Linux Audio

Check our new training course

Loading...
v5.14.15
  1/* SPDX-License-Identifier: MIT */
  2/*
  3 * Copyright © 2020 Intel Corporation
  4 *
  5 * Please try to maintain the following order within this file unless it makes
  6 * sense to do otherwise. From top to bottom:
  7 * 1. typedefs
  8 * 2. #defines, and macros
  9 * 3. structure definitions
 10 * 4. function prototypes
 11 *
 12 * Within each section, please try to order by generation in ascending order,
 13 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
 14 */
 15
 16#ifndef __INTEL_GTT_H__
 17#define __INTEL_GTT_H__
 18
 19#include <linux/io-mapping.h>
 20#include <linux/kref.h>
 21#include <linux/mm.h>
 22#include <linux/pagevec.h>
 23#include <linux/scatterlist.h>
 24#include <linux/workqueue.h>
 25
 26#include <drm/drm_mm.h>
 27
 28#include "gt/intel_reset.h"
 29#include "i915_selftest.h"
 30#include "i915_vma_types.h"
 31
 32#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
 33
 34#if IS_ENABLED(CONFIG_DRM_I915_TRACE_GTT)
 35#define DBG(...) trace_printk(__VA_ARGS__)
 36#else
 37#define DBG(...)
 38#endif
 39
 40#define NALLOC 3 /* 1 normal, 1 for concurrent threads, 1 for preallocation */
 41
 42#define I915_GTT_PAGE_SIZE_4K	BIT_ULL(12)
 43#define I915_GTT_PAGE_SIZE_64K	BIT_ULL(16)
 44#define I915_GTT_PAGE_SIZE_2M	BIT_ULL(21)
 45
 46#define I915_GTT_PAGE_SIZE I915_GTT_PAGE_SIZE_4K
 47#define I915_GTT_MAX_PAGE_SIZE I915_GTT_PAGE_SIZE_2M
 48
 49#define I915_GTT_PAGE_MASK -I915_GTT_PAGE_SIZE
 50
 51#define I915_GTT_MIN_ALIGNMENT I915_GTT_PAGE_SIZE
 52
 53#define I915_FENCE_REG_NONE -1
 54#define I915_MAX_NUM_FENCES 32
 55/* 32 fences + sign bit for FENCE_REG_NONE */
 56#define I915_MAX_NUM_FENCE_BITS 6
 57
 58typedef u32 gen6_pte_t;
 59typedef u64 gen8_pte_t;
 60
 61#define ggtt_total_entries(ggtt) ((ggtt)->vm.total >> PAGE_SHIFT)
 62
 63#define I915_PTES(pte_len)		((unsigned int)(PAGE_SIZE / (pte_len)))
 64#define I915_PTE_MASK(pte_len)		(I915_PTES(pte_len) - 1)
 65#define I915_PDES			512
 66#define I915_PDE_MASK			(I915_PDES - 1)
 67
 68/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
 69#define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
 70#define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
 71#define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
 72#define GEN6_PTE_CACHE_LLC		(2 << 1)
 73#define GEN6_PTE_UNCACHED		(1 << 1)
 74#define GEN6_PTE_VALID			REG_BIT(0)
 75
 76#define GEN6_PTES			I915_PTES(sizeof(gen6_pte_t))
 77#define GEN6_PD_SIZE		        (I915_PDES * PAGE_SIZE)
 78#define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
 79#define GEN6_PDE_SHIFT			22
 80#define GEN6_PDE_VALID			REG_BIT(0)
 81#define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
 82
 83#define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
 84
 85#define BYT_PTE_SNOOPED_BY_CPU_CACHES	REG_BIT(2)
 86#define BYT_PTE_WRITEABLE		REG_BIT(1)
 87
 88#define GEN12_PPGTT_PTE_LM	BIT_ULL(11)
 89
 90#define GEN12_GGTT_PTE_LM	BIT_ULL(1)
 91
 92/*
 93 * Cacheability Control is a 4-bit value. The low three bits are stored in bits
 94 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
 95 */
 96#define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
 97					 (((bits) & 0x8) << (11 - 3)))
 98#define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
 99#define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
100#define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
101#define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
102#define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
103#define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
104#define HSW_PTE_UNCACHED		(0)
105#define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
106#define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
107
108/*
109 * GEN8 32b style address is defined as a 3 level page table:
110 * 31:30 | 29:21 | 20:12 |  11:0
111 * PDPE  |  PDE  |  PTE  | offset
112 * The difference as compared to normal x86 3 level page table is the PDPEs are
113 * programmed via register.
114 *
115 * GEN8 48b style address is defined as a 4 level page table:
116 * 47:39 | 38:30 | 29:21 | 20:12 |  11:0
117 * PML4E | PDPE  |  PDE  |  PTE  | offset
118 */
119#define GEN8_3LVL_PDPES			4
120
121#define PPAT_UNCACHED			(_PAGE_PWT | _PAGE_PCD)
122#define PPAT_CACHED_PDE			0 /* WB LLC */
123#define PPAT_CACHED			_PAGE_PAT /* WB LLCeLLC */
124#define PPAT_DISPLAY_ELLC		_PAGE_PCD /* WT eLLC */
125
126#define CHV_PPAT_SNOOP			REG_BIT(6)
127#define GEN8_PPAT_AGE(x)		((x)<<4)
128#define GEN8_PPAT_LLCeLLC		(3<<2)
129#define GEN8_PPAT_LLCELLC		(2<<2)
130#define GEN8_PPAT_LLC			(1<<2)
131#define GEN8_PPAT_WB			(3<<0)
132#define GEN8_PPAT_WT			(2<<0)
133#define GEN8_PPAT_WC			(1<<0)
134#define GEN8_PPAT_UC			(0<<0)
135#define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
136#define GEN8_PPAT(i, x)			((u64)(x) << ((i) * 8))
137
138#define GEN8_PDE_IPS_64K BIT(11)
139#define GEN8_PDE_PS_2M   BIT(7)
140
141enum i915_cache_level;
142
143struct drm_i915_file_private;
144struct drm_i915_gem_object;
145struct i915_fence_reg;
146struct i915_vma;
147struct intel_gt;
148
149#define for_each_sgt_daddr(__dp, __iter, __sgt) \
150	__for_each_sgt_daddr(__dp, __iter, __sgt, I915_GTT_PAGE_SIZE)
151
152struct i915_page_table {
153	struct drm_i915_gem_object *base;
154	union {
155		atomic_t used;
156		struct i915_page_table *stash;
 
 
 
 
 
157	};
158};
159
 
 
 
 
 
 
 
 
 
 
160struct i915_page_directory {
161	struct i915_page_table pt;
162	spinlock_t lock;
163	void **entry;
164};
165
166#define __px_choose_expr(x, type, expr, other) \
167	__builtin_choose_expr( \
168	__builtin_types_compatible_p(typeof(x), type) || \
169	__builtin_types_compatible_p(typeof(x), const type), \
170	({ type __x = (type)(x); expr; }), \
171	other)
172
173#define px_base(px) \
174	__px_choose_expr(px, struct drm_i915_gem_object *, __x, \
175	__px_choose_expr(px, struct i915_page_table *, __x->base, \
176	__px_choose_expr(px, struct i915_page_directory *, __x->pt.base, \
177	(void)0)))
178
179struct page *__px_page(struct drm_i915_gem_object *p);
180dma_addr_t __px_dma(struct drm_i915_gem_object *p);
181#define px_dma(px) (__px_dma(px_base(px)))
182
183void *__px_vaddr(struct drm_i915_gem_object *p);
184#define px_vaddr(px) (__px_vaddr(px_base(px)))
185
186#define px_pt(px) \
187	__px_choose_expr(px, struct i915_page_table *, __x, \
188	__px_choose_expr(px, struct i915_page_directory *, &__x->pt, \
189	(void)0))
190#define px_used(px) (&px_pt(px)->used)
191
192struct i915_vm_pt_stash {
193	/* preallocated chains of page tables/directories */
194	struct i915_page_table *pt[2];
195};
 
 
196
197struct i915_vma_ops {
198	/* Map an object into an address space with the given cache flags. */
199	void (*bind_vma)(struct i915_address_space *vm,
200			 struct i915_vm_pt_stash *stash,
201			 struct i915_vma *vma,
202			 enum i915_cache_level cache_level,
203			 u32 flags);
204	/*
205	 * Unmap an object from an address space. This usually consists of
206	 * setting the valid PTE entries to a reserved scratch page.
207	 */
208	void (*unbind_vma)(struct i915_address_space *vm,
209			   struct i915_vma *vma);
210
211	int (*set_pages)(struct i915_vma *vma);
212	void (*clear_pages)(struct i915_vma *vma);
213};
214
 
 
 
 
 
 
 
215struct i915_address_space {
216	struct kref ref;
217	struct rcu_work rcu;
218
219	struct drm_mm mm;
220	struct intel_gt *gt;
221	struct drm_i915_private *i915;
222	struct device *dma;
223	/*
224	 * Every address space belongs to a struct file - except for the global
225	 * GTT that is owned by the driver (and so @file is set to NULL). In
226	 * principle, no information should leak from one context to another
227	 * (or between files/processes etc) unless explicitly shared by the
228	 * owner. Tracking the owner is important in order to free up per-file
229	 * objects along with the file, to aide resource tracking, and to
230	 * assign blame.
231	 */
232	struct drm_i915_file_private *file;
233	u64 total;		/* size addr space maps (ex. 2GB for ggtt) */
234	u64 reserved;		/* size addr space reserved */
235
236	unsigned int bind_async_flags;
237
238	/*
239	 * Each active user context has its own address space (in full-ppgtt).
240	 * Since the vm may be shared between multiple contexts, we count how
241	 * many contexts keep us "open". Once open hits zero, we are closed
242	 * and do not allow any new attachments, and proceed to shutdown our
243	 * vma and page directories.
244	 */
245	atomic_t open;
246
247	struct mutex mutex; /* protects vma and our lists */
248
249	struct kref resv_ref; /* kref to keep the reservation lock alive. */
250	struct dma_resv _resv; /* reservation lock for all pd objects, and buffer pool */
251#define VM_CLASS_GGTT 0
252#define VM_CLASS_PPGTT 1
253#define VM_CLASS_DPT 2
254
255	struct drm_i915_gem_object *scratch[4];
 
 
 
256	/**
257	 * List of vma currently bound.
258	 */
259	struct list_head bound_list;
260
 
 
261	/* Global GTT */
262	bool is_ggtt:1;
263
264	/* Display page table */
265	bool is_dpt:1;
266
267	/* Some systems support read-only mappings for GGTT and/or PPGTT */
268	bool has_read_only:1;
269
270	u8 top;
271	u8 pd_shift;
272	u8 scratch_order;
273
274	struct drm_i915_gem_object *
275		(*alloc_pt_dma)(struct i915_address_space *vm, int sz);
276
277	u64 (*pte_encode)(dma_addr_t addr,
278			  enum i915_cache_level level,
279			  u32 flags); /* Create a valid PTE */
280#define PTE_READ_ONLY	BIT(0)
281#define PTE_LM		BIT(1)
282
283	void (*allocate_va_range)(struct i915_address_space *vm,
284				  struct i915_vm_pt_stash *stash,
285				  u64 start, u64 length);
286	void (*clear_range)(struct i915_address_space *vm,
287			    u64 start, u64 length);
288	void (*insert_page)(struct i915_address_space *vm,
289			    dma_addr_t addr,
290			    u64 offset,
291			    enum i915_cache_level cache_level,
292			    u32 flags);
293	void (*insert_entries)(struct i915_address_space *vm,
294			       struct i915_vma *vma,
295			       enum i915_cache_level cache_level,
296			       u32 flags);
297	void (*cleanup)(struct i915_address_space *vm);
298
299	struct i915_vma_ops vma_ops;
300
301	I915_SELFTEST_DECLARE(struct fault_attr fault_attr);
302	I915_SELFTEST_DECLARE(bool scrub_64K);
303};
304
305/*
306 * The Graphics Translation Table is the way in which GEN hardware translates a
307 * Graphics Virtual Address into a Physical Address. In addition to the normal
308 * collateral associated with any va->pa translations GEN hardware also has a
309 * portion of the GTT which can be mapped by the CPU and remain both coherent
310 * and correct (in cases like swizzling). That region is referred to as GMADR in
311 * the spec.
312 */
313struct i915_ggtt {
314	struct i915_address_space vm;
315
316	struct io_mapping iomap;	/* Mapping to our CPU mappable region */
317	struct resource gmadr;          /* GMADR resource */
318	resource_size_t mappable_end;	/* End offset that we can CPU map */
319
320	/** "Graphics Stolen Memory" holds the global PTEs */
321	void __iomem *gsm;
322	void (*invalidate)(struct i915_ggtt *ggtt);
323
324	/** PPGTT used for aliasing the PPGTT with the GTT */
325	struct i915_ppgtt *alias;
326
327	bool do_idle_maps;
328
329	int mtrr;
330
331	/** Bit 6 swizzling required for X tiling */
332	u32 bit_6_swizzle_x;
333	/** Bit 6 swizzling required for Y tiling */
334	u32 bit_6_swizzle_y;
335
336	u32 pin_bias;
337
338	unsigned int num_fences;
339	struct i915_fence_reg *fence_regs;
340	struct list_head fence_list;
341
342	/**
343	 * List of all objects in gtt_space, currently mmaped by userspace.
344	 * All objects within this list must also be on bound_list.
345	 */
346	struct list_head userfault_list;
347
348	/* Manual runtime pm autosuspend delay for user GGTT mmaps */
349	struct intel_wakeref_auto userfault_wakeref;
350
351	struct mutex error_mutex;
352	struct drm_mm_node error_capture;
353	struct drm_mm_node uc_fw;
354};
355
356struct i915_ppgtt {
357	struct i915_address_space vm;
358
359	struct i915_page_directory *pd;
360};
361
362#define i915_is_ggtt(vm) ((vm)->is_ggtt)
363#define i915_is_dpt(vm) ((vm)->is_dpt)
364#define i915_is_ggtt_or_dpt(vm) (i915_is_ggtt(vm) || i915_is_dpt(vm))
365
366int __must_check
367i915_vm_lock_objects(struct i915_address_space *vm, struct i915_gem_ww_ctx *ww);
368
369static inline bool
370i915_vm_is_4lvl(const struct i915_address_space *vm)
371{
372	return (vm->total - 1) >> 32;
373}
374
375static inline bool
376i915_vm_has_scratch_64K(struct i915_address_space *vm)
377{
378	return vm->scratch_order == get_order(I915_GTT_PAGE_SIZE_64K);
379}
380
381static inline bool
382i915_vm_has_cache_coloring(struct i915_address_space *vm)
383{
384	return i915_is_ggtt(vm) && vm->mm.color_adjust;
385}
386
387static inline struct i915_ggtt *
388i915_vm_to_ggtt(struct i915_address_space *vm)
389{
390	BUILD_BUG_ON(offsetof(struct i915_ggtt, vm));
391	GEM_BUG_ON(!i915_is_ggtt(vm));
392	return container_of(vm, struct i915_ggtt, vm);
393}
394
395static inline struct i915_ppgtt *
396i915_vm_to_ppgtt(struct i915_address_space *vm)
397{
398	BUILD_BUG_ON(offsetof(struct i915_ppgtt, vm));
399	GEM_BUG_ON(i915_is_ggtt_or_dpt(vm));
400	return container_of(vm, struct i915_ppgtt, vm);
401}
402
403static inline struct i915_address_space *
404i915_vm_get(struct i915_address_space *vm)
405{
406	kref_get(&vm->ref);
407	return vm;
408}
409
410/**
411 * i915_vm_resv_get - Obtain a reference on the vm's reservation lock
412 * @vm: The vm whose reservation lock we want to share.
413 *
414 * Return: A pointer to the vm's reservation lock.
415 */
416static inline struct dma_resv *i915_vm_resv_get(struct i915_address_space *vm)
417{
418	kref_get(&vm->resv_ref);
419	return &vm->_resv;
420}
421
422void i915_vm_release(struct kref *kref);
423
424void i915_vm_resv_release(struct kref *kref);
425
426static inline void i915_vm_put(struct i915_address_space *vm)
427{
428	kref_put(&vm->ref, i915_vm_release);
429}
430
431/**
432 * i915_vm_resv_put - Release a reference on the vm's reservation lock
433 * @resv: Pointer to a reservation lock obtained from i915_vm_resv_get()
434 */
435static inline void i915_vm_resv_put(struct i915_address_space *vm)
436{
437	kref_put(&vm->resv_ref, i915_vm_resv_release);
438}
439
440static inline struct i915_address_space *
441i915_vm_open(struct i915_address_space *vm)
442{
443	GEM_BUG_ON(!atomic_read(&vm->open));
444	atomic_inc(&vm->open);
445	return i915_vm_get(vm);
446}
447
448static inline bool
449i915_vm_tryopen(struct i915_address_space *vm)
450{
451	if (atomic_add_unless(&vm->open, 1, 0))
452		return i915_vm_get(vm);
453
454	return false;
455}
456
457void __i915_vm_close(struct i915_address_space *vm);
458
459static inline void
460i915_vm_close(struct i915_address_space *vm)
461{
462	GEM_BUG_ON(!atomic_read(&vm->open));
463	__i915_vm_close(vm);
464
465	i915_vm_put(vm);
466}
467
468void i915_address_space_init(struct i915_address_space *vm, int subclass);
469void i915_address_space_fini(struct i915_address_space *vm);
470
471static inline u32 i915_pte_index(u64 address, unsigned int pde_shift)
472{
473	const u32 mask = NUM_PTE(pde_shift) - 1;
474
475	return (address >> PAGE_SHIFT) & mask;
476}
477
478/*
479 * Helper to counts the number of PTEs within the given length. This count
480 * does not cross a page table boundary, so the max value would be
481 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
482 */
483static inline u32 i915_pte_count(u64 addr, u64 length, unsigned int pde_shift)
484{
485	const u64 mask = ~((1ULL << pde_shift) - 1);
486	u64 end;
487
488	GEM_BUG_ON(length == 0);
489	GEM_BUG_ON(offset_in_page(addr | length));
490
491	end = addr + length;
492
493	if ((addr & mask) != (end & mask))
494		return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
495
496	return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
497}
498
499static inline u32 i915_pde_index(u64 addr, u32 shift)
500{
501	return (addr >> shift) & I915_PDE_MASK;
502}
503
504static inline struct i915_page_table *
505i915_pt_entry(const struct i915_page_directory * const pd,
506	      const unsigned short n)
507{
508	return pd->entry[n];
509}
510
511static inline struct i915_page_directory *
512i915_pd_entry(const struct i915_page_directory * const pdp,
513	      const unsigned short n)
514{
515	return pdp->entry[n];
516}
517
518static inline dma_addr_t
519i915_page_dir_dma_addr(const struct i915_ppgtt *ppgtt, const unsigned int n)
520{
521	struct i915_page_table *pt = ppgtt->pd->entry[n];
522
523	return __px_dma(pt ? px_base(pt) : ppgtt->vm.scratch[ppgtt->vm.top]);
524}
525
526void ppgtt_init(struct i915_ppgtt *ppgtt, struct intel_gt *gt);
527
528int i915_ggtt_probe_hw(struct drm_i915_private *i915);
529int i915_ggtt_init_hw(struct drm_i915_private *i915);
530int i915_ggtt_enable_hw(struct drm_i915_private *i915);
531void i915_ggtt_enable_guc(struct i915_ggtt *ggtt);
532void i915_ggtt_disable_guc(struct i915_ggtt *ggtt);
533int i915_init_ggtt(struct drm_i915_private *i915);
534void i915_ggtt_driver_release(struct drm_i915_private *i915);
535void i915_ggtt_driver_late_release(struct drm_i915_private *i915);
536
537static inline bool i915_ggtt_has_aperture(const struct i915_ggtt *ggtt)
538{
539	return ggtt->mappable_end > 0;
540}
541
542int i915_ppgtt_init_hw(struct intel_gt *gt);
543
544struct i915_ppgtt *i915_ppgtt_create(struct intel_gt *gt);
545
546void i915_ggtt_suspend(struct i915_ggtt *gtt);
547void i915_ggtt_resume(struct i915_ggtt *ggtt);
548
 
 
 
 
 
549void
550fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count);
551
552#define fill_px(px, v) fill_page_dma(px_base(px), (v), PAGE_SIZE / sizeof(u64))
553#define fill32_px(px, v) do {						\
554	u64 v__ = lower_32_bits(v);					\
555	fill_px((px), v__ << 32 | v__);					\
556} while (0)
557
558int setup_scratch_page(struct i915_address_space *vm);
 
559void free_scratch(struct i915_address_space *vm);
560
561struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz);
562struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz);
563struct i915_page_table *alloc_pt(struct i915_address_space *vm);
564struct i915_page_directory *alloc_pd(struct i915_address_space *vm);
565struct i915_page_directory *__alloc_pd(int npde);
566
567int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj);
568int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj);
569
570void free_px(struct i915_address_space *vm,
571	     struct i915_page_table *pt, int lvl);
572#define free_pt(vm, px) free_px(vm, px, 0)
573#define free_pd(vm, px) free_px(vm, px_pt(px), 1)
574
575void
576__set_pd_entry(struct i915_page_directory * const pd,
577	       const unsigned short idx,
578	       struct i915_page_table *pt,
579	       u64 (*encode)(const dma_addr_t, const enum i915_cache_level));
580
581#define set_pd_entry(pd, idx, to) \
582	__set_pd_entry((pd), (idx), px_pt(to), gen8_pde_encode)
583
584void
585clear_pd_entry(struct i915_page_directory * const pd,
586	       const unsigned short idx,
587	       const struct drm_i915_gem_object * const scratch);
588
589bool
590release_pd_entry(struct i915_page_directory * const pd,
591		 const unsigned short idx,
592		 struct i915_page_table * const pt,
593		 const struct drm_i915_gem_object * const scratch);
594void gen6_ggtt_invalidate(struct i915_ggtt *ggtt);
595
596int ggtt_set_pages(struct i915_vma *vma);
597int ppgtt_set_pages(struct i915_vma *vma);
598void clear_pages(struct i915_vma *vma);
599
600void ppgtt_bind_vma(struct i915_address_space *vm,
601		    struct i915_vm_pt_stash *stash,
602		    struct i915_vma *vma,
603		    enum i915_cache_level cache_level,
604		    u32 flags);
605void ppgtt_unbind_vma(struct i915_address_space *vm,
606		      struct i915_vma *vma);
607
608void gtt_write_workarounds(struct intel_gt *gt);
609
610void setup_private_pat(struct intel_uncore *uncore);
611
612int i915_vm_alloc_pt_stash(struct i915_address_space *vm,
613			   struct i915_vm_pt_stash *stash,
614			   u64 size);
615int i915_vm_map_pt_stash(struct i915_address_space *vm,
616			 struct i915_vm_pt_stash *stash);
617void i915_vm_free_pt_stash(struct i915_address_space *vm,
618			   struct i915_vm_pt_stash *stash);
619
620struct i915_vma *
621__vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size);
622
623struct i915_vma *
624__vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size);
625
626static inline struct sgt_dma {
627	struct scatterlist *sg;
628	dma_addr_t dma, max;
629} sgt_dma(struct i915_vma *vma) {
630	struct scatterlist *sg = vma->pages->sgl;
631	dma_addr_t addr = sg_dma_address(sg);
632
633	return (struct sgt_dma){ sg, addr, addr + sg_dma_len(sg) };
634}
635
636#endif
v5.9
  1/* SPDX-License-Identifier: MIT */
  2/*
  3 * Copyright © 2020 Intel Corporation
  4 *
  5 * Please try to maintain the following order within this file unless it makes
  6 * sense to do otherwise. From top to bottom:
  7 * 1. typedefs
  8 * 2. #defines, and macros
  9 * 3. structure definitions
 10 * 4. function prototypes
 11 *
 12 * Within each section, please try to order by generation in ascending order,
 13 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
 14 */
 15
 16#ifndef __INTEL_GTT_H__
 17#define __INTEL_GTT_H__
 18
 19#include <linux/io-mapping.h>
 20#include <linux/kref.h>
 21#include <linux/mm.h>
 22#include <linux/pagevec.h>
 23#include <linux/scatterlist.h>
 24#include <linux/workqueue.h>
 25
 26#include <drm/drm_mm.h>
 27
 28#include "gt/intel_reset.h"
 29#include "i915_selftest.h"
 30#include "i915_vma_types.h"
 31
 32#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
 33
 34#if IS_ENABLED(CONFIG_DRM_I915_TRACE_GTT)
 35#define DBG(...) trace_printk(__VA_ARGS__)
 36#else
 37#define DBG(...)
 38#endif
 39
 40#define NALLOC 3 /* 1 normal, 1 for concurrent threads, 1 for preallocation */
 41
 42#define I915_GTT_PAGE_SIZE_4K	BIT_ULL(12)
 43#define I915_GTT_PAGE_SIZE_64K	BIT_ULL(16)
 44#define I915_GTT_PAGE_SIZE_2M	BIT_ULL(21)
 45
 46#define I915_GTT_PAGE_SIZE I915_GTT_PAGE_SIZE_4K
 47#define I915_GTT_MAX_PAGE_SIZE I915_GTT_PAGE_SIZE_2M
 48
 49#define I915_GTT_PAGE_MASK -I915_GTT_PAGE_SIZE
 50
 51#define I915_GTT_MIN_ALIGNMENT I915_GTT_PAGE_SIZE
 52
 53#define I915_FENCE_REG_NONE -1
 54#define I915_MAX_NUM_FENCES 32
 55/* 32 fences + sign bit for FENCE_REG_NONE */
 56#define I915_MAX_NUM_FENCE_BITS 6
 57
 58typedef u32 gen6_pte_t;
 59typedef u64 gen8_pte_t;
 60
 61#define ggtt_total_entries(ggtt) ((ggtt)->vm.total >> PAGE_SHIFT)
 62
 63#define I915_PTES(pte_len)		((unsigned int)(PAGE_SIZE / (pte_len)))
 64#define I915_PTE_MASK(pte_len)		(I915_PTES(pte_len) - 1)
 65#define I915_PDES			512
 66#define I915_PDE_MASK			(I915_PDES - 1)
 67
 68/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
 69#define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
 70#define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
 71#define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
 72#define GEN6_PTE_CACHE_LLC		(2 << 1)
 73#define GEN6_PTE_UNCACHED		(1 << 1)
 74#define GEN6_PTE_VALID			REG_BIT(0)
 75
 76#define GEN6_PTES			I915_PTES(sizeof(gen6_pte_t))
 77#define GEN6_PD_SIZE		        (I915_PDES * PAGE_SIZE)
 78#define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
 79#define GEN6_PDE_SHIFT			22
 80#define GEN6_PDE_VALID			REG_BIT(0)
 81#define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
 82
 83#define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
 84
 85#define BYT_PTE_SNOOPED_BY_CPU_CACHES	REG_BIT(2)
 86#define BYT_PTE_WRITEABLE		REG_BIT(1)
 87
 
 
 
 
 88/*
 89 * Cacheability Control is a 4-bit value. The low three bits are stored in bits
 90 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
 91 */
 92#define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
 93					 (((bits) & 0x8) << (11 - 3)))
 94#define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
 95#define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
 96#define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
 97#define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
 98#define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
 99#define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
100#define HSW_PTE_UNCACHED		(0)
101#define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
102#define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
103
104/*
105 * GEN8 32b style address is defined as a 3 level page table:
106 * 31:30 | 29:21 | 20:12 |  11:0
107 * PDPE  |  PDE  |  PTE  | offset
108 * The difference as compared to normal x86 3 level page table is the PDPEs are
109 * programmed via register.
110 *
111 * GEN8 48b style address is defined as a 4 level page table:
112 * 47:39 | 38:30 | 29:21 | 20:12 |  11:0
113 * PML4E | PDPE  |  PDE  |  PTE  | offset
114 */
115#define GEN8_3LVL_PDPES			4
116
117#define PPAT_UNCACHED			(_PAGE_PWT | _PAGE_PCD)
118#define PPAT_CACHED_PDE			0 /* WB LLC */
119#define PPAT_CACHED			_PAGE_PAT /* WB LLCeLLC */
120#define PPAT_DISPLAY_ELLC		_PAGE_PCD /* WT eLLC */
121
122#define CHV_PPAT_SNOOP			REG_BIT(6)
123#define GEN8_PPAT_AGE(x)		((x)<<4)
124#define GEN8_PPAT_LLCeLLC		(3<<2)
125#define GEN8_PPAT_LLCELLC		(2<<2)
126#define GEN8_PPAT_LLC			(1<<2)
127#define GEN8_PPAT_WB			(3<<0)
128#define GEN8_PPAT_WT			(2<<0)
129#define GEN8_PPAT_WC			(1<<0)
130#define GEN8_PPAT_UC			(0<<0)
131#define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
132#define GEN8_PPAT(i, x)			((u64)(x) << ((i) * 8))
133
134#define GEN8_PDE_IPS_64K BIT(11)
135#define GEN8_PDE_PS_2M   BIT(7)
136
 
 
 
 
137struct i915_fence_reg;
 
 
138
139#define for_each_sgt_daddr(__dp, __iter, __sgt) \
140	__for_each_sgt_daddr(__dp, __iter, __sgt, I915_GTT_PAGE_SIZE)
141
142struct i915_page_dma {
143	struct page *page;
144	union {
145		dma_addr_t daddr;
146
147		/*
148		 * For gen6/gen7 only. This is the offset in the GGTT
149		 * where the page directory entries for PPGTT begin
150		 */
151		u32 ggtt_offset;
152	};
153};
154
155struct i915_page_scratch {
156	struct i915_page_dma base;
157	u64 encode;
158};
159
160struct i915_page_table {
161	struct i915_page_dma base;
162	atomic_t used;
163};
164
165struct i915_page_directory {
166	struct i915_page_table pt;
167	spinlock_t lock;
168	void *entry[512];
169};
170
171#define __px_choose_expr(x, type, expr, other) \
172	__builtin_choose_expr( \
173	__builtin_types_compatible_p(typeof(x), type) || \
174	__builtin_types_compatible_p(typeof(x), const type), \
175	({ type __x = (type)(x); expr; }), \
176	other)
177
178#define px_base(px) \
179	__px_choose_expr(px, struct i915_page_dma *, __x, \
180	__px_choose_expr(px, struct i915_page_scratch *, &__x->base, \
181	__px_choose_expr(px, struct i915_page_table *, &__x->base, \
182	__px_choose_expr(px, struct i915_page_directory *, &__x->pt.base, \
183	(void)0))))
184#define px_dma(px) (px_base(px)->daddr)
 
 
 
 
 
185
186#define px_pt(px) \
187	__px_choose_expr(px, struct i915_page_table *, __x, \
188	__px_choose_expr(px, struct i915_page_directory *, &__x->pt, \
189	(void)0))
190#define px_used(px) (&px_pt(px)->used)
191
192enum i915_cache_level;
193
194struct drm_i915_file_private;
195struct drm_i915_gem_object;
196struct i915_vma;
197struct intel_gt;
198
199struct i915_vma_ops {
200	/* Map an object into an address space with the given cache flags. */
201	int (*bind_vma)(struct i915_address_space *vm,
202			struct i915_vma *vma,
203			enum i915_cache_level cache_level,
204			u32 flags);
 
205	/*
206	 * Unmap an object from an address space. This usually consists of
207	 * setting the valid PTE entries to a reserved scratch page.
208	 */
209	void (*unbind_vma)(struct i915_address_space *vm,
210			   struct i915_vma *vma);
211
212	int (*set_pages)(struct i915_vma *vma);
213	void (*clear_pages)(struct i915_vma *vma);
214};
215
216struct pagestash {
217	spinlock_t lock;
218	struct pagevec pvec;
219};
220
221void stash_init(struct pagestash *stash);
222
223struct i915_address_space {
224	struct kref ref;
225	struct rcu_work rcu;
226
227	struct drm_mm mm;
228	struct intel_gt *gt;
229	struct drm_i915_private *i915;
230	struct device *dma;
231	/*
232	 * Every address space belongs to a struct file - except for the global
233	 * GTT that is owned by the driver (and so @file is set to NULL). In
234	 * principle, no information should leak from one context to another
235	 * (or between files/processes etc) unless explicitly shared by the
236	 * owner. Tracking the owner is important in order to free up per-file
237	 * objects along with the file, to aide resource tracking, and to
238	 * assign blame.
239	 */
240	struct drm_i915_file_private *file;
241	u64 total;		/* size addr space maps (ex. 2GB for ggtt) */
242	u64 reserved;		/* size addr space reserved */
243
244	unsigned int bind_async_flags;
245
246	/*
247	 * Each active user context has its own address space (in full-ppgtt).
248	 * Since the vm may be shared between multiple contexts, we count how
249	 * many contexts keep us "open". Once open hits zero, we are closed
250	 * and do not allow any new attachments, and proceed to shutdown our
251	 * vma and page directories.
252	 */
253	atomic_t open;
254
255	struct mutex mutex; /* protects vma and our lists */
 
 
 
256#define VM_CLASS_GGTT 0
257#define VM_CLASS_PPGTT 1
 
258
259	struct i915_page_scratch scratch[4];
260	unsigned int scratch_order;
261	unsigned int top;
262
263	/**
264	 * List of vma currently bound.
265	 */
266	struct list_head bound_list;
267
268	struct pagestash free_pages;
269
270	/* Global GTT */
271	bool is_ggtt:1;
272
273	/* Some systems require uncached updates of the page directories */
274	bool pt_kmap_wc:1;
275
276	/* Some systems support read-only mappings for GGTT and/or PPGTT */
277	bool has_read_only:1;
278
 
 
 
 
 
 
 
279	u64 (*pte_encode)(dma_addr_t addr,
280			  enum i915_cache_level level,
281			  u32 flags); /* Create a valid PTE */
282#define PTE_READ_ONLY	BIT(0)
 
283
284	int (*allocate_va_range)(struct i915_address_space *vm,
285				 u64 start, u64 length);
 
286	void (*clear_range)(struct i915_address_space *vm,
287			    u64 start, u64 length);
288	void (*insert_page)(struct i915_address_space *vm,
289			    dma_addr_t addr,
290			    u64 offset,
291			    enum i915_cache_level cache_level,
292			    u32 flags);
293	void (*insert_entries)(struct i915_address_space *vm,
294			       struct i915_vma *vma,
295			       enum i915_cache_level cache_level,
296			       u32 flags);
297	void (*cleanup)(struct i915_address_space *vm);
298
299	struct i915_vma_ops vma_ops;
300
301	I915_SELFTEST_DECLARE(struct fault_attr fault_attr);
302	I915_SELFTEST_DECLARE(bool scrub_64K);
303};
304
305/*
306 * The Graphics Translation Table is the way in which GEN hardware translates a
307 * Graphics Virtual Address into a Physical Address. In addition to the normal
308 * collateral associated with any va->pa translations GEN hardware also has a
309 * portion of the GTT which can be mapped by the CPU and remain both coherent
310 * and correct (in cases like swizzling). That region is referred to as GMADR in
311 * the spec.
312 */
313struct i915_ggtt {
314	struct i915_address_space vm;
315
316	struct io_mapping iomap;	/* Mapping to our CPU mappable region */
317	struct resource gmadr;          /* GMADR resource */
318	resource_size_t mappable_end;	/* End offset that we can CPU map */
319
320	/** "Graphics Stolen Memory" holds the global PTEs */
321	void __iomem *gsm;
322	void (*invalidate)(struct i915_ggtt *ggtt);
323
324	/** PPGTT used for aliasing the PPGTT with the GTT */
325	struct i915_ppgtt *alias;
326
327	bool do_idle_maps;
328
329	int mtrr;
330
331	/** Bit 6 swizzling required for X tiling */
332	u32 bit_6_swizzle_x;
333	/** Bit 6 swizzling required for Y tiling */
334	u32 bit_6_swizzle_y;
335
336	u32 pin_bias;
337
338	unsigned int num_fences;
339	struct i915_fence_reg *fence_regs;
340	struct list_head fence_list;
341
342	/**
343	 * List of all objects in gtt_space, currently mmaped by userspace.
344	 * All objects within this list must also be on bound_list.
345	 */
346	struct list_head userfault_list;
347
348	/* Manual runtime pm autosuspend delay for user GGTT mmaps */
349	struct intel_wakeref_auto userfault_wakeref;
350
351	struct mutex error_mutex;
352	struct drm_mm_node error_capture;
353	struct drm_mm_node uc_fw;
354};
355
356struct i915_ppgtt {
357	struct i915_address_space vm;
358
359	struct i915_page_directory *pd;
360};
361
362#define i915_is_ggtt(vm) ((vm)->is_ggtt)
 
 
 
 
 
363
364static inline bool
365i915_vm_is_4lvl(const struct i915_address_space *vm)
366{
367	return (vm->total - 1) >> 32;
368}
369
370static inline bool
371i915_vm_has_scratch_64K(struct i915_address_space *vm)
372{
373	return vm->scratch_order == get_order(I915_GTT_PAGE_SIZE_64K);
374}
375
376static inline bool
377i915_vm_has_cache_coloring(struct i915_address_space *vm)
378{
379	return i915_is_ggtt(vm) && vm->mm.color_adjust;
380}
381
382static inline struct i915_ggtt *
383i915_vm_to_ggtt(struct i915_address_space *vm)
384{
385	BUILD_BUG_ON(offsetof(struct i915_ggtt, vm));
386	GEM_BUG_ON(!i915_is_ggtt(vm));
387	return container_of(vm, struct i915_ggtt, vm);
388}
389
390static inline struct i915_ppgtt *
391i915_vm_to_ppgtt(struct i915_address_space *vm)
392{
393	BUILD_BUG_ON(offsetof(struct i915_ppgtt, vm));
394	GEM_BUG_ON(i915_is_ggtt(vm));
395	return container_of(vm, struct i915_ppgtt, vm);
396}
397
398static inline struct i915_address_space *
399i915_vm_get(struct i915_address_space *vm)
400{
401	kref_get(&vm->ref);
402	return vm;
403}
404
 
 
 
 
 
 
 
 
 
 
 
 
405void i915_vm_release(struct kref *kref);
406
 
 
407static inline void i915_vm_put(struct i915_address_space *vm)
408{
409	kref_put(&vm->ref, i915_vm_release);
410}
411
 
 
 
 
 
 
 
 
 
412static inline struct i915_address_space *
413i915_vm_open(struct i915_address_space *vm)
414{
415	GEM_BUG_ON(!atomic_read(&vm->open));
416	atomic_inc(&vm->open);
417	return i915_vm_get(vm);
418}
419
420static inline bool
421i915_vm_tryopen(struct i915_address_space *vm)
422{
423	if (atomic_add_unless(&vm->open, 1, 0))
424		return i915_vm_get(vm);
425
426	return false;
427}
428
429void __i915_vm_close(struct i915_address_space *vm);
430
431static inline void
432i915_vm_close(struct i915_address_space *vm)
433{
434	GEM_BUG_ON(!atomic_read(&vm->open));
435	__i915_vm_close(vm);
436
437	i915_vm_put(vm);
438}
439
440void i915_address_space_init(struct i915_address_space *vm, int subclass);
441void i915_address_space_fini(struct i915_address_space *vm);
442
443static inline u32 i915_pte_index(u64 address, unsigned int pde_shift)
444{
445	const u32 mask = NUM_PTE(pde_shift) - 1;
446
447	return (address >> PAGE_SHIFT) & mask;
448}
449
450/*
451 * Helper to counts the number of PTEs within the given length. This count
452 * does not cross a page table boundary, so the max value would be
453 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
454 */
455static inline u32 i915_pte_count(u64 addr, u64 length, unsigned int pde_shift)
456{
457	const u64 mask = ~((1ULL << pde_shift) - 1);
458	u64 end;
459
460	GEM_BUG_ON(length == 0);
461	GEM_BUG_ON(offset_in_page(addr | length));
462
463	end = addr + length;
464
465	if ((addr & mask) != (end & mask))
466		return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
467
468	return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
469}
470
471static inline u32 i915_pde_index(u64 addr, u32 shift)
472{
473	return (addr >> shift) & I915_PDE_MASK;
474}
475
476static inline struct i915_page_table *
477i915_pt_entry(const struct i915_page_directory * const pd,
478	      const unsigned short n)
479{
480	return pd->entry[n];
481}
482
483static inline struct i915_page_directory *
484i915_pd_entry(const struct i915_page_directory * const pdp,
485	      const unsigned short n)
486{
487	return pdp->entry[n];
488}
489
490static inline dma_addr_t
491i915_page_dir_dma_addr(const struct i915_ppgtt *ppgtt, const unsigned int n)
492{
493	struct i915_page_dma *pt = ppgtt->pd->entry[n];
494
495	return px_dma(pt ?: px_base(&ppgtt->vm.scratch[ppgtt->vm.top]));
496}
497
498void ppgtt_init(struct i915_ppgtt *ppgtt, struct intel_gt *gt);
499
500int i915_ggtt_probe_hw(struct drm_i915_private *i915);
501int i915_ggtt_init_hw(struct drm_i915_private *i915);
502int i915_ggtt_enable_hw(struct drm_i915_private *i915);
503void i915_ggtt_enable_guc(struct i915_ggtt *ggtt);
504void i915_ggtt_disable_guc(struct i915_ggtt *ggtt);
505int i915_init_ggtt(struct drm_i915_private *i915);
506void i915_ggtt_driver_release(struct drm_i915_private *i915);
 
507
508static inline bool i915_ggtt_has_aperture(const struct i915_ggtt *ggtt)
509{
510	return ggtt->mappable_end > 0;
511}
512
513int i915_ppgtt_init_hw(struct intel_gt *gt);
514
515struct i915_ppgtt *i915_ppgtt_create(struct intel_gt *gt);
516
517void i915_ggtt_suspend(struct i915_ggtt *gtt);
518void i915_ggtt_resume(struct i915_ggtt *ggtt);
519
520int setup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p);
521void cleanup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p);
522
523#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
524
525void
526fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count);
527
528#define fill_px(px, v) fill_page_dma(px_base(px), (v), PAGE_SIZE / sizeof(u64))
529#define fill32_px(px, v) do {						\
530	u64 v__ = lower_32_bits(v);					\
531	fill_px((px), v__ << 32 | v__);					\
532} while (0)
533
534int setup_scratch_page(struct i915_address_space *vm, gfp_t gfp);
535void cleanup_scratch_page(struct i915_address_space *vm);
536void free_scratch(struct i915_address_space *vm);
537
 
 
538struct i915_page_table *alloc_pt(struct i915_address_space *vm);
539struct i915_page_directory *alloc_pd(struct i915_address_space *vm);
540struct i915_page_directory *__alloc_pd(size_t sz);
541
542void free_pd(struct i915_address_space *vm, struct i915_page_dma *pd);
 
543
544#define free_px(vm, px) free_pd(vm, px_base(px))
 
 
 
545
546void
547__set_pd_entry(struct i915_page_directory * const pd,
548	       const unsigned short idx,
549	       struct i915_page_dma * const to,
550	       u64 (*encode)(const dma_addr_t, const enum i915_cache_level));
551
552#define set_pd_entry(pd, idx, to) \
553	__set_pd_entry((pd), (idx), px_base(to), gen8_pde_encode)
554
555void
556clear_pd_entry(struct i915_page_directory * const pd,
557	       const unsigned short idx,
558	       const struct i915_page_scratch * const scratch);
559
560bool
561release_pd_entry(struct i915_page_directory * const pd,
562		 const unsigned short idx,
563		 struct i915_page_table * const pt,
564		 const struct i915_page_scratch * const scratch);
565void gen6_ggtt_invalidate(struct i915_ggtt *ggtt);
566
567int ggtt_set_pages(struct i915_vma *vma);
568int ppgtt_set_pages(struct i915_vma *vma);
569void clear_pages(struct i915_vma *vma);
570
571int ppgtt_bind_vma(struct i915_address_space *vm,
572		   struct i915_vma *vma,
573		   enum i915_cache_level cache_level,
574		   u32 flags);
 
575void ppgtt_unbind_vma(struct i915_address_space *vm,
576		      struct i915_vma *vma);
577
578void gtt_write_workarounds(struct intel_gt *gt);
579
580void setup_private_pat(struct intel_uncore *uncore);
581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
582static inline struct sgt_dma {
583	struct scatterlist *sg;
584	dma_addr_t dma, max;
585} sgt_dma(struct i915_vma *vma) {
586	struct scatterlist *sg = vma->pages->sgl;
587	dma_addr_t addr = sg_dma_address(sg);
588
589	return (struct sgt_dma){ sg, addr, addr + sg->length };
590}
591
592#endif