Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
 
  49#include <linux/vmalloc.h>
  50#include <linux/lsm_hooks.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68#include "policycap_names.h"
  69#include "ima.h"
  70
  71struct convert_context_args {
  72	struct selinux_state *state;
  73	struct policydb *oldp;
  74	struct policydb *newp;
 
 
 
 
  75};
  76
  77struct selinux_policy_convert_data {
  78	struct convert_context_args args;
  79	struct sidtab_convert_params sidtab_params;
  80};
 
 
 
 
  81
  82/* Forward declaration. */
  83static int context_struct_to_string(struct policydb *policydb,
  84				    struct context *context,
  85				    char **scontext,
  86				    u32 *scontext_len);
  87
  88static int sidtab_entry_to_string(struct policydb *policydb,
  89				  struct sidtab *sidtab,
  90				  struct sidtab_entry *entry,
  91				  char **scontext,
  92				  u32 *scontext_len);
  93
  94static void context_struct_compute_av(struct policydb *policydb,
  95				      struct context *scontext,
  96				      struct context *tcontext,
  97				      u16 tclass,
  98				      struct av_decision *avd,
  99				      struct extended_perms *xperms);
 100
 101static int selinux_set_mapping(struct policydb *pol,
 102			       struct security_class_mapping *map,
 103			       struct selinux_map *out_map)
 104{
 105	u16 i, j;
 106	unsigned k;
 107	bool print_unknown_handle = false;
 108
 109	/* Find number of classes in the input mapping */
 110	if (!map)
 111		return -EINVAL;
 112	i = 0;
 113	while (map[i].name)
 114		i++;
 115
 116	/* Allocate space for the class records, plus one for class zero */
 117	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 118	if (!out_map->mapping)
 119		return -ENOMEM;
 120
 121	/* Store the raw class and permission values */
 122	j = 0;
 123	while (map[j].name) {
 124		struct security_class_mapping *p_in = map + (j++);
 125		struct selinux_mapping *p_out = out_map->mapping + j;
 126
 127		/* An empty class string skips ahead */
 128		if (!strcmp(p_in->name, "")) {
 129			p_out->num_perms = 0;
 130			continue;
 131		}
 132
 133		p_out->value = string_to_security_class(pol, p_in->name);
 134		if (!p_out->value) {
 135			pr_info("SELinux:  Class %s not defined in policy.\n",
 136			       p_in->name);
 137			if (pol->reject_unknown)
 138				goto err;
 139			p_out->num_perms = 0;
 140			print_unknown_handle = true;
 141			continue;
 142		}
 143
 144		k = 0;
 145		while (p_in->perms[k]) {
 146			/* An empty permission string skips ahead */
 147			if (!*p_in->perms[k]) {
 148				k++;
 149				continue;
 150			}
 151			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 152							    p_in->perms[k]);
 153			if (!p_out->perms[k]) {
 154				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 155				       p_in->perms[k], p_in->name);
 156				if (pol->reject_unknown)
 157					goto err;
 158				print_unknown_handle = true;
 159			}
 160
 161			k++;
 162		}
 163		p_out->num_perms = k;
 164	}
 165
 166	if (print_unknown_handle)
 167		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 168		       pol->allow_unknown ? "allowed" : "denied");
 169
 170	out_map->size = i;
 171	return 0;
 172err:
 173	kfree(out_map->mapping);
 174	out_map->mapping = NULL;
 175	return -EINVAL;
 176}
 177
 178/*
 179 * Get real, policy values from mapped values
 180 */
 181
 182static u16 unmap_class(struct selinux_map *map, u16 tclass)
 183{
 184	if (tclass < map->size)
 185		return map->mapping[tclass].value;
 186
 187	return tclass;
 188}
 189
 190/*
 191 * Get kernel value for class from its policy value
 192 */
 193static u16 map_class(struct selinux_map *map, u16 pol_value)
 194{
 195	u16 i;
 196
 197	for (i = 1; i < map->size; i++) {
 198		if (map->mapping[i].value == pol_value)
 199			return i;
 200	}
 201
 202	return SECCLASS_NULL;
 203}
 204
 205static void map_decision(struct selinux_map *map,
 206			 u16 tclass, struct av_decision *avd,
 207			 int allow_unknown)
 208{
 209	if (tclass < map->size) {
 210		struct selinux_mapping *mapping = &map->mapping[tclass];
 211		unsigned int i, n = mapping->num_perms;
 212		u32 result;
 213
 214		for (i = 0, result = 0; i < n; i++) {
 215			if (avd->allowed & mapping->perms[i])
 216				result |= 1<<i;
 217			if (allow_unknown && !mapping->perms[i])
 218				result |= 1<<i;
 219		}
 220		avd->allowed = result;
 221
 222		for (i = 0, result = 0; i < n; i++)
 223			if (avd->auditallow & mapping->perms[i])
 224				result |= 1<<i;
 225		avd->auditallow = result;
 226
 227		for (i = 0, result = 0; i < n; i++) {
 228			if (avd->auditdeny & mapping->perms[i])
 229				result |= 1<<i;
 230			if (!allow_unknown && !mapping->perms[i])
 231				result |= 1<<i;
 232		}
 233		/*
 234		 * In case the kernel has a bug and requests a permission
 235		 * between num_perms and the maximum permission number, we
 236		 * should audit that denial
 237		 */
 238		for (; i < (sizeof(u32)*8); i++)
 239			result |= 1<<i;
 240		avd->auditdeny = result;
 241	}
 242}
 243
 244int security_mls_enabled(struct selinux_state *state)
 245{
 246	int mls_enabled;
 247	struct selinux_policy *policy;
 248
 249	if (!selinux_initialized(state))
 250		return 0;
 251
 252	rcu_read_lock();
 253	policy = rcu_dereference(state->policy);
 254	mls_enabled = policy->policydb.mls_enabled;
 255	rcu_read_unlock();
 256	return mls_enabled;
 257}
 258
 259/*
 260 * Return the boolean value of a constraint expression
 261 * when it is applied to the specified source and target
 262 * security contexts.
 263 *
 264 * xcontext is a special beast...  It is used by the validatetrans rules
 265 * only.  For these rules, scontext is the context before the transition,
 266 * tcontext is the context after the transition, and xcontext is the context
 267 * of the process performing the transition.  All other callers of
 268 * constraint_expr_eval should pass in NULL for xcontext.
 269 */
 270static int constraint_expr_eval(struct policydb *policydb,
 271				struct context *scontext,
 272				struct context *tcontext,
 273				struct context *xcontext,
 274				struct constraint_expr *cexpr)
 275{
 276	u32 val1, val2;
 277	struct context *c;
 278	struct role_datum *r1, *r2;
 279	struct mls_level *l1, *l2;
 280	struct constraint_expr *e;
 281	int s[CEXPR_MAXDEPTH];
 282	int sp = -1;
 283
 284	for (e = cexpr; e; e = e->next) {
 285		switch (e->expr_type) {
 286		case CEXPR_NOT:
 287			BUG_ON(sp < 0);
 288			s[sp] = !s[sp];
 289			break;
 290		case CEXPR_AND:
 291			BUG_ON(sp < 1);
 292			sp--;
 293			s[sp] &= s[sp + 1];
 294			break;
 295		case CEXPR_OR:
 296			BUG_ON(sp < 1);
 297			sp--;
 298			s[sp] |= s[sp + 1];
 299			break;
 300		case CEXPR_ATTR:
 301			if (sp == (CEXPR_MAXDEPTH - 1))
 302				return 0;
 303			switch (e->attr) {
 304			case CEXPR_USER:
 305				val1 = scontext->user;
 306				val2 = tcontext->user;
 307				break;
 308			case CEXPR_TYPE:
 309				val1 = scontext->type;
 310				val2 = tcontext->type;
 311				break;
 312			case CEXPR_ROLE:
 313				val1 = scontext->role;
 314				val2 = tcontext->role;
 315				r1 = policydb->role_val_to_struct[val1 - 1];
 316				r2 = policydb->role_val_to_struct[val2 - 1];
 317				switch (e->op) {
 318				case CEXPR_DOM:
 319					s[++sp] = ebitmap_get_bit(&r1->dominates,
 320								  val2 - 1);
 321					continue;
 322				case CEXPR_DOMBY:
 323					s[++sp] = ebitmap_get_bit(&r2->dominates,
 324								  val1 - 1);
 325					continue;
 326				case CEXPR_INCOMP:
 327					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 328								    val2 - 1) &&
 329						   !ebitmap_get_bit(&r2->dominates,
 330								    val1 - 1));
 331					continue;
 332				default:
 333					break;
 334				}
 335				break;
 336			case CEXPR_L1L2:
 337				l1 = &(scontext->range.level[0]);
 338				l2 = &(tcontext->range.level[0]);
 339				goto mls_ops;
 340			case CEXPR_L1H2:
 341				l1 = &(scontext->range.level[0]);
 342				l2 = &(tcontext->range.level[1]);
 343				goto mls_ops;
 344			case CEXPR_H1L2:
 345				l1 = &(scontext->range.level[1]);
 346				l2 = &(tcontext->range.level[0]);
 347				goto mls_ops;
 348			case CEXPR_H1H2:
 349				l1 = &(scontext->range.level[1]);
 350				l2 = &(tcontext->range.level[1]);
 351				goto mls_ops;
 352			case CEXPR_L1H1:
 353				l1 = &(scontext->range.level[0]);
 354				l2 = &(scontext->range.level[1]);
 355				goto mls_ops;
 356			case CEXPR_L2H2:
 357				l1 = &(tcontext->range.level[0]);
 358				l2 = &(tcontext->range.level[1]);
 359				goto mls_ops;
 360mls_ops:
 361			switch (e->op) {
 362			case CEXPR_EQ:
 363				s[++sp] = mls_level_eq(l1, l2);
 364				continue;
 365			case CEXPR_NEQ:
 366				s[++sp] = !mls_level_eq(l1, l2);
 367				continue;
 368			case CEXPR_DOM:
 369				s[++sp] = mls_level_dom(l1, l2);
 370				continue;
 371			case CEXPR_DOMBY:
 372				s[++sp] = mls_level_dom(l2, l1);
 373				continue;
 374			case CEXPR_INCOMP:
 375				s[++sp] = mls_level_incomp(l2, l1);
 376				continue;
 377			default:
 378				BUG();
 379				return 0;
 380			}
 381			break;
 382			default:
 383				BUG();
 384				return 0;
 385			}
 386
 387			switch (e->op) {
 388			case CEXPR_EQ:
 389				s[++sp] = (val1 == val2);
 390				break;
 391			case CEXPR_NEQ:
 392				s[++sp] = (val1 != val2);
 393				break;
 394			default:
 395				BUG();
 396				return 0;
 397			}
 398			break;
 399		case CEXPR_NAMES:
 400			if (sp == (CEXPR_MAXDEPTH-1))
 401				return 0;
 402			c = scontext;
 403			if (e->attr & CEXPR_TARGET)
 404				c = tcontext;
 405			else if (e->attr & CEXPR_XTARGET) {
 406				c = xcontext;
 407				if (!c) {
 408					BUG();
 409					return 0;
 410				}
 411			}
 412			if (e->attr & CEXPR_USER)
 413				val1 = c->user;
 414			else if (e->attr & CEXPR_ROLE)
 415				val1 = c->role;
 416			else if (e->attr & CEXPR_TYPE)
 417				val1 = c->type;
 418			else {
 419				BUG();
 420				return 0;
 421			}
 422
 423			switch (e->op) {
 424			case CEXPR_EQ:
 425				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 426				break;
 427			case CEXPR_NEQ:
 428				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 429				break;
 430			default:
 431				BUG();
 432				return 0;
 433			}
 434			break;
 435		default:
 436			BUG();
 437			return 0;
 438		}
 439	}
 440
 441	BUG_ON(sp != 0);
 442	return s[0];
 443}
 444
 445/*
 446 * security_dump_masked_av - dumps masked permissions during
 447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 448 */
 449static int dump_masked_av_helper(void *k, void *d, void *args)
 450{
 451	struct perm_datum *pdatum = d;
 452	char **permission_names = args;
 453
 454	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 455
 456	permission_names[pdatum->value - 1] = (char *)k;
 457
 458	return 0;
 459}
 460
 461static void security_dump_masked_av(struct policydb *policydb,
 462				    struct context *scontext,
 463				    struct context *tcontext,
 464				    u16 tclass,
 465				    u32 permissions,
 466				    const char *reason)
 467{
 468	struct common_datum *common_dat;
 469	struct class_datum *tclass_dat;
 470	struct audit_buffer *ab;
 471	char *tclass_name;
 472	char *scontext_name = NULL;
 473	char *tcontext_name = NULL;
 474	char *permission_names[32];
 475	int index;
 476	u32 length;
 477	bool need_comma = false;
 478
 479	if (!permissions)
 480		return;
 481
 482	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 483	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 484	common_dat = tclass_dat->comdatum;
 485
 486	/* init permission_names */
 487	if (common_dat &&
 488	    hashtab_map(&common_dat->permissions.table,
 489			dump_masked_av_helper, permission_names) < 0)
 490		goto out;
 491
 492	if (hashtab_map(&tclass_dat->permissions.table,
 493			dump_masked_av_helper, permission_names) < 0)
 494		goto out;
 495
 496	/* get scontext/tcontext in text form */
 497	if (context_struct_to_string(policydb, scontext,
 498				     &scontext_name, &length) < 0)
 499		goto out;
 500
 501	if (context_struct_to_string(policydb, tcontext,
 502				     &tcontext_name, &length) < 0)
 503		goto out;
 504
 505	/* audit a message */
 506	ab = audit_log_start(audit_context(),
 507			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 508	if (!ab)
 509		goto out;
 510
 511	audit_log_format(ab, "op=security_compute_av reason=%s "
 512			 "scontext=%s tcontext=%s tclass=%s perms=",
 513			 reason, scontext_name, tcontext_name, tclass_name);
 514
 515	for (index = 0; index < 32; index++) {
 516		u32 mask = (1 << index);
 517
 518		if ((mask & permissions) == 0)
 519			continue;
 520
 521		audit_log_format(ab, "%s%s",
 522				 need_comma ? "," : "",
 523				 permission_names[index]
 524				 ? permission_names[index] : "????");
 525		need_comma = true;
 526	}
 527	audit_log_end(ab);
 528out:
 529	/* release scontext/tcontext */
 530	kfree(tcontext_name);
 531	kfree(scontext_name);
 532
 533	return;
 534}
 535
 536/*
 537 * security_boundary_permission - drops violated permissions
 538 * on boundary constraint.
 539 */
 540static void type_attribute_bounds_av(struct policydb *policydb,
 541				     struct context *scontext,
 542				     struct context *tcontext,
 543				     u16 tclass,
 544				     struct av_decision *avd)
 545{
 546	struct context lo_scontext;
 547	struct context lo_tcontext, *tcontextp = tcontext;
 548	struct av_decision lo_avd;
 549	struct type_datum *source;
 550	struct type_datum *target;
 551	u32 masked = 0;
 552
 553	source = policydb->type_val_to_struct[scontext->type - 1];
 554	BUG_ON(!source);
 555
 556	if (!source->bounds)
 557		return;
 558
 559	target = policydb->type_val_to_struct[tcontext->type - 1];
 560	BUG_ON(!target);
 561
 562	memset(&lo_avd, 0, sizeof(lo_avd));
 563
 564	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 565	lo_scontext.type = source->bounds;
 566
 567	if (target->bounds) {
 568		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 569		lo_tcontext.type = target->bounds;
 570		tcontextp = &lo_tcontext;
 571	}
 572
 573	context_struct_compute_av(policydb, &lo_scontext,
 574				  tcontextp,
 575				  tclass,
 576				  &lo_avd,
 577				  NULL);
 578
 579	masked = ~lo_avd.allowed & avd->allowed;
 580
 581	if (likely(!masked))
 582		return;		/* no masked permission */
 583
 584	/* mask violated permissions */
 585	avd->allowed &= ~masked;
 586
 587	/* audit masked permissions */
 588	security_dump_masked_av(policydb, scontext, tcontext,
 589				tclass, masked, "bounds");
 590}
 591
 592/*
 593 * flag which drivers have permissions
 594 * only looking for ioctl based extended permssions
 595 */
 596void services_compute_xperms_drivers(
 597		struct extended_perms *xperms,
 598		struct avtab_node *node)
 599{
 600	unsigned int i;
 601
 602	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 603		/* if one or more driver has all permissions allowed */
 604		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 605			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 606	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 607		/* if allowing permissions within a driver */
 608		security_xperm_set(xperms->drivers.p,
 609					node->datum.u.xperms->driver);
 610	}
 611
 612	xperms->len = 1;
 
 
 613}
 614
 615/*
 616 * Compute access vectors and extended permissions based on a context
 617 * structure pair for the permissions in a particular class.
 618 */
 619static void context_struct_compute_av(struct policydb *policydb,
 620				      struct context *scontext,
 621				      struct context *tcontext,
 622				      u16 tclass,
 623				      struct av_decision *avd,
 624				      struct extended_perms *xperms)
 625{
 626	struct constraint_node *constraint;
 627	struct role_allow *ra;
 628	struct avtab_key avkey;
 629	struct avtab_node *node;
 630	struct class_datum *tclass_datum;
 631	struct ebitmap *sattr, *tattr;
 632	struct ebitmap_node *snode, *tnode;
 633	unsigned int i, j;
 634
 635	avd->allowed = 0;
 636	avd->auditallow = 0;
 637	avd->auditdeny = 0xffffffff;
 638	if (xperms) {
 639		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 640		xperms->len = 0;
 641	}
 642
 643	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 644		if (printk_ratelimit())
 645			pr_warn("SELinux:  Invalid class %hu\n", tclass);
 646		return;
 647	}
 648
 649	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 650
 651	/*
 652	 * If a specific type enforcement rule was defined for
 653	 * this permission check, then use it.
 654	 */
 655	avkey.target_class = tclass;
 656	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 657	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 658	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 659	ebitmap_for_each_positive_bit(sattr, snode, i) {
 660		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 661			avkey.source_type = i + 1;
 662			avkey.target_type = j + 1;
 663			for (node = avtab_search_node(&policydb->te_avtab,
 664						      &avkey);
 665			     node;
 666			     node = avtab_search_node_next(node, avkey.specified)) {
 667				if (node->key.specified == AVTAB_ALLOWED)
 668					avd->allowed |= node->datum.u.data;
 669				else if (node->key.specified == AVTAB_AUDITALLOW)
 670					avd->auditallow |= node->datum.u.data;
 671				else if (node->key.specified == AVTAB_AUDITDENY)
 672					avd->auditdeny &= node->datum.u.data;
 673				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 674					services_compute_xperms_drivers(xperms, node);
 675			}
 676
 677			/* Check conditional av table for additional permissions */
 678			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 679					avd, xperms);
 680
 681		}
 682	}
 683
 684	/*
 685	 * Remove any permissions prohibited by a constraint (this includes
 686	 * the MLS policy).
 687	 */
 688	constraint = tclass_datum->constraints;
 689	while (constraint) {
 690		if ((constraint->permissions & (avd->allowed)) &&
 691		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 692					  constraint->expr)) {
 693			avd->allowed &= ~(constraint->permissions);
 694		}
 695		constraint = constraint->next;
 696	}
 697
 698	/*
 699	 * If checking process transition permission and the
 700	 * role is changing, then check the (current_role, new_role)
 701	 * pair.
 702	 */
 703	if (tclass == policydb->process_class &&
 704	    (avd->allowed & policydb->process_trans_perms) &&
 705	    scontext->role != tcontext->role) {
 706		for (ra = policydb->role_allow; ra; ra = ra->next) {
 707			if (scontext->role == ra->role &&
 708			    tcontext->role == ra->new_role)
 709				break;
 710		}
 711		if (!ra)
 712			avd->allowed &= ~policydb->process_trans_perms;
 713	}
 714
 715	/*
 716	 * If the given source and target types have boundary
 717	 * constraint, lazy checks have to mask any violated
 718	 * permission and notice it to userspace via audit.
 719	 */
 720	type_attribute_bounds_av(policydb, scontext, tcontext,
 721				 tclass, avd);
 722}
 723
 724static int security_validtrans_handle_fail(struct selinux_state *state,
 725					struct selinux_policy *policy,
 726					struct sidtab_entry *oentry,
 727					struct sidtab_entry *nentry,
 728					struct sidtab_entry *tentry,
 729					u16 tclass)
 730{
 731	struct policydb *p = &policy->policydb;
 732	struct sidtab *sidtab = policy->sidtab;
 733	char *o = NULL, *n = NULL, *t = NULL;
 734	u32 olen, nlen, tlen;
 735
 736	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
 737		goto out;
 738	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
 739		goto out;
 740	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
 741		goto out;
 742	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 743		  "op=security_validate_transition seresult=denied"
 744		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 745		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 746out:
 747	kfree(o);
 748	kfree(n);
 749	kfree(t);
 750
 751	if (!enforcing_enabled(state))
 752		return 0;
 753	return -EPERM;
 754}
 755
 756static int security_compute_validatetrans(struct selinux_state *state,
 757					  u32 oldsid, u32 newsid, u32 tasksid,
 758					  u16 orig_tclass, bool user)
 759{
 760	struct selinux_policy *policy;
 761	struct policydb *policydb;
 762	struct sidtab *sidtab;
 763	struct sidtab_entry *oentry;
 764	struct sidtab_entry *nentry;
 765	struct sidtab_entry *tentry;
 766	struct class_datum *tclass_datum;
 767	struct constraint_node *constraint;
 768	u16 tclass;
 769	int rc = 0;
 770
 771
 772	if (!selinux_initialized(state))
 773		return 0;
 774
 775	rcu_read_lock();
 776
 777	policy = rcu_dereference(state->policy);
 778	policydb = &policy->policydb;
 779	sidtab = policy->sidtab;
 780
 781	if (!user)
 782		tclass = unmap_class(&policy->map, orig_tclass);
 783	else
 784		tclass = orig_tclass;
 785
 786	if (!tclass || tclass > policydb->p_classes.nprim) {
 787		rc = -EINVAL;
 788		goto out;
 789	}
 790	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 791
 792	oentry = sidtab_search_entry(sidtab, oldsid);
 793	if (!oentry) {
 794		pr_err("SELinux: %s:  unrecognized SID %d\n",
 795			__func__, oldsid);
 796		rc = -EINVAL;
 797		goto out;
 798	}
 799
 800	nentry = sidtab_search_entry(sidtab, newsid);
 801	if (!nentry) {
 802		pr_err("SELinux: %s:  unrecognized SID %d\n",
 803			__func__, newsid);
 804		rc = -EINVAL;
 805		goto out;
 806	}
 807
 808	tentry = sidtab_search_entry(sidtab, tasksid);
 809	if (!tentry) {
 810		pr_err("SELinux: %s:  unrecognized SID %d\n",
 811			__func__, tasksid);
 812		rc = -EINVAL;
 813		goto out;
 814	}
 815
 816	constraint = tclass_datum->validatetrans;
 817	while (constraint) {
 818		if (!constraint_expr_eval(policydb, &oentry->context,
 819					  &nentry->context, &tentry->context,
 820					  constraint->expr)) {
 821			if (user)
 822				rc = -EPERM;
 823			else
 824				rc = security_validtrans_handle_fail(state,
 825								policy,
 826								oentry,
 827								nentry,
 828								tentry,
 829								tclass);
 830			goto out;
 831		}
 832		constraint = constraint->next;
 833	}
 834
 835out:
 836	rcu_read_unlock();
 837	return rc;
 838}
 839
 840int security_validate_transition_user(struct selinux_state *state,
 841				      u32 oldsid, u32 newsid, u32 tasksid,
 842				      u16 tclass)
 843{
 844	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 845					      tclass, true);
 846}
 847
 848int security_validate_transition(struct selinux_state *state,
 849				 u32 oldsid, u32 newsid, u32 tasksid,
 850				 u16 orig_tclass)
 851{
 852	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 853					      orig_tclass, false);
 854}
 855
 856/*
 857 * security_bounded_transition - check whether the given
 858 * transition is directed to bounded, or not.
 859 * It returns 0, if @newsid is bounded by @oldsid.
 860 * Otherwise, it returns error code.
 861 *
 862 * @state: SELinux state
 863 * @oldsid : current security identifier
 864 * @newsid : destinated security identifier
 865 */
 866int security_bounded_transition(struct selinux_state *state,
 867				u32 old_sid, u32 new_sid)
 868{
 869	struct selinux_policy *policy;
 870	struct policydb *policydb;
 871	struct sidtab *sidtab;
 872	struct sidtab_entry *old_entry, *new_entry;
 873	struct type_datum *type;
 874	int index;
 875	int rc;
 876
 877	if (!selinux_initialized(state))
 878		return 0;
 879
 880	rcu_read_lock();
 881	policy = rcu_dereference(state->policy);
 882	policydb = &policy->policydb;
 883	sidtab = policy->sidtab;
 884
 885	rc = -EINVAL;
 886	old_entry = sidtab_search_entry(sidtab, old_sid);
 887	if (!old_entry) {
 888		pr_err("SELinux: %s: unrecognized SID %u\n",
 889		       __func__, old_sid);
 890		goto out;
 891	}
 892
 893	rc = -EINVAL;
 894	new_entry = sidtab_search_entry(sidtab, new_sid);
 895	if (!new_entry) {
 896		pr_err("SELinux: %s: unrecognized SID %u\n",
 897		       __func__, new_sid);
 898		goto out;
 899	}
 900
 901	rc = 0;
 902	/* type/domain unchanged */
 903	if (old_entry->context.type == new_entry->context.type)
 904		goto out;
 905
 906	index = new_entry->context.type;
 907	while (true) {
 908		type = policydb->type_val_to_struct[index - 1];
 909		BUG_ON(!type);
 910
 911		/* not bounded anymore */
 912		rc = -EPERM;
 913		if (!type->bounds)
 914			break;
 915
 916		/* @newsid is bounded by @oldsid */
 917		rc = 0;
 918		if (type->bounds == old_entry->context.type)
 919			break;
 920
 921		index = type->bounds;
 922	}
 923
 924	if (rc) {
 925		char *old_name = NULL;
 926		char *new_name = NULL;
 927		u32 length;
 928
 929		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
 930					    &old_name, &length) &&
 931		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
 932					    &new_name, &length)) {
 933			audit_log(audit_context(),
 934				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 935				  "op=security_bounded_transition "
 936				  "seresult=denied "
 937				  "oldcontext=%s newcontext=%s",
 938				  old_name, new_name);
 939		}
 940		kfree(new_name);
 941		kfree(old_name);
 942	}
 943out:
 944	rcu_read_unlock();
 945
 946	return rc;
 947}
 948
 949static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
 950{
 951	avd->allowed = 0;
 952	avd->auditallow = 0;
 953	avd->auditdeny = 0xffffffff;
 954	if (policy)
 955		avd->seqno = policy->latest_granting;
 956	else
 957		avd->seqno = 0;
 958	avd->flags = 0;
 959}
 960
 961void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 962					struct avtab_node *node)
 963{
 964	unsigned int i;
 965
 966	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 967		if (xpermd->driver != node->datum.u.xperms->driver)
 968			return;
 969	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 970		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 971					xpermd->driver))
 972			return;
 973	} else {
 974		BUG();
 975	}
 976
 977	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 978		xpermd->used |= XPERMS_ALLOWED;
 979		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 980			memset(xpermd->allowed->p, 0xff,
 981					sizeof(xpermd->allowed->p));
 982		}
 983		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 984			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 985				xpermd->allowed->p[i] |=
 986					node->datum.u.xperms->perms.p[i];
 987		}
 988	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 989		xpermd->used |= XPERMS_AUDITALLOW;
 990		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 991			memset(xpermd->auditallow->p, 0xff,
 992					sizeof(xpermd->auditallow->p));
 993		}
 994		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 995			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 996				xpermd->auditallow->p[i] |=
 997					node->datum.u.xperms->perms.p[i];
 998		}
 999	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
1000		xpermd->used |= XPERMS_DONTAUDIT;
1001		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1002			memset(xpermd->dontaudit->p, 0xff,
1003					sizeof(xpermd->dontaudit->p));
1004		}
1005		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1006			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1007				xpermd->dontaudit->p[i] |=
1008					node->datum.u.xperms->perms.p[i];
1009		}
1010	} else {
1011		BUG();
1012	}
1013}
1014
1015void security_compute_xperms_decision(struct selinux_state *state,
1016				      u32 ssid,
1017				      u32 tsid,
1018				      u16 orig_tclass,
1019				      u8 driver,
1020				      struct extended_perms_decision *xpermd)
1021{
1022	struct selinux_policy *policy;
1023	struct policydb *policydb;
1024	struct sidtab *sidtab;
1025	u16 tclass;
1026	struct context *scontext, *tcontext;
1027	struct avtab_key avkey;
1028	struct avtab_node *node;
1029	struct ebitmap *sattr, *tattr;
1030	struct ebitmap_node *snode, *tnode;
1031	unsigned int i, j;
1032
1033	xpermd->driver = driver;
1034	xpermd->used = 0;
1035	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1036	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1037	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1038
1039	rcu_read_lock();
1040	if (!selinux_initialized(state))
1041		goto allow;
1042
1043	policy = rcu_dereference(state->policy);
1044	policydb = &policy->policydb;
1045	sidtab = policy->sidtab;
1046
1047	scontext = sidtab_search(sidtab, ssid);
1048	if (!scontext) {
1049		pr_err("SELinux: %s:  unrecognized SID %d\n",
1050		       __func__, ssid);
1051		goto out;
1052	}
1053
1054	tcontext = sidtab_search(sidtab, tsid);
1055	if (!tcontext) {
1056		pr_err("SELinux: %s:  unrecognized SID %d\n",
1057		       __func__, tsid);
1058		goto out;
1059	}
1060
1061	tclass = unmap_class(&policy->map, orig_tclass);
1062	if (unlikely(orig_tclass && !tclass)) {
1063		if (policydb->allow_unknown)
1064			goto allow;
1065		goto out;
1066	}
1067
1068
1069	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1070		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1071		goto out;
1072	}
1073
1074	avkey.target_class = tclass;
1075	avkey.specified = AVTAB_XPERMS;
1076	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1077	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1078	ebitmap_for_each_positive_bit(sattr, snode, i) {
1079		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1080			avkey.source_type = i + 1;
1081			avkey.target_type = j + 1;
1082			for (node = avtab_search_node(&policydb->te_avtab,
1083						      &avkey);
1084			     node;
1085			     node = avtab_search_node_next(node, avkey.specified))
1086				services_compute_xperms_decision(xpermd, node);
1087
1088			cond_compute_xperms(&policydb->te_cond_avtab,
1089						&avkey, xpermd);
1090		}
1091	}
1092out:
1093	rcu_read_unlock();
1094	return;
1095allow:
1096	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1097	goto out;
1098}
1099
1100/**
1101 * security_compute_av - Compute access vector decisions.
1102 * @state: SELinux state
1103 * @ssid: source security identifier
1104 * @tsid: target security identifier
1105 * @tclass: target security class
1106 * @avd: access vector decisions
1107 * @xperms: extended permissions
1108 *
1109 * Compute a set of access vector decisions based on the
1110 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1111 */
1112void security_compute_av(struct selinux_state *state,
1113			 u32 ssid,
1114			 u32 tsid,
1115			 u16 orig_tclass,
1116			 struct av_decision *avd,
1117			 struct extended_perms *xperms)
1118{
1119	struct selinux_policy *policy;
1120	struct policydb *policydb;
1121	struct sidtab *sidtab;
1122	u16 tclass;
1123	struct context *scontext = NULL, *tcontext = NULL;
1124
1125	rcu_read_lock();
1126	policy = rcu_dereference(state->policy);
1127	avd_init(policy, avd);
1128	xperms->len = 0;
1129	if (!selinux_initialized(state))
1130		goto allow;
1131
1132	policydb = &policy->policydb;
1133	sidtab = policy->sidtab;
1134
1135	scontext = sidtab_search(sidtab, ssid);
1136	if (!scontext) {
1137		pr_err("SELinux: %s:  unrecognized SID %d\n",
1138		       __func__, ssid);
1139		goto out;
1140	}
1141
1142	/* permissive domain? */
1143	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1144		avd->flags |= AVD_FLAGS_PERMISSIVE;
1145
1146	tcontext = sidtab_search(sidtab, tsid);
1147	if (!tcontext) {
1148		pr_err("SELinux: %s:  unrecognized SID %d\n",
1149		       __func__, tsid);
1150		goto out;
1151	}
1152
1153	tclass = unmap_class(&policy->map, orig_tclass);
1154	if (unlikely(orig_tclass && !tclass)) {
1155		if (policydb->allow_unknown)
1156			goto allow;
1157		goto out;
1158	}
1159	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1160				  xperms);
1161	map_decision(&policy->map, orig_tclass, avd,
1162		     policydb->allow_unknown);
1163out:
1164	rcu_read_unlock();
1165	return;
1166allow:
1167	avd->allowed = 0xffffffff;
1168	goto out;
1169}
1170
1171void security_compute_av_user(struct selinux_state *state,
1172			      u32 ssid,
1173			      u32 tsid,
1174			      u16 tclass,
1175			      struct av_decision *avd)
1176{
1177	struct selinux_policy *policy;
1178	struct policydb *policydb;
1179	struct sidtab *sidtab;
1180	struct context *scontext = NULL, *tcontext = NULL;
1181
1182	rcu_read_lock();
1183	policy = rcu_dereference(state->policy);
1184	avd_init(policy, avd);
1185	if (!selinux_initialized(state))
1186		goto allow;
1187
1188	policydb = &policy->policydb;
1189	sidtab = policy->sidtab;
1190
1191	scontext = sidtab_search(sidtab, ssid);
1192	if (!scontext) {
1193		pr_err("SELinux: %s:  unrecognized SID %d\n",
1194		       __func__, ssid);
1195		goto out;
1196	}
1197
1198	/* permissive domain? */
1199	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1200		avd->flags |= AVD_FLAGS_PERMISSIVE;
1201
1202	tcontext = sidtab_search(sidtab, tsid);
1203	if (!tcontext) {
1204		pr_err("SELinux: %s:  unrecognized SID %d\n",
1205		       __func__, tsid);
1206		goto out;
1207	}
1208
1209	if (unlikely(!tclass)) {
1210		if (policydb->allow_unknown)
1211			goto allow;
1212		goto out;
1213	}
1214
1215	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1216				  NULL);
1217 out:
1218	rcu_read_unlock();
1219	return;
1220allow:
1221	avd->allowed = 0xffffffff;
1222	goto out;
1223}
1224
1225/*
1226 * Write the security context string representation of
1227 * the context structure `context' into a dynamically
1228 * allocated string of the correct size.  Set `*scontext'
1229 * to point to this string and set `*scontext_len' to
1230 * the length of the string.
1231 */
1232static int context_struct_to_string(struct policydb *p,
1233				    struct context *context,
1234				    char **scontext, u32 *scontext_len)
1235{
1236	char *scontextp;
1237
1238	if (scontext)
1239		*scontext = NULL;
1240	*scontext_len = 0;
1241
1242	if (context->len) {
1243		*scontext_len = context->len;
1244		if (scontext) {
1245			*scontext = kstrdup(context->str, GFP_ATOMIC);
1246			if (!(*scontext))
1247				return -ENOMEM;
1248		}
1249		return 0;
1250	}
1251
1252	/* Compute the size of the context. */
1253	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1254	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1255	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1256	*scontext_len += mls_compute_context_len(p, context);
1257
1258	if (!scontext)
1259		return 0;
1260
1261	/* Allocate space for the context; caller must free this space. */
1262	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1263	if (!scontextp)
1264		return -ENOMEM;
1265	*scontext = scontextp;
1266
1267	/*
1268	 * Copy the user name, role name and type name into the context.
1269	 */
1270	scontextp += sprintf(scontextp, "%s:%s:%s",
1271		sym_name(p, SYM_USERS, context->user - 1),
1272		sym_name(p, SYM_ROLES, context->role - 1),
1273		sym_name(p, SYM_TYPES, context->type - 1));
1274
1275	mls_sid_to_context(p, context, &scontextp);
1276
1277	*scontextp = 0;
1278
1279	return 0;
1280}
1281
1282static int sidtab_entry_to_string(struct policydb *p,
1283				  struct sidtab *sidtab,
1284				  struct sidtab_entry *entry,
1285				  char **scontext, u32 *scontext_len)
1286{
1287	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1288
1289	if (rc != -ENOENT)
1290		return rc;
1291
1292	rc = context_struct_to_string(p, &entry->context, scontext,
1293				      scontext_len);
1294	if (!rc && scontext)
1295		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1296	return rc;
1297}
1298
1299#include "initial_sid_to_string.h"
1300
1301int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1302{
1303	struct selinux_policy *policy;
1304	int rc;
1305
1306	if (!selinux_initialized(state)) {
1307		pr_err("SELinux: %s:  called before initial load_policy\n",
1308		       __func__);
1309		return -EINVAL;
1310	}
1311
1312	rcu_read_lock();
1313	policy = rcu_dereference(state->policy);
1314	rc = sidtab_hash_stats(policy->sidtab, page);
1315	rcu_read_unlock();
1316
1317	return rc;
1318}
1319
1320const char *security_get_initial_sid_context(u32 sid)
1321{
1322	if (unlikely(sid > SECINITSID_NUM))
1323		return NULL;
1324	return initial_sid_to_string[sid];
1325}
1326
1327static int security_sid_to_context_core(struct selinux_state *state,
1328					u32 sid, char **scontext,
1329					u32 *scontext_len, int force,
1330					int only_invalid)
1331{
1332	struct selinux_policy *policy;
1333	struct policydb *policydb;
1334	struct sidtab *sidtab;
1335	struct sidtab_entry *entry;
1336	int rc = 0;
1337
1338	if (scontext)
1339		*scontext = NULL;
1340	*scontext_len  = 0;
1341
1342	if (!selinux_initialized(state)) {
1343		if (sid <= SECINITSID_NUM) {
1344			char *scontextp;
1345			const char *s = initial_sid_to_string[sid];
1346
1347			if (!s)
1348				return -EINVAL;
1349			*scontext_len = strlen(s) + 1;
1350			if (!scontext)
1351				return 0;
1352			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1353			if (!scontextp)
1354				return -ENOMEM;
 
 
 
1355			*scontext = scontextp;
1356			return 0;
1357		}
1358		pr_err("SELinux: %s:  called before initial "
1359		       "load_policy on unknown SID %d\n", __func__, sid);
1360		return -EINVAL;
 
1361	}
1362	rcu_read_lock();
1363	policy = rcu_dereference(state->policy);
1364	policydb = &policy->policydb;
1365	sidtab = policy->sidtab;
1366
1367	if (force)
1368		entry = sidtab_search_entry_force(sidtab, sid);
1369	else
1370		entry = sidtab_search_entry(sidtab, sid);
1371	if (!entry) {
1372		pr_err("SELinux: %s:  unrecognized SID %d\n",
1373			__func__, sid);
1374		rc = -EINVAL;
1375		goto out_unlock;
1376	}
1377	if (only_invalid && !entry->context.len)
1378		goto out_unlock;
1379
1380	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1381				    scontext_len);
1382
1383out_unlock:
1384	rcu_read_unlock();
 
1385	return rc;
1386
1387}
1388
1389/**
1390 * security_sid_to_context - Obtain a context for a given SID.
1391 * @state: SELinux state
1392 * @sid: security identifier, SID
1393 * @scontext: security context
1394 * @scontext_len: length in bytes
1395 *
1396 * Write the string representation of the context associated with @sid
1397 * into a dynamically allocated string of the correct size.  Set @scontext
1398 * to point to this string and set @scontext_len to the length of the string.
1399 */
1400int security_sid_to_context(struct selinux_state *state,
1401			    u32 sid, char **scontext, u32 *scontext_len)
1402{
1403	return security_sid_to_context_core(state, sid, scontext,
1404					    scontext_len, 0, 0);
1405}
1406
1407int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1408				  char **scontext, u32 *scontext_len)
1409{
1410	return security_sid_to_context_core(state, sid, scontext,
1411					    scontext_len, 1, 0);
1412}
1413
1414/**
1415 * security_sid_to_context_inval - Obtain a context for a given SID if it
1416 *                                 is invalid.
1417 * @state: SELinux state
1418 * @sid: security identifier, SID
1419 * @scontext: security context
1420 * @scontext_len: length in bytes
1421 *
1422 * Write the string representation of the context associated with @sid
1423 * into a dynamically allocated string of the correct size, but only if the
1424 * context is invalid in the current policy.  Set @scontext to point to
1425 * this string (or NULL if the context is valid) and set @scontext_len to
1426 * the length of the string (or 0 if the context is valid).
1427 */
1428int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1429				  char **scontext, u32 *scontext_len)
1430{
1431	return security_sid_to_context_core(state, sid, scontext,
1432					    scontext_len, 1, 1);
1433}
1434
1435/*
1436 * Caveat:  Mutates scontext.
1437 */
1438static int string_to_context_struct(struct policydb *pol,
1439				    struct sidtab *sidtabp,
1440				    char *scontext,
1441				    struct context *ctx,
1442				    u32 def_sid)
1443{
1444	struct role_datum *role;
1445	struct type_datum *typdatum;
1446	struct user_datum *usrdatum;
1447	char *scontextp, *p, oldc;
1448	int rc = 0;
1449
1450	context_init(ctx);
1451
1452	/* Parse the security context. */
1453
1454	rc = -EINVAL;
1455	scontextp = (char *) scontext;
1456
1457	/* Extract the user. */
1458	p = scontextp;
1459	while (*p && *p != ':')
1460		p++;
1461
1462	if (*p == 0)
1463		goto out;
1464
1465	*p++ = 0;
1466
1467	usrdatum = symtab_search(&pol->p_users, scontextp);
1468	if (!usrdatum)
1469		goto out;
1470
1471	ctx->user = usrdatum->value;
1472
1473	/* Extract role. */
1474	scontextp = p;
1475	while (*p && *p != ':')
1476		p++;
1477
1478	if (*p == 0)
1479		goto out;
1480
1481	*p++ = 0;
1482
1483	role = symtab_search(&pol->p_roles, scontextp);
1484	if (!role)
1485		goto out;
1486	ctx->role = role->value;
1487
1488	/* Extract type. */
1489	scontextp = p;
1490	while (*p && *p != ':')
1491		p++;
1492	oldc = *p;
1493	*p++ = 0;
1494
1495	typdatum = symtab_search(&pol->p_types, scontextp);
1496	if (!typdatum || typdatum->attribute)
1497		goto out;
1498
1499	ctx->type = typdatum->value;
1500
1501	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1502	if (rc)
1503		goto out;
1504
1505	/* Check the validity of the new context. */
1506	rc = -EINVAL;
1507	if (!policydb_context_isvalid(pol, ctx))
1508		goto out;
1509	rc = 0;
1510out:
1511	if (rc)
1512		context_destroy(ctx);
1513	return rc;
1514}
1515
1516static int security_context_to_sid_core(struct selinux_state *state,
1517					const char *scontext, u32 scontext_len,
1518					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1519					int force)
1520{
1521	struct selinux_policy *policy;
1522	struct policydb *policydb;
1523	struct sidtab *sidtab;
1524	char *scontext2, *str = NULL;
1525	struct context context;
1526	int rc = 0;
1527
1528	/* An empty security context is never valid. */
1529	if (!scontext_len)
1530		return -EINVAL;
1531
1532	/* Copy the string to allow changes and ensure a NUL terminator */
1533	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1534	if (!scontext2)
1535		return -ENOMEM;
1536
1537	if (!selinux_initialized(state)) {
1538		int i;
1539
1540		for (i = 1; i < SECINITSID_NUM; i++) {
1541			const char *s = initial_sid_to_string[i];
1542
1543			if (s && !strcmp(s, scontext2)) {
1544				*sid = i;
1545				goto out;
1546			}
1547		}
1548		*sid = SECINITSID_KERNEL;
1549		goto out;
1550	}
1551	*sid = SECSID_NULL;
1552
1553	if (force) {
1554		/* Save another copy for storing in uninterpreted form */
1555		rc = -ENOMEM;
1556		str = kstrdup(scontext2, gfp_flags);
1557		if (!str)
1558			goto out;
1559	}
1560retry:
1561	rcu_read_lock();
1562	policy = rcu_dereference(state->policy);
1563	policydb = &policy->policydb;
1564	sidtab = policy->sidtab;
1565	rc = string_to_context_struct(policydb, sidtab, scontext2,
1566				      &context, def_sid);
1567	if (rc == -EINVAL && force) {
1568		context.str = str;
1569		context.len = strlen(str) + 1;
1570		str = NULL;
1571	} else if (rc)
1572		goto out_unlock;
1573	rc = sidtab_context_to_sid(sidtab, &context, sid);
1574	if (rc == -ESTALE) {
1575		rcu_read_unlock();
1576		if (context.str) {
1577			str = context.str;
1578			context.str = NULL;
1579		}
1580		context_destroy(&context);
1581		goto retry;
1582	}
1583	context_destroy(&context);
1584out_unlock:
1585	rcu_read_unlock();
1586out:
1587	kfree(scontext2);
1588	kfree(str);
1589	return rc;
1590}
1591
1592/**
1593 * security_context_to_sid - Obtain a SID for a given security context.
1594 * @state: SELinux state
1595 * @scontext: security context
1596 * @scontext_len: length in bytes
1597 * @sid: security identifier, SID
1598 * @gfp: context for the allocation
1599 *
1600 * Obtains a SID associated with the security context that
1601 * has the string representation specified by @scontext.
1602 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1603 * memory is available, or 0 on success.
1604 */
1605int security_context_to_sid(struct selinux_state *state,
1606			    const char *scontext, u32 scontext_len, u32 *sid,
1607			    gfp_t gfp)
1608{
1609	return security_context_to_sid_core(state, scontext, scontext_len,
1610					    sid, SECSID_NULL, gfp, 0);
1611}
1612
1613int security_context_str_to_sid(struct selinux_state *state,
1614				const char *scontext, u32 *sid, gfp_t gfp)
1615{
1616	return security_context_to_sid(state, scontext, strlen(scontext),
1617				       sid, gfp);
1618}
1619
1620/**
1621 * security_context_to_sid_default - Obtain a SID for a given security context,
1622 * falling back to specified default if needed.
1623 *
1624 * @state: SELinux state
1625 * @scontext: security context
1626 * @scontext_len: length in bytes
1627 * @sid: security identifier, SID
1628 * @def_sid: default SID to assign on error
1629 *
1630 * Obtains a SID associated with the security context that
1631 * has the string representation specified by @scontext.
1632 * The default SID is passed to the MLS layer to be used to allow
1633 * kernel labeling of the MLS field if the MLS field is not present
1634 * (for upgrading to MLS without full relabel).
1635 * Implicitly forces adding of the context even if it cannot be mapped yet.
1636 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1637 * memory is available, or 0 on success.
1638 */
1639int security_context_to_sid_default(struct selinux_state *state,
1640				    const char *scontext, u32 scontext_len,
1641				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1642{
1643	return security_context_to_sid_core(state, scontext, scontext_len,
1644					    sid, def_sid, gfp_flags, 1);
1645}
1646
1647int security_context_to_sid_force(struct selinux_state *state,
1648				  const char *scontext, u32 scontext_len,
1649				  u32 *sid)
1650{
1651	return security_context_to_sid_core(state, scontext, scontext_len,
1652					    sid, SECSID_NULL, GFP_KERNEL, 1);
1653}
1654
1655static int compute_sid_handle_invalid_context(
1656	struct selinux_state *state,
1657	struct selinux_policy *policy,
1658	struct sidtab_entry *sentry,
1659	struct sidtab_entry *tentry,
1660	u16 tclass,
1661	struct context *newcontext)
1662{
1663	struct policydb *policydb = &policy->policydb;
1664	struct sidtab *sidtab = policy->sidtab;
1665	char *s = NULL, *t = NULL, *n = NULL;
1666	u32 slen, tlen, nlen;
1667	struct audit_buffer *ab;
1668
1669	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1670		goto out;
1671	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1672		goto out;
1673	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1674		goto out;
1675	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1676	audit_log_format(ab,
1677			 "op=security_compute_sid invalid_context=");
1678	/* no need to record the NUL with untrusted strings */
1679	audit_log_n_untrustedstring(ab, n, nlen - 1);
1680	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1681			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1682	audit_log_end(ab);
1683out:
1684	kfree(s);
1685	kfree(t);
1686	kfree(n);
1687	if (!enforcing_enabled(state))
1688		return 0;
1689	return -EACCES;
1690}
1691
1692static void filename_compute_type(struct policydb *policydb,
1693				  struct context *newcontext,
1694				  u32 stype, u32 ttype, u16 tclass,
1695				  const char *objname)
1696{
1697	struct filename_trans_key ft;
1698	struct filename_trans_datum *datum;
1699
1700	/*
1701	 * Most filename trans rules are going to live in specific directories
1702	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1703	 * if the ttype does not contain any rules.
1704	 */
1705	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1706		return;
1707
 
1708	ft.ttype = ttype;
1709	ft.tclass = tclass;
1710	ft.name = objname;
1711
1712	datum = policydb_filenametr_search(policydb, &ft);
1713	while (datum) {
1714		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1715			newcontext->type = datum->otype;
1716			return;
1717		}
1718		datum = datum->next;
1719	}
1720}
1721
1722static int security_compute_sid(struct selinux_state *state,
1723				u32 ssid,
1724				u32 tsid,
1725				u16 orig_tclass,
1726				u32 specified,
1727				const char *objname,
1728				u32 *out_sid,
1729				bool kern)
1730{
1731	struct selinux_policy *policy;
1732	struct policydb *policydb;
1733	struct sidtab *sidtab;
1734	struct class_datum *cladatum;
1735	struct context *scontext, *tcontext, newcontext;
1736	struct sidtab_entry *sentry, *tentry;
1737	struct avtab_key avkey;
1738	struct avtab_datum *avdatum;
1739	struct avtab_node *node;
1740	u16 tclass;
1741	int rc = 0;
1742	bool sock;
1743
1744	if (!selinux_initialized(state)) {
1745		switch (orig_tclass) {
1746		case SECCLASS_PROCESS: /* kernel value */
1747			*out_sid = ssid;
1748			break;
1749		default:
1750			*out_sid = tsid;
1751			break;
1752		}
1753		goto out;
1754	}
1755
1756retry:
1757	cladatum = NULL;
1758	context_init(&newcontext);
1759
1760	rcu_read_lock();
1761
1762	policy = rcu_dereference(state->policy);
1763
1764	if (kern) {
1765		tclass = unmap_class(&policy->map, orig_tclass);
1766		sock = security_is_socket_class(orig_tclass);
1767	} else {
1768		tclass = orig_tclass;
1769		sock = security_is_socket_class(map_class(&policy->map,
1770							  tclass));
1771	}
1772
1773	policydb = &policy->policydb;
1774	sidtab = policy->sidtab;
1775
1776	sentry = sidtab_search_entry(sidtab, ssid);
1777	if (!sentry) {
1778		pr_err("SELinux: %s:  unrecognized SID %d\n",
1779		       __func__, ssid);
1780		rc = -EINVAL;
1781		goto out_unlock;
1782	}
1783	tentry = sidtab_search_entry(sidtab, tsid);
1784	if (!tentry) {
1785		pr_err("SELinux: %s:  unrecognized SID %d\n",
1786		       __func__, tsid);
1787		rc = -EINVAL;
1788		goto out_unlock;
1789	}
1790
1791	scontext = &sentry->context;
1792	tcontext = &tentry->context;
1793
1794	if (tclass && tclass <= policydb->p_classes.nprim)
1795		cladatum = policydb->class_val_to_struct[tclass - 1];
1796
1797	/* Set the user identity. */
1798	switch (specified) {
1799	case AVTAB_TRANSITION:
1800	case AVTAB_CHANGE:
1801		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1802			newcontext.user = tcontext->user;
1803		} else {
1804			/* notice this gets both DEFAULT_SOURCE and unset */
1805			/* Use the process user identity. */
1806			newcontext.user = scontext->user;
1807		}
1808		break;
1809	case AVTAB_MEMBER:
1810		/* Use the related object owner. */
1811		newcontext.user = tcontext->user;
1812		break;
1813	}
1814
1815	/* Set the role to default values. */
1816	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1817		newcontext.role = scontext->role;
1818	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1819		newcontext.role = tcontext->role;
1820	} else {
1821		if ((tclass == policydb->process_class) || sock)
1822			newcontext.role = scontext->role;
1823		else
1824			newcontext.role = OBJECT_R_VAL;
1825	}
1826
1827	/* Set the type to default values. */
1828	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1829		newcontext.type = scontext->type;
1830	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1831		newcontext.type = tcontext->type;
1832	} else {
1833		if ((tclass == policydb->process_class) || sock) {
1834			/* Use the type of process. */
1835			newcontext.type = scontext->type;
1836		} else {
1837			/* Use the type of the related object. */
1838			newcontext.type = tcontext->type;
1839		}
1840	}
1841
1842	/* Look for a type transition/member/change rule. */
1843	avkey.source_type = scontext->type;
1844	avkey.target_type = tcontext->type;
1845	avkey.target_class = tclass;
1846	avkey.specified = specified;
1847	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1848
1849	/* If no permanent rule, also check for enabled conditional rules */
1850	if (!avdatum) {
1851		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1852		for (; node; node = avtab_search_node_next(node, specified)) {
1853			if (node->key.specified & AVTAB_ENABLED) {
1854				avdatum = &node->datum;
1855				break;
1856			}
1857		}
1858	}
1859
1860	if (avdatum) {
1861		/* Use the type from the type transition/member/change rule. */
1862		newcontext.type = avdatum->u.data;
1863	}
1864
1865	/* if we have a objname this is a file trans check so check those rules */
1866	if (objname)
1867		filename_compute_type(policydb, &newcontext, scontext->type,
1868				      tcontext->type, tclass, objname);
1869
1870	/* Check for class-specific changes. */
1871	if (specified & AVTAB_TRANSITION) {
1872		/* Look for a role transition rule. */
1873		struct role_trans_datum *rtd;
1874		struct role_trans_key rtk = {
1875			.role = scontext->role,
1876			.type = tcontext->type,
1877			.tclass = tclass,
1878		};
1879
1880		rtd = policydb_roletr_search(policydb, &rtk);
1881		if (rtd)
1882			newcontext.role = rtd->new_role;
1883	}
1884
1885	/* Set the MLS attributes.
1886	   This is done last because it may allocate memory. */
1887	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1888			     &newcontext, sock);
1889	if (rc)
1890		goto out_unlock;
1891
1892	/* Check the validity of the context. */
1893	if (!policydb_context_isvalid(policydb, &newcontext)) {
1894		rc = compute_sid_handle_invalid_context(state, policy, sentry,
1895							tentry, tclass,
 
1896							&newcontext);
1897		if (rc)
1898			goto out_unlock;
1899	}
1900	/* Obtain the sid for the context. */
1901	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1902	if (rc == -ESTALE) {
1903		rcu_read_unlock();
1904		context_destroy(&newcontext);
1905		goto retry;
1906	}
1907out_unlock:
1908	rcu_read_unlock();
1909	context_destroy(&newcontext);
1910out:
1911	return rc;
1912}
1913
1914/**
1915 * security_transition_sid - Compute the SID for a new subject/object.
1916 * @state: SELinux state
1917 * @ssid: source security identifier
1918 * @tsid: target security identifier
1919 * @tclass: target security class
1920 * @out_sid: security identifier for new subject/object
1921 *
1922 * Compute a SID to use for labeling a new subject or object in the
1923 * class @tclass based on a SID pair (@ssid, @tsid).
1924 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1925 * if insufficient memory is available, or %0 if the new SID was
1926 * computed successfully.
1927 */
1928int security_transition_sid(struct selinux_state *state,
1929			    u32 ssid, u32 tsid, u16 tclass,
1930			    const struct qstr *qstr, u32 *out_sid)
1931{
1932	return security_compute_sid(state, ssid, tsid, tclass,
1933				    AVTAB_TRANSITION,
1934				    qstr ? qstr->name : NULL, out_sid, true);
1935}
1936
1937int security_transition_sid_user(struct selinux_state *state,
1938				 u32 ssid, u32 tsid, u16 tclass,
1939				 const char *objname, u32 *out_sid)
1940{
1941	return security_compute_sid(state, ssid, tsid, tclass,
1942				    AVTAB_TRANSITION,
1943				    objname, out_sid, false);
1944}
1945
1946/**
1947 * security_member_sid - Compute the SID for member selection.
1948 * @ssid: source security identifier
1949 * @tsid: target security identifier
1950 * @tclass: target security class
1951 * @out_sid: security identifier for selected member
1952 *
1953 * Compute a SID to use when selecting a member of a polyinstantiated
1954 * object of class @tclass based on a SID pair (@ssid, @tsid).
1955 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1956 * if insufficient memory is available, or %0 if the SID was
1957 * computed successfully.
1958 */
1959int security_member_sid(struct selinux_state *state,
1960			u32 ssid,
1961			u32 tsid,
1962			u16 tclass,
1963			u32 *out_sid)
1964{
1965	return security_compute_sid(state, ssid, tsid, tclass,
1966				    AVTAB_MEMBER, NULL,
1967				    out_sid, false);
1968}
1969
1970/**
1971 * security_change_sid - Compute the SID for object relabeling.
1972 * @state: SELinux state
1973 * @ssid: source security identifier
1974 * @tsid: target security identifier
1975 * @tclass: target security class
1976 * @out_sid: security identifier for selected member
1977 *
1978 * Compute a SID to use for relabeling an object of class @tclass
1979 * based on a SID pair (@ssid, @tsid).
1980 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1981 * if insufficient memory is available, or %0 if the SID was
1982 * computed successfully.
1983 */
1984int security_change_sid(struct selinux_state *state,
1985			u32 ssid,
1986			u32 tsid,
1987			u16 tclass,
1988			u32 *out_sid)
1989{
1990	return security_compute_sid(state,
1991				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1992				    out_sid, false);
1993}
1994
1995static inline int convert_context_handle_invalid_context(
1996	struct selinux_state *state,
1997	struct policydb *policydb,
1998	struct context *context)
1999{
 
2000	char *s;
2001	u32 len;
2002
2003	if (enforcing_enabled(state))
2004		return -EINVAL;
2005
2006	if (!context_struct_to_string(policydb, context, &s, &len)) {
2007		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2008			s);
2009		kfree(s);
2010	}
2011	return 0;
2012}
2013
 
 
 
 
 
 
2014/*
2015 * Convert the values in the security context
2016 * structure `oldc' from the values specified
2017 * in the policy `p->oldp' to the values specified
2018 * in the policy `p->newp', storing the new context
2019 * in `newc'.  Verify that the context is valid
2020 * under the new policy.
2021 */
2022static int convert_context(struct context *oldc, struct context *newc, void *p)
2023{
2024	struct convert_context_args *args;
2025	struct ocontext *oc;
2026	struct role_datum *role;
2027	struct type_datum *typdatum;
2028	struct user_datum *usrdatum;
2029	char *s;
2030	u32 len;
2031	int rc;
2032
2033	args = p;
2034
2035	if (oldc->str) {
2036		s = kstrdup(oldc->str, GFP_KERNEL);
2037		if (!s)
2038			return -ENOMEM;
2039
2040		rc = string_to_context_struct(args->newp, NULL, s,
2041					      newc, SECSID_NULL);
2042		if (rc == -EINVAL) {
2043			/*
2044			 * Retain string representation for later mapping.
2045			 *
2046			 * IMPORTANT: We need to copy the contents of oldc->str
2047			 * back into s again because string_to_context_struct()
2048			 * may have garbled it.
2049			 */
2050			memcpy(s, oldc->str, oldc->len);
2051			context_init(newc);
2052			newc->str = s;
2053			newc->len = oldc->len;
2054			return 0;
2055		}
2056		kfree(s);
2057		if (rc) {
2058			/* Other error condition, e.g. ENOMEM. */
2059			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2060			       oldc->str, -rc);
2061			return rc;
2062		}
2063		pr_info("SELinux:  Context %s became valid (mapped).\n",
2064			oldc->str);
2065		return 0;
2066	}
2067
2068	context_init(newc);
2069
2070	/* Convert the user. */
2071	usrdatum = symtab_search(&args->newp->p_users,
2072				 sym_name(args->oldp,
2073					  SYM_USERS, oldc->user - 1));
 
2074	if (!usrdatum)
2075		goto bad;
2076	newc->user = usrdatum->value;
2077
2078	/* Convert the role. */
2079	role = symtab_search(&args->newp->p_roles,
2080			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
 
2081	if (!role)
2082		goto bad;
2083	newc->role = role->value;
2084
2085	/* Convert the type. */
2086	typdatum = symtab_search(&args->newp->p_types,
2087				 sym_name(args->oldp,
2088					  SYM_TYPES, oldc->type - 1));
 
2089	if (!typdatum)
2090		goto bad;
2091	newc->type = typdatum->value;
2092
2093	/* Convert the MLS fields if dealing with MLS policies */
2094	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2095		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2096		if (rc)
2097			goto bad;
2098	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2099		/*
2100		 * Switching between non-MLS and MLS policy:
2101		 * ensure that the MLS fields of the context for all
2102		 * existing entries in the sidtab are filled in with a
2103		 * suitable default value, likely taken from one of the
2104		 * initial SIDs.
2105		 */
2106		oc = args->newp->ocontexts[OCON_ISID];
2107		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2108			oc = oc->next;
 
2109		if (!oc) {
2110			pr_err("SELinux:  unable to look up"
2111				" the initial SIDs list\n");
2112			goto bad;
2113		}
2114		rc = mls_range_set(newc, &oc->context[0].range);
2115		if (rc)
2116			goto bad;
2117	}
2118
2119	/* Check the validity of the new context. */
2120	if (!policydb_context_isvalid(args->newp, newc)) {
2121		rc = convert_context_handle_invalid_context(args->state,
2122							args->oldp,
2123							oldc);
2124		if (rc)
2125			goto bad;
2126	}
2127
2128	return 0;
2129bad:
2130	/* Map old representation to string and save it. */
2131	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2132	if (rc)
2133		return rc;
2134	context_destroy(newc);
2135	newc->str = s;
2136	newc->len = len;
2137	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2138		newc->str);
2139	return 0;
2140}
2141
2142static void security_load_policycaps(struct selinux_state *state,
2143				struct selinux_policy *policy)
2144{
2145	struct policydb *p;
2146	unsigned int i;
2147	struct ebitmap_node *node;
2148
2149	p = &policy->policydb;
2150
2151	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2152		WRITE_ONCE(state->policycap[i],
2153			ebitmap_get_bit(&p->policycaps, i));
2154
2155	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2156		pr_info("SELinux:  policy capability %s=%d\n",
2157			selinux_policycap_names[i],
2158			ebitmap_get_bit(&p->policycaps, i));
2159
2160	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2161		if (i >= ARRAY_SIZE(selinux_policycap_names))
2162			pr_info("SELinux:  unknown policy capability %u\n",
2163				i);
2164	}
2165}
2166
2167static int security_preserve_bools(struct selinux_policy *oldpolicy,
2168				struct selinux_policy *newpolicy);
2169
2170static void selinux_policy_free(struct selinux_policy *policy)
2171{
2172	if (!policy)
2173		return;
2174
2175	sidtab_destroy(policy->sidtab);
2176	kfree(policy->map.mapping);
2177	policydb_destroy(&policy->policydb);
2178	kfree(policy->sidtab);
2179	kfree(policy);
2180}
2181
2182static void selinux_policy_cond_free(struct selinux_policy *policy)
2183{
2184	cond_policydb_destroy_dup(&policy->policydb);
2185	kfree(policy);
2186}
2187
2188void selinux_policy_cancel(struct selinux_state *state,
2189			   struct selinux_load_state *load_state)
2190{
2191	struct selinux_policy *oldpolicy;
2192
2193	oldpolicy = rcu_dereference_protected(state->policy,
2194					lockdep_is_held(&state->policy_mutex));
2195
2196	sidtab_cancel_convert(oldpolicy->sidtab);
2197	selinux_policy_free(load_state->policy);
2198	kfree(load_state->convert_data);
2199}
2200
2201static void selinux_notify_policy_change(struct selinux_state *state,
2202					u32 seqno)
2203{
2204	/* Flush external caches and notify userspace of policy load */
2205	avc_ss_reset(state->avc, seqno);
2206	selnl_notify_policyload(seqno);
2207	selinux_status_update_policyload(state, seqno);
2208	selinux_netlbl_cache_invalidate();
2209	selinux_xfrm_notify_policyload();
2210	selinux_ima_measure_state_locked(state);
2211}
2212
2213void selinux_policy_commit(struct selinux_state *state,
2214			   struct selinux_load_state *load_state)
2215{
2216	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2217	unsigned long flags;
2218	u32 seqno;
2219
2220	oldpolicy = rcu_dereference_protected(state->policy,
2221					lockdep_is_held(&state->policy_mutex));
2222
2223	/* If switching between different policy types, log MLS status */
2224	if (oldpolicy) {
2225		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2226			pr_info("SELinux: Disabling MLS support...\n");
2227		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2228			pr_info("SELinux: Enabling MLS support...\n");
2229	}
2230
2231	/* Set latest granting seqno for new policy. */
2232	if (oldpolicy)
2233		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2234	else
2235		newpolicy->latest_granting = 1;
2236	seqno = newpolicy->latest_granting;
2237
2238	/* Install the new policy. */
2239	if (oldpolicy) {
2240		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2241		rcu_assign_pointer(state->policy, newpolicy);
2242		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2243	} else {
2244		rcu_assign_pointer(state->policy, newpolicy);
2245	}
2246
2247	/* Load the policycaps from the new policy */
2248	security_load_policycaps(state, newpolicy);
2249
2250	if (!selinux_initialized(state)) {
2251		/*
2252		 * After first policy load, the security server is
2253		 * marked as initialized and ready to handle requests and
2254		 * any objects created prior to policy load are then labeled.
2255		 */
2256		selinux_mark_initialized(state);
2257		selinux_complete_init();
2258	}
2259
2260	/* Free the old policy */
2261	synchronize_rcu();
2262	selinux_policy_free(oldpolicy);
2263	kfree(load_state->convert_data);
2264
2265	/* Notify others of the policy change */
2266	selinux_notify_policy_change(state, seqno);
2267}
2268
2269/**
2270 * security_load_policy - Load a security policy configuration.
2271 * @state: SELinux state
2272 * @data: binary policy data
2273 * @len: length of data in bytes
2274 *
2275 * Load a new set of security policy configuration data,
2276 * validate it and convert the SID table as necessary.
2277 * This function will flush the access vector cache after
2278 * loading the new policy.
2279 */
2280int security_load_policy(struct selinux_state *state, void *data, size_t len,
2281			 struct selinux_load_state *load_state)
2282{
2283	struct selinux_policy *newpolicy, *oldpolicy;
2284	struct selinux_policy_convert_data *convert_data;
 
 
 
 
 
 
2285	int rc = 0;
2286	struct policy_file file = { data, len }, *fp = &file;
2287
2288	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2289	if (!newpolicy)
2290		return -ENOMEM;
 
 
 
 
 
2291
2292	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2293	if (!newpolicy->sidtab) {
2294		rc = -ENOMEM;
2295		goto err_policy;
2296	}
2297
2298	rc = policydb_read(&newpolicy->policydb, fp);
2299	if (rc)
2300		goto err_sidtab;
 
 
 
2301
2302	newpolicy->policydb.len = len;
2303	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2304				&newpolicy->map);
2305	if (rc)
2306		goto err_policydb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2307
2308	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2309	if (rc) {
2310		pr_err("SELinux:  unable to load the initial SIDs\n");
2311		goto err_mapping;
2312	}
2313
2314	if (!selinux_initialized(state)) {
2315		/* First policy load, so no need to preserve state from old policy */
2316		load_state->policy = newpolicy;
2317		load_state->convert_data = NULL;
2318		return 0;
 
 
 
 
 
 
 
 
2319	}
2320
2321	oldpolicy = rcu_dereference_protected(state->policy,
2322					lockdep_is_held(&state->policy_mutex));
 
2323
2324	/* Preserve active boolean values from the old policy */
2325	rc = security_preserve_bools(oldpolicy, newpolicy);
2326	if (rc) {
2327		pr_err("SELinux:  unable to preserve booleans\n");
2328		goto err_free_isids;
2329	}
2330
2331	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2332	if (!convert_data) {
2333		rc = -ENOMEM;
2334		goto err_free_isids;
2335	}
2336
2337	/*
2338	 * Convert the internal representations of contexts
2339	 * in the new SID table.
2340	 */
2341	convert_data->args.state = state;
2342	convert_data->args.oldp = &oldpolicy->policydb;
2343	convert_data->args.newp = &newpolicy->policydb;
2344
2345	convert_data->sidtab_params.func = convert_context;
2346	convert_data->sidtab_params.args = &convert_data->args;
2347	convert_data->sidtab_params.target = newpolicy->sidtab;
2348
2349	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2350	if (rc) {
2351		pr_err("SELinux:  unable to convert the internal"
2352			" representation of contexts in the new SID"
2353			" table\n");
2354		goto err_free_convert_data;
2355	}
2356
2357	load_state->policy = newpolicy;
2358	load_state->convert_data = convert_data;
2359	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2360
2361err_free_convert_data:
2362	kfree(convert_data);
2363err_free_isids:
2364	sidtab_destroy(newpolicy->sidtab);
2365err_mapping:
2366	kfree(newpolicy->map.mapping);
2367err_policydb:
2368	policydb_destroy(&newpolicy->policydb);
2369err_sidtab:
2370	kfree(newpolicy->sidtab);
2371err_policy:
2372	kfree(newpolicy);
2373
 
 
2374	return rc;
2375}
2376
 
 
 
 
 
 
 
 
 
 
 
 
2377/**
2378 * security_port_sid - Obtain the SID for a port.
2379 * @state: SELinux state
2380 * @protocol: protocol number
2381 * @port: port number
2382 * @out_sid: security identifier
2383 */
2384int security_port_sid(struct selinux_state *state,
2385		      u8 protocol, u16 port, u32 *out_sid)
2386{
2387	struct selinux_policy *policy;
2388	struct policydb *policydb;
2389	struct sidtab *sidtab;
2390	struct ocontext *c;
2391	int rc;
2392
2393	if (!selinux_initialized(state)) {
2394		*out_sid = SECINITSID_PORT;
2395		return 0;
2396	}
2397
2398retry:
2399	rc = 0;
2400	rcu_read_lock();
2401	policy = rcu_dereference(state->policy);
2402	policydb = &policy->policydb;
2403	sidtab = policy->sidtab;
2404
2405	c = policydb->ocontexts[OCON_PORT];
2406	while (c) {
2407		if (c->u.port.protocol == protocol &&
2408		    c->u.port.low_port <= port &&
2409		    c->u.port.high_port >= port)
2410			break;
2411		c = c->next;
2412	}
2413
2414	if (c) {
2415		if (!c->sid[0]) {
2416			rc = sidtab_context_to_sid(sidtab, &c->context[0],
 
2417						   &c->sid[0]);
2418			if (rc == -ESTALE) {
2419				rcu_read_unlock();
2420				goto retry;
2421			}
2422			if (rc)
2423				goto out;
2424		}
2425		*out_sid = c->sid[0];
2426	} else {
2427		*out_sid = SECINITSID_PORT;
2428	}
2429
2430out:
2431	rcu_read_unlock();
2432	return rc;
2433}
2434
2435/**
2436 * security_ib_pkey_sid - Obtain the SID for a pkey.
2437 * @state: SELinux state
2438 * @subnet_prefix: Subnet Prefix
2439 * @pkey_num: pkey number
2440 * @out_sid: security identifier
2441 */
2442int security_ib_pkey_sid(struct selinux_state *state,
2443			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2444{
2445	struct selinux_policy *policy;
2446	struct policydb *policydb;
2447	struct sidtab *sidtab;
2448	struct ocontext *c;
2449	int rc;
2450
2451	if (!selinux_initialized(state)) {
2452		*out_sid = SECINITSID_UNLABELED;
2453		return 0;
2454	}
2455
2456retry:
2457	rc = 0;
2458	rcu_read_lock();
2459	policy = rcu_dereference(state->policy);
2460	policydb = &policy->policydb;
2461	sidtab = policy->sidtab;
2462
2463	c = policydb->ocontexts[OCON_IBPKEY];
2464	while (c) {
2465		if (c->u.ibpkey.low_pkey <= pkey_num &&
2466		    c->u.ibpkey.high_pkey >= pkey_num &&
2467		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2468			break;
2469
2470		c = c->next;
2471	}
2472
2473	if (c) {
2474		if (!c->sid[0]) {
2475			rc = sidtab_context_to_sid(sidtab,
2476						   &c->context[0],
2477						   &c->sid[0]);
2478			if (rc == -ESTALE) {
2479				rcu_read_unlock();
2480				goto retry;
2481			}
2482			if (rc)
2483				goto out;
2484		}
2485		*out_sid = c->sid[0];
2486	} else
2487		*out_sid = SECINITSID_UNLABELED;
2488
2489out:
2490	rcu_read_unlock();
2491	return rc;
2492}
2493
2494/**
2495 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2496 * @state: SELinux state
2497 * @dev_name: device name
2498 * @port: port number
2499 * @out_sid: security identifier
2500 */
2501int security_ib_endport_sid(struct selinux_state *state,
2502			    const char *dev_name, u8 port_num, u32 *out_sid)
2503{
2504	struct selinux_policy *policy;
2505	struct policydb *policydb;
2506	struct sidtab *sidtab;
2507	struct ocontext *c;
2508	int rc;
2509
2510	if (!selinux_initialized(state)) {
2511		*out_sid = SECINITSID_UNLABELED;
2512		return 0;
2513	}
2514
2515retry:
2516	rc = 0;
2517	rcu_read_lock();
2518	policy = rcu_dereference(state->policy);
2519	policydb = &policy->policydb;
2520	sidtab = policy->sidtab;
2521
2522	c = policydb->ocontexts[OCON_IBENDPORT];
2523	while (c) {
2524		if (c->u.ibendport.port == port_num &&
2525		    !strncmp(c->u.ibendport.dev_name,
2526			     dev_name,
2527			     IB_DEVICE_NAME_MAX))
2528			break;
2529
2530		c = c->next;
2531	}
2532
2533	if (c) {
2534		if (!c->sid[0]) {
2535			rc = sidtab_context_to_sid(sidtab, &c->context[0],
 
2536						   &c->sid[0]);
2537			if (rc == -ESTALE) {
2538				rcu_read_unlock();
2539				goto retry;
2540			}
2541			if (rc)
2542				goto out;
2543		}
2544		*out_sid = c->sid[0];
2545	} else
2546		*out_sid = SECINITSID_UNLABELED;
2547
2548out:
2549	rcu_read_unlock();
2550	return rc;
2551}
2552
2553/**
2554 * security_netif_sid - Obtain the SID for a network interface.
2555 * @state: SELinux state
2556 * @name: interface name
2557 * @if_sid: interface SID
2558 */
2559int security_netif_sid(struct selinux_state *state,
2560		       char *name, u32 *if_sid)
2561{
2562	struct selinux_policy *policy;
2563	struct policydb *policydb;
2564	struct sidtab *sidtab;
2565	int rc;
2566	struct ocontext *c;
2567
2568	if (!selinux_initialized(state)) {
2569		*if_sid = SECINITSID_NETIF;
2570		return 0;
2571	}
2572
2573retry:
2574	rc = 0;
2575	rcu_read_lock();
2576	policy = rcu_dereference(state->policy);
2577	policydb = &policy->policydb;
2578	sidtab = policy->sidtab;
2579
2580	c = policydb->ocontexts[OCON_NETIF];
2581	while (c) {
2582		if (strcmp(name, c->u.name) == 0)
2583			break;
2584		c = c->next;
2585	}
2586
2587	if (c) {
2588		if (!c->sid[0] || !c->sid[1]) {
2589			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2590						   &c->sid[0]);
2591			if (rc == -ESTALE) {
2592				rcu_read_unlock();
2593				goto retry;
2594			}
2595			if (rc)
2596				goto out;
2597			rc = sidtab_context_to_sid(sidtab, &c->context[1],
 
2598						   &c->sid[1]);
2599			if (rc == -ESTALE) {
2600				rcu_read_unlock();
2601				goto retry;
2602			}
2603			if (rc)
2604				goto out;
2605		}
2606		*if_sid = c->sid[0];
2607	} else
2608		*if_sid = SECINITSID_NETIF;
2609
2610out:
2611	rcu_read_unlock();
2612	return rc;
2613}
2614
2615static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2616{
2617	int i, fail = 0;
2618
2619	for (i = 0; i < 4; i++)
2620		if (addr[i] != (input[i] & mask[i])) {
2621			fail = 1;
2622			break;
2623		}
2624
2625	return !fail;
2626}
2627
2628/**
2629 * security_node_sid - Obtain the SID for a node (host).
2630 * @state: SELinux state
2631 * @domain: communication domain aka address family
2632 * @addrp: address
2633 * @addrlen: address length in bytes
2634 * @out_sid: security identifier
2635 */
2636int security_node_sid(struct selinux_state *state,
2637		      u16 domain,
2638		      void *addrp,
2639		      u32 addrlen,
2640		      u32 *out_sid)
2641{
2642	struct selinux_policy *policy;
2643	struct policydb *policydb;
2644	struct sidtab *sidtab;
2645	int rc;
2646	struct ocontext *c;
2647
2648	if (!selinux_initialized(state)) {
2649		*out_sid = SECINITSID_NODE;
2650		return 0;
2651	}
2652
2653retry:
2654	rcu_read_lock();
2655	policy = rcu_dereference(state->policy);
2656	policydb = &policy->policydb;
2657	sidtab = policy->sidtab;
2658
2659	switch (domain) {
2660	case AF_INET: {
2661		u32 addr;
2662
2663		rc = -EINVAL;
2664		if (addrlen != sizeof(u32))
2665			goto out;
2666
2667		addr = *((u32 *)addrp);
2668
2669		c = policydb->ocontexts[OCON_NODE];
2670		while (c) {
2671			if (c->u.node.addr == (addr & c->u.node.mask))
2672				break;
2673			c = c->next;
2674		}
2675		break;
2676	}
2677
2678	case AF_INET6:
2679		rc = -EINVAL;
2680		if (addrlen != sizeof(u64) * 2)
2681			goto out;
2682		c = policydb->ocontexts[OCON_NODE6];
2683		while (c) {
2684			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2685						c->u.node6.mask))
2686				break;
2687			c = c->next;
2688		}
2689		break;
2690
2691	default:
2692		rc = 0;
2693		*out_sid = SECINITSID_NODE;
2694		goto out;
2695	}
2696
2697	if (c) {
2698		if (!c->sid[0]) {
2699			rc = sidtab_context_to_sid(sidtab,
2700						   &c->context[0],
2701						   &c->sid[0]);
2702			if (rc == -ESTALE) {
2703				rcu_read_unlock();
2704				goto retry;
2705			}
2706			if (rc)
2707				goto out;
2708		}
2709		*out_sid = c->sid[0];
2710	} else {
2711		*out_sid = SECINITSID_NODE;
2712	}
2713
2714	rc = 0;
2715out:
2716	rcu_read_unlock();
2717	return rc;
2718}
2719
2720#define SIDS_NEL 25
2721
2722/**
2723 * security_get_user_sids - Obtain reachable SIDs for a user.
2724 * @state: SELinux state
2725 * @fromsid: starting SID
2726 * @username: username
2727 * @sids: array of reachable SIDs for user
2728 * @nel: number of elements in @sids
2729 *
2730 * Generate the set of SIDs for legal security contexts
2731 * for a given user that can be reached by @fromsid.
2732 * Set *@sids to point to a dynamically allocated
2733 * array containing the set of SIDs.  Set *@nel to the
2734 * number of elements in the array.
2735 */
2736
2737int security_get_user_sids(struct selinux_state *state,
2738			   u32 fromsid,
2739			   char *username,
2740			   u32 **sids,
2741			   u32 *nel)
2742{
2743	struct selinux_policy *policy;
2744	struct policydb *policydb;
2745	struct sidtab *sidtab;
2746	struct context *fromcon, usercon;
2747	u32 *mysids = NULL, *mysids2, sid;
2748	u32 i, j, mynel, maxnel = SIDS_NEL;
2749	struct user_datum *user;
2750	struct role_datum *role;
2751	struct ebitmap_node *rnode, *tnode;
2752	int rc;
2753
2754	*sids = NULL;
2755	*nel = 0;
2756
2757	if (!selinux_initialized(state))
2758		return 0;
2759
2760	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2761	if (!mysids)
2762		return -ENOMEM;
2763
2764retry:
2765	mynel = 0;
2766	rcu_read_lock();
2767	policy = rcu_dereference(state->policy);
2768	policydb = &policy->policydb;
2769	sidtab = policy->sidtab;
2770
2771	context_init(&usercon);
2772
2773	rc = -EINVAL;
2774	fromcon = sidtab_search(sidtab, fromsid);
2775	if (!fromcon)
2776		goto out_unlock;
2777
2778	rc = -EINVAL;
2779	user = symtab_search(&policydb->p_users, username);
2780	if (!user)
2781		goto out_unlock;
2782
2783	usercon.user = user->value;
2784
 
 
 
 
 
2785	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2786		role = policydb->role_val_to_struct[i];
2787		usercon.role = i + 1;
2788		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2789			usercon.type = j + 1;
2790
2791			if (mls_setup_user_range(policydb, fromcon, user,
2792						 &usercon))
2793				continue;
2794
2795			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2796			if (rc == -ESTALE) {
2797				rcu_read_unlock();
2798				goto retry;
2799			}
2800			if (rc)
2801				goto out_unlock;
2802			if (mynel < maxnel) {
2803				mysids[mynel++] = sid;
2804			} else {
2805				rc = -ENOMEM;
2806				maxnel += SIDS_NEL;
2807				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2808				if (!mysids2)
2809					goto out_unlock;
2810				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2811				kfree(mysids);
2812				mysids = mysids2;
2813				mysids[mynel++] = sid;
2814			}
2815		}
2816	}
2817	rc = 0;
2818out_unlock:
2819	rcu_read_unlock();
2820	if (rc || !mynel) {
2821		kfree(mysids);
2822		return rc;
2823	}
2824
2825	rc = -ENOMEM;
2826	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2827	if (!mysids2) {
2828		kfree(mysids);
2829		return rc;
2830	}
2831	for (i = 0, j = 0; i < mynel; i++) {
2832		struct av_decision dummy_avd;
2833		rc = avc_has_perm_noaudit(state,
2834					  fromsid, mysids[i],
2835					  SECCLASS_PROCESS, /* kernel value */
2836					  PROCESS__TRANSITION, AVC_STRICT,
2837					  &dummy_avd);
2838		if (!rc)
2839			mysids2[j++] = mysids[i];
2840		cond_resched();
2841	}
 
2842	kfree(mysids);
2843	*sids = mysids2;
2844	*nel = j;
2845	return 0;
 
2846}
2847
2848/**
2849 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2850 * @fstype: filesystem type
2851 * @path: path from root of mount
2852 * @sclass: file security class
2853 * @sid: SID for path
2854 *
2855 * Obtain a SID to use for a file in a filesystem that
2856 * cannot support xattr or use a fixed labeling behavior like
2857 * transition SIDs or task SIDs.
2858 *
2859 * WARNING: This function may return -ESTALE, indicating that the caller
2860 * must retry the operation after re-acquiring the policy pointer!
2861 */
2862static inline int __security_genfs_sid(struct selinux_policy *policy,
2863				       const char *fstype,
2864				       char *path,
2865				       u16 orig_sclass,
2866				       u32 *sid)
2867{
2868	struct policydb *policydb = &policy->policydb;
2869	struct sidtab *sidtab = policy->sidtab;
2870	int len;
2871	u16 sclass;
2872	struct genfs *genfs;
2873	struct ocontext *c;
2874	int rc, cmp = 0;
2875
2876	while (path[0] == '/' && path[1] == '/')
2877		path++;
2878
2879	sclass = unmap_class(&policy->map, orig_sclass);
2880	*sid = SECINITSID_UNLABELED;
2881
2882	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2883		cmp = strcmp(fstype, genfs->fstype);
2884		if (cmp <= 0)
2885			break;
2886	}
2887
2888	rc = -ENOENT;
2889	if (!genfs || cmp)
2890		goto out;
2891
2892	for (c = genfs->head; c; c = c->next) {
2893		len = strlen(c->u.name);
2894		if ((!c->v.sclass || sclass == c->v.sclass) &&
2895		    (strncmp(c->u.name, path, len) == 0))
2896			break;
2897	}
2898
2899	rc = -ENOENT;
2900	if (!c)
2901		goto out;
2902
2903	if (!c->sid[0]) {
2904		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2905		if (rc)
2906			goto out;
2907	}
2908
2909	*sid = c->sid[0];
2910	rc = 0;
2911out:
2912	return rc;
2913}
2914
2915/**
2916 * security_genfs_sid - Obtain a SID for a file in a filesystem
2917 * @state: SELinux state
2918 * @fstype: filesystem type
2919 * @path: path from root of mount
2920 * @sclass: file security class
2921 * @sid: SID for path
2922 *
2923 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2924 * it afterward.
2925 */
2926int security_genfs_sid(struct selinux_state *state,
2927		       const char *fstype,
2928		       char *path,
2929		       u16 orig_sclass,
2930		       u32 *sid)
2931{
2932	struct selinux_policy *policy;
2933	int retval;
2934
2935	if (!selinux_initialized(state)) {
2936		*sid = SECINITSID_UNLABELED;
2937		return 0;
2938	}
2939
2940	do {
2941		rcu_read_lock();
2942		policy = rcu_dereference(state->policy);
2943		retval = __security_genfs_sid(policy, fstype, path,
2944					      orig_sclass, sid);
2945		rcu_read_unlock();
2946	} while (retval == -ESTALE);
2947	return retval;
2948}
2949
2950int selinux_policy_genfs_sid(struct selinux_policy *policy,
2951			const char *fstype,
2952			char *path,
2953			u16 orig_sclass,
2954			u32 *sid)
2955{
2956	/* no lock required, policy is not yet accessible by other threads */
2957	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2958}
2959
2960/**
2961 * security_fs_use - Determine how to handle labeling for a filesystem.
2962 * @state: SELinux state
2963 * @sb: superblock in question
2964 */
2965int security_fs_use(struct selinux_state *state, struct super_block *sb)
2966{
2967	struct selinux_policy *policy;
2968	struct policydb *policydb;
2969	struct sidtab *sidtab;
2970	int rc;
2971	struct ocontext *c;
2972	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2973	const char *fstype = sb->s_type->name;
2974
2975	if (!selinux_initialized(state)) {
2976		sbsec->behavior = SECURITY_FS_USE_NONE;
2977		sbsec->sid = SECINITSID_UNLABELED;
2978		return 0;
2979	}
2980
2981retry:
2982	rc = 0;
2983	rcu_read_lock();
2984	policy = rcu_dereference(state->policy);
2985	policydb = &policy->policydb;
2986	sidtab = policy->sidtab;
2987
2988	c = policydb->ocontexts[OCON_FSUSE];
2989	while (c) {
2990		if (strcmp(fstype, c->u.name) == 0)
2991			break;
2992		c = c->next;
2993	}
2994
2995	if (c) {
2996		sbsec->behavior = c->v.behavior;
2997		if (!c->sid[0]) {
2998			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2999						   &c->sid[0]);
3000			if (rc == -ESTALE) {
3001				rcu_read_unlock();
3002				goto retry;
3003			}
3004			if (rc)
3005				goto out;
3006		}
3007		sbsec->sid = c->sid[0];
3008	} else {
3009		rc = __security_genfs_sid(policy, fstype, "/",
3010					SECCLASS_DIR, &sbsec->sid);
3011		if (rc == -ESTALE) {
3012			rcu_read_unlock();
3013			goto retry;
3014		}
3015		if (rc) {
3016			sbsec->behavior = SECURITY_FS_USE_NONE;
3017			rc = 0;
3018		} else {
3019			sbsec->behavior = SECURITY_FS_USE_GENFS;
3020		}
3021	}
3022
3023out:
3024	rcu_read_unlock();
3025	return rc;
3026}
3027
3028int security_get_bools(struct selinux_policy *policy,
3029		       u32 *len, char ***names, int **values)
3030{
3031	struct policydb *policydb;
3032	u32 i;
3033	int rc;
3034
3035	policydb = &policy->policydb;
 
 
 
 
 
 
 
 
 
3036
3037	*names = NULL;
3038	*values = NULL;
3039
3040	rc = 0;
3041	*len = policydb->p_bools.nprim;
3042	if (!*len)
3043		goto out;
3044
3045	rc = -ENOMEM;
3046	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3047	if (!*names)
3048		goto err;
3049
3050	rc = -ENOMEM;
3051	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3052	if (!*values)
3053		goto err;
3054
3055	for (i = 0; i < *len; i++) {
3056		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3057
3058		rc = -ENOMEM;
3059		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3060				      GFP_ATOMIC);
3061		if (!(*names)[i])
3062			goto err;
3063	}
3064	rc = 0;
3065out:
 
3066	return rc;
3067err:
3068	if (*names) {
3069		for (i = 0; i < *len; i++)
3070			kfree((*names)[i]);
3071		kfree(*names);
3072	}
3073	kfree(*values);
3074	*len = 0;
3075	*names = NULL;
3076	*values = NULL;
3077	goto out;
3078}
3079
3080
3081int security_set_bools(struct selinux_state *state, u32 len, int *values)
3082{
3083	struct selinux_policy *newpolicy, *oldpolicy;
3084	int rc;
3085	u32 i, seqno = 0;
3086
3087	if (!selinux_initialized(state))
3088		return -EINVAL;
3089
3090	oldpolicy = rcu_dereference_protected(state->policy,
3091					lockdep_is_held(&state->policy_mutex));
3092
3093	/* Consistency check on number of booleans, should never fail */
3094	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3095		return -EINVAL;
3096
3097	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3098	if (!newpolicy)
3099		return -ENOMEM;
3100
3101	/*
3102	 * Deep copy only the parts of the policydb that might be
3103	 * modified as a result of changing booleans.
3104	 */
3105	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3106	if (rc) {
3107		kfree(newpolicy);
3108		return -ENOMEM;
3109	}
3110
3111	/* Update the boolean states in the copy */
3112	for (i = 0; i < len; i++) {
3113		int new_state = !!values[i];
3114		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3115
3116		if (new_state != old_state) {
3117			audit_log(audit_context(), GFP_ATOMIC,
3118				AUDIT_MAC_CONFIG_CHANGE,
3119				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3120				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3121				new_state,
3122				old_state,
3123				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3124				audit_get_sessionid(current));
3125			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3126		}
 
 
 
 
3127	}
3128
3129	/* Re-evaluate the conditional rules in the copy */
3130	evaluate_cond_nodes(&newpolicy->policydb);
3131
3132	/* Set latest granting seqno for new policy */
3133	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3134	seqno = newpolicy->latest_granting;
3135
3136	/* Install the new policy */
3137	rcu_assign_pointer(state->policy, newpolicy);
3138
3139	/*
3140	 * Free the conditional portions of the old policydb
3141	 * that were copied for the new policy, and the oldpolicy
3142	 * structure itself but not what it references.
3143	 */
3144	synchronize_rcu();
3145	selinux_policy_cond_free(oldpolicy);
3146
3147	/* Notify others of the policy change */
3148	selinux_notify_policy_change(state, seqno);
3149	return 0;
 
 
 
 
 
 
 
 
3150}
3151
3152int security_get_bool_value(struct selinux_state *state,
3153			    u32 index)
3154{
3155	struct selinux_policy *policy;
3156	struct policydb *policydb;
3157	int rc;
3158	u32 len;
3159
3160	if (!selinux_initialized(state))
3161		return 0;
3162
3163	rcu_read_lock();
3164	policy = rcu_dereference(state->policy);
3165	policydb = &policy->policydb;
3166
3167	rc = -EFAULT;
3168	len = policydb->p_bools.nprim;
3169	if (index >= len)
3170		goto out;
3171
3172	rc = policydb->bool_val_to_struct[index]->state;
3173out:
3174	rcu_read_unlock();
3175	return rc;
3176}
3177
3178static int security_preserve_bools(struct selinux_policy *oldpolicy,
3179				struct selinux_policy *newpolicy)
3180{
3181	int rc, *bvalues = NULL;
3182	char **bnames = NULL;
3183	struct cond_bool_datum *booldatum;
3184	u32 i, nbools = 0;
3185
3186	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3187	if (rc)
3188		goto out;
3189	for (i = 0; i < nbools; i++) {
3190		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3191					bnames[i]);
3192		if (booldatum)
3193			booldatum->state = bvalues[i];
3194	}
3195	evaluate_cond_nodes(&newpolicy->policydb);
 
 
 
 
3196
3197out:
3198	if (bnames) {
3199		for (i = 0; i < nbools; i++)
3200			kfree(bnames[i]);
3201	}
3202	kfree(bnames);
3203	kfree(bvalues);
3204	return rc;
3205}
3206
3207/*
3208 * security_sid_mls_copy() - computes a new sid based on the given
3209 * sid and the mls portion of mls_sid.
3210 */
3211int security_sid_mls_copy(struct selinux_state *state,
3212			  u32 sid, u32 mls_sid, u32 *new_sid)
3213{
3214	struct selinux_policy *policy;
3215	struct policydb *policydb;
3216	struct sidtab *sidtab;
3217	struct context *context1;
3218	struct context *context2;
3219	struct context newcon;
3220	char *s;
3221	u32 len;
3222	int rc;
3223
3224	if (!selinux_initialized(state)) {
 
3225		*new_sid = sid;
3226		return 0;
3227	}
3228
3229retry:
3230	rc = 0;
3231	context_init(&newcon);
3232
3233	rcu_read_lock();
3234	policy = rcu_dereference(state->policy);
3235	policydb = &policy->policydb;
3236	sidtab = policy->sidtab;
3237
3238	if (!policydb->mls_enabled) {
3239		*new_sid = sid;
3240		goto out_unlock;
3241	}
3242
3243	rc = -EINVAL;
3244	context1 = sidtab_search(sidtab, sid);
3245	if (!context1) {
3246		pr_err("SELinux: %s:  unrecognized SID %d\n",
3247			__func__, sid);
3248		goto out_unlock;
3249	}
3250
3251	rc = -EINVAL;
3252	context2 = sidtab_search(sidtab, mls_sid);
3253	if (!context2) {
3254		pr_err("SELinux: %s:  unrecognized SID %d\n",
3255			__func__, mls_sid);
3256		goto out_unlock;
3257	}
3258
3259	newcon.user = context1->user;
3260	newcon.role = context1->role;
3261	newcon.type = context1->type;
3262	rc = mls_context_cpy(&newcon, context2);
3263	if (rc)
3264		goto out_unlock;
3265
3266	/* Check the validity of the new context. */
3267	if (!policydb_context_isvalid(policydb, &newcon)) {
3268		rc = convert_context_handle_invalid_context(state, policydb,
3269							&newcon);
3270		if (rc) {
3271			if (!context_struct_to_string(policydb, &newcon, &s,
3272						      &len)) {
3273				struct audit_buffer *ab;
3274
3275				ab = audit_log_start(audit_context(),
3276						     GFP_ATOMIC,
3277						     AUDIT_SELINUX_ERR);
3278				audit_log_format(ab,
3279						 "op=security_sid_mls_copy invalid_context=");
3280				/* don't record NUL with untrusted strings */
3281				audit_log_n_untrustedstring(ab, s, len - 1);
3282				audit_log_end(ab);
3283				kfree(s);
3284			}
3285			goto out_unlock;
3286		}
3287	}
 
3288	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3289	if (rc == -ESTALE) {
3290		rcu_read_unlock();
3291		context_destroy(&newcon);
3292		goto retry;
3293	}
3294out_unlock:
3295	rcu_read_unlock();
3296	context_destroy(&newcon);
 
3297	return rc;
3298}
3299
3300/**
3301 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3302 * @state: SELinux state
3303 * @nlbl_sid: NetLabel SID
3304 * @nlbl_type: NetLabel labeling protocol type
3305 * @xfrm_sid: XFRM SID
3306 *
3307 * Description:
3308 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3309 * resolved into a single SID it is returned via @peer_sid and the function
3310 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3311 * returns a negative value.  A table summarizing the behavior is below:
3312 *
3313 *                                 | function return |      @sid
3314 *   ------------------------------+-----------------+-----------------
3315 *   no peer labels                |        0        |    SECSID_NULL
3316 *   single peer label             |        0        |    <peer_label>
3317 *   multiple, consistent labels   |        0        |    <peer_label>
3318 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3319 *
3320 */
3321int security_net_peersid_resolve(struct selinux_state *state,
3322				 u32 nlbl_sid, u32 nlbl_type,
3323				 u32 xfrm_sid,
3324				 u32 *peer_sid)
3325{
3326	struct selinux_policy *policy;
3327	struct policydb *policydb;
3328	struct sidtab *sidtab;
3329	int rc;
3330	struct context *nlbl_ctx;
3331	struct context *xfrm_ctx;
3332
3333	*peer_sid = SECSID_NULL;
3334
3335	/* handle the common (which also happens to be the set of easy) cases
3336	 * right away, these two if statements catch everything involving a
3337	 * single or absent peer SID/label */
3338	if (xfrm_sid == SECSID_NULL) {
3339		*peer_sid = nlbl_sid;
3340		return 0;
3341	}
3342	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3343	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3344	 * is present */
3345	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3346		*peer_sid = xfrm_sid;
3347		return 0;
3348	}
3349
3350	if (!selinux_initialized(state))
3351		return 0;
3352
3353	rcu_read_lock();
3354	policy = rcu_dereference(state->policy);
3355	policydb = &policy->policydb;
3356	sidtab = policy->sidtab;
3357
3358	/*
3359	 * We don't need to check initialized here since the only way both
3360	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3361	 * security server was initialized and state->initialized was true.
3362	 */
3363	if (!policydb->mls_enabled) {
3364		rc = 0;
3365		goto out;
3366	}
3367
3368	rc = -EINVAL;
3369	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3370	if (!nlbl_ctx) {
3371		pr_err("SELinux: %s:  unrecognized SID %d\n",
3372		       __func__, nlbl_sid);
3373		goto out;
3374	}
3375	rc = -EINVAL;
3376	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3377	if (!xfrm_ctx) {
3378		pr_err("SELinux: %s:  unrecognized SID %d\n",
3379		       __func__, xfrm_sid);
3380		goto out;
3381	}
3382	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3383	if (rc)
3384		goto out;
3385
3386	/* at present NetLabel SIDs/labels really only carry MLS
3387	 * information so if the MLS portion of the NetLabel SID
3388	 * matches the MLS portion of the labeled XFRM SID/label
3389	 * then pass along the XFRM SID as it is the most
3390	 * expressive */
3391	*peer_sid = xfrm_sid;
3392out:
3393	rcu_read_unlock();
3394	return rc;
3395}
3396
3397static int get_classes_callback(void *k, void *d, void *args)
3398{
3399	struct class_datum *datum = d;
3400	char *name = k, **classes = args;
3401	int value = datum->value - 1;
3402
3403	classes[value] = kstrdup(name, GFP_ATOMIC);
3404	if (!classes[value])
3405		return -ENOMEM;
3406
3407	return 0;
3408}
3409
3410int security_get_classes(struct selinux_policy *policy,
3411			 char ***classes, int *nclasses)
3412{
3413	struct policydb *policydb;
3414	int rc;
3415
3416	policydb = &policy->policydb;
 
 
 
 
 
 
3417
3418	rc = -ENOMEM;
3419	*nclasses = policydb->p_classes.nprim;
3420	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3421	if (!*classes)
3422		goto out;
3423
3424	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3425			 *classes);
3426	if (rc) {
3427		int i;
3428		for (i = 0; i < *nclasses; i++)
3429			kfree((*classes)[i]);
3430		kfree(*classes);
3431	}
3432
3433out:
 
3434	return rc;
3435}
3436
3437static int get_permissions_callback(void *k, void *d, void *args)
3438{
3439	struct perm_datum *datum = d;
3440	char *name = k, **perms = args;
3441	int value = datum->value - 1;
3442
3443	perms[value] = kstrdup(name, GFP_ATOMIC);
3444	if (!perms[value])
3445		return -ENOMEM;
3446
3447	return 0;
3448}
3449
3450int security_get_permissions(struct selinux_policy *policy,
3451			     char *class, char ***perms, int *nperms)
3452{
3453	struct policydb *policydb;
3454	int rc, i;
3455	struct class_datum *match;
3456
3457	policydb = &policy->policydb;
3458
3459	rc = -EINVAL;
3460	match = symtab_search(&policydb->p_classes, class);
3461	if (!match) {
3462		pr_err("SELinux: %s:  unrecognized class %s\n",
3463			__func__, class);
3464		goto out;
3465	}
3466
3467	rc = -ENOMEM;
3468	*nperms = match->permissions.nprim;
3469	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3470	if (!*perms)
3471		goto out;
3472
3473	if (match->comdatum) {
3474		rc = hashtab_map(&match->comdatum->permissions.table,
3475				 get_permissions_callback, *perms);
3476		if (rc)
3477			goto err;
3478	}
3479
3480	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3481			 *perms);
3482	if (rc)
3483		goto err;
3484
3485out:
 
3486	return rc;
3487
3488err:
 
3489	for (i = 0; i < *nperms; i++)
3490		kfree((*perms)[i]);
3491	kfree(*perms);
3492	return rc;
3493}
3494
3495int security_get_reject_unknown(struct selinux_state *state)
3496{
3497	struct selinux_policy *policy;
3498	int value;
3499
3500	if (!selinux_initialized(state))
3501		return 0;
3502
3503	rcu_read_lock();
3504	policy = rcu_dereference(state->policy);
3505	value = policy->policydb.reject_unknown;
3506	rcu_read_unlock();
3507	return value;
3508}
3509
3510int security_get_allow_unknown(struct selinux_state *state)
3511{
3512	struct selinux_policy *policy;
3513	int value;
3514
3515	if (!selinux_initialized(state))
3516		return 0;
3517
3518	rcu_read_lock();
3519	policy = rcu_dereference(state->policy);
3520	value = policy->policydb.allow_unknown;
3521	rcu_read_unlock();
3522	return value;
3523}
3524
3525/**
3526 * security_policycap_supported - Check for a specific policy capability
3527 * @state: SELinux state
3528 * @req_cap: capability
3529 *
3530 * Description:
3531 * This function queries the currently loaded policy to see if it supports the
3532 * capability specified by @req_cap.  Returns true (1) if the capability is
3533 * supported, false (0) if it isn't supported.
3534 *
3535 */
3536int security_policycap_supported(struct selinux_state *state,
3537				 unsigned int req_cap)
3538{
3539	struct selinux_policy *policy;
3540	int rc;
3541
3542	if (!selinux_initialized(state))
3543		return 0;
3544
3545	rcu_read_lock();
3546	policy = rcu_dereference(state->policy);
3547	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3548	rcu_read_unlock();
3549
3550	return rc;
3551}
3552
3553struct selinux_audit_rule {
3554	u32 au_seqno;
3555	struct context au_ctxt;
3556};
3557
3558void selinux_audit_rule_free(void *vrule)
3559{
3560	struct selinux_audit_rule *rule = vrule;
3561
3562	if (rule) {
3563		context_destroy(&rule->au_ctxt);
3564		kfree(rule);
3565	}
3566}
3567
3568int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3569{
3570	struct selinux_state *state = &selinux_state;
3571	struct selinux_policy *policy;
3572	struct policydb *policydb;
3573	struct selinux_audit_rule *tmprule;
3574	struct role_datum *roledatum;
3575	struct type_datum *typedatum;
3576	struct user_datum *userdatum;
3577	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3578	int rc = 0;
3579
3580	*rule = NULL;
3581
3582	if (!selinux_initialized(state))
3583		return -EOPNOTSUPP;
3584
3585	switch (field) {
3586	case AUDIT_SUBJ_USER:
3587	case AUDIT_SUBJ_ROLE:
3588	case AUDIT_SUBJ_TYPE:
3589	case AUDIT_OBJ_USER:
3590	case AUDIT_OBJ_ROLE:
3591	case AUDIT_OBJ_TYPE:
3592		/* only 'equals' and 'not equals' fit user, role, and type */
3593		if (op != Audit_equal && op != Audit_not_equal)
3594			return -EINVAL;
3595		break;
3596	case AUDIT_SUBJ_SEN:
3597	case AUDIT_SUBJ_CLR:
3598	case AUDIT_OBJ_LEV_LOW:
3599	case AUDIT_OBJ_LEV_HIGH:
3600		/* we do not allow a range, indicated by the presence of '-' */
3601		if (strchr(rulestr, '-'))
3602			return -EINVAL;
3603		break;
3604	default:
3605		/* only the above fields are valid */
3606		return -EINVAL;
3607	}
3608
3609	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3610	if (!tmprule)
3611		return -ENOMEM;
3612
3613	context_init(&tmprule->au_ctxt);
3614
3615	rcu_read_lock();
3616	policy = rcu_dereference(state->policy);
3617	policydb = &policy->policydb;
3618
3619	tmprule->au_seqno = policy->latest_granting;
3620
3621	switch (field) {
3622	case AUDIT_SUBJ_USER:
3623	case AUDIT_OBJ_USER:
3624		rc = -EINVAL;
3625		userdatum = symtab_search(&policydb->p_users, rulestr);
3626		if (!userdatum)
3627			goto out;
3628		tmprule->au_ctxt.user = userdatum->value;
3629		break;
3630	case AUDIT_SUBJ_ROLE:
3631	case AUDIT_OBJ_ROLE:
3632		rc = -EINVAL;
3633		roledatum = symtab_search(&policydb->p_roles, rulestr);
3634		if (!roledatum)
3635			goto out;
3636		tmprule->au_ctxt.role = roledatum->value;
3637		break;
3638	case AUDIT_SUBJ_TYPE:
3639	case AUDIT_OBJ_TYPE:
3640		rc = -EINVAL;
3641		typedatum = symtab_search(&policydb->p_types, rulestr);
3642		if (!typedatum)
3643			goto out;
3644		tmprule->au_ctxt.type = typedatum->value;
3645		break;
3646	case AUDIT_SUBJ_SEN:
3647	case AUDIT_SUBJ_CLR:
3648	case AUDIT_OBJ_LEV_LOW:
3649	case AUDIT_OBJ_LEV_HIGH:
3650		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3651				     GFP_ATOMIC);
3652		if (rc)
3653			goto out;
3654		break;
3655	}
3656	rc = 0;
3657out:
3658	rcu_read_unlock();
3659
3660	if (rc) {
3661		selinux_audit_rule_free(tmprule);
3662		tmprule = NULL;
3663	}
3664
3665	*rule = tmprule;
3666
3667	return rc;
3668}
3669
3670/* Check to see if the rule contains any selinux fields */
3671int selinux_audit_rule_known(struct audit_krule *rule)
3672{
3673	int i;
3674
3675	for (i = 0; i < rule->field_count; i++) {
3676		struct audit_field *f = &rule->fields[i];
3677		switch (f->type) {
3678		case AUDIT_SUBJ_USER:
3679		case AUDIT_SUBJ_ROLE:
3680		case AUDIT_SUBJ_TYPE:
3681		case AUDIT_SUBJ_SEN:
3682		case AUDIT_SUBJ_CLR:
3683		case AUDIT_OBJ_USER:
3684		case AUDIT_OBJ_ROLE:
3685		case AUDIT_OBJ_TYPE:
3686		case AUDIT_OBJ_LEV_LOW:
3687		case AUDIT_OBJ_LEV_HIGH:
3688			return 1;
3689		}
3690	}
3691
3692	return 0;
3693}
3694
3695int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3696{
3697	struct selinux_state *state = &selinux_state;
3698	struct selinux_policy *policy;
3699	struct context *ctxt;
3700	struct mls_level *level;
3701	struct selinux_audit_rule *rule = vrule;
3702	int match = 0;
3703
3704	if (unlikely(!rule)) {
3705		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3706		return -ENOENT;
3707	}
3708
3709	if (!selinux_initialized(state))
3710		return 0;
3711
3712	rcu_read_lock();
3713
3714	policy = rcu_dereference(state->policy);
3715
3716	if (rule->au_seqno < policy->latest_granting) {
3717		match = -ESTALE;
3718		goto out;
3719	}
3720
3721	ctxt = sidtab_search(policy->sidtab, sid);
3722	if (unlikely(!ctxt)) {
3723		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3724			  sid);
3725		match = -ENOENT;
3726		goto out;
3727	}
3728
3729	/* a field/op pair that is not caught here will simply fall through
3730	   without a match */
3731	switch (field) {
3732	case AUDIT_SUBJ_USER:
3733	case AUDIT_OBJ_USER:
3734		switch (op) {
3735		case Audit_equal:
3736			match = (ctxt->user == rule->au_ctxt.user);
3737			break;
3738		case Audit_not_equal:
3739			match = (ctxt->user != rule->au_ctxt.user);
3740			break;
3741		}
3742		break;
3743	case AUDIT_SUBJ_ROLE:
3744	case AUDIT_OBJ_ROLE:
3745		switch (op) {
3746		case Audit_equal:
3747			match = (ctxt->role == rule->au_ctxt.role);
3748			break;
3749		case Audit_not_equal:
3750			match = (ctxt->role != rule->au_ctxt.role);
3751			break;
3752		}
3753		break;
3754	case AUDIT_SUBJ_TYPE:
3755	case AUDIT_OBJ_TYPE:
3756		switch (op) {
3757		case Audit_equal:
3758			match = (ctxt->type == rule->au_ctxt.type);
3759			break;
3760		case Audit_not_equal:
3761			match = (ctxt->type != rule->au_ctxt.type);
3762			break;
3763		}
3764		break;
3765	case AUDIT_SUBJ_SEN:
3766	case AUDIT_SUBJ_CLR:
3767	case AUDIT_OBJ_LEV_LOW:
3768	case AUDIT_OBJ_LEV_HIGH:
3769		level = ((field == AUDIT_SUBJ_SEN ||
3770			  field == AUDIT_OBJ_LEV_LOW) ?
3771			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3772		switch (op) {
3773		case Audit_equal:
3774			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3775					     level);
3776			break;
3777		case Audit_not_equal:
3778			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3779					      level);
3780			break;
3781		case Audit_lt:
3782			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3783					       level) &&
3784				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3785					       level));
3786			break;
3787		case Audit_le:
3788			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3789					      level);
3790			break;
3791		case Audit_gt:
3792			match = (mls_level_dom(level,
3793					      &rule->au_ctxt.range.level[0]) &&
3794				 !mls_level_eq(level,
3795					       &rule->au_ctxt.range.level[0]));
3796			break;
3797		case Audit_ge:
3798			match = mls_level_dom(level,
3799					      &rule->au_ctxt.range.level[0]);
3800			break;
3801		}
3802	}
3803
3804out:
3805	rcu_read_unlock();
3806	return match;
3807}
3808
 
 
3809static int aurule_avc_callback(u32 event)
3810{
3811	if (event == AVC_CALLBACK_RESET)
3812		return audit_update_lsm_rules();
3813	return 0;
 
 
3814}
3815
3816static int __init aurule_init(void)
3817{
3818	int err;
3819
3820	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3821	if (err)
3822		panic("avc_add_callback() failed, error %d\n", err);
3823
3824	return err;
3825}
3826__initcall(aurule_init);
3827
3828#ifdef CONFIG_NETLABEL
3829/**
3830 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3831 * @secattr: the NetLabel packet security attributes
3832 * @sid: the SELinux SID
3833 *
3834 * Description:
3835 * Attempt to cache the context in @ctx, which was derived from the packet in
3836 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3837 * already been initialized.
3838 *
3839 */
3840static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3841				      u32 sid)
3842{
3843	u32 *sid_cache;
3844
3845	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3846	if (sid_cache == NULL)
3847		return;
3848	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3849	if (secattr->cache == NULL) {
3850		kfree(sid_cache);
3851		return;
3852	}
3853
3854	*sid_cache = sid;
3855	secattr->cache->free = kfree;
3856	secattr->cache->data = sid_cache;
3857	secattr->flags |= NETLBL_SECATTR_CACHE;
3858}
3859
3860/**
3861 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3862 * @state: SELinux state
3863 * @secattr: the NetLabel packet security attributes
3864 * @sid: the SELinux SID
3865 *
3866 * Description:
3867 * Convert the given NetLabel security attributes in @secattr into a
3868 * SELinux SID.  If the @secattr field does not contain a full SELinux
3869 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3870 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3871 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3872 * conversion for future lookups.  Returns zero on success, negative values on
3873 * failure.
3874 *
3875 */
3876int security_netlbl_secattr_to_sid(struct selinux_state *state,
3877				   struct netlbl_lsm_secattr *secattr,
3878				   u32 *sid)
3879{
3880	struct selinux_policy *policy;
3881	struct policydb *policydb;
3882	struct sidtab *sidtab;
3883	int rc;
3884	struct context *ctx;
3885	struct context ctx_new;
3886
3887	if (!selinux_initialized(state)) {
3888		*sid = SECSID_NULL;
3889		return 0;
3890	}
3891
3892retry:
3893	rc = 0;
3894	rcu_read_lock();
3895	policy = rcu_dereference(state->policy);
3896	policydb = &policy->policydb;
3897	sidtab = policy->sidtab;
3898
3899	if (secattr->flags & NETLBL_SECATTR_CACHE)
3900		*sid = *(u32 *)secattr->cache->data;
3901	else if (secattr->flags & NETLBL_SECATTR_SECID)
3902		*sid = secattr->attr.secid;
3903	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3904		rc = -EIDRM;
3905		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3906		if (ctx == NULL)
3907			goto out;
3908
3909		context_init(&ctx_new);
3910		ctx_new.user = ctx->user;
3911		ctx_new.role = ctx->role;
3912		ctx_new.type = ctx->type;
3913		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3914		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3915			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3916			if (rc)
3917				goto out;
3918		}
3919		rc = -EIDRM;
3920		if (!mls_context_isvalid(policydb, &ctx_new)) {
3921			ebitmap_destroy(&ctx_new.range.level[0].cat);
3922			goto out;
3923		}
3924
3925		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3926		ebitmap_destroy(&ctx_new.range.level[0].cat);
3927		if (rc == -ESTALE) {
3928			rcu_read_unlock();
3929			goto retry;
3930		}
3931		if (rc)
3932			goto out;
3933
3934		security_netlbl_cache_add(secattr, *sid);
 
 
3935	} else
3936		*sid = SECSID_NULL;
3937
 
 
 
 
3938out:
3939	rcu_read_unlock();
3940	return rc;
3941}
3942
3943/**
3944 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3945 * @state: SELinux state
3946 * @sid: the SELinux SID
3947 * @secattr: the NetLabel packet security attributes
3948 *
3949 * Description:
3950 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3951 * Returns zero on success, negative values on failure.
3952 *
3953 */
3954int security_netlbl_sid_to_secattr(struct selinux_state *state,
3955				   u32 sid, struct netlbl_lsm_secattr *secattr)
3956{
3957	struct selinux_policy *policy;
3958	struct policydb *policydb;
3959	int rc;
3960	struct context *ctx;
3961
3962	if (!selinux_initialized(state))
3963		return 0;
3964
3965	rcu_read_lock();
3966	policy = rcu_dereference(state->policy);
3967	policydb = &policy->policydb;
3968
3969	rc = -ENOENT;
3970	ctx = sidtab_search(policy->sidtab, sid);
3971	if (ctx == NULL)
3972		goto out;
3973
3974	rc = -ENOMEM;
3975	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3976				  GFP_ATOMIC);
3977	if (secattr->domain == NULL)
3978		goto out;
3979
3980	secattr->attr.secid = sid;
3981	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3982	mls_export_netlbl_lvl(policydb, ctx, secattr);
3983	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3984out:
3985	rcu_read_unlock();
3986	return rc;
3987}
3988#endif /* CONFIG_NETLABEL */
3989
3990/**
3991 * __security_read_policy - read the policy.
3992 * @policy: SELinux policy
3993 * @data: binary policy data
3994 * @len: length of data in bytes
3995 *
3996 */
3997static int __security_read_policy(struct selinux_policy *policy,
3998				  void *data, size_t *len)
3999{
4000	int rc;
4001	struct policy_file fp;
4002
4003	fp.data = data;
4004	fp.len = *len;
4005
4006	rc = policydb_write(&policy->policydb, &fp);
4007	if (rc)
4008		return rc;
4009
4010	*len = (unsigned long)fp.data - (unsigned long)data;
4011	return 0;
4012}
4013
4014/**
4015 * security_read_policy - read the policy.
4016 * @state: selinux_state
4017 * @data: binary policy data
4018 * @len: length of data in bytes
4019 *
4020 */
4021int security_read_policy(struct selinux_state *state,
4022			 void **data, size_t *len)
4023{
4024	struct selinux_policy *policy;
 
 
4025
4026	policy = rcu_dereference_protected(
4027			state->policy, lockdep_is_held(&state->policy_mutex));
4028	if (!policy)
4029		return -EINVAL;
4030
4031	*len = policy->policydb.len;
 
4032	*data = vmalloc_user(*len);
4033	if (!*data)
4034		return -ENOMEM;
4035
4036	return __security_read_policy(policy, *data, len);
4037}
4038
4039/**
4040 * security_read_state_kernel - read the policy.
4041 * @state: selinux_state
4042 * @data: binary policy data
4043 * @len: length of data in bytes
4044 *
4045 * Allocates kernel memory for reading SELinux policy.
4046 * This function is for internal use only and should not
4047 * be used for returning data to user space.
4048 *
4049 * This function must be called with policy_mutex held.
4050 */
4051int security_read_state_kernel(struct selinux_state *state,
4052			       void **data, size_t *len)
4053{
4054	struct selinux_policy *policy;
4055
4056	policy = rcu_dereference_protected(
4057			state->policy, lockdep_is_held(&state->policy_mutex));
4058	if (!policy)
4059		return -EINVAL;
4060
4061	*len = policy->policydb.len;
4062	*data = vmalloc(*len);
4063	if (!*data)
4064		return -ENOMEM;
4065
4066	return __security_read_policy(policy, *data, len);
4067}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
  49#include <linux/mutex.h>
  50#include <linux/vmalloc.h>
 
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
 
 
  68
  69/* Policy capability names */
  70const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
  71	"network_peer_controls",
  72	"open_perms",
  73	"extended_socket_class",
  74	"always_check_network",
  75	"cgroup_seclabel",
  76	"nnp_nosuid_transition"
  77};
  78
  79static struct selinux_ss selinux_ss;
  80
  81void selinux_ss_init(struct selinux_ss **ss)
  82{
  83	rwlock_init(&selinux_ss.policy_rwlock);
  84	mutex_init(&selinux_ss.status_lock);
  85	*ss = &selinux_ss;
  86}
  87
  88/* Forward declaration. */
  89static int context_struct_to_string(struct policydb *policydb,
  90				    struct context *context,
  91				    char **scontext,
  92				    u32 *scontext_len);
  93
 
 
 
 
 
 
  94static void context_struct_compute_av(struct policydb *policydb,
  95				      struct context *scontext,
  96				      struct context *tcontext,
  97				      u16 tclass,
  98				      struct av_decision *avd,
  99				      struct extended_perms *xperms);
 100
 101static int selinux_set_mapping(struct policydb *pol,
 102			       struct security_class_mapping *map,
 103			       struct selinux_map *out_map)
 104{
 105	u16 i, j;
 106	unsigned k;
 107	bool print_unknown_handle = false;
 108
 109	/* Find number of classes in the input mapping */
 110	if (!map)
 111		return -EINVAL;
 112	i = 0;
 113	while (map[i].name)
 114		i++;
 115
 116	/* Allocate space for the class records, plus one for class zero */
 117	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 118	if (!out_map->mapping)
 119		return -ENOMEM;
 120
 121	/* Store the raw class and permission values */
 122	j = 0;
 123	while (map[j].name) {
 124		struct security_class_mapping *p_in = map + (j++);
 125		struct selinux_mapping *p_out = out_map->mapping + j;
 126
 127		/* An empty class string skips ahead */
 128		if (!strcmp(p_in->name, "")) {
 129			p_out->num_perms = 0;
 130			continue;
 131		}
 132
 133		p_out->value = string_to_security_class(pol, p_in->name);
 134		if (!p_out->value) {
 135			pr_info("SELinux:  Class %s not defined in policy.\n",
 136			       p_in->name);
 137			if (pol->reject_unknown)
 138				goto err;
 139			p_out->num_perms = 0;
 140			print_unknown_handle = true;
 141			continue;
 142		}
 143
 144		k = 0;
 145		while (p_in->perms[k]) {
 146			/* An empty permission string skips ahead */
 147			if (!*p_in->perms[k]) {
 148				k++;
 149				continue;
 150			}
 151			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 152							    p_in->perms[k]);
 153			if (!p_out->perms[k]) {
 154				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 155				       p_in->perms[k], p_in->name);
 156				if (pol->reject_unknown)
 157					goto err;
 158				print_unknown_handle = true;
 159			}
 160
 161			k++;
 162		}
 163		p_out->num_perms = k;
 164	}
 165
 166	if (print_unknown_handle)
 167		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 168		       pol->allow_unknown ? "allowed" : "denied");
 169
 170	out_map->size = i;
 171	return 0;
 172err:
 173	kfree(out_map->mapping);
 174	out_map->mapping = NULL;
 175	return -EINVAL;
 176}
 177
 178/*
 179 * Get real, policy values from mapped values
 180 */
 181
 182static u16 unmap_class(struct selinux_map *map, u16 tclass)
 183{
 184	if (tclass < map->size)
 185		return map->mapping[tclass].value;
 186
 187	return tclass;
 188}
 189
 190/*
 191 * Get kernel value for class from its policy value
 192 */
 193static u16 map_class(struct selinux_map *map, u16 pol_value)
 194{
 195	u16 i;
 196
 197	for (i = 1; i < map->size; i++) {
 198		if (map->mapping[i].value == pol_value)
 199			return i;
 200	}
 201
 202	return SECCLASS_NULL;
 203}
 204
 205static void map_decision(struct selinux_map *map,
 206			 u16 tclass, struct av_decision *avd,
 207			 int allow_unknown)
 208{
 209	if (tclass < map->size) {
 210		struct selinux_mapping *mapping = &map->mapping[tclass];
 211		unsigned int i, n = mapping->num_perms;
 212		u32 result;
 213
 214		for (i = 0, result = 0; i < n; i++) {
 215			if (avd->allowed & mapping->perms[i])
 216				result |= 1<<i;
 217			if (allow_unknown && !mapping->perms[i])
 218				result |= 1<<i;
 219		}
 220		avd->allowed = result;
 221
 222		for (i = 0, result = 0; i < n; i++)
 223			if (avd->auditallow & mapping->perms[i])
 224				result |= 1<<i;
 225		avd->auditallow = result;
 226
 227		for (i = 0, result = 0; i < n; i++) {
 228			if (avd->auditdeny & mapping->perms[i])
 229				result |= 1<<i;
 230			if (!allow_unknown && !mapping->perms[i])
 231				result |= 1<<i;
 232		}
 233		/*
 234		 * In case the kernel has a bug and requests a permission
 235		 * between num_perms and the maximum permission number, we
 236		 * should audit that denial
 237		 */
 238		for (; i < (sizeof(u32)*8); i++)
 239			result |= 1<<i;
 240		avd->auditdeny = result;
 241	}
 242}
 243
 244int security_mls_enabled(struct selinux_state *state)
 245{
 246	struct policydb *p = &state->ss->policydb;
 
 247
 248	return p->mls_enabled;
 
 
 
 
 
 
 
 249}
 250
 251/*
 252 * Return the boolean value of a constraint expression
 253 * when it is applied to the specified source and target
 254 * security contexts.
 255 *
 256 * xcontext is a special beast...  It is used by the validatetrans rules
 257 * only.  For these rules, scontext is the context before the transition,
 258 * tcontext is the context after the transition, and xcontext is the context
 259 * of the process performing the transition.  All other callers of
 260 * constraint_expr_eval should pass in NULL for xcontext.
 261 */
 262static int constraint_expr_eval(struct policydb *policydb,
 263				struct context *scontext,
 264				struct context *tcontext,
 265				struct context *xcontext,
 266				struct constraint_expr *cexpr)
 267{
 268	u32 val1, val2;
 269	struct context *c;
 270	struct role_datum *r1, *r2;
 271	struct mls_level *l1, *l2;
 272	struct constraint_expr *e;
 273	int s[CEXPR_MAXDEPTH];
 274	int sp = -1;
 275
 276	for (e = cexpr; e; e = e->next) {
 277		switch (e->expr_type) {
 278		case CEXPR_NOT:
 279			BUG_ON(sp < 0);
 280			s[sp] = !s[sp];
 281			break;
 282		case CEXPR_AND:
 283			BUG_ON(sp < 1);
 284			sp--;
 285			s[sp] &= s[sp + 1];
 286			break;
 287		case CEXPR_OR:
 288			BUG_ON(sp < 1);
 289			sp--;
 290			s[sp] |= s[sp + 1];
 291			break;
 292		case CEXPR_ATTR:
 293			if (sp == (CEXPR_MAXDEPTH - 1))
 294				return 0;
 295			switch (e->attr) {
 296			case CEXPR_USER:
 297				val1 = scontext->user;
 298				val2 = tcontext->user;
 299				break;
 300			case CEXPR_TYPE:
 301				val1 = scontext->type;
 302				val2 = tcontext->type;
 303				break;
 304			case CEXPR_ROLE:
 305				val1 = scontext->role;
 306				val2 = tcontext->role;
 307				r1 = policydb->role_val_to_struct[val1 - 1];
 308				r2 = policydb->role_val_to_struct[val2 - 1];
 309				switch (e->op) {
 310				case CEXPR_DOM:
 311					s[++sp] = ebitmap_get_bit(&r1->dominates,
 312								  val2 - 1);
 313					continue;
 314				case CEXPR_DOMBY:
 315					s[++sp] = ebitmap_get_bit(&r2->dominates,
 316								  val1 - 1);
 317					continue;
 318				case CEXPR_INCOMP:
 319					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 320								    val2 - 1) &&
 321						   !ebitmap_get_bit(&r2->dominates,
 322								    val1 - 1));
 323					continue;
 324				default:
 325					break;
 326				}
 327				break;
 328			case CEXPR_L1L2:
 329				l1 = &(scontext->range.level[0]);
 330				l2 = &(tcontext->range.level[0]);
 331				goto mls_ops;
 332			case CEXPR_L1H2:
 333				l1 = &(scontext->range.level[0]);
 334				l2 = &(tcontext->range.level[1]);
 335				goto mls_ops;
 336			case CEXPR_H1L2:
 337				l1 = &(scontext->range.level[1]);
 338				l2 = &(tcontext->range.level[0]);
 339				goto mls_ops;
 340			case CEXPR_H1H2:
 341				l1 = &(scontext->range.level[1]);
 342				l2 = &(tcontext->range.level[1]);
 343				goto mls_ops;
 344			case CEXPR_L1H1:
 345				l1 = &(scontext->range.level[0]);
 346				l2 = &(scontext->range.level[1]);
 347				goto mls_ops;
 348			case CEXPR_L2H2:
 349				l1 = &(tcontext->range.level[0]);
 350				l2 = &(tcontext->range.level[1]);
 351				goto mls_ops;
 352mls_ops:
 353			switch (e->op) {
 354			case CEXPR_EQ:
 355				s[++sp] = mls_level_eq(l1, l2);
 356				continue;
 357			case CEXPR_NEQ:
 358				s[++sp] = !mls_level_eq(l1, l2);
 359				continue;
 360			case CEXPR_DOM:
 361				s[++sp] = mls_level_dom(l1, l2);
 362				continue;
 363			case CEXPR_DOMBY:
 364				s[++sp] = mls_level_dom(l2, l1);
 365				continue;
 366			case CEXPR_INCOMP:
 367				s[++sp] = mls_level_incomp(l2, l1);
 368				continue;
 369			default:
 370				BUG();
 371				return 0;
 372			}
 373			break;
 374			default:
 375				BUG();
 376				return 0;
 377			}
 378
 379			switch (e->op) {
 380			case CEXPR_EQ:
 381				s[++sp] = (val1 == val2);
 382				break;
 383			case CEXPR_NEQ:
 384				s[++sp] = (val1 != val2);
 385				break;
 386			default:
 387				BUG();
 388				return 0;
 389			}
 390			break;
 391		case CEXPR_NAMES:
 392			if (sp == (CEXPR_MAXDEPTH-1))
 393				return 0;
 394			c = scontext;
 395			if (e->attr & CEXPR_TARGET)
 396				c = tcontext;
 397			else if (e->attr & CEXPR_XTARGET) {
 398				c = xcontext;
 399				if (!c) {
 400					BUG();
 401					return 0;
 402				}
 403			}
 404			if (e->attr & CEXPR_USER)
 405				val1 = c->user;
 406			else if (e->attr & CEXPR_ROLE)
 407				val1 = c->role;
 408			else if (e->attr & CEXPR_TYPE)
 409				val1 = c->type;
 410			else {
 411				BUG();
 412				return 0;
 413			}
 414
 415			switch (e->op) {
 416			case CEXPR_EQ:
 417				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 418				break;
 419			case CEXPR_NEQ:
 420				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 421				break;
 422			default:
 423				BUG();
 424				return 0;
 425			}
 426			break;
 427		default:
 428			BUG();
 429			return 0;
 430		}
 431	}
 432
 433	BUG_ON(sp != 0);
 434	return s[0];
 435}
 436
 437/*
 438 * security_dump_masked_av - dumps masked permissions during
 439 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 440 */
 441static int dump_masked_av_helper(void *k, void *d, void *args)
 442{
 443	struct perm_datum *pdatum = d;
 444	char **permission_names = args;
 445
 446	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 447
 448	permission_names[pdatum->value - 1] = (char *)k;
 449
 450	return 0;
 451}
 452
 453static void security_dump_masked_av(struct policydb *policydb,
 454				    struct context *scontext,
 455				    struct context *tcontext,
 456				    u16 tclass,
 457				    u32 permissions,
 458				    const char *reason)
 459{
 460	struct common_datum *common_dat;
 461	struct class_datum *tclass_dat;
 462	struct audit_buffer *ab;
 463	char *tclass_name;
 464	char *scontext_name = NULL;
 465	char *tcontext_name = NULL;
 466	char *permission_names[32];
 467	int index;
 468	u32 length;
 469	bool need_comma = false;
 470
 471	if (!permissions)
 472		return;
 473
 474	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 475	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 476	common_dat = tclass_dat->comdatum;
 477
 478	/* init permission_names */
 479	if (common_dat &&
 480	    hashtab_map(common_dat->permissions.table,
 481			dump_masked_av_helper, permission_names) < 0)
 482		goto out;
 483
 484	if (hashtab_map(tclass_dat->permissions.table,
 485			dump_masked_av_helper, permission_names) < 0)
 486		goto out;
 487
 488	/* get scontext/tcontext in text form */
 489	if (context_struct_to_string(policydb, scontext,
 490				     &scontext_name, &length) < 0)
 491		goto out;
 492
 493	if (context_struct_to_string(policydb, tcontext,
 494				     &tcontext_name, &length) < 0)
 495		goto out;
 496
 497	/* audit a message */
 498	ab = audit_log_start(audit_context(),
 499			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 500	if (!ab)
 501		goto out;
 502
 503	audit_log_format(ab, "op=security_compute_av reason=%s "
 504			 "scontext=%s tcontext=%s tclass=%s perms=",
 505			 reason, scontext_name, tcontext_name, tclass_name);
 506
 507	for (index = 0; index < 32; index++) {
 508		u32 mask = (1 << index);
 509
 510		if ((mask & permissions) == 0)
 511			continue;
 512
 513		audit_log_format(ab, "%s%s",
 514				 need_comma ? "," : "",
 515				 permission_names[index]
 516				 ? permission_names[index] : "????");
 517		need_comma = true;
 518	}
 519	audit_log_end(ab);
 520out:
 521	/* release scontext/tcontext */
 522	kfree(tcontext_name);
 523	kfree(scontext_name);
 524
 525	return;
 526}
 527
 528/*
 529 * security_boundary_permission - drops violated permissions
 530 * on boundary constraint.
 531 */
 532static void type_attribute_bounds_av(struct policydb *policydb,
 533				     struct context *scontext,
 534				     struct context *tcontext,
 535				     u16 tclass,
 536				     struct av_decision *avd)
 537{
 538	struct context lo_scontext;
 539	struct context lo_tcontext, *tcontextp = tcontext;
 540	struct av_decision lo_avd;
 541	struct type_datum *source;
 542	struct type_datum *target;
 543	u32 masked = 0;
 544
 545	source = policydb->type_val_to_struct[scontext->type - 1];
 546	BUG_ON(!source);
 547
 548	if (!source->bounds)
 549		return;
 550
 551	target = policydb->type_val_to_struct[tcontext->type - 1];
 552	BUG_ON(!target);
 553
 554	memset(&lo_avd, 0, sizeof(lo_avd));
 555
 556	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 557	lo_scontext.type = source->bounds;
 558
 559	if (target->bounds) {
 560		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 561		lo_tcontext.type = target->bounds;
 562		tcontextp = &lo_tcontext;
 563	}
 564
 565	context_struct_compute_av(policydb, &lo_scontext,
 566				  tcontextp,
 567				  tclass,
 568				  &lo_avd,
 569				  NULL);
 570
 571	masked = ~lo_avd.allowed & avd->allowed;
 572
 573	if (likely(!masked))
 574		return;		/* no masked permission */
 575
 576	/* mask violated permissions */
 577	avd->allowed &= ~masked;
 578
 579	/* audit masked permissions */
 580	security_dump_masked_av(policydb, scontext, tcontext,
 581				tclass, masked, "bounds");
 582}
 583
 584/*
 585 * flag which drivers have permissions
 586 * only looking for ioctl based extended permssions
 587 */
 588void services_compute_xperms_drivers(
 589		struct extended_perms *xperms,
 590		struct avtab_node *node)
 591{
 592	unsigned int i;
 593
 594	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 595		/* if one or more driver has all permissions allowed */
 596		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 597			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 598	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 599		/* if allowing permissions within a driver */
 600		security_xperm_set(xperms->drivers.p,
 601					node->datum.u.xperms->driver);
 602	}
 603
 604	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 605	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 606		xperms->len = 1;
 607}
 608
 609/*
 610 * Compute access vectors and extended permissions based on a context
 611 * structure pair for the permissions in a particular class.
 612 */
 613static void context_struct_compute_av(struct policydb *policydb,
 614				      struct context *scontext,
 615				      struct context *tcontext,
 616				      u16 tclass,
 617				      struct av_decision *avd,
 618				      struct extended_perms *xperms)
 619{
 620	struct constraint_node *constraint;
 621	struct role_allow *ra;
 622	struct avtab_key avkey;
 623	struct avtab_node *node;
 624	struct class_datum *tclass_datum;
 625	struct ebitmap *sattr, *tattr;
 626	struct ebitmap_node *snode, *tnode;
 627	unsigned int i, j;
 628
 629	avd->allowed = 0;
 630	avd->auditallow = 0;
 631	avd->auditdeny = 0xffffffff;
 632	if (xperms) {
 633		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 634		xperms->len = 0;
 635	}
 636
 637	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 638		if (printk_ratelimit())
 639			pr_warn("SELinux:  Invalid class %hu\n", tclass);
 640		return;
 641	}
 642
 643	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 644
 645	/*
 646	 * If a specific type enforcement rule was defined for
 647	 * this permission check, then use it.
 648	 */
 649	avkey.target_class = tclass;
 650	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 651	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 652	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 653	ebitmap_for_each_positive_bit(sattr, snode, i) {
 654		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 655			avkey.source_type = i + 1;
 656			avkey.target_type = j + 1;
 657			for (node = avtab_search_node(&policydb->te_avtab,
 658						      &avkey);
 659			     node;
 660			     node = avtab_search_node_next(node, avkey.specified)) {
 661				if (node->key.specified == AVTAB_ALLOWED)
 662					avd->allowed |= node->datum.u.data;
 663				else if (node->key.specified == AVTAB_AUDITALLOW)
 664					avd->auditallow |= node->datum.u.data;
 665				else if (node->key.specified == AVTAB_AUDITDENY)
 666					avd->auditdeny &= node->datum.u.data;
 667				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 668					services_compute_xperms_drivers(xperms, node);
 669			}
 670
 671			/* Check conditional av table for additional permissions */
 672			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 673					avd, xperms);
 674
 675		}
 676	}
 677
 678	/*
 679	 * Remove any permissions prohibited by a constraint (this includes
 680	 * the MLS policy).
 681	 */
 682	constraint = tclass_datum->constraints;
 683	while (constraint) {
 684		if ((constraint->permissions & (avd->allowed)) &&
 685		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 686					  constraint->expr)) {
 687			avd->allowed &= ~(constraint->permissions);
 688		}
 689		constraint = constraint->next;
 690	}
 691
 692	/*
 693	 * If checking process transition permission and the
 694	 * role is changing, then check the (current_role, new_role)
 695	 * pair.
 696	 */
 697	if (tclass == policydb->process_class &&
 698	    (avd->allowed & policydb->process_trans_perms) &&
 699	    scontext->role != tcontext->role) {
 700		for (ra = policydb->role_allow; ra; ra = ra->next) {
 701			if (scontext->role == ra->role &&
 702			    tcontext->role == ra->new_role)
 703				break;
 704		}
 705		if (!ra)
 706			avd->allowed &= ~policydb->process_trans_perms;
 707	}
 708
 709	/*
 710	 * If the given source and target types have boundary
 711	 * constraint, lazy checks have to mask any violated
 712	 * permission and notice it to userspace via audit.
 713	 */
 714	type_attribute_bounds_av(policydb, scontext, tcontext,
 715				 tclass, avd);
 716}
 717
 718static int security_validtrans_handle_fail(struct selinux_state *state,
 719					   struct context *ocontext,
 720					   struct context *ncontext,
 721					   struct context *tcontext,
 722					   u16 tclass)
 
 723{
 724	struct policydb *p = &state->ss->policydb;
 
 725	char *o = NULL, *n = NULL, *t = NULL;
 726	u32 olen, nlen, tlen;
 727
 728	if (context_struct_to_string(p, ocontext, &o, &olen))
 729		goto out;
 730	if (context_struct_to_string(p, ncontext, &n, &nlen))
 731		goto out;
 732	if (context_struct_to_string(p, tcontext, &t, &tlen))
 733		goto out;
 734	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 735		  "op=security_validate_transition seresult=denied"
 736		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 737		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 738out:
 739	kfree(o);
 740	kfree(n);
 741	kfree(t);
 742
 743	if (!enforcing_enabled(state))
 744		return 0;
 745	return -EPERM;
 746}
 747
 748static int security_compute_validatetrans(struct selinux_state *state,
 749					  u32 oldsid, u32 newsid, u32 tasksid,
 750					  u16 orig_tclass, bool user)
 751{
 
 752	struct policydb *policydb;
 753	struct sidtab *sidtab;
 754	struct context *ocontext;
 755	struct context *ncontext;
 756	struct context *tcontext;
 757	struct class_datum *tclass_datum;
 758	struct constraint_node *constraint;
 759	u16 tclass;
 760	int rc = 0;
 761
 762
 763	if (!state->initialized)
 764		return 0;
 765
 766	read_lock(&state->ss->policy_rwlock);
 767
 768	policydb = &state->ss->policydb;
 769	sidtab = state->ss->sidtab;
 
 770
 771	if (!user)
 772		tclass = unmap_class(&state->ss->map, orig_tclass);
 773	else
 774		tclass = orig_tclass;
 775
 776	if (!tclass || tclass > policydb->p_classes.nprim) {
 777		rc = -EINVAL;
 778		goto out;
 779	}
 780	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 781
 782	ocontext = sidtab_search(sidtab, oldsid);
 783	if (!ocontext) {
 784		pr_err("SELinux: %s:  unrecognized SID %d\n",
 785			__func__, oldsid);
 786		rc = -EINVAL;
 787		goto out;
 788	}
 789
 790	ncontext = sidtab_search(sidtab, newsid);
 791	if (!ncontext) {
 792		pr_err("SELinux: %s:  unrecognized SID %d\n",
 793			__func__, newsid);
 794		rc = -EINVAL;
 795		goto out;
 796	}
 797
 798	tcontext = sidtab_search(sidtab, tasksid);
 799	if (!tcontext) {
 800		pr_err("SELinux: %s:  unrecognized SID %d\n",
 801			__func__, tasksid);
 802		rc = -EINVAL;
 803		goto out;
 804	}
 805
 806	constraint = tclass_datum->validatetrans;
 807	while (constraint) {
 808		if (!constraint_expr_eval(policydb, ocontext, ncontext,
 809					  tcontext, constraint->expr)) {
 
 810			if (user)
 811				rc = -EPERM;
 812			else
 813				rc = security_validtrans_handle_fail(state,
 814								     ocontext,
 815								     ncontext,
 816								     tcontext,
 817								     tclass);
 
 818			goto out;
 819		}
 820		constraint = constraint->next;
 821	}
 822
 823out:
 824	read_unlock(&state->ss->policy_rwlock);
 825	return rc;
 826}
 827
 828int security_validate_transition_user(struct selinux_state *state,
 829				      u32 oldsid, u32 newsid, u32 tasksid,
 830				      u16 tclass)
 831{
 832	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 833					      tclass, true);
 834}
 835
 836int security_validate_transition(struct selinux_state *state,
 837				 u32 oldsid, u32 newsid, u32 tasksid,
 838				 u16 orig_tclass)
 839{
 840	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 841					      orig_tclass, false);
 842}
 843
 844/*
 845 * security_bounded_transition - check whether the given
 846 * transition is directed to bounded, or not.
 847 * It returns 0, if @newsid is bounded by @oldsid.
 848 * Otherwise, it returns error code.
 849 *
 
 850 * @oldsid : current security identifier
 851 * @newsid : destinated security identifier
 852 */
 853int security_bounded_transition(struct selinux_state *state,
 854				u32 old_sid, u32 new_sid)
 855{
 
 856	struct policydb *policydb;
 857	struct sidtab *sidtab;
 858	struct context *old_context, *new_context;
 859	struct type_datum *type;
 860	int index;
 861	int rc;
 862
 863	if (!state->initialized)
 864		return 0;
 865
 866	read_lock(&state->ss->policy_rwlock);
 867
 868	policydb = &state->ss->policydb;
 869	sidtab = state->ss->sidtab;
 870
 871	rc = -EINVAL;
 872	old_context = sidtab_search(sidtab, old_sid);
 873	if (!old_context) {
 874		pr_err("SELinux: %s: unrecognized SID %u\n",
 875		       __func__, old_sid);
 876		goto out;
 877	}
 878
 879	rc = -EINVAL;
 880	new_context = sidtab_search(sidtab, new_sid);
 881	if (!new_context) {
 882		pr_err("SELinux: %s: unrecognized SID %u\n",
 883		       __func__, new_sid);
 884		goto out;
 885	}
 886
 887	rc = 0;
 888	/* type/domain unchanged */
 889	if (old_context->type == new_context->type)
 890		goto out;
 891
 892	index = new_context->type;
 893	while (true) {
 894		type = policydb->type_val_to_struct[index - 1];
 895		BUG_ON(!type);
 896
 897		/* not bounded anymore */
 898		rc = -EPERM;
 899		if (!type->bounds)
 900			break;
 901
 902		/* @newsid is bounded by @oldsid */
 903		rc = 0;
 904		if (type->bounds == old_context->type)
 905			break;
 906
 907		index = type->bounds;
 908	}
 909
 910	if (rc) {
 911		char *old_name = NULL;
 912		char *new_name = NULL;
 913		u32 length;
 914
 915		if (!context_struct_to_string(policydb, old_context,
 916					      &old_name, &length) &&
 917		    !context_struct_to_string(policydb, new_context,
 918					      &new_name, &length)) {
 919			audit_log(audit_context(),
 920				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 921				  "op=security_bounded_transition "
 922				  "seresult=denied "
 923				  "oldcontext=%s newcontext=%s",
 924				  old_name, new_name);
 925		}
 926		kfree(new_name);
 927		kfree(old_name);
 928	}
 929out:
 930	read_unlock(&state->ss->policy_rwlock);
 931
 932	return rc;
 933}
 934
 935static void avd_init(struct selinux_state *state, struct av_decision *avd)
 936{
 937	avd->allowed = 0;
 938	avd->auditallow = 0;
 939	avd->auditdeny = 0xffffffff;
 940	avd->seqno = state->ss->latest_granting;
 
 
 
 941	avd->flags = 0;
 942}
 943
 944void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 945					struct avtab_node *node)
 946{
 947	unsigned int i;
 948
 949	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 950		if (xpermd->driver != node->datum.u.xperms->driver)
 951			return;
 952	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 953		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 954					xpermd->driver))
 955			return;
 956	} else {
 957		BUG();
 958	}
 959
 960	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 961		xpermd->used |= XPERMS_ALLOWED;
 962		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 963			memset(xpermd->allowed->p, 0xff,
 964					sizeof(xpermd->allowed->p));
 965		}
 966		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 967			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 968				xpermd->allowed->p[i] |=
 969					node->datum.u.xperms->perms.p[i];
 970		}
 971	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 972		xpermd->used |= XPERMS_AUDITALLOW;
 973		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 974			memset(xpermd->auditallow->p, 0xff,
 975					sizeof(xpermd->auditallow->p));
 976		}
 977		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 978			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 979				xpermd->auditallow->p[i] |=
 980					node->datum.u.xperms->perms.p[i];
 981		}
 982	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 983		xpermd->used |= XPERMS_DONTAUDIT;
 984		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 985			memset(xpermd->dontaudit->p, 0xff,
 986					sizeof(xpermd->dontaudit->p));
 987		}
 988		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 989			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 990				xpermd->dontaudit->p[i] |=
 991					node->datum.u.xperms->perms.p[i];
 992		}
 993	} else {
 994		BUG();
 995	}
 996}
 997
 998void security_compute_xperms_decision(struct selinux_state *state,
 999				      u32 ssid,
1000				      u32 tsid,
1001				      u16 orig_tclass,
1002				      u8 driver,
1003				      struct extended_perms_decision *xpermd)
1004{
 
1005	struct policydb *policydb;
1006	struct sidtab *sidtab;
1007	u16 tclass;
1008	struct context *scontext, *tcontext;
1009	struct avtab_key avkey;
1010	struct avtab_node *node;
1011	struct ebitmap *sattr, *tattr;
1012	struct ebitmap_node *snode, *tnode;
1013	unsigned int i, j;
1014
1015	xpermd->driver = driver;
1016	xpermd->used = 0;
1017	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1018	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1019	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1020
1021	read_lock(&state->ss->policy_rwlock);
1022	if (!state->initialized)
1023		goto allow;
1024
1025	policydb = &state->ss->policydb;
1026	sidtab = state->ss->sidtab;
 
1027
1028	scontext = sidtab_search(sidtab, ssid);
1029	if (!scontext) {
1030		pr_err("SELinux: %s:  unrecognized SID %d\n",
1031		       __func__, ssid);
1032		goto out;
1033	}
1034
1035	tcontext = sidtab_search(sidtab, tsid);
1036	if (!tcontext) {
1037		pr_err("SELinux: %s:  unrecognized SID %d\n",
1038		       __func__, tsid);
1039		goto out;
1040	}
1041
1042	tclass = unmap_class(&state->ss->map, orig_tclass);
1043	if (unlikely(orig_tclass && !tclass)) {
1044		if (policydb->allow_unknown)
1045			goto allow;
1046		goto out;
1047	}
1048
1049
1050	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1051		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1052		goto out;
1053	}
1054
1055	avkey.target_class = tclass;
1056	avkey.specified = AVTAB_XPERMS;
1057	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1058	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1059	ebitmap_for_each_positive_bit(sattr, snode, i) {
1060		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1061			avkey.source_type = i + 1;
1062			avkey.target_type = j + 1;
1063			for (node = avtab_search_node(&policydb->te_avtab,
1064						      &avkey);
1065			     node;
1066			     node = avtab_search_node_next(node, avkey.specified))
1067				services_compute_xperms_decision(xpermd, node);
1068
1069			cond_compute_xperms(&policydb->te_cond_avtab,
1070						&avkey, xpermd);
1071		}
1072	}
1073out:
1074	read_unlock(&state->ss->policy_rwlock);
1075	return;
1076allow:
1077	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1078	goto out;
1079}
1080
1081/**
1082 * security_compute_av - Compute access vector decisions.
 
1083 * @ssid: source security identifier
1084 * @tsid: target security identifier
1085 * @tclass: target security class
1086 * @avd: access vector decisions
1087 * @xperms: extended permissions
1088 *
1089 * Compute a set of access vector decisions based on the
1090 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1091 */
1092void security_compute_av(struct selinux_state *state,
1093			 u32 ssid,
1094			 u32 tsid,
1095			 u16 orig_tclass,
1096			 struct av_decision *avd,
1097			 struct extended_perms *xperms)
1098{
 
1099	struct policydb *policydb;
1100	struct sidtab *sidtab;
1101	u16 tclass;
1102	struct context *scontext = NULL, *tcontext = NULL;
1103
1104	read_lock(&state->ss->policy_rwlock);
1105	avd_init(state, avd);
 
1106	xperms->len = 0;
1107	if (!state->initialized)
1108		goto allow;
1109
1110	policydb = &state->ss->policydb;
1111	sidtab = state->ss->sidtab;
1112
1113	scontext = sidtab_search(sidtab, ssid);
1114	if (!scontext) {
1115		pr_err("SELinux: %s:  unrecognized SID %d\n",
1116		       __func__, ssid);
1117		goto out;
1118	}
1119
1120	/* permissive domain? */
1121	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1122		avd->flags |= AVD_FLAGS_PERMISSIVE;
1123
1124	tcontext = sidtab_search(sidtab, tsid);
1125	if (!tcontext) {
1126		pr_err("SELinux: %s:  unrecognized SID %d\n",
1127		       __func__, tsid);
1128		goto out;
1129	}
1130
1131	tclass = unmap_class(&state->ss->map, orig_tclass);
1132	if (unlikely(orig_tclass && !tclass)) {
1133		if (policydb->allow_unknown)
1134			goto allow;
1135		goto out;
1136	}
1137	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1138				  xperms);
1139	map_decision(&state->ss->map, orig_tclass, avd,
1140		     policydb->allow_unknown);
1141out:
1142	read_unlock(&state->ss->policy_rwlock);
1143	return;
1144allow:
1145	avd->allowed = 0xffffffff;
1146	goto out;
1147}
1148
1149void security_compute_av_user(struct selinux_state *state,
1150			      u32 ssid,
1151			      u32 tsid,
1152			      u16 tclass,
1153			      struct av_decision *avd)
1154{
 
1155	struct policydb *policydb;
1156	struct sidtab *sidtab;
1157	struct context *scontext = NULL, *tcontext = NULL;
1158
1159	read_lock(&state->ss->policy_rwlock);
1160	avd_init(state, avd);
1161	if (!state->initialized)
 
1162		goto allow;
1163
1164	policydb = &state->ss->policydb;
1165	sidtab = state->ss->sidtab;
1166
1167	scontext = sidtab_search(sidtab, ssid);
1168	if (!scontext) {
1169		pr_err("SELinux: %s:  unrecognized SID %d\n",
1170		       __func__, ssid);
1171		goto out;
1172	}
1173
1174	/* permissive domain? */
1175	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1176		avd->flags |= AVD_FLAGS_PERMISSIVE;
1177
1178	tcontext = sidtab_search(sidtab, tsid);
1179	if (!tcontext) {
1180		pr_err("SELinux: %s:  unrecognized SID %d\n",
1181		       __func__, tsid);
1182		goto out;
1183	}
1184
1185	if (unlikely(!tclass)) {
1186		if (policydb->allow_unknown)
1187			goto allow;
1188		goto out;
1189	}
1190
1191	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1192				  NULL);
1193 out:
1194	read_unlock(&state->ss->policy_rwlock);
1195	return;
1196allow:
1197	avd->allowed = 0xffffffff;
1198	goto out;
1199}
1200
1201/*
1202 * Write the security context string representation of
1203 * the context structure `context' into a dynamically
1204 * allocated string of the correct size.  Set `*scontext'
1205 * to point to this string and set `*scontext_len' to
1206 * the length of the string.
1207 */
1208static int context_struct_to_string(struct policydb *p,
1209				    struct context *context,
1210				    char **scontext, u32 *scontext_len)
1211{
1212	char *scontextp;
1213
1214	if (scontext)
1215		*scontext = NULL;
1216	*scontext_len = 0;
1217
1218	if (context->len) {
1219		*scontext_len = context->len;
1220		if (scontext) {
1221			*scontext = kstrdup(context->str, GFP_ATOMIC);
1222			if (!(*scontext))
1223				return -ENOMEM;
1224		}
1225		return 0;
1226	}
1227
1228	/* Compute the size of the context. */
1229	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1230	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1231	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1232	*scontext_len += mls_compute_context_len(p, context);
1233
1234	if (!scontext)
1235		return 0;
1236
1237	/* Allocate space for the context; caller must free this space. */
1238	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1239	if (!scontextp)
1240		return -ENOMEM;
1241	*scontext = scontextp;
1242
1243	/*
1244	 * Copy the user name, role name and type name into the context.
1245	 */
1246	scontextp += sprintf(scontextp, "%s:%s:%s",
1247		sym_name(p, SYM_USERS, context->user - 1),
1248		sym_name(p, SYM_ROLES, context->role - 1),
1249		sym_name(p, SYM_TYPES, context->type - 1));
1250
1251	mls_sid_to_context(p, context, &scontextp);
1252
1253	*scontextp = 0;
1254
1255	return 0;
1256}
1257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1258#include "initial_sid_to_string.h"
1259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260const char *security_get_initial_sid_context(u32 sid)
1261{
1262	if (unlikely(sid > SECINITSID_NUM))
1263		return NULL;
1264	return initial_sid_to_string[sid];
1265}
1266
1267static int security_sid_to_context_core(struct selinux_state *state,
1268					u32 sid, char **scontext,
1269					u32 *scontext_len, int force,
1270					int only_invalid)
1271{
 
1272	struct policydb *policydb;
1273	struct sidtab *sidtab;
1274	struct context *context;
1275	int rc = 0;
1276
1277	if (scontext)
1278		*scontext = NULL;
1279	*scontext_len  = 0;
1280
1281	if (!state->initialized) {
1282		if (sid <= SECINITSID_NUM) {
1283			char *scontextp;
 
1284
1285			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
 
 
1286			if (!scontext)
1287				goto out;
1288			scontextp = kmemdup(initial_sid_to_string[sid],
1289					    *scontext_len, GFP_ATOMIC);
1290			if (!scontextp) {
1291				rc = -ENOMEM;
1292				goto out;
1293			}
1294			*scontext = scontextp;
1295			goto out;
1296		}
1297		pr_err("SELinux: %s:  called before initial "
1298		       "load_policy on unknown SID %d\n", __func__, sid);
1299		rc = -EINVAL;
1300		goto out;
1301	}
1302	read_lock(&state->ss->policy_rwlock);
1303	policydb = &state->ss->policydb;
1304	sidtab = state->ss->sidtab;
 
 
1305	if (force)
1306		context = sidtab_search_force(sidtab, sid);
1307	else
1308		context = sidtab_search(sidtab, sid);
1309	if (!context) {
1310		pr_err("SELinux: %s:  unrecognized SID %d\n",
1311			__func__, sid);
1312		rc = -EINVAL;
1313		goto out_unlock;
1314	}
1315	if (only_invalid && !context->len)
1316		rc = 0;
1317	else
1318		rc = context_struct_to_string(policydb, context, scontext,
1319					      scontext_len);
 
1320out_unlock:
1321	read_unlock(&state->ss->policy_rwlock);
1322out:
1323	return rc;
1324
1325}
1326
1327/**
1328 * security_sid_to_context - Obtain a context for a given SID.
 
1329 * @sid: security identifier, SID
1330 * @scontext: security context
1331 * @scontext_len: length in bytes
1332 *
1333 * Write the string representation of the context associated with @sid
1334 * into a dynamically allocated string of the correct size.  Set @scontext
1335 * to point to this string and set @scontext_len to the length of the string.
1336 */
1337int security_sid_to_context(struct selinux_state *state,
1338			    u32 sid, char **scontext, u32 *scontext_len)
1339{
1340	return security_sid_to_context_core(state, sid, scontext,
1341					    scontext_len, 0, 0);
1342}
1343
1344int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1345				  char **scontext, u32 *scontext_len)
1346{
1347	return security_sid_to_context_core(state, sid, scontext,
1348					    scontext_len, 1, 0);
1349}
1350
1351/**
1352 * security_sid_to_context_inval - Obtain a context for a given SID if it
1353 *                                 is invalid.
 
1354 * @sid: security identifier, SID
1355 * @scontext: security context
1356 * @scontext_len: length in bytes
1357 *
1358 * Write the string representation of the context associated with @sid
1359 * into a dynamically allocated string of the correct size, but only if the
1360 * context is invalid in the current policy.  Set @scontext to point to
1361 * this string (or NULL if the context is valid) and set @scontext_len to
1362 * the length of the string (or 0 if the context is valid).
1363 */
1364int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1365				  char **scontext, u32 *scontext_len)
1366{
1367	return security_sid_to_context_core(state, sid, scontext,
1368					    scontext_len, 1, 1);
1369}
1370
1371/*
1372 * Caveat:  Mutates scontext.
1373 */
1374static int string_to_context_struct(struct policydb *pol,
1375				    struct sidtab *sidtabp,
1376				    char *scontext,
1377				    struct context *ctx,
1378				    u32 def_sid)
1379{
1380	struct role_datum *role;
1381	struct type_datum *typdatum;
1382	struct user_datum *usrdatum;
1383	char *scontextp, *p, oldc;
1384	int rc = 0;
1385
1386	context_init(ctx);
1387
1388	/* Parse the security context. */
1389
1390	rc = -EINVAL;
1391	scontextp = (char *) scontext;
1392
1393	/* Extract the user. */
1394	p = scontextp;
1395	while (*p && *p != ':')
1396		p++;
1397
1398	if (*p == 0)
1399		goto out;
1400
1401	*p++ = 0;
1402
1403	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1404	if (!usrdatum)
1405		goto out;
1406
1407	ctx->user = usrdatum->value;
1408
1409	/* Extract role. */
1410	scontextp = p;
1411	while (*p && *p != ':')
1412		p++;
1413
1414	if (*p == 0)
1415		goto out;
1416
1417	*p++ = 0;
1418
1419	role = hashtab_search(pol->p_roles.table, scontextp);
1420	if (!role)
1421		goto out;
1422	ctx->role = role->value;
1423
1424	/* Extract type. */
1425	scontextp = p;
1426	while (*p && *p != ':')
1427		p++;
1428	oldc = *p;
1429	*p++ = 0;
1430
1431	typdatum = hashtab_search(pol->p_types.table, scontextp);
1432	if (!typdatum || typdatum->attribute)
1433		goto out;
1434
1435	ctx->type = typdatum->value;
1436
1437	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1438	if (rc)
1439		goto out;
1440
1441	/* Check the validity of the new context. */
1442	rc = -EINVAL;
1443	if (!policydb_context_isvalid(pol, ctx))
1444		goto out;
1445	rc = 0;
1446out:
1447	if (rc)
1448		context_destroy(ctx);
1449	return rc;
1450}
1451
1452static int security_context_to_sid_core(struct selinux_state *state,
1453					const char *scontext, u32 scontext_len,
1454					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1455					int force)
1456{
 
1457	struct policydb *policydb;
1458	struct sidtab *sidtab;
1459	char *scontext2, *str = NULL;
1460	struct context context;
1461	int rc = 0;
1462
1463	/* An empty security context is never valid. */
1464	if (!scontext_len)
1465		return -EINVAL;
1466
1467	/* Copy the string to allow changes and ensure a NUL terminator */
1468	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1469	if (!scontext2)
1470		return -ENOMEM;
1471
1472	if (!state->initialized) {
1473		int i;
1474
1475		for (i = 1; i < SECINITSID_NUM; i++) {
1476			if (!strcmp(initial_sid_to_string[i], scontext2)) {
 
 
1477				*sid = i;
1478				goto out;
1479			}
1480		}
1481		*sid = SECINITSID_KERNEL;
1482		goto out;
1483	}
1484	*sid = SECSID_NULL;
1485
1486	if (force) {
1487		/* Save another copy for storing in uninterpreted form */
1488		rc = -ENOMEM;
1489		str = kstrdup(scontext2, gfp_flags);
1490		if (!str)
1491			goto out;
1492	}
1493	read_lock(&state->ss->policy_rwlock);
1494	policydb = &state->ss->policydb;
1495	sidtab = state->ss->sidtab;
 
 
1496	rc = string_to_context_struct(policydb, sidtab, scontext2,
1497				      &context, def_sid);
1498	if (rc == -EINVAL && force) {
1499		context.str = str;
1500		context.len = strlen(str) + 1;
1501		str = NULL;
1502	} else if (rc)
1503		goto out_unlock;
1504	rc = sidtab_context_to_sid(sidtab, &context, sid);
 
 
 
 
 
 
 
 
 
1505	context_destroy(&context);
1506out_unlock:
1507	read_unlock(&state->ss->policy_rwlock);
1508out:
1509	kfree(scontext2);
1510	kfree(str);
1511	return rc;
1512}
1513
1514/**
1515 * security_context_to_sid - Obtain a SID for a given security context.
 
1516 * @scontext: security context
1517 * @scontext_len: length in bytes
1518 * @sid: security identifier, SID
1519 * @gfp: context for the allocation
1520 *
1521 * Obtains a SID associated with the security context that
1522 * has the string representation specified by @scontext.
1523 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1524 * memory is available, or 0 on success.
1525 */
1526int security_context_to_sid(struct selinux_state *state,
1527			    const char *scontext, u32 scontext_len, u32 *sid,
1528			    gfp_t gfp)
1529{
1530	return security_context_to_sid_core(state, scontext, scontext_len,
1531					    sid, SECSID_NULL, gfp, 0);
1532}
1533
1534int security_context_str_to_sid(struct selinux_state *state,
1535				const char *scontext, u32 *sid, gfp_t gfp)
1536{
1537	return security_context_to_sid(state, scontext, strlen(scontext),
1538				       sid, gfp);
1539}
1540
1541/**
1542 * security_context_to_sid_default - Obtain a SID for a given security context,
1543 * falling back to specified default if needed.
1544 *
 
1545 * @scontext: security context
1546 * @scontext_len: length in bytes
1547 * @sid: security identifier, SID
1548 * @def_sid: default SID to assign on error
1549 *
1550 * Obtains a SID associated with the security context that
1551 * has the string representation specified by @scontext.
1552 * The default SID is passed to the MLS layer to be used to allow
1553 * kernel labeling of the MLS field if the MLS field is not present
1554 * (for upgrading to MLS without full relabel).
1555 * Implicitly forces adding of the context even if it cannot be mapped yet.
1556 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1557 * memory is available, or 0 on success.
1558 */
1559int security_context_to_sid_default(struct selinux_state *state,
1560				    const char *scontext, u32 scontext_len,
1561				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1562{
1563	return security_context_to_sid_core(state, scontext, scontext_len,
1564					    sid, def_sid, gfp_flags, 1);
1565}
1566
1567int security_context_to_sid_force(struct selinux_state *state,
1568				  const char *scontext, u32 scontext_len,
1569				  u32 *sid)
1570{
1571	return security_context_to_sid_core(state, scontext, scontext_len,
1572					    sid, SECSID_NULL, GFP_KERNEL, 1);
1573}
1574
1575static int compute_sid_handle_invalid_context(
1576	struct selinux_state *state,
1577	struct context *scontext,
1578	struct context *tcontext,
 
1579	u16 tclass,
1580	struct context *newcontext)
1581{
1582	struct policydb *policydb = &state->ss->policydb;
 
1583	char *s = NULL, *t = NULL, *n = NULL;
1584	u32 slen, tlen, nlen;
1585	struct audit_buffer *ab;
1586
1587	if (context_struct_to_string(policydb, scontext, &s, &slen))
1588		goto out;
1589	if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1590		goto out;
1591	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1592		goto out;
1593	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1594	audit_log_format(ab,
1595			 "op=security_compute_sid invalid_context=");
1596	/* no need to record the NUL with untrusted strings */
1597	audit_log_n_untrustedstring(ab, n, nlen - 1);
1598	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1599			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1600	audit_log_end(ab);
1601out:
1602	kfree(s);
1603	kfree(t);
1604	kfree(n);
1605	if (!enforcing_enabled(state))
1606		return 0;
1607	return -EACCES;
1608}
1609
1610static void filename_compute_type(struct policydb *policydb,
1611				  struct context *newcontext,
1612				  u32 stype, u32 ttype, u16 tclass,
1613				  const char *objname)
1614{
1615	struct filename_trans ft;
1616	struct filename_trans_datum *otype;
1617
1618	/*
1619	 * Most filename trans rules are going to live in specific directories
1620	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1621	 * if the ttype does not contain any rules.
1622	 */
1623	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1624		return;
1625
1626	ft.stype = stype;
1627	ft.ttype = ttype;
1628	ft.tclass = tclass;
1629	ft.name = objname;
1630
1631	otype = hashtab_search(policydb->filename_trans, &ft);
1632	if (otype)
1633		newcontext->type = otype->otype;
 
 
 
 
 
1634}
1635
1636static int security_compute_sid(struct selinux_state *state,
1637				u32 ssid,
1638				u32 tsid,
1639				u16 orig_tclass,
1640				u32 specified,
1641				const char *objname,
1642				u32 *out_sid,
1643				bool kern)
1644{
 
1645	struct policydb *policydb;
1646	struct sidtab *sidtab;
1647	struct class_datum *cladatum = NULL;
1648	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1649	struct role_trans *roletr = NULL;
1650	struct avtab_key avkey;
1651	struct avtab_datum *avdatum;
1652	struct avtab_node *node;
1653	u16 tclass;
1654	int rc = 0;
1655	bool sock;
1656
1657	if (!state->initialized) {
1658		switch (orig_tclass) {
1659		case SECCLASS_PROCESS: /* kernel value */
1660			*out_sid = ssid;
1661			break;
1662		default:
1663			*out_sid = tsid;
1664			break;
1665		}
1666		goto out;
1667	}
1668
 
 
1669	context_init(&newcontext);
1670
1671	read_lock(&state->ss->policy_rwlock);
 
 
1672
1673	if (kern) {
1674		tclass = unmap_class(&state->ss->map, orig_tclass);
1675		sock = security_is_socket_class(orig_tclass);
1676	} else {
1677		tclass = orig_tclass;
1678		sock = security_is_socket_class(map_class(&state->ss->map,
1679							  tclass));
1680	}
1681
1682	policydb = &state->ss->policydb;
1683	sidtab = state->ss->sidtab;
1684
1685	scontext = sidtab_search(sidtab, ssid);
1686	if (!scontext) {
1687		pr_err("SELinux: %s:  unrecognized SID %d\n",
1688		       __func__, ssid);
1689		rc = -EINVAL;
1690		goto out_unlock;
1691	}
1692	tcontext = sidtab_search(sidtab, tsid);
1693	if (!tcontext) {
1694		pr_err("SELinux: %s:  unrecognized SID %d\n",
1695		       __func__, tsid);
1696		rc = -EINVAL;
1697		goto out_unlock;
1698	}
1699
 
 
 
1700	if (tclass && tclass <= policydb->p_classes.nprim)
1701		cladatum = policydb->class_val_to_struct[tclass - 1];
1702
1703	/* Set the user identity. */
1704	switch (specified) {
1705	case AVTAB_TRANSITION:
1706	case AVTAB_CHANGE:
1707		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1708			newcontext.user = tcontext->user;
1709		} else {
1710			/* notice this gets both DEFAULT_SOURCE and unset */
1711			/* Use the process user identity. */
1712			newcontext.user = scontext->user;
1713		}
1714		break;
1715	case AVTAB_MEMBER:
1716		/* Use the related object owner. */
1717		newcontext.user = tcontext->user;
1718		break;
1719	}
1720
1721	/* Set the role to default values. */
1722	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1723		newcontext.role = scontext->role;
1724	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1725		newcontext.role = tcontext->role;
1726	} else {
1727		if ((tclass == policydb->process_class) || (sock == true))
1728			newcontext.role = scontext->role;
1729		else
1730			newcontext.role = OBJECT_R_VAL;
1731	}
1732
1733	/* Set the type to default values. */
1734	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1735		newcontext.type = scontext->type;
1736	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1737		newcontext.type = tcontext->type;
1738	} else {
1739		if ((tclass == policydb->process_class) || (sock == true)) {
1740			/* Use the type of process. */
1741			newcontext.type = scontext->type;
1742		} else {
1743			/* Use the type of the related object. */
1744			newcontext.type = tcontext->type;
1745		}
1746	}
1747
1748	/* Look for a type transition/member/change rule. */
1749	avkey.source_type = scontext->type;
1750	avkey.target_type = tcontext->type;
1751	avkey.target_class = tclass;
1752	avkey.specified = specified;
1753	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1754
1755	/* If no permanent rule, also check for enabled conditional rules */
1756	if (!avdatum) {
1757		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1758		for (; node; node = avtab_search_node_next(node, specified)) {
1759			if (node->key.specified & AVTAB_ENABLED) {
1760				avdatum = &node->datum;
1761				break;
1762			}
1763		}
1764	}
1765
1766	if (avdatum) {
1767		/* Use the type from the type transition/member/change rule. */
1768		newcontext.type = avdatum->u.data;
1769	}
1770
1771	/* if we have a objname this is a file trans check so check those rules */
1772	if (objname)
1773		filename_compute_type(policydb, &newcontext, scontext->type,
1774				      tcontext->type, tclass, objname);
1775
1776	/* Check for class-specific changes. */
1777	if (specified & AVTAB_TRANSITION) {
1778		/* Look for a role transition rule. */
1779		for (roletr = policydb->role_tr; roletr;
1780		     roletr = roletr->next) {
1781			if ((roletr->role == scontext->role) &&
1782			    (roletr->type == tcontext->type) &&
1783			    (roletr->tclass == tclass)) {
1784				/* Use the role transition rule. */
1785				newcontext.role = roletr->new_role;
1786				break;
1787			}
1788		}
1789	}
1790
1791	/* Set the MLS attributes.
1792	   This is done last because it may allocate memory. */
1793	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1794			     &newcontext, sock);
1795	if (rc)
1796		goto out_unlock;
1797
1798	/* Check the validity of the context. */
1799	if (!policydb_context_isvalid(policydb, &newcontext)) {
1800		rc = compute_sid_handle_invalid_context(state, scontext,
1801							tcontext,
1802							tclass,
1803							&newcontext);
1804		if (rc)
1805			goto out_unlock;
1806	}
1807	/* Obtain the sid for the context. */
1808	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
 
 
 
 
 
1809out_unlock:
1810	read_unlock(&state->ss->policy_rwlock);
1811	context_destroy(&newcontext);
1812out:
1813	return rc;
1814}
1815
1816/**
1817 * security_transition_sid - Compute the SID for a new subject/object.
 
1818 * @ssid: source security identifier
1819 * @tsid: target security identifier
1820 * @tclass: target security class
1821 * @out_sid: security identifier for new subject/object
1822 *
1823 * Compute a SID to use for labeling a new subject or object in the
1824 * class @tclass based on a SID pair (@ssid, @tsid).
1825 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1826 * if insufficient memory is available, or %0 if the new SID was
1827 * computed successfully.
1828 */
1829int security_transition_sid(struct selinux_state *state,
1830			    u32 ssid, u32 tsid, u16 tclass,
1831			    const struct qstr *qstr, u32 *out_sid)
1832{
1833	return security_compute_sid(state, ssid, tsid, tclass,
1834				    AVTAB_TRANSITION,
1835				    qstr ? qstr->name : NULL, out_sid, true);
1836}
1837
1838int security_transition_sid_user(struct selinux_state *state,
1839				 u32 ssid, u32 tsid, u16 tclass,
1840				 const char *objname, u32 *out_sid)
1841{
1842	return security_compute_sid(state, ssid, tsid, tclass,
1843				    AVTAB_TRANSITION,
1844				    objname, out_sid, false);
1845}
1846
1847/**
1848 * security_member_sid - Compute the SID for member selection.
1849 * @ssid: source security identifier
1850 * @tsid: target security identifier
1851 * @tclass: target security class
1852 * @out_sid: security identifier for selected member
1853 *
1854 * Compute a SID to use when selecting a member of a polyinstantiated
1855 * object of class @tclass based on a SID pair (@ssid, @tsid).
1856 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1857 * if insufficient memory is available, or %0 if the SID was
1858 * computed successfully.
1859 */
1860int security_member_sid(struct selinux_state *state,
1861			u32 ssid,
1862			u32 tsid,
1863			u16 tclass,
1864			u32 *out_sid)
1865{
1866	return security_compute_sid(state, ssid, tsid, tclass,
1867				    AVTAB_MEMBER, NULL,
1868				    out_sid, false);
1869}
1870
1871/**
1872 * security_change_sid - Compute the SID for object relabeling.
 
1873 * @ssid: source security identifier
1874 * @tsid: target security identifier
1875 * @tclass: target security class
1876 * @out_sid: security identifier for selected member
1877 *
1878 * Compute a SID to use for relabeling an object of class @tclass
1879 * based on a SID pair (@ssid, @tsid).
1880 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1881 * if insufficient memory is available, or %0 if the SID was
1882 * computed successfully.
1883 */
1884int security_change_sid(struct selinux_state *state,
1885			u32 ssid,
1886			u32 tsid,
1887			u16 tclass,
1888			u32 *out_sid)
1889{
1890	return security_compute_sid(state,
1891				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1892				    out_sid, false);
1893}
1894
1895static inline int convert_context_handle_invalid_context(
1896	struct selinux_state *state,
 
1897	struct context *context)
1898{
1899	struct policydb *policydb = &state->ss->policydb;
1900	char *s;
1901	u32 len;
1902
1903	if (enforcing_enabled(state))
1904		return -EINVAL;
1905
1906	if (!context_struct_to_string(policydb, context, &s, &len)) {
1907		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1908			s);
1909		kfree(s);
1910	}
1911	return 0;
1912}
1913
1914struct convert_context_args {
1915	struct selinux_state *state;
1916	struct policydb *oldp;
1917	struct policydb *newp;
1918};
1919
1920/*
1921 * Convert the values in the security context
1922 * structure `oldc' from the values specified
1923 * in the policy `p->oldp' to the values specified
1924 * in the policy `p->newp', storing the new context
1925 * in `newc'.  Verify that the context is valid
1926 * under the new policy.
1927 */
1928static int convert_context(struct context *oldc, struct context *newc, void *p)
1929{
1930	struct convert_context_args *args;
1931	struct ocontext *oc;
1932	struct role_datum *role;
1933	struct type_datum *typdatum;
1934	struct user_datum *usrdatum;
1935	char *s;
1936	u32 len;
1937	int rc;
1938
1939	args = p;
1940
1941	if (oldc->str) {
1942		s = kstrdup(oldc->str, GFP_KERNEL);
1943		if (!s)
1944			return -ENOMEM;
1945
1946		rc = string_to_context_struct(args->newp, NULL, s,
1947					      newc, SECSID_NULL);
1948		if (rc == -EINVAL) {
1949			/*
1950			 * Retain string representation for later mapping.
1951			 *
1952			 * IMPORTANT: We need to copy the contents of oldc->str
1953			 * back into s again because string_to_context_struct()
1954			 * may have garbled it.
1955			 */
1956			memcpy(s, oldc->str, oldc->len);
1957			context_init(newc);
1958			newc->str = s;
1959			newc->len = oldc->len;
1960			return 0;
1961		}
1962		kfree(s);
1963		if (rc) {
1964			/* Other error condition, e.g. ENOMEM. */
1965			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
1966			       oldc->str, -rc);
1967			return rc;
1968		}
1969		pr_info("SELinux:  Context %s became valid (mapped).\n",
1970			oldc->str);
1971		return 0;
1972	}
1973
1974	context_init(newc);
1975
1976	/* Convert the user. */
1977	rc = -EINVAL;
1978	usrdatum = hashtab_search(args->newp->p_users.table,
1979				  sym_name(args->oldp,
1980					   SYM_USERS, oldc->user - 1));
1981	if (!usrdatum)
1982		goto bad;
1983	newc->user = usrdatum->value;
1984
1985	/* Convert the role. */
1986	rc = -EINVAL;
1987	role = hashtab_search(args->newp->p_roles.table,
1988			      sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
1989	if (!role)
1990		goto bad;
1991	newc->role = role->value;
1992
1993	/* Convert the type. */
1994	rc = -EINVAL;
1995	typdatum = hashtab_search(args->newp->p_types.table,
1996				  sym_name(args->oldp,
1997					   SYM_TYPES, oldc->type - 1));
1998	if (!typdatum)
1999		goto bad;
2000	newc->type = typdatum->value;
2001
2002	/* Convert the MLS fields if dealing with MLS policies */
2003	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2004		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2005		if (rc)
2006			goto bad;
2007	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2008		/*
2009		 * Switching between non-MLS and MLS policy:
2010		 * ensure that the MLS fields of the context for all
2011		 * existing entries in the sidtab are filled in with a
2012		 * suitable default value, likely taken from one of the
2013		 * initial SIDs.
2014		 */
2015		oc = args->newp->ocontexts[OCON_ISID];
2016		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2017			oc = oc->next;
2018		rc = -EINVAL;
2019		if (!oc) {
2020			pr_err("SELinux:  unable to look up"
2021				" the initial SIDs list\n");
2022			goto bad;
2023		}
2024		rc = mls_range_set(newc, &oc->context[0].range);
2025		if (rc)
2026			goto bad;
2027	}
2028
2029	/* Check the validity of the new context. */
2030	if (!policydb_context_isvalid(args->newp, newc)) {
2031		rc = convert_context_handle_invalid_context(args->state, oldc);
 
 
2032		if (rc)
2033			goto bad;
2034	}
2035
2036	return 0;
2037bad:
2038	/* Map old representation to string and save it. */
2039	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2040	if (rc)
2041		return rc;
2042	context_destroy(newc);
2043	newc->str = s;
2044	newc->len = len;
2045	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2046		newc->str);
2047	return 0;
2048}
2049
2050static void security_load_policycaps(struct selinux_state *state)
 
2051{
2052	struct policydb *p = &state->ss->policydb;
2053	unsigned int i;
2054	struct ebitmap_node *node;
2055
 
 
2056	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2057		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
 
2058
2059	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2060		pr_info("SELinux:  policy capability %s=%d\n",
2061			selinux_policycap_names[i],
2062			ebitmap_get_bit(&p->policycaps, i));
2063
2064	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2065		if (i >= ARRAY_SIZE(selinux_policycap_names))
2066			pr_info("SELinux:  unknown policy capability %u\n",
2067				i);
2068	}
2069}
2070
2071static int security_preserve_bools(struct selinux_state *state,
2072				   struct policydb *newpolicydb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2073
2074/**
2075 * security_load_policy - Load a security policy configuration.
 
2076 * @data: binary policy data
2077 * @len: length of data in bytes
2078 *
2079 * Load a new set of security policy configuration data,
2080 * validate it and convert the SID table as necessary.
2081 * This function will flush the access vector cache after
2082 * loading the new policy.
2083 */
2084int security_load_policy(struct selinux_state *state, void *data, size_t len)
 
2085{
2086	struct policydb *policydb;
2087	struct sidtab *oldsidtab, *newsidtab;
2088	struct policydb *oldpolicydb, *newpolicydb;
2089	struct selinux_mapping *oldmapping;
2090	struct selinux_map newmap;
2091	struct sidtab_convert_params convert_params;
2092	struct convert_context_args args;
2093	u32 seqno;
2094	int rc = 0;
2095	struct policy_file file = { data, len }, *fp = &file;
2096
2097	oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2098	if (!oldpolicydb) {
2099		rc = -ENOMEM;
2100		goto out;
2101	}
2102	newpolicydb = oldpolicydb + 1;
2103
2104	policydb = &state->ss->policydb;
2105
2106	newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2107	if (!newsidtab) {
2108		rc = -ENOMEM;
2109		goto out;
2110	}
2111
2112	if (!state->initialized) {
2113		rc = policydb_read(policydb, fp);
2114		if (rc) {
2115			kfree(newsidtab);
2116			goto out;
2117		}
2118
2119		policydb->len = len;
2120		rc = selinux_set_mapping(policydb, secclass_map,
2121					 &state->ss->map);
2122		if (rc) {
2123			kfree(newsidtab);
2124			policydb_destroy(policydb);
2125			goto out;
2126		}
2127
2128		rc = policydb_load_isids(policydb, newsidtab);
2129		if (rc) {
2130			kfree(newsidtab);
2131			policydb_destroy(policydb);
2132			goto out;
2133		}
2134
2135		state->ss->sidtab = newsidtab;
2136		security_load_policycaps(state);
2137		state->initialized = 1;
2138		seqno = ++state->ss->latest_granting;
2139		selinux_complete_init();
2140		avc_ss_reset(state->avc, seqno);
2141		selnl_notify_policyload(seqno);
2142		selinux_status_update_policyload(state, seqno);
2143		selinux_netlbl_cache_invalidate();
2144		selinux_xfrm_notify_policyload();
2145		goto out;
2146	}
2147
2148	rc = policydb_read(newpolicydb, fp);
2149	if (rc) {
2150		kfree(newsidtab);
2151		goto out;
2152	}
2153
2154	newpolicydb->len = len;
2155	/* If switching between different policy types, log MLS status */
2156	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2157		pr_info("SELinux: Disabling MLS support...\n");
2158	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2159		pr_info("SELinux: Enabling MLS support...\n");
2160
2161	rc = policydb_load_isids(newpolicydb, newsidtab);
2162	if (rc) {
2163		pr_err("SELinux:  unable to load the initial SIDs\n");
2164		policydb_destroy(newpolicydb);
2165		kfree(newsidtab);
2166		goto out;
2167	}
2168
2169	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2170	if (rc)
2171		goto err;
2172
2173	rc = security_preserve_bools(state, newpolicydb);
 
2174	if (rc) {
2175		pr_err("SELinux:  unable to preserve booleans\n");
2176		goto err;
2177	}
2178
2179	oldsidtab = state->ss->sidtab;
 
 
 
 
2180
2181	/*
2182	 * Convert the internal representations of contexts
2183	 * in the new SID table.
2184	 */
2185	args.state = state;
2186	args.oldp = policydb;
2187	args.newp = newpolicydb;
2188
2189	convert_params.func = convert_context;
2190	convert_params.args = &args;
2191	convert_params.target = newsidtab;
2192
2193	rc = sidtab_convert(oldsidtab, &convert_params);
2194	if (rc) {
2195		pr_err("SELinux:  unable to convert the internal"
2196			" representation of contexts in the new SID"
2197			" table\n");
2198		goto err;
2199	}
2200
2201	/* Save the old policydb and SID table to free later. */
2202	memcpy(oldpolicydb, policydb, sizeof(*policydb));
2203
2204	/* Install the new policydb and SID table. */
2205	write_lock_irq(&state->ss->policy_rwlock);
2206	memcpy(policydb, newpolicydb, sizeof(*policydb));
2207	state->ss->sidtab = newsidtab;
2208	security_load_policycaps(state);
2209	oldmapping = state->ss->map.mapping;
2210	state->ss->map.mapping = newmap.mapping;
2211	state->ss->map.size = newmap.size;
2212	seqno = ++state->ss->latest_granting;
2213	write_unlock_irq(&state->ss->policy_rwlock);
2214
2215	/* Free the old policydb and SID table. */
2216	policydb_destroy(oldpolicydb);
2217	sidtab_destroy(oldsidtab);
2218	kfree(oldsidtab);
2219	kfree(oldmapping);
2220
2221	avc_ss_reset(state->avc, seqno);
2222	selnl_notify_policyload(seqno);
2223	selinux_status_update_policyload(state, seqno);
2224	selinux_netlbl_cache_invalidate();
2225	selinux_xfrm_notify_policyload();
2226
2227	rc = 0;
2228	goto out;
2229
2230err:
2231	kfree(newmap.mapping);
2232	sidtab_destroy(newsidtab);
2233	kfree(newsidtab);
2234	policydb_destroy(newpolicydb);
 
 
 
 
2235
2236out:
2237	kfree(oldpolicydb);
2238	return rc;
2239}
2240
2241size_t security_policydb_len(struct selinux_state *state)
2242{
2243	struct policydb *p = &state->ss->policydb;
2244	size_t len;
2245
2246	read_lock(&state->ss->policy_rwlock);
2247	len = p->len;
2248	read_unlock(&state->ss->policy_rwlock);
2249
2250	return len;
2251}
2252
2253/**
2254 * security_port_sid - Obtain the SID for a port.
 
2255 * @protocol: protocol number
2256 * @port: port number
2257 * @out_sid: security identifier
2258 */
2259int security_port_sid(struct selinux_state *state,
2260		      u8 protocol, u16 port, u32 *out_sid)
2261{
 
2262	struct policydb *policydb;
2263	struct sidtab *sidtab;
2264	struct ocontext *c;
2265	int rc = 0;
2266
2267	read_lock(&state->ss->policy_rwlock);
 
 
 
2268
2269	policydb = &state->ss->policydb;
2270	sidtab = state->ss->sidtab;
 
 
 
 
2271
2272	c = policydb->ocontexts[OCON_PORT];
2273	while (c) {
2274		if (c->u.port.protocol == protocol &&
2275		    c->u.port.low_port <= port &&
2276		    c->u.port.high_port >= port)
2277			break;
2278		c = c->next;
2279	}
2280
2281	if (c) {
2282		if (!c->sid[0]) {
2283			rc = sidtab_context_to_sid(sidtab,
2284						   &c->context[0],
2285						   &c->sid[0]);
 
 
 
 
2286			if (rc)
2287				goto out;
2288		}
2289		*out_sid = c->sid[0];
2290	} else {
2291		*out_sid = SECINITSID_PORT;
2292	}
2293
2294out:
2295	read_unlock(&state->ss->policy_rwlock);
2296	return rc;
2297}
2298
2299/**
2300 * security_pkey_sid - Obtain the SID for a pkey.
 
2301 * @subnet_prefix: Subnet Prefix
2302 * @pkey_num: pkey number
2303 * @out_sid: security identifier
2304 */
2305int security_ib_pkey_sid(struct selinux_state *state,
2306			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2307{
 
2308	struct policydb *policydb;
2309	struct sidtab *sidtab;
2310	struct ocontext *c;
2311	int rc = 0;
2312
2313	read_lock(&state->ss->policy_rwlock);
 
 
 
2314
2315	policydb = &state->ss->policydb;
2316	sidtab = state->ss->sidtab;
 
 
 
 
2317
2318	c = policydb->ocontexts[OCON_IBPKEY];
2319	while (c) {
2320		if (c->u.ibpkey.low_pkey <= pkey_num &&
2321		    c->u.ibpkey.high_pkey >= pkey_num &&
2322		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2323			break;
2324
2325		c = c->next;
2326	}
2327
2328	if (c) {
2329		if (!c->sid[0]) {
2330			rc = sidtab_context_to_sid(sidtab,
2331						   &c->context[0],
2332						   &c->sid[0]);
 
 
 
 
2333			if (rc)
2334				goto out;
2335		}
2336		*out_sid = c->sid[0];
2337	} else
2338		*out_sid = SECINITSID_UNLABELED;
2339
2340out:
2341	read_unlock(&state->ss->policy_rwlock);
2342	return rc;
2343}
2344
2345/**
2346 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
 
2347 * @dev_name: device name
2348 * @port: port number
2349 * @out_sid: security identifier
2350 */
2351int security_ib_endport_sid(struct selinux_state *state,
2352			    const char *dev_name, u8 port_num, u32 *out_sid)
2353{
 
2354	struct policydb *policydb;
2355	struct sidtab *sidtab;
2356	struct ocontext *c;
2357	int rc = 0;
2358
2359	read_lock(&state->ss->policy_rwlock);
 
 
 
2360
2361	policydb = &state->ss->policydb;
2362	sidtab = state->ss->sidtab;
 
 
 
 
2363
2364	c = policydb->ocontexts[OCON_IBENDPORT];
2365	while (c) {
2366		if (c->u.ibendport.port == port_num &&
2367		    !strncmp(c->u.ibendport.dev_name,
2368			     dev_name,
2369			     IB_DEVICE_NAME_MAX))
2370			break;
2371
2372		c = c->next;
2373	}
2374
2375	if (c) {
2376		if (!c->sid[0]) {
2377			rc = sidtab_context_to_sid(sidtab,
2378						   &c->context[0],
2379						   &c->sid[0]);
 
 
 
 
2380			if (rc)
2381				goto out;
2382		}
2383		*out_sid = c->sid[0];
2384	} else
2385		*out_sid = SECINITSID_UNLABELED;
2386
2387out:
2388	read_unlock(&state->ss->policy_rwlock);
2389	return rc;
2390}
2391
2392/**
2393 * security_netif_sid - Obtain the SID for a network interface.
 
2394 * @name: interface name
2395 * @if_sid: interface SID
2396 */
2397int security_netif_sid(struct selinux_state *state,
2398		       char *name, u32 *if_sid)
2399{
 
2400	struct policydb *policydb;
2401	struct sidtab *sidtab;
2402	int rc = 0;
2403	struct ocontext *c;
2404
2405	read_lock(&state->ss->policy_rwlock);
 
 
 
2406
2407	policydb = &state->ss->policydb;
2408	sidtab = state->ss->sidtab;
 
 
 
 
2409
2410	c = policydb->ocontexts[OCON_NETIF];
2411	while (c) {
2412		if (strcmp(name, c->u.name) == 0)
2413			break;
2414		c = c->next;
2415	}
2416
2417	if (c) {
2418		if (!c->sid[0] || !c->sid[1]) {
2419			rc = sidtab_context_to_sid(sidtab,
2420						  &c->context[0],
2421						  &c->sid[0]);
 
 
 
2422			if (rc)
2423				goto out;
2424			rc = sidtab_context_to_sid(sidtab,
2425						   &c->context[1],
2426						   &c->sid[1]);
 
 
 
 
2427			if (rc)
2428				goto out;
2429		}
2430		*if_sid = c->sid[0];
2431	} else
2432		*if_sid = SECINITSID_NETIF;
2433
2434out:
2435	read_unlock(&state->ss->policy_rwlock);
2436	return rc;
2437}
2438
2439static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2440{
2441	int i, fail = 0;
2442
2443	for (i = 0; i < 4; i++)
2444		if (addr[i] != (input[i] & mask[i])) {
2445			fail = 1;
2446			break;
2447		}
2448
2449	return !fail;
2450}
2451
2452/**
2453 * security_node_sid - Obtain the SID for a node (host).
 
2454 * @domain: communication domain aka address family
2455 * @addrp: address
2456 * @addrlen: address length in bytes
2457 * @out_sid: security identifier
2458 */
2459int security_node_sid(struct selinux_state *state,
2460		      u16 domain,
2461		      void *addrp,
2462		      u32 addrlen,
2463		      u32 *out_sid)
2464{
 
2465	struct policydb *policydb;
2466	struct sidtab *sidtab;
2467	int rc;
2468	struct ocontext *c;
2469
2470	read_lock(&state->ss->policy_rwlock);
 
 
 
2471
2472	policydb = &state->ss->policydb;
2473	sidtab = state->ss->sidtab;
 
 
 
2474
2475	switch (domain) {
2476	case AF_INET: {
2477		u32 addr;
2478
2479		rc = -EINVAL;
2480		if (addrlen != sizeof(u32))
2481			goto out;
2482
2483		addr = *((u32 *)addrp);
2484
2485		c = policydb->ocontexts[OCON_NODE];
2486		while (c) {
2487			if (c->u.node.addr == (addr & c->u.node.mask))
2488				break;
2489			c = c->next;
2490		}
2491		break;
2492	}
2493
2494	case AF_INET6:
2495		rc = -EINVAL;
2496		if (addrlen != sizeof(u64) * 2)
2497			goto out;
2498		c = policydb->ocontexts[OCON_NODE6];
2499		while (c) {
2500			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2501						c->u.node6.mask))
2502				break;
2503			c = c->next;
2504		}
2505		break;
2506
2507	default:
2508		rc = 0;
2509		*out_sid = SECINITSID_NODE;
2510		goto out;
2511	}
2512
2513	if (c) {
2514		if (!c->sid[0]) {
2515			rc = sidtab_context_to_sid(sidtab,
2516						   &c->context[0],
2517						   &c->sid[0]);
 
 
 
 
2518			if (rc)
2519				goto out;
2520		}
2521		*out_sid = c->sid[0];
2522	} else {
2523		*out_sid = SECINITSID_NODE;
2524	}
2525
2526	rc = 0;
2527out:
2528	read_unlock(&state->ss->policy_rwlock);
2529	return rc;
2530}
2531
2532#define SIDS_NEL 25
2533
2534/**
2535 * security_get_user_sids - Obtain reachable SIDs for a user.
 
2536 * @fromsid: starting SID
2537 * @username: username
2538 * @sids: array of reachable SIDs for user
2539 * @nel: number of elements in @sids
2540 *
2541 * Generate the set of SIDs for legal security contexts
2542 * for a given user that can be reached by @fromsid.
2543 * Set *@sids to point to a dynamically allocated
2544 * array containing the set of SIDs.  Set *@nel to the
2545 * number of elements in the array.
2546 */
2547
2548int security_get_user_sids(struct selinux_state *state,
2549			   u32 fromsid,
2550			   char *username,
2551			   u32 **sids,
2552			   u32 *nel)
2553{
 
2554	struct policydb *policydb;
2555	struct sidtab *sidtab;
2556	struct context *fromcon, usercon;
2557	u32 *mysids = NULL, *mysids2, sid;
2558	u32 mynel = 0, maxnel = SIDS_NEL;
2559	struct user_datum *user;
2560	struct role_datum *role;
2561	struct ebitmap_node *rnode, *tnode;
2562	int rc = 0, i, j;
2563
2564	*sids = NULL;
2565	*nel = 0;
2566
2567	if (!state->initialized)
2568		goto out;
2569
2570	read_lock(&state->ss->policy_rwlock);
 
 
2571
2572	policydb = &state->ss->policydb;
2573	sidtab = state->ss->sidtab;
 
 
 
 
2574
2575	context_init(&usercon);
2576
2577	rc = -EINVAL;
2578	fromcon = sidtab_search(sidtab, fromsid);
2579	if (!fromcon)
2580		goto out_unlock;
2581
2582	rc = -EINVAL;
2583	user = hashtab_search(policydb->p_users.table, username);
2584	if (!user)
2585		goto out_unlock;
2586
2587	usercon.user = user->value;
2588
2589	rc = -ENOMEM;
2590	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2591	if (!mysids)
2592		goto out_unlock;
2593
2594	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2595		role = policydb->role_val_to_struct[i];
2596		usercon.role = i + 1;
2597		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2598			usercon.type = j + 1;
2599
2600			if (mls_setup_user_range(policydb, fromcon, user,
2601						 &usercon))
2602				continue;
2603
2604			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
 
 
 
 
2605			if (rc)
2606				goto out_unlock;
2607			if (mynel < maxnel) {
2608				mysids[mynel++] = sid;
2609			} else {
2610				rc = -ENOMEM;
2611				maxnel += SIDS_NEL;
2612				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2613				if (!mysids2)
2614					goto out_unlock;
2615				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2616				kfree(mysids);
2617				mysids = mysids2;
2618				mysids[mynel++] = sid;
2619			}
2620		}
2621	}
2622	rc = 0;
2623out_unlock:
2624	read_unlock(&state->ss->policy_rwlock);
2625	if (rc || !mynel) {
2626		kfree(mysids);
2627		goto out;
2628	}
2629
2630	rc = -ENOMEM;
2631	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2632	if (!mysids2) {
2633		kfree(mysids);
2634		goto out;
2635	}
2636	for (i = 0, j = 0; i < mynel; i++) {
2637		struct av_decision dummy_avd;
2638		rc = avc_has_perm_noaudit(state,
2639					  fromsid, mysids[i],
2640					  SECCLASS_PROCESS, /* kernel value */
2641					  PROCESS__TRANSITION, AVC_STRICT,
2642					  &dummy_avd);
2643		if (!rc)
2644			mysids2[j++] = mysids[i];
2645		cond_resched();
2646	}
2647	rc = 0;
2648	kfree(mysids);
2649	*sids = mysids2;
2650	*nel = j;
2651out:
2652	return rc;
2653}
2654
2655/**
2656 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2657 * @fstype: filesystem type
2658 * @path: path from root of mount
2659 * @sclass: file security class
2660 * @sid: SID for path
2661 *
2662 * Obtain a SID to use for a file in a filesystem that
2663 * cannot support xattr or use a fixed labeling behavior like
2664 * transition SIDs or task SIDs.
2665 *
2666 * The caller must acquire the policy_rwlock before calling this function.
 
2667 */
2668static inline int __security_genfs_sid(struct selinux_state *state,
2669				       const char *fstype,
2670				       char *path,
2671				       u16 orig_sclass,
2672				       u32 *sid)
2673{
2674	struct policydb *policydb = &state->ss->policydb;
2675	struct sidtab *sidtab = state->ss->sidtab;
2676	int len;
2677	u16 sclass;
2678	struct genfs *genfs;
2679	struct ocontext *c;
2680	int rc, cmp = 0;
2681
2682	while (path[0] == '/' && path[1] == '/')
2683		path++;
2684
2685	sclass = unmap_class(&state->ss->map, orig_sclass);
2686	*sid = SECINITSID_UNLABELED;
2687
2688	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2689		cmp = strcmp(fstype, genfs->fstype);
2690		if (cmp <= 0)
2691			break;
2692	}
2693
2694	rc = -ENOENT;
2695	if (!genfs || cmp)
2696		goto out;
2697
2698	for (c = genfs->head; c; c = c->next) {
2699		len = strlen(c->u.name);
2700		if ((!c->v.sclass || sclass == c->v.sclass) &&
2701		    (strncmp(c->u.name, path, len) == 0))
2702			break;
2703	}
2704
2705	rc = -ENOENT;
2706	if (!c)
2707		goto out;
2708
2709	if (!c->sid[0]) {
2710		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2711		if (rc)
2712			goto out;
2713	}
2714
2715	*sid = c->sid[0];
2716	rc = 0;
2717out:
2718	return rc;
2719}
2720
2721/**
2722 * security_genfs_sid - Obtain a SID for a file in a filesystem
 
2723 * @fstype: filesystem type
2724 * @path: path from root of mount
2725 * @sclass: file security class
2726 * @sid: SID for path
2727 *
2728 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2729 * it afterward.
2730 */
2731int security_genfs_sid(struct selinux_state *state,
2732		       const char *fstype,
2733		       char *path,
2734		       u16 orig_sclass,
2735		       u32 *sid)
2736{
 
2737	int retval;
2738
2739	read_lock(&state->ss->policy_rwlock);
2740	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2741	read_unlock(&state->ss->policy_rwlock);
 
 
 
 
 
 
 
 
 
2742	return retval;
2743}
2744
 
 
 
 
 
 
 
 
 
 
2745/**
2746 * security_fs_use - Determine how to handle labeling for a filesystem.
 
2747 * @sb: superblock in question
2748 */
2749int security_fs_use(struct selinux_state *state, struct super_block *sb)
2750{
 
2751	struct policydb *policydb;
2752	struct sidtab *sidtab;
2753	int rc = 0;
2754	struct ocontext *c;
2755	struct superblock_security_struct *sbsec = sb->s_security;
2756	const char *fstype = sb->s_type->name;
2757
2758	read_lock(&state->ss->policy_rwlock);
 
 
 
 
2759
2760	policydb = &state->ss->policydb;
2761	sidtab = state->ss->sidtab;
 
 
 
 
2762
2763	c = policydb->ocontexts[OCON_FSUSE];
2764	while (c) {
2765		if (strcmp(fstype, c->u.name) == 0)
2766			break;
2767		c = c->next;
2768	}
2769
2770	if (c) {
2771		sbsec->behavior = c->v.behavior;
2772		if (!c->sid[0]) {
2773			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2774						   &c->sid[0]);
 
 
 
 
2775			if (rc)
2776				goto out;
2777		}
2778		sbsec->sid = c->sid[0];
2779	} else {
2780		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2781					  &sbsec->sid);
 
 
 
 
2782		if (rc) {
2783			sbsec->behavior = SECURITY_FS_USE_NONE;
2784			rc = 0;
2785		} else {
2786			sbsec->behavior = SECURITY_FS_USE_GENFS;
2787		}
2788	}
2789
2790out:
2791	read_unlock(&state->ss->policy_rwlock);
2792	return rc;
2793}
2794
2795int security_get_bools(struct selinux_state *state,
2796		       int *len, char ***names, int **values)
2797{
2798	struct policydb *policydb;
2799	int i, rc;
 
2800
2801	if (!state->initialized) {
2802		*len = 0;
2803		*names = NULL;
2804		*values = NULL;
2805		return 0;
2806	}
2807
2808	read_lock(&state->ss->policy_rwlock);
2809
2810	policydb = &state->ss->policydb;
2811
2812	*names = NULL;
2813	*values = NULL;
2814
2815	rc = 0;
2816	*len = policydb->p_bools.nprim;
2817	if (!*len)
2818		goto out;
2819
2820	rc = -ENOMEM;
2821	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2822	if (!*names)
2823		goto err;
2824
2825	rc = -ENOMEM;
2826	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2827	if (!*values)
2828		goto err;
2829
2830	for (i = 0; i < *len; i++) {
2831		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2832
2833		rc = -ENOMEM;
2834		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2835				      GFP_ATOMIC);
2836		if (!(*names)[i])
2837			goto err;
2838	}
2839	rc = 0;
2840out:
2841	read_unlock(&state->ss->policy_rwlock);
2842	return rc;
2843err:
2844	if (*names) {
2845		for (i = 0; i < *len; i++)
2846			kfree((*names)[i]);
 
2847	}
2848	kfree(*values);
 
 
 
2849	goto out;
2850}
2851
2852
2853int security_set_bools(struct selinux_state *state, int len, int *values)
2854{
2855	struct policydb *policydb;
2856	int i, rc;
2857	int lenp, seqno = 0;
2858	struct cond_node *cur;
 
 
 
 
 
2859
2860	write_lock_irq(&state->ss->policy_rwlock);
 
 
2861
2862	policydb = &state->ss->policydb;
 
 
2863
2864	rc = -EFAULT;
2865	lenp = policydb->p_bools.nprim;
2866	if (len != lenp)
2867		goto out;
 
 
 
 
 
2868
 
2869	for (i = 0; i < len; i++) {
2870		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
 
 
 
2871			audit_log(audit_context(), GFP_ATOMIC,
2872				AUDIT_MAC_CONFIG_CHANGE,
2873				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2874				sym_name(policydb, SYM_BOOLS, i),
2875				!!values[i],
2876				policydb->bool_val_to_struct[i]->state,
2877				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2878				audit_get_sessionid(current));
 
2879		}
2880		if (values[i])
2881			policydb->bool_val_to_struct[i]->state = 1;
2882		else
2883			policydb->bool_val_to_struct[i]->state = 0;
2884	}
2885
2886	for (cur = policydb->cond_list; cur; cur = cur->next) {
2887		rc = evaluate_cond_node(policydb, cur);
2888		if (rc)
2889			goto out;
2890	}
 
 
 
 
 
 
 
 
 
 
 
 
2891
2892	seqno = ++state->ss->latest_granting;
2893	rc = 0;
2894out:
2895	write_unlock_irq(&state->ss->policy_rwlock);
2896	if (!rc) {
2897		avc_ss_reset(state->avc, seqno);
2898		selnl_notify_policyload(seqno);
2899		selinux_status_update_policyload(state, seqno);
2900		selinux_xfrm_notify_policyload();
2901	}
2902	return rc;
2903}
2904
2905int security_get_bool_value(struct selinux_state *state,
2906			    int index)
2907{
 
2908	struct policydb *policydb;
2909	int rc;
2910	int len;
2911
2912	read_lock(&state->ss->policy_rwlock);
 
2913
2914	policydb = &state->ss->policydb;
 
 
2915
2916	rc = -EFAULT;
2917	len = policydb->p_bools.nprim;
2918	if (index >= len)
2919		goto out;
2920
2921	rc = policydb->bool_val_to_struct[index]->state;
2922out:
2923	read_unlock(&state->ss->policy_rwlock);
2924	return rc;
2925}
2926
2927static int security_preserve_bools(struct selinux_state *state,
2928				   struct policydb *policydb)
2929{
2930	int rc, nbools = 0, *bvalues = NULL, i;
2931	char **bnames = NULL;
2932	struct cond_bool_datum *booldatum;
2933	struct cond_node *cur;
2934
2935	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2936	if (rc)
2937		goto out;
2938	for (i = 0; i < nbools; i++) {
2939		booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
 
2940		if (booldatum)
2941			booldatum->state = bvalues[i];
2942	}
2943	for (cur = policydb->cond_list; cur; cur = cur->next) {
2944		rc = evaluate_cond_node(policydb, cur);
2945		if (rc)
2946			goto out;
2947	}
2948
2949out:
2950	if (bnames) {
2951		for (i = 0; i < nbools; i++)
2952			kfree(bnames[i]);
2953	}
2954	kfree(bnames);
2955	kfree(bvalues);
2956	return rc;
2957}
2958
2959/*
2960 * security_sid_mls_copy() - computes a new sid based on the given
2961 * sid and the mls portion of mls_sid.
2962 */
2963int security_sid_mls_copy(struct selinux_state *state,
2964			  u32 sid, u32 mls_sid, u32 *new_sid)
2965{
2966	struct policydb *policydb = &state->ss->policydb;
2967	struct sidtab *sidtab = state->ss->sidtab;
 
2968	struct context *context1;
2969	struct context *context2;
2970	struct context newcon;
2971	char *s;
2972	u32 len;
2973	int rc;
2974
2975	rc = 0;
2976	if (!state->initialized || !policydb->mls_enabled) {
2977		*new_sid = sid;
2978		goto out;
2979	}
2980
 
 
2981	context_init(&newcon);
2982
2983	read_lock(&state->ss->policy_rwlock);
 
 
 
 
 
 
 
 
2984
2985	rc = -EINVAL;
2986	context1 = sidtab_search(sidtab, sid);
2987	if (!context1) {
2988		pr_err("SELinux: %s:  unrecognized SID %d\n",
2989			__func__, sid);
2990		goto out_unlock;
2991	}
2992
2993	rc = -EINVAL;
2994	context2 = sidtab_search(sidtab, mls_sid);
2995	if (!context2) {
2996		pr_err("SELinux: %s:  unrecognized SID %d\n",
2997			__func__, mls_sid);
2998		goto out_unlock;
2999	}
3000
3001	newcon.user = context1->user;
3002	newcon.role = context1->role;
3003	newcon.type = context1->type;
3004	rc = mls_context_cpy(&newcon, context2);
3005	if (rc)
3006		goto out_unlock;
3007
3008	/* Check the validity of the new context. */
3009	if (!policydb_context_isvalid(policydb, &newcon)) {
3010		rc = convert_context_handle_invalid_context(state, &newcon);
 
3011		if (rc) {
3012			if (!context_struct_to_string(policydb, &newcon, &s,
3013						      &len)) {
3014				struct audit_buffer *ab;
3015
3016				ab = audit_log_start(audit_context(),
3017						     GFP_ATOMIC,
3018						     AUDIT_SELINUX_ERR);
3019				audit_log_format(ab,
3020						 "op=security_sid_mls_copy invalid_context=");
3021				/* don't record NUL with untrusted strings */
3022				audit_log_n_untrustedstring(ab, s, len - 1);
3023				audit_log_end(ab);
3024				kfree(s);
3025			}
3026			goto out_unlock;
3027		}
3028	}
3029
3030	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
 
 
 
 
 
3031out_unlock:
3032	read_unlock(&state->ss->policy_rwlock);
3033	context_destroy(&newcon);
3034out:
3035	return rc;
3036}
3037
3038/**
3039 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
 
3040 * @nlbl_sid: NetLabel SID
3041 * @nlbl_type: NetLabel labeling protocol type
3042 * @xfrm_sid: XFRM SID
3043 *
3044 * Description:
3045 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3046 * resolved into a single SID it is returned via @peer_sid and the function
3047 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3048 * returns a negative value.  A table summarizing the behavior is below:
3049 *
3050 *                                 | function return |      @sid
3051 *   ------------------------------+-----------------+-----------------
3052 *   no peer labels                |        0        |    SECSID_NULL
3053 *   single peer label             |        0        |    <peer_label>
3054 *   multiple, consistent labels   |        0        |    <peer_label>
3055 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3056 *
3057 */
3058int security_net_peersid_resolve(struct selinux_state *state,
3059				 u32 nlbl_sid, u32 nlbl_type,
3060				 u32 xfrm_sid,
3061				 u32 *peer_sid)
3062{
3063	struct policydb *policydb = &state->ss->policydb;
3064	struct sidtab *sidtab = state->ss->sidtab;
 
3065	int rc;
3066	struct context *nlbl_ctx;
3067	struct context *xfrm_ctx;
3068
3069	*peer_sid = SECSID_NULL;
3070
3071	/* handle the common (which also happens to be the set of easy) cases
3072	 * right away, these two if statements catch everything involving a
3073	 * single or absent peer SID/label */
3074	if (xfrm_sid == SECSID_NULL) {
3075		*peer_sid = nlbl_sid;
3076		return 0;
3077	}
3078	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3079	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3080	 * is present */
3081	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3082		*peer_sid = xfrm_sid;
3083		return 0;
3084	}
3085
 
 
 
 
 
 
 
 
3086	/*
3087	 * We don't need to check initialized here since the only way both
3088	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3089	 * security server was initialized and state->initialized was true.
3090	 */
3091	if (!policydb->mls_enabled)
3092		return 0;
3093
3094	read_lock(&state->ss->policy_rwlock);
3095
3096	rc = -EINVAL;
3097	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3098	if (!nlbl_ctx) {
3099		pr_err("SELinux: %s:  unrecognized SID %d\n",
3100		       __func__, nlbl_sid);
3101		goto out;
3102	}
3103	rc = -EINVAL;
3104	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3105	if (!xfrm_ctx) {
3106		pr_err("SELinux: %s:  unrecognized SID %d\n",
3107		       __func__, xfrm_sid);
3108		goto out;
3109	}
3110	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3111	if (rc)
3112		goto out;
3113
3114	/* at present NetLabel SIDs/labels really only carry MLS
3115	 * information so if the MLS portion of the NetLabel SID
3116	 * matches the MLS portion of the labeled XFRM SID/label
3117	 * then pass along the XFRM SID as it is the most
3118	 * expressive */
3119	*peer_sid = xfrm_sid;
3120out:
3121	read_unlock(&state->ss->policy_rwlock);
3122	return rc;
3123}
3124
3125static int get_classes_callback(void *k, void *d, void *args)
3126{
3127	struct class_datum *datum = d;
3128	char *name = k, **classes = args;
3129	int value = datum->value - 1;
3130
3131	classes[value] = kstrdup(name, GFP_ATOMIC);
3132	if (!classes[value])
3133		return -ENOMEM;
3134
3135	return 0;
3136}
3137
3138int security_get_classes(struct selinux_state *state,
3139			 char ***classes, int *nclasses)
3140{
3141	struct policydb *policydb = &state->ss->policydb;
3142	int rc;
3143
3144	if (!state->initialized) {
3145		*nclasses = 0;
3146		*classes = NULL;
3147		return 0;
3148	}
3149
3150	read_lock(&state->ss->policy_rwlock);
3151
3152	rc = -ENOMEM;
3153	*nclasses = policydb->p_classes.nprim;
3154	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3155	if (!*classes)
3156		goto out;
3157
3158	rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3159			*classes);
3160	if (rc) {
3161		int i;
3162		for (i = 0; i < *nclasses; i++)
3163			kfree((*classes)[i]);
3164		kfree(*classes);
3165	}
3166
3167out:
3168	read_unlock(&state->ss->policy_rwlock);
3169	return rc;
3170}
3171
3172static int get_permissions_callback(void *k, void *d, void *args)
3173{
3174	struct perm_datum *datum = d;
3175	char *name = k, **perms = args;
3176	int value = datum->value - 1;
3177
3178	perms[value] = kstrdup(name, GFP_ATOMIC);
3179	if (!perms[value])
3180		return -ENOMEM;
3181
3182	return 0;
3183}
3184
3185int security_get_permissions(struct selinux_state *state,
3186			     char *class, char ***perms, int *nperms)
3187{
3188	struct policydb *policydb = &state->ss->policydb;
3189	int rc, i;
3190	struct class_datum *match;
3191
3192	read_lock(&state->ss->policy_rwlock);
3193
3194	rc = -EINVAL;
3195	match = hashtab_search(policydb->p_classes.table, class);
3196	if (!match) {
3197		pr_err("SELinux: %s:  unrecognized class %s\n",
3198			__func__, class);
3199		goto out;
3200	}
3201
3202	rc = -ENOMEM;
3203	*nperms = match->permissions.nprim;
3204	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3205	if (!*perms)
3206		goto out;
3207
3208	if (match->comdatum) {
3209		rc = hashtab_map(match->comdatum->permissions.table,
3210				get_permissions_callback, *perms);
3211		if (rc)
3212			goto err;
3213	}
3214
3215	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3216			*perms);
3217	if (rc)
3218		goto err;
3219
3220out:
3221	read_unlock(&state->ss->policy_rwlock);
3222	return rc;
3223
3224err:
3225	read_unlock(&state->ss->policy_rwlock);
3226	for (i = 0; i < *nperms; i++)
3227		kfree((*perms)[i]);
3228	kfree(*perms);
3229	return rc;
3230}
3231
3232int security_get_reject_unknown(struct selinux_state *state)
3233{
3234	return state->ss->policydb.reject_unknown;
 
 
 
 
 
 
 
 
 
 
3235}
3236
3237int security_get_allow_unknown(struct selinux_state *state)
3238{
3239	return state->ss->policydb.allow_unknown;
 
 
 
 
 
 
 
 
 
 
3240}
3241
3242/**
3243 * security_policycap_supported - Check for a specific policy capability
 
3244 * @req_cap: capability
3245 *
3246 * Description:
3247 * This function queries the currently loaded policy to see if it supports the
3248 * capability specified by @req_cap.  Returns true (1) if the capability is
3249 * supported, false (0) if it isn't supported.
3250 *
3251 */
3252int security_policycap_supported(struct selinux_state *state,
3253				 unsigned int req_cap)
3254{
3255	struct policydb *policydb = &state->ss->policydb;
3256	int rc;
3257
3258	read_lock(&state->ss->policy_rwlock);
3259	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3260	read_unlock(&state->ss->policy_rwlock);
 
 
 
 
3261
3262	return rc;
3263}
3264
3265struct selinux_audit_rule {
3266	u32 au_seqno;
3267	struct context au_ctxt;
3268};
3269
3270void selinux_audit_rule_free(void *vrule)
3271{
3272	struct selinux_audit_rule *rule = vrule;
3273
3274	if (rule) {
3275		context_destroy(&rule->au_ctxt);
3276		kfree(rule);
3277	}
3278}
3279
3280int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3281{
3282	struct selinux_state *state = &selinux_state;
3283	struct policydb *policydb = &state->ss->policydb;
 
3284	struct selinux_audit_rule *tmprule;
3285	struct role_datum *roledatum;
3286	struct type_datum *typedatum;
3287	struct user_datum *userdatum;
3288	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3289	int rc = 0;
3290
3291	*rule = NULL;
3292
3293	if (!state->initialized)
3294		return -EOPNOTSUPP;
3295
3296	switch (field) {
3297	case AUDIT_SUBJ_USER:
3298	case AUDIT_SUBJ_ROLE:
3299	case AUDIT_SUBJ_TYPE:
3300	case AUDIT_OBJ_USER:
3301	case AUDIT_OBJ_ROLE:
3302	case AUDIT_OBJ_TYPE:
3303		/* only 'equals' and 'not equals' fit user, role, and type */
3304		if (op != Audit_equal && op != Audit_not_equal)
3305			return -EINVAL;
3306		break;
3307	case AUDIT_SUBJ_SEN:
3308	case AUDIT_SUBJ_CLR:
3309	case AUDIT_OBJ_LEV_LOW:
3310	case AUDIT_OBJ_LEV_HIGH:
3311		/* we do not allow a range, indicated by the presence of '-' */
3312		if (strchr(rulestr, '-'))
3313			return -EINVAL;
3314		break;
3315	default:
3316		/* only the above fields are valid */
3317		return -EINVAL;
3318	}
3319
3320	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3321	if (!tmprule)
3322		return -ENOMEM;
3323
3324	context_init(&tmprule->au_ctxt);
3325
3326	read_lock(&state->ss->policy_rwlock);
 
 
3327
3328	tmprule->au_seqno = state->ss->latest_granting;
3329
3330	switch (field) {
3331	case AUDIT_SUBJ_USER:
3332	case AUDIT_OBJ_USER:
3333		rc = -EINVAL;
3334		userdatum = hashtab_search(policydb->p_users.table, rulestr);
3335		if (!userdatum)
3336			goto out;
3337		tmprule->au_ctxt.user = userdatum->value;
3338		break;
3339	case AUDIT_SUBJ_ROLE:
3340	case AUDIT_OBJ_ROLE:
3341		rc = -EINVAL;
3342		roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3343		if (!roledatum)
3344			goto out;
3345		tmprule->au_ctxt.role = roledatum->value;
3346		break;
3347	case AUDIT_SUBJ_TYPE:
3348	case AUDIT_OBJ_TYPE:
3349		rc = -EINVAL;
3350		typedatum = hashtab_search(policydb->p_types.table, rulestr);
3351		if (!typedatum)
3352			goto out;
3353		tmprule->au_ctxt.type = typedatum->value;
3354		break;
3355	case AUDIT_SUBJ_SEN:
3356	case AUDIT_SUBJ_CLR:
3357	case AUDIT_OBJ_LEV_LOW:
3358	case AUDIT_OBJ_LEV_HIGH:
3359		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3360				     GFP_ATOMIC);
3361		if (rc)
3362			goto out;
3363		break;
3364	}
3365	rc = 0;
3366out:
3367	read_unlock(&state->ss->policy_rwlock);
3368
3369	if (rc) {
3370		selinux_audit_rule_free(tmprule);
3371		tmprule = NULL;
3372	}
3373
3374	*rule = tmprule;
3375
3376	return rc;
3377}
3378
3379/* Check to see if the rule contains any selinux fields */
3380int selinux_audit_rule_known(struct audit_krule *rule)
3381{
3382	int i;
3383
3384	for (i = 0; i < rule->field_count; i++) {
3385		struct audit_field *f = &rule->fields[i];
3386		switch (f->type) {
3387		case AUDIT_SUBJ_USER:
3388		case AUDIT_SUBJ_ROLE:
3389		case AUDIT_SUBJ_TYPE:
3390		case AUDIT_SUBJ_SEN:
3391		case AUDIT_SUBJ_CLR:
3392		case AUDIT_OBJ_USER:
3393		case AUDIT_OBJ_ROLE:
3394		case AUDIT_OBJ_TYPE:
3395		case AUDIT_OBJ_LEV_LOW:
3396		case AUDIT_OBJ_LEV_HIGH:
3397			return 1;
3398		}
3399	}
3400
3401	return 0;
3402}
3403
3404int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3405{
3406	struct selinux_state *state = &selinux_state;
 
3407	struct context *ctxt;
3408	struct mls_level *level;
3409	struct selinux_audit_rule *rule = vrule;
3410	int match = 0;
3411
3412	if (unlikely(!rule)) {
3413		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3414		return -ENOENT;
3415	}
3416
3417	read_lock(&state->ss->policy_rwlock);
 
 
 
 
 
3418
3419	if (rule->au_seqno < state->ss->latest_granting) {
3420		match = -ESTALE;
3421		goto out;
3422	}
3423
3424	ctxt = sidtab_search(state->ss->sidtab, sid);
3425	if (unlikely(!ctxt)) {
3426		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3427			  sid);
3428		match = -ENOENT;
3429		goto out;
3430	}
3431
3432	/* a field/op pair that is not caught here will simply fall through
3433	   without a match */
3434	switch (field) {
3435	case AUDIT_SUBJ_USER:
3436	case AUDIT_OBJ_USER:
3437		switch (op) {
3438		case Audit_equal:
3439			match = (ctxt->user == rule->au_ctxt.user);
3440			break;
3441		case Audit_not_equal:
3442			match = (ctxt->user != rule->au_ctxt.user);
3443			break;
3444		}
3445		break;
3446	case AUDIT_SUBJ_ROLE:
3447	case AUDIT_OBJ_ROLE:
3448		switch (op) {
3449		case Audit_equal:
3450			match = (ctxt->role == rule->au_ctxt.role);
3451			break;
3452		case Audit_not_equal:
3453			match = (ctxt->role != rule->au_ctxt.role);
3454			break;
3455		}
3456		break;
3457	case AUDIT_SUBJ_TYPE:
3458	case AUDIT_OBJ_TYPE:
3459		switch (op) {
3460		case Audit_equal:
3461			match = (ctxt->type == rule->au_ctxt.type);
3462			break;
3463		case Audit_not_equal:
3464			match = (ctxt->type != rule->au_ctxt.type);
3465			break;
3466		}
3467		break;
3468	case AUDIT_SUBJ_SEN:
3469	case AUDIT_SUBJ_CLR:
3470	case AUDIT_OBJ_LEV_LOW:
3471	case AUDIT_OBJ_LEV_HIGH:
3472		level = ((field == AUDIT_SUBJ_SEN ||
3473			  field == AUDIT_OBJ_LEV_LOW) ?
3474			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3475		switch (op) {
3476		case Audit_equal:
3477			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3478					     level);
3479			break;
3480		case Audit_not_equal:
3481			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3482					      level);
3483			break;
3484		case Audit_lt:
3485			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3486					       level) &&
3487				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3488					       level));
3489			break;
3490		case Audit_le:
3491			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3492					      level);
3493			break;
3494		case Audit_gt:
3495			match = (mls_level_dom(level,
3496					      &rule->au_ctxt.range.level[0]) &&
3497				 !mls_level_eq(level,
3498					       &rule->au_ctxt.range.level[0]));
3499			break;
3500		case Audit_ge:
3501			match = mls_level_dom(level,
3502					      &rule->au_ctxt.range.level[0]);
3503			break;
3504		}
3505	}
3506
3507out:
3508	read_unlock(&state->ss->policy_rwlock);
3509	return match;
3510}
3511
3512static int (*aurule_callback)(void) = audit_update_lsm_rules;
3513
3514static int aurule_avc_callback(u32 event)
3515{
3516	int err = 0;
3517
3518	if (event == AVC_CALLBACK_RESET && aurule_callback)
3519		err = aurule_callback();
3520	return err;
3521}
3522
3523static int __init aurule_init(void)
3524{
3525	int err;
3526
3527	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3528	if (err)
3529		panic("avc_add_callback() failed, error %d\n", err);
3530
3531	return err;
3532}
3533__initcall(aurule_init);
3534
3535#ifdef CONFIG_NETLABEL
3536/**
3537 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3538 * @secattr: the NetLabel packet security attributes
3539 * @sid: the SELinux SID
3540 *
3541 * Description:
3542 * Attempt to cache the context in @ctx, which was derived from the packet in
3543 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3544 * already been initialized.
3545 *
3546 */
3547static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3548				      u32 sid)
3549{
3550	u32 *sid_cache;
3551
3552	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3553	if (sid_cache == NULL)
3554		return;
3555	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3556	if (secattr->cache == NULL) {
3557		kfree(sid_cache);
3558		return;
3559	}
3560
3561	*sid_cache = sid;
3562	secattr->cache->free = kfree;
3563	secattr->cache->data = sid_cache;
3564	secattr->flags |= NETLBL_SECATTR_CACHE;
3565}
3566
3567/**
3568 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
 
3569 * @secattr: the NetLabel packet security attributes
3570 * @sid: the SELinux SID
3571 *
3572 * Description:
3573 * Convert the given NetLabel security attributes in @secattr into a
3574 * SELinux SID.  If the @secattr field does not contain a full SELinux
3575 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3576 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3577 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3578 * conversion for future lookups.  Returns zero on success, negative values on
3579 * failure.
3580 *
3581 */
3582int security_netlbl_secattr_to_sid(struct selinux_state *state,
3583				   struct netlbl_lsm_secattr *secattr,
3584				   u32 *sid)
3585{
3586	struct policydb *policydb = &state->ss->policydb;
3587	struct sidtab *sidtab = state->ss->sidtab;
 
3588	int rc;
3589	struct context *ctx;
3590	struct context ctx_new;
3591
3592	if (!state->initialized) {
3593		*sid = SECSID_NULL;
3594		return 0;
3595	}
3596
3597	read_lock(&state->ss->policy_rwlock);
 
 
 
 
 
3598
3599	if (secattr->flags & NETLBL_SECATTR_CACHE)
3600		*sid = *(u32 *)secattr->cache->data;
3601	else if (secattr->flags & NETLBL_SECATTR_SECID)
3602		*sid = secattr->attr.secid;
3603	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3604		rc = -EIDRM;
3605		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3606		if (ctx == NULL)
3607			goto out;
3608
3609		context_init(&ctx_new);
3610		ctx_new.user = ctx->user;
3611		ctx_new.role = ctx->role;
3612		ctx_new.type = ctx->type;
3613		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3614		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3615			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3616			if (rc)
3617				goto out;
3618		}
3619		rc = -EIDRM;
3620		if (!mls_context_isvalid(policydb, &ctx_new))
3621			goto out_free;
 
 
3622
3623		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
 
 
 
 
 
3624		if (rc)
3625			goto out_free;
3626
3627		security_netlbl_cache_add(secattr, *sid);
3628
3629		ebitmap_destroy(&ctx_new.range.level[0].cat);
3630	} else
3631		*sid = SECSID_NULL;
3632
3633	read_unlock(&state->ss->policy_rwlock);
3634	return 0;
3635out_free:
3636	ebitmap_destroy(&ctx_new.range.level[0].cat);
3637out:
3638	read_unlock(&state->ss->policy_rwlock);
3639	return rc;
3640}
3641
3642/**
3643 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
 
3644 * @sid: the SELinux SID
3645 * @secattr: the NetLabel packet security attributes
3646 *
3647 * Description:
3648 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3649 * Returns zero on success, negative values on failure.
3650 *
3651 */
3652int security_netlbl_sid_to_secattr(struct selinux_state *state,
3653				   u32 sid, struct netlbl_lsm_secattr *secattr)
3654{
3655	struct policydb *policydb = &state->ss->policydb;
 
3656	int rc;
3657	struct context *ctx;
3658
3659	if (!state->initialized)
3660		return 0;
3661
3662	read_lock(&state->ss->policy_rwlock);
 
 
3663
3664	rc = -ENOENT;
3665	ctx = sidtab_search(state->ss->sidtab, sid);
3666	if (ctx == NULL)
3667		goto out;
3668
3669	rc = -ENOMEM;
3670	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3671				  GFP_ATOMIC);
3672	if (secattr->domain == NULL)
3673		goto out;
3674
3675	secattr->attr.secid = sid;
3676	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3677	mls_export_netlbl_lvl(policydb, ctx, secattr);
3678	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3679out:
3680	read_unlock(&state->ss->policy_rwlock);
3681	return rc;
3682}
3683#endif /* CONFIG_NETLABEL */
3684
3685/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3686 * security_read_policy - read the policy.
 
3687 * @data: binary policy data
3688 * @len: length of data in bytes
3689 *
3690 */
3691int security_read_policy(struct selinux_state *state,
3692			 void **data, size_t *len)
3693{
3694	struct policydb *policydb = &state->ss->policydb;
3695	int rc;
3696	struct policy_file fp;
3697
3698	if (!state->initialized)
 
 
3699		return -EINVAL;
3700
3701	*len = security_policydb_len(state);
3702
3703	*data = vmalloc_user(*len);
3704	if (!*data)
3705		return -ENOMEM;
3706
3707	fp.data = *data;
3708	fp.len = *len;
3709
3710	read_lock(&state->ss->policy_rwlock);
3711	rc = policydb_write(policydb, &fp);
3712	read_unlock(&state->ss->policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
3713
3714	if (rc)
3715		return rc;
 
 
3716
3717	*len = (unsigned long)fp.data - (unsigned long)*data;
3718	return 0;
 
 
3719
 
3720}