TYPE_RBC)
3395 goto out;
3396
3397 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3398 sdev_printk(KERN_WARNING, sdp,
3399 "Unsupported ZBC host-managed device.\n");
3400 goto out;
3401 }
3402
3403 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3404 "sd_probe\n"));
3405
3406 error = -ENOMEM;
3407 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3408 if (!sdkp)
3409 goto out;
3410
3411 gd = alloc_disk(SD_MINORS);
3412 if (!gd)
3413 goto out_free;
3414
3415 index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3416 if (index < 0) {
3417 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3418 goto out_put;
3419 }
3420
3421 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3422 if (error) {
3423 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3424 goto out_free_index;
3425 }
3426
3427 sdkp->device = sdp;
3428 sdkp->driver = &sd_template;
3429 sdkp->disk = gd;
3430 sdkp->index = index;
3431 sdkp->max_retries = SD_MAX_RETRIES;
3432 atomic_set(&sdkp->openers, 0);
3433 atomic_set(&sdkp->device->ioerr_cnt, 0);
3434
3435 if (!sdp->request_queue->rq_timeout) {
3436 if (sdp->type != TYPE_MOD)
3437 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3438 else
3439 blk_queue_rq_timeout(sdp->request_queue,
3440 SD_MOD_TIMEOUT);
3441 }
3442
3443 device_initialize(&sdkp->dev);
3444 sdkp->dev.parent = get_device(dev);
3445 sdkp->dev.class = &sd_disk_class;
3446 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3447
3448 error = device_add(&sdkp->dev);
3449 if (error) {
3450 put_device(&sdkp->dev);
3451 goto out;
3452 }
3453
3454 dev_set_drvdata(dev, sdkp);
3455
3456 gd->major = sd_major((index & 0xf0) >> 4);
3457 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3458
3459 gd->fops = &sd_fops;
3460 gd->private_data = &sdkp->driver;
3461 gd->queue = sdkp->device->request_queue;
3462
3463 /* defaults, until the device tells us otherwise */
3464 sdp->sector_size = 512;
3465 sdkp->capacity = 0;
3466 sdkp->media_present = 1;
3467 sdkp->write_prot = 0;
3468 sdkp->cache_override = 0;
3469 sdkp->WCE = 0;
3470 sdkp->RCD = 0;
3471 sdkp->ATO = 0;
3472 sdkp->first_scan = 1;
3473 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3474
3475 sd_revalidate_disk(gd);
3476
3477 gd->flags = GENHD_FL_EXT_DEVT;
3478 if (sdp->removable) {
3479 gd->flags |= GENHD_FL_REMOVABLE;
3480 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3481 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3482 }
3483
3484 blk_pm_runtime_init(sdp->request_queue, dev);
3485 if (sdp->rpm_autosuspend) {
3486 pm_runtime_set_autosuspend_delay(dev,
3487 sdp->host->hostt->rpm_autosuspend_delay);
3488 }
3489 device_add_disk(dev, gd, NULL);
3490 if (sdkp->capacity)
3491 sd_dif_config_host(sdkp);
3492
3493 sd_revalidate_disk(gd);
3494
3495 if (sdkp->security) {
3496 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3497 if (sdkp->opal_dev)
3498 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3499 }
3500
3501 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3502 sdp->removable ? "removable " : "");
3503 scsi_autopm_put_device(sdp);
3504
3505 return 0;
3506
3507 out_free_index:
3508 ida_free(&sd_index_ida, index);
3509 out_put:
3510 put_disk(gd);
3511 out_free:
3512 sd_zbc_release_disk(sdkp);
3513 kfree(sdkp);
3514 out:
3515 scsi_autopm_put_device(sdp);
3516 return error;
3517}
3518
3519/**
3520 * sd_remove - called whenever a scsi disk (previously recognized by
3521 * sd_probe) is detached from the system. It is called (potentially
3522 * multiple times) during sd module unload.
3523 * @dev: pointer to device object
3524 *
3525 * Note: this function is invoked from the scsi mid-level.
3526 * This function potentially frees up a device name (e.g. /dev/sdc)
3527 * that could be re-used by a subsequent sd_probe().
3528 * This function is not called when the built-in sd driver is "exit-ed".
3529 **/
3530static int sd_remove(struct device *dev)
3531{
3532 struct scsi_disk *sdkp;
3533
3534 sdkp = dev_get_drvdata(dev);
3535 scsi_autopm_get_device(sdkp->device);
3536
3537 async_synchronize_full_domain(&scsi_sd_pm_domain);
3538 device_del(&sdkp->dev);
3539 del_gendisk(sdkp->disk);
3540 sd_shutdown(dev);
3541
3542 free_opal_dev(sdkp->opal_dev);
3543
3544 mutex_lock(&sd_ref_mutex);
3545 dev_set_drvdata(dev, NULL);
3546 put_device(&sdkp->dev);
3547 mutex_unlock(&sd_ref_mutex);
3548
3549 return 0;
3550}
3551
3552/**
3553 * scsi_disk_release - Called to free the scsi_disk structure
3554 * @dev: pointer to embedded class device
3555 *
3556 * sd_ref_mutex must be held entering this routine. Because it is
3557 * called on last put, you should always use the scsi_disk_get()
3558 * scsi_disk_put() helpers which manipulate the semaphore directly
3559 * and never do a direct put_device.
3560 **/
3561static void scsi_disk_release(struct device *dev)
3562{
3563 struct scsi_disk *sdkp = to_scsi_disk(dev);
3564 struct gendisk *disk = sdkp->disk;
3565 struct request_queue *q = disk->queue;
3566
3567 ida_free(&sd_index_ida, sdkp->index);
3568
3569 /*
3570 * Wait until all requests that are in progress have completed.
3571 * This is necessary to avoid that e.g. scsi_end_request() crashes
3572 * due to clearing the disk->private_data pointer. Wait from inside
3573 * scsi_disk_release() instead of from sd_release() to avoid that
3574 * freezing and unfreezing the request queue affects user space I/O
3575 * in case multiple processes open a /dev/sd... node concurrently.
3576 */
3577 blk_mq_freeze_queue(q);
3578 blk_mq_unfreeze_queue(q);
3579
3580 disk->private_data = NULL;
3581 put_disk(disk);
3582 put_device(&sdkp->device->sdev_gendev);
3583
3584 sd_zbc_release_disk(sdkp);
3585
3586 kfree(sdkp);
3587}
3588
3589static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3590{
3591 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3592 struct scsi_sense_hdr sshdr;
3593 struct scsi_device *sdp = sdkp->device;
3594 int res;
3595
3596 if (start)
3597 cmd[4] |= 1; /* START */
3598
3599 if (sdp->start_stop_pwr_cond)
3600 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3601
3602 if (!scsi_device_online(sdp))
3603 return -ENODEV;
3604
3605 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3606 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3607 if (res) {
3608 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3609 if (res > 0 && scsi_sense_valid(&sshdr)) {
3610 sd_print_sense_hdr(sdkp, &sshdr);
3611 /* 0x3a is medium not present */
3612 if (sshdr.asc == 0x3a)
3613 res = 0;
3614 }
3615 }
3616
3617 /* SCSI error codes must not go to the generic layer */
3618 if (res)
3619 return -EIO;
3620
3621 return 0;
3622}
3623
3624/*
3625 * Send a SYNCHRONIZE CACHE instruction down to the device through
3626 * the normal SCSI command structure. Wait for the command to
3627 * complete.
3628 */
3629static void sd_shutdown(struct device *dev)
3630{
3631 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3632
3633 if (!sdkp)
3634 return; /* this can happen */
3635
3636 if (pm_runtime_suspended(dev))
3637 return;
3638
3639 if (sdkp->WCE && sdkp->media_present) {
3640 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3641 sd_sync_cache(sdkp, NULL);
3642 }
3643
3644 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3645 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3646 sd_start_stop_device(sdkp, 0);
3647 }
3648}
3649
3650static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3651{
3652 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3653 struct scsi_sense_hdr sshdr;
3654 int ret = 0;
3655
3656 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3657 return 0;
3658
3659 if (sdkp->WCE && sdkp->media_present) {
3660 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3661 ret = sd_sync_cache(sdkp, &sshdr);
3662
3663 if (ret) {
3664 /* ignore OFFLINE device */
3665 if (ret == -ENODEV)
3666 return 0;
3667
3668 if (!scsi_sense_valid(&sshdr) ||
3669 sshdr.sense_key != ILLEGAL_REQUEST)
3670 return ret;
3671
3672 /*
3673 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3674 * doesn't support sync. There's not much to do and
3675 * suspend shouldn't fail.
3676 */
3677 ret = 0;
3678 }
3679 }
3680
3681 if (sdkp->device->manage_start_stop) {
3682 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3683 /* an error is not worth aborting a system sleep */
3684 ret = sd_start_stop_device(sdkp, 0);
3685 if (ignore_stop_errors)
3686 ret = 0;
3687 }
3688
3689 return ret;
3690}
3691
3692static int sd_suspend_system(struct device *dev)
3693{
3694 return sd_suspend_common(dev, true);
3695}
3696
3697static int sd_suspend_runtime(struct device *dev)
3698{
3699 return sd_suspend_common(dev, false);
3700}
3701
3702static int sd_resume(struct device *dev)
3703{
3704 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3705 int ret;
3706
3707 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3708 return 0;
3709
3710 if (!sdkp->device->manage_start_stop)
3711 return 0;
3712
3713 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3714 ret = sd_start_stop_device(sdkp, 1);
3715 if (!ret)
3716 opal_unlock_from_suspend(sdkp->opal_dev);
3717 return ret;
3718}
3719
3720/**
3721 * init_sd - entry point for this driver (both when built in or when
3722 * a module).
3723 *
3724 * Note: this function registers this driver with the scsi mid-level.
3725 **/
3726static int __init init_sd(void)
3727{
3728 int majors = 0, i, err;
3729
3730 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3731
3732 for (i = 0; i < SD_MAJORS; i++) {
3733 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3734 continue;
3735 majors++;
3736 }
3737
3738 if (!majors)
3739 return -ENODEV;
3740
3741 err = class_register(&sd_disk_class);
3742 if (err)
3743 goto err_out;
3744
3745 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3746 0, 0, NULL);
3747 if (!sd_cdb_cache) {
3748 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3749 err = -ENOMEM;
3750 goto err_out_class;
3751 }
3752
3753 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3754 if (!sd_cdb_pool) {
3755 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3756 err = -ENOMEM;
3757 goto err_out_cache;
3758 }
3759
3760 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3761 if (!sd_page_pool) {
3762 printk(KERN_ERR "sd: can't init discard page pool\n");
3763 err = -ENOMEM;
3764 goto err_out_ppool;
3765 }
3766
3767 err = scsi_register_driver(&sd_template.gendrv);
3768 if (err)
3769 goto err_out_driver;
3770
3771 return 0;
3772
3773err_out_driver:
3774 mempool_destroy(sd_page_pool);
3775
3776err_out_ppool:
3777 mempool_destroy(sd_cdb_pool);
3778
3779err_out_cache:
3780 kmem_cache_destroy(sd_cdb_cache);
3781
3782err_out_class:
3783 class_unregister(&sd_disk_class);
3784err_out:
3785 for (i = 0; i < SD_MAJORS; i++)
3786 unregister_blkdev(sd_major(i), "sd");
3787 return err;
3788}
3789
3790/**
3791 * exit_sd - exit point for this driver (when it is a module).
3792 *
3793 * Note: this function unregisters this driver from the scsi mid-level.
3794 **/
3795static void __exit exit_sd(void)
3796{
3797 int i;
3798
3799 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3800
3801 scsi_unregister_driver(&sd_template.gendrv);
3802 mempool_destroy(sd_cdb_pool);
3803 mempool_destroy(sd_page_pool);
3804 kmem_cache_destroy(sd_cdb_cache);
3805
3806 class_unregister(&sd_disk_class);
3807
3808 for (i = 0; i < SD_MAJORS; i++)
3809 unregister_blkdev(sd_major(i), "sd");
3810}
3811
3812module_init(init_sd);
3813module_exit(exit_sd);
3814
3815void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3816{
3817 scsi_print_sense_hdr(sdkp->device,
3818 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3819}
3820
3821void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3822{
3823 const char *hb_string = scsi_hostbyte_string(result);
3824
3825 if (hb_string)
3826 sd_printk(KERN_INFO, sdkp,
3827 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3828 hb_string ? hb_string : "invalid",
3829 "DRIVER_OK");
3830 else
3831 sd_printk(KERN_INFO, sdkp,
3832 "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3833 msg, host_byte(result), "DRIVER_OK");
3834}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * sd.c Copyright (C) 1992 Drew Eckhardt
4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 *
6 * Linux scsi disk driver
7 * Initial versions: Drew Eckhardt
8 * Subsequent revisions: Eric Youngdale
9 * Modification history:
10 * - Drew Eckhardt <drew@colorado.edu> original
11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 * outstanding request, and other enhancements.
13 * Support loadable low-level scsi drivers.
14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 * eight major numbers.
16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 * sd_init and cleanups.
19 * - Alex Davis <letmein@erols.com> Fix problem where partition info
20 * not being read in sd_open. Fix problem where removable media
21 * could be ejected after sd_open.
22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 * Support 32k/1M disks.
26 *
27 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 * - entering other commands: SCSI_LOG_HLQUEUE level 3
32 * Note: when the logging level is set by the user, it must be greater
33 * than the level indicated above to trigger output.
34 */
35
36#include <linux/module.h>
37#include <linux/fs.h>
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/bio.h>
41#include <linux/genhd.h>
42#include <linux/hdreg.h>
43#include <linux/errno.h>
44#include <linux/idr.h>
45#include <linux/interrupt.h>
46#include <linux/init.h>
47#include <linux/blkdev.h>
48#include <linux/blkpg.h>
49#include <linux/blk-pm.h>
50#include <linux/delay.h>
51#include <linux/mutex.h>
52#include <linux/string_helpers.h>
53#include <linux/async.h>
54#include <linux/slab.h>
55#include <linux/sed-opal.h>
56#include <linux/pm_runtime.h>
57#include <linux/pr.h>
58#include <linux/t10-pi.h>
59#include <linux/uaccess.h>
60#include <asm/unaligned.h>
61
62#include <scsi/scsi.h>
63#include <scsi/scsi_cmnd.h>
64#include <scsi/scsi_dbg.h>
65#include <scsi/scsi_device.h>
66#include <scsi/scsi_driver.h>
67#include <scsi/scsi_eh.h>
68#include <scsi/scsi_host.h>
69#include <scsi/scsi_ioctl.h>
70#include <scsi/scsicam.h>
71
72#include "sd.h"
73#include "scsi_priv.h"
74#include "scsi_logging.h"
75
76MODULE_AUTHOR("Eric Youngdale");
77MODULE_DESCRIPTION("SCSI disk (sd) driver");
78MODULE_LICENSE("GPL");
79
80MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101#if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
102#define SD_MINORS 16
103#else
104#define SD_MINORS 0
105#endif
106
107static void sd_config_discard(struct scsi_disk *, unsigned int);
108static void sd_config_write_same(struct scsi_disk *);
109static int sd_revalidate_disk(struct gendisk *);
110static void sd_unlock_native_capacity(struct gendisk *disk);
111static int sd_probe(struct device *);
112static int sd_remove(struct device *);
113static void sd_shutdown(struct device *);
114static int sd_suspend_system(struct device *);
115static int sd_suspend_runtime(struct device *);
116static int sd_resume(struct device *);
117static void sd_rescan(struct device *);
118static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
119static void sd_uninit_command(struct scsi_cmnd *SCpnt);
120static int sd_done(struct scsi_cmnd *);
121static void sd_eh_reset(struct scsi_cmnd *);
122static int sd_eh_action(struct scsi_cmnd *, int);
123static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
124static void scsi_disk_release(struct device *cdev);
125
126static DEFINE_IDA(sd_index_ida);
127
128/* This semaphore is used to mediate the 0->1 reference get in the
129 * face of object destruction (i.e. we can't allow a get on an
130 * object after last put) */
131static DEFINE_MUTEX(sd_ref_mutex);
132
133static struct kmem_cache *sd_cdb_cache;
134static mempool_t *sd_cdb_pool;
135static mempool_t *sd_page_pool;
136
137static const char *sd_cache_types[] = {
138 "write through", "none", "write back",
139 "write back, no read (daft)"
140};
141
142static void sd_set_flush_flag(struct scsi_disk *sdkp)
143{
144 bool wc = false, fua = false;
145
146 if (sdkp->WCE) {
147 wc = true;
148 if (sdkp->DPOFUA)
149 fua = true;
150 }
151
152 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153}
154
155static ssize_t
156cache_type_store(struct device *dev, struct device_attribute *attr,
157 const char *buf, size_t count)
158{
159 int ct, rcd, wce, sp;
160 struct scsi_disk *sdkp = to_scsi_disk(dev);
161 struct scsi_device *sdp = sdkp->device;
162 char buffer[64];
163 char *buffer_data;
164 struct scsi_mode_data data;
165 struct scsi_sense_hdr sshdr;
166 static const char temp[] = "temporary ";
167 int len;
168
169 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 /* no cache control on RBC devices; theoretically they
171 * can do it, but there's probably so many exceptions
172 * it's not worth the risk */
173 return -EINVAL;
174
175 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 buf += sizeof(temp) - 1;
177 sdkp->cache_override = 1;
178 } else {
179 sdkp->cache_override = 0;
180 }
181
182 ct = sysfs_match_string(sd_cache_types, buf);
183 if (ct < 0)
184 return -EINVAL;
185
186 rcd = ct & 0x01 ? 1 : 0;
187 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188
189 if (sdkp->cache_override) {
190 sdkp->WCE = wce;
191 sdkp->RCD = rcd;
192 sd_set_flush_flag(sdkp);
193 return count;
194 }
195
196 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 SD_MAX_RETRIES, &data, NULL))
198 return -EINVAL;
199 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 data.block_descriptor_length);
201 buffer_data = buffer + data.header_length +
202 data.block_descriptor_length;
203 buffer_data[2] &= ~0x05;
204 buffer_data[2] |= wce << 2 | rcd;
205 sp = buffer_data[0] & 0x80 ? 1 : 0;
206 buffer_data[0] &= ~0x80;
207
208 /*
209 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
210 * received mode parameter buffer before doing MODE SELECT.
211 */
212 data.device_specific = 0;
213
214 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
215 SD_MAX_RETRIES, &data, &sshdr)) {
216 if (scsi_sense_valid(&sshdr))
217 sd_print_sense_hdr(sdkp, &sshdr);
218 return -EINVAL;
219 }
220 revalidate_disk(sdkp->disk);
221 return count;
222}
223
224static ssize_t
225manage_start_stop_show(struct device *dev, struct device_attribute *attr,
226 char *buf)
227{
228 struct scsi_disk *sdkp = to_scsi_disk(dev);
229 struct scsi_device *sdp = sdkp->device;
230
231 return sprintf(buf, "%u\n", sdp->manage_start_stop);
232}
233
234static ssize_t
235manage_start_stop_store(struct device *dev, struct device_attribute *attr,
236 const char *buf, size_t count)
237{
238 struct scsi_disk *sdkp = to_scsi_disk(dev);
239 struct scsi_device *sdp = sdkp->device;
240 bool v;
241
242 if (!capable(CAP_SYS_ADMIN))
243 return -EACCES;
244
245 if (kstrtobool(buf, &v))
246 return -EINVAL;
247
248 sdp->manage_start_stop = v;
249
250 return count;
251}
252static DEVICE_ATTR_RW(manage_start_stop);
253
254static ssize_t
255allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
256{
257 struct scsi_disk *sdkp = to_scsi_disk(dev);
258
259 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
260}
261
262static ssize_t
263allow_restart_store(struct device *dev, struct device_attribute *attr,
264 const char *buf, size_t count)
265{
266 bool v;
267 struct scsi_disk *sdkp = to_scsi_disk(dev);
268 struct scsi_device *sdp = sdkp->device;
269
270 if (!capable(CAP_SYS_ADMIN))
271 return -EACCES;
272
273 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
274 return -EINVAL;
275
276 if (kstrtobool(buf, &v))
277 return -EINVAL;
278
279 sdp->allow_restart = v;
280
281 return count;
282}
283static DEVICE_ATTR_RW(allow_restart);
284
285static ssize_t
286cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
287{
288 struct scsi_disk *sdkp = to_scsi_disk(dev);
289 int ct = sdkp->RCD + 2*sdkp->WCE;
290
291 return sprintf(buf, "%s\n", sd_cache_types[ct]);
292}
293static DEVICE_ATTR_RW(cache_type);
294
295static ssize_t
296FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
297{
298 struct scsi_disk *sdkp = to_scsi_disk(dev);
299
300 return sprintf(buf, "%u\n", sdkp->DPOFUA);
301}
302static DEVICE_ATTR_RO(FUA);
303
304static ssize_t
305protection_type_show(struct device *dev, struct device_attribute *attr,
306 char *buf)
307{
308 struct scsi_disk *sdkp = to_scsi_disk(dev);
309
310 return sprintf(buf, "%u\n", sdkp->protection_type);
311}
312
313static ssize_t
314protection_type_store(struct device *dev, struct device_attribute *attr,
315 const char *buf, size_t count)
316{
317 struct scsi_disk *sdkp = to_scsi_disk(dev);
318 unsigned int val;
319 int err;
320
321 if (!capable(CAP_SYS_ADMIN))
322 return -EACCES;
323
324 err = kstrtouint(buf, 10, &val);
325
326 if (err)
327 return err;
328
329 if (val <= T10_PI_TYPE3_PROTECTION)
330 sdkp->protection_type = val;
331
332 return count;
333}
334static DEVICE_ATTR_RW(protection_type);
335
336static ssize_t
337protection_mode_show(struct device *dev, struct device_attribute *attr,
338 char *buf)
339{
340 struct scsi_disk *sdkp = to_scsi_disk(dev);
341 struct scsi_device *sdp = sdkp->device;
342 unsigned int dif, dix;
343
344 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
345 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
346
347 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
348 dif = 0;
349 dix = 1;
350 }
351
352 if (!dif && !dix)
353 return sprintf(buf, "none\n");
354
355 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
356}
357static DEVICE_ATTR_RO(protection_mode);
358
359static ssize_t
360app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
361{
362 struct scsi_disk *sdkp = to_scsi_disk(dev);
363
364 return sprintf(buf, "%u\n", sdkp->ATO);
365}
366static DEVICE_ATTR_RO(app_tag_own);
367
368static ssize_t
369thin_provisioning_show(struct device *dev, struct device_attribute *attr,
370 char *buf)
371{
372 struct scsi_disk *sdkp = to_scsi_disk(dev);
373
374 return sprintf(buf, "%u\n", sdkp->lbpme);
375}
376static DEVICE_ATTR_RO(thin_provisioning);
377
378/* sysfs_match_string() requires dense arrays */
379static const char *lbp_mode[] = {
380 [SD_LBP_FULL] = "full",
381 [SD_LBP_UNMAP] = "unmap",
382 [SD_LBP_WS16] = "writesame_16",
383 [SD_LBP_WS10] = "writesame_10",
384 [SD_LBP_ZERO] = "writesame_zero",
385 [SD_LBP_DISABLE] = "disabled",
386};
387
388static ssize_t
389provisioning_mode_show(struct device *dev, struct device_attribute *attr,
390 char *buf)
391{
392 struct scsi_disk *sdkp = to_scsi_disk(dev);
393
394 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
395}
396
397static ssize_t
398provisioning_mode_store(struct device *dev, struct device_attribute *attr,
399 const char *buf, size_t count)
400{
401 struct scsi_disk *sdkp = to_scsi_disk(dev);
402 struct scsi_device *sdp = sdkp->device;
403 int mode;
404
405 if (!capable(CAP_SYS_ADMIN))
406 return -EACCES;
407
408 if (sd_is_zoned(sdkp)) {
409 sd_config_discard(sdkp, SD_LBP_DISABLE);
410 return count;
411 }
412
413 if (sdp->type != TYPE_DISK)
414 return -EINVAL;
415
416 mode = sysfs_match_string(lbp_mode, buf);
417 if (mode < 0)
418 return -EINVAL;
419
420 sd_config_discard(sdkp, mode);
421
422 return count;
423}
424static DEVICE_ATTR_RW(provisioning_mode);
425
426/* sysfs_match_string() requires dense arrays */
427static const char *zeroing_mode[] = {
428 [SD_ZERO_WRITE] = "write",
429 [SD_ZERO_WS] = "writesame",
430 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
431 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
432};
433
434static ssize_t
435zeroing_mode_show(struct device *dev, struct device_attribute *attr,
436 char *buf)
437{
438 struct scsi_disk *sdkp = to_scsi_disk(dev);
439
440 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
441}
442
443static ssize_t
444zeroing_mode_store(struct device *dev, struct device_attribute *attr,
445 const char *buf, size_t count)
446{
447 struct scsi_disk *sdkp = to_scsi_disk(dev);
448 int mode;
449
450 if (!capable(CAP_SYS_ADMIN))
451 return -EACCES;
452
453 mode = sysfs_match_string(zeroing_mode, buf);
454 if (mode < 0)
455 return -EINVAL;
456
457 sdkp->zeroing_mode = mode;
458
459 return count;
460}
461static DEVICE_ATTR_RW(zeroing_mode);
462
463static ssize_t
464max_medium_access_timeouts_show(struct device *dev,
465 struct device_attribute *attr, char *buf)
466{
467 struct scsi_disk *sdkp = to_scsi_disk(dev);
468
469 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
470}
471
472static ssize_t
473max_medium_access_timeouts_store(struct device *dev,
474 struct device_attribute *attr, const char *buf,
475 size_t count)
476{
477 struct scsi_disk *sdkp = to_scsi_disk(dev);
478 int err;
479
480 if (!capable(CAP_SYS_ADMIN))
481 return -EACCES;
482
483 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
484
485 return err ? err : count;
486}
487static DEVICE_ATTR_RW(max_medium_access_timeouts);
488
489static ssize_t
490max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
491 char *buf)
492{
493 struct scsi_disk *sdkp = to_scsi_disk(dev);
494
495 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
496}
497
498static ssize_t
499max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
500 const char *buf, size_t count)
501{
502 struct scsi_disk *sdkp = to_scsi_disk(dev);
503 struct scsi_device *sdp = sdkp->device;
504 unsigned long max;
505 int err;
506
507 if (!capable(CAP_SYS_ADMIN))
508 return -EACCES;
509
510 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
511 return -EINVAL;
512
513 err = kstrtoul(buf, 10, &max);
514
515 if (err)
516 return err;
517
518 if (max == 0)
519 sdp->no_write_same = 1;
520 else if (max <= SD_MAX_WS16_BLOCKS) {
521 sdp->no_write_same = 0;
522 sdkp->max_ws_blocks = max;
523 }
524
525 sd_config_write_same(sdkp);
526
527 return count;
528}
529static DEVICE_ATTR_RW(max_write_same_blocks);
530
531static ssize_t
532zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
533{
534 struct scsi_disk *sdkp = to_scsi_disk(dev);
535
536 if (sdkp->device->type == TYPE_ZBC)
537 return sprintf(buf, "host-managed\n");
538 if (sdkp->zoned == 1)
539 return sprintf(buf, "host-aware\n");
540 if (sdkp->zoned == 2)
541 return sprintf(buf, "drive-managed\n");
542 return sprintf(buf, "none\n");
543}
544static DEVICE_ATTR_RO(zoned_cap);
545
546static struct attribute *sd_disk_attrs[] = {
547 &dev_attr_cache_type.attr,
548 &dev_attr_FUA.attr,
549 &dev_attr_allow_restart.attr,
550 &dev_attr_manage_start_stop.attr,
551 &dev_attr_protection_type.attr,
552 &dev_attr_protection_mode.attr,
553 &dev_attr_app_tag_own.attr,
554 &dev_attr_thin_provisioning.attr,
555 &dev_attr_provisioning_mode.attr,
556 &dev_attr_zeroing_mode.attr,
557 &dev_attr_max_write_same_blocks.attr,
558 &dev_attr_max_medium_access_timeouts.attr,
559 &dev_attr_zoned_cap.attr,
560 NULL,
561};
562ATTRIBUTE_GROUPS(sd_disk);
563
564static struct class sd_disk_class = {
565 .name = "scsi_disk",
566 .owner = THIS_MODULE,
567 .dev_release = scsi_disk_release,
568 .dev_groups = sd_disk_groups,
569};
570
571static const struct dev_pm_ops sd_pm_ops = {
572 .suspend = sd_suspend_system,
573 .resume = sd_resume,
574 .poweroff = sd_suspend_system,
575 .restore = sd_resume,
576 .runtime_suspend = sd_suspend_runtime,
577 .runtime_resume = sd_resume,
578};
579
580static struct scsi_driver sd_template = {
581 .gendrv = {
582 .name = "sd",
583 .owner = THIS_MODULE,
584 .probe = sd_probe,
585 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
586 .remove = sd_remove,
587 .shutdown = sd_shutdown,
588 .pm = &sd_pm_ops,
589 },
590 .rescan = sd_rescan,
591 .init_command = sd_init_command,
592 .uninit_command = sd_uninit_command,
593 .done = sd_done,
594 .eh_action = sd_eh_action,
595 .eh_reset = sd_eh_reset,
596};
597
598/*
599 * Dummy kobj_map->probe function.
600 * The default ->probe function will call modprobe, which is
601 * pointless as this module is already loaded.
602 */
603static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
604{
605 return NULL;
606}
607
608/*
609 * Device no to disk mapping:
610 *
611 * major disc2 disc p1
612 * |............|.............|....|....| <- dev_t
613 * 31 20 19 8 7 4 3 0
614 *
615 * Inside a major, we have 16k disks, however mapped non-
616 * contiguously. The first 16 disks are for major0, the next
617 * ones with major1, ... Disk 256 is for major0 again, disk 272
618 * for major1, ...
619 * As we stay compatible with our numbering scheme, we can reuse
620 * the well-know SCSI majors 8, 65--71, 136--143.
621 */
622static int sd_major(int major_idx)
623{
624 switch (major_idx) {
625 case 0:
626 return SCSI_DISK0_MAJOR;
627 case 1 ... 7:
628 return SCSI_DISK1_MAJOR + major_idx - 1;
629 case 8 ... 15:
630 return SCSI_DISK8_MAJOR + major_idx - 8;
631 default:
632 BUG();
633 return 0; /* shut up gcc */
634 }
635}
636
637static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
638{
639 struct scsi_disk *sdkp = NULL;
640
641 mutex_lock(&sd_ref_mutex);
642
643 if (disk->private_data) {
644 sdkp = scsi_disk(disk);
645 if (scsi_device_get(sdkp->device) == 0)
646 get_device(&sdkp->dev);
647 else
648 sdkp = NULL;
649 }
650 mutex_unlock(&sd_ref_mutex);
651 return sdkp;
652}
653
654static void scsi_disk_put(struct scsi_disk *sdkp)
655{
656 struct scsi_device *sdev = sdkp->device;
657
658 mutex_lock(&sd_ref_mutex);
659 put_device(&sdkp->dev);
660 scsi_device_put(sdev);
661 mutex_unlock(&sd_ref_mutex);
662}
663
664#ifdef CONFIG_BLK_SED_OPAL
665static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
666 size_t len, bool send)
667{
668 struct scsi_device *sdev = data;
669 u8 cdb[12] = { 0, };
670 int ret;
671
672 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
673 cdb[1] = secp;
674 put_unaligned_be16(spsp, &cdb[2]);
675 put_unaligned_be32(len, &cdb[6]);
676
677 ret = scsi_execute_req(sdev, cdb,
678 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
679 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
680 return ret <= 0 ? ret : -EIO;
681}
682#endif /* CONFIG_BLK_SED_OPAL */
683
684/*
685 * Look up the DIX operation based on whether the command is read or
686 * write and whether dix and dif are enabled.
687 */
688static unsigned int sd_prot_op(bool write, bool dix, bool dif)
689{
690 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
691 static const unsigned int ops[] = { /* wrt dix dif */
692 SCSI_PROT_NORMAL, /* 0 0 0 */
693 SCSI_PROT_READ_STRIP, /* 0 0 1 */
694 SCSI_PROT_READ_INSERT, /* 0 1 0 */
695 SCSI_PROT_READ_PASS, /* 0 1 1 */
696 SCSI_PROT_NORMAL, /* 1 0 0 */
697 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
698 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
699 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
700 };
701
702 return ops[write << 2 | dix << 1 | dif];
703}
704
705/*
706 * Returns a mask of the protection flags that are valid for a given DIX
707 * operation.
708 */
709static unsigned int sd_prot_flag_mask(unsigned int prot_op)
710{
711 static const unsigned int flag_mask[] = {
712 [SCSI_PROT_NORMAL] = 0,
713
714 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
715 SCSI_PROT_GUARD_CHECK |
716 SCSI_PROT_REF_CHECK |
717 SCSI_PROT_REF_INCREMENT,
718
719 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
720 SCSI_PROT_IP_CHECKSUM,
721
722 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
723 SCSI_PROT_GUARD_CHECK |
724 SCSI_PROT_REF_CHECK |
725 SCSI_PROT_REF_INCREMENT |
726 SCSI_PROT_IP_CHECKSUM,
727
728 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
729 SCSI_PROT_REF_INCREMENT,
730
731 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
732 SCSI_PROT_REF_CHECK |
733 SCSI_PROT_REF_INCREMENT |
734 SCSI_PROT_IP_CHECKSUM,
735
736 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
737 SCSI_PROT_GUARD_CHECK |
738 SCSI_PROT_REF_CHECK |
739 SCSI_PROT_REF_INCREMENT |
740 SCSI_PROT_IP_CHECKSUM,
741 };
742
743 return flag_mask[prot_op];
744}
745
746static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
747 unsigned int dix, unsigned int dif)
748{
749 struct bio *bio = scmd->request->bio;
750 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
751 unsigned int protect = 0;
752
753 if (dix) { /* DIX Type 0, 1, 2, 3 */
754 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
755 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
756
757 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
758 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
759 }
760
761 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
762 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
763
764 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
765 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
766 }
767
768 if (dif) { /* DIX/DIF Type 1, 2, 3 */
769 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
770
771 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
772 protect = 3 << 5; /* Disable target PI checking */
773 else
774 protect = 1 << 5; /* Enable target PI checking */
775 }
776
777 scsi_set_prot_op(scmd, prot_op);
778 scsi_set_prot_type(scmd, dif);
779 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
780
781 return protect;
782}
783
784static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
785{
786 struct request_queue *q = sdkp->disk->queue;
787 unsigned int logical_block_size = sdkp->device->sector_size;
788 unsigned int max_blocks = 0;
789
790 q->limits.discard_alignment =
791 sdkp->unmap_alignment * logical_block_size;
792 q->limits.discard_granularity =
793 max(sdkp->physical_block_size,
794 sdkp->unmap_granularity * logical_block_size);
795 sdkp->provisioning_mode = mode;
796
797 switch (mode) {
798
799 case SD_LBP_FULL:
800 case SD_LBP_DISABLE:
801 blk_queue_max_discard_sectors(q, 0);
802 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
803 return;
804
805 case SD_LBP_UNMAP:
806 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
807 (u32)SD_MAX_WS16_BLOCKS);
808 break;
809
810 case SD_LBP_WS16:
811 if (sdkp->device->unmap_limit_for_ws)
812 max_blocks = sdkp->max_unmap_blocks;
813 else
814 max_blocks = sdkp->max_ws_blocks;
815
816 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
817 break;
818
819 case SD_LBP_WS10:
820 if (sdkp->device->unmap_limit_for_ws)
821 max_blocks = sdkp->max_unmap_blocks;
822 else
823 max_blocks = sdkp->max_ws_blocks;
824
825 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
826 break;
827
828 case SD_LBP_ZERO:
829 max_blocks = min_not_zero(sdkp->max_ws_blocks,
830 (u32)SD_MAX_WS10_BLOCKS);
831 break;
832 }
833
834 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
835 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
836}
837
838static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
839{
840 struct scsi_device *sdp = cmd->device;
841 struct request *rq = cmd->request;
842 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
843 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
844 unsigned int data_len = 24;
845 char *buf;
846
847 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
848 if (!rq->special_vec.bv_page)
849 return BLK_STS_RESOURCE;
850 clear_highpage(rq->special_vec.bv_page);
851 rq->special_vec.bv_offset = 0;
852 rq->special_vec.bv_len = data_len;
853 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
854
855 cmd->cmd_len = 10;
856 cmd->cmnd[0] = UNMAP;
857 cmd->cmnd[8] = 24;
858
859 buf = page_address(rq->special_vec.bv_page);
860 put_unaligned_be16(6 + 16, &buf[0]);
861 put_unaligned_be16(16, &buf[2]);
862 put_unaligned_be64(lba, &buf[8]);
863 put_unaligned_be32(nr_blocks, &buf[16]);
864
865 cmd->allowed = SD_MAX_RETRIES;
866 cmd->transfersize = data_len;
867 rq->timeout = SD_TIMEOUT;
868
869 return scsi_init_io(cmd);
870}
871
872static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
873 bool unmap)
874{
875 struct scsi_device *sdp = cmd->device;
876 struct request *rq = cmd->request;
877 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
878 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
879 u32 data_len = sdp->sector_size;
880
881 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
882 if (!rq->special_vec.bv_page)
883 return BLK_STS_RESOURCE;
884 clear_highpage(rq->special_vec.bv_page);
885 rq->special_vec.bv_offset = 0;
886 rq->special_vec.bv_len = data_len;
887 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
888
889 cmd->cmd_len = 16;
890 cmd->cmnd[0] = WRITE_SAME_16;
891 if (unmap)
892 cmd->cmnd[1] = 0x8; /* UNMAP */
893 put_unaligned_be64(lba, &cmd->cmnd[2]);
894 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
895
896 cmd->allowed = SD_MAX_RETRIES;
897 cmd->transfersize = data_len;
898 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
899
900 return scsi_init_io(cmd);
901}
902
903static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
904 bool unmap)
905{
906 struct scsi_device *sdp = cmd->device;
907 struct request *rq = cmd->request;
908 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
909 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
910 u32 data_len = sdp->sector_size;
911
912 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
913 if (!rq->special_vec.bv_page)
914 return BLK_STS_RESOURCE;
915 clear_highpage(rq->special_vec.bv_page);
916 rq->special_vec.bv_offset = 0;
917 rq->special_vec.bv_len = data_len;
918 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
919
920 cmd->cmd_len = 10;
921 cmd->cmnd[0] = WRITE_SAME;
922 if (unmap)
923 cmd->cmnd[1] = 0x8; /* UNMAP */
924 put_unaligned_be32(lba, &cmd->cmnd[2]);
925 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
926
927 cmd->allowed = SD_MAX_RETRIES;
928 cmd->transfersize = data_len;
929 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
930
931 return scsi_init_io(cmd);
932}
933
934static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
935{
936 struct request *rq = cmd->request;
937 struct scsi_device *sdp = cmd->device;
938 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
939 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
940 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
941
942 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
943 switch (sdkp->zeroing_mode) {
944 case SD_ZERO_WS16_UNMAP:
945 return sd_setup_write_same16_cmnd(cmd, true);
946 case SD_ZERO_WS10_UNMAP:
947 return sd_setup_write_same10_cmnd(cmd, true);
948 }
949 }
950
951 if (sdp->no_write_same)
952 return BLK_STS_TARGET;
953
954 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
955 return sd_setup_write_same16_cmnd(cmd, false);
956
957 return sd_setup_write_same10_cmnd(cmd, false);
958}
959
960static void sd_config_write_same(struct scsi_disk *sdkp)
961{
962 struct request_queue *q = sdkp->disk->queue;
963 unsigned int logical_block_size = sdkp->device->sector_size;
964
965 if (sdkp->device->no_write_same) {
966 sdkp->max_ws_blocks = 0;
967 goto out;
968 }
969
970 /* Some devices can not handle block counts above 0xffff despite
971 * supporting WRITE SAME(16). Consequently we default to 64k
972 * blocks per I/O unless the device explicitly advertises a
973 * bigger limit.
974 */
975 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
976 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
977 (u32)SD_MAX_WS16_BLOCKS);
978 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
979 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
980 (u32)SD_MAX_WS10_BLOCKS);
981 else {
982 sdkp->device->no_write_same = 1;
983 sdkp->max_ws_blocks = 0;
984 }
985
986 if (sdkp->lbprz && sdkp->lbpws)
987 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
988 else if (sdkp->lbprz && sdkp->lbpws10)
989 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
990 else if (sdkp->max_ws_blocks)
991 sdkp->zeroing_mode = SD_ZERO_WS;
992 else
993 sdkp->zeroing_mode = SD_ZERO_WRITE;
994
995 if (sdkp->max_ws_blocks &&
996 sdkp->physical_block_size > logical_block_size) {
997 /*
998 * Reporting a maximum number of blocks that is not aligned
999 * on the device physical size would cause a large write same
1000 * request to be split into physically unaligned chunks by
1001 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1002 * even if the caller of these functions took care to align the
1003 * large request. So make sure the maximum reported is aligned
1004 * to the device physical block size. This is only an optional
1005 * optimization for regular disks, but this is mandatory to
1006 * avoid failure of large write same requests directed at
1007 * sequential write required zones of host-managed ZBC disks.
1008 */
1009 sdkp->max_ws_blocks =
1010 round_down(sdkp->max_ws_blocks,
1011 bytes_to_logical(sdkp->device,
1012 sdkp->physical_block_size));
1013 }
1014
1015out:
1016 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1017 (logical_block_size >> 9));
1018 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1019 (logical_block_size >> 9));
1020}
1021
1022/**
1023 * sd_setup_write_same_cmnd - write the same data to multiple blocks
1024 * @cmd: command to prepare
1025 *
1026 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1027 * the preference indicated by the target device.
1028 **/
1029static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1030{
1031 struct request *rq = cmd->request;
1032 struct scsi_device *sdp = cmd->device;
1033 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1034 struct bio *bio = rq->bio;
1035 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1036 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1037 blk_status_t ret;
1038
1039 if (sdkp->device->no_write_same)
1040 return BLK_STS_TARGET;
1041
1042 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1043
1044 rq->timeout = SD_WRITE_SAME_TIMEOUT;
1045
1046 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1047 cmd->cmd_len = 16;
1048 cmd->cmnd[0] = WRITE_SAME_16;
1049 put_unaligned_be64(lba, &cmd->cmnd[2]);
1050 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1051 } else {
1052 cmd->cmd_len = 10;
1053 cmd->cmnd[0] = WRITE_SAME;
1054 put_unaligned_be32(lba, &cmd->cmnd[2]);
1055 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1056 }
1057
1058 cmd->transfersize = sdp->sector_size;
1059 cmd->allowed = SD_MAX_RETRIES;
1060
1061 /*
1062 * For WRITE SAME the data transferred via the DATA OUT buffer is
1063 * different from the amount of data actually written to the target.
1064 *
1065 * We set up __data_len to the amount of data transferred via the
1066 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1067 * to transfer a single sector of data first, but then reset it to
1068 * the amount of data to be written right after so that the I/O path
1069 * knows how much to actually write.
1070 */
1071 rq->__data_len = sdp->sector_size;
1072 ret = scsi_init_io(cmd);
1073 rq->__data_len = blk_rq_bytes(rq);
1074
1075 return ret;
1076}
1077
1078static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1079{
1080 struct request *rq = cmd->request;
1081
1082 /* flush requests don't perform I/O, zero the S/G table */
1083 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1084
1085 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1086 cmd->cmd_len = 10;
1087 cmd->transfersize = 0;
1088 cmd->allowed = SD_MAX_RETRIES;
1089
1090 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1091 return BLK_STS_OK;
1092}
1093
1094static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1095 sector_t lba, unsigned int nr_blocks,
1096 unsigned char flags)
1097{
1098 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1099 if (unlikely(cmd->cmnd == NULL))
1100 return BLK_STS_RESOURCE;
1101
1102 cmd->cmd_len = SD_EXT_CDB_SIZE;
1103 memset(cmd->cmnd, 0, cmd->cmd_len);
1104
1105 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1106 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1107 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1108 cmd->cmnd[10] = flags;
1109 put_unaligned_be64(lba, &cmd->cmnd[12]);
1110 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1111 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1112
1113 return BLK_STS_OK;
1114}
1115
1116static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1117 sector_t lba, unsigned int nr_blocks,
1118 unsigned char flags)
1119{
1120 cmd->cmd_len = 16;
1121 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1122 cmd->cmnd[1] = flags;
1123 cmd->cmnd[14] = 0;
1124 cmd->cmnd[15] = 0;
1125 put_unaligned_be64(lba, &cmd->cmnd[2]);
1126 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1127
1128 return BLK_STS_OK;
1129}
1130
1131static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1132 sector_t lba, unsigned int nr_blocks,
1133 unsigned char flags)
1134{
1135 cmd->cmd_len = 10;
1136 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1137 cmd->cmnd[1] = flags;
1138 cmd->cmnd[6] = 0;
1139 cmd->cmnd[9] = 0;
1140 put_unaligned_be32(lba, &cmd->cmnd[2]);
1141 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1142
1143 return BLK_STS_OK;
1144}
1145
1146static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1147 sector_t lba, unsigned int nr_blocks,
1148 unsigned char flags)
1149{
1150 /* Avoid that 0 blocks gets translated into 256 blocks. */
1151 if (WARN_ON_ONCE(nr_blocks == 0))
1152 return BLK_STS_IOERR;
1153
1154 if (unlikely(flags & 0x8)) {
1155 /*
1156 * This happens only if this drive failed 10byte rw
1157 * command with ILLEGAL_REQUEST during operation and
1158 * thus turned off use_10_for_rw.
1159 */
1160 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1161 return BLK_STS_IOERR;
1162 }
1163
1164 cmd->cmd_len = 6;
1165 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1166 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1167 cmd->cmnd[2] = (lba >> 8) & 0xff;
1168 cmd->cmnd[3] = lba & 0xff;
1169 cmd->cmnd[4] = nr_blocks;
1170 cmd->cmnd[5] = 0;
1171
1172 return BLK_STS_OK;
1173}
1174
1175static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1176{
1177 struct request *rq = cmd->request;
1178 struct scsi_device *sdp = cmd->device;
1179 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1180 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1181 sector_t threshold;
1182 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1183 unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1184 bool write = rq_data_dir(rq) == WRITE;
1185 unsigned char protect, fua;
1186 blk_status_t ret;
1187 unsigned int dif;
1188 bool dix;
1189
1190 ret = scsi_init_io(cmd);
1191 if (ret != BLK_STS_OK)
1192 return ret;
1193
1194 if (!scsi_device_online(sdp) || sdp->changed) {
1195 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1196 return BLK_STS_IOERR;
1197 }
1198
1199 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1200 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1201 return BLK_STS_IOERR;
1202 }
1203
1204 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1205 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1206 return BLK_STS_IOERR;
1207 }
1208
1209 /*
1210 * Some SD card readers can't handle accesses which touch the
1211 * last one or two logical blocks. Split accesses as needed.
1212 */
1213 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1214
1215 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1216 if (lba < threshold) {
1217 /* Access up to the threshold but not beyond */
1218 nr_blocks = threshold - lba;
1219 } else {
1220 /* Access only a single logical block */
1221 nr_blocks = 1;
1222 }
1223 }
1224
1225 if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1226 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1227 if (ret)
1228 return ret;
1229 }
1230
1231 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1232 dix = scsi_prot_sg_count(cmd);
1233 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1234
1235 if (dif || dix)
1236 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1237 else
1238 protect = 0;
1239
1240 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1241 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1242 protect | fua);
1243 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1244 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1245 protect | fua);
1246 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1247 sdp->use_10_for_rw || protect) {
1248 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1249 protect | fua);
1250 } else {
1251 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1252 protect | fua);
1253 }
1254
1255 if (unlikely(ret != BLK_STS_OK))
1256 return ret;
1257
1258 /*
1259 * We shouldn't disconnect in the middle of a sector, so with a dumb
1260 * host adapter, it's safe to assume that we can at least transfer
1261 * this many bytes between each connect / disconnect.
1262 */
1263 cmd->transfersize = sdp->sector_size;
1264 cmd->underflow = nr_blocks << 9;
1265 cmd->allowed = SD_MAX_RETRIES;
1266 cmd->sdb.length = nr_blocks * sdp->sector_size;
1267
1268 SCSI_LOG_HLQUEUE(1,
1269 scmd_printk(KERN_INFO, cmd,
1270 "%s: block=%llu, count=%d\n", __func__,
1271 (unsigned long long)blk_rq_pos(rq),
1272 blk_rq_sectors(rq)));
1273 SCSI_LOG_HLQUEUE(2,
1274 scmd_printk(KERN_INFO, cmd,
1275 "%s %d/%u 512 byte blocks.\n",
1276 write ? "writing" : "reading", nr_blocks,
1277 blk_rq_sectors(rq)));
1278
1279 /*
1280 * This indicates that the command is ready from our end to be
1281 * queued.
1282 */
1283 return BLK_STS_OK;
1284}
1285
1286static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1287{
1288 struct request *rq = cmd->request;
1289
1290 switch (req_op(rq)) {
1291 case REQ_OP_DISCARD:
1292 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1293 case SD_LBP_UNMAP:
1294 return sd_setup_unmap_cmnd(cmd);
1295 case SD_LBP_WS16:
1296 return sd_setup_write_same16_cmnd(cmd, true);
1297 case SD_LBP_WS10:
1298 return sd_setup_write_same10_cmnd(cmd, true);
1299 case SD_LBP_ZERO:
1300 return sd_setup_write_same10_cmnd(cmd, false);
1301 default:
1302 return BLK_STS_TARGET;
1303 }
1304 case REQ_OP_WRITE_ZEROES:
1305 return sd_setup_write_zeroes_cmnd(cmd);
1306 case REQ_OP_WRITE_SAME:
1307 return sd_setup_write_same_cmnd(cmd);
1308 case REQ_OP_FLUSH:
1309 return sd_setup_flush_cmnd(cmd);
1310 case REQ_OP_READ:
1311 case REQ_OP_WRITE:
1312 case REQ_OP_ZONE_APPEND:
1313 return sd_setup_read_write_cmnd(cmd);
1314 case REQ_OP_ZONE_RESET:
1315 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1316 false);
1317 case REQ_OP_ZONE_RESET_ALL:
1318 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1319 true);
1320 case REQ_OP_ZONE_OPEN:
1321 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1322 case REQ_OP_ZONE_CLOSE:
1323 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1324 case REQ_OP_ZONE_FINISH:
1325 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1326 default:
1327 WARN_ON_ONCE(1);
1328 return BLK_STS_NOTSUPP;
1329 }
1330}
1331
1332static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1333{
1334 struct request *rq = SCpnt->request;
1335 u8 *cmnd;
1336
1337 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1338 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1339
1340 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1341 cmnd = SCpnt->cmnd;
1342 SCpnt->cmnd = NULL;
1343 SCpnt->cmd_len = 0;
1344 mempool_free(cmnd, sd_cdb_pool);
1345 }
1346}
1347
1348/**
1349 * sd_open - open a scsi disk device
1350 * @bdev: Block device of the scsi disk to open
1351 * @mode: FMODE_* mask
1352 *
1353 * Returns 0 if successful. Returns a negated errno value in case
1354 * of error.
1355 *
1356 * Note: This can be called from a user context (e.g. fsck(1) )
1357 * or from within the kernel (e.g. as a result of a mount(1) ).
1358 * In the latter case @inode and @filp carry an abridged amount
1359 * of information as noted above.
1360 *
1361 * Locking: called with bdev->bd_mutex held.
1362 **/
1363static int sd_open(struct block_device *bdev, fmode_t mode)
1364{
1365 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1366 struct scsi_device *sdev;
1367 int retval;
1368
1369 if (!sdkp)
1370 return -ENXIO;
1371
1372 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1373
1374 sdev = sdkp->device;
1375
1376 /*
1377 * If the device is in error recovery, wait until it is done.
1378 * If the device is offline, then disallow any access to it.
1379 */
1380 retval = -ENXIO;
1381 if (!scsi_block_when_processing_errors(sdev))
1382 goto error_out;
1383
1384 if (sdev->removable || sdkp->write_prot)
1385 check_disk_change(bdev);
1386
1387 /*
1388 * If the drive is empty, just let the open fail.
1389 */
1390 retval = -ENOMEDIUM;
1391 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1392 goto error_out;
1393
1394 /*
1395 * If the device has the write protect tab set, have the open fail
1396 * if the user expects to be able to write to the thing.
1397 */
1398 retval = -EROFS;
1399 if (sdkp->write_prot && (mode & FMODE_WRITE))
1400 goto error_out;
1401
1402 /*
1403 * It is possible that the disk changing stuff resulted in
1404 * the device being taken offline. If this is the case,
1405 * report this to the user, and don't pretend that the
1406 * open actually succeeded.
1407 */
1408 retval = -ENXIO;
1409 if (!scsi_device_online(sdev))
1410 goto error_out;
1411
1412 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1413 if (scsi_block_when_processing_errors(sdev))
1414 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1415 }
1416
1417 return 0;
1418
1419error_out:
1420 scsi_disk_put(sdkp);
1421 return retval;
1422}
1423
1424/**
1425 * sd_release - invoked when the (last) close(2) is called on this
1426 * scsi disk.
1427 * @disk: disk to release
1428 * @mode: FMODE_* mask
1429 *
1430 * Returns 0.
1431 *
1432 * Note: may block (uninterruptible) if error recovery is underway
1433 * on this disk.
1434 *
1435 * Locking: called with bdev->bd_mutex held.
1436 **/
1437static void sd_release(struct gendisk *disk, fmode_t mode)
1438{
1439 struct scsi_disk *sdkp = scsi_disk(disk);
1440 struct scsi_device *sdev = sdkp->device;
1441
1442 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1443
1444 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1445 if (scsi_block_when_processing_errors(sdev))
1446 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1447 }
1448
1449 scsi_disk_put(sdkp);
1450}
1451
1452static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1453{
1454 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1455 struct scsi_device *sdp = sdkp->device;
1456 struct Scsi_Host *host = sdp->host;
1457 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1458 int diskinfo[4];
1459
1460 /* default to most commonly used values */
1461 diskinfo[0] = 0x40; /* 1 << 6 */
1462 diskinfo[1] = 0x20; /* 1 << 5 */
1463 diskinfo[2] = capacity >> 11;
1464
1465 /* override with calculated, extended default, or driver values */
1466 if (host->hostt->bios_param)
1467 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1468 else
1469 scsicam_bios_param(bdev, capacity, diskinfo);
1470
1471 geo->heads = diskinfo[0];
1472 geo->sectors = diskinfo[1];
1473 geo->cylinders = diskinfo[2];
1474 return 0;
1475}
1476
1477/**
1478 * sd_ioctl - process an ioctl
1479 * @bdev: target block device
1480 * @mode: FMODE_* mask
1481 * @cmd: ioctl command number
1482 * @p: this is third argument given to ioctl(2) system call.
1483 * Often contains a pointer.
1484 *
1485 * Returns 0 if successful (some ioctls return positive numbers on
1486 * success as well). Returns a negated errno value in case of error.
1487 *
1488 * Note: most ioctls are forward onto the block subsystem or further
1489 * down in the scsi subsystem.
1490 **/
1491static int sd_ioctl_common(struct block_device *bdev, fmode_t mode,
1492 unsigned int cmd, void __user *p)
1493{
1494 struct gendisk *disk = bdev->bd_disk;
1495 struct scsi_disk *sdkp = scsi_disk(disk);
1496 struct scsi_device *sdp = sdkp->device;
1497 int error;
1498
1499 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1500 "cmd=0x%x\n", disk->disk_name, cmd));
1501
1502 error = scsi_verify_blk_ioctl(bdev, cmd);
1503 if (error < 0)
1504 return error;
1505
1506 /*
1507 * If we are in the middle of error recovery, don't let anyone
1508 * else try and use this device. Also, if error recovery fails, it
1509 * may try and take the device offline, in which case all further
1510 * access to the device is prohibited.
1511 */
1512 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1513 (mode & FMODE_NDELAY) != 0);
1514 if (error)
1515 goto out;
1516
1517 if (is_sed_ioctl(cmd))
1518 return sed_ioctl(sdkp->opal_dev, cmd, p);
1519
1520 /*
1521 * Send SCSI addressing ioctls directly to mid level, send other
1522 * ioctls to block level and then onto mid level if they can't be
1523 * resolved.
1524 */
1525 switch (cmd) {
1526 case SCSI_IOCTL_GET_IDLUN:
1527 case SCSI_IOCTL_GET_BUS_NUMBER:
1528 error = scsi_ioctl(sdp, cmd, p);
1529 break;
1530 default:
1531 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1532 break;
1533 }
1534out:
1535 return error;
1536}
1537
1538static void set_media_not_present(struct scsi_disk *sdkp)
1539{
1540 if (sdkp->media_present)
1541 sdkp->device->changed = 1;
1542
1543 if (sdkp->device->removable) {
1544 sdkp->media_present = 0;
1545 sdkp->capacity = 0;
1546 }
1547}
1548
1549static int media_not_present(struct scsi_disk *sdkp,
1550 struct scsi_sense_hdr *sshdr)
1551{
1552 if (!scsi_sense_valid(sshdr))
1553 return 0;
1554
1555 /* not invoked for commands that could return deferred errors */
1556 switch (sshdr->sense_key) {
1557 case UNIT_ATTENTION:
1558 case NOT_READY:
1559 /* medium not present */
1560 if (sshdr->asc == 0x3A) {
1561 set_media_not_present(sdkp);
1562 return 1;
1563 }
1564 }
1565 return 0;
1566}
1567
1568/**
1569 * sd_check_events - check media events
1570 * @disk: kernel device descriptor
1571 * @clearing: disk events currently being cleared
1572 *
1573 * Returns mask of DISK_EVENT_*.
1574 *
1575 * Note: this function is invoked from the block subsystem.
1576 **/
1577static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1578{
1579 struct scsi_disk *sdkp = scsi_disk_get(disk);
1580 struct scsi_device *sdp;
1581 int retval;
1582
1583 if (!sdkp)
1584 return 0;
1585
1586 sdp = sdkp->device;
1587 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1588
1589 /*
1590 * If the device is offline, don't send any commands - just pretend as
1591 * if the command failed. If the device ever comes back online, we
1592 * can deal with it then. It is only because of unrecoverable errors
1593 * that we would ever take a device offline in the first place.
1594 */
1595 if (!scsi_device_online(sdp)) {
1596 set_media_not_present(sdkp);
1597 goto out;
1598 }
1599
1600 /*
1601 * Using TEST_UNIT_READY enables differentiation between drive with
1602 * no cartridge loaded - NOT READY, drive with changed cartridge -
1603 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1604 *
1605 * Drives that auto spin down. eg iomega jaz 1G, will be started
1606 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1607 * sd_revalidate() is called.
1608 */
1609 if (scsi_block_when_processing_errors(sdp)) {
1610 struct scsi_sense_hdr sshdr = { 0, };
1611
1612 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1613 &sshdr);
1614
1615 /* failed to execute TUR, assume media not present */
1616 if (host_byte(retval)) {
1617 set_media_not_present(sdkp);
1618 goto out;
1619 }
1620
1621 if (media_not_present(sdkp, &sshdr))
1622 goto out;
1623 }
1624
1625 /*
1626 * For removable scsi disk we have to recognise the presence
1627 * of a disk in the drive.
1628 */
1629 if (!sdkp->media_present)
1630 sdp->changed = 1;
1631 sdkp->media_present = 1;
1632out:
1633 /*
1634 * sdp->changed is set under the following conditions:
1635 *
1636 * Medium present state has changed in either direction.
1637 * Device has indicated UNIT_ATTENTION.
1638 */
1639 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1640 sdp->changed = 0;
1641 scsi_disk_put(sdkp);
1642 return retval;
1643}
1644
1645static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1646{
1647 int retries, res;
1648 struct scsi_device *sdp = sdkp->device;
1649 const int timeout = sdp->request_queue->rq_timeout
1650 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1651 struct scsi_sense_hdr my_sshdr;
1652
1653 if (!scsi_device_online(sdp))
1654 return -ENODEV;
1655
1656 /* caller might not be interested in sense, but we need it */
1657 if (!sshdr)
1658 sshdr = &my_sshdr;
1659
1660 for (retries = 3; retries > 0; --retries) {
1661 unsigned char cmd[10] = { 0 };
1662
1663 cmd[0] = SYNCHRONIZE_CACHE;
1664 /*
1665 * Leave the rest of the command zero to indicate
1666 * flush everything.
1667 */
1668 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1669 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1670 if (res == 0)
1671 break;
1672 }
1673
1674 if (res) {
1675 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1676
1677 if (driver_byte(res) == DRIVER_SENSE)
1678 sd_print_sense_hdr(sdkp, sshdr);
1679
1680 /* we need to evaluate the error return */
1681 if (scsi_sense_valid(sshdr) &&
1682 (sshdr->asc == 0x3a || /* medium not present */
1683 sshdr->asc == 0x20 || /* invalid command */
1684 (sshdr->asc == 0x74 && sshdr->ascq == 0x71))) /* drive is password locked */
1685 /* this is no error here */
1686 return 0;
1687
1688 switch (host_byte(res)) {
1689 /* ignore errors due to racing a disconnection */
1690 case DID_BAD_TARGET:
1691 case DID_NO_CONNECT:
1692 return 0;
1693 /* signal the upper layer it might try again */
1694 case DID_BUS_BUSY:
1695 case DID_IMM_RETRY:
1696 case DID_REQUEUE:
1697 case DID_SOFT_ERROR:
1698 return -EBUSY;
1699 default:
1700 return -EIO;
1701 }
1702 }
1703 return 0;
1704}
1705
1706static void sd_rescan(struct device *dev)
1707{
1708 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1709
1710 revalidate_disk(sdkp->disk);
1711}
1712
1713static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1714 unsigned int cmd, unsigned long arg)
1715{
1716 void __user *p = (void __user *)arg;
1717 int ret;
1718
1719 ret = sd_ioctl_common(bdev, mode, cmd, p);
1720 if (ret != -ENOTTY)
1721 return ret;
1722
1723 return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1724}
1725
1726#ifdef CONFIG_COMPAT
1727static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1728 unsigned int cmd, unsigned long arg)
1729{
1730 void __user *p = compat_ptr(arg);
1731 int ret;
1732
1733 ret = sd_ioctl_common(bdev, mode, cmd, p);
1734 if (ret != -ENOTTY)
1735 return ret;
1736
1737 return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1738}
1739#endif
1740
1741static char sd_pr_type(enum pr_type type)
1742{
1743 switch (type) {
1744 case PR_WRITE_EXCLUSIVE:
1745 return 0x01;
1746 case PR_EXCLUSIVE_ACCESS:
1747 return 0x03;
1748 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1749 return 0x05;
1750 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1751 return 0x06;
1752 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1753 return 0x07;
1754 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1755 return 0x08;
1756 default:
1757 return 0;
1758 }
1759};
1760
1761static int sd_pr_command(struct block_device *bdev, u8 sa,
1762 u64 key, u64 sa_key, u8 type, u8 flags)
1763{
1764 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1765 struct scsi_sense_hdr sshdr;
1766 int result;
1767 u8 cmd[16] = { 0, };
1768 u8 data[24] = { 0, };
1769
1770 cmd[0] = PERSISTENT_RESERVE_OUT;
1771 cmd[1] = sa;
1772 cmd[2] = type;
1773 put_unaligned_be32(sizeof(data), &cmd[5]);
1774
1775 put_unaligned_be64(key, &data[0]);
1776 put_unaligned_be64(sa_key, &data[8]);
1777 data[20] = flags;
1778
1779 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1780 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1781
1782 if (driver_byte(result) == DRIVER_SENSE &&
1783 scsi_sense_valid(&sshdr)) {
1784 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1785 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1786 }
1787
1788 return result;
1789}
1790
1791static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1792 u32 flags)
1793{
1794 if (flags & ~PR_FL_IGNORE_KEY)
1795 return -EOPNOTSUPP;
1796 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1797 old_key, new_key, 0,
1798 (1 << 0) /* APTPL */);
1799}
1800
1801static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1802 u32 flags)
1803{
1804 if (flags)
1805 return -EOPNOTSUPP;
1806 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1807}
1808
1809static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1810{
1811 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1812}
1813
1814static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1815 enum pr_type type, bool abort)
1816{
1817 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1818 sd_pr_type(type), 0);
1819}
1820
1821static int sd_pr_clear(struct block_device *bdev, u64 key)
1822{
1823 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1824}
1825
1826static const struct pr_ops sd_pr_ops = {
1827 .pr_register = sd_pr_register,
1828 .pr_reserve = sd_pr_reserve,
1829 .pr_release = sd_pr_release,
1830 .pr_preempt = sd_pr_preempt,
1831 .pr_clear = sd_pr_clear,
1832};
1833
1834static const struct block_device_operations sd_fops = {
1835 .owner = THIS_MODULE,
1836 .open = sd_open,
1837 .release = sd_release,
1838 .ioctl = sd_ioctl,
1839 .getgeo = sd_getgeo,
1840#ifdef CONFIG_COMPAT
1841 .compat_ioctl = sd_compat_ioctl,
1842#endif
1843 .check_events = sd_check_events,
1844 .revalidate_disk = sd_revalidate_disk,
1845 .unlock_native_capacity = sd_unlock_native_capacity,
1846 .report_zones = sd_zbc_report_zones,
1847 .pr_ops = &sd_pr_ops,
1848};
1849
1850/**
1851 * sd_eh_reset - reset error handling callback
1852 * @scmd: sd-issued command that has failed
1853 *
1854 * This function is called by the SCSI midlayer before starting
1855 * SCSI EH. When counting medium access failures we have to be
1856 * careful to register it only only once per device and SCSI EH run;
1857 * there might be several timed out commands which will cause the
1858 * 'max_medium_access_timeouts' counter to trigger after the first
1859 * SCSI EH run already and set the device to offline.
1860 * So this function resets the internal counter before starting SCSI EH.
1861 **/
1862static void sd_eh_reset(struct scsi_cmnd *scmd)
1863{
1864 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1865
1866 /* New SCSI EH run, reset gate variable */
1867 sdkp->ignore_medium_access_errors = false;
1868}
1869
1870/**
1871 * sd_eh_action - error handling callback
1872 * @scmd: sd-issued command that has failed
1873 * @eh_disp: The recovery disposition suggested by the midlayer
1874 *
1875 * This function is called by the SCSI midlayer upon completion of an
1876 * error test command (currently TEST UNIT READY). The result of sending
1877 * the eh command is passed in eh_disp. We're looking for devices that
1878 * fail medium access commands but are OK with non access commands like
1879 * test unit ready (so wrongly see the device as having a successful
1880 * recovery)
1881 **/
1882static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1883{
1884 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1885 struct scsi_device *sdev = scmd->device;
1886
1887 if (!scsi_device_online(sdev) ||
1888 !scsi_medium_access_command(scmd) ||
1889 host_byte(scmd->result) != DID_TIME_OUT ||
1890 eh_disp != SUCCESS)
1891 return eh_disp;
1892
1893 /*
1894 * The device has timed out executing a medium access command.
1895 * However, the TEST UNIT READY command sent during error
1896 * handling completed successfully. Either the device is in the
1897 * process of recovering or has it suffered an internal failure
1898 * that prevents access to the storage medium.
1899 */
1900 if (!sdkp->ignore_medium_access_errors) {
1901 sdkp->medium_access_timed_out++;
1902 sdkp->ignore_medium_access_errors = true;
1903 }
1904
1905 /*
1906 * If the device keeps failing read/write commands but TEST UNIT
1907 * READY always completes successfully we assume that medium
1908 * access is no longer possible and take the device offline.
1909 */
1910 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1911 scmd_printk(KERN_ERR, scmd,
1912 "Medium access timeout failure. Offlining disk!\n");
1913 mutex_lock(&sdev->state_mutex);
1914 scsi_device_set_state(sdev, SDEV_OFFLINE);
1915 mutex_unlock(&sdev->state_mutex);
1916
1917 return SUCCESS;
1918 }
1919
1920 return eh_disp;
1921}
1922
1923static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1924{
1925 struct request *req = scmd->request;
1926 struct scsi_device *sdev = scmd->device;
1927 unsigned int transferred, good_bytes;
1928 u64 start_lba, end_lba, bad_lba;
1929
1930 /*
1931 * Some commands have a payload smaller than the device logical
1932 * block size (e.g. INQUIRY on a 4K disk).
1933 */
1934 if (scsi_bufflen(scmd) <= sdev->sector_size)
1935 return 0;
1936
1937 /* Check if we have a 'bad_lba' information */
1938 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1939 SCSI_SENSE_BUFFERSIZE,
1940 &bad_lba))
1941 return 0;
1942
1943 /*
1944 * If the bad lba was reported incorrectly, we have no idea where
1945 * the error is.
1946 */
1947 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1948 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1949 if (bad_lba < start_lba || bad_lba >= end_lba)
1950 return 0;
1951
1952 /*
1953 * resid is optional but mostly filled in. When it's unused,
1954 * its value is zero, so we assume the whole buffer transferred
1955 */
1956 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1957
1958 /* This computation should always be done in terms of the
1959 * resolution of the device's medium.
1960 */
1961 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1962
1963 return min(good_bytes, transferred);
1964}
1965
1966/**
1967 * sd_done - bottom half handler: called when the lower level
1968 * driver has completed (successfully or otherwise) a scsi command.
1969 * @SCpnt: mid-level's per command structure.
1970 *
1971 * Note: potentially run from within an ISR. Must not block.
1972 **/
1973static int sd_done(struct scsi_cmnd *SCpnt)
1974{
1975 int result = SCpnt->result;
1976 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1977 unsigned int sector_size = SCpnt->device->sector_size;
1978 unsigned int resid;
1979 struct scsi_sense_hdr sshdr;
1980 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1981 struct request *req = SCpnt->request;
1982 int sense_valid = 0;
1983 int sense_deferred = 0;
1984
1985 switch (req_op(req)) {
1986 case REQ_OP_DISCARD:
1987 case REQ_OP_WRITE_ZEROES:
1988 case REQ_OP_WRITE_SAME:
1989 case REQ_OP_ZONE_RESET:
1990 case REQ_OP_ZONE_RESET_ALL:
1991 case REQ_OP_ZONE_OPEN:
1992 case REQ_OP_ZONE_CLOSE:
1993 case REQ_OP_ZONE_FINISH:
1994 if (!result) {
1995 good_bytes = blk_rq_bytes(req);
1996 scsi_set_resid(SCpnt, 0);
1997 } else {
1998 good_bytes = 0;
1999 scsi_set_resid(SCpnt, blk_rq_bytes(req));
2000 }
2001 break;
2002 default:
2003 /*
2004 * In case of bogus fw or device, we could end up having
2005 * an unaligned partial completion. Check this here and force
2006 * alignment.
2007 */
2008 resid = scsi_get_resid(SCpnt);
2009 if (resid & (sector_size - 1)) {
2010 sd_printk(KERN_INFO, sdkp,
2011 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2012 resid, sector_size);
2013 scsi_print_command(SCpnt);
2014 resid = min(scsi_bufflen(SCpnt),
2015 round_up(resid, sector_size));
2016 scsi_set_resid(SCpnt, resid);
2017 }
2018 }
2019
2020 if (result) {
2021 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2022 if (sense_valid)
2023 sense_deferred = scsi_sense_is_deferred(&sshdr);
2024 }
2025 sdkp->medium_access_timed_out = 0;
2026
2027 if (driver_byte(result) != DRIVER_SENSE &&
2028 (!sense_valid || sense_deferred))
2029 goto out;
2030
2031 switch (sshdr.sense_key) {
2032 case HARDWARE_ERROR:
2033 case MEDIUM_ERROR:
2034 good_bytes = sd_completed_bytes(SCpnt);
2035 break;
2036 case RECOVERED_ERROR:
2037 good_bytes = scsi_bufflen(SCpnt);
2038 break;
2039 case NO_SENSE:
2040 /* This indicates a false check condition, so ignore it. An
2041 * unknown amount of data was transferred so treat it as an
2042 * error.
2043 */
2044 SCpnt->result = 0;
2045 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2046 break;
2047 case ABORTED_COMMAND:
2048 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2049 good_bytes = sd_completed_bytes(SCpnt);
2050 break;
2051 case ILLEGAL_REQUEST:
2052 switch (sshdr.asc) {
2053 case 0x10: /* DIX: Host detected corruption */
2054 good_bytes = sd_completed_bytes(SCpnt);
2055 break;
2056 case 0x20: /* INVALID COMMAND OPCODE */
2057 case 0x24: /* INVALID FIELD IN CDB */
2058 switch (SCpnt->cmnd[0]) {
2059 case UNMAP:
2060 sd_config_discard(sdkp, SD_LBP_DISABLE);
2061 break;
2062 case WRITE_SAME_16:
2063 case WRITE_SAME:
2064 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2065 sd_config_discard(sdkp, SD_LBP_DISABLE);
2066 } else {
2067 sdkp->device->no_write_same = 1;
2068 sd_config_write_same(sdkp);
2069 req->rq_flags |= RQF_QUIET;
2070 }
2071 break;
2072 }
2073 }
2074 break;
2075 default:
2076 break;
2077 }
2078
2079 out:
2080 if (sd_is_zoned(sdkp))
2081 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2082
2083 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2084 "sd_done: completed %d of %d bytes\n",
2085 good_bytes, scsi_bufflen(SCpnt)));
2086
2087 return good_bytes;
2088}
2089
2090/*
2091 * spinup disk - called only in sd_revalidate_disk()
2092 */
2093static void
2094sd_spinup_disk(struct scsi_disk *sdkp)
2095{
2096 unsigned char cmd[10];
2097 unsigned long spintime_expire = 0;
2098 int retries, spintime;
2099 unsigned int the_result;
2100 struct scsi_sense_hdr sshdr;
2101 int sense_valid = 0;
2102
2103 spintime = 0;
2104
2105 /* Spin up drives, as required. Only do this at boot time */
2106 /* Spinup needs to be done for module loads too. */
2107 do {
2108 retries = 0;
2109
2110 do {
2111 cmd[0] = TEST_UNIT_READY;
2112 memset((void *) &cmd[1], 0, 9);
2113
2114 the_result = scsi_execute_req(sdkp->device, cmd,
2115 DMA_NONE, NULL, 0,
2116 &sshdr, SD_TIMEOUT,
2117 SD_MAX_RETRIES, NULL);
2118
2119 /*
2120 * If the drive has indicated to us that it
2121 * doesn't have any media in it, don't bother
2122 * with any more polling.
2123 */
2124 if (media_not_present(sdkp, &sshdr))
2125 return;
2126
2127 if (the_result)
2128 sense_valid = scsi_sense_valid(&sshdr);
2129 retries++;
2130 } while (retries < 3 &&
2131 (!scsi_status_is_good(the_result) ||
2132 ((driver_byte(the_result) == DRIVER_SENSE) &&
2133 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2134
2135 if (driver_byte(the_result) != DRIVER_SENSE) {
2136 /* no sense, TUR either succeeded or failed
2137 * with a status error */
2138 if(!spintime && !scsi_status_is_good(the_result)) {
2139 sd_print_result(sdkp, "Test Unit Ready failed",
2140 the_result);
2141 }
2142 break;
2143 }
2144
2145 /*
2146 * The device does not want the automatic start to be issued.
2147 */
2148 if (sdkp->device->no_start_on_add)
2149 break;
2150
2151 if (sense_valid && sshdr.sense_key == NOT_READY) {
2152 if (sshdr.asc == 4 && sshdr.ascq == 3)
2153 break; /* manual intervention required */
2154 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2155 break; /* standby */
2156 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2157 break; /* unavailable */
2158 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2159 break; /* sanitize in progress */
2160 /*
2161 * Issue command to spin up drive when not ready
2162 */
2163 if (!spintime) {
2164 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2165 cmd[0] = START_STOP;
2166 cmd[1] = 1; /* Return immediately */
2167 memset((void *) &cmd[2], 0, 8);
2168 cmd[4] = 1; /* Start spin cycle */
2169 if (sdkp->device->start_stop_pwr_cond)
2170 cmd[4] |= 1 << 4;
2171 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2172 NULL, 0, &sshdr,
2173 SD_TIMEOUT, SD_MAX_RETRIES,
2174 NULL);
2175 spintime_expire = jiffies + 100 * HZ;
2176 spintime = 1;
2177 }
2178 /* Wait 1 second for next try */
2179 msleep(1000);
2180 printk(KERN_CONT ".");
2181
2182 /*
2183 * Wait for USB flash devices with slow firmware.
2184 * Yes, this sense key/ASC combination shouldn't
2185 * occur here. It's characteristic of these devices.
2186 */
2187 } else if (sense_valid &&
2188 sshdr.sense_key == UNIT_ATTENTION &&
2189 sshdr.asc == 0x28) {
2190 if (!spintime) {
2191 spintime_expire = jiffies + 5 * HZ;
2192 spintime = 1;
2193 }
2194 /* Wait 1 second for next try */
2195 msleep(1000);
2196 } else {
2197 /* we don't understand the sense code, so it's
2198 * probably pointless to loop */
2199 if(!spintime) {
2200 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2201 sd_print_sense_hdr(sdkp, &sshdr);
2202 }
2203 break;
2204 }
2205
2206 } while (spintime && time_before_eq(jiffies, spintime_expire));
2207
2208 if (spintime) {
2209 if (scsi_status_is_good(the_result))
2210 printk(KERN_CONT "ready\n");
2211 else
2212 printk(KERN_CONT "not responding...\n");
2213 }
2214}
2215
2216/*
2217 * Determine whether disk supports Data Integrity Field.
2218 */
2219static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2220{
2221 struct scsi_device *sdp = sdkp->device;
2222 u8 type;
2223 int ret = 0;
2224
2225 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2226 sdkp->protection_type = 0;
2227 return ret;
2228 }
2229
2230 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2231
2232 if (type > T10_PI_TYPE3_PROTECTION)
2233 ret = -ENODEV;
2234 else if (scsi_host_dif_capable(sdp->host, type))
2235 ret = 1;
2236
2237 if (sdkp->first_scan || type != sdkp->protection_type)
2238 switch (ret) {
2239 case -ENODEV:
2240 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2241 " protection type %u. Disabling disk!\n",
2242 type);
2243 break;
2244 case 1:
2245 sd_printk(KERN_NOTICE, sdkp,
2246 "Enabling DIF Type %u protection\n", type);
2247 break;
2248 case 0:
2249 sd_printk(KERN_NOTICE, sdkp,
2250 "Disabling DIF Type %u protection\n", type);
2251 break;
2252 }
2253
2254 sdkp->protection_type = type;
2255
2256 return ret;
2257}
2258
2259static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2260 struct scsi_sense_hdr *sshdr, int sense_valid,
2261 int the_result)
2262{
2263 if (driver_byte(the_result) == DRIVER_SENSE)
2264 sd_print_sense_hdr(sdkp, sshdr);
2265 else
2266 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2267
2268 /*
2269 * Set dirty bit for removable devices if not ready -
2270 * sometimes drives will not report this properly.
2271 */
2272 if (sdp->removable &&
2273 sense_valid && sshdr->sense_key == NOT_READY)
2274 set_media_not_present(sdkp);
2275
2276 /*
2277 * We used to set media_present to 0 here to indicate no media
2278 * in the drive, but some drives fail read capacity even with
2279 * media present, so we can't do that.
2280 */
2281 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2282}
2283
2284#define RC16_LEN 32
2285#if RC16_LEN > SD_BUF_SIZE
2286#error RC16_LEN must not be more than SD_BUF_SIZE
2287#endif
2288
2289#define READ_CAPACITY_RETRIES_ON_RESET 10
2290
2291static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2292 unsigned char *buffer)
2293{
2294 unsigned char cmd[16];
2295 struct scsi_sense_hdr sshdr;
2296 int sense_valid = 0;
2297 int the_result;
2298 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2299 unsigned int alignment;
2300 unsigned long long lba;
2301 unsigned sector_size;
2302
2303 if (sdp->no_read_capacity_16)
2304 return -EINVAL;
2305
2306 do {
2307 memset(cmd, 0, 16);
2308 cmd[0] = SERVICE_ACTION_IN_16;
2309 cmd[1] = SAI_READ_CAPACITY_16;
2310 cmd[13] = RC16_LEN;
2311 memset(buffer, 0, RC16_LEN);
2312
2313 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2314 buffer, RC16_LEN, &sshdr,
2315 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2316
2317 if (media_not_present(sdkp, &sshdr))
2318 return -ENODEV;
2319
2320 if (the_result) {
2321 sense_valid = scsi_sense_valid(&sshdr);
2322 if (sense_valid &&
2323 sshdr.sense_key == ILLEGAL_REQUEST &&
2324 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2325 sshdr.ascq == 0x00)
2326 /* Invalid Command Operation Code or
2327 * Invalid Field in CDB, just retry
2328 * silently with RC10 */
2329 return -EINVAL;
2330 if (sense_valid &&
2331 sshdr.sense_key == UNIT_ATTENTION &&
2332 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2333 /* Device reset might occur several times,
2334 * give it one more chance */
2335 if (--reset_retries > 0)
2336 continue;
2337 }
2338 retries--;
2339
2340 } while (the_result && retries);
2341
2342 if (the_result) {
2343 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2344 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2345 return -EINVAL;
2346 }
2347
2348 sector_size = get_unaligned_be32(&buffer[8]);
2349 lba = get_unaligned_be64(&buffer[0]);
2350
2351 if (sd_read_protection_type(sdkp, buffer) < 0) {
2352 sdkp->capacity = 0;
2353 return -ENODEV;
2354 }
2355
2356 /* Logical blocks per physical block exponent */
2357 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2358
2359 /* RC basis */
2360 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2361
2362 /* Lowest aligned logical block */
2363 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2364 blk_queue_alignment_offset(sdp->request_queue, alignment);
2365 if (alignment && sdkp->first_scan)
2366 sd_printk(KERN_NOTICE, sdkp,
2367 "physical block alignment offset: %u\n", alignment);
2368
2369 if (buffer[14] & 0x80) { /* LBPME */
2370 sdkp->lbpme = 1;
2371
2372 if (buffer[14] & 0x40) /* LBPRZ */
2373 sdkp->lbprz = 1;
2374
2375 sd_config_discard(sdkp, SD_LBP_WS16);
2376 }
2377
2378 sdkp->capacity = lba + 1;
2379 return sector_size;
2380}
2381
2382static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2383 unsigned char *buffer)
2384{
2385 unsigned char cmd[16];
2386 struct scsi_sense_hdr sshdr;
2387 int sense_valid = 0;
2388 int the_result;
2389 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2390 sector_t lba;
2391 unsigned sector_size;
2392
2393 do {
2394 cmd[0] = READ_CAPACITY;
2395 memset(&cmd[1], 0, 9);
2396 memset(buffer, 0, 8);
2397
2398 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2399 buffer, 8, &sshdr,
2400 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2401
2402 if (media_not_present(sdkp, &sshdr))
2403 return -ENODEV;
2404
2405 if (the_result) {
2406 sense_valid = scsi_sense_valid(&sshdr);
2407 if (sense_valid &&
2408 sshdr.sense_key == UNIT_ATTENTION &&
2409 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2410 /* Device reset might occur several times,
2411 * give it one more chance */
2412 if (--reset_retries > 0)
2413 continue;
2414 }
2415 retries--;
2416
2417 } while (the_result && retries);
2418
2419 if (the_result) {
2420 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2421 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2422 return -EINVAL;
2423 }
2424
2425 sector_size = get_unaligned_be32(&buffer[4]);
2426 lba = get_unaligned_be32(&buffer[0]);
2427
2428 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2429 /* Some buggy (usb cardreader) devices return an lba of
2430 0xffffffff when the want to report a size of 0 (with
2431 which they really mean no media is present) */
2432 sdkp->capacity = 0;
2433 sdkp->physical_block_size = sector_size;
2434 return sector_size;
2435 }
2436
2437 sdkp->capacity = lba + 1;
2438 sdkp->physical_block_size = sector_size;
2439 return sector_size;
2440}
2441
2442static int sd_try_rc16_first(struct scsi_device *sdp)
2443{
2444 if (sdp->host->max_cmd_len < 16)
2445 return 0;
2446 if (sdp->try_rc_10_first)
2447 return 0;
2448 if (sdp->scsi_level > SCSI_SPC_2)
2449 return 1;
2450 if (scsi_device_protection(sdp))
2451 return 1;
2452 return 0;
2453}
2454
2455/*
2456 * read disk capacity
2457 */
2458static void
2459sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2460{
2461 int sector_size;
2462 struct scsi_device *sdp = sdkp->device;
2463
2464 if (sd_try_rc16_first(sdp)) {
2465 sector_size = read_capacity_16(sdkp, sdp, buffer);
2466 if (sector_size == -EOVERFLOW)
2467 goto got_data;
2468 if (sector_size == -ENODEV)
2469 return;
2470 if (sector_size < 0)
2471 sector_size = read_capacity_10(sdkp, sdp, buffer);
2472 if (sector_size < 0)
2473 return;
2474 } else {
2475 sector_size = read_capacity_10(sdkp, sdp, buffer);
2476 if (sector_size == -EOVERFLOW)
2477 goto got_data;
2478 if (sector_size < 0)
2479 return;
2480 if ((sizeof(sdkp->capacity) > 4) &&
2481 (sdkp->capacity > 0xffffffffULL)) {
2482 int old_sector_size = sector_size;
2483 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2484 "Trying to use READ CAPACITY(16).\n");
2485 sector_size = read_capacity_16(sdkp, sdp, buffer);
2486 if (sector_size < 0) {
2487 sd_printk(KERN_NOTICE, sdkp,
2488 "Using 0xffffffff as device size\n");
2489 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2490 sector_size = old_sector_size;
2491 goto got_data;
2492 }
2493 /* Remember that READ CAPACITY(16) succeeded */
2494 sdp->try_rc_10_first = 0;
2495 }
2496 }
2497
2498 /* Some devices are known to return the total number of blocks,
2499 * not the highest block number. Some devices have versions
2500 * which do this and others which do not. Some devices we might
2501 * suspect of doing this but we don't know for certain.
2502 *
2503 * If we know the reported capacity is wrong, decrement it. If
2504 * we can only guess, then assume the number of blocks is even
2505 * (usually true but not always) and err on the side of lowering
2506 * the capacity.
2507 */
2508 if (sdp->fix_capacity ||
2509 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2510 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2511 "from its reported value: %llu\n",
2512 (unsigned long long) sdkp->capacity);
2513 --sdkp->capacity;
2514 }
2515
2516got_data:
2517 if (sector_size == 0) {
2518 sector_size = 512;
2519 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2520 "assuming 512.\n");
2521 }
2522
2523 if (sector_size != 512 &&
2524 sector_size != 1024 &&
2525 sector_size != 2048 &&
2526 sector_size != 4096) {
2527 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2528 sector_size);
2529 /*
2530 * The user might want to re-format the drive with
2531 * a supported sectorsize. Once this happens, it
2532 * would be relatively trivial to set the thing up.
2533 * For this reason, we leave the thing in the table.
2534 */
2535 sdkp->capacity = 0;
2536 /*
2537 * set a bogus sector size so the normal read/write
2538 * logic in the block layer will eventually refuse any
2539 * request on this device without tripping over power
2540 * of two sector size assumptions
2541 */
2542 sector_size = 512;
2543 }
2544 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2545 blk_queue_physical_block_size(sdp->request_queue,
2546 sdkp->physical_block_size);
2547 sdkp->device->sector_size = sector_size;
2548
2549 if (sdkp->capacity > 0xffffffff)
2550 sdp->use_16_for_rw = 1;
2551
2552}
2553
2554/*
2555 * Print disk capacity
2556 */
2557static void
2558sd_print_capacity(struct scsi_disk *sdkp,
2559 sector_t old_capacity)
2560{
2561 int sector_size = sdkp->device->sector_size;
2562 char cap_str_2[10], cap_str_10[10];
2563
2564 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2565 return;
2566
2567 string_get_size(sdkp->capacity, sector_size,
2568 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2569 string_get_size(sdkp->capacity, sector_size,
2570 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2571
2572 sd_printk(KERN_NOTICE, sdkp,
2573 "%llu %d-byte logical blocks: (%s/%s)\n",
2574 (unsigned long long)sdkp->capacity,
2575 sector_size, cap_str_10, cap_str_2);
2576
2577 if (sdkp->physical_block_size != sector_size)
2578 sd_printk(KERN_NOTICE, sdkp,
2579 "%u-byte physical blocks\n",
2580 sdkp->physical_block_size);
2581}
2582
2583/* called with buffer of length 512 */
2584static inline int
2585sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2586 unsigned char *buffer, int len, struct scsi_mode_data *data,
2587 struct scsi_sense_hdr *sshdr)
2588{
2589 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2590 SD_TIMEOUT, SD_MAX_RETRIES, data,
2591 sshdr);
2592}
2593
2594/*
2595 * read write protect setting, if possible - called only in sd_revalidate_disk()
2596 * called with buffer of length SD_BUF_SIZE
2597 */
2598static void
2599sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2600{
2601 int res;
2602 struct scsi_device *sdp = sdkp->device;
2603 struct scsi_mode_data data;
2604 int old_wp = sdkp->write_prot;
2605
2606 set_disk_ro(sdkp->disk, 0);
2607 if (sdp->skip_ms_page_3f) {
2608 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2609 return;
2610 }
2611
2612 if (sdp->use_192_bytes_for_3f) {
2613 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2614 } else {
2615 /*
2616 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2617 * We have to start carefully: some devices hang if we ask
2618 * for more than is available.
2619 */
2620 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2621
2622 /*
2623 * Second attempt: ask for page 0 When only page 0 is
2624 * implemented, a request for page 3F may return Sense Key
2625 * 5: Illegal Request, Sense Code 24: Invalid field in
2626 * CDB.
2627 */
2628 if (!scsi_status_is_good(res))
2629 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2630
2631 /*
2632 * Third attempt: ask 255 bytes, as we did earlier.
2633 */
2634 if (!scsi_status_is_good(res))
2635 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2636 &data, NULL);
2637 }
2638
2639 if (!scsi_status_is_good(res)) {
2640 sd_first_printk(KERN_WARNING, sdkp,
2641 "Test WP failed, assume Write Enabled\n");
2642 } else {
2643 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2644 set_disk_ro(sdkp->disk, sdkp->write_prot);
2645 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2646 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2647 sdkp->write_prot ? "on" : "off");
2648 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2649 }
2650 }
2651}
2652
2653/*
2654 * sd_read_cache_type - called only from sd_revalidate_disk()
2655 * called with buffer of length SD_BUF_SIZE
2656 */
2657static void
2658sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2659{
2660 int len = 0, res;
2661 struct scsi_device *sdp = sdkp->device;
2662
2663 int dbd;
2664 int modepage;
2665 int first_len;
2666 struct scsi_mode_data data;
2667 struct scsi_sense_hdr sshdr;
2668 int old_wce = sdkp->WCE;
2669 int old_rcd = sdkp->RCD;
2670 int old_dpofua = sdkp->DPOFUA;
2671
2672
2673 if (sdkp->cache_override)
2674 return;
2675
2676 first_len = 4;
2677 if (sdp->skip_ms_page_8) {
2678 if (sdp->type == TYPE_RBC)
2679 goto defaults;
2680 else {
2681 if (sdp->skip_ms_page_3f)
2682 goto defaults;
2683 modepage = 0x3F;
2684 if (sdp->use_192_bytes_for_3f)
2685 first_len = 192;
2686 dbd = 0;
2687 }
2688 } else if (sdp->type == TYPE_RBC) {
2689 modepage = 6;
2690 dbd = 8;
2691 } else {
2692 modepage = 8;
2693 dbd = 0;
2694 }
2695
2696 /* cautiously ask */
2697 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2698 &data, &sshdr);
2699
2700 if (!scsi_status_is_good(res))
2701 goto bad_sense;
2702
2703 if (!data.header_length) {
2704 modepage = 6;
2705 first_len = 0;
2706 sd_first_printk(KERN_ERR, sdkp,
2707 "Missing header in MODE_SENSE response\n");
2708 }
2709
2710 /* that went OK, now ask for the proper length */
2711 len = data.length;
2712
2713 /*
2714 * We're only interested in the first three bytes, actually.
2715 * But the data cache page is defined for the first 20.
2716 */
2717 if (len < 3)
2718 goto bad_sense;
2719 else if (len > SD_BUF_SIZE) {
2720 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2721 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2722 len = SD_BUF_SIZE;
2723 }
2724 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2725 len = 192;
2726
2727 /* Get the data */
2728 if (len > first_len)
2729 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2730 &data, &sshdr);
2731
2732 if (scsi_status_is_good(res)) {
2733 int offset = data.header_length + data.block_descriptor_length;
2734
2735 while (offset < len) {
2736 u8 page_code = buffer[offset] & 0x3F;
2737 u8 spf = buffer[offset] & 0x40;
2738
2739 if (page_code == 8 || page_code == 6) {
2740 /* We're interested only in the first 3 bytes.
2741 */
2742 if (len - offset <= 2) {
2743 sd_first_printk(KERN_ERR, sdkp,
2744 "Incomplete mode parameter "
2745 "data\n");
2746 goto defaults;
2747 } else {
2748 modepage = page_code;
2749 goto Page_found;
2750 }
2751 } else {
2752 /* Go to the next page */
2753 if (spf && len - offset > 3)
2754 offset += 4 + (buffer[offset+2] << 8) +
2755 buffer[offset+3];
2756 else if (!spf && len - offset > 1)
2757 offset += 2 + buffer[offset+1];
2758 else {
2759 sd_first_printk(KERN_ERR, sdkp,
2760 "Incomplete mode "
2761 "parameter data\n");
2762 goto defaults;
2763 }
2764 }
2765 }
2766
2767 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2768 goto defaults;
2769
2770 Page_found:
2771 if (modepage == 8) {
2772 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2773 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2774 } else {
2775 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2776 sdkp->RCD = 0;
2777 }
2778
2779 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2780 if (sdp->broken_fua) {
2781 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2782 sdkp->DPOFUA = 0;
2783 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2784 !sdkp->device->use_16_for_rw) {
2785 sd_first_printk(KERN_NOTICE, sdkp,
2786 "Uses READ/WRITE(6), disabling FUA\n");
2787 sdkp->DPOFUA = 0;
2788 }
2789
2790 /* No cache flush allowed for write protected devices */
2791 if (sdkp->WCE && sdkp->write_prot)
2792 sdkp->WCE = 0;
2793
2794 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2795 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2796 sd_printk(KERN_NOTICE, sdkp,
2797 "Write cache: %s, read cache: %s, %s\n",
2798 sdkp->WCE ? "enabled" : "disabled",
2799 sdkp->RCD ? "disabled" : "enabled",
2800 sdkp->DPOFUA ? "supports DPO and FUA"
2801 : "doesn't support DPO or FUA");
2802
2803 return;
2804 }
2805
2806bad_sense:
2807 if (scsi_sense_valid(&sshdr) &&
2808 sshdr.sense_key == ILLEGAL_REQUEST &&
2809 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2810 /* Invalid field in CDB */
2811 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2812 else
2813 sd_first_printk(KERN_ERR, sdkp,
2814 "Asking for cache data failed\n");
2815
2816defaults:
2817 if (sdp->wce_default_on) {
2818 sd_first_printk(KERN_NOTICE, sdkp,
2819 "Assuming drive cache: write back\n");
2820 sdkp->WCE = 1;
2821 } else {
2822 sd_first_printk(KERN_ERR, sdkp,
2823 "Assuming drive cache: write through\n");
2824 sdkp->WCE = 0;
2825 }
2826 sdkp->RCD = 0;
2827 sdkp->DPOFUA = 0;
2828}
2829
2830/*
2831 * The ATO bit indicates whether the DIF application tag is available
2832 * for use by the operating system.
2833 */
2834static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2835{
2836 int res, offset;
2837 struct scsi_device *sdp = sdkp->device;
2838 struct scsi_mode_data data;
2839 struct scsi_sense_hdr sshdr;
2840
2841 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2842 return;
2843
2844 if (sdkp->protection_type == 0)
2845 return;
2846
2847 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2848 SD_MAX_RETRIES, &data, &sshdr);
2849
2850 if (!scsi_status_is_good(res) || !data.header_length ||
2851 data.length < 6) {
2852 sd_first_printk(KERN_WARNING, sdkp,
2853 "getting Control mode page failed, assume no ATO\n");
2854
2855 if (scsi_sense_valid(&sshdr))
2856 sd_print_sense_hdr(sdkp, &sshdr);
2857
2858 return;
2859 }
2860
2861 offset = data.header_length + data.block_descriptor_length;
2862
2863 if ((buffer[offset] & 0x3f) != 0x0a) {
2864 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2865 return;
2866 }
2867
2868 if ((buffer[offset + 5] & 0x80) == 0)
2869 return;
2870
2871 sdkp->ATO = 1;
2872
2873 return;
2874}
2875
2876/**
2877 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2878 * @sdkp: disk to query
2879 */
2880static void sd_read_block_limits(struct scsi_disk *sdkp)
2881{
2882 unsigned int sector_sz = sdkp->device->sector_size;
2883 const int vpd_len = 64;
2884 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2885
2886 if (!buffer ||
2887 /* Block Limits VPD */
2888 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2889 goto out;
2890
2891 blk_queue_io_min(sdkp->disk->queue,
2892 get_unaligned_be16(&buffer[6]) * sector_sz);
2893
2894 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2895 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2896
2897 if (buffer[3] == 0x3c) {
2898 unsigned int lba_count, desc_count;
2899
2900 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2901
2902 if (!sdkp->lbpme)
2903 goto out;
2904
2905 lba_count = get_unaligned_be32(&buffer[20]);
2906 desc_count = get_unaligned_be32(&buffer[24]);
2907
2908 if (lba_count && desc_count)
2909 sdkp->max_unmap_blocks = lba_count;
2910
2911 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2912
2913 if (buffer[32] & 0x80)
2914 sdkp->unmap_alignment =
2915 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2916
2917 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2918
2919 if (sdkp->max_unmap_blocks)
2920 sd_config_discard(sdkp, SD_LBP_UNMAP);
2921 else
2922 sd_config_discard(sdkp, SD_LBP_WS16);
2923
2924 } else { /* LBP VPD page tells us what to use */
2925 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2926 sd_config_discard(sdkp, SD_LBP_UNMAP);
2927 else if (sdkp->lbpws)
2928 sd_config_discard(sdkp, SD_LBP_WS16);
2929 else if (sdkp->lbpws10)
2930 sd_config_discard(sdkp, SD_LBP_WS10);
2931 else
2932 sd_config_discard(sdkp, SD_LBP_DISABLE);
2933 }
2934 }
2935
2936 out:
2937 kfree(buffer);
2938}
2939
2940/**
2941 * sd_read_block_characteristics - Query block dev. characteristics
2942 * @sdkp: disk to query
2943 */
2944static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2945{
2946 struct request_queue *q = sdkp->disk->queue;
2947 unsigned char *buffer;
2948 u16 rot;
2949 const int vpd_len = 64;
2950
2951 buffer = kmalloc(vpd_len, GFP_KERNEL);
2952
2953 if (!buffer ||
2954 /* Block Device Characteristics VPD */
2955 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2956 goto out;
2957
2958 rot = get_unaligned_be16(&buffer[4]);
2959
2960 if (rot == 1) {
2961 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2962 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2963 }
2964
2965 if (sdkp->device->type == TYPE_ZBC) {
2966 /* Host-managed */
2967 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
2968 } else {
2969 sdkp->zoned = (buffer[8] >> 4) & 3;
2970 if (sdkp->zoned == 1) {
2971 /* Host-aware */
2972 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
2973 } else {
2974 /* Regular disk or drive managed disk */
2975 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
2976 }
2977 }
2978
2979 if (!sdkp->first_scan)
2980 goto out;
2981
2982 if (blk_queue_is_zoned(q)) {
2983 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2984 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2985 } else {
2986 if (sdkp->zoned == 1)
2987 sd_printk(KERN_NOTICE, sdkp,
2988 "Host-aware SMR disk used as regular disk\n");
2989 else if (sdkp->zoned == 2)
2990 sd_printk(KERN_NOTICE, sdkp,
2991 "Drive-managed SMR disk\n");
2992 }
2993
2994 out:
2995 kfree(buffer);
2996}
2997
2998/**
2999 * sd_read_block_provisioning - Query provisioning VPD page
3000 * @sdkp: disk to query
3001 */
3002static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3003{
3004 unsigned char *buffer;
3005 const int vpd_len = 8;
3006
3007 if (sdkp->lbpme == 0)
3008 return;
3009
3010 buffer = kmalloc(vpd_len, GFP_KERNEL);
3011
3012 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3013 goto out;
3014
3015 sdkp->lbpvpd = 1;
3016 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
3017 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
3018 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
3019
3020 out:
3021 kfree(buffer);
3022}
3023
3024static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3025{
3026 struct scsi_device *sdev = sdkp->device;
3027
3028 if (sdev->host->no_write_same) {
3029 sdev->no_write_same = 1;
3030
3031 return;
3032 }
3033
3034 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3035 /* too large values might cause issues with arcmsr */
3036 int vpd_buf_len = 64;
3037
3038 sdev->no_report_opcodes = 1;
3039
3040 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3041 * CODES is unsupported and the device has an ATA
3042 * Information VPD page (SAT).
3043 */
3044 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3045 sdev->no_write_same = 1;
3046 }
3047
3048 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3049 sdkp->ws16 = 1;
3050
3051 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3052 sdkp->ws10 = 1;
3053}
3054
3055static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3056{
3057 struct scsi_device *sdev = sdkp->device;
3058
3059 if (!sdev->security_supported)
3060 return;
3061
3062 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3063 SECURITY_PROTOCOL_IN) == 1 &&
3064 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3065 SECURITY_PROTOCOL_OUT) == 1)
3066 sdkp->security = 1;
3067}
3068
3069/*
3070 * Determine the device's preferred I/O size for reads and writes
3071 * unless the reported value is unreasonably small, large, not a
3072 * multiple of the physical block size, or simply garbage.
3073 */
3074static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3075 unsigned int dev_max)
3076{
3077 struct scsi_device *sdp = sdkp->device;
3078 unsigned int opt_xfer_bytes =
3079 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3080
3081 if (sdkp->opt_xfer_blocks == 0)
3082 return false;
3083
3084 if (sdkp->opt_xfer_blocks > dev_max) {
3085 sd_first_printk(KERN_WARNING, sdkp,
3086 "Optimal transfer size %u logical blocks " \
3087 "> dev_max (%u logical blocks)\n",
3088 sdkp->opt_xfer_blocks, dev_max);
3089 return false;
3090 }
3091
3092 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3093 sd_first_printk(KERN_WARNING, sdkp,
3094 "Optimal transfer size %u logical blocks " \
3095 "> sd driver limit (%u logical blocks)\n",
3096 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3097 return false;
3098 }
3099
3100 if (opt_xfer_bytes < PAGE_SIZE) {
3101 sd_first_printk(KERN_WARNING, sdkp,
3102 "Optimal transfer size %u bytes < " \
3103 "PAGE_SIZE (%u bytes)\n",
3104 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3105 return false;
3106 }
3107
3108 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3109 sd_first_printk(KERN_WARNING, sdkp,
3110 "Optimal transfer size %u bytes not a " \
3111 "multiple of physical block size (%u bytes)\n",
3112 opt_xfer_bytes, sdkp->physical_block_size);
3113 return false;
3114 }
3115
3116 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3117 opt_xfer_bytes);
3118 return true;
3119}
3120
3121/**
3122 * sd_revalidate_disk - called the first time a new disk is seen,
3123 * performs disk spin up, read_capacity, etc.
3124 * @disk: struct gendisk we care about
3125 **/
3126static int sd_revalidate_disk(struct gendisk *disk)
3127{
3128 struct scsi_disk *sdkp = scsi_disk(disk);
3129 struct scsi_device *sdp = sdkp->device;
3130 struct request_queue *q = sdkp->disk->queue;
3131 sector_t old_capacity = sdkp->capacity;
3132 unsigned char *buffer;
3133 unsigned int dev_max, rw_max;
3134
3135 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3136 "sd_revalidate_disk\n"));
3137
3138 /*
3139 * If the device is offline, don't try and read capacity or any
3140 * of the other niceties.
3141 */
3142 if (!scsi_device_online(sdp))
3143 goto out;
3144
3145 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3146 if (!buffer) {
3147 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3148 "allocation failure.\n");
3149 goto out;
3150 }
3151
3152 sd_spinup_disk(sdkp);
3153
3154 /*
3155 * Without media there is no reason to ask; moreover, some devices
3156 * react badly if we do.
3157 */
3158 if (sdkp->media_present) {
3159 sd_read_capacity(sdkp, buffer);
3160
3161 /*
3162 * set the default to rotational. All non-rotational devices
3163 * support the block characteristics VPD page, which will
3164 * cause this to be updated correctly and any device which
3165 * doesn't support it should be treated as rotational.
3166 */
3167 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3168 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3169
3170 if (scsi_device_supports_vpd(sdp)) {
3171 sd_read_block_provisioning(sdkp);
3172 sd_read_block_limits(sdkp);
3173 sd_read_block_characteristics(sdkp);
3174 sd_zbc_read_zones(sdkp, buffer);
3175 }
3176
3177 sd_print_capacity(sdkp, old_capacity);
3178
3179 sd_read_write_protect_flag(sdkp, buffer);
3180 sd_read_cache_type(sdkp, buffer);
3181 sd_read_app_tag_own(sdkp, buffer);
3182 sd_read_write_same(sdkp, buffer);
3183 sd_read_security(sdkp, buffer);
3184 }
3185
3186 /*
3187 * We now have all cache related info, determine how we deal
3188 * with flush requests.
3189 */
3190 sd_set_flush_flag(sdkp);
3191
3192 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3193 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3194
3195 /* Some devices report a maximum block count for READ/WRITE requests. */
3196 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3197 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3198
3199 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3200 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3201 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3202 } else {
3203 q->limits.io_opt = 0;
3204 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3205 (sector_t)BLK_DEF_MAX_SECTORS);
3206 }
3207
3208 /* Do not exceed controller limit */
3209 rw_max = min(rw_max, queue_max_hw_sectors(q));
3210
3211 /*
3212 * Only update max_sectors if previously unset or if the current value
3213 * exceeds the capabilities of the hardware.
3214 */
3215 if (sdkp->first_scan ||
3216 q->limits.max_sectors > q->limits.max_dev_sectors ||
3217 q->limits.max_sectors > q->limits.max_hw_sectors)
3218 q->limits.max_sectors = rw_max;
3219
3220 sdkp->first_scan = 0;
3221
3222 set_capacity_revalidate_and_notify(disk,
3223 logical_to_sectors(sdp, sdkp->capacity), false);
3224 sd_config_write_same(sdkp);
3225 kfree(buffer);
3226
3227 /*
3228 * For a zoned drive, revalidating the zones can be done only once
3229 * the gendisk capacity is set. So if this fails, set back the gendisk
3230 * capacity to 0.
3231 */
3232 if (sd_zbc_revalidate_zones(sdkp))
3233 set_capacity_revalidate_and_notify(disk, 0, false);
3234
3235 out:
3236 return 0;
3237}
3238
3239/**
3240 * sd_unlock_native_capacity - unlock native capacity
3241 * @disk: struct gendisk to set capacity for
3242 *
3243 * Block layer calls this function if it detects that partitions
3244 * on @disk reach beyond the end of the device. If the SCSI host
3245 * implements ->unlock_native_capacity() method, it's invoked to
3246 * give it a chance to adjust the device capacity.
3247 *
3248 * CONTEXT:
3249 * Defined by block layer. Might sleep.
3250 */
3251static void sd_unlock_native_capacity(struct gendisk *disk)
3252{
3253 struct scsi_device *sdev = scsi_disk(disk)->device;
3254
3255 if (sdev->host->hostt->unlock_native_capacity)
3256 sdev->host->hostt->unlock_native_capacity(sdev);
3257}
3258
3259/**
3260 * sd_format_disk_name - format disk name
3261 * @prefix: name prefix - ie. "sd" for SCSI disks
3262 * @index: index of the disk to format name for
3263 * @buf: output buffer
3264 * @buflen: length of the output buffer
3265 *
3266 * SCSI disk names starts at sda. The 26th device is sdz and the
3267 * 27th is sdaa. The last one for two lettered suffix is sdzz
3268 * which is followed by sdaaa.
3269 *
3270 * This is basically 26 base counting with one extra 'nil' entry
3271 * at the beginning from the second digit on and can be
3272 * determined using similar method as 26 base conversion with the
3273 * index shifted -1 after each digit is computed.
3274 *
3275 * CONTEXT:
3276 * Don't care.
3277 *
3278 * RETURNS:
3279 * 0 on success, -errno on failure.
3280 */
3281static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3282{
3283 const int base = 'z' - 'a' + 1;
3284 char *begin = buf + strlen(prefix);
3285 char *end = buf + buflen;
3286 char *p;
3287 int unit;
3288
3289 p = end - 1;
3290 *p = '\0';
3291 unit = base;
3292 do {
3293 if (p == begin)
3294 return -EINVAL;
3295 *--p = 'a' + (index % unit);
3296 index = (index / unit) - 1;
3297 } while (index >= 0);
3298
3299 memmove(begin, p, end - p);
3300 memcpy(buf, prefix, strlen(prefix));
3301
3302 return 0;
3303}
3304
3305/**
3306 * sd_probe - called during driver initialization and whenever a
3307 * new scsi device is attached to the system. It is called once
3308 * for each scsi device (not just disks) present.
3309 * @dev: pointer to device object
3310 *
3311 * Returns 0 if successful (or not interested in this scsi device
3312 * (e.g. scanner)); 1 when there is an error.
3313 *
3314 * Note: this function is invoked from the scsi mid-level.
3315 * This function sets up the mapping between a given
3316 * <host,channel,id,lun> (found in sdp) and new device name
3317 * (e.g. /dev/sda). More precisely it is the block device major
3318 * and minor number that is chosen here.
3319 *
3320 * Assume sd_probe is not re-entrant (for time being)
3321 * Also think about sd_probe() and sd_remove() running coincidentally.
3322 **/
3323static int sd_probe(struct device *dev)
3324{
3325 struct scsi_device *sdp = to_scsi_device(dev);
3326 struct scsi_disk *sdkp;
3327 struct gendisk *gd;
3328 int index;
3329 int error;
3330
3331 scsi_autopm_get_device(sdp);
3332 error = -ENODEV;
3333 if (sdp->type != TYPE_DISK &&
3334 sdp->type != TYPE_ZBC &&
3335 sdp->type != TYPE_MOD &&
3336 sdp->type != TYPE_RBC)
3337 goto out;
3338
3339#ifndef CONFIG_BLK_DEV_ZONED
3340 if (sdp->type == TYPE_ZBC)
3341 goto out;
3342#endif
3343 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3344 "sd_probe\n"));
3345
3346 error = -ENOMEM;
3347 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3348 if (!sdkp)
3349 goto out;
3350
3351 gd = alloc_disk(SD_MINORS);
3352 if (!gd)
3353 goto out_free;
3354
3355 index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3356 if (index < 0) {
3357 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3358 goto out_put;
3359 }
3360
3361 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3362 if (error) {
3363 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3364 goto out_free_index;
3365 }
3366
3367 sdkp->device = sdp;
3368 sdkp->driver = &sd_template;
3369 sdkp->disk = gd;
3370 sdkp->index = index;
3371 atomic_set(&sdkp->openers, 0);
3372 atomic_set(&sdkp->device->ioerr_cnt, 0);
3373
3374 if (!sdp->request_queue->rq_timeout) {
3375 if (sdp->type != TYPE_MOD)
3376 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3377 else
3378 blk_queue_rq_timeout(sdp->request_queue,
3379 SD_MOD_TIMEOUT);
3380 }
3381
3382 device_initialize(&sdkp->dev);
3383 sdkp->dev.parent = dev;
3384 sdkp->dev.class = &sd_disk_class;
3385 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3386
3387 error = device_add(&sdkp->dev);
3388 if (error)
3389 goto out_free_index;
3390
3391 get_device(dev);
3392 dev_set_drvdata(dev, sdkp);
3393
3394 gd->major = sd_major((index & 0xf0) >> 4);
3395 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3396
3397 gd->fops = &sd_fops;
3398 gd->private_data = &sdkp->driver;
3399 gd->queue = sdkp->device->request_queue;
3400
3401 /* defaults, until the device tells us otherwise */
3402 sdp->sector_size = 512;
3403 sdkp->capacity = 0;
3404 sdkp->media_present = 1;
3405 sdkp->write_prot = 0;
3406 sdkp->cache_override = 0;
3407 sdkp->WCE = 0;
3408 sdkp->RCD = 0;
3409 sdkp->ATO = 0;
3410 sdkp->first_scan = 1;
3411 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3412
3413 sd_revalidate_disk(gd);
3414
3415 gd->flags = GENHD_FL_EXT_DEVT;
3416 if (sdp->removable) {
3417 gd->flags |= GENHD_FL_REMOVABLE;
3418 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3419 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3420 }
3421
3422 blk_pm_runtime_init(sdp->request_queue, dev);
3423 if (sdp->rpm_autosuspend) {
3424 pm_runtime_set_autosuspend_delay(dev,
3425 sdp->host->hostt->rpm_autosuspend_delay);
3426 }
3427 device_add_disk(dev, gd, NULL);
3428 if (sdkp->capacity)
3429 sd_dif_config_host(sdkp);
3430
3431 sd_revalidate_disk(gd);
3432
3433 if (sdkp->security) {
3434 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3435 if (sdkp->opal_dev)
3436 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3437 }
3438
3439 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3440 sdp->removable ? "removable " : "");
3441 scsi_autopm_put_device(sdp);
3442
3443 return 0;
3444
3445 out_free_index:
3446 ida_free(&sd_index_ida, index);
3447 out_put:
3448 put_disk(gd);
3449 out_free:
3450 sd_zbc_release_disk(sdkp);
3451 kfree(sdkp);
3452 out:
3453 scsi_autopm_put_device(sdp);
3454 return error;
3455}
3456
3457/**
3458 * sd_remove - called whenever a scsi disk (previously recognized by
3459 * sd_probe) is detached from the system. It is called (potentially
3460 * multiple times) during sd module unload.
3461 * @dev: pointer to device object
3462 *
3463 * Note: this function is invoked from the scsi mid-level.
3464 * This function potentially frees up a device name (e.g. /dev/sdc)
3465 * that could be re-used by a subsequent sd_probe().
3466 * This function is not called when the built-in sd driver is "exit-ed".
3467 **/
3468static int sd_remove(struct device *dev)
3469{
3470 struct scsi_disk *sdkp;
3471 dev_t devt;
3472
3473 sdkp = dev_get_drvdata(dev);
3474 devt = disk_devt(sdkp->disk);
3475 scsi_autopm_get_device(sdkp->device);
3476
3477 async_synchronize_full_domain(&scsi_sd_pm_domain);
3478 device_del(&sdkp->dev);
3479 del_gendisk(sdkp->disk);
3480 sd_shutdown(dev);
3481
3482 free_opal_dev(sdkp->opal_dev);
3483
3484 blk_register_region(devt, SD_MINORS, NULL,
3485 sd_default_probe, NULL, NULL);
3486
3487 mutex_lock(&sd_ref_mutex);
3488 dev_set_drvdata(dev, NULL);
3489 put_device(&sdkp->dev);
3490 mutex_unlock(&sd_ref_mutex);
3491
3492 return 0;
3493}
3494
3495/**
3496 * scsi_disk_release - Called to free the scsi_disk structure
3497 * @dev: pointer to embedded class device
3498 *
3499 * sd_ref_mutex must be held entering this routine. Because it is
3500 * called on last put, you should always use the scsi_disk_get()
3501 * scsi_disk_put() helpers which manipulate the semaphore directly
3502 * and never do a direct put_device.
3503 **/
3504static void scsi_disk_release(struct device *dev)
3505{
3506 struct scsi_disk *sdkp = to_scsi_disk(dev);
3507 struct gendisk *disk = sdkp->disk;
3508 struct request_queue *q = disk->queue;
3509
3510 ida_free(&sd_index_ida, sdkp->index);
3511
3512 /*
3513 * Wait until all requests that are in progress have completed.
3514 * This is necessary to avoid that e.g. scsi_end_request() crashes
3515 * due to clearing the disk->private_data pointer. Wait from inside
3516 * scsi_disk_release() instead of from sd_release() to avoid that
3517 * freezing and unfreezing the request queue affects user space I/O
3518 * in case multiple processes open a /dev/sd... node concurrently.
3519 */
3520 blk_mq_freeze_queue(q);
3521 blk_mq_unfreeze_queue(q);
3522
3523 disk->private_data = NULL;
3524 put_disk(disk);
3525 put_device(&sdkp->device->sdev_gendev);
3526
3527 sd_zbc_release_disk(sdkp);
3528
3529 kfree(sdkp);
3530}
3531
3532static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3533{
3534 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3535 struct scsi_sense_hdr sshdr;
3536 struct scsi_device *sdp = sdkp->device;
3537 int res;
3538
3539 if (start)
3540 cmd[4] |= 1; /* START */
3541
3542 if (sdp->start_stop_pwr_cond)
3543 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3544
3545 if (!scsi_device_online(sdp))
3546 return -ENODEV;
3547
3548 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3549 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3550 if (res) {
3551 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3552 if (driver_byte(res) == DRIVER_SENSE)
3553 sd_print_sense_hdr(sdkp, &sshdr);
3554 if (scsi_sense_valid(&sshdr) &&
3555 /* 0x3a is medium not present */
3556 sshdr.asc == 0x3a)
3557 res = 0;
3558 }
3559
3560 /* SCSI error codes must not go to the generic layer */
3561 if (res)
3562 return -EIO;
3563
3564 return 0;
3565}
3566
3567/*
3568 * Send a SYNCHRONIZE CACHE instruction down to the device through
3569 * the normal SCSI command structure. Wait for the command to
3570 * complete.
3571 */
3572static void sd_shutdown(struct device *dev)
3573{
3574 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3575
3576 if (!sdkp)
3577 return; /* this can happen */
3578
3579 if (pm_runtime_suspended(dev))
3580 return;
3581
3582 if (sdkp->WCE && sdkp->media_present) {
3583 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3584 sd_sync_cache(sdkp, NULL);
3585 }
3586
3587 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3588 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3589 sd_start_stop_device(sdkp, 0);
3590 }
3591}
3592
3593static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3594{
3595 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3596 struct scsi_sense_hdr sshdr;
3597 int ret = 0;
3598
3599 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3600 return 0;
3601
3602 if (sdkp->WCE && sdkp->media_present) {
3603 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3604 ret = sd_sync_cache(sdkp, &sshdr);
3605
3606 if (ret) {
3607 /* ignore OFFLINE device */
3608 if (ret == -ENODEV)
3609 return 0;
3610
3611 if (!scsi_sense_valid(&sshdr) ||
3612 sshdr.sense_key != ILLEGAL_REQUEST)
3613 return ret;
3614
3615 /*
3616 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3617 * doesn't support sync. There's not much to do and
3618 * suspend shouldn't fail.
3619 */
3620 ret = 0;
3621 }
3622 }
3623
3624 if (sdkp->device->manage_start_stop) {
3625 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3626 /* an error is not worth aborting a system sleep */
3627 ret = sd_start_stop_device(sdkp, 0);
3628 if (ignore_stop_errors)
3629 ret = 0;
3630 }
3631
3632 return ret;
3633}
3634
3635static int sd_suspend_system(struct device *dev)
3636{
3637 return sd_suspend_common(dev, true);
3638}
3639
3640static int sd_suspend_runtime(struct device *dev)
3641{
3642 return sd_suspend_common(dev, false);
3643}
3644
3645static int sd_resume(struct device *dev)
3646{
3647 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3648 int ret;
3649
3650 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3651 return 0;
3652
3653 if (!sdkp->device->manage_start_stop)
3654 return 0;
3655
3656 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3657 ret = sd_start_stop_device(sdkp, 1);
3658 if (!ret)
3659 opal_unlock_from_suspend(sdkp->opal_dev);
3660 return ret;
3661}
3662
3663/**
3664 * init_sd - entry point for this driver (both when built in or when
3665 * a module).
3666 *
3667 * Note: this function registers this driver with the scsi mid-level.
3668 **/
3669static int __init init_sd(void)
3670{
3671 int majors = 0, i, err;
3672
3673 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3674
3675 for (i = 0; i < SD_MAJORS; i++) {
3676 if (register_blkdev(sd_major(i), "sd") != 0)
3677 continue;
3678 majors++;
3679 blk_register_region(sd_major(i), SD_MINORS, NULL,
3680 sd_default_probe, NULL, NULL);
3681 }
3682
3683 if (!majors)
3684 return -ENODEV;
3685
3686 err = class_register(&sd_disk_class);
3687 if (err)
3688 goto err_out;
3689
3690 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3691 0, 0, NULL);
3692 if (!sd_cdb_cache) {
3693 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3694 err = -ENOMEM;
3695 goto err_out_class;
3696 }
3697
3698 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3699 if (!sd_cdb_pool) {
3700 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3701 err = -ENOMEM;
3702 goto err_out_cache;
3703 }
3704
3705 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3706 if (!sd_page_pool) {
3707 printk(KERN_ERR "sd: can't init discard page pool\n");
3708 err = -ENOMEM;
3709 goto err_out_ppool;
3710 }
3711
3712 err = scsi_register_driver(&sd_template.gendrv);
3713 if (err)
3714 goto err_out_driver;
3715
3716 return 0;
3717
3718err_out_driver:
3719 mempool_destroy(sd_page_pool);
3720
3721err_out_ppool:
3722 mempool_destroy(sd_cdb_pool);
3723
3724err_out_cache:
3725 kmem_cache_destroy(sd_cdb_cache);
3726
3727err_out_class:
3728 class_unregister(&sd_disk_class);
3729err_out:
3730 for (i = 0; i < SD_MAJORS; i++)
3731 unregister_blkdev(sd_major(i), "sd");
3732 return err;
3733}
3734
3735/**
3736 * exit_sd - exit point for this driver (when it is a module).
3737 *
3738 * Note: this function unregisters this driver from the scsi mid-level.
3739 **/
3740static void __exit exit_sd(void)
3741{
3742 int i;
3743
3744 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3745
3746 scsi_unregister_driver(&sd_template.gendrv);
3747 mempool_destroy(sd_cdb_pool);
3748 mempool_destroy(sd_page_pool);
3749 kmem_cache_destroy(sd_cdb_cache);
3750
3751 class_unregister(&sd_disk_class);
3752
3753 for (i = 0; i < SD_MAJORS; i++) {
3754 blk_unregister_region(sd_major(i), SD_MINORS);
3755 unregister_blkdev(sd_major(i), "sd");
3756 }
3757}
3758
3759module_init(init_sd);
3760module_exit(exit_sd);
3761
3762void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3763{
3764 scsi_print_sense_hdr(sdkp->device,
3765 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3766}
3767
3768void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3769{
3770 const char *hb_string = scsi_hostbyte_string(result);
3771 const char *db_string = scsi_driverbyte_string(result);
3772
3773 if (hb_string || db_string)
3774 sd_printk(KERN_INFO, sdkp,
3775 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3776 hb_string ? hb_string : "invalid",
3777 db_string ? db_string : "invalid");
3778 else
3779 sd_printk(KERN_INFO, sdkp,
3780 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3781 msg, host_byte(result), driver_byte(result));
3782}