Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/fs/nfs/file.c
  4 *
  5 *  Copyright (C) 1992  Rick Sladkey
  6 *
  7 *  Changes Copyright (C) 1994 by Florian La Roche
  8 *   - Do not copy data too often around in the kernel.
  9 *   - In nfs_file_read the return value of kmalloc wasn't checked.
 10 *   - Put in a better version of read look-ahead buffering. Original idea
 11 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 12 *
 13 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 14 *
 15 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 16 *
 17 *  nfs regular file handling functions
 18 */
 19
 20#include <linux/module.h>
 21#include <linux/time.h>
 22#include <linux/kernel.h>
 23#include <linux/errno.h>
 24#include <linux/fcntl.h>
 25#include <linux/stat.h>
 26#include <linux/nfs_fs.h>
 27#include <linux/nfs_mount.h>
 28#include <linux/mm.h>
 29#include <linux/pagemap.h>
 30#include <linux/gfp.h>
 31#include <linux/swap.h>
 32
 33#include <linux/uaccess.h>
 34
 35#include "delegation.h"
 36#include "internal.h"
 37#include "iostat.h"
 38#include "fscache.h"
 39#include "pnfs.h"
 40
 41#include "nfstrace.h"
 42
 43#define NFSDBG_FACILITY		NFSDBG_FILE
 44
 45static const struct vm_operations_struct nfs_file_vm_ops;
 46
 47/* Hack for future NFS swap support */
 48#ifndef IS_SWAPFILE
 49# define IS_SWAPFILE(inode)	(0)
 50#endif
 51
 52int nfs_check_flags(int flags)
 53{
 54	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 55		return -EINVAL;
 56
 57	return 0;
 58}
 59EXPORT_SYMBOL_GPL(nfs_check_flags);
 60
 61/*
 62 * Open file
 63 */
 64static int
 65nfs_file_open(struct inode *inode, struct file *filp)
 66{
 67	int res;
 68
 69	dprintk("NFS: open file(%pD2)\n", filp);
 70
 71	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 72	res = nfs_check_flags(filp->f_flags);
 73	if (res)
 74		return res;
 75
 76	res = nfs_open(inode, filp);
 77	return res;
 78}
 79
 80int
 81nfs_file_release(struct inode *inode, struct file *filp)
 82{
 83	dprintk("NFS: release(%pD2)\n", filp);
 84
 85	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 86	nfs_file_clear_open_context(filp);
 87	return 0;
 88}
 89EXPORT_SYMBOL_GPL(nfs_file_release);
 90
 91/**
 92 * nfs_revalidate_file_size - Revalidate the file size
 93 * @inode: pointer to inode struct
 94 * @filp: pointer to struct file
 95 *
 96 * Revalidates the file length. This is basically a wrapper around
 97 * nfs_revalidate_inode() that takes into account the fact that we may
 98 * have cached writes (in which case we don't care about the server's
 99 * idea of what the file length is), or O_DIRECT (in which case we
100 * shouldn't trust the cache).
101 */
102static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
103{
104	struct nfs_server *server = NFS_SERVER(inode);
105
106	if (filp->f_flags & O_DIRECT)
107		goto force_reval;
108	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_SIZE))
109		goto force_reval;
110	return 0;
111force_reval:
112	return __nfs_revalidate_inode(server, inode);
113}
114
115loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
116{
117	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
118			filp, offset, whence);
119
120	/*
121	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
122	 * the cached file length
123	 */
124	if (whence != SEEK_SET && whence != SEEK_CUR) {
125		struct inode *inode = filp->f_mapping->host;
126
127		int retval = nfs_revalidate_file_size(inode, filp);
128		if (retval < 0)
129			return (loff_t)retval;
130	}
131
132	return generic_file_llseek(filp, offset, whence);
133}
134EXPORT_SYMBOL_GPL(nfs_file_llseek);
135
136/*
137 * Flush all dirty pages, and check for write errors.
138 */
139static int
140nfs_file_flush(struct file *file, fl_owner_t id)
141{
142	struct inode	*inode = file_inode(file);
143	errseq_t since;
144
145	dprintk("NFS: flush(%pD2)\n", file);
146
147	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
148	if ((file->f_mode & FMODE_WRITE) == 0)
149		return 0;
150
151	/* Flush writes to the server and return any errors */
152	since = filemap_sample_wb_err(file->f_mapping);
153	nfs_wb_all(inode);
154	return filemap_check_wb_err(file->f_mapping, since);
155}
156
157ssize_t
158nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
159{
160	struct inode *inode = file_inode(iocb->ki_filp);
161	ssize_t result;
162
163	if (iocb->ki_flags & IOCB_DIRECT)
164		return nfs_file_direct_read(iocb, to);
165
166	dprintk("NFS: read(%pD2, %zu@%lu)\n",
167		iocb->ki_filp,
168		iov_iter_count(to), (unsigned long) iocb->ki_pos);
169
170	nfs_start_io_read(inode);
171	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
172	if (!result) {
173		result = generic_file_read_iter(iocb, to);
174		if (result > 0)
175			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
176	}
177	nfs_end_io_read(inode);
178	return result;
179}
180EXPORT_SYMBOL_GPL(nfs_file_read);
181
182int
183nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
184{
185	struct inode *inode = file_inode(file);
186	int	status;
187
188	dprintk("NFS: mmap(%pD2)\n", file);
189
190	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
191	 *       so we call that before revalidating the mapping
192	 */
193	status = generic_file_mmap(file, vma);
194	if (!status) {
195		vma->vm_ops = &nfs_file_vm_ops;
196		status = nfs_revalidate_mapping(inode, file->f_mapping);
197	}
198	return status;
199}
200EXPORT_SYMBOL_GPL(nfs_file_mmap);
201
202/*
203 * Flush any dirty pages for this process, and check for write errors.
204 * The return status from this call provides a reliable indication of
205 * whether any write errors occurred for this process.
206 */
207static int
208nfs_file_fsync_commit(struct file *file, int datasync)
209{
 
210	struct inode *inode = file_inode(file);
211	int ret;
 
212
213	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
214
215	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
216	ret = nfs_commit_inode(inode, FLUSH_SYNC);
217	if (ret < 0)
218		return ret;
219	return file_check_and_advance_wb_err(file);
 
 
 
 
 
 
 
 
 
220}
221
222int
223nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
224{
225	struct nfs_open_context *ctx = nfs_file_open_context(file);
226	struct inode *inode = file_inode(file);
227	int ret;
 
228
229	trace_nfs_fsync_enter(inode);
230
231	for (;;) {
232		ret = file_write_and_wait_range(file, start, end);
233		if (ret != 0)
234			break;
235		ret = nfs_file_fsync_commit(file, datasync);
236		if (ret != 0)
237			break;
238		ret = pnfs_sync_inode(inode, !!datasync);
239		if (ret != 0)
240			break;
241		if (!test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags))
242			break;
243		/*
244		 * If nfs_file_fsync_commit detected a server reboot, then
245		 * resend all dirty pages that might have been covered by
246		 * the NFS_CONTEXT_RESEND_WRITES flag
247		 */
248		start = 0;
249		end = LLONG_MAX;
250	}
251
252	trace_nfs_fsync_exit(inode, ret);
253	return ret;
254}
255EXPORT_SYMBOL_GPL(nfs_file_fsync);
256
257/*
258 * Decide whether a read/modify/write cycle may be more efficient
259 * then a modify/write/read cycle when writing to a page in the
260 * page cache.
261 *
262 * Some pNFS layout drivers can only read/write at a certain block
263 * granularity like all block devices and therefore we must perform
264 * read/modify/write whenever a page hasn't read yet and the data
265 * to be written there is not aligned to a block boundary and/or
266 * smaller than the block size.
267 *
268 * The modify/write/read cycle may occur if a page is read before
269 * being completely filled by the writer.  In this situation, the
270 * page must be completely written to stable storage on the server
271 * before it can be refilled by reading in the page from the server.
272 * This can lead to expensive, small, FILE_SYNC mode writes being
273 * done.
274 *
275 * It may be more efficient to read the page first if the file is
276 * open for reading in addition to writing, the page is not marked
277 * as Uptodate, it is not dirty or waiting to be committed,
278 * indicating that it was previously allocated and then modified,
279 * that there were valid bytes of data in that range of the file,
280 * and that the new data won't completely replace the old data in
281 * that range of the file.
282 */
283static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len)
284{
285	unsigned int pglen = nfs_page_length(page);
286	unsigned int offset = pos & (PAGE_SIZE - 1);
287	unsigned int end = offset + len;
288
289	return !pglen || (end >= pglen && !offset);
290}
291
292static bool nfs_want_read_modify_write(struct file *file, struct page *page,
293			loff_t pos, unsigned int len)
294{
295	/*
296	 * Up-to-date pages, those with ongoing or full-page write
297	 * don't need read/modify/write
298	 */
299	if (PageUptodate(page) || PagePrivate(page) ||
300	    nfs_full_page_write(page, pos, len))
301		return false;
302
303	if (pnfs_ld_read_whole_page(file->f_mapping->host))
304		return true;
305	/* Open for reading too? */
306	if (file->f_mode & FMODE_READ)
307		return true;
308	return false;
309}
310
311/*
312 * This does the "real" work of the write. We must allocate and lock the
313 * page to be sent back to the generic routine, which then copies the
314 * data from user space.
315 *
316 * If the writer ends up delaying the write, the writer needs to
317 * increment the page use counts until he is done with the page.
318 */
319static int nfs_write_begin(struct file *file, struct address_space *mapping,
320			loff_t pos, unsigned len, unsigned flags,
321			struct page **pagep, void **fsdata)
322{
323	int ret;
324	pgoff_t index = pos >> PAGE_SHIFT;
325	struct page *page;
326	int once_thru = 0;
327
328	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
329		file, mapping->host->i_ino, len, (long long) pos);
330
331start:
332	page = grab_cache_page_write_begin(mapping, index, flags);
333	if (!page)
334		return -ENOMEM;
335	*pagep = page;
336
337	ret = nfs_flush_incompatible(file, page);
338	if (ret) {
339		unlock_page(page);
340		put_page(page);
341	} else if (!once_thru &&
342		   nfs_want_read_modify_write(file, page, pos, len)) {
343		once_thru = 1;
344		ret = nfs_readpage(file, page);
345		put_page(page);
346		if (!ret)
347			goto start;
348	}
349	return ret;
350}
351
352static int nfs_write_end(struct file *file, struct address_space *mapping,
353			loff_t pos, unsigned len, unsigned copied,
354			struct page *page, void *fsdata)
355{
356	unsigned offset = pos & (PAGE_SIZE - 1);
357	struct nfs_open_context *ctx = nfs_file_open_context(file);
358	int status;
359
360	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
361		file, mapping->host->i_ino, len, (long long) pos);
362
363	/*
364	 * Zero any uninitialised parts of the page, and then mark the page
365	 * as up to date if it turns out that we're extending the file.
366	 */
367	if (!PageUptodate(page)) {
368		unsigned pglen = nfs_page_length(page);
369		unsigned end = offset + copied;
370
371		if (pglen == 0) {
372			zero_user_segments(page, 0, offset,
373					end, PAGE_SIZE);
374			SetPageUptodate(page);
375		} else if (end >= pglen) {
376			zero_user_segment(page, end, PAGE_SIZE);
377			if (offset == 0)
378				SetPageUptodate(page);
379		} else
380			zero_user_segment(page, pglen, PAGE_SIZE);
381	}
382
383	status = nfs_updatepage(file, page, offset, copied);
384
385	unlock_page(page);
386	put_page(page);
387
388	if (status < 0)
389		return status;
390	NFS_I(mapping->host)->write_io += copied;
391
392	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
393		status = nfs_wb_all(mapping->host);
394		if (status < 0)
395			return status;
396	}
397
398	return copied;
399}
400
401/*
402 * Partially or wholly invalidate a page
403 * - Release the private state associated with a page if undergoing complete
404 *   page invalidation
405 * - Called if either PG_private or PG_fscache is set on the page
406 * - Caller holds page lock
407 */
408static void nfs_invalidate_page(struct page *page, unsigned int offset,
409				unsigned int length)
410{
411	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
412		 page, offset, length);
413
414	if (offset != 0 || length < PAGE_SIZE)
415		return;
416	/* Cancel any unstarted writes on this page */
417	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
418
419	nfs_fscache_invalidate_page(page, page->mapping->host);
420}
421
422/*
423 * Attempt to release the private state associated with a page
424 * - Called if either PG_private or PG_fscache is set on the page
425 * - Caller holds page lock
426 * - Return true (may release page) or false (may not)
427 */
428static int nfs_release_page(struct page *page, gfp_t gfp)
429{
430	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
431
432	/* If PagePrivate() is set, then the page is not freeable */
433	if (PagePrivate(page))
434		return 0;
435	return nfs_fscache_release_page(page, gfp);
436}
437
438static void nfs_check_dirty_writeback(struct page *page,
439				bool *dirty, bool *writeback)
440{
441	struct nfs_inode *nfsi;
442	struct address_space *mapping = page_file_mapping(page);
443
444	if (!mapping || PageSwapCache(page))
445		return;
446
447	/*
448	 * Check if an unstable page is currently being committed and
449	 * if so, have the VM treat it as if the page is under writeback
450	 * so it will not block due to pages that will shortly be freeable.
451	 */
452	nfsi = NFS_I(mapping->host);
453	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
454		*writeback = true;
455		return;
456	}
457
458	/*
459	 * If PagePrivate() is set, then the page is not freeable and as the
460	 * inode is not being committed, it's not going to be cleaned in the
461	 * near future so treat it as dirty
462	 */
463	if (PagePrivate(page))
464		*dirty = true;
465}
466
467/*
468 * Attempt to clear the private state associated with a page when an error
469 * occurs that requires the cached contents of an inode to be written back or
470 * destroyed
471 * - Called if either PG_private or fscache is set on the page
472 * - Caller holds page lock
473 * - Return 0 if successful, -error otherwise
474 */
475static int nfs_launder_page(struct page *page)
476{
477	struct inode *inode = page_file_mapping(page)->host;
478	struct nfs_inode *nfsi = NFS_I(inode);
479
480	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
481		inode->i_ino, (long long)page_offset(page));
482
483	nfs_fscache_wait_on_page_write(nfsi, page);
484	return nfs_wb_page(inode, page);
485}
486
487static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
488						sector_t *span)
489{
490	unsigned long blocks;
491	long long isize;
492	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
493	struct inode *inode = file->f_mapping->host;
494
495	spin_lock(&inode->i_lock);
496	blocks = inode->i_blocks;
497	isize = inode->i_size;
498	spin_unlock(&inode->i_lock);
499	if (blocks*512 < isize) {
500		pr_warn("swap activate: swapfile has holes\n");
501		return -EINVAL;
502	}
503
504	*span = sis->pages;
505
506	return rpc_clnt_swap_activate(clnt);
507}
508
509static void nfs_swap_deactivate(struct file *file)
510{
511	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
512
513	rpc_clnt_swap_deactivate(clnt);
514}
515
516const struct address_space_operations nfs_file_aops = {
517	.readpage = nfs_readpage,
518	.readpages = nfs_readpages,
519	.set_page_dirty = __set_page_dirty_nobuffers,
520	.writepage = nfs_writepage,
521	.writepages = nfs_writepages,
522	.write_begin = nfs_write_begin,
523	.write_end = nfs_write_end,
524	.invalidatepage = nfs_invalidate_page,
525	.releasepage = nfs_release_page,
526	.direct_IO = nfs_direct_IO,
527#ifdef CONFIG_MIGRATION
528	.migratepage = nfs_migrate_page,
529#endif
530	.launder_page = nfs_launder_page,
531	.is_dirty_writeback = nfs_check_dirty_writeback,
532	.error_remove_page = generic_error_remove_page,
533	.swap_activate = nfs_swap_activate,
534	.swap_deactivate = nfs_swap_deactivate,
535};
536
537/*
538 * Notification that a PTE pointing to an NFS page is about to be made
539 * writable, implying that someone is about to modify the page through a
540 * shared-writable mapping
541 */
542static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
543{
544	struct page *page = vmf->page;
545	struct file *filp = vmf->vma->vm_file;
546	struct inode *inode = file_inode(filp);
547	unsigned pagelen;
548	vm_fault_t ret = VM_FAULT_NOPAGE;
549	struct address_space *mapping;
550
551	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
552		filp, filp->f_mapping->host->i_ino,
553		(long long)page_offset(page));
554
555	sb_start_pagefault(inode->i_sb);
556
557	/* make sure the cache has finished storing the page */
558	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
559
560	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
561			nfs_wait_bit_killable, TASK_KILLABLE);
562
563	lock_page(page);
564	mapping = page_file_mapping(page);
565	if (mapping != inode->i_mapping)
566		goto out_unlock;
567
568	wait_on_page_writeback(page);
569
570	pagelen = nfs_page_length(page);
571	if (pagelen == 0)
572		goto out_unlock;
573
574	ret = VM_FAULT_LOCKED;
575	if (nfs_flush_incompatible(filp, page) == 0 &&
576	    nfs_updatepage(filp, page, 0, pagelen) == 0)
577		goto out;
578
579	ret = VM_FAULT_SIGBUS;
580out_unlock:
581	unlock_page(page);
582out:
583	sb_end_pagefault(inode->i_sb);
584	return ret;
585}
586
587static const struct vm_operations_struct nfs_file_vm_ops = {
588	.fault = filemap_fault,
589	.map_pages = filemap_map_pages,
590	.page_mkwrite = nfs_vm_page_mkwrite,
591};
592
593static int nfs_need_check_write(struct file *filp, struct inode *inode,
594				int error)
595{
596	struct nfs_open_context *ctx;
597
598	ctx = nfs_file_open_context(filp);
599	if (nfs_error_is_fatal_on_server(error) ||
600	    nfs_ctx_key_to_expire(ctx, inode))
601		return 1;
602	return 0;
603}
604
605ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
606{
607	struct file *file = iocb->ki_filp;
608	struct inode *inode = file_inode(file);
609	unsigned int mntflags = NFS_SERVER(inode)->flags;
610	ssize_t result, written;
611	errseq_t since;
612	int error;
613
614	result = nfs_key_timeout_notify(file, inode);
615	if (result)
616		return result;
617
618	if (iocb->ki_flags & IOCB_DIRECT)
619		return nfs_file_direct_write(iocb, from);
620
621	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
622		file, iov_iter_count(from), (long long) iocb->ki_pos);
623
624	if (IS_SWAPFILE(inode))
625		goto out_swapfile;
626	/*
627	 * O_APPEND implies that we must revalidate the file length.
628	 */
629	if (iocb->ki_flags & IOCB_APPEND || iocb->ki_pos > i_size_read(inode)) {
630		result = nfs_revalidate_file_size(inode, file);
631		if (result)
632			goto out;
633	}
 
 
634
635	nfs_clear_invalid_mapping(file->f_mapping);
636
637	since = filemap_sample_wb_err(file->f_mapping);
638	nfs_start_io_write(inode);
639	result = generic_write_checks(iocb, from);
640	if (result > 0) {
641		current->backing_dev_info = inode_to_bdi(inode);
642		result = generic_perform_write(file, from, iocb->ki_pos);
643		current->backing_dev_info = NULL;
644	}
645	nfs_end_io_write(inode);
646	if (result <= 0)
647		goto out;
648
649	written = result;
650	iocb->ki_pos += written;
651
652	if (mntflags & NFS_MOUNT_WRITE_EAGER) {
653		result = filemap_fdatawrite_range(file->f_mapping,
654						  iocb->ki_pos - written,
655						  iocb->ki_pos - 1);
656		if (result < 0)
657			goto out;
658	}
659	if (mntflags & NFS_MOUNT_WRITE_WAIT) {
660		result = filemap_fdatawait_range(file->f_mapping,
661						 iocb->ki_pos - written,
662						 iocb->ki_pos - 1);
663		if (result < 0)
664			goto out;
665	}
666	result = generic_write_sync(iocb, written);
667	if (result < 0)
668		goto out;
669
670	/* Return error values */
671	error = filemap_check_wb_err(file->f_mapping, since);
672	if (nfs_need_check_write(file, inode, error)) {
673		int err = nfs_wb_all(inode);
674		if (err < 0)
675			result = err;
676	}
677	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
678out:
679	return result;
680
681out_swapfile:
682	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
683	return -ETXTBSY;
684}
685EXPORT_SYMBOL_GPL(nfs_file_write);
686
687static int
688do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
689{
690	struct inode *inode = filp->f_mapping->host;
691	int status = 0;
692	unsigned int saved_type = fl->fl_type;
693
694	/* Try local locking first */
695	posix_test_lock(filp, fl);
696	if (fl->fl_type != F_UNLCK) {
697		/* found a conflict */
698		goto out;
699	}
700	fl->fl_type = saved_type;
701
702	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
703		goto out_noconflict;
704
705	if (is_local)
706		goto out_noconflict;
707
708	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
709out:
710	return status;
711out_noconflict:
712	fl->fl_type = F_UNLCK;
713	goto out;
714}
715
716static int
717do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
718{
719	struct inode *inode = filp->f_mapping->host;
720	struct nfs_lock_context *l_ctx;
721	int status;
722
723	/*
724	 * Flush all pending writes before doing anything
725	 * with locks..
726	 */
727	nfs_wb_all(inode);
728
729	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
730	if (!IS_ERR(l_ctx)) {
731		status = nfs_iocounter_wait(l_ctx);
732		nfs_put_lock_context(l_ctx);
733		/*  NOTE: special case
734		 * 	If we're signalled while cleaning up locks on process exit, we
735		 * 	still need to complete the unlock.
736		 */
737		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
738			return status;
739	}
740
741	/*
742	 * Use local locking if mounted with "-onolock" or with appropriate
743	 * "-olocal_lock="
744	 */
745	if (!is_local)
746		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
747	else
748		status = locks_lock_file_wait(filp, fl);
749	return status;
750}
751
752static int
753do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
754{
755	struct inode *inode = filp->f_mapping->host;
756	int status;
757
758	/*
759	 * Flush all pending writes before doing anything
760	 * with locks..
761	 */
762	status = nfs_sync_mapping(filp->f_mapping);
763	if (status != 0)
764		goto out;
765
766	/*
767	 * Use local locking if mounted with "-onolock" or with appropriate
768	 * "-olocal_lock="
769	 */
770	if (!is_local)
771		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
772	else
773		status = locks_lock_file_wait(filp, fl);
774	if (status < 0)
775		goto out;
776
777	/*
778	 * Invalidate cache to prevent missing any changes.  If
779	 * the file is mapped, clear the page cache as well so
780	 * those mappings will be loaded.
781	 *
782	 * This makes locking act as a cache coherency point.
783	 */
784	nfs_sync_mapping(filp->f_mapping);
785	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
786		nfs_zap_caches(inode);
787		if (mapping_mapped(filp->f_mapping))
788			nfs_revalidate_mapping(inode, filp->f_mapping);
789	}
790out:
791	return status;
792}
793
794/*
795 * Lock a (portion of) a file
796 */
797int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
798{
799	struct inode *inode = filp->f_mapping->host;
800	int ret = -ENOLCK;
801	int is_local = 0;
802
803	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
804			filp, fl->fl_type, fl->fl_flags,
805			(long long)fl->fl_start, (long long)fl->fl_end);
806
807	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
808
809	/* No mandatory locks over NFS */
810	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
811		goto out_err;
812
813	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
814		is_local = 1;
815
816	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
817		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
818		if (ret < 0)
819			goto out_err;
820	}
821
822	if (IS_GETLK(cmd))
823		ret = do_getlk(filp, cmd, fl, is_local);
824	else if (fl->fl_type == F_UNLCK)
825		ret = do_unlk(filp, cmd, fl, is_local);
826	else
827		ret = do_setlk(filp, cmd, fl, is_local);
828out_err:
829	return ret;
830}
831EXPORT_SYMBOL_GPL(nfs_lock);
832
833/*
834 * Lock a (portion of) a file
835 */
836int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
837{
838	struct inode *inode = filp->f_mapping->host;
839	int is_local = 0;
840
841	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
842			filp, fl->fl_type, fl->fl_flags);
843
844	if (!(fl->fl_flags & FL_FLOCK))
845		return -ENOLCK;
846
847	/*
848	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
849	 * any standard. In principle we might be able to support LOCK_MAND
850	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
851	 * NFS code is not set up for it.
852	 */
853	if (fl->fl_type & LOCK_MAND)
854		return -EINVAL;
855
856	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
857		is_local = 1;
858
859	/* We're simulating flock() locks using posix locks on the server */
860	if (fl->fl_type == F_UNLCK)
861		return do_unlk(filp, cmd, fl, is_local);
862	return do_setlk(filp, cmd, fl, is_local);
863}
864EXPORT_SYMBOL_GPL(nfs_flock);
865
866const struct file_operations nfs_file_operations = {
867	.llseek		= nfs_file_llseek,
868	.read_iter	= nfs_file_read,
869	.write_iter	= nfs_file_write,
870	.mmap		= nfs_file_mmap,
871	.open		= nfs_file_open,
872	.flush		= nfs_file_flush,
873	.release	= nfs_file_release,
874	.fsync		= nfs_file_fsync,
875	.lock		= nfs_lock,
876	.flock		= nfs_flock,
877	.splice_read	= generic_file_splice_read,
878	.splice_write	= iter_file_splice_write,
879	.check_flags	= nfs_check_flags,
880	.setlease	= simple_nosetlease,
881};
882EXPORT_SYMBOL_GPL(nfs_file_operations);
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/fs/nfs/file.c
  4 *
  5 *  Copyright (C) 1992  Rick Sladkey
  6 *
  7 *  Changes Copyright (C) 1994 by Florian La Roche
  8 *   - Do not copy data too often around in the kernel.
  9 *   - In nfs_file_read the return value of kmalloc wasn't checked.
 10 *   - Put in a better version of read look-ahead buffering. Original idea
 11 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 12 *
 13 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 14 *
 15 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 16 *
 17 *  nfs regular file handling functions
 18 */
 19
 20#include <linux/module.h>
 21#include <linux/time.h>
 22#include <linux/kernel.h>
 23#include <linux/errno.h>
 24#include <linux/fcntl.h>
 25#include <linux/stat.h>
 26#include <linux/nfs_fs.h>
 27#include <linux/nfs_mount.h>
 28#include <linux/mm.h>
 29#include <linux/pagemap.h>
 30#include <linux/gfp.h>
 31#include <linux/swap.h>
 32
 33#include <linux/uaccess.h>
 34
 35#include "delegation.h"
 36#include "internal.h"
 37#include "iostat.h"
 38#include "fscache.h"
 39#include "pnfs.h"
 40
 41#include "nfstrace.h"
 42
 43#define NFSDBG_FACILITY		NFSDBG_FILE
 44
 45static const struct vm_operations_struct nfs_file_vm_ops;
 46
 47/* Hack for future NFS swap support */
 48#ifndef IS_SWAPFILE
 49# define IS_SWAPFILE(inode)	(0)
 50#endif
 51
 52int nfs_check_flags(int flags)
 53{
 54	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 55		return -EINVAL;
 56
 57	return 0;
 58}
 59EXPORT_SYMBOL_GPL(nfs_check_flags);
 60
 61/*
 62 * Open file
 63 */
 64static int
 65nfs_file_open(struct inode *inode, struct file *filp)
 66{
 67	int res;
 68
 69	dprintk("NFS: open file(%pD2)\n", filp);
 70
 71	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 72	res = nfs_check_flags(filp->f_flags);
 73	if (res)
 74		return res;
 75
 76	res = nfs_open(inode, filp);
 77	return res;
 78}
 79
 80int
 81nfs_file_release(struct inode *inode, struct file *filp)
 82{
 83	dprintk("NFS: release(%pD2)\n", filp);
 84
 85	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 86	nfs_file_clear_open_context(filp);
 87	return 0;
 88}
 89EXPORT_SYMBOL_GPL(nfs_file_release);
 90
 91/**
 92 * nfs_revalidate_size - Revalidate the file size
 93 * @inode: pointer to inode struct
 94 * @filp: pointer to struct file
 95 *
 96 * Revalidates the file length. This is basically a wrapper around
 97 * nfs_revalidate_inode() that takes into account the fact that we may
 98 * have cached writes (in which case we don't care about the server's
 99 * idea of what the file length is), or O_DIRECT (in which case we
100 * shouldn't trust the cache).
101 */
102static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
103{
104	struct nfs_server *server = NFS_SERVER(inode);
105
106	if (filp->f_flags & O_DIRECT)
107		goto force_reval;
108	if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
109		goto force_reval;
110	return 0;
111force_reval:
112	return __nfs_revalidate_inode(server, inode);
113}
114
115loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
116{
117	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
118			filp, offset, whence);
119
120	/*
121	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
122	 * the cached file length
123	 */
124	if (whence != SEEK_SET && whence != SEEK_CUR) {
125		struct inode *inode = filp->f_mapping->host;
126
127		int retval = nfs_revalidate_file_size(inode, filp);
128		if (retval < 0)
129			return (loff_t)retval;
130	}
131
132	return generic_file_llseek(filp, offset, whence);
133}
134EXPORT_SYMBOL_GPL(nfs_file_llseek);
135
136/*
137 * Flush all dirty pages, and check for write errors.
138 */
139static int
140nfs_file_flush(struct file *file, fl_owner_t id)
141{
142	struct inode	*inode = file_inode(file);
 
143
144	dprintk("NFS: flush(%pD2)\n", file);
145
146	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
147	if ((file->f_mode & FMODE_WRITE) == 0)
148		return 0;
149
150	/* Flush writes to the server and return any errors */
151	return nfs_wb_all(inode);
 
 
152}
153
154ssize_t
155nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
156{
157	struct inode *inode = file_inode(iocb->ki_filp);
158	ssize_t result;
159
160	if (iocb->ki_flags & IOCB_DIRECT)
161		return nfs_file_direct_read(iocb, to);
162
163	dprintk("NFS: read(%pD2, %zu@%lu)\n",
164		iocb->ki_filp,
165		iov_iter_count(to), (unsigned long) iocb->ki_pos);
166
167	nfs_start_io_read(inode);
168	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
169	if (!result) {
170		result = generic_file_read_iter(iocb, to);
171		if (result > 0)
172			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
173	}
174	nfs_end_io_read(inode);
175	return result;
176}
177EXPORT_SYMBOL_GPL(nfs_file_read);
178
179int
180nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
181{
182	struct inode *inode = file_inode(file);
183	int	status;
184
185	dprintk("NFS: mmap(%pD2)\n", file);
186
187	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
188	 *       so we call that before revalidating the mapping
189	 */
190	status = generic_file_mmap(file, vma);
191	if (!status) {
192		vma->vm_ops = &nfs_file_vm_ops;
193		status = nfs_revalidate_mapping(inode, file->f_mapping);
194	}
195	return status;
196}
197EXPORT_SYMBOL_GPL(nfs_file_mmap);
198
199/*
200 * Flush any dirty pages for this process, and check for write errors.
201 * The return status from this call provides a reliable indication of
202 * whether any write errors occurred for this process.
203 */
204static int
205nfs_file_fsync_commit(struct file *file, int datasync)
206{
207	struct nfs_open_context *ctx = nfs_file_open_context(file);
208	struct inode *inode = file_inode(file);
209	int do_resend, status;
210	int ret = 0;
211
212	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
213
214	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
215	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
216	status = nfs_commit_inode(inode, FLUSH_SYNC);
217	if (status == 0)
218		status = file_check_and_advance_wb_err(file);
219	if (status < 0) {
220		ret = status;
221		goto out;
222	}
223	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
224	if (do_resend)
225		ret = -EAGAIN;
226out:
227	return ret;
228}
229
230int
231nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
232{
 
 
233	int ret;
234	struct inode *inode = file_inode(file);
235
236	trace_nfs_fsync_enter(inode);
237
238	do {
239		ret = file_write_and_wait_range(file, start, end);
240		if (ret != 0)
241			break;
242		ret = nfs_file_fsync_commit(file, datasync);
243		if (!ret)
244			ret = pnfs_sync_inode(inode, !!datasync);
 
 
 
 
 
245		/*
246		 * If nfs_file_fsync_commit detected a server reboot, then
247		 * resend all dirty pages that might have been covered by
248		 * the NFS_CONTEXT_RESEND_WRITES flag
249		 */
250		start = 0;
251		end = LLONG_MAX;
252	} while (ret == -EAGAIN);
253
254	trace_nfs_fsync_exit(inode, ret);
255	return ret;
256}
257EXPORT_SYMBOL_GPL(nfs_file_fsync);
258
259/*
260 * Decide whether a read/modify/write cycle may be more efficient
261 * then a modify/write/read cycle when writing to a page in the
262 * page cache.
263 *
264 * Some pNFS layout drivers can only read/write at a certain block
265 * granularity like all block devices and therefore we must perform
266 * read/modify/write whenever a page hasn't read yet and the data
267 * to be written there is not aligned to a block boundary and/or
268 * smaller than the block size.
269 *
270 * The modify/write/read cycle may occur if a page is read before
271 * being completely filled by the writer.  In this situation, the
272 * page must be completely written to stable storage on the server
273 * before it can be refilled by reading in the page from the server.
274 * This can lead to expensive, small, FILE_SYNC mode writes being
275 * done.
276 *
277 * It may be more efficient to read the page first if the file is
278 * open for reading in addition to writing, the page is not marked
279 * as Uptodate, it is not dirty or waiting to be committed,
280 * indicating that it was previously allocated and then modified,
281 * that there were valid bytes of data in that range of the file,
282 * and that the new data won't completely replace the old data in
283 * that range of the file.
284 */
285static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len)
286{
287	unsigned int pglen = nfs_page_length(page);
288	unsigned int offset = pos & (PAGE_SIZE - 1);
289	unsigned int end = offset + len;
290
291	return !pglen || (end >= pglen && !offset);
292}
293
294static bool nfs_want_read_modify_write(struct file *file, struct page *page,
295			loff_t pos, unsigned int len)
296{
297	/*
298	 * Up-to-date pages, those with ongoing or full-page write
299	 * don't need read/modify/write
300	 */
301	if (PageUptodate(page) || PagePrivate(page) ||
302	    nfs_full_page_write(page, pos, len))
303		return false;
304
305	if (pnfs_ld_read_whole_page(file->f_mapping->host))
306		return true;
307	/* Open for reading too? */
308	if (file->f_mode & FMODE_READ)
309		return true;
310	return false;
311}
312
313/*
314 * This does the "real" work of the write. We must allocate and lock the
315 * page to be sent back to the generic routine, which then copies the
316 * data from user space.
317 *
318 * If the writer ends up delaying the write, the writer needs to
319 * increment the page use counts until he is done with the page.
320 */
321static int nfs_write_begin(struct file *file, struct address_space *mapping,
322			loff_t pos, unsigned len, unsigned flags,
323			struct page **pagep, void **fsdata)
324{
325	int ret;
326	pgoff_t index = pos >> PAGE_SHIFT;
327	struct page *page;
328	int once_thru = 0;
329
330	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
331		file, mapping->host->i_ino, len, (long long) pos);
332
333start:
334	page = grab_cache_page_write_begin(mapping, index, flags);
335	if (!page)
336		return -ENOMEM;
337	*pagep = page;
338
339	ret = nfs_flush_incompatible(file, page);
340	if (ret) {
341		unlock_page(page);
342		put_page(page);
343	} else if (!once_thru &&
344		   nfs_want_read_modify_write(file, page, pos, len)) {
345		once_thru = 1;
346		ret = nfs_readpage(file, page);
347		put_page(page);
348		if (!ret)
349			goto start;
350	}
351	return ret;
352}
353
354static int nfs_write_end(struct file *file, struct address_space *mapping,
355			loff_t pos, unsigned len, unsigned copied,
356			struct page *page, void *fsdata)
357{
358	unsigned offset = pos & (PAGE_SIZE - 1);
359	struct nfs_open_context *ctx = nfs_file_open_context(file);
360	int status;
361
362	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
363		file, mapping->host->i_ino, len, (long long) pos);
364
365	/*
366	 * Zero any uninitialised parts of the page, and then mark the page
367	 * as up to date if it turns out that we're extending the file.
368	 */
369	if (!PageUptodate(page)) {
370		unsigned pglen = nfs_page_length(page);
371		unsigned end = offset + copied;
372
373		if (pglen == 0) {
374			zero_user_segments(page, 0, offset,
375					end, PAGE_SIZE);
376			SetPageUptodate(page);
377		} else if (end >= pglen) {
378			zero_user_segment(page, end, PAGE_SIZE);
379			if (offset == 0)
380				SetPageUptodate(page);
381		} else
382			zero_user_segment(page, pglen, PAGE_SIZE);
383	}
384
385	status = nfs_updatepage(file, page, offset, copied);
386
387	unlock_page(page);
388	put_page(page);
389
390	if (status < 0)
391		return status;
392	NFS_I(mapping->host)->write_io += copied;
393
394	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
395		status = nfs_wb_all(mapping->host);
396		if (status < 0)
397			return status;
398	}
399
400	return copied;
401}
402
403/*
404 * Partially or wholly invalidate a page
405 * - Release the private state associated with a page if undergoing complete
406 *   page invalidation
407 * - Called if either PG_private or PG_fscache is set on the page
408 * - Caller holds page lock
409 */
410static void nfs_invalidate_page(struct page *page, unsigned int offset,
411				unsigned int length)
412{
413	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
414		 page, offset, length);
415
416	if (offset != 0 || length < PAGE_SIZE)
417		return;
418	/* Cancel any unstarted writes on this page */
419	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
420
421	nfs_fscache_invalidate_page(page, page->mapping->host);
422}
423
424/*
425 * Attempt to release the private state associated with a page
426 * - Called if either PG_private or PG_fscache is set on the page
427 * - Caller holds page lock
428 * - Return true (may release page) or false (may not)
429 */
430static int nfs_release_page(struct page *page, gfp_t gfp)
431{
432	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
433
434	/* If PagePrivate() is set, then the page is not freeable */
435	if (PagePrivate(page))
436		return 0;
437	return nfs_fscache_release_page(page, gfp);
438}
439
440static void nfs_check_dirty_writeback(struct page *page,
441				bool *dirty, bool *writeback)
442{
443	struct nfs_inode *nfsi;
444	struct address_space *mapping = page_file_mapping(page);
445
446	if (!mapping || PageSwapCache(page))
447		return;
448
449	/*
450	 * Check if an unstable page is currently being committed and
451	 * if so, have the VM treat it as if the page is under writeback
452	 * so it will not block due to pages that will shortly be freeable.
453	 */
454	nfsi = NFS_I(mapping->host);
455	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
456		*writeback = true;
457		return;
458	}
459
460	/*
461	 * If PagePrivate() is set, then the page is not freeable and as the
462	 * inode is not being committed, it's not going to be cleaned in the
463	 * near future so treat it as dirty
464	 */
465	if (PagePrivate(page))
466		*dirty = true;
467}
468
469/*
470 * Attempt to clear the private state associated with a page when an error
471 * occurs that requires the cached contents of an inode to be written back or
472 * destroyed
473 * - Called if either PG_private or fscache is set on the page
474 * - Caller holds page lock
475 * - Return 0 if successful, -error otherwise
476 */
477static int nfs_launder_page(struct page *page)
478{
479	struct inode *inode = page_file_mapping(page)->host;
480	struct nfs_inode *nfsi = NFS_I(inode);
481
482	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
483		inode->i_ino, (long long)page_offset(page));
484
485	nfs_fscache_wait_on_page_write(nfsi, page);
486	return nfs_wb_page(inode, page);
487}
488
489static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
490						sector_t *span)
491{
 
 
492	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
 
 
 
 
 
 
 
 
 
 
493
494	*span = sis->pages;
495
496	return rpc_clnt_swap_activate(clnt);
497}
498
499static void nfs_swap_deactivate(struct file *file)
500{
501	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
502
503	rpc_clnt_swap_deactivate(clnt);
504}
505
506const struct address_space_operations nfs_file_aops = {
507	.readpage = nfs_readpage,
508	.readpages = nfs_readpages,
509	.set_page_dirty = __set_page_dirty_nobuffers,
510	.writepage = nfs_writepage,
511	.writepages = nfs_writepages,
512	.write_begin = nfs_write_begin,
513	.write_end = nfs_write_end,
514	.invalidatepage = nfs_invalidate_page,
515	.releasepage = nfs_release_page,
516	.direct_IO = nfs_direct_IO,
517#ifdef CONFIG_MIGRATION
518	.migratepage = nfs_migrate_page,
519#endif
520	.launder_page = nfs_launder_page,
521	.is_dirty_writeback = nfs_check_dirty_writeback,
522	.error_remove_page = generic_error_remove_page,
523	.swap_activate = nfs_swap_activate,
524	.swap_deactivate = nfs_swap_deactivate,
525};
526
527/*
528 * Notification that a PTE pointing to an NFS page is about to be made
529 * writable, implying that someone is about to modify the page through a
530 * shared-writable mapping
531 */
532static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
533{
534	struct page *page = vmf->page;
535	struct file *filp = vmf->vma->vm_file;
536	struct inode *inode = file_inode(filp);
537	unsigned pagelen;
538	vm_fault_t ret = VM_FAULT_NOPAGE;
539	struct address_space *mapping;
540
541	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
542		filp, filp->f_mapping->host->i_ino,
543		(long long)page_offset(page));
544
545	sb_start_pagefault(inode->i_sb);
546
547	/* make sure the cache has finished storing the page */
548	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
549
550	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
551			nfs_wait_bit_killable, TASK_KILLABLE);
552
553	lock_page(page);
554	mapping = page_file_mapping(page);
555	if (mapping != inode->i_mapping)
556		goto out_unlock;
557
558	wait_on_page_writeback(page);
559
560	pagelen = nfs_page_length(page);
561	if (pagelen == 0)
562		goto out_unlock;
563
564	ret = VM_FAULT_LOCKED;
565	if (nfs_flush_incompatible(filp, page) == 0 &&
566	    nfs_updatepage(filp, page, 0, pagelen) == 0)
567		goto out;
568
569	ret = VM_FAULT_SIGBUS;
570out_unlock:
571	unlock_page(page);
572out:
573	sb_end_pagefault(inode->i_sb);
574	return ret;
575}
576
577static const struct vm_operations_struct nfs_file_vm_ops = {
578	.fault = filemap_fault,
579	.map_pages = filemap_map_pages,
580	.page_mkwrite = nfs_vm_page_mkwrite,
581};
582
583static int nfs_need_check_write(struct file *filp, struct inode *inode)
 
584{
585	struct nfs_open_context *ctx;
586
587	ctx = nfs_file_open_context(filp);
588	if (nfs_ctx_key_to_expire(ctx, inode))
 
589		return 1;
590	return 0;
591}
592
593ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
594{
595	struct file *file = iocb->ki_filp;
596	struct inode *inode = file_inode(file);
597	unsigned long written = 0;
598	ssize_t result;
 
 
599
600	result = nfs_key_timeout_notify(file, inode);
601	if (result)
602		return result;
603
604	if (iocb->ki_flags & IOCB_DIRECT)
605		return nfs_file_direct_write(iocb, from);
606
607	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
608		file, iov_iter_count(from), (long long) iocb->ki_pos);
609
610	if (IS_SWAPFILE(inode))
611		goto out_swapfile;
612	/*
613	 * O_APPEND implies that we must revalidate the file length.
614	 */
615	if (iocb->ki_flags & IOCB_APPEND) {
616		result = nfs_revalidate_file_size(inode, file);
617		if (result)
618			goto out;
619	}
620	if (iocb->ki_pos > i_size_read(inode))
621		nfs_revalidate_mapping(inode, file->f_mapping);
622
 
 
 
623	nfs_start_io_write(inode);
624	result = generic_write_checks(iocb, from);
625	if (result > 0) {
626		current->backing_dev_info = inode_to_bdi(inode);
627		result = generic_perform_write(file, from, iocb->ki_pos);
628		current->backing_dev_info = NULL;
629	}
630	nfs_end_io_write(inode);
631	if (result <= 0)
632		goto out;
633
634	written = result;
635	iocb->ki_pos += written;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
636	result = generic_write_sync(iocb, written);
637	if (result < 0)
638		goto out;
639
640	/* Return error values */
641	if (nfs_need_check_write(file, inode)) {
 
642		int err = nfs_wb_all(inode);
643		if (err < 0)
644			result = err;
645	}
646	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
647out:
648	return result;
649
650out_swapfile:
651	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
652	return -EBUSY;
653}
654EXPORT_SYMBOL_GPL(nfs_file_write);
655
656static int
657do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
658{
659	struct inode *inode = filp->f_mapping->host;
660	int status = 0;
661	unsigned int saved_type = fl->fl_type;
662
663	/* Try local locking first */
664	posix_test_lock(filp, fl);
665	if (fl->fl_type != F_UNLCK) {
666		/* found a conflict */
667		goto out;
668	}
669	fl->fl_type = saved_type;
670
671	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
672		goto out_noconflict;
673
674	if (is_local)
675		goto out_noconflict;
676
677	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
678out:
679	return status;
680out_noconflict:
681	fl->fl_type = F_UNLCK;
682	goto out;
683}
684
685static int
686do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
687{
688	struct inode *inode = filp->f_mapping->host;
689	struct nfs_lock_context *l_ctx;
690	int status;
691
692	/*
693	 * Flush all pending writes before doing anything
694	 * with locks..
695	 */
696	nfs_wb_all(inode);
697
698	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
699	if (!IS_ERR(l_ctx)) {
700		status = nfs_iocounter_wait(l_ctx);
701		nfs_put_lock_context(l_ctx);
702		/*  NOTE: special case
703		 * 	If we're signalled while cleaning up locks on process exit, we
704		 * 	still need to complete the unlock.
705		 */
706		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
707			return status;
708	}
709
710	/*
711	 * Use local locking if mounted with "-onolock" or with appropriate
712	 * "-olocal_lock="
713	 */
714	if (!is_local)
715		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
716	else
717		status = locks_lock_file_wait(filp, fl);
718	return status;
719}
720
721static int
722do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
723{
724	struct inode *inode = filp->f_mapping->host;
725	int status;
726
727	/*
728	 * Flush all pending writes before doing anything
729	 * with locks..
730	 */
731	status = nfs_sync_mapping(filp->f_mapping);
732	if (status != 0)
733		goto out;
734
735	/*
736	 * Use local locking if mounted with "-onolock" or with appropriate
737	 * "-olocal_lock="
738	 */
739	if (!is_local)
740		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
741	else
742		status = locks_lock_file_wait(filp, fl);
743	if (status < 0)
744		goto out;
745
746	/*
747	 * Invalidate cache to prevent missing any changes.  If
748	 * the file is mapped, clear the page cache as well so
749	 * those mappings will be loaded.
750	 *
751	 * This makes locking act as a cache coherency point.
752	 */
753	nfs_sync_mapping(filp->f_mapping);
754	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
755		nfs_zap_caches(inode);
756		if (mapping_mapped(filp->f_mapping))
757			nfs_revalidate_mapping(inode, filp->f_mapping);
758	}
759out:
760	return status;
761}
762
763/*
764 * Lock a (portion of) a file
765 */
766int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
767{
768	struct inode *inode = filp->f_mapping->host;
769	int ret = -ENOLCK;
770	int is_local = 0;
771
772	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
773			filp, fl->fl_type, fl->fl_flags,
774			(long long)fl->fl_start, (long long)fl->fl_end);
775
776	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
777
778	/* No mandatory locks over NFS */
779	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
780		goto out_err;
781
782	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
783		is_local = 1;
784
785	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
786		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
787		if (ret < 0)
788			goto out_err;
789	}
790
791	if (IS_GETLK(cmd))
792		ret = do_getlk(filp, cmd, fl, is_local);
793	else if (fl->fl_type == F_UNLCK)
794		ret = do_unlk(filp, cmd, fl, is_local);
795	else
796		ret = do_setlk(filp, cmd, fl, is_local);
797out_err:
798	return ret;
799}
800EXPORT_SYMBOL_GPL(nfs_lock);
801
802/*
803 * Lock a (portion of) a file
804 */
805int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
806{
807	struct inode *inode = filp->f_mapping->host;
808	int is_local = 0;
809
810	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
811			filp, fl->fl_type, fl->fl_flags);
812
813	if (!(fl->fl_flags & FL_FLOCK))
814		return -ENOLCK;
815
816	/*
817	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
818	 * any standard. In principle we might be able to support LOCK_MAND
819	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
820	 * NFS code is not set up for it.
821	 */
822	if (fl->fl_type & LOCK_MAND)
823		return -EINVAL;
824
825	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
826		is_local = 1;
827
828	/* We're simulating flock() locks using posix locks on the server */
829	if (fl->fl_type == F_UNLCK)
830		return do_unlk(filp, cmd, fl, is_local);
831	return do_setlk(filp, cmd, fl, is_local);
832}
833EXPORT_SYMBOL_GPL(nfs_flock);
834
835const struct file_operations nfs_file_operations = {
836	.llseek		= nfs_file_llseek,
837	.read_iter	= nfs_file_read,
838	.write_iter	= nfs_file_write,
839	.mmap		= nfs_file_mmap,
840	.open		= nfs_file_open,
841	.flush		= nfs_file_flush,
842	.release	= nfs_file_release,
843	.fsync		= nfs_file_fsync,
844	.lock		= nfs_lock,
845	.flock		= nfs_flock,
846	.splice_read	= generic_file_splice_read,
847	.splice_write	= iter_file_splice_write,
848	.check_flags	= nfs_check_flags,
849	.setlease	= simple_nosetlease,
850};
851EXPORT_SYMBOL_GPL(nfs_file_operations);