Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2009 - 2018 Intel Corporation. */
3
4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6#include <linux/module.h>
7#include <linux/types.h>
8#include <linux/init.h>
9#include <linux/pci.h>
10#include <linux/vmalloc.h>
11#include <linux/pagemap.h>
12#include <linux/delay.h>
13#include <linux/netdevice.h>
14#include <linux/tcp.h>
15#include <linux/ipv6.h>
16#include <linux/slab.h>
17#include <net/checksum.h>
18#include <net/ip6_checksum.h>
19#include <linux/mii.h>
20#include <linux/ethtool.h>
21#include <linux/if_vlan.h>
22#include <linux/prefetch.h>
23#include <linux/sctp.h>
24
25#include "igbvf.h"
26
27char igbvf_driver_name[] = "igbvf";
28static const char igbvf_driver_string[] =
29 "Intel(R) Gigabit Virtual Function Network Driver";
30static const char igbvf_copyright[] =
31 "Copyright (c) 2009 - 2012 Intel Corporation.";
32
33#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34static int debug = -1;
35module_param(debug, int, 0);
36MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
37
38static int igbvf_poll(struct napi_struct *napi, int budget);
39static void igbvf_reset(struct igbvf_adapter *);
40static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
41static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
42
43static struct igbvf_info igbvf_vf_info = {
44 .mac = e1000_vfadapt,
45 .flags = 0,
46 .pba = 10,
47 .init_ops = e1000_init_function_pointers_vf,
48};
49
50static struct igbvf_info igbvf_i350_vf_info = {
51 .mac = e1000_vfadapt_i350,
52 .flags = 0,
53 .pba = 10,
54 .init_ops = e1000_init_function_pointers_vf,
55};
56
57static const struct igbvf_info *igbvf_info_tbl[] = {
58 [board_vf] = &igbvf_vf_info,
59 [board_i350_vf] = &igbvf_i350_vf_info,
60};
61
62/**
63 * igbvf_desc_unused - calculate if we have unused descriptors
64 * @ring: address of receive ring structure
65 **/
66static int igbvf_desc_unused(struct igbvf_ring *ring)
67{
68 if (ring->next_to_clean > ring->next_to_use)
69 return ring->next_to_clean - ring->next_to_use - 1;
70
71 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
72}
73
74/**
75 * igbvf_receive_skb - helper function to handle Rx indications
76 * @adapter: board private structure
77 * @netdev: pointer to netdev struct
78 * @skb: skb to indicate to stack
79 * @status: descriptor status field as written by hardware
80 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
81 * @skb: pointer to sk_buff to be indicated to stack
82 **/
83static void igbvf_receive_skb(struct igbvf_adapter *adapter,
84 struct net_device *netdev,
85 struct sk_buff *skb,
86 u32 status, __le16 vlan)
87{
88 u16 vid;
89
90 if (status & E1000_RXD_STAT_VP) {
91 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
92 (status & E1000_RXDEXT_STATERR_LB))
93 vid = be16_to_cpu((__force __be16)vlan) & E1000_RXD_SPC_VLAN_MASK;
94 else
95 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
96 if (test_bit(vid, adapter->active_vlans))
97 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
98 }
99
100 napi_gro_receive(&adapter->rx_ring->napi, skb);
101}
102
103static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 u32 status_err, struct sk_buff *skb)
105{
106 skb_checksum_none_assert(skb);
107
108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 if ((status_err & E1000_RXD_STAT_IXSM) ||
110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 return;
112
113 /* TCP/UDP checksum error bit is set */
114 if (status_err &
115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 /* let the stack verify checksum errors */
117 adapter->hw_csum_err++;
118 return;
119 }
120
121 /* It must be a TCP or UDP packet with a valid checksum */
122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 skb->ip_summed = CHECKSUM_UNNECESSARY;
124
125 adapter->hw_csum_good++;
126}
127
128/**
129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130 * @rx_ring: address of ring structure to repopulate
131 * @cleaned_count: number of buffers to repopulate
132 **/
133static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 int cleaned_count)
135{
136 struct igbvf_adapter *adapter = rx_ring->adapter;
137 struct net_device *netdev = adapter->netdev;
138 struct pci_dev *pdev = adapter->pdev;
139 union e1000_adv_rx_desc *rx_desc;
140 struct igbvf_buffer *buffer_info;
141 struct sk_buff *skb;
142 unsigned int i;
143 int bufsz;
144
145 i = rx_ring->next_to_use;
146 buffer_info = &rx_ring->buffer_info[i];
147
148 if (adapter->rx_ps_hdr_size)
149 bufsz = adapter->rx_ps_hdr_size;
150 else
151 bufsz = adapter->rx_buffer_len;
152
153 while (cleaned_count--) {
154 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155
156 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 if (!buffer_info->page) {
158 buffer_info->page = alloc_page(GFP_ATOMIC);
159 if (!buffer_info->page) {
160 adapter->alloc_rx_buff_failed++;
161 goto no_buffers;
162 }
163 buffer_info->page_offset = 0;
164 } else {
165 buffer_info->page_offset ^= PAGE_SIZE / 2;
166 }
167 buffer_info->page_dma =
168 dma_map_page(&pdev->dev, buffer_info->page,
169 buffer_info->page_offset,
170 PAGE_SIZE / 2,
171 DMA_FROM_DEVICE);
172 if (dma_mapping_error(&pdev->dev,
173 buffer_info->page_dma)) {
174 __free_page(buffer_info->page);
175 buffer_info->page = NULL;
176 dev_err(&pdev->dev, "RX DMA map failed\n");
177 break;
178 }
179 }
180
181 if (!buffer_info->skb) {
182 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183 if (!skb) {
184 adapter->alloc_rx_buff_failed++;
185 goto no_buffers;
186 }
187
188 buffer_info->skb = skb;
189 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190 bufsz,
191 DMA_FROM_DEVICE);
192 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
193 dev_kfree_skb(buffer_info->skb);
194 buffer_info->skb = NULL;
195 dev_err(&pdev->dev, "RX DMA map failed\n");
196 goto no_buffers;
197 }
198 }
199 /* Refresh the desc even if buffer_addrs didn't change because
200 * each write-back erases this info.
201 */
202 if (adapter->rx_ps_hdr_size) {
203 rx_desc->read.pkt_addr =
204 cpu_to_le64(buffer_info->page_dma);
205 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
206 } else {
207 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
208 rx_desc->read.hdr_addr = 0;
209 }
210
211 i++;
212 if (i == rx_ring->count)
213 i = 0;
214 buffer_info = &rx_ring->buffer_info[i];
215 }
216
217no_buffers:
218 if (rx_ring->next_to_use != i) {
219 rx_ring->next_to_use = i;
220 if (i == 0)
221 i = (rx_ring->count - 1);
222 else
223 i--;
224
225 /* Force memory writes to complete before letting h/w
226 * know there are new descriptors to fetch. (Only
227 * applicable for weak-ordered memory model archs,
228 * such as IA-64).
229 */
230 wmb();
231 writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 }
233}
234
235/**
236 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
237 * @adapter: board private structure
238 * @work_done: output parameter used to indicate completed work
239 * @work_to_do: input parameter setting limit of work
240 *
241 * the return value indicates whether actual cleaning was done, there
242 * is no guarantee that everything was cleaned
243 **/
244static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
245 int *work_done, int work_to_do)
246{
247 struct igbvf_ring *rx_ring = adapter->rx_ring;
248 struct net_device *netdev = adapter->netdev;
249 struct pci_dev *pdev = adapter->pdev;
250 union e1000_adv_rx_desc *rx_desc, *next_rxd;
251 struct igbvf_buffer *buffer_info, *next_buffer;
252 struct sk_buff *skb;
253 bool cleaned = false;
254 int cleaned_count = 0;
255 unsigned int total_bytes = 0, total_packets = 0;
256 unsigned int i;
257 u32 length, hlen, staterr;
258
259 i = rx_ring->next_to_clean;
260 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
261 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
262
263 while (staterr & E1000_RXD_STAT_DD) {
264 if (*work_done >= work_to_do)
265 break;
266 (*work_done)++;
267 rmb(); /* read descriptor and rx_buffer_info after status DD */
268
269 buffer_info = &rx_ring->buffer_info[i];
270
271 /* HW will not DMA in data larger than the given buffer, even
272 * if it parses the (NFS, of course) header to be larger. In
273 * that case, it fills the header buffer and spills the rest
274 * into the page.
275 */
276 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
277 & E1000_RXDADV_HDRBUFLEN_MASK) >>
278 E1000_RXDADV_HDRBUFLEN_SHIFT;
279 if (hlen > adapter->rx_ps_hdr_size)
280 hlen = adapter->rx_ps_hdr_size;
281
282 length = le16_to_cpu(rx_desc->wb.upper.length);
283 cleaned = true;
284 cleaned_count++;
285
286 skb = buffer_info->skb;
287 prefetch(skb->data - NET_IP_ALIGN);
288 buffer_info->skb = NULL;
289 if (!adapter->rx_ps_hdr_size) {
290 dma_unmap_single(&pdev->dev, buffer_info->dma,
291 adapter->rx_buffer_len,
292 DMA_FROM_DEVICE);
293 buffer_info->dma = 0;
294 skb_put(skb, length);
295 goto send_up;
296 }
297
298 if (!skb_shinfo(skb)->nr_frags) {
299 dma_unmap_single(&pdev->dev, buffer_info->dma,
300 adapter->rx_ps_hdr_size,
301 DMA_FROM_DEVICE);
302 buffer_info->dma = 0;
303 skb_put(skb, hlen);
304 }
305
306 if (length) {
307 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
308 PAGE_SIZE / 2,
309 DMA_FROM_DEVICE);
310 buffer_info->page_dma = 0;
311
312 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
313 buffer_info->page,
314 buffer_info->page_offset,
315 length);
316
317 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
318 (page_count(buffer_info->page) != 1))
319 buffer_info->page = NULL;
320 else
321 get_page(buffer_info->page);
322
323 skb->len += length;
324 skb->data_len += length;
325 skb->truesize += PAGE_SIZE / 2;
326 }
327send_up:
328 i++;
329 if (i == rx_ring->count)
330 i = 0;
331 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
332 prefetch(next_rxd);
333 next_buffer = &rx_ring->buffer_info[i];
334
335 if (!(staterr & E1000_RXD_STAT_EOP)) {
336 buffer_info->skb = next_buffer->skb;
337 buffer_info->dma = next_buffer->dma;
338 next_buffer->skb = skb;
339 next_buffer->dma = 0;
340 goto next_desc;
341 }
342
343 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
344 dev_kfree_skb_irq(skb);
345 goto next_desc;
346 }
347
348 total_bytes += skb->len;
349 total_packets++;
350
351 igbvf_rx_checksum_adv(adapter, staterr, skb);
352
353 skb->protocol = eth_type_trans(skb, netdev);
354
355 igbvf_receive_skb(adapter, netdev, skb, staterr,
356 rx_desc->wb.upper.vlan);
357
358next_desc:
359 rx_desc->wb.upper.status_error = 0;
360
361 /* return some buffers to hardware, one at a time is too slow */
362 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
363 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
364 cleaned_count = 0;
365 }
366
367 /* use prefetched values */
368 rx_desc = next_rxd;
369 buffer_info = next_buffer;
370
371 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
372 }
373
374 rx_ring->next_to_clean = i;
375 cleaned_count = igbvf_desc_unused(rx_ring);
376
377 if (cleaned_count)
378 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
379
380 adapter->total_rx_packets += total_packets;
381 adapter->total_rx_bytes += total_bytes;
382 netdev->stats.rx_bytes += total_bytes;
383 netdev->stats.rx_packets += total_packets;
384 return cleaned;
385}
386
387static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
388 struct igbvf_buffer *buffer_info)
389{
390 if (buffer_info->dma) {
391 if (buffer_info->mapped_as_page)
392 dma_unmap_page(&adapter->pdev->dev,
393 buffer_info->dma,
394 buffer_info->length,
395 DMA_TO_DEVICE);
396 else
397 dma_unmap_single(&adapter->pdev->dev,
398 buffer_info->dma,
399 buffer_info->length,
400 DMA_TO_DEVICE);
401 buffer_info->dma = 0;
402 }
403 if (buffer_info->skb) {
404 dev_kfree_skb_any(buffer_info->skb);
405 buffer_info->skb = NULL;
406 }
407 buffer_info->time_stamp = 0;
408}
409
410/**
411 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
412 * @adapter: board private structure
413 * @tx_ring: ring being initialized
414 *
415 * Return 0 on success, negative on failure
416 **/
417int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
418 struct igbvf_ring *tx_ring)
419{
420 struct pci_dev *pdev = adapter->pdev;
421 int size;
422
423 size = sizeof(struct igbvf_buffer) * tx_ring->count;
424 tx_ring->buffer_info = vzalloc(size);
425 if (!tx_ring->buffer_info)
426 goto err;
427
428 /* round up to nearest 4K */
429 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
430 tx_ring->size = ALIGN(tx_ring->size, 4096);
431
432 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
433 &tx_ring->dma, GFP_KERNEL);
434 if (!tx_ring->desc)
435 goto err;
436
437 tx_ring->adapter = adapter;
438 tx_ring->next_to_use = 0;
439 tx_ring->next_to_clean = 0;
440
441 return 0;
442err:
443 vfree(tx_ring->buffer_info);
444 dev_err(&adapter->pdev->dev,
445 "Unable to allocate memory for the transmit descriptor ring\n");
446 return -ENOMEM;
447}
448
449/**
450 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
451 * @adapter: board private structure
452 * @rx_ring: ring being initialized
453 *
454 * Returns 0 on success, negative on failure
455 **/
456int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
457 struct igbvf_ring *rx_ring)
458{
459 struct pci_dev *pdev = adapter->pdev;
460 int size, desc_len;
461
462 size = sizeof(struct igbvf_buffer) * rx_ring->count;
463 rx_ring->buffer_info = vzalloc(size);
464 if (!rx_ring->buffer_info)
465 goto err;
466
467 desc_len = sizeof(union e1000_adv_rx_desc);
468
469 /* Round up to nearest 4K */
470 rx_ring->size = rx_ring->count * desc_len;
471 rx_ring->size = ALIGN(rx_ring->size, 4096);
472
473 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
474 &rx_ring->dma, GFP_KERNEL);
475 if (!rx_ring->desc)
476 goto err;
477
478 rx_ring->next_to_clean = 0;
479 rx_ring->next_to_use = 0;
480
481 rx_ring->adapter = adapter;
482
483 return 0;
484
485err:
486 vfree(rx_ring->buffer_info);
487 rx_ring->buffer_info = NULL;
488 dev_err(&adapter->pdev->dev,
489 "Unable to allocate memory for the receive descriptor ring\n");
490 return -ENOMEM;
491}
492
493/**
494 * igbvf_clean_tx_ring - Free Tx Buffers
495 * @tx_ring: ring to be cleaned
496 **/
497static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
498{
499 struct igbvf_adapter *adapter = tx_ring->adapter;
500 struct igbvf_buffer *buffer_info;
501 unsigned long size;
502 unsigned int i;
503
504 if (!tx_ring->buffer_info)
505 return;
506
507 /* Free all the Tx ring sk_buffs */
508 for (i = 0; i < tx_ring->count; i++) {
509 buffer_info = &tx_ring->buffer_info[i];
510 igbvf_put_txbuf(adapter, buffer_info);
511 }
512
513 size = sizeof(struct igbvf_buffer) * tx_ring->count;
514 memset(tx_ring->buffer_info, 0, size);
515
516 /* Zero out the descriptor ring */
517 memset(tx_ring->desc, 0, tx_ring->size);
518
519 tx_ring->next_to_use = 0;
520 tx_ring->next_to_clean = 0;
521
522 writel(0, adapter->hw.hw_addr + tx_ring->head);
523 writel(0, adapter->hw.hw_addr + tx_ring->tail);
524}
525
526/**
527 * igbvf_free_tx_resources - Free Tx Resources per Queue
528 * @tx_ring: ring to free resources from
529 *
530 * Free all transmit software resources
531 **/
532void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
533{
534 struct pci_dev *pdev = tx_ring->adapter->pdev;
535
536 igbvf_clean_tx_ring(tx_ring);
537
538 vfree(tx_ring->buffer_info);
539 tx_ring->buffer_info = NULL;
540
541 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
542 tx_ring->dma);
543
544 tx_ring->desc = NULL;
545}
546
547/**
548 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
549 * @rx_ring: ring structure pointer to free buffers from
550 **/
551static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
552{
553 struct igbvf_adapter *adapter = rx_ring->adapter;
554 struct igbvf_buffer *buffer_info;
555 struct pci_dev *pdev = adapter->pdev;
556 unsigned long size;
557 unsigned int i;
558
559 if (!rx_ring->buffer_info)
560 return;
561
562 /* Free all the Rx ring sk_buffs */
563 for (i = 0; i < rx_ring->count; i++) {
564 buffer_info = &rx_ring->buffer_info[i];
565 if (buffer_info->dma) {
566 if (adapter->rx_ps_hdr_size) {
567 dma_unmap_single(&pdev->dev, buffer_info->dma,
568 adapter->rx_ps_hdr_size,
569 DMA_FROM_DEVICE);
570 } else {
571 dma_unmap_single(&pdev->dev, buffer_info->dma,
572 adapter->rx_buffer_len,
573 DMA_FROM_DEVICE);
574 }
575 buffer_info->dma = 0;
576 }
577
578 if (buffer_info->skb) {
579 dev_kfree_skb(buffer_info->skb);
580 buffer_info->skb = NULL;
581 }
582
583 if (buffer_info->page) {
584 if (buffer_info->page_dma)
585 dma_unmap_page(&pdev->dev,
586 buffer_info->page_dma,
587 PAGE_SIZE / 2,
588 DMA_FROM_DEVICE);
589 put_page(buffer_info->page);
590 buffer_info->page = NULL;
591 buffer_info->page_dma = 0;
592 buffer_info->page_offset = 0;
593 }
594 }
595
596 size = sizeof(struct igbvf_buffer) * rx_ring->count;
597 memset(rx_ring->buffer_info, 0, size);
598
599 /* Zero out the descriptor ring */
600 memset(rx_ring->desc, 0, rx_ring->size);
601
602 rx_ring->next_to_clean = 0;
603 rx_ring->next_to_use = 0;
604
605 writel(0, adapter->hw.hw_addr + rx_ring->head);
606 writel(0, adapter->hw.hw_addr + rx_ring->tail);
607}
608
609/**
610 * igbvf_free_rx_resources - Free Rx Resources
611 * @rx_ring: ring to clean the resources from
612 *
613 * Free all receive software resources
614 **/
615
616void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
617{
618 struct pci_dev *pdev = rx_ring->adapter->pdev;
619
620 igbvf_clean_rx_ring(rx_ring);
621
622 vfree(rx_ring->buffer_info);
623 rx_ring->buffer_info = NULL;
624
625 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
626 rx_ring->dma);
627 rx_ring->desc = NULL;
628}
629
630/**
631 * igbvf_update_itr - update the dynamic ITR value based on statistics
632 * @adapter: pointer to adapter
633 * @itr_setting: current adapter->itr
634 * @packets: the number of packets during this measurement interval
635 * @bytes: the number of bytes during this measurement interval
636 *
637 * Stores a new ITR value based on packets and byte counts during the last
638 * interrupt. The advantage of per interrupt computation is faster updates
639 * and more accurate ITR for the current traffic pattern. Constants in this
640 * function were computed based on theoretical maximum wire speed and thresholds
641 * were set based on testing data as well as attempting to minimize response
642 * time while increasing bulk throughput.
643 **/
644static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
645 enum latency_range itr_setting,
646 int packets, int bytes)
647{
648 enum latency_range retval = itr_setting;
649
650 if (packets == 0)
651 goto update_itr_done;
652
653 switch (itr_setting) {
654 case lowest_latency:
655 /* handle TSO and jumbo frames */
656 if (bytes/packets > 8000)
657 retval = bulk_latency;
658 else if ((packets < 5) && (bytes > 512))
659 retval = low_latency;
660 break;
661 case low_latency: /* 50 usec aka 20000 ints/s */
662 if (bytes > 10000) {
663 /* this if handles the TSO accounting */
664 if (bytes/packets > 8000)
665 retval = bulk_latency;
666 else if ((packets < 10) || ((bytes/packets) > 1200))
667 retval = bulk_latency;
668 else if ((packets > 35))
669 retval = lowest_latency;
670 } else if (bytes/packets > 2000) {
671 retval = bulk_latency;
672 } else if (packets <= 2 && bytes < 512) {
673 retval = lowest_latency;
674 }
675 break;
676 case bulk_latency: /* 250 usec aka 4000 ints/s */
677 if (bytes > 25000) {
678 if (packets > 35)
679 retval = low_latency;
680 } else if (bytes < 6000) {
681 retval = low_latency;
682 }
683 break;
684 default:
685 break;
686 }
687
688update_itr_done:
689 return retval;
690}
691
692static int igbvf_range_to_itr(enum latency_range current_range)
693{
694 int new_itr;
695
696 switch (current_range) {
697 /* counts and packets in update_itr are dependent on these numbers */
698 case lowest_latency:
699 new_itr = IGBVF_70K_ITR;
700 break;
701 case low_latency:
702 new_itr = IGBVF_20K_ITR;
703 break;
704 case bulk_latency:
705 new_itr = IGBVF_4K_ITR;
706 break;
707 default:
708 new_itr = IGBVF_START_ITR;
709 break;
710 }
711 return new_itr;
712}
713
714static void igbvf_set_itr(struct igbvf_adapter *adapter)
715{
716 u32 new_itr;
717
718 adapter->tx_ring->itr_range =
719 igbvf_update_itr(adapter,
720 adapter->tx_ring->itr_val,
721 adapter->total_tx_packets,
722 adapter->total_tx_bytes);
723
724 /* conservative mode (itr 3) eliminates the lowest_latency setting */
725 if (adapter->requested_itr == 3 &&
726 adapter->tx_ring->itr_range == lowest_latency)
727 adapter->tx_ring->itr_range = low_latency;
728
729 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
730
731 if (new_itr != adapter->tx_ring->itr_val) {
732 u32 current_itr = adapter->tx_ring->itr_val;
733 /* this attempts to bias the interrupt rate towards Bulk
734 * by adding intermediate steps when interrupt rate is
735 * increasing
736 */
737 new_itr = new_itr > current_itr ?
738 min(current_itr + (new_itr >> 2), new_itr) :
739 new_itr;
740 adapter->tx_ring->itr_val = new_itr;
741
742 adapter->tx_ring->set_itr = 1;
743 }
744
745 adapter->rx_ring->itr_range =
746 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
747 adapter->total_rx_packets,
748 adapter->total_rx_bytes);
749 if (adapter->requested_itr == 3 &&
750 adapter->rx_ring->itr_range == lowest_latency)
751 adapter->rx_ring->itr_range = low_latency;
752
753 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
754
755 if (new_itr != adapter->rx_ring->itr_val) {
756 u32 current_itr = adapter->rx_ring->itr_val;
757
758 new_itr = new_itr > current_itr ?
759 min(current_itr + (new_itr >> 2), new_itr) :
760 new_itr;
761 adapter->rx_ring->itr_val = new_itr;
762
763 adapter->rx_ring->set_itr = 1;
764 }
765}
766
767/**
768 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
769 * @tx_ring: ring structure to clean descriptors from
770 *
771 * returns true if ring is completely cleaned
772 **/
773static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
774{
775 struct igbvf_adapter *adapter = tx_ring->adapter;
776 struct net_device *netdev = adapter->netdev;
777 struct igbvf_buffer *buffer_info;
778 struct sk_buff *skb;
779 union e1000_adv_tx_desc *tx_desc, *eop_desc;
780 unsigned int total_bytes = 0, total_packets = 0;
781 unsigned int i, count = 0;
782 bool cleaned = false;
783
784 i = tx_ring->next_to_clean;
785 buffer_info = &tx_ring->buffer_info[i];
786 eop_desc = buffer_info->next_to_watch;
787
788 do {
789 /* if next_to_watch is not set then there is no work pending */
790 if (!eop_desc)
791 break;
792
793 /* prevent any other reads prior to eop_desc */
794 smp_rmb();
795
796 /* if DD is not set pending work has not been completed */
797 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
798 break;
799
800 /* clear next_to_watch to prevent false hangs */
801 buffer_info->next_to_watch = NULL;
802
803 for (cleaned = false; !cleaned; count++) {
804 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
805 cleaned = (tx_desc == eop_desc);
806 skb = buffer_info->skb;
807
808 if (skb) {
809 unsigned int segs, bytecount;
810
811 /* gso_segs is currently only valid for tcp */
812 segs = skb_shinfo(skb)->gso_segs ?: 1;
813 /* multiply data chunks by size of headers */
814 bytecount = ((segs - 1) * skb_headlen(skb)) +
815 skb->len;
816 total_packets += segs;
817 total_bytes += bytecount;
818 }
819
820 igbvf_put_txbuf(adapter, buffer_info);
821 tx_desc->wb.status = 0;
822
823 i++;
824 if (i == tx_ring->count)
825 i = 0;
826
827 buffer_info = &tx_ring->buffer_info[i];
828 }
829
830 eop_desc = buffer_info->next_to_watch;
831 } while (count < tx_ring->count);
832
833 tx_ring->next_to_clean = i;
834
835 if (unlikely(count && netif_carrier_ok(netdev) &&
836 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
837 /* Make sure that anybody stopping the queue after this
838 * sees the new next_to_clean.
839 */
840 smp_mb();
841 if (netif_queue_stopped(netdev) &&
842 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
843 netif_wake_queue(netdev);
844 ++adapter->restart_queue;
845 }
846 }
847
848 netdev->stats.tx_bytes += total_bytes;
849 netdev->stats.tx_packets += total_packets;
850 return count < tx_ring->count;
851}
852
853static irqreturn_t igbvf_msix_other(int irq, void *data)
854{
855 struct net_device *netdev = data;
856 struct igbvf_adapter *adapter = netdev_priv(netdev);
857 struct e1000_hw *hw = &adapter->hw;
858
859 adapter->int_counter1++;
860
861 hw->mac.get_link_status = 1;
862 if (!test_bit(__IGBVF_DOWN, &adapter->state))
863 mod_timer(&adapter->watchdog_timer, jiffies + 1);
864
865 ew32(EIMS, adapter->eims_other);
866
867 return IRQ_HANDLED;
868}
869
870static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
871{
872 struct net_device *netdev = data;
873 struct igbvf_adapter *adapter = netdev_priv(netdev);
874 struct e1000_hw *hw = &adapter->hw;
875 struct igbvf_ring *tx_ring = adapter->tx_ring;
876
877 if (tx_ring->set_itr) {
878 writel(tx_ring->itr_val,
879 adapter->hw.hw_addr + tx_ring->itr_register);
880 adapter->tx_ring->set_itr = 0;
881 }
882
883 adapter->total_tx_bytes = 0;
884 adapter->total_tx_packets = 0;
885
886 /* auto mask will automatically re-enable the interrupt when we write
887 * EICS
888 */
889 if (!igbvf_clean_tx_irq(tx_ring))
890 /* Ring was not completely cleaned, so fire another interrupt */
891 ew32(EICS, tx_ring->eims_value);
892 else
893 ew32(EIMS, tx_ring->eims_value);
894
895 return IRQ_HANDLED;
896}
897
898static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
899{
900 struct net_device *netdev = data;
901 struct igbvf_adapter *adapter = netdev_priv(netdev);
902
903 adapter->int_counter0++;
904
905 /* Write the ITR value calculated at the end of the
906 * previous interrupt.
907 */
908 if (adapter->rx_ring->set_itr) {
909 writel(adapter->rx_ring->itr_val,
910 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
911 adapter->rx_ring->set_itr = 0;
912 }
913
914 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
915 adapter->total_rx_bytes = 0;
916 adapter->total_rx_packets = 0;
917 __napi_schedule(&adapter->rx_ring->napi);
918 }
919
920 return IRQ_HANDLED;
921}
922
923#define IGBVF_NO_QUEUE -1
924
925static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
926 int tx_queue, int msix_vector)
927{
928 struct e1000_hw *hw = &adapter->hw;
929 u32 ivar, index;
930
931 /* 82576 uses a table-based method for assigning vectors.
932 * Each queue has a single entry in the table to which we write
933 * a vector number along with a "valid" bit. Sadly, the layout
934 * of the table is somewhat counterintuitive.
935 */
936 if (rx_queue > IGBVF_NO_QUEUE) {
937 index = (rx_queue >> 1);
938 ivar = array_er32(IVAR0, index);
939 if (rx_queue & 0x1) {
940 /* vector goes into third byte of register */
941 ivar = ivar & 0xFF00FFFF;
942 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
943 } else {
944 /* vector goes into low byte of register */
945 ivar = ivar & 0xFFFFFF00;
946 ivar |= msix_vector | E1000_IVAR_VALID;
947 }
948 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
949 array_ew32(IVAR0, index, ivar);
950 }
951 if (tx_queue > IGBVF_NO_QUEUE) {
952 index = (tx_queue >> 1);
953 ivar = array_er32(IVAR0, index);
954 if (tx_queue & 0x1) {
955 /* vector goes into high byte of register */
956 ivar = ivar & 0x00FFFFFF;
957 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
958 } else {
959 /* vector goes into second byte of register */
960 ivar = ivar & 0xFFFF00FF;
961 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
962 }
963 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
964 array_ew32(IVAR0, index, ivar);
965 }
966}
967
968/**
969 * igbvf_configure_msix - Configure MSI-X hardware
970 * @adapter: board private structure
971 *
972 * igbvf_configure_msix sets up the hardware to properly
973 * generate MSI-X interrupts.
974 **/
975static void igbvf_configure_msix(struct igbvf_adapter *adapter)
976{
977 u32 tmp;
978 struct e1000_hw *hw = &adapter->hw;
979 struct igbvf_ring *tx_ring = adapter->tx_ring;
980 struct igbvf_ring *rx_ring = adapter->rx_ring;
981 int vector = 0;
982
983 adapter->eims_enable_mask = 0;
984
985 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
986 adapter->eims_enable_mask |= tx_ring->eims_value;
987 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
988 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
989 adapter->eims_enable_mask |= rx_ring->eims_value;
990 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
991
992 /* set vector for other causes, i.e. link changes */
993
994 tmp = (vector++ | E1000_IVAR_VALID);
995
996 ew32(IVAR_MISC, tmp);
997
998 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
999 adapter->eims_other = BIT(vector - 1);
1000 e1e_flush();
1001}
1002
1003static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1004{
1005 if (adapter->msix_entries) {
1006 pci_disable_msix(adapter->pdev);
1007 kfree(adapter->msix_entries);
1008 adapter->msix_entries = NULL;
1009 }
1010}
1011
1012/**
1013 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1014 * @adapter: board private structure
1015 *
1016 * Attempt to configure interrupts using the best available
1017 * capabilities of the hardware and kernel.
1018 **/
1019static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1020{
1021 int err = -ENOMEM;
1022 int i;
1023
1024 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1025 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1026 GFP_KERNEL);
1027 if (adapter->msix_entries) {
1028 for (i = 0; i < 3; i++)
1029 adapter->msix_entries[i].entry = i;
1030
1031 err = pci_enable_msix_range(adapter->pdev,
1032 adapter->msix_entries, 3, 3);
1033 }
1034
1035 if (err < 0) {
1036 /* MSI-X failed */
1037 dev_err(&adapter->pdev->dev,
1038 "Failed to initialize MSI-X interrupts.\n");
1039 igbvf_reset_interrupt_capability(adapter);
1040 }
1041}
1042
1043/**
1044 * igbvf_request_msix - Initialize MSI-X interrupts
1045 * @adapter: board private structure
1046 *
1047 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1048 * kernel.
1049 **/
1050static int igbvf_request_msix(struct igbvf_adapter *adapter)
1051{
1052 struct net_device *netdev = adapter->netdev;
1053 int err = 0, vector = 0;
1054
1055 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1056 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1057 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1058 } else {
1059 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1060 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1061 }
1062
1063 err = request_irq(adapter->msix_entries[vector].vector,
1064 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1065 netdev);
1066 if (err)
1067 goto out;
1068
1069 adapter->tx_ring->itr_register = E1000_EITR(vector);
1070 adapter->tx_ring->itr_val = adapter->current_itr;
1071 vector++;
1072
1073 err = request_irq(adapter->msix_entries[vector].vector,
1074 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1075 netdev);
1076 if (err)
1077 goto out;
1078
1079 adapter->rx_ring->itr_register = E1000_EITR(vector);
1080 adapter->rx_ring->itr_val = adapter->current_itr;
1081 vector++;
1082
1083 err = request_irq(adapter->msix_entries[vector].vector,
1084 igbvf_msix_other, 0, netdev->name, netdev);
1085 if (err)
1086 goto out;
1087
1088 igbvf_configure_msix(adapter);
1089 return 0;
1090out:
1091 return err;
1092}
1093
1094/**
1095 * igbvf_alloc_queues - Allocate memory for all rings
1096 * @adapter: board private structure to initialize
1097 **/
1098static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1099{
1100 struct net_device *netdev = adapter->netdev;
1101
1102 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1103 if (!adapter->tx_ring)
1104 return -ENOMEM;
1105
1106 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1107 if (!adapter->rx_ring) {
1108 kfree(adapter->tx_ring);
1109 return -ENOMEM;
1110 }
1111
1112 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1113
1114 return 0;
1115}
1116
1117/**
1118 * igbvf_request_irq - initialize interrupts
1119 * @adapter: board private structure
1120 *
1121 * Attempts to configure interrupts using the best available
1122 * capabilities of the hardware and kernel.
1123 **/
1124static int igbvf_request_irq(struct igbvf_adapter *adapter)
1125{
1126 int err = -1;
1127
1128 /* igbvf supports msi-x only */
1129 if (adapter->msix_entries)
1130 err = igbvf_request_msix(adapter);
1131
1132 if (!err)
1133 return err;
1134
1135 dev_err(&adapter->pdev->dev,
1136 "Unable to allocate interrupt, Error: %d\n", err);
1137
1138 return err;
1139}
1140
1141static void igbvf_free_irq(struct igbvf_adapter *adapter)
1142{
1143 struct net_device *netdev = adapter->netdev;
1144 int vector;
1145
1146 if (adapter->msix_entries) {
1147 for (vector = 0; vector < 3; vector++)
1148 free_irq(adapter->msix_entries[vector].vector, netdev);
1149 }
1150}
1151
1152/**
1153 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1154 * @adapter: board private structure
1155 **/
1156static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1157{
1158 struct e1000_hw *hw = &adapter->hw;
1159
1160 ew32(EIMC, ~0);
1161
1162 if (adapter->msix_entries)
1163 ew32(EIAC, 0);
1164}
1165
1166/**
1167 * igbvf_irq_enable - Enable default interrupt generation settings
1168 * @adapter: board private structure
1169 **/
1170static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1171{
1172 struct e1000_hw *hw = &adapter->hw;
1173
1174 ew32(EIAC, adapter->eims_enable_mask);
1175 ew32(EIAM, adapter->eims_enable_mask);
1176 ew32(EIMS, adapter->eims_enable_mask);
1177}
1178
1179/**
1180 * igbvf_poll - NAPI Rx polling callback
1181 * @napi: struct associated with this polling callback
1182 * @budget: amount of packets driver is allowed to process this poll
1183 **/
1184static int igbvf_poll(struct napi_struct *napi, int budget)
1185{
1186 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1187 struct igbvf_adapter *adapter = rx_ring->adapter;
1188 struct e1000_hw *hw = &adapter->hw;
1189 int work_done = 0;
1190
1191 igbvf_clean_rx_irq(adapter, &work_done, budget);
1192
1193 if (work_done == budget)
1194 return budget;
1195
1196 /* Exit the polling mode, but don't re-enable interrupts if stack might
1197 * poll us due to busy-polling
1198 */
1199 if (likely(napi_complete_done(napi, work_done))) {
1200 if (adapter->requested_itr & 3)
1201 igbvf_set_itr(adapter);
1202
1203 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1204 ew32(EIMS, adapter->rx_ring->eims_value);
1205 }
1206
1207 return work_done;
1208}
1209
1210/**
1211 * igbvf_set_rlpml - set receive large packet maximum length
1212 * @adapter: board private structure
1213 *
1214 * Configure the maximum size of packets that will be received
1215 */
1216static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1217{
1218 int max_frame_size;
1219 struct e1000_hw *hw = &adapter->hw;
1220
1221 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1222
1223 spin_lock_bh(&hw->mbx_lock);
1224
1225 e1000_rlpml_set_vf(hw, max_frame_size);
1226
1227 spin_unlock_bh(&hw->mbx_lock);
1228}
1229
1230static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1231 __be16 proto, u16 vid)
1232{
1233 struct igbvf_adapter *adapter = netdev_priv(netdev);
1234 struct e1000_hw *hw = &adapter->hw;
1235
1236 spin_lock_bh(&hw->mbx_lock);
1237
1238 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1239 dev_warn(&adapter->pdev->dev, "Vlan id %d\n is not added", vid);
1240 spin_unlock_bh(&hw->mbx_lock);
1241 return -EINVAL;
1242 }
1243
1244 spin_unlock_bh(&hw->mbx_lock);
1245
1246 set_bit(vid, adapter->active_vlans);
1247 return 0;
1248}
1249
1250static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1251 __be16 proto, u16 vid)
1252{
1253 struct igbvf_adapter *adapter = netdev_priv(netdev);
1254 struct e1000_hw *hw = &adapter->hw;
1255
1256 spin_lock_bh(&hw->mbx_lock);
1257
1258 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1259 dev_err(&adapter->pdev->dev,
1260 "Failed to remove vlan id %d\n", vid);
1261 spin_unlock_bh(&hw->mbx_lock);
1262 return -EINVAL;
1263 }
1264
1265 spin_unlock_bh(&hw->mbx_lock);
1266
1267 clear_bit(vid, adapter->active_vlans);
1268 return 0;
1269}
1270
1271static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1272{
1273 u16 vid;
1274
1275 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1276 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1277}
1278
1279/**
1280 * igbvf_configure_tx - Configure Transmit Unit after Reset
1281 * @adapter: board private structure
1282 *
1283 * Configure the Tx unit of the MAC after a reset.
1284 **/
1285static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1286{
1287 struct e1000_hw *hw = &adapter->hw;
1288 struct igbvf_ring *tx_ring = adapter->tx_ring;
1289 u64 tdba;
1290 u32 txdctl, dca_txctrl;
1291
1292 /* disable transmits */
1293 txdctl = er32(TXDCTL(0));
1294 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1295 e1e_flush();
1296 msleep(10);
1297
1298 /* Setup the HW Tx Head and Tail descriptor pointers */
1299 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1300 tdba = tx_ring->dma;
1301 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1302 ew32(TDBAH(0), (tdba >> 32));
1303 ew32(TDH(0), 0);
1304 ew32(TDT(0), 0);
1305 tx_ring->head = E1000_TDH(0);
1306 tx_ring->tail = E1000_TDT(0);
1307
1308 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1309 * MUST be delivered in order or it will completely screw up
1310 * our bookkeeping.
1311 */
1312 dca_txctrl = er32(DCA_TXCTRL(0));
1313 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1314 ew32(DCA_TXCTRL(0), dca_txctrl);
1315
1316 /* enable transmits */
1317 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1318 ew32(TXDCTL(0), txdctl);
1319
1320 /* Setup Transmit Descriptor Settings for eop descriptor */
1321 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1322
1323 /* enable Report Status bit */
1324 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1325}
1326
1327/**
1328 * igbvf_setup_srrctl - configure the receive control registers
1329 * @adapter: Board private structure
1330 **/
1331static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1332{
1333 struct e1000_hw *hw = &adapter->hw;
1334 u32 srrctl = 0;
1335
1336 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1337 E1000_SRRCTL_BSIZEHDR_MASK |
1338 E1000_SRRCTL_BSIZEPKT_MASK);
1339
1340 /* Enable queue drop to avoid head of line blocking */
1341 srrctl |= E1000_SRRCTL_DROP_EN;
1342
1343 /* Setup buffer sizes */
1344 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1345 E1000_SRRCTL_BSIZEPKT_SHIFT;
1346
1347 if (adapter->rx_buffer_len < 2048) {
1348 adapter->rx_ps_hdr_size = 0;
1349 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1350 } else {
1351 adapter->rx_ps_hdr_size = 128;
1352 srrctl |= adapter->rx_ps_hdr_size <<
1353 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1354 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1355 }
1356
1357 ew32(SRRCTL(0), srrctl);
1358}
1359
1360/**
1361 * igbvf_configure_rx - Configure Receive Unit after Reset
1362 * @adapter: board private structure
1363 *
1364 * Configure the Rx unit of the MAC after a reset.
1365 **/
1366static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1367{
1368 struct e1000_hw *hw = &adapter->hw;
1369 struct igbvf_ring *rx_ring = adapter->rx_ring;
1370 u64 rdba;
1371 u32 rxdctl;
1372
1373 /* disable receives */
1374 rxdctl = er32(RXDCTL(0));
1375 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1376 e1e_flush();
1377 msleep(10);
1378
1379 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1380 * the Base and Length of the Rx Descriptor Ring
1381 */
1382 rdba = rx_ring->dma;
1383 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1384 ew32(RDBAH(0), (rdba >> 32));
1385 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1386 rx_ring->head = E1000_RDH(0);
1387 rx_ring->tail = E1000_RDT(0);
1388 ew32(RDH(0), 0);
1389 ew32(RDT(0), 0);
1390
1391 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1392 rxdctl &= 0xFFF00000;
1393 rxdctl |= IGBVF_RX_PTHRESH;
1394 rxdctl |= IGBVF_RX_HTHRESH << 8;
1395 rxdctl |= IGBVF_RX_WTHRESH << 16;
1396
1397 igbvf_set_rlpml(adapter);
1398
1399 /* enable receives */
1400 ew32(RXDCTL(0), rxdctl);
1401}
1402
1403/**
1404 * igbvf_set_multi - Multicast and Promiscuous mode set
1405 * @netdev: network interface device structure
1406 *
1407 * The set_multi entry point is called whenever the multicast address
1408 * list or the network interface flags are updated. This routine is
1409 * responsible for configuring the hardware for proper multicast,
1410 * promiscuous mode, and all-multi behavior.
1411 **/
1412static void igbvf_set_multi(struct net_device *netdev)
1413{
1414 struct igbvf_adapter *adapter = netdev_priv(netdev);
1415 struct e1000_hw *hw = &adapter->hw;
1416 struct netdev_hw_addr *ha;
1417 u8 *mta_list = NULL;
1418 int i;
1419
1420 if (!netdev_mc_empty(netdev)) {
1421 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1422 GFP_ATOMIC);
1423 if (!mta_list)
1424 return;
1425 }
1426
1427 /* prepare a packed array of only addresses. */
1428 i = 0;
1429 netdev_for_each_mc_addr(ha, netdev)
1430 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1431
1432 spin_lock_bh(&hw->mbx_lock);
1433
1434 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1435
1436 spin_unlock_bh(&hw->mbx_lock);
1437 kfree(mta_list);
1438}
1439
1440/**
1441 * igbvf_set_uni - Configure unicast MAC filters
1442 * @netdev: network interface device structure
1443 *
1444 * This routine is responsible for configuring the hardware for proper
1445 * unicast filters.
1446 **/
1447static int igbvf_set_uni(struct net_device *netdev)
1448{
1449 struct igbvf_adapter *adapter = netdev_priv(netdev);
1450 struct e1000_hw *hw = &adapter->hw;
1451
1452 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1453 pr_err("Too many unicast filters - No Space\n");
1454 return -ENOSPC;
1455 }
1456
1457 spin_lock_bh(&hw->mbx_lock);
1458
1459 /* Clear all unicast MAC filters */
1460 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1461
1462 spin_unlock_bh(&hw->mbx_lock);
1463
1464 if (!netdev_uc_empty(netdev)) {
1465 struct netdev_hw_addr *ha;
1466
1467 /* Add MAC filters one by one */
1468 netdev_for_each_uc_addr(ha, netdev) {
1469 spin_lock_bh(&hw->mbx_lock);
1470
1471 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1472 ha->addr);
1473
1474 spin_unlock_bh(&hw->mbx_lock);
1475 udelay(200);
1476 }
1477 }
1478
1479 return 0;
1480}
1481
1482static void igbvf_set_rx_mode(struct net_device *netdev)
1483{
1484 igbvf_set_multi(netdev);
1485 igbvf_set_uni(netdev);
1486}
1487
1488/**
1489 * igbvf_configure - configure the hardware for Rx and Tx
1490 * @adapter: private board structure
1491 **/
1492static void igbvf_configure(struct igbvf_adapter *adapter)
1493{
1494 igbvf_set_rx_mode(adapter->netdev);
1495
1496 igbvf_restore_vlan(adapter);
1497
1498 igbvf_configure_tx(adapter);
1499 igbvf_setup_srrctl(adapter);
1500 igbvf_configure_rx(adapter);
1501 igbvf_alloc_rx_buffers(adapter->rx_ring,
1502 igbvf_desc_unused(adapter->rx_ring));
1503}
1504
1505/* igbvf_reset - bring the hardware into a known good state
1506 * @adapter: private board structure
1507 *
1508 * This function boots the hardware and enables some settings that
1509 * require a configuration cycle of the hardware - those cannot be
1510 * set/changed during runtime. After reset the device needs to be
1511 * properly configured for Rx, Tx etc.
1512 */
1513static void igbvf_reset(struct igbvf_adapter *adapter)
1514{
1515 struct e1000_mac_info *mac = &adapter->hw.mac;
1516 struct net_device *netdev = adapter->netdev;
1517 struct e1000_hw *hw = &adapter->hw;
1518
1519 spin_lock_bh(&hw->mbx_lock);
1520
1521 /* Allow time for pending master requests to run */
1522 if (mac->ops.reset_hw(hw))
1523 dev_warn(&adapter->pdev->dev, "PF still resetting\n");
1524
1525 mac->ops.init_hw(hw);
1526
1527 spin_unlock_bh(&hw->mbx_lock);
1528
1529 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1530 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1531 netdev->addr_len);
1532 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1533 netdev->addr_len);
1534 }
1535
1536 adapter->last_reset = jiffies;
1537}
1538
1539int igbvf_up(struct igbvf_adapter *adapter)
1540{
1541 struct e1000_hw *hw = &adapter->hw;
1542
1543 /* hardware has been reset, we need to reload some things */
1544 igbvf_configure(adapter);
1545
1546 clear_bit(__IGBVF_DOWN, &adapter->state);
1547
1548 napi_enable(&adapter->rx_ring->napi);
1549 if (adapter->msix_entries)
1550 igbvf_configure_msix(adapter);
1551
1552 /* Clear any pending interrupts. */
1553 er32(EICR);
1554 igbvf_irq_enable(adapter);
1555
1556 /* start the watchdog */
1557 hw->mac.get_link_status = 1;
1558 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1559
1560 return 0;
1561}
1562
1563void igbvf_down(struct igbvf_adapter *adapter)
1564{
1565 struct net_device *netdev = adapter->netdev;
1566 struct e1000_hw *hw = &adapter->hw;
1567 u32 rxdctl, txdctl;
1568
1569 /* signal that we're down so the interrupt handler does not
1570 * reschedule our watchdog timer
1571 */
1572 set_bit(__IGBVF_DOWN, &adapter->state);
1573
1574 /* disable receives in the hardware */
1575 rxdctl = er32(RXDCTL(0));
1576 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1577
1578 netif_carrier_off(netdev);
1579 netif_stop_queue(netdev);
1580
1581 /* disable transmits in the hardware */
1582 txdctl = er32(TXDCTL(0));
1583 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1584
1585 /* flush both disables and wait for them to finish */
1586 e1e_flush();
1587 msleep(10);
1588
1589 napi_disable(&adapter->rx_ring->napi);
1590
1591 igbvf_irq_disable(adapter);
1592
1593 del_timer_sync(&adapter->watchdog_timer);
1594
1595 /* record the stats before reset*/
1596 igbvf_update_stats(adapter);
1597
1598 adapter->link_speed = 0;
1599 adapter->link_duplex = 0;
1600
1601 igbvf_reset(adapter);
1602 igbvf_clean_tx_ring(adapter->tx_ring);
1603 igbvf_clean_rx_ring(adapter->rx_ring);
1604}
1605
1606void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1607{
1608 might_sleep();
1609 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1610 usleep_range(1000, 2000);
1611 igbvf_down(adapter);
1612 igbvf_up(adapter);
1613 clear_bit(__IGBVF_RESETTING, &adapter->state);
1614}
1615
1616/**
1617 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1618 * @adapter: board private structure to initialize
1619 *
1620 * igbvf_sw_init initializes the Adapter private data structure.
1621 * Fields are initialized based on PCI device information and
1622 * OS network device settings (MTU size).
1623 **/
1624static int igbvf_sw_init(struct igbvf_adapter *adapter)
1625{
1626 struct net_device *netdev = adapter->netdev;
1627 s32 rc;
1628
1629 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1630 adapter->rx_ps_hdr_size = 0;
1631 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1632 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1633
1634 adapter->tx_int_delay = 8;
1635 adapter->tx_abs_int_delay = 32;
1636 adapter->rx_int_delay = 0;
1637 adapter->rx_abs_int_delay = 8;
1638 adapter->requested_itr = 3;
1639 adapter->current_itr = IGBVF_START_ITR;
1640
1641 /* Set various function pointers */
1642 adapter->ei->init_ops(&adapter->hw);
1643
1644 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1645 if (rc)
1646 return rc;
1647
1648 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1649 if (rc)
1650 return rc;
1651
1652 igbvf_set_interrupt_capability(adapter);
1653
1654 if (igbvf_alloc_queues(adapter))
1655 return -ENOMEM;
1656
1657 spin_lock_init(&adapter->tx_queue_lock);
1658
1659 /* Explicitly disable IRQ since the NIC can be in any state. */
1660 igbvf_irq_disable(adapter);
1661
1662 spin_lock_init(&adapter->stats_lock);
1663 spin_lock_init(&adapter->hw.mbx_lock);
1664
1665 set_bit(__IGBVF_DOWN, &adapter->state);
1666 return 0;
1667}
1668
1669static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1670{
1671 struct e1000_hw *hw = &adapter->hw;
1672
1673 adapter->stats.last_gprc = er32(VFGPRC);
1674 adapter->stats.last_gorc = er32(VFGORC);
1675 adapter->stats.last_gptc = er32(VFGPTC);
1676 adapter->stats.last_gotc = er32(VFGOTC);
1677 adapter->stats.last_mprc = er32(VFMPRC);
1678 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1679 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1680 adapter->stats.last_gorlbc = er32(VFGORLBC);
1681 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1682
1683 adapter->stats.base_gprc = er32(VFGPRC);
1684 adapter->stats.base_gorc = er32(VFGORC);
1685 adapter->stats.base_gptc = er32(VFGPTC);
1686 adapter->stats.base_gotc = er32(VFGOTC);
1687 adapter->stats.base_mprc = er32(VFMPRC);
1688 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1689 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1690 adapter->stats.base_gorlbc = er32(VFGORLBC);
1691 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1692}
1693
1694/**
1695 * igbvf_open - Called when a network interface is made active
1696 * @netdev: network interface device structure
1697 *
1698 * Returns 0 on success, negative value on failure
1699 *
1700 * The open entry point is called when a network interface is made
1701 * active by the system (IFF_UP). At this point all resources needed
1702 * for transmit and receive operations are allocated, the interrupt
1703 * handler is registered with the OS, the watchdog timer is started,
1704 * and the stack is notified that the interface is ready.
1705 **/
1706static int igbvf_open(struct net_device *netdev)
1707{
1708 struct igbvf_adapter *adapter = netdev_priv(netdev);
1709 struct e1000_hw *hw = &adapter->hw;
1710 int err;
1711
1712 /* disallow open during test */
1713 if (test_bit(__IGBVF_TESTING, &adapter->state))
1714 return -EBUSY;
1715
1716 /* allocate transmit descriptors */
1717 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1718 if (err)
1719 goto err_setup_tx;
1720
1721 /* allocate receive descriptors */
1722 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1723 if (err)
1724 goto err_setup_rx;
1725
1726 /* before we allocate an interrupt, we must be ready to handle it.
1727 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1728 * as soon as we call pci_request_irq, so we have to setup our
1729 * clean_rx handler before we do so.
1730 */
1731 igbvf_configure(adapter);
1732
1733 err = igbvf_request_irq(adapter);
1734 if (err)
1735 goto err_req_irq;
1736
1737 /* From here on the code is the same as igbvf_up() */
1738 clear_bit(__IGBVF_DOWN, &adapter->state);
1739
1740 napi_enable(&adapter->rx_ring->napi);
1741
1742 /* clear any pending interrupts */
1743 er32(EICR);
1744
1745 igbvf_irq_enable(adapter);
1746
1747 /* start the watchdog */
1748 hw->mac.get_link_status = 1;
1749 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1750
1751 return 0;
1752
1753err_req_irq:
1754 igbvf_free_rx_resources(adapter->rx_ring);
1755err_setup_rx:
1756 igbvf_free_tx_resources(adapter->tx_ring);
1757err_setup_tx:
1758 igbvf_reset(adapter);
1759
1760 return err;
1761}
1762
1763/**
1764 * igbvf_close - Disables a network interface
1765 * @netdev: network interface device structure
1766 *
1767 * Returns 0, this is not allowed to fail
1768 *
1769 * The close entry point is called when an interface is de-activated
1770 * by the OS. The hardware is still under the drivers control, but
1771 * needs to be disabled. A global MAC reset is issued to stop the
1772 * hardware, and all transmit and receive resources are freed.
1773 **/
1774static int igbvf_close(struct net_device *netdev)
1775{
1776 struct igbvf_adapter *adapter = netdev_priv(netdev);
1777
1778 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1779 igbvf_down(adapter);
1780
1781 igbvf_free_irq(adapter);
1782
1783 igbvf_free_tx_resources(adapter->tx_ring);
1784 igbvf_free_rx_resources(adapter->rx_ring);
1785
1786 return 0;
1787}
1788
1789/**
1790 * igbvf_set_mac - Change the Ethernet Address of the NIC
1791 * @netdev: network interface device structure
1792 * @p: pointer to an address structure
1793 *
1794 * Returns 0 on success, negative on failure
1795 **/
1796static int igbvf_set_mac(struct net_device *netdev, void *p)
1797{
1798 struct igbvf_adapter *adapter = netdev_priv(netdev);
1799 struct e1000_hw *hw = &adapter->hw;
1800 struct sockaddr *addr = p;
1801
1802 if (!is_valid_ether_addr(addr->sa_data))
1803 return -EADDRNOTAVAIL;
1804
1805 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1806
1807 spin_lock_bh(&hw->mbx_lock);
1808
1809 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1810
1811 spin_unlock_bh(&hw->mbx_lock);
1812
1813 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1814 return -EADDRNOTAVAIL;
1815
1816 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1817
1818 return 0;
1819}
1820
1821#define UPDATE_VF_COUNTER(reg, name) \
1822{ \
1823 u32 current_counter = er32(reg); \
1824 if (current_counter < adapter->stats.last_##name) \
1825 adapter->stats.name += 0x100000000LL; \
1826 adapter->stats.last_##name = current_counter; \
1827 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1828 adapter->stats.name |= current_counter; \
1829}
1830
1831/**
1832 * igbvf_update_stats - Update the board statistics counters
1833 * @adapter: board private structure
1834**/
1835void igbvf_update_stats(struct igbvf_adapter *adapter)
1836{
1837 struct e1000_hw *hw = &adapter->hw;
1838 struct pci_dev *pdev = adapter->pdev;
1839
1840 /* Prevent stats update while adapter is being reset, link is down
1841 * or if the pci connection is down.
1842 */
1843 if (adapter->link_speed == 0)
1844 return;
1845
1846 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1847 return;
1848
1849 if (pci_channel_offline(pdev))
1850 return;
1851
1852 UPDATE_VF_COUNTER(VFGPRC, gprc);
1853 UPDATE_VF_COUNTER(VFGORC, gorc);
1854 UPDATE_VF_COUNTER(VFGPTC, gptc);
1855 UPDATE_VF_COUNTER(VFGOTC, gotc);
1856 UPDATE_VF_COUNTER(VFMPRC, mprc);
1857 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1858 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1859 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1860 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1861
1862 /* Fill out the OS statistics structure */
1863 adapter->netdev->stats.multicast = adapter->stats.mprc;
1864}
1865
1866static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1867{
1868 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1869 adapter->link_speed,
1870 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1871}
1872
1873static bool igbvf_has_link(struct igbvf_adapter *adapter)
1874{
1875 struct e1000_hw *hw = &adapter->hw;
1876 s32 ret_val = E1000_SUCCESS;
1877 bool link_active;
1878
1879 /* If interface is down, stay link down */
1880 if (test_bit(__IGBVF_DOWN, &adapter->state))
1881 return false;
1882
1883 spin_lock_bh(&hw->mbx_lock);
1884
1885 ret_val = hw->mac.ops.check_for_link(hw);
1886
1887 spin_unlock_bh(&hw->mbx_lock);
1888
1889 link_active = !hw->mac.get_link_status;
1890
1891 /* if check for link returns error we will need to reset */
1892 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1893 schedule_work(&adapter->reset_task);
1894
1895 return link_active;
1896}
1897
1898/**
1899 * igbvf_watchdog - Timer Call-back
1900 * @t: timer list pointer containing private struct
1901 **/
1902static void igbvf_watchdog(struct timer_list *t)
1903{
1904 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1905
1906 /* Do the rest outside of interrupt context */
1907 schedule_work(&adapter->watchdog_task);
1908}
1909
1910static void igbvf_watchdog_task(struct work_struct *work)
1911{
1912 struct igbvf_adapter *adapter = container_of(work,
1913 struct igbvf_adapter,
1914 watchdog_task);
1915 struct net_device *netdev = adapter->netdev;
1916 struct e1000_mac_info *mac = &adapter->hw.mac;
1917 struct igbvf_ring *tx_ring = adapter->tx_ring;
1918 struct e1000_hw *hw = &adapter->hw;
1919 u32 link;
1920 int tx_pending = 0;
1921
1922 link = igbvf_has_link(adapter);
1923
1924 if (link) {
1925 if (!netif_carrier_ok(netdev)) {
1926 mac->ops.get_link_up_info(&adapter->hw,
1927 &adapter->link_speed,
1928 &adapter->link_duplex);
1929 igbvf_print_link_info(adapter);
1930
1931 netif_carrier_on(netdev);
1932 netif_wake_queue(netdev);
1933 }
1934 } else {
1935 if (netif_carrier_ok(netdev)) {
1936 adapter->link_speed = 0;
1937 adapter->link_duplex = 0;
1938 dev_info(&adapter->pdev->dev, "Link is Down\n");
1939 netif_carrier_off(netdev);
1940 netif_stop_queue(netdev);
1941 }
1942 }
1943
1944 if (netif_carrier_ok(netdev)) {
1945 igbvf_update_stats(adapter);
1946 } else {
1947 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1948 tx_ring->count);
1949 if (tx_pending) {
1950 /* We've lost link, so the controller stops DMA,
1951 * but we've got queued Tx work that's never going
1952 * to get done, so reset controller to flush Tx.
1953 * (Do the reset outside of interrupt context).
1954 */
1955 adapter->tx_timeout_count++;
1956 schedule_work(&adapter->reset_task);
1957 }
1958 }
1959
1960 /* Cause software interrupt to ensure Rx ring is cleaned */
1961 ew32(EICS, adapter->rx_ring->eims_value);
1962
1963 /* Reset the timer */
1964 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1965 mod_timer(&adapter->watchdog_timer,
1966 round_jiffies(jiffies + (2 * HZ)));
1967}
1968
1969#define IGBVF_TX_FLAGS_CSUM 0x00000001
1970#define IGBVF_TX_FLAGS_VLAN 0x00000002
1971#define IGBVF_TX_FLAGS_TSO 0x00000004
1972#define IGBVF_TX_FLAGS_IPV4 0x00000008
1973#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1974#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1975
1976static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1977 u32 type_tucmd, u32 mss_l4len_idx)
1978{
1979 struct e1000_adv_tx_context_desc *context_desc;
1980 struct igbvf_buffer *buffer_info;
1981 u16 i = tx_ring->next_to_use;
1982
1983 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1984 buffer_info = &tx_ring->buffer_info[i];
1985
1986 i++;
1987 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1988
1989 /* set bits to identify this as an advanced context descriptor */
1990 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1991
1992 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1993 context_desc->seqnum_seed = 0;
1994 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1995 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1996
1997 buffer_info->time_stamp = jiffies;
1998 buffer_info->dma = 0;
1999}
2000
2001static int igbvf_tso(struct igbvf_ring *tx_ring,
2002 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2003{
2004 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2005 union {
2006 struct iphdr *v4;
2007 struct ipv6hdr *v6;
2008 unsigned char *hdr;
2009 } ip;
2010 union {
2011 struct tcphdr *tcp;
2012 unsigned char *hdr;
2013 } l4;
2014 u32 paylen, l4_offset;
2015 int err;
2016
2017 if (skb->ip_summed != CHECKSUM_PARTIAL)
2018 return 0;
2019
2020 if (!skb_is_gso(skb))
2021 return 0;
2022
2023 err = skb_cow_head(skb, 0);
2024 if (err < 0)
2025 return err;
2026
2027 ip.hdr = skb_network_header(skb);
2028 l4.hdr = skb_checksum_start(skb);
2029
2030 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2031 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2032
2033 /* initialize outer IP header fields */
2034 if (ip.v4->version == 4) {
2035 unsigned char *csum_start = skb_checksum_start(skb);
2036 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2037
2038 /* IP header will have to cancel out any data that
2039 * is not a part of the outer IP header
2040 */
2041 ip.v4->check = csum_fold(csum_partial(trans_start,
2042 csum_start - trans_start,
2043 0));
2044 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2045
2046 ip.v4->tot_len = 0;
2047 } else {
2048 ip.v6->payload_len = 0;
2049 }
2050
2051 /* determine offset of inner transport header */
2052 l4_offset = l4.hdr - skb->data;
2053
2054 /* compute length of segmentation header */
2055 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2056
2057 /* remove payload length from inner checksum */
2058 paylen = skb->len - l4_offset;
2059 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2060
2061 /* MSS L4LEN IDX */
2062 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2063 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2064
2065 /* VLAN MACLEN IPLEN */
2066 vlan_macip_lens = l4.hdr - ip.hdr;
2067 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2068 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2069
2070 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2071
2072 return 1;
2073}
2074
2075static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2076 u32 tx_flags, __be16 protocol)
2077{
2078 u32 vlan_macip_lens = 0;
2079 u32 type_tucmd = 0;
2080
2081 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2082csum_failed:
2083 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2084 return false;
2085 goto no_csum;
2086 }
2087
2088 switch (skb->csum_offset) {
2089 case offsetof(struct tcphdr, check):
2090 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2091 fallthrough;
2092 case offsetof(struct udphdr, check):
2093 break;
2094 case offsetof(struct sctphdr, checksum):
2095 /* validate that this is actually an SCTP request */
2096 if (skb_csum_is_sctp(skb)) {
2097 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2098 break;
2099 }
2100 fallthrough;
2101 default:
2102 skb_checksum_help(skb);
2103 goto csum_failed;
2104 }
2105
2106 vlan_macip_lens = skb_checksum_start_offset(skb) -
2107 skb_network_offset(skb);
2108no_csum:
2109 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2110 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2111
2112 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2113 return true;
2114}
2115
2116static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2117{
2118 struct igbvf_adapter *adapter = netdev_priv(netdev);
2119
2120 /* there is enough descriptors then we don't need to worry */
2121 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2122 return 0;
2123
2124 netif_stop_queue(netdev);
2125
2126 /* Herbert's original patch had:
2127 * smp_mb__after_netif_stop_queue();
2128 * but since that doesn't exist yet, just open code it.
2129 */
2130 smp_mb();
2131
2132 /* We need to check again just in case room has been made available */
2133 if (igbvf_desc_unused(adapter->tx_ring) < size)
2134 return -EBUSY;
2135
2136 netif_wake_queue(netdev);
2137
2138 ++adapter->restart_queue;
2139 return 0;
2140}
2141
2142#define IGBVF_MAX_TXD_PWR 16
2143#define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2144
2145static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2146 struct igbvf_ring *tx_ring,
2147 struct sk_buff *skb)
2148{
2149 struct igbvf_buffer *buffer_info;
2150 struct pci_dev *pdev = adapter->pdev;
2151 unsigned int len = skb_headlen(skb);
2152 unsigned int count = 0, i;
2153 unsigned int f;
2154
2155 i = tx_ring->next_to_use;
2156
2157 buffer_info = &tx_ring->buffer_info[i];
2158 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2159 buffer_info->length = len;
2160 /* set time_stamp *before* dma to help avoid a possible race */
2161 buffer_info->time_stamp = jiffies;
2162 buffer_info->mapped_as_page = false;
2163 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2164 DMA_TO_DEVICE);
2165 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2166 goto dma_error;
2167
2168 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2169 const skb_frag_t *frag;
2170
2171 count++;
2172 i++;
2173 if (i == tx_ring->count)
2174 i = 0;
2175
2176 frag = &skb_shinfo(skb)->frags[f];
2177 len = skb_frag_size(frag);
2178
2179 buffer_info = &tx_ring->buffer_info[i];
2180 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2181 buffer_info->length = len;
2182 buffer_info->time_stamp = jiffies;
2183 buffer_info->mapped_as_page = true;
2184 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2185 DMA_TO_DEVICE);
2186 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2187 goto dma_error;
2188 }
2189
2190 tx_ring->buffer_info[i].skb = skb;
2191
2192 return ++count;
2193
2194dma_error:
2195 dev_err(&pdev->dev, "TX DMA map failed\n");
2196
2197 /* clear timestamp and dma mappings for failed buffer_info mapping */
2198 buffer_info->dma = 0;
2199 buffer_info->time_stamp = 0;
2200 buffer_info->length = 0;
2201 buffer_info->mapped_as_page = false;
2202 if (count)
2203 count--;
2204
2205 /* clear timestamp and dma mappings for remaining portion of packet */
2206 while (count--) {
2207 if (i == 0)
2208 i += tx_ring->count;
2209 i--;
2210 buffer_info = &tx_ring->buffer_info[i];
2211 igbvf_put_txbuf(adapter, buffer_info);
2212 }
2213
2214 return 0;
2215}
2216
2217static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2218 struct igbvf_ring *tx_ring,
2219 int tx_flags, int count,
2220 unsigned int first, u32 paylen,
2221 u8 hdr_len)
2222{
2223 union e1000_adv_tx_desc *tx_desc = NULL;
2224 struct igbvf_buffer *buffer_info;
2225 u32 olinfo_status = 0, cmd_type_len;
2226 unsigned int i;
2227
2228 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2229 E1000_ADVTXD_DCMD_DEXT);
2230
2231 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2232 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2233
2234 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2235 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2236
2237 /* insert tcp checksum */
2238 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2239
2240 /* insert ip checksum */
2241 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2242 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2243
2244 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2245 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2246 }
2247
2248 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2249
2250 i = tx_ring->next_to_use;
2251 while (count--) {
2252 buffer_info = &tx_ring->buffer_info[i];
2253 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2254 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2255 tx_desc->read.cmd_type_len =
2256 cpu_to_le32(cmd_type_len | buffer_info->length);
2257 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2258 i++;
2259 if (i == tx_ring->count)
2260 i = 0;
2261 }
2262
2263 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2264 /* Force memory writes to complete before letting h/w
2265 * know there are new descriptors to fetch. (Only
2266 * applicable for weak-ordered memory model archs,
2267 * such as IA-64).
2268 */
2269 wmb();
2270
2271 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2272 tx_ring->next_to_use = i;
2273 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2274}
2275
2276static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2277 struct net_device *netdev,
2278 struct igbvf_ring *tx_ring)
2279{
2280 struct igbvf_adapter *adapter = netdev_priv(netdev);
2281 unsigned int first, tx_flags = 0;
2282 u8 hdr_len = 0;
2283 int count = 0;
2284 int tso = 0;
2285 __be16 protocol = vlan_get_protocol(skb);
2286
2287 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2288 dev_kfree_skb_any(skb);
2289 return NETDEV_TX_OK;
2290 }
2291
2292 if (skb->len <= 0) {
2293 dev_kfree_skb_any(skb);
2294 return NETDEV_TX_OK;
2295 }
2296
2297 /* need: count + 4 desc gap to keep tail from touching
2298 * + 2 desc gap to keep tail from touching head,
2299 * + 1 desc for skb->data,
2300 * + 1 desc for context descriptor,
2301 * head, otherwise try next time
2302 */
2303 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2304 /* this is a hard error */
2305 return NETDEV_TX_BUSY;
2306 }
2307
2308 if (skb_vlan_tag_present(skb)) {
2309 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2310 tx_flags |= (skb_vlan_tag_get(skb) <<
2311 IGBVF_TX_FLAGS_VLAN_SHIFT);
2312 }
2313
2314 if (protocol == htons(ETH_P_IP))
2315 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2316
2317 first = tx_ring->next_to_use;
2318
2319 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2320 if (unlikely(tso < 0)) {
2321 dev_kfree_skb_any(skb);
2322 return NETDEV_TX_OK;
2323 }
2324
2325 if (tso)
2326 tx_flags |= IGBVF_TX_FLAGS_TSO;
2327 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2328 (skb->ip_summed == CHECKSUM_PARTIAL))
2329 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2330
2331 /* count reflects descriptors mapped, if 0 then mapping error
2332 * has occurred and we need to rewind the descriptor queue
2333 */
2334 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2335
2336 if (count) {
2337 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2338 first, skb->len, hdr_len);
2339 /* Make sure there is space in the ring for the next send. */
2340 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2341 } else {
2342 dev_kfree_skb_any(skb);
2343 tx_ring->buffer_info[first].time_stamp = 0;
2344 tx_ring->next_to_use = first;
2345 }
2346
2347 return NETDEV_TX_OK;
2348}
2349
2350static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2351 struct net_device *netdev)
2352{
2353 struct igbvf_adapter *adapter = netdev_priv(netdev);
2354 struct igbvf_ring *tx_ring;
2355
2356 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2357 dev_kfree_skb_any(skb);
2358 return NETDEV_TX_OK;
2359 }
2360
2361 tx_ring = &adapter->tx_ring[0];
2362
2363 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2364}
2365
2366/**
2367 * igbvf_tx_timeout - Respond to a Tx Hang
2368 * @netdev: network interface device structure
2369 * @txqueue: queue timing out (unused)
2370 **/
2371static void igbvf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
2372{
2373 struct igbvf_adapter *adapter = netdev_priv(netdev);
2374
2375 /* Do the reset outside of interrupt context */
2376 adapter->tx_timeout_count++;
2377 schedule_work(&adapter->reset_task);
2378}
2379
2380static void igbvf_reset_task(struct work_struct *work)
2381{
2382 struct igbvf_adapter *adapter;
2383
2384 adapter = container_of(work, struct igbvf_adapter, reset_task);
2385
2386 igbvf_reinit_locked(adapter);
2387}
2388
2389/**
2390 * igbvf_change_mtu - Change the Maximum Transfer Unit
2391 * @netdev: network interface device structure
2392 * @new_mtu: new value for maximum frame size
2393 *
2394 * Returns 0 on success, negative on failure
2395 **/
2396static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2397{
2398 struct igbvf_adapter *adapter = netdev_priv(netdev);
2399 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2400
2401 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2402 usleep_range(1000, 2000);
2403 /* igbvf_down has a dependency on max_frame_size */
2404 adapter->max_frame_size = max_frame;
2405 if (netif_running(netdev))
2406 igbvf_down(adapter);
2407
2408 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2409 * means we reserve 2 more, this pushes us to allocate from the next
2410 * larger slab size.
2411 * i.e. RXBUFFER_2048 --> size-4096 slab
2412 * However with the new *_jumbo_rx* routines, jumbo receives will use
2413 * fragmented skbs
2414 */
2415
2416 if (max_frame <= 1024)
2417 adapter->rx_buffer_len = 1024;
2418 else if (max_frame <= 2048)
2419 adapter->rx_buffer_len = 2048;
2420 else
2421#if (PAGE_SIZE / 2) > 16384
2422 adapter->rx_buffer_len = 16384;
2423#else
2424 adapter->rx_buffer_len = PAGE_SIZE / 2;
2425#endif
2426
2427 /* adjust allocation if LPE protects us, and we aren't using SBP */
2428 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2429 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2430 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2431 ETH_FCS_LEN;
2432
2433 netdev_dbg(netdev, "changing MTU from %d to %d\n",
2434 netdev->mtu, new_mtu);
2435 netdev->mtu = new_mtu;
2436
2437 if (netif_running(netdev))
2438 igbvf_up(adapter);
2439 else
2440 igbvf_reset(adapter);
2441
2442 clear_bit(__IGBVF_RESETTING, &adapter->state);
2443
2444 return 0;
2445}
2446
2447static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2448{
2449 switch (cmd) {
2450 default:
2451 return -EOPNOTSUPP;
2452 }
2453}
2454
2455static int igbvf_suspend(struct device *dev_d)
2456{
2457 struct net_device *netdev = dev_get_drvdata(dev_d);
2458 struct igbvf_adapter *adapter = netdev_priv(netdev);
2459
2460 netif_device_detach(netdev);
2461
2462 if (netif_running(netdev)) {
2463 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2464 igbvf_down(adapter);
2465 igbvf_free_irq(adapter);
2466 }
2467
2468 return 0;
2469}
2470
2471static int __maybe_unused igbvf_resume(struct device *dev_d)
2472{
2473 struct pci_dev *pdev = to_pci_dev(dev_d);
2474 struct net_device *netdev = pci_get_drvdata(pdev);
2475 struct igbvf_adapter *adapter = netdev_priv(netdev);
2476 u32 err;
2477
2478 pci_set_master(pdev);
2479
2480 if (netif_running(netdev)) {
2481 err = igbvf_request_irq(adapter);
2482 if (err)
2483 return err;
2484 }
2485
2486 igbvf_reset(adapter);
2487
2488 if (netif_running(netdev))
2489 igbvf_up(adapter);
2490
2491 netif_device_attach(netdev);
2492
2493 return 0;
2494}
2495
2496static void igbvf_shutdown(struct pci_dev *pdev)
2497{
2498 igbvf_suspend(&pdev->dev);
2499}
2500
2501#ifdef CONFIG_NET_POLL_CONTROLLER
2502/* Polling 'interrupt' - used by things like netconsole to send skbs
2503 * without having to re-enable interrupts. It's not called while
2504 * the interrupt routine is executing.
2505 */
2506static void igbvf_netpoll(struct net_device *netdev)
2507{
2508 struct igbvf_adapter *adapter = netdev_priv(netdev);
2509
2510 disable_irq(adapter->pdev->irq);
2511
2512 igbvf_clean_tx_irq(adapter->tx_ring);
2513
2514 enable_irq(adapter->pdev->irq);
2515}
2516#endif
2517
2518/**
2519 * igbvf_io_error_detected - called when PCI error is detected
2520 * @pdev: Pointer to PCI device
2521 * @state: The current pci connection state
2522 *
2523 * This function is called after a PCI bus error affecting
2524 * this device has been detected.
2525 */
2526static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2527 pci_channel_state_t state)
2528{
2529 struct net_device *netdev = pci_get_drvdata(pdev);
2530 struct igbvf_adapter *adapter = netdev_priv(netdev);
2531
2532 netif_device_detach(netdev);
2533
2534 if (state == pci_channel_io_perm_failure)
2535 return PCI_ERS_RESULT_DISCONNECT;
2536
2537 if (netif_running(netdev))
2538 igbvf_down(adapter);
2539 pci_disable_device(pdev);
2540
2541 /* Request a slot slot reset. */
2542 return PCI_ERS_RESULT_NEED_RESET;
2543}
2544
2545/**
2546 * igbvf_io_slot_reset - called after the pci bus has been reset.
2547 * @pdev: Pointer to PCI device
2548 *
2549 * Restart the card from scratch, as if from a cold-boot. Implementation
2550 * resembles the first-half of the igbvf_resume routine.
2551 */
2552static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2553{
2554 struct net_device *netdev = pci_get_drvdata(pdev);
2555 struct igbvf_adapter *adapter = netdev_priv(netdev);
2556
2557 if (pci_enable_device_mem(pdev)) {
2558 dev_err(&pdev->dev,
2559 "Cannot re-enable PCI device after reset.\n");
2560 return PCI_ERS_RESULT_DISCONNECT;
2561 }
2562 pci_set_master(pdev);
2563
2564 igbvf_reset(adapter);
2565
2566 return PCI_ERS_RESULT_RECOVERED;
2567}
2568
2569/**
2570 * igbvf_io_resume - called when traffic can start flowing again.
2571 * @pdev: Pointer to PCI device
2572 *
2573 * This callback is called when the error recovery driver tells us that
2574 * its OK to resume normal operation. Implementation resembles the
2575 * second-half of the igbvf_resume routine.
2576 */
2577static void igbvf_io_resume(struct pci_dev *pdev)
2578{
2579 struct net_device *netdev = pci_get_drvdata(pdev);
2580 struct igbvf_adapter *adapter = netdev_priv(netdev);
2581
2582 if (netif_running(netdev)) {
2583 if (igbvf_up(adapter)) {
2584 dev_err(&pdev->dev,
2585 "can't bring device back up after reset\n");
2586 return;
2587 }
2588 }
2589
2590 netif_device_attach(netdev);
2591}
2592
2593static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2594{
2595 struct e1000_hw *hw = &adapter->hw;
2596 struct net_device *netdev = adapter->netdev;
2597 struct pci_dev *pdev = adapter->pdev;
2598
2599 if (hw->mac.type == e1000_vfadapt_i350)
2600 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2601 else
2602 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2603 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2604}
2605
2606static int igbvf_set_features(struct net_device *netdev,
2607 netdev_features_t features)
2608{
2609 struct igbvf_adapter *adapter = netdev_priv(netdev);
2610
2611 if (features & NETIF_F_RXCSUM)
2612 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2613 else
2614 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2615
2616 return 0;
2617}
2618
2619#define IGBVF_MAX_MAC_HDR_LEN 127
2620#define IGBVF_MAX_NETWORK_HDR_LEN 511
2621
2622static netdev_features_t
2623igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2624 netdev_features_t features)
2625{
2626 unsigned int network_hdr_len, mac_hdr_len;
2627
2628 /* Make certain the headers can be described by a context descriptor */
2629 mac_hdr_len = skb_network_header(skb) - skb->data;
2630 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2631 return features & ~(NETIF_F_HW_CSUM |
2632 NETIF_F_SCTP_CRC |
2633 NETIF_F_HW_VLAN_CTAG_TX |
2634 NETIF_F_TSO |
2635 NETIF_F_TSO6);
2636
2637 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2638 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2639 return features & ~(NETIF_F_HW_CSUM |
2640 NETIF_F_SCTP_CRC |
2641 NETIF_F_TSO |
2642 NETIF_F_TSO6);
2643
2644 /* We can only support IPV4 TSO in tunnels if we can mangle the
2645 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2646 */
2647 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2648 features &= ~NETIF_F_TSO;
2649
2650 return features;
2651}
2652
2653static const struct net_device_ops igbvf_netdev_ops = {
2654 .ndo_open = igbvf_open,
2655 .ndo_stop = igbvf_close,
2656 .ndo_start_xmit = igbvf_xmit_frame,
2657 .ndo_set_rx_mode = igbvf_set_rx_mode,
2658 .ndo_set_mac_address = igbvf_set_mac,
2659 .ndo_change_mtu = igbvf_change_mtu,
2660 .ndo_do_ioctl = igbvf_ioctl,
2661 .ndo_tx_timeout = igbvf_tx_timeout,
2662 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2663 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2664#ifdef CONFIG_NET_POLL_CONTROLLER
2665 .ndo_poll_controller = igbvf_netpoll,
2666#endif
2667 .ndo_set_features = igbvf_set_features,
2668 .ndo_features_check = igbvf_features_check,
2669};
2670
2671/**
2672 * igbvf_probe - Device Initialization Routine
2673 * @pdev: PCI device information struct
2674 * @ent: entry in igbvf_pci_tbl
2675 *
2676 * Returns 0 on success, negative on failure
2677 *
2678 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2679 * The OS initialization, configuring of the adapter private structure,
2680 * and a hardware reset occur.
2681 **/
2682static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2683{
2684 struct net_device *netdev;
2685 struct igbvf_adapter *adapter;
2686 struct e1000_hw *hw;
2687 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2688
2689 static int cards_found;
2690 int err, pci_using_dac;
2691
2692 err = pci_enable_device_mem(pdev);
2693 if (err)
2694 return err;
2695
2696 pci_using_dac = 0;
2697 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2698 if (!err) {
2699 pci_using_dac = 1;
2700 } else {
2701 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2702 if (err) {
2703 dev_err(&pdev->dev,
2704 "No usable DMA configuration, aborting\n");
2705 goto err_dma;
2706 }
2707 }
2708
2709 err = pci_request_regions(pdev, igbvf_driver_name);
2710 if (err)
2711 goto err_pci_reg;
2712
2713 pci_set_master(pdev);
2714
2715 err = -ENOMEM;
2716 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2717 if (!netdev)
2718 goto err_alloc_etherdev;
2719
2720 SET_NETDEV_DEV(netdev, &pdev->dev);
2721
2722 pci_set_drvdata(pdev, netdev);
2723 adapter = netdev_priv(netdev);
2724 hw = &adapter->hw;
2725 adapter->netdev = netdev;
2726 adapter->pdev = pdev;
2727 adapter->ei = ei;
2728 adapter->pba = ei->pba;
2729 adapter->flags = ei->flags;
2730 adapter->hw.back = adapter;
2731 adapter->hw.mac.type = ei->mac;
2732 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2733
2734 /* PCI config space info */
2735
2736 hw->vendor_id = pdev->vendor;
2737 hw->device_id = pdev->device;
2738 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2739 hw->subsystem_device_id = pdev->subsystem_device;
2740 hw->revision_id = pdev->revision;
2741
2742 err = -EIO;
2743 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2744 pci_resource_len(pdev, 0));
2745
2746 if (!adapter->hw.hw_addr)
2747 goto err_ioremap;
2748
2749 if (ei->get_variants) {
2750 err = ei->get_variants(adapter);
2751 if (err)
2752 goto err_get_variants;
2753 }
2754
2755 /* setup adapter struct */
2756 err = igbvf_sw_init(adapter);
2757 if (err)
2758 goto err_sw_init;
2759
2760 /* construct the net_device struct */
2761 netdev->netdev_ops = &igbvf_netdev_ops;
2762
2763 igbvf_set_ethtool_ops(netdev);
2764 netdev->watchdog_timeo = 5 * HZ;
2765 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2766
2767 adapter->bd_number = cards_found++;
2768
2769 netdev->hw_features = NETIF_F_SG |
2770 NETIF_F_TSO |
2771 NETIF_F_TSO6 |
2772 NETIF_F_RXCSUM |
2773 NETIF_F_HW_CSUM |
2774 NETIF_F_SCTP_CRC;
2775
2776#define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2777 NETIF_F_GSO_GRE_CSUM | \
2778 NETIF_F_GSO_IPXIP4 | \
2779 NETIF_F_GSO_IPXIP6 | \
2780 NETIF_F_GSO_UDP_TUNNEL | \
2781 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2782
2783 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2784 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2785 IGBVF_GSO_PARTIAL_FEATURES;
2786
2787 netdev->features = netdev->hw_features;
2788
2789 if (pci_using_dac)
2790 netdev->features |= NETIF_F_HIGHDMA;
2791
2792 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2793 netdev->mpls_features |= NETIF_F_HW_CSUM;
2794 netdev->hw_enc_features |= netdev->vlan_features;
2795
2796 /* set this bit last since it cannot be part of vlan_features */
2797 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2798 NETIF_F_HW_VLAN_CTAG_RX |
2799 NETIF_F_HW_VLAN_CTAG_TX;
2800
2801 /* MTU range: 68 - 9216 */
2802 netdev->min_mtu = ETH_MIN_MTU;
2803 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2804
2805 spin_lock_bh(&hw->mbx_lock);
2806
2807 /*reset the controller to put the device in a known good state */
2808 err = hw->mac.ops.reset_hw(hw);
2809 if (err) {
2810 dev_info(&pdev->dev,
2811 "PF still in reset state. Is the PF interface up?\n");
2812 } else {
2813 err = hw->mac.ops.read_mac_addr(hw);
2814 if (err)
2815 dev_info(&pdev->dev, "Error reading MAC address.\n");
2816 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2817 dev_info(&pdev->dev,
2818 "MAC address not assigned by administrator.\n");
2819 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2820 netdev->addr_len);
2821 }
2822
2823 spin_unlock_bh(&hw->mbx_lock);
2824
2825 if (!is_valid_ether_addr(netdev->dev_addr)) {
2826 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2827 eth_hw_addr_random(netdev);
2828 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2829 netdev->addr_len);
2830 }
2831
2832 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2833
2834 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2835 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2836
2837 /* ring size defaults */
2838 adapter->rx_ring->count = 1024;
2839 adapter->tx_ring->count = 1024;
2840
2841 /* reset the hardware with the new settings */
2842 igbvf_reset(adapter);
2843
2844 /* set hardware-specific flags */
2845 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2846 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2847
2848 strcpy(netdev->name, "eth%d");
2849 err = register_netdev(netdev);
2850 if (err)
2851 goto err_hw_init;
2852
2853 /* tell the stack to leave us alone until igbvf_open() is called */
2854 netif_carrier_off(netdev);
2855 netif_stop_queue(netdev);
2856
2857 igbvf_print_device_info(adapter);
2858
2859 igbvf_initialize_last_counter_stats(adapter);
2860
2861 return 0;
2862
2863err_hw_init:
2864 kfree(adapter->tx_ring);
2865 kfree(adapter->rx_ring);
2866err_sw_init:
2867 igbvf_reset_interrupt_capability(adapter);
2868err_get_variants:
2869 iounmap(adapter->hw.hw_addr);
2870err_ioremap:
2871 free_netdev(netdev);
2872err_alloc_etherdev:
2873 pci_release_regions(pdev);
2874err_pci_reg:
2875err_dma:
2876 pci_disable_device(pdev);
2877 return err;
2878}
2879
2880/**
2881 * igbvf_remove - Device Removal Routine
2882 * @pdev: PCI device information struct
2883 *
2884 * igbvf_remove is called by the PCI subsystem to alert the driver
2885 * that it should release a PCI device. The could be caused by a
2886 * Hot-Plug event, or because the driver is going to be removed from
2887 * memory.
2888 **/
2889static void igbvf_remove(struct pci_dev *pdev)
2890{
2891 struct net_device *netdev = pci_get_drvdata(pdev);
2892 struct igbvf_adapter *adapter = netdev_priv(netdev);
2893 struct e1000_hw *hw = &adapter->hw;
2894
2895 /* The watchdog timer may be rescheduled, so explicitly
2896 * disable it from being rescheduled.
2897 */
2898 set_bit(__IGBVF_DOWN, &adapter->state);
2899 del_timer_sync(&adapter->watchdog_timer);
2900
2901 cancel_work_sync(&adapter->reset_task);
2902 cancel_work_sync(&adapter->watchdog_task);
2903
2904 unregister_netdev(netdev);
2905
2906 igbvf_reset_interrupt_capability(adapter);
2907
2908 /* it is important to delete the NAPI struct prior to freeing the
2909 * Rx ring so that you do not end up with null pointer refs
2910 */
2911 netif_napi_del(&adapter->rx_ring->napi);
2912 kfree(adapter->tx_ring);
2913 kfree(adapter->rx_ring);
2914
2915 iounmap(hw->hw_addr);
2916 if (hw->flash_address)
2917 iounmap(hw->flash_address);
2918 pci_release_regions(pdev);
2919
2920 free_netdev(netdev);
2921
2922 pci_disable_device(pdev);
2923}
2924
2925/* PCI Error Recovery (ERS) */
2926static const struct pci_error_handlers igbvf_err_handler = {
2927 .error_detected = igbvf_io_error_detected,
2928 .slot_reset = igbvf_io_slot_reset,
2929 .resume = igbvf_io_resume,
2930};
2931
2932static const struct pci_device_id igbvf_pci_tbl[] = {
2933 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2934 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2935 { } /* terminate list */
2936};
2937MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2938
2939static SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume);
2940
2941/* PCI Device API Driver */
2942static struct pci_driver igbvf_driver = {
2943 .name = igbvf_driver_name,
2944 .id_table = igbvf_pci_tbl,
2945 .probe = igbvf_probe,
2946 .remove = igbvf_remove,
2947 .driver.pm = &igbvf_pm_ops,
2948 .shutdown = igbvf_shutdown,
2949 .err_handler = &igbvf_err_handler
2950};
2951
2952/**
2953 * igbvf_init_module - Driver Registration Routine
2954 *
2955 * igbvf_init_module is the first routine called when the driver is
2956 * loaded. All it does is register with the PCI subsystem.
2957 **/
2958static int __init igbvf_init_module(void)
2959{
2960 int ret;
2961
2962 pr_info("%s\n", igbvf_driver_string);
2963 pr_info("%s\n", igbvf_copyright);
2964
2965 ret = pci_register_driver(&igbvf_driver);
2966
2967 return ret;
2968}
2969module_init(igbvf_init_module);
2970
2971/**
2972 * igbvf_exit_module - Driver Exit Cleanup Routine
2973 *
2974 * igbvf_exit_module is called just before the driver is removed
2975 * from memory.
2976 **/
2977static void __exit igbvf_exit_module(void)
2978{
2979 pci_unregister_driver(&igbvf_driver);
2980}
2981module_exit(igbvf_exit_module);
2982
2983MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2984MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2985MODULE_LICENSE("GPL v2");
2986
2987/* netdev.c */
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2009 - 2018 Intel Corporation. */
3
4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6#include <linux/module.h>
7#include <linux/types.h>
8#include <linux/init.h>
9#include <linux/pci.h>
10#include <linux/vmalloc.h>
11#include <linux/pagemap.h>
12#include <linux/delay.h>
13#include <linux/netdevice.h>
14#include <linux/tcp.h>
15#include <linux/ipv6.h>
16#include <linux/slab.h>
17#include <net/checksum.h>
18#include <net/ip6_checksum.h>
19#include <linux/mii.h>
20#include <linux/ethtool.h>
21#include <linux/if_vlan.h>
22#include <linux/prefetch.h>
23#include <linux/sctp.h>
24
25#include "igbvf.h"
26
27#define DRV_VERSION "2.4.0-k"
28char igbvf_driver_name[] = "igbvf";
29const char igbvf_driver_version[] = DRV_VERSION;
30static const char igbvf_driver_string[] =
31 "Intel(R) Gigabit Virtual Function Network Driver";
32static const char igbvf_copyright[] =
33 "Copyright (c) 2009 - 2012 Intel Corporation.";
34
35#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
36static int debug = -1;
37module_param(debug, int, 0);
38MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40static int igbvf_poll(struct napi_struct *napi, int budget);
41static void igbvf_reset(struct igbvf_adapter *);
42static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
43static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
44
45static struct igbvf_info igbvf_vf_info = {
46 .mac = e1000_vfadapt,
47 .flags = 0,
48 .pba = 10,
49 .init_ops = e1000_init_function_pointers_vf,
50};
51
52static struct igbvf_info igbvf_i350_vf_info = {
53 .mac = e1000_vfadapt_i350,
54 .flags = 0,
55 .pba = 10,
56 .init_ops = e1000_init_function_pointers_vf,
57};
58
59static const struct igbvf_info *igbvf_info_tbl[] = {
60 [board_vf] = &igbvf_vf_info,
61 [board_i350_vf] = &igbvf_i350_vf_info,
62};
63
64/**
65 * igbvf_desc_unused - calculate if we have unused descriptors
66 * @rx_ring: address of receive ring structure
67 **/
68static int igbvf_desc_unused(struct igbvf_ring *ring)
69{
70 if (ring->next_to_clean > ring->next_to_use)
71 return ring->next_to_clean - ring->next_to_use - 1;
72
73 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
74}
75
76/**
77 * igbvf_receive_skb - helper function to handle Rx indications
78 * @adapter: board private structure
79 * @status: descriptor status field as written by hardware
80 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
81 * @skb: pointer to sk_buff to be indicated to stack
82 **/
83static void igbvf_receive_skb(struct igbvf_adapter *adapter,
84 struct net_device *netdev,
85 struct sk_buff *skb,
86 u32 status, u16 vlan)
87{
88 u16 vid;
89
90 if (status & E1000_RXD_STAT_VP) {
91 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
92 (status & E1000_RXDEXT_STATERR_LB))
93 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
94 else
95 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
96 if (test_bit(vid, adapter->active_vlans))
97 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
98 }
99
100 napi_gro_receive(&adapter->rx_ring->napi, skb);
101}
102
103static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 u32 status_err, struct sk_buff *skb)
105{
106 skb_checksum_none_assert(skb);
107
108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 if ((status_err & E1000_RXD_STAT_IXSM) ||
110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 return;
112
113 /* TCP/UDP checksum error bit is set */
114 if (status_err &
115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 /* let the stack verify checksum errors */
117 adapter->hw_csum_err++;
118 return;
119 }
120
121 /* It must be a TCP or UDP packet with a valid checksum */
122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 skb->ip_summed = CHECKSUM_UNNECESSARY;
124
125 adapter->hw_csum_good++;
126}
127
128/**
129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130 * @rx_ring: address of ring structure to repopulate
131 * @cleaned_count: number of buffers to repopulate
132 **/
133static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 int cleaned_count)
135{
136 struct igbvf_adapter *adapter = rx_ring->adapter;
137 struct net_device *netdev = adapter->netdev;
138 struct pci_dev *pdev = adapter->pdev;
139 union e1000_adv_rx_desc *rx_desc;
140 struct igbvf_buffer *buffer_info;
141 struct sk_buff *skb;
142 unsigned int i;
143 int bufsz;
144
145 i = rx_ring->next_to_use;
146 buffer_info = &rx_ring->buffer_info[i];
147
148 if (adapter->rx_ps_hdr_size)
149 bufsz = adapter->rx_ps_hdr_size;
150 else
151 bufsz = adapter->rx_buffer_len;
152
153 while (cleaned_count--) {
154 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155
156 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 if (!buffer_info->page) {
158 buffer_info->page = alloc_page(GFP_ATOMIC);
159 if (!buffer_info->page) {
160 adapter->alloc_rx_buff_failed++;
161 goto no_buffers;
162 }
163 buffer_info->page_offset = 0;
164 } else {
165 buffer_info->page_offset ^= PAGE_SIZE / 2;
166 }
167 buffer_info->page_dma =
168 dma_map_page(&pdev->dev, buffer_info->page,
169 buffer_info->page_offset,
170 PAGE_SIZE / 2,
171 DMA_FROM_DEVICE);
172 if (dma_mapping_error(&pdev->dev,
173 buffer_info->page_dma)) {
174 __free_page(buffer_info->page);
175 buffer_info->page = NULL;
176 dev_err(&pdev->dev, "RX DMA map failed\n");
177 break;
178 }
179 }
180
181 if (!buffer_info->skb) {
182 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183 if (!skb) {
184 adapter->alloc_rx_buff_failed++;
185 goto no_buffers;
186 }
187
188 buffer_info->skb = skb;
189 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190 bufsz,
191 DMA_FROM_DEVICE);
192 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
193 dev_kfree_skb(buffer_info->skb);
194 buffer_info->skb = NULL;
195 dev_err(&pdev->dev, "RX DMA map failed\n");
196 goto no_buffers;
197 }
198 }
199 /* Refresh the desc even if buffer_addrs didn't change because
200 * each write-back erases this info.
201 */
202 if (adapter->rx_ps_hdr_size) {
203 rx_desc->read.pkt_addr =
204 cpu_to_le64(buffer_info->page_dma);
205 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
206 } else {
207 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
208 rx_desc->read.hdr_addr = 0;
209 }
210
211 i++;
212 if (i == rx_ring->count)
213 i = 0;
214 buffer_info = &rx_ring->buffer_info[i];
215 }
216
217no_buffers:
218 if (rx_ring->next_to_use != i) {
219 rx_ring->next_to_use = i;
220 if (i == 0)
221 i = (rx_ring->count - 1);
222 else
223 i--;
224
225 /* Force memory writes to complete before letting h/w
226 * know there are new descriptors to fetch. (Only
227 * applicable for weak-ordered memory model archs,
228 * such as IA-64).
229 */
230 wmb();
231 writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 }
233}
234
235/**
236 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
237 * @adapter: board private structure
238 *
239 * the return value indicates whether actual cleaning was done, there
240 * is no guarantee that everything was cleaned
241 **/
242static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
243 int *work_done, int work_to_do)
244{
245 struct igbvf_ring *rx_ring = adapter->rx_ring;
246 struct net_device *netdev = adapter->netdev;
247 struct pci_dev *pdev = adapter->pdev;
248 union e1000_adv_rx_desc *rx_desc, *next_rxd;
249 struct igbvf_buffer *buffer_info, *next_buffer;
250 struct sk_buff *skb;
251 bool cleaned = false;
252 int cleaned_count = 0;
253 unsigned int total_bytes = 0, total_packets = 0;
254 unsigned int i;
255 u32 length, hlen, staterr;
256
257 i = rx_ring->next_to_clean;
258 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
259 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
260
261 while (staterr & E1000_RXD_STAT_DD) {
262 if (*work_done >= work_to_do)
263 break;
264 (*work_done)++;
265 rmb(); /* read descriptor and rx_buffer_info after status DD */
266
267 buffer_info = &rx_ring->buffer_info[i];
268
269 /* HW will not DMA in data larger than the given buffer, even
270 * if it parses the (NFS, of course) header to be larger. In
271 * that case, it fills the header buffer and spills the rest
272 * into the page.
273 */
274 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
275 & E1000_RXDADV_HDRBUFLEN_MASK) >>
276 E1000_RXDADV_HDRBUFLEN_SHIFT;
277 if (hlen > adapter->rx_ps_hdr_size)
278 hlen = adapter->rx_ps_hdr_size;
279
280 length = le16_to_cpu(rx_desc->wb.upper.length);
281 cleaned = true;
282 cleaned_count++;
283
284 skb = buffer_info->skb;
285 prefetch(skb->data - NET_IP_ALIGN);
286 buffer_info->skb = NULL;
287 if (!adapter->rx_ps_hdr_size) {
288 dma_unmap_single(&pdev->dev, buffer_info->dma,
289 adapter->rx_buffer_len,
290 DMA_FROM_DEVICE);
291 buffer_info->dma = 0;
292 skb_put(skb, length);
293 goto send_up;
294 }
295
296 if (!skb_shinfo(skb)->nr_frags) {
297 dma_unmap_single(&pdev->dev, buffer_info->dma,
298 adapter->rx_ps_hdr_size,
299 DMA_FROM_DEVICE);
300 buffer_info->dma = 0;
301 skb_put(skb, hlen);
302 }
303
304 if (length) {
305 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
306 PAGE_SIZE / 2,
307 DMA_FROM_DEVICE);
308 buffer_info->page_dma = 0;
309
310 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
311 buffer_info->page,
312 buffer_info->page_offset,
313 length);
314
315 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
316 (page_count(buffer_info->page) != 1))
317 buffer_info->page = NULL;
318 else
319 get_page(buffer_info->page);
320
321 skb->len += length;
322 skb->data_len += length;
323 skb->truesize += PAGE_SIZE / 2;
324 }
325send_up:
326 i++;
327 if (i == rx_ring->count)
328 i = 0;
329 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
330 prefetch(next_rxd);
331 next_buffer = &rx_ring->buffer_info[i];
332
333 if (!(staterr & E1000_RXD_STAT_EOP)) {
334 buffer_info->skb = next_buffer->skb;
335 buffer_info->dma = next_buffer->dma;
336 next_buffer->skb = skb;
337 next_buffer->dma = 0;
338 goto next_desc;
339 }
340
341 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
342 dev_kfree_skb_irq(skb);
343 goto next_desc;
344 }
345
346 total_bytes += skb->len;
347 total_packets++;
348
349 igbvf_rx_checksum_adv(adapter, staterr, skb);
350
351 skb->protocol = eth_type_trans(skb, netdev);
352
353 igbvf_receive_skb(adapter, netdev, skb, staterr,
354 rx_desc->wb.upper.vlan);
355
356next_desc:
357 rx_desc->wb.upper.status_error = 0;
358
359 /* return some buffers to hardware, one at a time is too slow */
360 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
361 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
362 cleaned_count = 0;
363 }
364
365 /* use prefetched values */
366 rx_desc = next_rxd;
367 buffer_info = next_buffer;
368
369 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
370 }
371
372 rx_ring->next_to_clean = i;
373 cleaned_count = igbvf_desc_unused(rx_ring);
374
375 if (cleaned_count)
376 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
377
378 adapter->total_rx_packets += total_packets;
379 adapter->total_rx_bytes += total_bytes;
380 netdev->stats.rx_bytes += total_bytes;
381 netdev->stats.rx_packets += total_packets;
382 return cleaned;
383}
384
385static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
386 struct igbvf_buffer *buffer_info)
387{
388 if (buffer_info->dma) {
389 if (buffer_info->mapped_as_page)
390 dma_unmap_page(&adapter->pdev->dev,
391 buffer_info->dma,
392 buffer_info->length,
393 DMA_TO_DEVICE);
394 else
395 dma_unmap_single(&adapter->pdev->dev,
396 buffer_info->dma,
397 buffer_info->length,
398 DMA_TO_DEVICE);
399 buffer_info->dma = 0;
400 }
401 if (buffer_info->skb) {
402 dev_kfree_skb_any(buffer_info->skb);
403 buffer_info->skb = NULL;
404 }
405 buffer_info->time_stamp = 0;
406}
407
408/**
409 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
410 * @adapter: board private structure
411 *
412 * Return 0 on success, negative on failure
413 **/
414int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
415 struct igbvf_ring *tx_ring)
416{
417 struct pci_dev *pdev = adapter->pdev;
418 int size;
419
420 size = sizeof(struct igbvf_buffer) * tx_ring->count;
421 tx_ring->buffer_info = vzalloc(size);
422 if (!tx_ring->buffer_info)
423 goto err;
424
425 /* round up to nearest 4K */
426 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
427 tx_ring->size = ALIGN(tx_ring->size, 4096);
428
429 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
430 &tx_ring->dma, GFP_KERNEL);
431 if (!tx_ring->desc)
432 goto err;
433
434 tx_ring->adapter = adapter;
435 tx_ring->next_to_use = 0;
436 tx_ring->next_to_clean = 0;
437
438 return 0;
439err:
440 vfree(tx_ring->buffer_info);
441 dev_err(&adapter->pdev->dev,
442 "Unable to allocate memory for the transmit descriptor ring\n");
443 return -ENOMEM;
444}
445
446/**
447 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
448 * @adapter: board private structure
449 *
450 * Returns 0 on success, negative on failure
451 **/
452int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
453 struct igbvf_ring *rx_ring)
454{
455 struct pci_dev *pdev = adapter->pdev;
456 int size, desc_len;
457
458 size = sizeof(struct igbvf_buffer) * rx_ring->count;
459 rx_ring->buffer_info = vzalloc(size);
460 if (!rx_ring->buffer_info)
461 goto err;
462
463 desc_len = sizeof(union e1000_adv_rx_desc);
464
465 /* Round up to nearest 4K */
466 rx_ring->size = rx_ring->count * desc_len;
467 rx_ring->size = ALIGN(rx_ring->size, 4096);
468
469 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
470 &rx_ring->dma, GFP_KERNEL);
471 if (!rx_ring->desc)
472 goto err;
473
474 rx_ring->next_to_clean = 0;
475 rx_ring->next_to_use = 0;
476
477 rx_ring->adapter = adapter;
478
479 return 0;
480
481err:
482 vfree(rx_ring->buffer_info);
483 rx_ring->buffer_info = NULL;
484 dev_err(&adapter->pdev->dev,
485 "Unable to allocate memory for the receive descriptor ring\n");
486 return -ENOMEM;
487}
488
489/**
490 * igbvf_clean_tx_ring - Free Tx Buffers
491 * @tx_ring: ring to be cleaned
492 **/
493static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
494{
495 struct igbvf_adapter *adapter = tx_ring->adapter;
496 struct igbvf_buffer *buffer_info;
497 unsigned long size;
498 unsigned int i;
499
500 if (!tx_ring->buffer_info)
501 return;
502
503 /* Free all the Tx ring sk_buffs */
504 for (i = 0; i < tx_ring->count; i++) {
505 buffer_info = &tx_ring->buffer_info[i];
506 igbvf_put_txbuf(adapter, buffer_info);
507 }
508
509 size = sizeof(struct igbvf_buffer) * tx_ring->count;
510 memset(tx_ring->buffer_info, 0, size);
511
512 /* Zero out the descriptor ring */
513 memset(tx_ring->desc, 0, tx_ring->size);
514
515 tx_ring->next_to_use = 0;
516 tx_ring->next_to_clean = 0;
517
518 writel(0, adapter->hw.hw_addr + tx_ring->head);
519 writel(0, adapter->hw.hw_addr + tx_ring->tail);
520}
521
522/**
523 * igbvf_free_tx_resources - Free Tx Resources per Queue
524 * @tx_ring: ring to free resources from
525 *
526 * Free all transmit software resources
527 **/
528void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
529{
530 struct pci_dev *pdev = tx_ring->adapter->pdev;
531
532 igbvf_clean_tx_ring(tx_ring);
533
534 vfree(tx_ring->buffer_info);
535 tx_ring->buffer_info = NULL;
536
537 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
538 tx_ring->dma);
539
540 tx_ring->desc = NULL;
541}
542
543/**
544 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
545 * @adapter: board private structure
546 **/
547static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
548{
549 struct igbvf_adapter *adapter = rx_ring->adapter;
550 struct igbvf_buffer *buffer_info;
551 struct pci_dev *pdev = adapter->pdev;
552 unsigned long size;
553 unsigned int i;
554
555 if (!rx_ring->buffer_info)
556 return;
557
558 /* Free all the Rx ring sk_buffs */
559 for (i = 0; i < rx_ring->count; i++) {
560 buffer_info = &rx_ring->buffer_info[i];
561 if (buffer_info->dma) {
562 if (adapter->rx_ps_hdr_size) {
563 dma_unmap_single(&pdev->dev, buffer_info->dma,
564 adapter->rx_ps_hdr_size,
565 DMA_FROM_DEVICE);
566 } else {
567 dma_unmap_single(&pdev->dev, buffer_info->dma,
568 adapter->rx_buffer_len,
569 DMA_FROM_DEVICE);
570 }
571 buffer_info->dma = 0;
572 }
573
574 if (buffer_info->skb) {
575 dev_kfree_skb(buffer_info->skb);
576 buffer_info->skb = NULL;
577 }
578
579 if (buffer_info->page) {
580 if (buffer_info->page_dma)
581 dma_unmap_page(&pdev->dev,
582 buffer_info->page_dma,
583 PAGE_SIZE / 2,
584 DMA_FROM_DEVICE);
585 put_page(buffer_info->page);
586 buffer_info->page = NULL;
587 buffer_info->page_dma = 0;
588 buffer_info->page_offset = 0;
589 }
590 }
591
592 size = sizeof(struct igbvf_buffer) * rx_ring->count;
593 memset(rx_ring->buffer_info, 0, size);
594
595 /* Zero out the descriptor ring */
596 memset(rx_ring->desc, 0, rx_ring->size);
597
598 rx_ring->next_to_clean = 0;
599 rx_ring->next_to_use = 0;
600
601 writel(0, adapter->hw.hw_addr + rx_ring->head);
602 writel(0, adapter->hw.hw_addr + rx_ring->tail);
603}
604
605/**
606 * igbvf_free_rx_resources - Free Rx Resources
607 * @rx_ring: ring to clean the resources from
608 *
609 * Free all receive software resources
610 **/
611
612void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
613{
614 struct pci_dev *pdev = rx_ring->adapter->pdev;
615
616 igbvf_clean_rx_ring(rx_ring);
617
618 vfree(rx_ring->buffer_info);
619 rx_ring->buffer_info = NULL;
620
621 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
622 rx_ring->dma);
623 rx_ring->desc = NULL;
624}
625
626/**
627 * igbvf_update_itr - update the dynamic ITR value based on statistics
628 * @adapter: pointer to adapter
629 * @itr_setting: current adapter->itr
630 * @packets: the number of packets during this measurement interval
631 * @bytes: the number of bytes during this measurement interval
632 *
633 * Stores a new ITR value based on packets and byte counts during the last
634 * interrupt. The advantage of per interrupt computation is faster updates
635 * and more accurate ITR for the current traffic pattern. Constants in this
636 * function were computed based on theoretical maximum wire speed and thresholds
637 * were set based on testing data as well as attempting to minimize response
638 * time while increasing bulk throughput.
639 **/
640static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
641 enum latency_range itr_setting,
642 int packets, int bytes)
643{
644 enum latency_range retval = itr_setting;
645
646 if (packets == 0)
647 goto update_itr_done;
648
649 switch (itr_setting) {
650 case lowest_latency:
651 /* handle TSO and jumbo frames */
652 if (bytes/packets > 8000)
653 retval = bulk_latency;
654 else if ((packets < 5) && (bytes > 512))
655 retval = low_latency;
656 break;
657 case low_latency: /* 50 usec aka 20000 ints/s */
658 if (bytes > 10000) {
659 /* this if handles the TSO accounting */
660 if (bytes/packets > 8000)
661 retval = bulk_latency;
662 else if ((packets < 10) || ((bytes/packets) > 1200))
663 retval = bulk_latency;
664 else if ((packets > 35))
665 retval = lowest_latency;
666 } else if (bytes/packets > 2000) {
667 retval = bulk_latency;
668 } else if (packets <= 2 && bytes < 512) {
669 retval = lowest_latency;
670 }
671 break;
672 case bulk_latency: /* 250 usec aka 4000 ints/s */
673 if (bytes > 25000) {
674 if (packets > 35)
675 retval = low_latency;
676 } else if (bytes < 6000) {
677 retval = low_latency;
678 }
679 break;
680 default:
681 break;
682 }
683
684update_itr_done:
685 return retval;
686}
687
688static int igbvf_range_to_itr(enum latency_range current_range)
689{
690 int new_itr;
691
692 switch (current_range) {
693 /* counts and packets in update_itr are dependent on these numbers */
694 case lowest_latency:
695 new_itr = IGBVF_70K_ITR;
696 break;
697 case low_latency:
698 new_itr = IGBVF_20K_ITR;
699 break;
700 case bulk_latency:
701 new_itr = IGBVF_4K_ITR;
702 break;
703 default:
704 new_itr = IGBVF_START_ITR;
705 break;
706 }
707 return new_itr;
708}
709
710static void igbvf_set_itr(struct igbvf_adapter *adapter)
711{
712 u32 new_itr;
713
714 adapter->tx_ring->itr_range =
715 igbvf_update_itr(adapter,
716 adapter->tx_ring->itr_val,
717 adapter->total_tx_packets,
718 adapter->total_tx_bytes);
719
720 /* conservative mode (itr 3) eliminates the lowest_latency setting */
721 if (adapter->requested_itr == 3 &&
722 adapter->tx_ring->itr_range == lowest_latency)
723 adapter->tx_ring->itr_range = low_latency;
724
725 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
726
727 if (new_itr != adapter->tx_ring->itr_val) {
728 u32 current_itr = adapter->tx_ring->itr_val;
729 /* this attempts to bias the interrupt rate towards Bulk
730 * by adding intermediate steps when interrupt rate is
731 * increasing
732 */
733 new_itr = new_itr > current_itr ?
734 min(current_itr + (new_itr >> 2), new_itr) :
735 new_itr;
736 adapter->tx_ring->itr_val = new_itr;
737
738 adapter->tx_ring->set_itr = 1;
739 }
740
741 adapter->rx_ring->itr_range =
742 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
743 adapter->total_rx_packets,
744 adapter->total_rx_bytes);
745 if (adapter->requested_itr == 3 &&
746 adapter->rx_ring->itr_range == lowest_latency)
747 adapter->rx_ring->itr_range = low_latency;
748
749 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
750
751 if (new_itr != adapter->rx_ring->itr_val) {
752 u32 current_itr = adapter->rx_ring->itr_val;
753
754 new_itr = new_itr > current_itr ?
755 min(current_itr + (new_itr >> 2), new_itr) :
756 new_itr;
757 adapter->rx_ring->itr_val = new_itr;
758
759 adapter->rx_ring->set_itr = 1;
760 }
761}
762
763/**
764 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
765 * @adapter: board private structure
766 *
767 * returns true if ring is completely cleaned
768 **/
769static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
770{
771 struct igbvf_adapter *adapter = tx_ring->adapter;
772 struct net_device *netdev = adapter->netdev;
773 struct igbvf_buffer *buffer_info;
774 struct sk_buff *skb;
775 union e1000_adv_tx_desc *tx_desc, *eop_desc;
776 unsigned int total_bytes = 0, total_packets = 0;
777 unsigned int i, count = 0;
778 bool cleaned = false;
779
780 i = tx_ring->next_to_clean;
781 buffer_info = &tx_ring->buffer_info[i];
782 eop_desc = buffer_info->next_to_watch;
783
784 do {
785 /* if next_to_watch is not set then there is no work pending */
786 if (!eop_desc)
787 break;
788
789 /* prevent any other reads prior to eop_desc */
790 smp_rmb();
791
792 /* if DD is not set pending work has not been completed */
793 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
794 break;
795
796 /* clear next_to_watch to prevent false hangs */
797 buffer_info->next_to_watch = NULL;
798
799 for (cleaned = false; !cleaned; count++) {
800 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
801 cleaned = (tx_desc == eop_desc);
802 skb = buffer_info->skb;
803
804 if (skb) {
805 unsigned int segs, bytecount;
806
807 /* gso_segs is currently only valid for tcp */
808 segs = skb_shinfo(skb)->gso_segs ?: 1;
809 /* multiply data chunks by size of headers */
810 bytecount = ((segs - 1) * skb_headlen(skb)) +
811 skb->len;
812 total_packets += segs;
813 total_bytes += bytecount;
814 }
815
816 igbvf_put_txbuf(adapter, buffer_info);
817 tx_desc->wb.status = 0;
818
819 i++;
820 if (i == tx_ring->count)
821 i = 0;
822
823 buffer_info = &tx_ring->buffer_info[i];
824 }
825
826 eop_desc = buffer_info->next_to_watch;
827 } while (count < tx_ring->count);
828
829 tx_ring->next_to_clean = i;
830
831 if (unlikely(count && netif_carrier_ok(netdev) &&
832 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
833 /* Make sure that anybody stopping the queue after this
834 * sees the new next_to_clean.
835 */
836 smp_mb();
837 if (netif_queue_stopped(netdev) &&
838 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
839 netif_wake_queue(netdev);
840 ++adapter->restart_queue;
841 }
842 }
843
844 netdev->stats.tx_bytes += total_bytes;
845 netdev->stats.tx_packets += total_packets;
846 return count < tx_ring->count;
847}
848
849static irqreturn_t igbvf_msix_other(int irq, void *data)
850{
851 struct net_device *netdev = data;
852 struct igbvf_adapter *adapter = netdev_priv(netdev);
853 struct e1000_hw *hw = &adapter->hw;
854
855 adapter->int_counter1++;
856
857 hw->mac.get_link_status = 1;
858 if (!test_bit(__IGBVF_DOWN, &adapter->state))
859 mod_timer(&adapter->watchdog_timer, jiffies + 1);
860
861 ew32(EIMS, adapter->eims_other);
862
863 return IRQ_HANDLED;
864}
865
866static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
867{
868 struct net_device *netdev = data;
869 struct igbvf_adapter *adapter = netdev_priv(netdev);
870 struct e1000_hw *hw = &adapter->hw;
871 struct igbvf_ring *tx_ring = adapter->tx_ring;
872
873 if (tx_ring->set_itr) {
874 writel(tx_ring->itr_val,
875 adapter->hw.hw_addr + tx_ring->itr_register);
876 adapter->tx_ring->set_itr = 0;
877 }
878
879 adapter->total_tx_bytes = 0;
880 adapter->total_tx_packets = 0;
881
882 /* auto mask will automatically re-enable the interrupt when we write
883 * EICS
884 */
885 if (!igbvf_clean_tx_irq(tx_ring))
886 /* Ring was not completely cleaned, so fire another interrupt */
887 ew32(EICS, tx_ring->eims_value);
888 else
889 ew32(EIMS, tx_ring->eims_value);
890
891 return IRQ_HANDLED;
892}
893
894static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
895{
896 struct net_device *netdev = data;
897 struct igbvf_adapter *adapter = netdev_priv(netdev);
898
899 adapter->int_counter0++;
900
901 /* Write the ITR value calculated at the end of the
902 * previous interrupt.
903 */
904 if (adapter->rx_ring->set_itr) {
905 writel(adapter->rx_ring->itr_val,
906 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
907 adapter->rx_ring->set_itr = 0;
908 }
909
910 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
911 adapter->total_rx_bytes = 0;
912 adapter->total_rx_packets = 0;
913 __napi_schedule(&adapter->rx_ring->napi);
914 }
915
916 return IRQ_HANDLED;
917}
918
919#define IGBVF_NO_QUEUE -1
920
921static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
922 int tx_queue, int msix_vector)
923{
924 struct e1000_hw *hw = &adapter->hw;
925 u32 ivar, index;
926
927 /* 82576 uses a table-based method for assigning vectors.
928 * Each queue has a single entry in the table to which we write
929 * a vector number along with a "valid" bit. Sadly, the layout
930 * of the table is somewhat counterintuitive.
931 */
932 if (rx_queue > IGBVF_NO_QUEUE) {
933 index = (rx_queue >> 1);
934 ivar = array_er32(IVAR0, index);
935 if (rx_queue & 0x1) {
936 /* vector goes into third byte of register */
937 ivar = ivar & 0xFF00FFFF;
938 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
939 } else {
940 /* vector goes into low byte of register */
941 ivar = ivar & 0xFFFFFF00;
942 ivar |= msix_vector | E1000_IVAR_VALID;
943 }
944 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
945 array_ew32(IVAR0, index, ivar);
946 }
947 if (tx_queue > IGBVF_NO_QUEUE) {
948 index = (tx_queue >> 1);
949 ivar = array_er32(IVAR0, index);
950 if (tx_queue & 0x1) {
951 /* vector goes into high byte of register */
952 ivar = ivar & 0x00FFFFFF;
953 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
954 } else {
955 /* vector goes into second byte of register */
956 ivar = ivar & 0xFFFF00FF;
957 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
958 }
959 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
960 array_ew32(IVAR0, index, ivar);
961 }
962}
963
964/**
965 * igbvf_configure_msix - Configure MSI-X hardware
966 * @adapter: board private structure
967 *
968 * igbvf_configure_msix sets up the hardware to properly
969 * generate MSI-X interrupts.
970 **/
971static void igbvf_configure_msix(struct igbvf_adapter *adapter)
972{
973 u32 tmp;
974 struct e1000_hw *hw = &adapter->hw;
975 struct igbvf_ring *tx_ring = adapter->tx_ring;
976 struct igbvf_ring *rx_ring = adapter->rx_ring;
977 int vector = 0;
978
979 adapter->eims_enable_mask = 0;
980
981 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
982 adapter->eims_enable_mask |= tx_ring->eims_value;
983 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
984 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
985 adapter->eims_enable_mask |= rx_ring->eims_value;
986 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
987
988 /* set vector for other causes, i.e. link changes */
989
990 tmp = (vector++ | E1000_IVAR_VALID);
991
992 ew32(IVAR_MISC, tmp);
993
994 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
995 adapter->eims_other = BIT(vector - 1);
996 e1e_flush();
997}
998
999static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1000{
1001 if (adapter->msix_entries) {
1002 pci_disable_msix(adapter->pdev);
1003 kfree(adapter->msix_entries);
1004 adapter->msix_entries = NULL;
1005 }
1006}
1007
1008/**
1009 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1010 * @adapter: board private structure
1011 *
1012 * Attempt to configure interrupts using the best available
1013 * capabilities of the hardware and kernel.
1014 **/
1015static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1016{
1017 int err = -ENOMEM;
1018 int i;
1019
1020 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1021 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1022 GFP_KERNEL);
1023 if (adapter->msix_entries) {
1024 for (i = 0; i < 3; i++)
1025 adapter->msix_entries[i].entry = i;
1026
1027 err = pci_enable_msix_range(adapter->pdev,
1028 adapter->msix_entries, 3, 3);
1029 }
1030
1031 if (err < 0) {
1032 /* MSI-X failed */
1033 dev_err(&adapter->pdev->dev,
1034 "Failed to initialize MSI-X interrupts.\n");
1035 igbvf_reset_interrupt_capability(adapter);
1036 }
1037}
1038
1039/**
1040 * igbvf_request_msix - Initialize MSI-X interrupts
1041 * @adapter: board private structure
1042 *
1043 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1044 * kernel.
1045 **/
1046static int igbvf_request_msix(struct igbvf_adapter *adapter)
1047{
1048 struct net_device *netdev = adapter->netdev;
1049 int err = 0, vector = 0;
1050
1051 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1052 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1053 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1054 } else {
1055 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1056 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1057 }
1058
1059 err = request_irq(adapter->msix_entries[vector].vector,
1060 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1061 netdev);
1062 if (err)
1063 goto out;
1064
1065 adapter->tx_ring->itr_register = E1000_EITR(vector);
1066 adapter->tx_ring->itr_val = adapter->current_itr;
1067 vector++;
1068
1069 err = request_irq(adapter->msix_entries[vector].vector,
1070 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1071 netdev);
1072 if (err)
1073 goto out;
1074
1075 adapter->rx_ring->itr_register = E1000_EITR(vector);
1076 adapter->rx_ring->itr_val = adapter->current_itr;
1077 vector++;
1078
1079 err = request_irq(adapter->msix_entries[vector].vector,
1080 igbvf_msix_other, 0, netdev->name, netdev);
1081 if (err)
1082 goto out;
1083
1084 igbvf_configure_msix(adapter);
1085 return 0;
1086out:
1087 return err;
1088}
1089
1090/**
1091 * igbvf_alloc_queues - Allocate memory for all rings
1092 * @adapter: board private structure to initialize
1093 **/
1094static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1095{
1096 struct net_device *netdev = adapter->netdev;
1097
1098 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1099 if (!adapter->tx_ring)
1100 return -ENOMEM;
1101
1102 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1103 if (!adapter->rx_ring) {
1104 kfree(adapter->tx_ring);
1105 return -ENOMEM;
1106 }
1107
1108 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1109
1110 return 0;
1111}
1112
1113/**
1114 * igbvf_request_irq - initialize interrupts
1115 * @adapter: board private structure
1116 *
1117 * Attempts to configure interrupts using the best available
1118 * capabilities of the hardware and kernel.
1119 **/
1120static int igbvf_request_irq(struct igbvf_adapter *adapter)
1121{
1122 int err = -1;
1123
1124 /* igbvf supports msi-x only */
1125 if (adapter->msix_entries)
1126 err = igbvf_request_msix(adapter);
1127
1128 if (!err)
1129 return err;
1130
1131 dev_err(&adapter->pdev->dev,
1132 "Unable to allocate interrupt, Error: %d\n", err);
1133
1134 return err;
1135}
1136
1137static void igbvf_free_irq(struct igbvf_adapter *adapter)
1138{
1139 struct net_device *netdev = adapter->netdev;
1140 int vector;
1141
1142 if (adapter->msix_entries) {
1143 for (vector = 0; vector < 3; vector++)
1144 free_irq(adapter->msix_entries[vector].vector, netdev);
1145 }
1146}
1147
1148/**
1149 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1150 * @adapter: board private structure
1151 **/
1152static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1153{
1154 struct e1000_hw *hw = &adapter->hw;
1155
1156 ew32(EIMC, ~0);
1157
1158 if (adapter->msix_entries)
1159 ew32(EIAC, 0);
1160}
1161
1162/**
1163 * igbvf_irq_enable - Enable default interrupt generation settings
1164 * @adapter: board private structure
1165 **/
1166static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1167{
1168 struct e1000_hw *hw = &adapter->hw;
1169
1170 ew32(EIAC, adapter->eims_enable_mask);
1171 ew32(EIAM, adapter->eims_enable_mask);
1172 ew32(EIMS, adapter->eims_enable_mask);
1173}
1174
1175/**
1176 * igbvf_poll - NAPI Rx polling callback
1177 * @napi: struct associated with this polling callback
1178 * @budget: amount of packets driver is allowed to process this poll
1179 **/
1180static int igbvf_poll(struct napi_struct *napi, int budget)
1181{
1182 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1183 struct igbvf_adapter *adapter = rx_ring->adapter;
1184 struct e1000_hw *hw = &adapter->hw;
1185 int work_done = 0;
1186
1187 igbvf_clean_rx_irq(adapter, &work_done, budget);
1188
1189 if (work_done == budget)
1190 return budget;
1191
1192 /* Exit the polling mode, but don't re-enable interrupts if stack might
1193 * poll us due to busy-polling
1194 */
1195 if (likely(napi_complete_done(napi, work_done))) {
1196 if (adapter->requested_itr & 3)
1197 igbvf_set_itr(adapter);
1198
1199 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1200 ew32(EIMS, adapter->rx_ring->eims_value);
1201 }
1202
1203 return work_done;
1204}
1205
1206/**
1207 * igbvf_set_rlpml - set receive large packet maximum length
1208 * @adapter: board private structure
1209 *
1210 * Configure the maximum size of packets that will be received
1211 */
1212static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1213{
1214 int max_frame_size;
1215 struct e1000_hw *hw = &adapter->hw;
1216
1217 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1218
1219 spin_lock_bh(&hw->mbx_lock);
1220
1221 e1000_rlpml_set_vf(hw, max_frame_size);
1222
1223 spin_unlock_bh(&hw->mbx_lock);
1224}
1225
1226static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1227 __be16 proto, u16 vid)
1228{
1229 struct igbvf_adapter *adapter = netdev_priv(netdev);
1230 struct e1000_hw *hw = &adapter->hw;
1231
1232 spin_lock_bh(&hw->mbx_lock);
1233
1234 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1235 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1236 spin_unlock_bh(&hw->mbx_lock);
1237 return -EINVAL;
1238 }
1239
1240 spin_unlock_bh(&hw->mbx_lock);
1241
1242 set_bit(vid, adapter->active_vlans);
1243 return 0;
1244}
1245
1246static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1247 __be16 proto, u16 vid)
1248{
1249 struct igbvf_adapter *adapter = netdev_priv(netdev);
1250 struct e1000_hw *hw = &adapter->hw;
1251
1252 spin_lock_bh(&hw->mbx_lock);
1253
1254 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1255 dev_err(&adapter->pdev->dev,
1256 "Failed to remove vlan id %d\n", vid);
1257 spin_unlock_bh(&hw->mbx_lock);
1258 return -EINVAL;
1259 }
1260
1261 spin_unlock_bh(&hw->mbx_lock);
1262
1263 clear_bit(vid, adapter->active_vlans);
1264 return 0;
1265}
1266
1267static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1268{
1269 u16 vid;
1270
1271 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1272 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1273}
1274
1275/**
1276 * igbvf_configure_tx - Configure Transmit Unit after Reset
1277 * @adapter: board private structure
1278 *
1279 * Configure the Tx unit of the MAC after a reset.
1280 **/
1281static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1282{
1283 struct e1000_hw *hw = &adapter->hw;
1284 struct igbvf_ring *tx_ring = adapter->tx_ring;
1285 u64 tdba;
1286 u32 txdctl, dca_txctrl;
1287
1288 /* disable transmits */
1289 txdctl = er32(TXDCTL(0));
1290 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1291 e1e_flush();
1292 msleep(10);
1293
1294 /* Setup the HW Tx Head and Tail descriptor pointers */
1295 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1296 tdba = tx_ring->dma;
1297 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1298 ew32(TDBAH(0), (tdba >> 32));
1299 ew32(TDH(0), 0);
1300 ew32(TDT(0), 0);
1301 tx_ring->head = E1000_TDH(0);
1302 tx_ring->tail = E1000_TDT(0);
1303
1304 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1305 * MUST be delivered in order or it will completely screw up
1306 * our bookkeeping.
1307 */
1308 dca_txctrl = er32(DCA_TXCTRL(0));
1309 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1310 ew32(DCA_TXCTRL(0), dca_txctrl);
1311
1312 /* enable transmits */
1313 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1314 ew32(TXDCTL(0), txdctl);
1315
1316 /* Setup Transmit Descriptor Settings for eop descriptor */
1317 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1318
1319 /* enable Report Status bit */
1320 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1321}
1322
1323/**
1324 * igbvf_setup_srrctl - configure the receive control registers
1325 * @adapter: Board private structure
1326 **/
1327static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1328{
1329 struct e1000_hw *hw = &adapter->hw;
1330 u32 srrctl = 0;
1331
1332 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1333 E1000_SRRCTL_BSIZEHDR_MASK |
1334 E1000_SRRCTL_BSIZEPKT_MASK);
1335
1336 /* Enable queue drop to avoid head of line blocking */
1337 srrctl |= E1000_SRRCTL_DROP_EN;
1338
1339 /* Setup buffer sizes */
1340 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1341 E1000_SRRCTL_BSIZEPKT_SHIFT;
1342
1343 if (adapter->rx_buffer_len < 2048) {
1344 adapter->rx_ps_hdr_size = 0;
1345 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1346 } else {
1347 adapter->rx_ps_hdr_size = 128;
1348 srrctl |= adapter->rx_ps_hdr_size <<
1349 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1350 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1351 }
1352
1353 ew32(SRRCTL(0), srrctl);
1354}
1355
1356/**
1357 * igbvf_configure_rx - Configure Receive Unit after Reset
1358 * @adapter: board private structure
1359 *
1360 * Configure the Rx unit of the MAC after a reset.
1361 **/
1362static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1363{
1364 struct e1000_hw *hw = &adapter->hw;
1365 struct igbvf_ring *rx_ring = adapter->rx_ring;
1366 u64 rdba;
1367 u32 rxdctl;
1368
1369 /* disable receives */
1370 rxdctl = er32(RXDCTL(0));
1371 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1372 e1e_flush();
1373 msleep(10);
1374
1375 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1376 * the Base and Length of the Rx Descriptor Ring
1377 */
1378 rdba = rx_ring->dma;
1379 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1380 ew32(RDBAH(0), (rdba >> 32));
1381 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1382 rx_ring->head = E1000_RDH(0);
1383 rx_ring->tail = E1000_RDT(0);
1384 ew32(RDH(0), 0);
1385 ew32(RDT(0), 0);
1386
1387 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1388 rxdctl &= 0xFFF00000;
1389 rxdctl |= IGBVF_RX_PTHRESH;
1390 rxdctl |= IGBVF_RX_HTHRESH << 8;
1391 rxdctl |= IGBVF_RX_WTHRESH << 16;
1392
1393 igbvf_set_rlpml(adapter);
1394
1395 /* enable receives */
1396 ew32(RXDCTL(0), rxdctl);
1397}
1398
1399/**
1400 * igbvf_set_multi - Multicast and Promiscuous mode set
1401 * @netdev: network interface device structure
1402 *
1403 * The set_multi entry point is called whenever the multicast address
1404 * list or the network interface flags are updated. This routine is
1405 * responsible for configuring the hardware for proper multicast,
1406 * promiscuous mode, and all-multi behavior.
1407 **/
1408static void igbvf_set_multi(struct net_device *netdev)
1409{
1410 struct igbvf_adapter *adapter = netdev_priv(netdev);
1411 struct e1000_hw *hw = &adapter->hw;
1412 struct netdev_hw_addr *ha;
1413 u8 *mta_list = NULL;
1414 int i;
1415
1416 if (!netdev_mc_empty(netdev)) {
1417 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1418 GFP_ATOMIC);
1419 if (!mta_list)
1420 return;
1421 }
1422
1423 /* prepare a packed array of only addresses. */
1424 i = 0;
1425 netdev_for_each_mc_addr(ha, netdev)
1426 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1427
1428 spin_lock_bh(&hw->mbx_lock);
1429
1430 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1431
1432 spin_unlock_bh(&hw->mbx_lock);
1433 kfree(mta_list);
1434}
1435
1436/**
1437 * igbvf_set_uni - Configure unicast MAC filters
1438 * @netdev: network interface device structure
1439 *
1440 * This routine is responsible for configuring the hardware for proper
1441 * unicast filters.
1442 **/
1443static int igbvf_set_uni(struct net_device *netdev)
1444{
1445 struct igbvf_adapter *adapter = netdev_priv(netdev);
1446 struct e1000_hw *hw = &adapter->hw;
1447
1448 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1449 pr_err("Too many unicast filters - No Space\n");
1450 return -ENOSPC;
1451 }
1452
1453 spin_lock_bh(&hw->mbx_lock);
1454
1455 /* Clear all unicast MAC filters */
1456 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1457
1458 spin_unlock_bh(&hw->mbx_lock);
1459
1460 if (!netdev_uc_empty(netdev)) {
1461 struct netdev_hw_addr *ha;
1462
1463 /* Add MAC filters one by one */
1464 netdev_for_each_uc_addr(ha, netdev) {
1465 spin_lock_bh(&hw->mbx_lock);
1466
1467 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1468 ha->addr);
1469
1470 spin_unlock_bh(&hw->mbx_lock);
1471 udelay(200);
1472 }
1473 }
1474
1475 return 0;
1476}
1477
1478static void igbvf_set_rx_mode(struct net_device *netdev)
1479{
1480 igbvf_set_multi(netdev);
1481 igbvf_set_uni(netdev);
1482}
1483
1484/**
1485 * igbvf_configure - configure the hardware for Rx and Tx
1486 * @adapter: private board structure
1487 **/
1488static void igbvf_configure(struct igbvf_adapter *adapter)
1489{
1490 igbvf_set_rx_mode(adapter->netdev);
1491
1492 igbvf_restore_vlan(adapter);
1493
1494 igbvf_configure_tx(adapter);
1495 igbvf_setup_srrctl(adapter);
1496 igbvf_configure_rx(adapter);
1497 igbvf_alloc_rx_buffers(adapter->rx_ring,
1498 igbvf_desc_unused(adapter->rx_ring));
1499}
1500
1501/* igbvf_reset - bring the hardware into a known good state
1502 * @adapter: private board structure
1503 *
1504 * This function boots the hardware and enables some settings that
1505 * require a configuration cycle of the hardware - those cannot be
1506 * set/changed during runtime. After reset the device needs to be
1507 * properly configured for Rx, Tx etc.
1508 */
1509static void igbvf_reset(struct igbvf_adapter *adapter)
1510{
1511 struct e1000_mac_info *mac = &adapter->hw.mac;
1512 struct net_device *netdev = adapter->netdev;
1513 struct e1000_hw *hw = &adapter->hw;
1514
1515 spin_lock_bh(&hw->mbx_lock);
1516
1517 /* Allow time for pending master requests to run */
1518 if (mac->ops.reset_hw(hw))
1519 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1520
1521 mac->ops.init_hw(hw);
1522
1523 spin_unlock_bh(&hw->mbx_lock);
1524
1525 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1526 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1527 netdev->addr_len);
1528 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1529 netdev->addr_len);
1530 }
1531
1532 adapter->last_reset = jiffies;
1533}
1534
1535int igbvf_up(struct igbvf_adapter *adapter)
1536{
1537 struct e1000_hw *hw = &adapter->hw;
1538
1539 /* hardware has been reset, we need to reload some things */
1540 igbvf_configure(adapter);
1541
1542 clear_bit(__IGBVF_DOWN, &adapter->state);
1543
1544 napi_enable(&adapter->rx_ring->napi);
1545 if (adapter->msix_entries)
1546 igbvf_configure_msix(adapter);
1547
1548 /* Clear any pending interrupts. */
1549 er32(EICR);
1550 igbvf_irq_enable(adapter);
1551
1552 /* start the watchdog */
1553 hw->mac.get_link_status = 1;
1554 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1555
1556 return 0;
1557}
1558
1559void igbvf_down(struct igbvf_adapter *adapter)
1560{
1561 struct net_device *netdev = adapter->netdev;
1562 struct e1000_hw *hw = &adapter->hw;
1563 u32 rxdctl, txdctl;
1564
1565 /* signal that we're down so the interrupt handler does not
1566 * reschedule our watchdog timer
1567 */
1568 set_bit(__IGBVF_DOWN, &adapter->state);
1569
1570 /* disable receives in the hardware */
1571 rxdctl = er32(RXDCTL(0));
1572 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1573
1574 netif_carrier_off(netdev);
1575 netif_stop_queue(netdev);
1576
1577 /* disable transmits in the hardware */
1578 txdctl = er32(TXDCTL(0));
1579 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1580
1581 /* flush both disables and wait for them to finish */
1582 e1e_flush();
1583 msleep(10);
1584
1585 napi_disable(&adapter->rx_ring->napi);
1586
1587 igbvf_irq_disable(adapter);
1588
1589 del_timer_sync(&adapter->watchdog_timer);
1590
1591 /* record the stats before reset*/
1592 igbvf_update_stats(adapter);
1593
1594 adapter->link_speed = 0;
1595 adapter->link_duplex = 0;
1596
1597 igbvf_reset(adapter);
1598 igbvf_clean_tx_ring(adapter->tx_ring);
1599 igbvf_clean_rx_ring(adapter->rx_ring);
1600}
1601
1602void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1603{
1604 might_sleep();
1605 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1606 usleep_range(1000, 2000);
1607 igbvf_down(adapter);
1608 igbvf_up(adapter);
1609 clear_bit(__IGBVF_RESETTING, &adapter->state);
1610}
1611
1612/**
1613 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1614 * @adapter: board private structure to initialize
1615 *
1616 * igbvf_sw_init initializes the Adapter private data structure.
1617 * Fields are initialized based on PCI device information and
1618 * OS network device settings (MTU size).
1619 **/
1620static int igbvf_sw_init(struct igbvf_adapter *adapter)
1621{
1622 struct net_device *netdev = adapter->netdev;
1623 s32 rc;
1624
1625 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1626 adapter->rx_ps_hdr_size = 0;
1627 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1628 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1629
1630 adapter->tx_int_delay = 8;
1631 adapter->tx_abs_int_delay = 32;
1632 adapter->rx_int_delay = 0;
1633 adapter->rx_abs_int_delay = 8;
1634 adapter->requested_itr = 3;
1635 adapter->current_itr = IGBVF_START_ITR;
1636
1637 /* Set various function pointers */
1638 adapter->ei->init_ops(&adapter->hw);
1639
1640 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1641 if (rc)
1642 return rc;
1643
1644 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1645 if (rc)
1646 return rc;
1647
1648 igbvf_set_interrupt_capability(adapter);
1649
1650 if (igbvf_alloc_queues(adapter))
1651 return -ENOMEM;
1652
1653 spin_lock_init(&adapter->tx_queue_lock);
1654
1655 /* Explicitly disable IRQ since the NIC can be in any state. */
1656 igbvf_irq_disable(adapter);
1657
1658 spin_lock_init(&adapter->stats_lock);
1659 spin_lock_init(&adapter->hw.mbx_lock);
1660
1661 set_bit(__IGBVF_DOWN, &adapter->state);
1662 return 0;
1663}
1664
1665static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1666{
1667 struct e1000_hw *hw = &adapter->hw;
1668
1669 adapter->stats.last_gprc = er32(VFGPRC);
1670 adapter->stats.last_gorc = er32(VFGORC);
1671 adapter->stats.last_gptc = er32(VFGPTC);
1672 adapter->stats.last_gotc = er32(VFGOTC);
1673 adapter->stats.last_mprc = er32(VFMPRC);
1674 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1675 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1676 adapter->stats.last_gorlbc = er32(VFGORLBC);
1677 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1678
1679 adapter->stats.base_gprc = er32(VFGPRC);
1680 adapter->stats.base_gorc = er32(VFGORC);
1681 adapter->stats.base_gptc = er32(VFGPTC);
1682 adapter->stats.base_gotc = er32(VFGOTC);
1683 adapter->stats.base_mprc = er32(VFMPRC);
1684 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1685 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1686 adapter->stats.base_gorlbc = er32(VFGORLBC);
1687 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1688}
1689
1690/**
1691 * igbvf_open - Called when a network interface is made active
1692 * @netdev: network interface device structure
1693 *
1694 * Returns 0 on success, negative value on failure
1695 *
1696 * The open entry point is called when a network interface is made
1697 * active by the system (IFF_UP). At this point all resources needed
1698 * for transmit and receive operations are allocated, the interrupt
1699 * handler is registered with the OS, the watchdog timer is started,
1700 * and the stack is notified that the interface is ready.
1701 **/
1702static int igbvf_open(struct net_device *netdev)
1703{
1704 struct igbvf_adapter *adapter = netdev_priv(netdev);
1705 struct e1000_hw *hw = &adapter->hw;
1706 int err;
1707
1708 /* disallow open during test */
1709 if (test_bit(__IGBVF_TESTING, &adapter->state))
1710 return -EBUSY;
1711
1712 /* allocate transmit descriptors */
1713 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1714 if (err)
1715 goto err_setup_tx;
1716
1717 /* allocate receive descriptors */
1718 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1719 if (err)
1720 goto err_setup_rx;
1721
1722 /* before we allocate an interrupt, we must be ready to handle it.
1723 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1724 * as soon as we call pci_request_irq, so we have to setup our
1725 * clean_rx handler before we do so.
1726 */
1727 igbvf_configure(adapter);
1728
1729 err = igbvf_request_irq(adapter);
1730 if (err)
1731 goto err_req_irq;
1732
1733 /* From here on the code is the same as igbvf_up() */
1734 clear_bit(__IGBVF_DOWN, &adapter->state);
1735
1736 napi_enable(&adapter->rx_ring->napi);
1737
1738 /* clear any pending interrupts */
1739 er32(EICR);
1740
1741 igbvf_irq_enable(adapter);
1742
1743 /* start the watchdog */
1744 hw->mac.get_link_status = 1;
1745 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1746
1747 return 0;
1748
1749err_req_irq:
1750 igbvf_free_rx_resources(adapter->rx_ring);
1751err_setup_rx:
1752 igbvf_free_tx_resources(adapter->tx_ring);
1753err_setup_tx:
1754 igbvf_reset(adapter);
1755
1756 return err;
1757}
1758
1759/**
1760 * igbvf_close - Disables a network interface
1761 * @netdev: network interface device structure
1762 *
1763 * Returns 0, this is not allowed to fail
1764 *
1765 * The close entry point is called when an interface is de-activated
1766 * by the OS. The hardware is still under the drivers control, but
1767 * needs to be disabled. A global MAC reset is issued to stop the
1768 * hardware, and all transmit and receive resources are freed.
1769 **/
1770static int igbvf_close(struct net_device *netdev)
1771{
1772 struct igbvf_adapter *adapter = netdev_priv(netdev);
1773
1774 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1775 igbvf_down(adapter);
1776
1777 igbvf_free_irq(adapter);
1778
1779 igbvf_free_tx_resources(adapter->tx_ring);
1780 igbvf_free_rx_resources(adapter->rx_ring);
1781
1782 return 0;
1783}
1784
1785/**
1786 * igbvf_set_mac - Change the Ethernet Address of the NIC
1787 * @netdev: network interface device structure
1788 * @p: pointer to an address structure
1789 *
1790 * Returns 0 on success, negative on failure
1791 **/
1792static int igbvf_set_mac(struct net_device *netdev, void *p)
1793{
1794 struct igbvf_adapter *adapter = netdev_priv(netdev);
1795 struct e1000_hw *hw = &adapter->hw;
1796 struct sockaddr *addr = p;
1797
1798 if (!is_valid_ether_addr(addr->sa_data))
1799 return -EADDRNOTAVAIL;
1800
1801 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1802
1803 spin_lock_bh(&hw->mbx_lock);
1804
1805 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1806
1807 spin_unlock_bh(&hw->mbx_lock);
1808
1809 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1810 return -EADDRNOTAVAIL;
1811
1812 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1813
1814 return 0;
1815}
1816
1817#define UPDATE_VF_COUNTER(reg, name) \
1818{ \
1819 u32 current_counter = er32(reg); \
1820 if (current_counter < adapter->stats.last_##name) \
1821 adapter->stats.name += 0x100000000LL; \
1822 adapter->stats.last_##name = current_counter; \
1823 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1824 adapter->stats.name |= current_counter; \
1825}
1826
1827/**
1828 * igbvf_update_stats - Update the board statistics counters
1829 * @adapter: board private structure
1830**/
1831void igbvf_update_stats(struct igbvf_adapter *adapter)
1832{
1833 struct e1000_hw *hw = &adapter->hw;
1834 struct pci_dev *pdev = adapter->pdev;
1835
1836 /* Prevent stats update while adapter is being reset, link is down
1837 * or if the pci connection is down.
1838 */
1839 if (adapter->link_speed == 0)
1840 return;
1841
1842 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1843 return;
1844
1845 if (pci_channel_offline(pdev))
1846 return;
1847
1848 UPDATE_VF_COUNTER(VFGPRC, gprc);
1849 UPDATE_VF_COUNTER(VFGORC, gorc);
1850 UPDATE_VF_COUNTER(VFGPTC, gptc);
1851 UPDATE_VF_COUNTER(VFGOTC, gotc);
1852 UPDATE_VF_COUNTER(VFMPRC, mprc);
1853 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1854 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1855 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1856 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1857
1858 /* Fill out the OS statistics structure */
1859 adapter->netdev->stats.multicast = adapter->stats.mprc;
1860}
1861
1862static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1863{
1864 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1865 adapter->link_speed,
1866 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1867}
1868
1869static bool igbvf_has_link(struct igbvf_adapter *adapter)
1870{
1871 struct e1000_hw *hw = &adapter->hw;
1872 s32 ret_val = E1000_SUCCESS;
1873 bool link_active;
1874
1875 /* If interface is down, stay link down */
1876 if (test_bit(__IGBVF_DOWN, &adapter->state))
1877 return false;
1878
1879 spin_lock_bh(&hw->mbx_lock);
1880
1881 ret_val = hw->mac.ops.check_for_link(hw);
1882
1883 spin_unlock_bh(&hw->mbx_lock);
1884
1885 link_active = !hw->mac.get_link_status;
1886
1887 /* if check for link returns error we will need to reset */
1888 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1889 schedule_work(&adapter->reset_task);
1890
1891 return link_active;
1892}
1893
1894/**
1895 * igbvf_watchdog - Timer Call-back
1896 * @data: pointer to adapter cast into an unsigned long
1897 **/
1898static void igbvf_watchdog(struct timer_list *t)
1899{
1900 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1901
1902 /* Do the rest outside of interrupt context */
1903 schedule_work(&adapter->watchdog_task);
1904}
1905
1906static void igbvf_watchdog_task(struct work_struct *work)
1907{
1908 struct igbvf_adapter *adapter = container_of(work,
1909 struct igbvf_adapter,
1910 watchdog_task);
1911 struct net_device *netdev = adapter->netdev;
1912 struct e1000_mac_info *mac = &adapter->hw.mac;
1913 struct igbvf_ring *tx_ring = adapter->tx_ring;
1914 struct e1000_hw *hw = &adapter->hw;
1915 u32 link;
1916 int tx_pending = 0;
1917
1918 link = igbvf_has_link(adapter);
1919
1920 if (link) {
1921 if (!netif_carrier_ok(netdev)) {
1922 mac->ops.get_link_up_info(&adapter->hw,
1923 &adapter->link_speed,
1924 &adapter->link_duplex);
1925 igbvf_print_link_info(adapter);
1926
1927 netif_carrier_on(netdev);
1928 netif_wake_queue(netdev);
1929 }
1930 } else {
1931 if (netif_carrier_ok(netdev)) {
1932 adapter->link_speed = 0;
1933 adapter->link_duplex = 0;
1934 dev_info(&adapter->pdev->dev, "Link is Down\n");
1935 netif_carrier_off(netdev);
1936 netif_stop_queue(netdev);
1937 }
1938 }
1939
1940 if (netif_carrier_ok(netdev)) {
1941 igbvf_update_stats(adapter);
1942 } else {
1943 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1944 tx_ring->count);
1945 if (tx_pending) {
1946 /* We've lost link, so the controller stops DMA,
1947 * but we've got queued Tx work that's never going
1948 * to get done, so reset controller to flush Tx.
1949 * (Do the reset outside of interrupt context).
1950 */
1951 adapter->tx_timeout_count++;
1952 schedule_work(&adapter->reset_task);
1953 }
1954 }
1955
1956 /* Cause software interrupt to ensure Rx ring is cleaned */
1957 ew32(EICS, adapter->rx_ring->eims_value);
1958
1959 /* Reset the timer */
1960 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1961 mod_timer(&adapter->watchdog_timer,
1962 round_jiffies(jiffies + (2 * HZ)));
1963}
1964
1965#define IGBVF_TX_FLAGS_CSUM 0x00000001
1966#define IGBVF_TX_FLAGS_VLAN 0x00000002
1967#define IGBVF_TX_FLAGS_TSO 0x00000004
1968#define IGBVF_TX_FLAGS_IPV4 0x00000008
1969#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1970#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1971
1972static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1973 u32 type_tucmd, u32 mss_l4len_idx)
1974{
1975 struct e1000_adv_tx_context_desc *context_desc;
1976 struct igbvf_buffer *buffer_info;
1977 u16 i = tx_ring->next_to_use;
1978
1979 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1980 buffer_info = &tx_ring->buffer_info[i];
1981
1982 i++;
1983 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1984
1985 /* set bits to identify this as an advanced context descriptor */
1986 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1987
1988 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1989 context_desc->seqnum_seed = 0;
1990 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1991 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1992
1993 buffer_info->time_stamp = jiffies;
1994 buffer_info->dma = 0;
1995}
1996
1997static int igbvf_tso(struct igbvf_ring *tx_ring,
1998 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1999{
2000 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2001 union {
2002 struct iphdr *v4;
2003 struct ipv6hdr *v6;
2004 unsigned char *hdr;
2005 } ip;
2006 union {
2007 struct tcphdr *tcp;
2008 unsigned char *hdr;
2009 } l4;
2010 u32 paylen, l4_offset;
2011 int err;
2012
2013 if (skb->ip_summed != CHECKSUM_PARTIAL)
2014 return 0;
2015
2016 if (!skb_is_gso(skb))
2017 return 0;
2018
2019 err = skb_cow_head(skb, 0);
2020 if (err < 0)
2021 return err;
2022
2023 ip.hdr = skb_network_header(skb);
2024 l4.hdr = skb_checksum_start(skb);
2025
2026 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2027 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2028
2029 /* initialize outer IP header fields */
2030 if (ip.v4->version == 4) {
2031 unsigned char *csum_start = skb_checksum_start(skb);
2032 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2033
2034 /* IP header will have to cancel out any data that
2035 * is not a part of the outer IP header
2036 */
2037 ip.v4->check = csum_fold(csum_partial(trans_start,
2038 csum_start - trans_start,
2039 0));
2040 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2041
2042 ip.v4->tot_len = 0;
2043 } else {
2044 ip.v6->payload_len = 0;
2045 }
2046
2047 /* determine offset of inner transport header */
2048 l4_offset = l4.hdr - skb->data;
2049
2050 /* compute length of segmentation header */
2051 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2052
2053 /* remove payload length from inner checksum */
2054 paylen = skb->len - l4_offset;
2055 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2056
2057 /* MSS L4LEN IDX */
2058 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2059 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2060
2061 /* VLAN MACLEN IPLEN */
2062 vlan_macip_lens = l4.hdr - ip.hdr;
2063 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2064 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2065
2066 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2067
2068 return 1;
2069}
2070
2071static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2072{
2073 unsigned int offset = 0;
2074
2075 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2076
2077 return offset == skb_checksum_start_offset(skb);
2078}
2079
2080static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2081 u32 tx_flags, __be16 protocol)
2082{
2083 u32 vlan_macip_lens = 0;
2084 u32 type_tucmd = 0;
2085
2086 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2087csum_failed:
2088 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2089 return false;
2090 goto no_csum;
2091 }
2092
2093 switch (skb->csum_offset) {
2094 case offsetof(struct tcphdr, check):
2095 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2096 /* fall through */
2097 case offsetof(struct udphdr, check):
2098 break;
2099 case offsetof(struct sctphdr, checksum):
2100 /* validate that this is actually an SCTP request */
2101 if (((protocol == htons(ETH_P_IP)) &&
2102 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2103 ((protocol == htons(ETH_P_IPV6)) &&
2104 igbvf_ipv6_csum_is_sctp(skb))) {
2105 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2106 break;
2107 }
2108 /* fall through */
2109 default:
2110 skb_checksum_help(skb);
2111 goto csum_failed;
2112 }
2113
2114 vlan_macip_lens = skb_checksum_start_offset(skb) -
2115 skb_network_offset(skb);
2116no_csum:
2117 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2118 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2119
2120 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2121 return true;
2122}
2123
2124static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2125{
2126 struct igbvf_adapter *adapter = netdev_priv(netdev);
2127
2128 /* there is enough descriptors then we don't need to worry */
2129 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2130 return 0;
2131
2132 netif_stop_queue(netdev);
2133
2134 /* Herbert's original patch had:
2135 * smp_mb__after_netif_stop_queue();
2136 * but since that doesn't exist yet, just open code it.
2137 */
2138 smp_mb();
2139
2140 /* We need to check again just in case room has been made available */
2141 if (igbvf_desc_unused(adapter->tx_ring) < size)
2142 return -EBUSY;
2143
2144 netif_wake_queue(netdev);
2145
2146 ++adapter->restart_queue;
2147 return 0;
2148}
2149
2150#define IGBVF_MAX_TXD_PWR 16
2151#define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2152
2153static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2154 struct igbvf_ring *tx_ring,
2155 struct sk_buff *skb)
2156{
2157 struct igbvf_buffer *buffer_info;
2158 struct pci_dev *pdev = adapter->pdev;
2159 unsigned int len = skb_headlen(skb);
2160 unsigned int count = 0, i;
2161 unsigned int f;
2162
2163 i = tx_ring->next_to_use;
2164
2165 buffer_info = &tx_ring->buffer_info[i];
2166 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2167 buffer_info->length = len;
2168 /* set time_stamp *before* dma to help avoid a possible race */
2169 buffer_info->time_stamp = jiffies;
2170 buffer_info->mapped_as_page = false;
2171 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2172 DMA_TO_DEVICE);
2173 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2174 goto dma_error;
2175
2176 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2177 const skb_frag_t *frag;
2178
2179 count++;
2180 i++;
2181 if (i == tx_ring->count)
2182 i = 0;
2183
2184 frag = &skb_shinfo(skb)->frags[f];
2185 len = skb_frag_size(frag);
2186
2187 buffer_info = &tx_ring->buffer_info[i];
2188 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2189 buffer_info->length = len;
2190 buffer_info->time_stamp = jiffies;
2191 buffer_info->mapped_as_page = true;
2192 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2193 DMA_TO_DEVICE);
2194 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2195 goto dma_error;
2196 }
2197
2198 tx_ring->buffer_info[i].skb = skb;
2199
2200 return ++count;
2201
2202dma_error:
2203 dev_err(&pdev->dev, "TX DMA map failed\n");
2204
2205 /* clear timestamp and dma mappings for failed buffer_info mapping */
2206 buffer_info->dma = 0;
2207 buffer_info->time_stamp = 0;
2208 buffer_info->length = 0;
2209 buffer_info->mapped_as_page = false;
2210 if (count)
2211 count--;
2212
2213 /* clear timestamp and dma mappings for remaining portion of packet */
2214 while (count--) {
2215 if (i == 0)
2216 i += tx_ring->count;
2217 i--;
2218 buffer_info = &tx_ring->buffer_info[i];
2219 igbvf_put_txbuf(adapter, buffer_info);
2220 }
2221
2222 return 0;
2223}
2224
2225static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2226 struct igbvf_ring *tx_ring,
2227 int tx_flags, int count,
2228 unsigned int first, u32 paylen,
2229 u8 hdr_len)
2230{
2231 union e1000_adv_tx_desc *tx_desc = NULL;
2232 struct igbvf_buffer *buffer_info;
2233 u32 olinfo_status = 0, cmd_type_len;
2234 unsigned int i;
2235
2236 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2237 E1000_ADVTXD_DCMD_DEXT);
2238
2239 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2240 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2241
2242 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2243 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2244
2245 /* insert tcp checksum */
2246 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2247
2248 /* insert ip checksum */
2249 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2250 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2251
2252 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2253 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2254 }
2255
2256 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2257
2258 i = tx_ring->next_to_use;
2259 while (count--) {
2260 buffer_info = &tx_ring->buffer_info[i];
2261 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2262 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2263 tx_desc->read.cmd_type_len =
2264 cpu_to_le32(cmd_type_len | buffer_info->length);
2265 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2266 i++;
2267 if (i == tx_ring->count)
2268 i = 0;
2269 }
2270
2271 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2272 /* Force memory writes to complete before letting h/w
2273 * know there are new descriptors to fetch. (Only
2274 * applicable for weak-ordered memory model archs,
2275 * such as IA-64).
2276 */
2277 wmb();
2278
2279 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2280 tx_ring->next_to_use = i;
2281 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2282}
2283
2284static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2285 struct net_device *netdev,
2286 struct igbvf_ring *tx_ring)
2287{
2288 struct igbvf_adapter *adapter = netdev_priv(netdev);
2289 unsigned int first, tx_flags = 0;
2290 u8 hdr_len = 0;
2291 int count = 0;
2292 int tso = 0;
2293 __be16 protocol = vlan_get_protocol(skb);
2294
2295 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2296 dev_kfree_skb_any(skb);
2297 return NETDEV_TX_OK;
2298 }
2299
2300 if (skb->len <= 0) {
2301 dev_kfree_skb_any(skb);
2302 return NETDEV_TX_OK;
2303 }
2304
2305 /* need: count + 4 desc gap to keep tail from touching
2306 * + 2 desc gap to keep tail from touching head,
2307 * + 1 desc for skb->data,
2308 * + 1 desc for context descriptor,
2309 * head, otherwise try next time
2310 */
2311 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2312 /* this is a hard error */
2313 return NETDEV_TX_BUSY;
2314 }
2315
2316 if (skb_vlan_tag_present(skb)) {
2317 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2318 tx_flags |= (skb_vlan_tag_get(skb) <<
2319 IGBVF_TX_FLAGS_VLAN_SHIFT);
2320 }
2321
2322 if (protocol == htons(ETH_P_IP))
2323 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2324
2325 first = tx_ring->next_to_use;
2326
2327 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2328 if (unlikely(tso < 0)) {
2329 dev_kfree_skb_any(skb);
2330 return NETDEV_TX_OK;
2331 }
2332
2333 if (tso)
2334 tx_flags |= IGBVF_TX_FLAGS_TSO;
2335 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2336 (skb->ip_summed == CHECKSUM_PARTIAL))
2337 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2338
2339 /* count reflects descriptors mapped, if 0 then mapping error
2340 * has occurred and we need to rewind the descriptor queue
2341 */
2342 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2343
2344 if (count) {
2345 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2346 first, skb->len, hdr_len);
2347 /* Make sure there is space in the ring for the next send. */
2348 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2349 } else {
2350 dev_kfree_skb_any(skb);
2351 tx_ring->buffer_info[first].time_stamp = 0;
2352 tx_ring->next_to_use = first;
2353 }
2354
2355 return NETDEV_TX_OK;
2356}
2357
2358static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2359 struct net_device *netdev)
2360{
2361 struct igbvf_adapter *adapter = netdev_priv(netdev);
2362 struct igbvf_ring *tx_ring;
2363
2364 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2365 dev_kfree_skb_any(skb);
2366 return NETDEV_TX_OK;
2367 }
2368
2369 tx_ring = &adapter->tx_ring[0];
2370
2371 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2372}
2373
2374/**
2375 * igbvf_tx_timeout - Respond to a Tx Hang
2376 * @netdev: network interface device structure
2377 **/
2378static void igbvf_tx_timeout(struct net_device *netdev)
2379{
2380 struct igbvf_adapter *adapter = netdev_priv(netdev);
2381
2382 /* Do the reset outside of interrupt context */
2383 adapter->tx_timeout_count++;
2384 schedule_work(&adapter->reset_task);
2385}
2386
2387static void igbvf_reset_task(struct work_struct *work)
2388{
2389 struct igbvf_adapter *adapter;
2390
2391 adapter = container_of(work, struct igbvf_adapter, reset_task);
2392
2393 igbvf_reinit_locked(adapter);
2394}
2395
2396/**
2397 * igbvf_change_mtu - Change the Maximum Transfer Unit
2398 * @netdev: network interface device structure
2399 * @new_mtu: new value for maximum frame size
2400 *
2401 * Returns 0 on success, negative on failure
2402 **/
2403static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2404{
2405 struct igbvf_adapter *adapter = netdev_priv(netdev);
2406 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2407
2408 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2409 usleep_range(1000, 2000);
2410 /* igbvf_down has a dependency on max_frame_size */
2411 adapter->max_frame_size = max_frame;
2412 if (netif_running(netdev))
2413 igbvf_down(adapter);
2414
2415 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2416 * means we reserve 2 more, this pushes us to allocate from the next
2417 * larger slab size.
2418 * i.e. RXBUFFER_2048 --> size-4096 slab
2419 * However with the new *_jumbo_rx* routines, jumbo receives will use
2420 * fragmented skbs
2421 */
2422
2423 if (max_frame <= 1024)
2424 adapter->rx_buffer_len = 1024;
2425 else if (max_frame <= 2048)
2426 adapter->rx_buffer_len = 2048;
2427 else
2428#if (PAGE_SIZE / 2) > 16384
2429 adapter->rx_buffer_len = 16384;
2430#else
2431 adapter->rx_buffer_len = PAGE_SIZE / 2;
2432#endif
2433
2434 /* adjust allocation if LPE protects us, and we aren't using SBP */
2435 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2436 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2437 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2438 ETH_FCS_LEN;
2439
2440 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2441 netdev->mtu, new_mtu);
2442 netdev->mtu = new_mtu;
2443
2444 if (netif_running(netdev))
2445 igbvf_up(adapter);
2446 else
2447 igbvf_reset(adapter);
2448
2449 clear_bit(__IGBVF_RESETTING, &adapter->state);
2450
2451 return 0;
2452}
2453
2454static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2455{
2456 switch (cmd) {
2457 default:
2458 return -EOPNOTSUPP;
2459 }
2460}
2461
2462static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2463{
2464 struct net_device *netdev = pci_get_drvdata(pdev);
2465 struct igbvf_adapter *adapter = netdev_priv(netdev);
2466#ifdef CONFIG_PM
2467 int retval = 0;
2468#endif
2469
2470 netif_device_detach(netdev);
2471
2472 if (netif_running(netdev)) {
2473 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2474 igbvf_down(adapter);
2475 igbvf_free_irq(adapter);
2476 }
2477
2478#ifdef CONFIG_PM
2479 retval = pci_save_state(pdev);
2480 if (retval)
2481 return retval;
2482#endif
2483
2484 pci_disable_device(pdev);
2485
2486 return 0;
2487}
2488
2489#ifdef CONFIG_PM
2490static int igbvf_resume(struct pci_dev *pdev)
2491{
2492 struct net_device *netdev = pci_get_drvdata(pdev);
2493 struct igbvf_adapter *adapter = netdev_priv(netdev);
2494 u32 err;
2495
2496 pci_restore_state(pdev);
2497 err = pci_enable_device_mem(pdev);
2498 if (err) {
2499 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2500 return err;
2501 }
2502
2503 pci_set_master(pdev);
2504
2505 if (netif_running(netdev)) {
2506 err = igbvf_request_irq(adapter);
2507 if (err)
2508 return err;
2509 }
2510
2511 igbvf_reset(adapter);
2512
2513 if (netif_running(netdev))
2514 igbvf_up(adapter);
2515
2516 netif_device_attach(netdev);
2517
2518 return 0;
2519}
2520#endif
2521
2522static void igbvf_shutdown(struct pci_dev *pdev)
2523{
2524 igbvf_suspend(pdev, PMSG_SUSPEND);
2525}
2526
2527#ifdef CONFIG_NET_POLL_CONTROLLER
2528/* Polling 'interrupt' - used by things like netconsole to send skbs
2529 * without having to re-enable interrupts. It's not called while
2530 * the interrupt routine is executing.
2531 */
2532static void igbvf_netpoll(struct net_device *netdev)
2533{
2534 struct igbvf_adapter *adapter = netdev_priv(netdev);
2535
2536 disable_irq(adapter->pdev->irq);
2537
2538 igbvf_clean_tx_irq(adapter->tx_ring);
2539
2540 enable_irq(adapter->pdev->irq);
2541}
2542#endif
2543
2544/**
2545 * igbvf_io_error_detected - called when PCI error is detected
2546 * @pdev: Pointer to PCI device
2547 * @state: The current pci connection state
2548 *
2549 * This function is called after a PCI bus error affecting
2550 * this device has been detected.
2551 */
2552static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2553 pci_channel_state_t state)
2554{
2555 struct net_device *netdev = pci_get_drvdata(pdev);
2556 struct igbvf_adapter *adapter = netdev_priv(netdev);
2557
2558 netif_device_detach(netdev);
2559
2560 if (state == pci_channel_io_perm_failure)
2561 return PCI_ERS_RESULT_DISCONNECT;
2562
2563 if (netif_running(netdev))
2564 igbvf_down(adapter);
2565 pci_disable_device(pdev);
2566
2567 /* Request a slot slot reset. */
2568 return PCI_ERS_RESULT_NEED_RESET;
2569}
2570
2571/**
2572 * igbvf_io_slot_reset - called after the pci bus has been reset.
2573 * @pdev: Pointer to PCI device
2574 *
2575 * Restart the card from scratch, as if from a cold-boot. Implementation
2576 * resembles the first-half of the igbvf_resume routine.
2577 */
2578static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2579{
2580 struct net_device *netdev = pci_get_drvdata(pdev);
2581 struct igbvf_adapter *adapter = netdev_priv(netdev);
2582
2583 if (pci_enable_device_mem(pdev)) {
2584 dev_err(&pdev->dev,
2585 "Cannot re-enable PCI device after reset.\n");
2586 return PCI_ERS_RESULT_DISCONNECT;
2587 }
2588 pci_set_master(pdev);
2589
2590 igbvf_reset(adapter);
2591
2592 return PCI_ERS_RESULT_RECOVERED;
2593}
2594
2595/**
2596 * igbvf_io_resume - called when traffic can start flowing again.
2597 * @pdev: Pointer to PCI device
2598 *
2599 * This callback is called when the error recovery driver tells us that
2600 * its OK to resume normal operation. Implementation resembles the
2601 * second-half of the igbvf_resume routine.
2602 */
2603static void igbvf_io_resume(struct pci_dev *pdev)
2604{
2605 struct net_device *netdev = pci_get_drvdata(pdev);
2606 struct igbvf_adapter *adapter = netdev_priv(netdev);
2607
2608 if (netif_running(netdev)) {
2609 if (igbvf_up(adapter)) {
2610 dev_err(&pdev->dev,
2611 "can't bring device back up after reset\n");
2612 return;
2613 }
2614 }
2615
2616 netif_device_attach(netdev);
2617}
2618
2619static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2620{
2621 struct e1000_hw *hw = &adapter->hw;
2622 struct net_device *netdev = adapter->netdev;
2623 struct pci_dev *pdev = adapter->pdev;
2624
2625 if (hw->mac.type == e1000_vfadapt_i350)
2626 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2627 else
2628 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2629 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2630}
2631
2632static int igbvf_set_features(struct net_device *netdev,
2633 netdev_features_t features)
2634{
2635 struct igbvf_adapter *adapter = netdev_priv(netdev);
2636
2637 if (features & NETIF_F_RXCSUM)
2638 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2639 else
2640 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2641
2642 return 0;
2643}
2644
2645#define IGBVF_MAX_MAC_HDR_LEN 127
2646#define IGBVF_MAX_NETWORK_HDR_LEN 511
2647
2648static netdev_features_t
2649igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2650 netdev_features_t features)
2651{
2652 unsigned int network_hdr_len, mac_hdr_len;
2653
2654 /* Make certain the headers can be described by a context descriptor */
2655 mac_hdr_len = skb_network_header(skb) - skb->data;
2656 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2657 return features & ~(NETIF_F_HW_CSUM |
2658 NETIF_F_SCTP_CRC |
2659 NETIF_F_HW_VLAN_CTAG_TX |
2660 NETIF_F_TSO |
2661 NETIF_F_TSO6);
2662
2663 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2664 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2665 return features & ~(NETIF_F_HW_CSUM |
2666 NETIF_F_SCTP_CRC |
2667 NETIF_F_TSO |
2668 NETIF_F_TSO6);
2669
2670 /* We can only support IPV4 TSO in tunnels if we can mangle the
2671 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2672 */
2673 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2674 features &= ~NETIF_F_TSO;
2675
2676 return features;
2677}
2678
2679static const struct net_device_ops igbvf_netdev_ops = {
2680 .ndo_open = igbvf_open,
2681 .ndo_stop = igbvf_close,
2682 .ndo_start_xmit = igbvf_xmit_frame,
2683 .ndo_set_rx_mode = igbvf_set_rx_mode,
2684 .ndo_set_mac_address = igbvf_set_mac,
2685 .ndo_change_mtu = igbvf_change_mtu,
2686 .ndo_do_ioctl = igbvf_ioctl,
2687 .ndo_tx_timeout = igbvf_tx_timeout,
2688 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2689 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2690#ifdef CONFIG_NET_POLL_CONTROLLER
2691 .ndo_poll_controller = igbvf_netpoll,
2692#endif
2693 .ndo_set_features = igbvf_set_features,
2694 .ndo_features_check = igbvf_features_check,
2695};
2696
2697/**
2698 * igbvf_probe - Device Initialization Routine
2699 * @pdev: PCI device information struct
2700 * @ent: entry in igbvf_pci_tbl
2701 *
2702 * Returns 0 on success, negative on failure
2703 *
2704 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2705 * The OS initialization, configuring of the adapter private structure,
2706 * and a hardware reset occur.
2707 **/
2708static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2709{
2710 struct net_device *netdev;
2711 struct igbvf_adapter *adapter;
2712 struct e1000_hw *hw;
2713 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2714
2715 static int cards_found;
2716 int err, pci_using_dac;
2717
2718 err = pci_enable_device_mem(pdev);
2719 if (err)
2720 return err;
2721
2722 pci_using_dac = 0;
2723 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2724 if (!err) {
2725 pci_using_dac = 1;
2726 } else {
2727 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2728 if (err) {
2729 dev_err(&pdev->dev,
2730 "No usable DMA configuration, aborting\n");
2731 goto err_dma;
2732 }
2733 }
2734
2735 err = pci_request_regions(pdev, igbvf_driver_name);
2736 if (err)
2737 goto err_pci_reg;
2738
2739 pci_set_master(pdev);
2740
2741 err = -ENOMEM;
2742 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2743 if (!netdev)
2744 goto err_alloc_etherdev;
2745
2746 SET_NETDEV_DEV(netdev, &pdev->dev);
2747
2748 pci_set_drvdata(pdev, netdev);
2749 adapter = netdev_priv(netdev);
2750 hw = &adapter->hw;
2751 adapter->netdev = netdev;
2752 adapter->pdev = pdev;
2753 adapter->ei = ei;
2754 adapter->pba = ei->pba;
2755 adapter->flags = ei->flags;
2756 adapter->hw.back = adapter;
2757 adapter->hw.mac.type = ei->mac;
2758 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2759
2760 /* PCI config space info */
2761
2762 hw->vendor_id = pdev->vendor;
2763 hw->device_id = pdev->device;
2764 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2765 hw->subsystem_device_id = pdev->subsystem_device;
2766 hw->revision_id = pdev->revision;
2767
2768 err = -EIO;
2769 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2770 pci_resource_len(pdev, 0));
2771
2772 if (!adapter->hw.hw_addr)
2773 goto err_ioremap;
2774
2775 if (ei->get_variants) {
2776 err = ei->get_variants(adapter);
2777 if (err)
2778 goto err_get_variants;
2779 }
2780
2781 /* setup adapter struct */
2782 err = igbvf_sw_init(adapter);
2783 if (err)
2784 goto err_sw_init;
2785
2786 /* construct the net_device struct */
2787 netdev->netdev_ops = &igbvf_netdev_ops;
2788
2789 igbvf_set_ethtool_ops(netdev);
2790 netdev->watchdog_timeo = 5 * HZ;
2791 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2792
2793 adapter->bd_number = cards_found++;
2794
2795 netdev->hw_features = NETIF_F_SG |
2796 NETIF_F_TSO |
2797 NETIF_F_TSO6 |
2798 NETIF_F_RXCSUM |
2799 NETIF_F_HW_CSUM |
2800 NETIF_F_SCTP_CRC;
2801
2802#define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2803 NETIF_F_GSO_GRE_CSUM | \
2804 NETIF_F_GSO_IPXIP4 | \
2805 NETIF_F_GSO_IPXIP6 | \
2806 NETIF_F_GSO_UDP_TUNNEL | \
2807 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2808
2809 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2810 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2811 IGBVF_GSO_PARTIAL_FEATURES;
2812
2813 netdev->features = netdev->hw_features;
2814
2815 if (pci_using_dac)
2816 netdev->features |= NETIF_F_HIGHDMA;
2817
2818 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2819 netdev->mpls_features |= NETIF_F_HW_CSUM;
2820 netdev->hw_enc_features |= netdev->vlan_features;
2821
2822 /* set this bit last since it cannot be part of vlan_features */
2823 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2824 NETIF_F_HW_VLAN_CTAG_RX |
2825 NETIF_F_HW_VLAN_CTAG_TX;
2826
2827 /* MTU range: 68 - 9216 */
2828 netdev->min_mtu = ETH_MIN_MTU;
2829 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2830
2831 spin_lock_bh(&hw->mbx_lock);
2832
2833 /*reset the controller to put the device in a known good state */
2834 err = hw->mac.ops.reset_hw(hw);
2835 if (err) {
2836 dev_info(&pdev->dev,
2837 "PF still in reset state. Is the PF interface up?\n");
2838 } else {
2839 err = hw->mac.ops.read_mac_addr(hw);
2840 if (err)
2841 dev_info(&pdev->dev, "Error reading MAC address.\n");
2842 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2843 dev_info(&pdev->dev,
2844 "MAC address not assigned by administrator.\n");
2845 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2846 netdev->addr_len);
2847 }
2848
2849 spin_unlock_bh(&hw->mbx_lock);
2850
2851 if (!is_valid_ether_addr(netdev->dev_addr)) {
2852 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2853 eth_hw_addr_random(netdev);
2854 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2855 netdev->addr_len);
2856 }
2857
2858 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2859
2860 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2861 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2862
2863 /* ring size defaults */
2864 adapter->rx_ring->count = 1024;
2865 adapter->tx_ring->count = 1024;
2866
2867 /* reset the hardware with the new settings */
2868 igbvf_reset(adapter);
2869
2870 /* set hardware-specific flags */
2871 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2872 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2873
2874 strcpy(netdev->name, "eth%d");
2875 err = register_netdev(netdev);
2876 if (err)
2877 goto err_hw_init;
2878
2879 /* tell the stack to leave us alone until igbvf_open() is called */
2880 netif_carrier_off(netdev);
2881 netif_stop_queue(netdev);
2882
2883 igbvf_print_device_info(adapter);
2884
2885 igbvf_initialize_last_counter_stats(adapter);
2886
2887 return 0;
2888
2889err_hw_init:
2890 kfree(adapter->tx_ring);
2891 kfree(adapter->rx_ring);
2892err_sw_init:
2893 igbvf_reset_interrupt_capability(adapter);
2894err_get_variants:
2895 iounmap(adapter->hw.hw_addr);
2896err_ioremap:
2897 free_netdev(netdev);
2898err_alloc_etherdev:
2899 pci_release_regions(pdev);
2900err_pci_reg:
2901err_dma:
2902 pci_disable_device(pdev);
2903 return err;
2904}
2905
2906/**
2907 * igbvf_remove - Device Removal Routine
2908 * @pdev: PCI device information struct
2909 *
2910 * igbvf_remove is called by the PCI subsystem to alert the driver
2911 * that it should release a PCI device. The could be caused by a
2912 * Hot-Plug event, or because the driver is going to be removed from
2913 * memory.
2914 **/
2915static void igbvf_remove(struct pci_dev *pdev)
2916{
2917 struct net_device *netdev = pci_get_drvdata(pdev);
2918 struct igbvf_adapter *adapter = netdev_priv(netdev);
2919 struct e1000_hw *hw = &adapter->hw;
2920
2921 /* The watchdog timer may be rescheduled, so explicitly
2922 * disable it from being rescheduled.
2923 */
2924 set_bit(__IGBVF_DOWN, &adapter->state);
2925 del_timer_sync(&adapter->watchdog_timer);
2926
2927 cancel_work_sync(&adapter->reset_task);
2928 cancel_work_sync(&adapter->watchdog_task);
2929
2930 unregister_netdev(netdev);
2931
2932 igbvf_reset_interrupt_capability(adapter);
2933
2934 /* it is important to delete the NAPI struct prior to freeing the
2935 * Rx ring so that you do not end up with null pointer refs
2936 */
2937 netif_napi_del(&adapter->rx_ring->napi);
2938 kfree(adapter->tx_ring);
2939 kfree(adapter->rx_ring);
2940
2941 iounmap(hw->hw_addr);
2942 if (hw->flash_address)
2943 iounmap(hw->flash_address);
2944 pci_release_regions(pdev);
2945
2946 free_netdev(netdev);
2947
2948 pci_disable_device(pdev);
2949}
2950
2951/* PCI Error Recovery (ERS) */
2952static const struct pci_error_handlers igbvf_err_handler = {
2953 .error_detected = igbvf_io_error_detected,
2954 .slot_reset = igbvf_io_slot_reset,
2955 .resume = igbvf_io_resume,
2956};
2957
2958static const struct pci_device_id igbvf_pci_tbl[] = {
2959 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2960 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2961 { } /* terminate list */
2962};
2963MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2964
2965/* PCI Device API Driver */
2966static struct pci_driver igbvf_driver = {
2967 .name = igbvf_driver_name,
2968 .id_table = igbvf_pci_tbl,
2969 .probe = igbvf_probe,
2970 .remove = igbvf_remove,
2971#ifdef CONFIG_PM
2972 /* Power Management Hooks */
2973 .suspend = igbvf_suspend,
2974 .resume = igbvf_resume,
2975#endif
2976 .shutdown = igbvf_shutdown,
2977 .err_handler = &igbvf_err_handler
2978};
2979
2980/**
2981 * igbvf_init_module - Driver Registration Routine
2982 *
2983 * igbvf_init_module is the first routine called when the driver is
2984 * loaded. All it does is register with the PCI subsystem.
2985 **/
2986static int __init igbvf_init_module(void)
2987{
2988 int ret;
2989
2990 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2991 pr_info("%s\n", igbvf_copyright);
2992
2993 ret = pci_register_driver(&igbvf_driver);
2994
2995 return ret;
2996}
2997module_init(igbvf_init_module);
2998
2999/**
3000 * igbvf_exit_module - Driver Exit Cleanup Routine
3001 *
3002 * igbvf_exit_module is called just before the driver is removed
3003 * from memory.
3004 **/
3005static void __exit igbvf_exit_module(void)
3006{
3007 pci_unregister_driver(&igbvf_driver);
3008}
3009module_exit(igbvf_exit_module);
3010
3011MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
3012MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3013MODULE_LICENSE("GPL v2");
3014MODULE_VERSION(DRV_VERSION);
3015
3016/* netdev.c */