Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <generated/utsrelease.h>
9#include "ice.h"
10#include "ice_base.h"
11#include "ice_lib.h"
12#include "ice_fltr.h"
13#include "ice_dcb_lib.h"
14#include "ice_dcb_nl.h"
15#include "ice_devlink.h"
16/* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
17 * ice tracepoint functions. This must be done exactly once across the
18 * ice driver.
19 */
20#define CREATE_TRACE_POINTS
21#include "ice_trace.h"
22
23#define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
24static const char ice_driver_string[] = DRV_SUMMARY;
25static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
26
27/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
28#define ICE_DDP_PKG_PATH "intel/ice/ddp/"
29#define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
30
31MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
32MODULE_DESCRIPTION(DRV_SUMMARY);
33MODULE_LICENSE("GPL v2");
34MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
35
36static int debug = -1;
37module_param(debug, int, 0644);
38#ifndef CONFIG_DYNAMIC_DEBUG
39MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
40#else
41MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
42#endif /* !CONFIG_DYNAMIC_DEBUG */
43
44static DEFINE_IDA(ice_aux_ida);
45
46static struct workqueue_struct *ice_wq;
47static const struct net_device_ops ice_netdev_safe_mode_ops;
48static const struct net_device_ops ice_netdev_ops;
49static int ice_vsi_open(struct ice_vsi *vsi);
50
51static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
52
53static void ice_vsi_release_all(struct ice_pf *pf);
54
55bool netif_is_ice(struct net_device *dev)
56{
57 return dev && (dev->netdev_ops == &ice_netdev_ops);
58}
59
60/**
61 * ice_get_tx_pending - returns number of Tx descriptors not processed
62 * @ring: the ring of descriptors
63 */
64static u16 ice_get_tx_pending(struct ice_ring *ring)
65{
66 u16 head, tail;
67
68 head = ring->next_to_clean;
69 tail = ring->next_to_use;
70
71 if (head != tail)
72 return (head < tail) ?
73 tail - head : (tail + ring->count - head);
74 return 0;
75}
76
77/**
78 * ice_check_for_hang_subtask - check for and recover hung queues
79 * @pf: pointer to PF struct
80 */
81static void ice_check_for_hang_subtask(struct ice_pf *pf)
82{
83 struct ice_vsi *vsi = NULL;
84 struct ice_hw *hw;
85 unsigned int i;
86 int packets;
87 u32 v;
88
89 ice_for_each_vsi(pf, v)
90 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
91 vsi = pf->vsi[v];
92 break;
93 }
94
95 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
96 return;
97
98 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
99 return;
100
101 hw = &vsi->back->hw;
102
103 for (i = 0; i < vsi->num_txq; i++) {
104 struct ice_ring *tx_ring = vsi->tx_rings[i];
105
106 if (tx_ring && tx_ring->desc) {
107 /* If packet counter has not changed the queue is
108 * likely stalled, so force an interrupt for this
109 * queue.
110 *
111 * prev_pkt would be negative if there was no
112 * pending work.
113 */
114 packets = tx_ring->stats.pkts & INT_MAX;
115 if (tx_ring->tx_stats.prev_pkt == packets) {
116 /* Trigger sw interrupt to revive the queue */
117 ice_trigger_sw_intr(hw, tx_ring->q_vector);
118 continue;
119 }
120
121 /* Memory barrier between read of packet count and call
122 * to ice_get_tx_pending()
123 */
124 smp_rmb();
125 tx_ring->tx_stats.prev_pkt =
126 ice_get_tx_pending(tx_ring) ? packets : -1;
127 }
128 }
129}
130
131/**
132 * ice_init_mac_fltr - Set initial MAC filters
133 * @pf: board private structure
134 *
135 * Set initial set of MAC filters for PF VSI; configure filters for permanent
136 * address and broadcast address. If an error is encountered, netdevice will be
137 * unregistered.
138 */
139static int ice_init_mac_fltr(struct ice_pf *pf)
140{
141 enum ice_status status;
142 struct ice_vsi *vsi;
143 u8 *perm_addr;
144
145 vsi = ice_get_main_vsi(pf);
146 if (!vsi)
147 return -EINVAL;
148
149 perm_addr = vsi->port_info->mac.perm_addr;
150 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
151 if (status)
152 return -EIO;
153
154 return 0;
155}
156
157/**
158 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
159 * @netdev: the net device on which the sync is happening
160 * @addr: MAC address to sync
161 *
162 * This is a callback function which is called by the in kernel device sync
163 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
164 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
165 * MAC filters from the hardware.
166 */
167static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
168{
169 struct ice_netdev_priv *np = netdev_priv(netdev);
170 struct ice_vsi *vsi = np->vsi;
171
172 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
173 ICE_FWD_TO_VSI))
174 return -EINVAL;
175
176 return 0;
177}
178
179/**
180 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
181 * @netdev: the net device on which the unsync is happening
182 * @addr: MAC address to unsync
183 *
184 * This is a callback function which is called by the in kernel device unsync
185 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
186 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
187 * delete the MAC filters from the hardware.
188 */
189static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
190{
191 struct ice_netdev_priv *np = netdev_priv(netdev);
192 struct ice_vsi *vsi = np->vsi;
193
194 /* Under some circumstances, we might receive a request to delete our
195 * own device address from our uc list. Because we store the device
196 * address in the VSI's MAC filter list, we need to ignore such
197 * requests and not delete our device address from this list.
198 */
199 if (ether_addr_equal(addr, netdev->dev_addr))
200 return 0;
201
202 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
203 ICE_FWD_TO_VSI))
204 return -EINVAL;
205
206 return 0;
207}
208
209/**
210 * ice_vsi_fltr_changed - check if filter state changed
211 * @vsi: VSI to be checked
212 *
213 * returns true if filter state has changed, false otherwise.
214 */
215static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
216{
217 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
218 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) ||
219 test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
220}
221
222/**
223 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
224 * @vsi: the VSI being configured
225 * @promisc_m: mask of promiscuous config bits
226 * @set_promisc: enable or disable promisc flag request
227 *
228 */
229static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
230{
231 struct ice_hw *hw = &vsi->back->hw;
232 enum ice_status status = 0;
233
234 if (vsi->type != ICE_VSI_PF)
235 return 0;
236
237 if (vsi->num_vlan > 1) {
238 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
239 set_promisc);
240 } else {
241 if (set_promisc)
242 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
243 0);
244 else
245 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
246 0);
247 }
248
249 if (status)
250 return -EIO;
251
252 return 0;
253}
254
255/**
256 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
257 * @vsi: ptr to the VSI
258 *
259 * Push any outstanding VSI filter changes through the AdminQ.
260 */
261static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
262{
263 struct device *dev = ice_pf_to_dev(vsi->back);
264 struct net_device *netdev = vsi->netdev;
265 bool promisc_forced_on = false;
266 struct ice_pf *pf = vsi->back;
267 struct ice_hw *hw = &pf->hw;
268 enum ice_status status = 0;
269 u32 changed_flags = 0;
270 u8 promisc_m;
271 int err = 0;
272
273 if (!vsi->netdev)
274 return -EINVAL;
275
276 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
277 usleep_range(1000, 2000);
278
279 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
280 vsi->current_netdev_flags = vsi->netdev->flags;
281
282 INIT_LIST_HEAD(&vsi->tmp_sync_list);
283 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
284
285 if (ice_vsi_fltr_changed(vsi)) {
286 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
287 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
288 clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
289
290 /* grab the netdev's addr_list_lock */
291 netif_addr_lock_bh(netdev);
292 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
293 ice_add_mac_to_unsync_list);
294 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
295 ice_add_mac_to_unsync_list);
296 /* our temp lists are populated. release lock */
297 netif_addr_unlock_bh(netdev);
298 }
299
300 /* Remove MAC addresses in the unsync list */
301 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
302 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
303 if (status) {
304 netdev_err(netdev, "Failed to delete MAC filters\n");
305 /* if we failed because of alloc failures, just bail */
306 if (status == ICE_ERR_NO_MEMORY) {
307 err = -ENOMEM;
308 goto out;
309 }
310 }
311
312 /* Add MAC addresses in the sync list */
313 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
314 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
315 /* If filter is added successfully or already exists, do not go into
316 * 'if' condition and report it as error. Instead continue processing
317 * rest of the function.
318 */
319 if (status && status != ICE_ERR_ALREADY_EXISTS) {
320 netdev_err(netdev, "Failed to add MAC filters\n");
321 /* If there is no more space for new umac filters, VSI
322 * should go into promiscuous mode. There should be some
323 * space reserved for promiscuous filters.
324 */
325 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
326 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
327 vsi->state)) {
328 promisc_forced_on = true;
329 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
330 vsi->vsi_num);
331 } else {
332 err = -EIO;
333 goto out;
334 }
335 }
336 /* check for changes in promiscuous modes */
337 if (changed_flags & IFF_ALLMULTI) {
338 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
339 if (vsi->num_vlan > 1)
340 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
341 else
342 promisc_m = ICE_MCAST_PROMISC_BITS;
343
344 err = ice_cfg_promisc(vsi, promisc_m, true);
345 if (err) {
346 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
347 vsi->vsi_num);
348 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
349 goto out_promisc;
350 }
351 } else {
352 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
353 if (vsi->num_vlan > 1)
354 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
355 else
356 promisc_m = ICE_MCAST_PROMISC_BITS;
357
358 err = ice_cfg_promisc(vsi, promisc_m, false);
359 if (err) {
360 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
361 vsi->vsi_num);
362 vsi->current_netdev_flags |= IFF_ALLMULTI;
363 goto out_promisc;
364 }
365 }
366 }
367
368 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
369 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
370 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
371 if (vsi->current_netdev_flags & IFF_PROMISC) {
372 /* Apply Rx filter rule to get traffic from wire */
373 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
374 err = ice_set_dflt_vsi(pf->first_sw, vsi);
375 if (err && err != -EEXIST) {
376 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
377 err, vsi->vsi_num);
378 vsi->current_netdev_flags &=
379 ~IFF_PROMISC;
380 goto out_promisc;
381 }
382 ice_cfg_vlan_pruning(vsi, false, false);
383 }
384 } else {
385 /* Clear Rx filter to remove traffic from wire */
386 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
387 err = ice_clear_dflt_vsi(pf->first_sw);
388 if (err) {
389 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
390 err, vsi->vsi_num);
391 vsi->current_netdev_flags |=
392 IFF_PROMISC;
393 goto out_promisc;
394 }
395 if (vsi->num_vlan > 1)
396 ice_cfg_vlan_pruning(vsi, true, false);
397 }
398 }
399 }
400 goto exit;
401
402out_promisc:
403 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
404 goto exit;
405out:
406 /* if something went wrong then set the changed flag so we try again */
407 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
408 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
409exit:
410 clear_bit(ICE_CFG_BUSY, vsi->state);
411 return err;
412}
413
414/**
415 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
416 * @pf: board private structure
417 */
418static void ice_sync_fltr_subtask(struct ice_pf *pf)
419{
420 int v;
421
422 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
423 return;
424
425 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
426
427 ice_for_each_vsi(pf, v)
428 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
429 ice_vsi_sync_fltr(pf->vsi[v])) {
430 /* come back and try again later */
431 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
432 break;
433 }
434}
435
436/**
437 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
438 * @pf: the PF
439 * @locked: is the rtnl_lock already held
440 */
441static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
442{
443 int node;
444 int v;
445
446 ice_for_each_vsi(pf, v)
447 if (pf->vsi[v])
448 ice_dis_vsi(pf->vsi[v], locked);
449
450 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
451 pf->pf_agg_node[node].num_vsis = 0;
452
453 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
454 pf->vf_agg_node[node].num_vsis = 0;
455}
456
457/**
458 * ice_prepare_for_reset - prep for the core to reset
459 * @pf: board private structure
460 *
461 * Inform or close all dependent features in prep for reset.
462 */
463static void
464ice_prepare_for_reset(struct ice_pf *pf)
465{
466 struct ice_hw *hw = &pf->hw;
467 unsigned int i;
468
469 /* already prepared for reset */
470 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
471 return;
472
473 ice_unplug_aux_dev(pf);
474
475 /* Notify VFs of impending reset */
476 if (ice_check_sq_alive(hw, &hw->mailboxq))
477 ice_vc_notify_reset(pf);
478
479 /* Disable VFs until reset is completed */
480 ice_for_each_vf(pf, i)
481 ice_set_vf_state_qs_dis(&pf->vf[i]);
482
483 /* clear SW filtering DB */
484 ice_clear_hw_tbls(hw);
485 /* disable the VSIs and their queues that are not already DOWN */
486 ice_pf_dis_all_vsi(pf, false);
487
488 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
489 ice_ptp_release(pf);
490
491 if (hw->port_info)
492 ice_sched_clear_port(hw->port_info);
493
494 ice_shutdown_all_ctrlq(hw);
495
496 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
497}
498
499/**
500 * ice_do_reset - Initiate one of many types of resets
501 * @pf: board private structure
502 * @reset_type: reset type requested
503 * before this function was called.
504 */
505static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
506{
507 struct device *dev = ice_pf_to_dev(pf);
508 struct ice_hw *hw = &pf->hw;
509
510 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
511
512 ice_prepare_for_reset(pf);
513
514 /* trigger the reset */
515 if (ice_reset(hw, reset_type)) {
516 dev_err(dev, "reset %d failed\n", reset_type);
517 set_bit(ICE_RESET_FAILED, pf->state);
518 clear_bit(ICE_RESET_OICR_RECV, pf->state);
519 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
520 clear_bit(ICE_PFR_REQ, pf->state);
521 clear_bit(ICE_CORER_REQ, pf->state);
522 clear_bit(ICE_GLOBR_REQ, pf->state);
523 wake_up(&pf->reset_wait_queue);
524 return;
525 }
526
527 /* PFR is a bit of a special case because it doesn't result in an OICR
528 * interrupt. So for PFR, rebuild after the reset and clear the reset-
529 * associated state bits.
530 */
531 if (reset_type == ICE_RESET_PFR) {
532 pf->pfr_count++;
533 ice_rebuild(pf, reset_type);
534 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
535 clear_bit(ICE_PFR_REQ, pf->state);
536 wake_up(&pf->reset_wait_queue);
537 ice_reset_all_vfs(pf, true);
538 }
539}
540
541/**
542 * ice_reset_subtask - Set up for resetting the device and driver
543 * @pf: board private structure
544 */
545static void ice_reset_subtask(struct ice_pf *pf)
546{
547 enum ice_reset_req reset_type = ICE_RESET_INVAL;
548
549 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
550 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
551 * of reset is pending and sets bits in pf->state indicating the reset
552 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
553 * prepare for pending reset if not already (for PF software-initiated
554 * global resets the software should already be prepared for it as
555 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
556 * by firmware or software on other PFs, that bit is not set so prepare
557 * for the reset now), poll for reset done, rebuild and return.
558 */
559 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
560 /* Perform the largest reset requested */
561 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
562 reset_type = ICE_RESET_CORER;
563 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
564 reset_type = ICE_RESET_GLOBR;
565 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
566 reset_type = ICE_RESET_EMPR;
567 /* return if no valid reset type requested */
568 if (reset_type == ICE_RESET_INVAL)
569 return;
570 ice_prepare_for_reset(pf);
571
572 /* make sure we are ready to rebuild */
573 if (ice_check_reset(&pf->hw)) {
574 set_bit(ICE_RESET_FAILED, pf->state);
575 } else {
576 /* done with reset. start rebuild */
577 pf->hw.reset_ongoing = false;
578 ice_rebuild(pf, reset_type);
579 /* clear bit to resume normal operations, but
580 * ICE_NEEDS_RESTART bit is set in case rebuild failed
581 */
582 clear_bit(ICE_RESET_OICR_RECV, pf->state);
583 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
584 clear_bit(ICE_PFR_REQ, pf->state);
585 clear_bit(ICE_CORER_REQ, pf->state);
586 clear_bit(ICE_GLOBR_REQ, pf->state);
587 wake_up(&pf->reset_wait_queue);
588 ice_reset_all_vfs(pf, true);
589 }
590
591 return;
592 }
593
594 /* No pending resets to finish processing. Check for new resets */
595 if (test_bit(ICE_PFR_REQ, pf->state))
596 reset_type = ICE_RESET_PFR;
597 if (test_bit(ICE_CORER_REQ, pf->state))
598 reset_type = ICE_RESET_CORER;
599 if (test_bit(ICE_GLOBR_REQ, pf->state))
600 reset_type = ICE_RESET_GLOBR;
601 /* If no valid reset type requested just return */
602 if (reset_type == ICE_RESET_INVAL)
603 return;
604
605 /* reset if not already down or busy */
606 if (!test_bit(ICE_DOWN, pf->state) &&
607 !test_bit(ICE_CFG_BUSY, pf->state)) {
608 ice_do_reset(pf, reset_type);
609 }
610}
611
612/**
613 * ice_print_topo_conflict - print topology conflict message
614 * @vsi: the VSI whose topology status is being checked
615 */
616static void ice_print_topo_conflict(struct ice_vsi *vsi)
617{
618 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
619 case ICE_AQ_LINK_TOPO_CONFLICT:
620 case ICE_AQ_LINK_MEDIA_CONFLICT:
621 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
622 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
623 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
624 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
625 break;
626 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
627 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
628 break;
629 default:
630 break;
631 }
632}
633
634/**
635 * ice_print_link_msg - print link up or down message
636 * @vsi: the VSI whose link status is being queried
637 * @isup: boolean for if the link is now up or down
638 */
639void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
640{
641 struct ice_aqc_get_phy_caps_data *caps;
642 const char *an_advertised;
643 enum ice_status status;
644 const char *fec_req;
645 const char *speed;
646 const char *fec;
647 const char *fc;
648 const char *an;
649
650 if (!vsi)
651 return;
652
653 if (vsi->current_isup == isup)
654 return;
655
656 vsi->current_isup = isup;
657
658 if (!isup) {
659 netdev_info(vsi->netdev, "NIC Link is Down\n");
660 return;
661 }
662
663 switch (vsi->port_info->phy.link_info.link_speed) {
664 case ICE_AQ_LINK_SPEED_100GB:
665 speed = "100 G";
666 break;
667 case ICE_AQ_LINK_SPEED_50GB:
668 speed = "50 G";
669 break;
670 case ICE_AQ_LINK_SPEED_40GB:
671 speed = "40 G";
672 break;
673 case ICE_AQ_LINK_SPEED_25GB:
674 speed = "25 G";
675 break;
676 case ICE_AQ_LINK_SPEED_20GB:
677 speed = "20 G";
678 break;
679 case ICE_AQ_LINK_SPEED_10GB:
680 speed = "10 G";
681 break;
682 case ICE_AQ_LINK_SPEED_5GB:
683 speed = "5 G";
684 break;
685 case ICE_AQ_LINK_SPEED_2500MB:
686 speed = "2.5 G";
687 break;
688 case ICE_AQ_LINK_SPEED_1000MB:
689 speed = "1 G";
690 break;
691 case ICE_AQ_LINK_SPEED_100MB:
692 speed = "100 M";
693 break;
694 default:
695 speed = "Unknown ";
696 break;
697 }
698
699 switch (vsi->port_info->fc.current_mode) {
700 case ICE_FC_FULL:
701 fc = "Rx/Tx";
702 break;
703 case ICE_FC_TX_PAUSE:
704 fc = "Tx";
705 break;
706 case ICE_FC_RX_PAUSE:
707 fc = "Rx";
708 break;
709 case ICE_FC_NONE:
710 fc = "None";
711 break;
712 default:
713 fc = "Unknown";
714 break;
715 }
716
717 /* Get FEC mode based on negotiated link info */
718 switch (vsi->port_info->phy.link_info.fec_info) {
719 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
720 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
721 fec = "RS-FEC";
722 break;
723 case ICE_AQ_LINK_25G_KR_FEC_EN:
724 fec = "FC-FEC/BASE-R";
725 break;
726 default:
727 fec = "NONE";
728 break;
729 }
730
731 /* check if autoneg completed, might be false due to not supported */
732 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
733 an = "True";
734 else
735 an = "False";
736
737 /* Get FEC mode requested based on PHY caps last SW configuration */
738 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
739 if (!caps) {
740 fec_req = "Unknown";
741 an_advertised = "Unknown";
742 goto done;
743 }
744
745 status = ice_aq_get_phy_caps(vsi->port_info, false,
746 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
747 if (status)
748 netdev_info(vsi->netdev, "Get phy capability failed.\n");
749
750 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
751
752 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
753 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
754 fec_req = "RS-FEC";
755 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
756 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
757 fec_req = "FC-FEC/BASE-R";
758 else
759 fec_req = "NONE";
760
761 kfree(caps);
762
763done:
764 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
765 speed, fec_req, fec, an_advertised, an, fc);
766 ice_print_topo_conflict(vsi);
767}
768
769/**
770 * ice_vsi_link_event - update the VSI's netdev
771 * @vsi: the VSI on which the link event occurred
772 * @link_up: whether or not the VSI needs to be set up or down
773 */
774static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
775{
776 if (!vsi)
777 return;
778
779 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
780 return;
781
782 if (vsi->type == ICE_VSI_PF) {
783 if (link_up == netif_carrier_ok(vsi->netdev))
784 return;
785
786 if (link_up) {
787 netif_carrier_on(vsi->netdev);
788 netif_tx_wake_all_queues(vsi->netdev);
789 } else {
790 netif_carrier_off(vsi->netdev);
791 netif_tx_stop_all_queues(vsi->netdev);
792 }
793 }
794}
795
796/**
797 * ice_set_dflt_mib - send a default config MIB to the FW
798 * @pf: private PF struct
799 *
800 * This function sends a default configuration MIB to the FW.
801 *
802 * If this function errors out at any point, the driver is still able to
803 * function. The main impact is that LFC may not operate as expected.
804 * Therefore an error state in this function should be treated with a DBG
805 * message and continue on with driver rebuild/reenable.
806 */
807static void ice_set_dflt_mib(struct ice_pf *pf)
808{
809 struct device *dev = ice_pf_to_dev(pf);
810 u8 mib_type, *buf, *lldpmib = NULL;
811 u16 len, typelen, offset = 0;
812 struct ice_lldp_org_tlv *tlv;
813 struct ice_hw *hw = &pf->hw;
814 u32 ouisubtype;
815
816 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
817 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
818 if (!lldpmib) {
819 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
820 __func__);
821 return;
822 }
823
824 /* Add ETS CFG TLV */
825 tlv = (struct ice_lldp_org_tlv *)lldpmib;
826 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
827 ICE_IEEE_ETS_TLV_LEN);
828 tlv->typelen = htons(typelen);
829 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
830 ICE_IEEE_SUBTYPE_ETS_CFG);
831 tlv->ouisubtype = htonl(ouisubtype);
832
833 buf = tlv->tlvinfo;
834 buf[0] = 0;
835
836 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
837 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
838 * Octets 13 - 20 are TSA values - leave as zeros
839 */
840 buf[5] = 0x64;
841 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
842 offset += len + 2;
843 tlv = (struct ice_lldp_org_tlv *)
844 ((char *)tlv + sizeof(tlv->typelen) + len);
845
846 /* Add ETS REC TLV */
847 buf = tlv->tlvinfo;
848 tlv->typelen = htons(typelen);
849
850 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
851 ICE_IEEE_SUBTYPE_ETS_REC);
852 tlv->ouisubtype = htonl(ouisubtype);
853
854 /* First octet of buf is reserved
855 * Octets 1 - 4 map UP to TC - all UPs map to zero
856 * Octets 5 - 12 are BW values - set TC 0 to 100%.
857 * Octets 13 - 20 are TSA value - leave as zeros
858 */
859 buf[5] = 0x64;
860 offset += len + 2;
861 tlv = (struct ice_lldp_org_tlv *)
862 ((char *)tlv + sizeof(tlv->typelen) + len);
863
864 /* Add PFC CFG TLV */
865 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
866 ICE_IEEE_PFC_TLV_LEN);
867 tlv->typelen = htons(typelen);
868
869 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
870 ICE_IEEE_SUBTYPE_PFC_CFG);
871 tlv->ouisubtype = htonl(ouisubtype);
872
873 /* Octet 1 left as all zeros - PFC disabled */
874 buf[0] = 0x08;
875 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
876 offset += len + 2;
877
878 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
879 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
880
881 kfree(lldpmib);
882}
883
884/**
885 * ice_check_module_power
886 * @pf: pointer to PF struct
887 * @link_cfg_err: bitmap from the link info structure
888 *
889 * check module power level returned by a previous call to aq_get_link_info
890 * and print error messages if module power level is not supported
891 */
892static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
893{
894 /* if module power level is supported, clear the flag */
895 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
896 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
897 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
898 return;
899 }
900
901 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
902 * above block didn't clear this bit, there's nothing to do
903 */
904 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
905 return;
906
907 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
908 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
909 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
910 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
911 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
912 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
913 }
914}
915
916/**
917 * ice_link_event - process the link event
918 * @pf: PF that the link event is associated with
919 * @pi: port_info for the port that the link event is associated with
920 * @link_up: true if the physical link is up and false if it is down
921 * @link_speed: current link speed received from the link event
922 *
923 * Returns 0 on success and negative on failure
924 */
925static int
926ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
927 u16 link_speed)
928{
929 struct device *dev = ice_pf_to_dev(pf);
930 struct ice_phy_info *phy_info;
931 enum ice_status status;
932 struct ice_vsi *vsi;
933 u16 old_link_speed;
934 bool old_link;
935
936 phy_info = &pi->phy;
937 phy_info->link_info_old = phy_info->link_info;
938
939 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
940 old_link_speed = phy_info->link_info_old.link_speed;
941
942 /* update the link info structures and re-enable link events,
943 * don't bail on failure due to other book keeping needed
944 */
945 status = ice_update_link_info(pi);
946 if (status)
947 dev_dbg(dev, "Failed to update link status on port %d, err %s aq_err %s\n",
948 pi->lport, ice_stat_str(status),
949 ice_aq_str(pi->hw->adminq.sq_last_status));
950
951 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err);
952
953 /* Check if the link state is up after updating link info, and treat
954 * this event as an UP event since the link is actually UP now.
955 */
956 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
957 link_up = true;
958
959 vsi = ice_get_main_vsi(pf);
960 if (!vsi || !vsi->port_info)
961 return -EINVAL;
962
963 /* turn off PHY if media was removed */
964 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
965 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
966 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
967 ice_set_link(vsi, false);
968 }
969
970 /* if the old link up/down and speed is the same as the new */
971 if (link_up == old_link && link_speed == old_link_speed)
972 return 0;
973
974 if (ice_is_dcb_active(pf)) {
975 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
976 ice_dcb_rebuild(pf);
977 } else {
978 if (link_up)
979 ice_set_dflt_mib(pf);
980 }
981 ice_vsi_link_event(vsi, link_up);
982 ice_print_link_msg(vsi, link_up);
983
984 ice_vc_notify_link_state(pf);
985
986 return 0;
987}
988
989/**
990 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
991 * @pf: board private structure
992 */
993static void ice_watchdog_subtask(struct ice_pf *pf)
994{
995 int i;
996
997 /* if interface is down do nothing */
998 if (test_bit(ICE_DOWN, pf->state) ||
999 test_bit(ICE_CFG_BUSY, pf->state))
1000 return;
1001
1002 /* make sure we don't do these things too often */
1003 if (time_before(jiffies,
1004 pf->serv_tmr_prev + pf->serv_tmr_period))
1005 return;
1006
1007 pf->serv_tmr_prev = jiffies;
1008
1009 /* Update the stats for active netdevs so the network stack
1010 * can look at updated numbers whenever it cares to
1011 */
1012 ice_update_pf_stats(pf);
1013 ice_for_each_vsi(pf, i)
1014 if (pf->vsi[i] && pf->vsi[i]->netdev)
1015 ice_update_vsi_stats(pf->vsi[i]);
1016}
1017
1018/**
1019 * ice_init_link_events - enable/initialize link events
1020 * @pi: pointer to the port_info instance
1021 *
1022 * Returns -EIO on failure, 0 on success
1023 */
1024static int ice_init_link_events(struct ice_port_info *pi)
1025{
1026 u16 mask;
1027
1028 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1029 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
1030
1031 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1032 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1033 pi->lport);
1034 return -EIO;
1035 }
1036
1037 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1038 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1039 pi->lport);
1040 return -EIO;
1041 }
1042
1043 return 0;
1044}
1045
1046/**
1047 * ice_handle_link_event - handle link event via ARQ
1048 * @pf: PF that the link event is associated with
1049 * @event: event structure containing link status info
1050 */
1051static int
1052ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1053{
1054 struct ice_aqc_get_link_status_data *link_data;
1055 struct ice_port_info *port_info;
1056 int status;
1057
1058 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1059 port_info = pf->hw.port_info;
1060 if (!port_info)
1061 return -EINVAL;
1062
1063 status = ice_link_event(pf, port_info,
1064 !!(link_data->link_info & ICE_AQ_LINK_UP),
1065 le16_to_cpu(link_data->link_speed));
1066 if (status)
1067 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1068 status);
1069
1070 return status;
1071}
1072
1073enum ice_aq_task_state {
1074 ICE_AQ_TASK_WAITING = 0,
1075 ICE_AQ_TASK_COMPLETE,
1076 ICE_AQ_TASK_CANCELED,
1077};
1078
1079struct ice_aq_task {
1080 struct hlist_node entry;
1081
1082 u16 opcode;
1083 struct ice_rq_event_info *event;
1084 enum ice_aq_task_state state;
1085};
1086
1087/**
1088 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1089 * @pf: pointer to the PF private structure
1090 * @opcode: the opcode to wait for
1091 * @timeout: how long to wait, in jiffies
1092 * @event: storage for the event info
1093 *
1094 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1095 * current thread will be put to sleep until the specified event occurs or
1096 * until the given timeout is reached.
1097 *
1098 * To obtain only the descriptor contents, pass an event without an allocated
1099 * msg_buf. If the complete data buffer is desired, allocate the
1100 * event->msg_buf with enough space ahead of time.
1101 *
1102 * Returns: zero on success, or a negative error code on failure.
1103 */
1104int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1105 struct ice_rq_event_info *event)
1106{
1107 struct device *dev = ice_pf_to_dev(pf);
1108 struct ice_aq_task *task;
1109 unsigned long start;
1110 long ret;
1111 int err;
1112
1113 task = kzalloc(sizeof(*task), GFP_KERNEL);
1114 if (!task)
1115 return -ENOMEM;
1116
1117 INIT_HLIST_NODE(&task->entry);
1118 task->opcode = opcode;
1119 task->event = event;
1120 task->state = ICE_AQ_TASK_WAITING;
1121
1122 spin_lock_bh(&pf->aq_wait_lock);
1123 hlist_add_head(&task->entry, &pf->aq_wait_list);
1124 spin_unlock_bh(&pf->aq_wait_lock);
1125
1126 start = jiffies;
1127
1128 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1129 timeout);
1130 switch (task->state) {
1131 case ICE_AQ_TASK_WAITING:
1132 err = ret < 0 ? ret : -ETIMEDOUT;
1133 break;
1134 case ICE_AQ_TASK_CANCELED:
1135 err = ret < 0 ? ret : -ECANCELED;
1136 break;
1137 case ICE_AQ_TASK_COMPLETE:
1138 err = ret < 0 ? ret : 0;
1139 break;
1140 default:
1141 WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1142 err = -EINVAL;
1143 break;
1144 }
1145
1146 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1147 jiffies_to_msecs(jiffies - start),
1148 jiffies_to_msecs(timeout),
1149 opcode);
1150
1151 spin_lock_bh(&pf->aq_wait_lock);
1152 hlist_del(&task->entry);
1153 spin_unlock_bh(&pf->aq_wait_lock);
1154 kfree(task);
1155
1156 return err;
1157}
1158
1159/**
1160 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1161 * @pf: pointer to the PF private structure
1162 * @opcode: the opcode of the event
1163 * @event: the event to check
1164 *
1165 * Loops over the current list of pending threads waiting for an AdminQ event.
1166 * For each matching task, copy the contents of the event into the task
1167 * structure and wake up the thread.
1168 *
1169 * If multiple threads wait for the same opcode, they will all be woken up.
1170 *
1171 * Note that event->msg_buf will only be duplicated if the event has a buffer
1172 * with enough space already allocated. Otherwise, only the descriptor and
1173 * message length will be copied.
1174 *
1175 * Returns: true if an event was found, false otherwise
1176 */
1177static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1178 struct ice_rq_event_info *event)
1179{
1180 struct ice_aq_task *task;
1181 bool found = false;
1182
1183 spin_lock_bh(&pf->aq_wait_lock);
1184 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1185 if (task->state || task->opcode != opcode)
1186 continue;
1187
1188 memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1189 task->event->msg_len = event->msg_len;
1190
1191 /* Only copy the data buffer if a destination was set */
1192 if (task->event->msg_buf &&
1193 task->event->buf_len > event->buf_len) {
1194 memcpy(task->event->msg_buf, event->msg_buf,
1195 event->buf_len);
1196 task->event->buf_len = event->buf_len;
1197 }
1198
1199 task->state = ICE_AQ_TASK_COMPLETE;
1200 found = true;
1201 }
1202 spin_unlock_bh(&pf->aq_wait_lock);
1203
1204 if (found)
1205 wake_up(&pf->aq_wait_queue);
1206}
1207
1208/**
1209 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1210 * @pf: the PF private structure
1211 *
1212 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1213 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1214 */
1215static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1216{
1217 struct ice_aq_task *task;
1218
1219 spin_lock_bh(&pf->aq_wait_lock);
1220 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1221 task->state = ICE_AQ_TASK_CANCELED;
1222 spin_unlock_bh(&pf->aq_wait_lock);
1223
1224 wake_up(&pf->aq_wait_queue);
1225}
1226
1227/**
1228 * __ice_clean_ctrlq - helper function to clean controlq rings
1229 * @pf: ptr to struct ice_pf
1230 * @q_type: specific Control queue type
1231 */
1232static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1233{
1234 struct device *dev = ice_pf_to_dev(pf);
1235 struct ice_rq_event_info event;
1236 struct ice_hw *hw = &pf->hw;
1237 struct ice_ctl_q_info *cq;
1238 u16 pending, i = 0;
1239 const char *qtype;
1240 u32 oldval, val;
1241
1242 /* Do not clean control queue if/when PF reset fails */
1243 if (test_bit(ICE_RESET_FAILED, pf->state))
1244 return 0;
1245
1246 switch (q_type) {
1247 case ICE_CTL_Q_ADMIN:
1248 cq = &hw->adminq;
1249 qtype = "Admin";
1250 break;
1251 case ICE_CTL_Q_SB:
1252 cq = &hw->sbq;
1253 qtype = "Sideband";
1254 break;
1255 case ICE_CTL_Q_MAILBOX:
1256 cq = &hw->mailboxq;
1257 qtype = "Mailbox";
1258 /* we are going to try to detect a malicious VF, so set the
1259 * state to begin detection
1260 */
1261 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1262 break;
1263 default:
1264 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1265 return 0;
1266 }
1267
1268 /* check for error indications - PF_xx_AxQLEN register layout for
1269 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1270 */
1271 val = rd32(hw, cq->rq.len);
1272 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1273 PF_FW_ARQLEN_ARQCRIT_M)) {
1274 oldval = val;
1275 if (val & PF_FW_ARQLEN_ARQVFE_M)
1276 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1277 qtype);
1278 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1279 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1280 qtype);
1281 }
1282 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1283 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1284 qtype);
1285 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1286 PF_FW_ARQLEN_ARQCRIT_M);
1287 if (oldval != val)
1288 wr32(hw, cq->rq.len, val);
1289 }
1290
1291 val = rd32(hw, cq->sq.len);
1292 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1293 PF_FW_ATQLEN_ATQCRIT_M)) {
1294 oldval = val;
1295 if (val & PF_FW_ATQLEN_ATQVFE_M)
1296 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1297 qtype);
1298 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1299 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1300 qtype);
1301 }
1302 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1303 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1304 qtype);
1305 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1306 PF_FW_ATQLEN_ATQCRIT_M);
1307 if (oldval != val)
1308 wr32(hw, cq->sq.len, val);
1309 }
1310
1311 event.buf_len = cq->rq_buf_size;
1312 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1313 if (!event.msg_buf)
1314 return 0;
1315
1316 do {
1317 enum ice_status ret;
1318 u16 opcode;
1319
1320 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1321 if (ret == ICE_ERR_AQ_NO_WORK)
1322 break;
1323 if (ret) {
1324 dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1325 ice_stat_str(ret));
1326 break;
1327 }
1328
1329 opcode = le16_to_cpu(event.desc.opcode);
1330
1331 /* Notify any thread that might be waiting for this event */
1332 ice_aq_check_events(pf, opcode, &event);
1333
1334 switch (opcode) {
1335 case ice_aqc_opc_get_link_status:
1336 if (ice_handle_link_event(pf, &event))
1337 dev_err(dev, "Could not handle link event\n");
1338 break;
1339 case ice_aqc_opc_event_lan_overflow:
1340 ice_vf_lan_overflow_event(pf, &event);
1341 break;
1342 case ice_mbx_opc_send_msg_to_pf:
1343 if (!ice_is_malicious_vf(pf, &event, i, pending))
1344 ice_vc_process_vf_msg(pf, &event);
1345 break;
1346 case ice_aqc_opc_fw_logging:
1347 ice_output_fw_log(hw, &event.desc, event.msg_buf);
1348 break;
1349 case ice_aqc_opc_lldp_set_mib_change:
1350 ice_dcb_process_lldp_set_mib_change(pf, &event);
1351 break;
1352 default:
1353 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1354 qtype, opcode);
1355 break;
1356 }
1357 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1358
1359 kfree(event.msg_buf);
1360
1361 return pending && (i == ICE_DFLT_IRQ_WORK);
1362}
1363
1364/**
1365 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1366 * @hw: pointer to hardware info
1367 * @cq: control queue information
1368 *
1369 * returns true if there are pending messages in a queue, false if there aren't
1370 */
1371static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1372{
1373 u16 ntu;
1374
1375 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1376 return cq->rq.next_to_clean != ntu;
1377}
1378
1379/**
1380 * ice_clean_adminq_subtask - clean the AdminQ rings
1381 * @pf: board private structure
1382 */
1383static void ice_clean_adminq_subtask(struct ice_pf *pf)
1384{
1385 struct ice_hw *hw = &pf->hw;
1386
1387 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1388 return;
1389
1390 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1391 return;
1392
1393 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1394
1395 /* There might be a situation where new messages arrive to a control
1396 * queue between processing the last message and clearing the
1397 * EVENT_PENDING bit. So before exiting, check queue head again (using
1398 * ice_ctrlq_pending) and process new messages if any.
1399 */
1400 if (ice_ctrlq_pending(hw, &hw->adminq))
1401 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1402
1403 ice_flush(hw);
1404}
1405
1406/**
1407 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1408 * @pf: board private structure
1409 */
1410static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1411{
1412 struct ice_hw *hw = &pf->hw;
1413
1414 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1415 return;
1416
1417 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1418 return;
1419
1420 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1421
1422 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1423 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1424
1425 ice_flush(hw);
1426}
1427
1428/**
1429 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1430 * @pf: board private structure
1431 */
1432static void ice_clean_sbq_subtask(struct ice_pf *pf)
1433{
1434 struct ice_hw *hw = &pf->hw;
1435
1436 /* Nothing to do here if sideband queue is not supported */
1437 if (!ice_is_sbq_supported(hw)) {
1438 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1439 return;
1440 }
1441
1442 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1443 return;
1444
1445 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1446 return;
1447
1448 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1449
1450 if (ice_ctrlq_pending(hw, &hw->sbq))
1451 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1452
1453 ice_flush(hw);
1454}
1455
1456/**
1457 * ice_service_task_schedule - schedule the service task to wake up
1458 * @pf: board private structure
1459 *
1460 * If not already scheduled, this puts the task into the work queue.
1461 */
1462void ice_service_task_schedule(struct ice_pf *pf)
1463{
1464 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1465 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1466 !test_bit(ICE_NEEDS_RESTART, pf->state))
1467 queue_work(ice_wq, &pf->serv_task);
1468}
1469
1470/**
1471 * ice_service_task_complete - finish up the service task
1472 * @pf: board private structure
1473 */
1474static void ice_service_task_complete(struct ice_pf *pf)
1475{
1476 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1477
1478 /* force memory (pf->state) to sync before next service task */
1479 smp_mb__before_atomic();
1480 clear_bit(ICE_SERVICE_SCHED, pf->state);
1481}
1482
1483/**
1484 * ice_service_task_stop - stop service task and cancel works
1485 * @pf: board private structure
1486 *
1487 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1488 * 1 otherwise.
1489 */
1490static int ice_service_task_stop(struct ice_pf *pf)
1491{
1492 int ret;
1493
1494 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1495
1496 if (pf->serv_tmr.function)
1497 del_timer_sync(&pf->serv_tmr);
1498 if (pf->serv_task.func)
1499 cancel_work_sync(&pf->serv_task);
1500
1501 clear_bit(ICE_SERVICE_SCHED, pf->state);
1502 return ret;
1503}
1504
1505/**
1506 * ice_service_task_restart - restart service task and schedule works
1507 * @pf: board private structure
1508 *
1509 * This function is needed for suspend and resume works (e.g WoL scenario)
1510 */
1511static void ice_service_task_restart(struct ice_pf *pf)
1512{
1513 clear_bit(ICE_SERVICE_DIS, pf->state);
1514 ice_service_task_schedule(pf);
1515}
1516
1517/**
1518 * ice_service_timer - timer callback to schedule service task
1519 * @t: pointer to timer_list
1520 */
1521static void ice_service_timer(struct timer_list *t)
1522{
1523 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1524
1525 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1526 ice_service_task_schedule(pf);
1527}
1528
1529/**
1530 * ice_handle_mdd_event - handle malicious driver detect event
1531 * @pf: pointer to the PF structure
1532 *
1533 * Called from service task. OICR interrupt handler indicates MDD event.
1534 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1535 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1536 * disable the queue, the PF can be configured to reset the VF using ethtool
1537 * private flag mdd-auto-reset-vf.
1538 */
1539static void ice_handle_mdd_event(struct ice_pf *pf)
1540{
1541 struct device *dev = ice_pf_to_dev(pf);
1542 struct ice_hw *hw = &pf->hw;
1543 unsigned int i;
1544 u32 reg;
1545
1546 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1547 /* Since the VF MDD event logging is rate limited, check if
1548 * there are pending MDD events.
1549 */
1550 ice_print_vfs_mdd_events(pf);
1551 return;
1552 }
1553
1554 /* find what triggered an MDD event */
1555 reg = rd32(hw, GL_MDET_TX_PQM);
1556 if (reg & GL_MDET_TX_PQM_VALID_M) {
1557 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1558 GL_MDET_TX_PQM_PF_NUM_S;
1559 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1560 GL_MDET_TX_PQM_VF_NUM_S;
1561 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1562 GL_MDET_TX_PQM_MAL_TYPE_S;
1563 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1564 GL_MDET_TX_PQM_QNUM_S);
1565
1566 if (netif_msg_tx_err(pf))
1567 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1568 event, queue, pf_num, vf_num);
1569 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1570 }
1571
1572 reg = rd32(hw, GL_MDET_TX_TCLAN);
1573 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1574 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1575 GL_MDET_TX_TCLAN_PF_NUM_S;
1576 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1577 GL_MDET_TX_TCLAN_VF_NUM_S;
1578 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1579 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1580 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1581 GL_MDET_TX_TCLAN_QNUM_S);
1582
1583 if (netif_msg_tx_err(pf))
1584 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1585 event, queue, pf_num, vf_num);
1586 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1587 }
1588
1589 reg = rd32(hw, GL_MDET_RX);
1590 if (reg & GL_MDET_RX_VALID_M) {
1591 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1592 GL_MDET_RX_PF_NUM_S;
1593 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1594 GL_MDET_RX_VF_NUM_S;
1595 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1596 GL_MDET_RX_MAL_TYPE_S;
1597 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1598 GL_MDET_RX_QNUM_S);
1599
1600 if (netif_msg_rx_err(pf))
1601 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1602 event, queue, pf_num, vf_num);
1603 wr32(hw, GL_MDET_RX, 0xffffffff);
1604 }
1605
1606 /* check to see if this PF caused an MDD event */
1607 reg = rd32(hw, PF_MDET_TX_PQM);
1608 if (reg & PF_MDET_TX_PQM_VALID_M) {
1609 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1610 if (netif_msg_tx_err(pf))
1611 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1612 }
1613
1614 reg = rd32(hw, PF_MDET_TX_TCLAN);
1615 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1616 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1617 if (netif_msg_tx_err(pf))
1618 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1619 }
1620
1621 reg = rd32(hw, PF_MDET_RX);
1622 if (reg & PF_MDET_RX_VALID_M) {
1623 wr32(hw, PF_MDET_RX, 0xFFFF);
1624 if (netif_msg_rx_err(pf))
1625 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1626 }
1627
1628 /* Check to see if one of the VFs caused an MDD event, and then
1629 * increment counters and set print pending
1630 */
1631 ice_for_each_vf(pf, i) {
1632 struct ice_vf *vf = &pf->vf[i];
1633
1634 reg = rd32(hw, VP_MDET_TX_PQM(i));
1635 if (reg & VP_MDET_TX_PQM_VALID_M) {
1636 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1637 vf->mdd_tx_events.count++;
1638 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1639 if (netif_msg_tx_err(pf))
1640 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1641 i);
1642 }
1643
1644 reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1645 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1646 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1647 vf->mdd_tx_events.count++;
1648 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1649 if (netif_msg_tx_err(pf))
1650 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1651 i);
1652 }
1653
1654 reg = rd32(hw, VP_MDET_TX_TDPU(i));
1655 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1656 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1657 vf->mdd_tx_events.count++;
1658 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1659 if (netif_msg_tx_err(pf))
1660 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1661 i);
1662 }
1663
1664 reg = rd32(hw, VP_MDET_RX(i));
1665 if (reg & VP_MDET_RX_VALID_M) {
1666 wr32(hw, VP_MDET_RX(i), 0xFFFF);
1667 vf->mdd_rx_events.count++;
1668 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1669 if (netif_msg_rx_err(pf))
1670 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1671 i);
1672
1673 /* Since the queue is disabled on VF Rx MDD events, the
1674 * PF can be configured to reset the VF through ethtool
1675 * private flag mdd-auto-reset-vf.
1676 */
1677 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1678 /* VF MDD event counters will be cleared by
1679 * reset, so print the event prior to reset.
1680 */
1681 ice_print_vf_rx_mdd_event(vf);
1682 ice_reset_vf(&pf->vf[i], false);
1683 }
1684 }
1685 }
1686
1687 ice_print_vfs_mdd_events(pf);
1688}
1689
1690/**
1691 * ice_force_phys_link_state - Force the physical link state
1692 * @vsi: VSI to force the physical link state to up/down
1693 * @link_up: true/false indicates to set the physical link to up/down
1694 *
1695 * Force the physical link state by getting the current PHY capabilities from
1696 * hardware and setting the PHY config based on the determined capabilities. If
1697 * link changes a link event will be triggered because both the Enable Automatic
1698 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1699 *
1700 * Returns 0 on success, negative on failure
1701 */
1702static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1703{
1704 struct ice_aqc_get_phy_caps_data *pcaps;
1705 struct ice_aqc_set_phy_cfg_data *cfg;
1706 struct ice_port_info *pi;
1707 struct device *dev;
1708 int retcode;
1709
1710 if (!vsi || !vsi->port_info || !vsi->back)
1711 return -EINVAL;
1712 if (vsi->type != ICE_VSI_PF)
1713 return 0;
1714
1715 dev = ice_pf_to_dev(vsi->back);
1716
1717 pi = vsi->port_info;
1718
1719 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1720 if (!pcaps)
1721 return -ENOMEM;
1722
1723 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1724 NULL);
1725 if (retcode) {
1726 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1727 vsi->vsi_num, retcode);
1728 retcode = -EIO;
1729 goto out;
1730 }
1731
1732 /* No change in link */
1733 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1734 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1735 goto out;
1736
1737 /* Use the current user PHY configuration. The current user PHY
1738 * configuration is initialized during probe from PHY capabilities
1739 * software mode, and updated on set PHY configuration.
1740 */
1741 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1742 if (!cfg) {
1743 retcode = -ENOMEM;
1744 goto out;
1745 }
1746
1747 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1748 if (link_up)
1749 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1750 else
1751 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1752
1753 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1754 if (retcode) {
1755 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1756 vsi->vsi_num, retcode);
1757 retcode = -EIO;
1758 }
1759
1760 kfree(cfg);
1761out:
1762 kfree(pcaps);
1763 return retcode;
1764}
1765
1766/**
1767 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1768 * @pi: port info structure
1769 *
1770 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1771 */
1772static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1773{
1774 struct ice_aqc_get_phy_caps_data *pcaps;
1775 struct ice_pf *pf = pi->hw->back;
1776 enum ice_status status;
1777 int err = 0;
1778
1779 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1780 if (!pcaps)
1781 return -ENOMEM;
1782
1783 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps,
1784 NULL);
1785
1786 if (status) {
1787 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1788 err = -EIO;
1789 goto out;
1790 }
1791
1792 pf->nvm_phy_type_hi = pcaps->phy_type_high;
1793 pf->nvm_phy_type_lo = pcaps->phy_type_low;
1794
1795out:
1796 kfree(pcaps);
1797 return err;
1798}
1799
1800/**
1801 * ice_init_link_dflt_override - Initialize link default override
1802 * @pi: port info structure
1803 *
1804 * Initialize link default override and PHY total port shutdown during probe
1805 */
1806static void ice_init_link_dflt_override(struct ice_port_info *pi)
1807{
1808 struct ice_link_default_override_tlv *ldo;
1809 struct ice_pf *pf = pi->hw->back;
1810
1811 ldo = &pf->link_dflt_override;
1812 if (ice_get_link_default_override(ldo, pi))
1813 return;
1814
1815 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1816 return;
1817
1818 /* Enable Total Port Shutdown (override/replace link-down-on-close
1819 * ethtool private flag) for ports with Port Disable bit set.
1820 */
1821 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1822 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1823}
1824
1825/**
1826 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1827 * @pi: port info structure
1828 *
1829 * If default override is enabled, initialize the user PHY cfg speed and FEC
1830 * settings using the default override mask from the NVM.
1831 *
1832 * The PHY should only be configured with the default override settings the
1833 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1834 * is used to indicate that the user PHY cfg default override is initialized
1835 * and the PHY has not been configured with the default override settings. The
1836 * state is set here, and cleared in ice_configure_phy the first time the PHY is
1837 * configured.
1838 *
1839 * This function should be called only if the FW doesn't support default
1840 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
1841 */
1842static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1843{
1844 struct ice_link_default_override_tlv *ldo;
1845 struct ice_aqc_set_phy_cfg_data *cfg;
1846 struct ice_phy_info *phy = &pi->phy;
1847 struct ice_pf *pf = pi->hw->back;
1848
1849 ldo = &pf->link_dflt_override;
1850
1851 /* If link default override is enabled, use to mask NVM PHY capabilities
1852 * for speed and FEC default configuration.
1853 */
1854 cfg = &phy->curr_user_phy_cfg;
1855
1856 if (ldo->phy_type_low || ldo->phy_type_high) {
1857 cfg->phy_type_low = pf->nvm_phy_type_lo &
1858 cpu_to_le64(ldo->phy_type_low);
1859 cfg->phy_type_high = pf->nvm_phy_type_hi &
1860 cpu_to_le64(ldo->phy_type_high);
1861 }
1862 cfg->link_fec_opt = ldo->fec_options;
1863 phy->curr_user_fec_req = ICE_FEC_AUTO;
1864
1865 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1866}
1867
1868/**
1869 * ice_init_phy_user_cfg - Initialize the PHY user configuration
1870 * @pi: port info structure
1871 *
1872 * Initialize the current user PHY configuration, speed, FEC, and FC requested
1873 * mode to default. The PHY defaults are from get PHY capabilities topology
1874 * with media so call when media is first available. An error is returned if
1875 * called when media is not available. The PHY initialization completed state is
1876 * set here.
1877 *
1878 * These configurations are used when setting PHY
1879 * configuration. The user PHY configuration is updated on set PHY
1880 * configuration. Returns 0 on success, negative on failure
1881 */
1882static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1883{
1884 struct ice_aqc_get_phy_caps_data *pcaps;
1885 struct ice_phy_info *phy = &pi->phy;
1886 struct ice_pf *pf = pi->hw->back;
1887 enum ice_status status;
1888 int err = 0;
1889
1890 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1891 return -EIO;
1892
1893 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1894 if (!pcaps)
1895 return -ENOMEM;
1896
1897 if (ice_fw_supports_report_dflt_cfg(pi->hw))
1898 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
1899 pcaps, NULL);
1900 else
1901 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
1902 pcaps, NULL);
1903 if (status) {
1904 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1905 err = -EIO;
1906 goto err_out;
1907 }
1908
1909 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1910
1911 /* check if lenient mode is supported and enabled */
1912 if (ice_fw_supports_link_override(pi->hw) &&
1913 !(pcaps->module_compliance_enforcement &
1914 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1915 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1916
1917 /* if the FW supports default PHY configuration mode, then the driver
1918 * does not have to apply link override settings. If not,
1919 * initialize user PHY configuration with link override values
1920 */
1921 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
1922 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
1923 ice_init_phy_cfg_dflt_override(pi);
1924 goto out;
1925 }
1926 }
1927
1928 /* if link default override is not enabled, set user flow control and
1929 * FEC settings based on what get_phy_caps returned
1930 */
1931 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1932 pcaps->link_fec_options);
1933 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1934
1935out:
1936 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1937 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
1938err_out:
1939 kfree(pcaps);
1940 return err;
1941}
1942
1943/**
1944 * ice_configure_phy - configure PHY
1945 * @vsi: VSI of PHY
1946 *
1947 * Set the PHY configuration. If the current PHY configuration is the same as
1948 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1949 * configure the based get PHY capabilities for topology with media.
1950 */
1951static int ice_configure_phy(struct ice_vsi *vsi)
1952{
1953 struct device *dev = ice_pf_to_dev(vsi->back);
1954 struct ice_port_info *pi = vsi->port_info;
1955 struct ice_aqc_get_phy_caps_data *pcaps;
1956 struct ice_aqc_set_phy_cfg_data *cfg;
1957 struct ice_phy_info *phy = &pi->phy;
1958 struct ice_pf *pf = vsi->back;
1959 enum ice_status status;
1960 int err = 0;
1961
1962 /* Ensure we have media as we cannot configure a medialess port */
1963 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1964 return -EPERM;
1965
1966 ice_print_topo_conflict(vsi);
1967
1968 if (phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1969 return -EPERM;
1970
1971 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
1972 return ice_force_phys_link_state(vsi, true);
1973
1974 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1975 if (!pcaps)
1976 return -ENOMEM;
1977
1978 /* Get current PHY config */
1979 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1980 NULL);
1981 if (status) {
1982 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1983 vsi->vsi_num, ice_stat_str(status));
1984 err = -EIO;
1985 goto done;
1986 }
1987
1988 /* If PHY enable link is configured and configuration has not changed,
1989 * there's nothing to do
1990 */
1991 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1992 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
1993 goto done;
1994
1995 /* Use PHY topology as baseline for configuration */
1996 memset(pcaps, 0, sizeof(*pcaps));
1997 if (ice_fw_supports_report_dflt_cfg(pi->hw))
1998 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
1999 pcaps, NULL);
2000 else
2001 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2002 pcaps, NULL);
2003 if (status) {
2004 dev_err(dev, "Failed to get PHY caps, VSI %d error %s\n",
2005 vsi->vsi_num, ice_stat_str(status));
2006 err = -EIO;
2007 goto done;
2008 }
2009
2010 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2011 if (!cfg) {
2012 err = -ENOMEM;
2013 goto done;
2014 }
2015
2016 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2017
2018 /* Speed - If default override pending, use curr_user_phy_cfg set in
2019 * ice_init_phy_user_cfg_ldo.
2020 */
2021 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2022 vsi->back->state)) {
2023 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2024 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2025 } else {
2026 u64 phy_low = 0, phy_high = 0;
2027
2028 ice_update_phy_type(&phy_low, &phy_high,
2029 pi->phy.curr_user_speed_req);
2030 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2031 cfg->phy_type_high = pcaps->phy_type_high &
2032 cpu_to_le64(phy_high);
2033 }
2034
2035 /* Can't provide what was requested; use PHY capabilities */
2036 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2037 cfg->phy_type_low = pcaps->phy_type_low;
2038 cfg->phy_type_high = pcaps->phy_type_high;
2039 }
2040
2041 /* FEC */
2042 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2043
2044 /* Can't provide what was requested; use PHY capabilities */
2045 if (cfg->link_fec_opt !=
2046 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2047 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2048 cfg->link_fec_opt = pcaps->link_fec_options;
2049 }
2050
2051 /* Flow Control - always supported; no need to check against
2052 * capabilities
2053 */
2054 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2055
2056 /* Enable link and link update */
2057 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2058
2059 status = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2060 if (status) {
2061 dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
2062 vsi->vsi_num, ice_stat_str(status));
2063 err = -EIO;
2064 }
2065
2066 kfree(cfg);
2067done:
2068 kfree(pcaps);
2069 return err;
2070}
2071
2072/**
2073 * ice_check_media_subtask - Check for media
2074 * @pf: pointer to PF struct
2075 *
2076 * If media is available, then initialize PHY user configuration if it is not
2077 * been, and configure the PHY if the interface is up.
2078 */
2079static void ice_check_media_subtask(struct ice_pf *pf)
2080{
2081 struct ice_port_info *pi;
2082 struct ice_vsi *vsi;
2083 int err;
2084
2085 /* No need to check for media if it's already present */
2086 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2087 return;
2088
2089 vsi = ice_get_main_vsi(pf);
2090 if (!vsi)
2091 return;
2092
2093 /* Refresh link info and check if media is present */
2094 pi = vsi->port_info;
2095 err = ice_update_link_info(pi);
2096 if (err)
2097 return;
2098
2099 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err);
2100
2101 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2102 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2103 ice_init_phy_user_cfg(pi);
2104
2105 /* PHY settings are reset on media insertion, reconfigure
2106 * PHY to preserve settings.
2107 */
2108 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2109 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2110 return;
2111
2112 err = ice_configure_phy(vsi);
2113 if (!err)
2114 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2115
2116 /* A Link Status Event will be generated; the event handler
2117 * will complete bringing the interface up
2118 */
2119 }
2120}
2121
2122/**
2123 * ice_service_task - manage and run subtasks
2124 * @work: pointer to work_struct contained by the PF struct
2125 */
2126static void ice_service_task(struct work_struct *work)
2127{
2128 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2129 unsigned long start_time = jiffies;
2130
2131 /* subtasks */
2132
2133 /* process reset requests first */
2134 ice_reset_subtask(pf);
2135
2136 /* bail if a reset/recovery cycle is pending or rebuild failed */
2137 if (ice_is_reset_in_progress(pf->state) ||
2138 test_bit(ICE_SUSPENDED, pf->state) ||
2139 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2140 ice_service_task_complete(pf);
2141 return;
2142 }
2143
2144 ice_clean_adminq_subtask(pf);
2145 ice_check_media_subtask(pf);
2146 ice_check_for_hang_subtask(pf);
2147 ice_sync_fltr_subtask(pf);
2148 ice_handle_mdd_event(pf);
2149 ice_watchdog_subtask(pf);
2150
2151 if (ice_is_safe_mode(pf)) {
2152 ice_service_task_complete(pf);
2153 return;
2154 }
2155
2156 ice_process_vflr_event(pf);
2157 ice_clean_mailboxq_subtask(pf);
2158 ice_clean_sbq_subtask(pf);
2159 ice_sync_arfs_fltrs(pf);
2160 ice_flush_fdir_ctx(pf);
2161
2162 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2163 ice_service_task_complete(pf);
2164
2165 /* If the tasks have taken longer than one service timer period
2166 * or there is more work to be done, reset the service timer to
2167 * schedule the service task now.
2168 */
2169 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2170 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2171 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2172 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2173 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2174 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2175 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2176 mod_timer(&pf->serv_tmr, jiffies);
2177}
2178
2179/**
2180 * ice_set_ctrlq_len - helper function to set controlq length
2181 * @hw: pointer to the HW instance
2182 */
2183static void ice_set_ctrlq_len(struct ice_hw *hw)
2184{
2185 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2186 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2187 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2188 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2189 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2190 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2191 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2192 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2193 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2194 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2195 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2196 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2197}
2198
2199/**
2200 * ice_schedule_reset - schedule a reset
2201 * @pf: board private structure
2202 * @reset: reset being requested
2203 */
2204int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2205{
2206 struct device *dev = ice_pf_to_dev(pf);
2207
2208 /* bail out if earlier reset has failed */
2209 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2210 dev_dbg(dev, "earlier reset has failed\n");
2211 return -EIO;
2212 }
2213 /* bail if reset/recovery already in progress */
2214 if (ice_is_reset_in_progress(pf->state)) {
2215 dev_dbg(dev, "Reset already in progress\n");
2216 return -EBUSY;
2217 }
2218
2219 ice_unplug_aux_dev(pf);
2220
2221 switch (reset) {
2222 case ICE_RESET_PFR:
2223 set_bit(ICE_PFR_REQ, pf->state);
2224 break;
2225 case ICE_RESET_CORER:
2226 set_bit(ICE_CORER_REQ, pf->state);
2227 break;
2228 case ICE_RESET_GLOBR:
2229 set_bit(ICE_GLOBR_REQ, pf->state);
2230 break;
2231 default:
2232 return -EINVAL;
2233 }
2234
2235 ice_service_task_schedule(pf);
2236 return 0;
2237}
2238
2239/**
2240 * ice_irq_affinity_notify - Callback for affinity changes
2241 * @notify: context as to what irq was changed
2242 * @mask: the new affinity mask
2243 *
2244 * This is a callback function used by the irq_set_affinity_notifier function
2245 * so that we may register to receive changes to the irq affinity masks.
2246 */
2247static void
2248ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2249 const cpumask_t *mask)
2250{
2251 struct ice_q_vector *q_vector =
2252 container_of(notify, struct ice_q_vector, affinity_notify);
2253
2254 cpumask_copy(&q_vector->affinity_mask, mask);
2255}
2256
2257/**
2258 * ice_irq_affinity_release - Callback for affinity notifier release
2259 * @ref: internal core kernel usage
2260 *
2261 * This is a callback function used by the irq_set_affinity_notifier function
2262 * to inform the current notification subscriber that they will no longer
2263 * receive notifications.
2264 */
2265static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2266
2267/**
2268 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2269 * @vsi: the VSI being configured
2270 */
2271static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2272{
2273 struct ice_hw *hw = &vsi->back->hw;
2274 int i;
2275
2276 ice_for_each_q_vector(vsi, i)
2277 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2278
2279 ice_flush(hw);
2280 return 0;
2281}
2282
2283/**
2284 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2285 * @vsi: the VSI being configured
2286 * @basename: name for the vector
2287 */
2288static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2289{
2290 int q_vectors = vsi->num_q_vectors;
2291 struct ice_pf *pf = vsi->back;
2292 int base = vsi->base_vector;
2293 struct device *dev;
2294 int rx_int_idx = 0;
2295 int tx_int_idx = 0;
2296 int vector, err;
2297 int irq_num;
2298
2299 dev = ice_pf_to_dev(pf);
2300 for (vector = 0; vector < q_vectors; vector++) {
2301 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2302
2303 irq_num = pf->msix_entries[base + vector].vector;
2304
2305 if (q_vector->tx.ring && q_vector->rx.ring) {
2306 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2307 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2308 tx_int_idx++;
2309 } else if (q_vector->rx.ring) {
2310 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2311 "%s-%s-%d", basename, "rx", rx_int_idx++);
2312 } else if (q_vector->tx.ring) {
2313 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2314 "%s-%s-%d", basename, "tx", tx_int_idx++);
2315 } else {
2316 /* skip this unused q_vector */
2317 continue;
2318 }
2319 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID)
2320 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2321 IRQF_SHARED, q_vector->name,
2322 q_vector);
2323 else
2324 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2325 0, q_vector->name, q_vector);
2326 if (err) {
2327 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2328 err);
2329 goto free_q_irqs;
2330 }
2331
2332 /* register for affinity change notifications */
2333 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2334 struct irq_affinity_notify *affinity_notify;
2335
2336 affinity_notify = &q_vector->affinity_notify;
2337 affinity_notify->notify = ice_irq_affinity_notify;
2338 affinity_notify->release = ice_irq_affinity_release;
2339 irq_set_affinity_notifier(irq_num, affinity_notify);
2340 }
2341
2342 /* assign the mask for this irq */
2343 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2344 }
2345
2346 vsi->irqs_ready = true;
2347 return 0;
2348
2349free_q_irqs:
2350 while (vector) {
2351 vector--;
2352 irq_num = pf->msix_entries[base + vector].vector;
2353 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2354 irq_set_affinity_notifier(irq_num, NULL);
2355 irq_set_affinity_hint(irq_num, NULL);
2356 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2357 }
2358 return err;
2359}
2360
2361/**
2362 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2363 * @vsi: VSI to setup Tx rings used by XDP
2364 *
2365 * Return 0 on success and negative value on error
2366 */
2367static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2368{
2369 struct device *dev = ice_pf_to_dev(vsi->back);
2370 int i;
2371
2372 for (i = 0; i < vsi->num_xdp_txq; i++) {
2373 u16 xdp_q_idx = vsi->alloc_txq + i;
2374 struct ice_ring *xdp_ring;
2375
2376 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2377
2378 if (!xdp_ring)
2379 goto free_xdp_rings;
2380
2381 xdp_ring->q_index = xdp_q_idx;
2382 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2383 xdp_ring->ring_active = false;
2384 xdp_ring->vsi = vsi;
2385 xdp_ring->netdev = NULL;
2386 xdp_ring->dev = dev;
2387 xdp_ring->count = vsi->num_tx_desc;
2388 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2389 if (ice_setup_tx_ring(xdp_ring))
2390 goto free_xdp_rings;
2391 ice_set_ring_xdp(xdp_ring);
2392 xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring);
2393 }
2394
2395 return 0;
2396
2397free_xdp_rings:
2398 for (; i >= 0; i--)
2399 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2400 ice_free_tx_ring(vsi->xdp_rings[i]);
2401 return -ENOMEM;
2402}
2403
2404/**
2405 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2406 * @vsi: VSI to set the bpf prog on
2407 * @prog: the bpf prog pointer
2408 */
2409static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2410{
2411 struct bpf_prog *old_prog;
2412 int i;
2413
2414 old_prog = xchg(&vsi->xdp_prog, prog);
2415 if (old_prog)
2416 bpf_prog_put(old_prog);
2417
2418 ice_for_each_rxq(vsi, i)
2419 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2420}
2421
2422/**
2423 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2424 * @vsi: VSI to bring up Tx rings used by XDP
2425 * @prog: bpf program that will be assigned to VSI
2426 *
2427 * Return 0 on success and negative value on error
2428 */
2429int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2430{
2431 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2432 int xdp_rings_rem = vsi->num_xdp_txq;
2433 struct ice_pf *pf = vsi->back;
2434 struct ice_qs_cfg xdp_qs_cfg = {
2435 .qs_mutex = &pf->avail_q_mutex,
2436 .pf_map = pf->avail_txqs,
2437 .pf_map_size = pf->max_pf_txqs,
2438 .q_count = vsi->num_xdp_txq,
2439 .scatter_count = ICE_MAX_SCATTER_TXQS,
2440 .vsi_map = vsi->txq_map,
2441 .vsi_map_offset = vsi->alloc_txq,
2442 .mapping_mode = ICE_VSI_MAP_CONTIG
2443 };
2444 enum ice_status status;
2445 struct device *dev;
2446 int i, v_idx;
2447
2448 dev = ice_pf_to_dev(pf);
2449 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2450 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2451 if (!vsi->xdp_rings)
2452 return -ENOMEM;
2453
2454 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2455 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2456 goto err_map_xdp;
2457
2458 if (ice_xdp_alloc_setup_rings(vsi))
2459 goto clear_xdp_rings;
2460
2461 /* follow the logic from ice_vsi_map_rings_to_vectors */
2462 ice_for_each_q_vector(vsi, v_idx) {
2463 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2464 int xdp_rings_per_v, q_id, q_base;
2465
2466 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2467 vsi->num_q_vectors - v_idx);
2468 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2469
2470 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2471 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2472
2473 xdp_ring->q_vector = q_vector;
2474 xdp_ring->next = q_vector->tx.ring;
2475 q_vector->tx.ring = xdp_ring;
2476 }
2477 xdp_rings_rem -= xdp_rings_per_v;
2478 }
2479
2480 /* omit the scheduler update if in reset path; XDP queues will be
2481 * taken into account at the end of ice_vsi_rebuild, where
2482 * ice_cfg_vsi_lan is being called
2483 */
2484 if (ice_is_reset_in_progress(pf->state))
2485 return 0;
2486
2487 /* tell the Tx scheduler that right now we have
2488 * additional queues
2489 */
2490 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2491 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2492
2493 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2494 max_txqs);
2495 if (status) {
2496 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2497 ice_stat_str(status));
2498 goto clear_xdp_rings;
2499 }
2500 ice_vsi_assign_bpf_prog(vsi, prog);
2501
2502 return 0;
2503clear_xdp_rings:
2504 for (i = 0; i < vsi->num_xdp_txq; i++)
2505 if (vsi->xdp_rings[i]) {
2506 kfree_rcu(vsi->xdp_rings[i], rcu);
2507 vsi->xdp_rings[i] = NULL;
2508 }
2509
2510err_map_xdp:
2511 mutex_lock(&pf->avail_q_mutex);
2512 for (i = 0; i < vsi->num_xdp_txq; i++) {
2513 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2514 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2515 }
2516 mutex_unlock(&pf->avail_q_mutex);
2517
2518 devm_kfree(dev, vsi->xdp_rings);
2519 return -ENOMEM;
2520}
2521
2522/**
2523 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2524 * @vsi: VSI to remove XDP rings
2525 *
2526 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2527 * resources
2528 */
2529int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2530{
2531 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2532 struct ice_pf *pf = vsi->back;
2533 int i, v_idx;
2534
2535 /* q_vectors are freed in reset path so there's no point in detaching
2536 * rings; in case of rebuild being triggered not from reset bits
2537 * in pf->state won't be set, so additionally check first q_vector
2538 * against NULL
2539 */
2540 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2541 goto free_qmap;
2542
2543 ice_for_each_q_vector(vsi, v_idx) {
2544 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2545 struct ice_ring *ring;
2546
2547 ice_for_each_ring(ring, q_vector->tx)
2548 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2549 break;
2550
2551 /* restore the value of last node prior to XDP setup */
2552 q_vector->tx.ring = ring;
2553 }
2554
2555free_qmap:
2556 mutex_lock(&pf->avail_q_mutex);
2557 for (i = 0; i < vsi->num_xdp_txq; i++) {
2558 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2559 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2560 }
2561 mutex_unlock(&pf->avail_q_mutex);
2562
2563 for (i = 0; i < vsi->num_xdp_txq; i++)
2564 if (vsi->xdp_rings[i]) {
2565 if (vsi->xdp_rings[i]->desc)
2566 ice_free_tx_ring(vsi->xdp_rings[i]);
2567 kfree_rcu(vsi->xdp_rings[i], rcu);
2568 vsi->xdp_rings[i] = NULL;
2569 }
2570
2571 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2572 vsi->xdp_rings = NULL;
2573
2574 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2575 return 0;
2576
2577 ice_vsi_assign_bpf_prog(vsi, NULL);
2578
2579 /* notify Tx scheduler that we destroyed XDP queues and bring
2580 * back the old number of child nodes
2581 */
2582 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2583 max_txqs[i] = vsi->num_txq;
2584
2585 /* change number of XDP Tx queues to 0 */
2586 vsi->num_xdp_txq = 0;
2587
2588 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2589 max_txqs);
2590}
2591
2592/**
2593 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2594 * @vsi: VSI to schedule napi on
2595 */
2596static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2597{
2598 int i;
2599
2600 ice_for_each_rxq(vsi, i) {
2601 struct ice_ring *rx_ring = vsi->rx_rings[i];
2602
2603 if (rx_ring->xsk_pool)
2604 napi_schedule(&rx_ring->q_vector->napi);
2605 }
2606}
2607
2608/**
2609 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2610 * @vsi: VSI to setup XDP for
2611 * @prog: XDP program
2612 * @extack: netlink extended ack
2613 */
2614static int
2615ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2616 struct netlink_ext_ack *extack)
2617{
2618 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2619 bool if_running = netif_running(vsi->netdev);
2620 int ret = 0, xdp_ring_err = 0;
2621
2622 if (frame_size > vsi->rx_buf_len) {
2623 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2624 return -EOPNOTSUPP;
2625 }
2626
2627 /* need to stop netdev while setting up the program for Rx rings */
2628 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2629 ret = ice_down(vsi);
2630 if (ret) {
2631 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2632 return ret;
2633 }
2634 }
2635
2636 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2637 vsi->num_xdp_txq = vsi->alloc_rxq;
2638 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2639 if (xdp_ring_err)
2640 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2641 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2642 xdp_ring_err = ice_destroy_xdp_rings(vsi);
2643 if (xdp_ring_err)
2644 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2645 } else {
2646 ice_vsi_assign_bpf_prog(vsi, prog);
2647 }
2648
2649 if (if_running)
2650 ret = ice_up(vsi);
2651
2652 if (!ret && prog)
2653 ice_vsi_rx_napi_schedule(vsi);
2654
2655 return (ret || xdp_ring_err) ? -ENOMEM : 0;
2656}
2657
2658/**
2659 * ice_xdp_safe_mode - XDP handler for safe mode
2660 * @dev: netdevice
2661 * @xdp: XDP command
2662 */
2663static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2664 struct netdev_bpf *xdp)
2665{
2666 NL_SET_ERR_MSG_MOD(xdp->extack,
2667 "Please provide working DDP firmware package in order to use XDP\n"
2668 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2669 return -EOPNOTSUPP;
2670}
2671
2672/**
2673 * ice_xdp - implements XDP handler
2674 * @dev: netdevice
2675 * @xdp: XDP command
2676 */
2677static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2678{
2679 struct ice_netdev_priv *np = netdev_priv(dev);
2680 struct ice_vsi *vsi = np->vsi;
2681
2682 if (vsi->type != ICE_VSI_PF) {
2683 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2684 return -EINVAL;
2685 }
2686
2687 switch (xdp->command) {
2688 case XDP_SETUP_PROG:
2689 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2690 case XDP_SETUP_XSK_POOL:
2691 return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2692 xdp->xsk.queue_id);
2693 default:
2694 return -EINVAL;
2695 }
2696}
2697
2698/**
2699 * ice_ena_misc_vector - enable the non-queue interrupts
2700 * @pf: board private structure
2701 */
2702static void ice_ena_misc_vector(struct ice_pf *pf)
2703{
2704 struct ice_hw *hw = &pf->hw;
2705 u32 val;
2706
2707 /* Disable anti-spoof detection interrupt to prevent spurious event
2708 * interrupts during a function reset. Anti-spoof functionally is
2709 * still supported.
2710 */
2711 val = rd32(hw, GL_MDCK_TX_TDPU);
2712 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2713 wr32(hw, GL_MDCK_TX_TDPU, val);
2714
2715 /* clear things first */
2716 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
2717 rd32(hw, PFINT_OICR); /* read to clear */
2718
2719 val = (PFINT_OICR_ECC_ERR_M |
2720 PFINT_OICR_MAL_DETECT_M |
2721 PFINT_OICR_GRST_M |
2722 PFINT_OICR_PCI_EXCEPTION_M |
2723 PFINT_OICR_VFLR_M |
2724 PFINT_OICR_HMC_ERR_M |
2725 PFINT_OICR_PE_PUSH_M |
2726 PFINT_OICR_PE_CRITERR_M);
2727
2728 wr32(hw, PFINT_OICR_ENA, val);
2729
2730 /* SW_ITR_IDX = 0, but don't change INTENA */
2731 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2732 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2733}
2734
2735/**
2736 * ice_misc_intr - misc interrupt handler
2737 * @irq: interrupt number
2738 * @data: pointer to a q_vector
2739 */
2740static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2741{
2742 struct ice_pf *pf = (struct ice_pf *)data;
2743 struct ice_hw *hw = &pf->hw;
2744 irqreturn_t ret = IRQ_NONE;
2745 struct device *dev;
2746 u32 oicr, ena_mask;
2747
2748 dev = ice_pf_to_dev(pf);
2749 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
2750 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2751 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
2752
2753 oicr = rd32(hw, PFINT_OICR);
2754 ena_mask = rd32(hw, PFINT_OICR_ENA);
2755
2756 if (oicr & PFINT_OICR_SWINT_M) {
2757 ena_mask &= ~PFINT_OICR_SWINT_M;
2758 pf->sw_int_count++;
2759 }
2760
2761 if (oicr & PFINT_OICR_MAL_DETECT_M) {
2762 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2763 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
2764 }
2765 if (oicr & PFINT_OICR_VFLR_M) {
2766 /* disable any further VFLR event notifications */
2767 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
2768 u32 reg = rd32(hw, PFINT_OICR_ENA);
2769
2770 reg &= ~PFINT_OICR_VFLR_M;
2771 wr32(hw, PFINT_OICR_ENA, reg);
2772 } else {
2773 ena_mask &= ~PFINT_OICR_VFLR_M;
2774 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
2775 }
2776 }
2777
2778 if (oicr & PFINT_OICR_GRST_M) {
2779 u32 reset;
2780
2781 /* we have a reset warning */
2782 ena_mask &= ~PFINT_OICR_GRST_M;
2783 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2784 GLGEN_RSTAT_RESET_TYPE_S;
2785
2786 if (reset == ICE_RESET_CORER)
2787 pf->corer_count++;
2788 else if (reset == ICE_RESET_GLOBR)
2789 pf->globr_count++;
2790 else if (reset == ICE_RESET_EMPR)
2791 pf->empr_count++;
2792 else
2793 dev_dbg(dev, "Invalid reset type %d\n", reset);
2794
2795 /* If a reset cycle isn't already in progress, we set a bit in
2796 * pf->state so that the service task can start a reset/rebuild.
2797 */
2798 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
2799 if (reset == ICE_RESET_CORER)
2800 set_bit(ICE_CORER_RECV, pf->state);
2801 else if (reset == ICE_RESET_GLOBR)
2802 set_bit(ICE_GLOBR_RECV, pf->state);
2803 else
2804 set_bit(ICE_EMPR_RECV, pf->state);
2805
2806 /* There are couple of different bits at play here.
2807 * hw->reset_ongoing indicates whether the hardware is
2808 * in reset. This is set to true when a reset interrupt
2809 * is received and set back to false after the driver
2810 * has determined that the hardware is out of reset.
2811 *
2812 * ICE_RESET_OICR_RECV in pf->state indicates
2813 * that a post reset rebuild is required before the
2814 * driver is operational again. This is set above.
2815 *
2816 * As this is the start of the reset/rebuild cycle, set
2817 * both to indicate that.
2818 */
2819 hw->reset_ongoing = true;
2820 }
2821 }
2822
2823 if (oicr & PFINT_OICR_TSYN_TX_M) {
2824 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
2825 ice_ptp_process_ts(pf);
2826 }
2827
2828 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
2829 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2830 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
2831
2832 /* Save EVENTs from GTSYN register */
2833 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
2834 GLTSYN_STAT_EVENT1_M |
2835 GLTSYN_STAT_EVENT2_M);
2836 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
2837 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
2838 }
2839
2840#define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
2841 if (oicr & ICE_AUX_CRIT_ERR) {
2842 struct iidc_event *event;
2843
2844 ena_mask &= ~ICE_AUX_CRIT_ERR;
2845 event = kzalloc(sizeof(*event), GFP_KERNEL);
2846 if (event) {
2847 set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2848 /* report the entire OICR value to AUX driver */
2849 event->reg = oicr;
2850 ice_send_event_to_aux(pf, event);
2851 kfree(event);
2852 }
2853 }
2854
2855 /* Report any remaining unexpected interrupts */
2856 oicr &= ena_mask;
2857 if (oicr) {
2858 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2859 /* If a critical error is pending there is no choice but to
2860 * reset the device.
2861 */
2862 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
2863 PFINT_OICR_ECC_ERR_M)) {
2864 set_bit(ICE_PFR_REQ, pf->state);
2865 ice_service_task_schedule(pf);
2866 }
2867 }
2868 ret = IRQ_HANDLED;
2869
2870 ice_service_task_schedule(pf);
2871 ice_irq_dynamic_ena(hw, NULL, NULL);
2872
2873 return ret;
2874}
2875
2876/**
2877 * ice_dis_ctrlq_interrupts - disable control queue interrupts
2878 * @hw: pointer to HW structure
2879 */
2880static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2881{
2882 /* disable Admin queue Interrupt causes */
2883 wr32(hw, PFINT_FW_CTL,
2884 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2885
2886 /* disable Mailbox queue Interrupt causes */
2887 wr32(hw, PFINT_MBX_CTL,
2888 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2889
2890 wr32(hw, PFINT_SB_CTL,
2891 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
2892
2893 /* disable Control queue Interrupt causes */
2894 wr32(hw, PFINT_OICR_CTL,
2895 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2896
2897 ice_flush(hw);
2898}
2899
2900/**
2901 * ice_free_irq_msix_misc - Unroll misc vector setup
2902 * @pf: board private structure
2903 */
2904static void ice_free_irq_msix_misc(struct ice_pf *pf)
2905{
2906 struct ice_hw *hw = &pf->hw;
2907
2908 ice_dis_ctrlq_interrupts(hw);
2909
2910 /* disable OICR interrupt */
2911 wr32(hw, PFINT_OICR_ENA, 0);
2912 ice_flush(hw);
2913
2914 if (pf->msix_entries) {
2915 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2916 devm_free_irq(ice_pf_to_dev(pf),
2917 pf->msix_entries[pf->oicr_idx].vector, pf);
2918 }
2919
2920 pf->num_avail_sw_msix += 1;
2921 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2922}
2923
2924/**
2925 * ice_ena_ctrlq_interrupts - enable control queue interrupts
2926 * @hw: pointer to HW structure
2927 * @reg_idx: HW vector index to associate the control queue interrupts with
2928 */
2929static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2930{
2931 u32 val;
2932
2933 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2934 PFINT_OICR_CTL_CAUSE_ENA_M);
2935 wr32(hw, PFINT_OICR_CTL, val);
2936
2937 /* enable Admin queue Interrupt causes */
2938 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2939 PFINT_FW_CTL_CAUSE_ENA_M);
2940 wr32(hw, PFINT_FW_CTL, val);
2941
2942 /* enable Mailbox queue Interrupt causes */
2943 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2944 PFINT_MBX_CTL_CAUSE_ENA_M);
2945 wr32(hw, PFINT_MBX_CTL, val);
2946
2947 /* This enables Sideband queue Interrupt causes */
2948 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
2949 PFINT_SB_CTL_CAUSE_ENA_M);
2950 wr32(hw, PFINT_SB_CTL, val);
2951
2952 ice_flush(hw);
2953}
2954
2955/**
2956 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2957 * @pf: board private structure
2958 *
2959 * This sets up the handler for MSIX 0, which is used to manage the
2960 * non-queue interrupts, e.g. AdminQ and errors. This is not used
2961 * when in MSI or Legacy interrupt mode.
2962 */
2963static int ice_req_irq_msix_misc(struct ice_pf *pf)
2964{
2965 struct device *dev = ice_pf_to_dev(pf);
2966 struct ice_hw *hw = &pf->hw;
2967 int oicr_idx, err = 0;
2968
2969 if (!pf->int_name[0])
2970 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2971 dev_driver_string(dev), dev_name(dev));
2972
2973 /* Do not request IRQ but do enable OICR interrupt since settings are
2974 * lost during reset. Note that this function is called only during
2975 * rebuild path and not while reset is in progress.
2976 */
2977 if (ice_is_reset_in_progress(pf->state))
2978 goto skip_req_irq;
2979
2980 /* reserve one vector in irq_tracker for misc interrupts */
2981 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2982 if (oicr_idx < 0)
2983 return oicr_idx;
2984
2985 pf->num_avail_sw_msix -= 1;
2986 pf->oicr_idx = (u16)oicr_idx;
2987
2988 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2989 ice_misc_intr, 0, pf->int_name, pf);
2990 if (err) {
2991 dev_err(dev, "devm_request_irq for %s failed: %d\n",
2992 pf->int_name, err);
2993 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2994 pf->num_avail_sw_msix += 1;
2995 return err;
2996 }
2997
2998skip_req_irq:
2999 ice_ena_misc_vector(pf);
3000
3001 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3002 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3003 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3004
3005 ice_flush(hw);
3006 ice_irq_dynamic_ena(hw, NULL, NULL);
3007
3008 return 0;
3009}
3010
3011/**
3012 * ice_napi_add - register NAPI handler for the VSI
3013 * @vsi: VSI for which NAPI handler is to be registered
3014 *
3015 * This function is only called in the driver's load path. Registering the NAPI
3016 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3017 * reset/rebuild, etc.)
3018 */
3019static void ice_napi_add(struct ice_vsi *vsi)
3020{
3021 int v_idx;
3022
3023 if (!vsi->netdev)
3024 return;
3025
3026 ice_for_each_q_vector(vsi, v_idx)
3027 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3028 ice_napi_poll, NAPI_POLL_WEIGHT);
3029}
3030
3031/**
3032 * ice_set_ops - set netdev and ethtools ops for the given netdev
3033 * @netdev: netdev instance
3034 */
3035static void ice_set_ops(struct net_device *netdev)
3036{
3037 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3038
3039 if (ice_is_safe_mode(pf)) {
3040 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3041 ice_set_ethtool_safe_mode_ops(netdev);
3042 return;
3043 }
3044
3045 netdev->netdev_ops = &ice_netdev_ops;
3046 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3047 ice_set_ethtool_ops(netdev);
3048}
3049
3050/**
3051 * ice_set_netdev_features - set features for the given netdev
3052 * @netdev: netdev instance
3053 */
3054static void ice_set_netdev_features(struct net_device *netdev)
3055{
3056 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3057 netdev_features_t csumo_features;
3058 netdev_features_t vlano_features;
3059 netdev_features_t dflt_features;
3060 netdev_features_t tso_features;
3061
3062 if (ice_is_safe_mode(pf)) {
3063 /* safe mode */
3064 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3065 netdev->hw_features = netdev->features;
3066 return;
3067 }
3068
3069 dflt_features = NETIF_F_SG |
3070 NETIF_F_HIGHDMA |
3071 NETIF_F_NTUPLE |
3072 NETIF_F_RXHASH;
3073
3074 csumo_features = NETIF_F_RXCSUM |
3075 NETIF_F_IP_CSUM |
3076 NETIF_F_SCTP_CRC |
3077 NETIF_F_IPV6_CSUM;
3078
3079 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3080 NETIF_F_HW_VLAN_CTAG_TX |
3081 NETIF_F_HW_VLAN_CTAG_RX;
3082
3083 tso_features = NETIF_F_TSO |
3084 NETIF_F_TSO_ECN |
3085 NETIF_F_TSO6 |
3086 NETIF_F_GSO_GRE |
3087 NETIF_F_GSO_UDP_TUNNEL |
3088 NETIF_F_GSO_GRE_CSUM |
3089 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3090 NETIF_F_GSO_PARTIAL |
3091 NETIF_F_GSO_IPXIP4 |
3092 NETIF_F_GSO_IPXIP6 |
3093 NETIF_F_GSO_UDP_L4;
3094
3095 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3096 NETIF_F_GSO_GRE_CSUM;
3097 /* set features that user can change */
3098 netdev->hw_features = dflt_features | csumo_features |
3099 vlano_features | tso_features;
3100
3101 /* add support for HW_CSUM on packets with MPLS header */
3102 netdev->mpls_features = NETIF_F_HW_CSUM;
3103
3104 /* enable features */
3105 netdev->features |= netdev->hw_features;
3106 /* encap and VLAN devices inherit default, csumo and tso features */
3107 netdev->hw_enc_features |= dflt_features | csumo_features |
3108 tso_features;
3109 netdev->vlan_features |= dflt_features | csumo_features |
3110 tso_features;
3111}
3112
3113/**
3114 * ice_cfg_netdev - Allocate, configure and register a netdev
3115 * @vsi: the VSI associated with the new netdev
3116 *
3117 * Returns 0 on success, negative value on failure
3118 */
3119static int ice_cfg_netdev(struct ice_vsi *vsi)
3120{
3121 struct ice_netdev_priv *np;
3122 struct net_device *netdev;
3123 u8 mac_addr[ETH_ALEN];
3124
3125 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3126 vsi->alloc_rxq);
3127 if (!netdev)
3128 return -ENOMEM;
3129
3130 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3131 vsi->netdev = netdev;
3132 np = netdev_priv(netdev);
3133 np->vsi = vsi;
3134
3135 ice_set_netdev_features(netdev);
3136
3137 ice_set_ops(netdev);
3138
3139 if (vsi->type == ICE_VSI_PF) {
3140 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3141 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3142 ether_addr_copy(netdev->dev_addr, mac_addr);
3143 ether_addr_copy(netdev->perm_addr, mac_addr);
3144 }
3145
3146 netdev->priv_flags |= IFF_UNICAST_FLT;
3147
3148 /* Setup netdev TC information */
3149 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3150
3151 /* setup watchdog timeout value to be 5 second */
3152 netdev->watchdog_timeo = 5 * HZ;
3153
3154 netdev->min_mtu = ETH_MIN_MTU;
3155 netdev->max_mtu = ICE_MAX_MTU;
3156
3157 return 0;
3158}
3159
3160/**
3161 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3162 * @lut: Lookup table
3163 * @rss_table_size: Lookup table size
3164 * @rss_size: Range of queue number for hashing
3165 */
3166void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3167{
3168 u16 i;
3169
3170 for (i = 0; i < rss_table_size; i++)
3171 lut[i] = i % rss_size;
3172}
3173
3174/**
3175 * ice_pf_vsi_setup - Set up a PF VSI
3176 * @pf: board private structure
3177 * @pi: pointer to the port_info instance
3178 *
3179 * Returns pointer to the successfully allocated VSI software struct
3180 * on success, otherwise returns NULL on failure.
3181 */
3182static struct ice_vsi *
3183ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3184{
3185 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
3186}
3187
3188/**
3189 * ice_ctrl_vsi_setup - Set up a control VSI
3190 * @pf: board private structure
3191 * @pi: pointer to the port_info instance
3192 *
3193 * Returns pointer to the successfully allocated VSI software struct
3194 * on success, otherwise returns NULL on failure.
3195 */
3196static struct ice_vsi *
3197ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3198{
3199 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
3200}
3201
3202/**
3203 * ice_lb_vsi_setup - Set up a loopback VSI
3204 * @pf: board private structure
3205 * @pi: pointer to the port_info instance
3206 *
3207 * Returns pointer to the successfully allocated VSI software struct
3208 * on success, otherwise returns NULL on failure.
3209 */
3210struct ice_vsi *
3211ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3212{
3213 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
3214}
3215
3216/**
3217 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3218 * @netdev: network interface to be adjusted
3219 * @proto: unused protocol
3220 * @vid: VLAN ID to be added
3221 *
3222 * net_device_ops implementation for adding VLAN IDs
3223 */
3224static int
3225ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3226 u16 vid)
3227{
3228 struct ice_netdev_priv *np = netdev_priv(netdev);
3229 struct ice_vsi *vsi = np->vsi;
3230 int ret;
3231
3232 /* VLAN 0 is added by default during load/reset */
3233 if (!vid)
3234 return 0;
3235
3236 /* Enable VLAN pruning when a VLAN other than 0 is added */
3237 if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3238 ret = ice_cfg_vlan_pruning(vsi, true, false);
3239 if (ret)
3240 return ret;
3241 }
3242
3243 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3244 * packets aren't pruned by the device's internal switch on Rx
3245 */
3246 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3247 if (!ret)
3248 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
3249
3250 return ret;
3251}
3252
3253/**
3254 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3255 * @netdev: network interface to be adjusted
3256 * @proto: unused protocol
3257 * @vid: VLAN ID to be removed
3258 *
3259 * net_device_ops implementation for removing VLAN IDs
3260 */
3261static int
3262ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3263 u16 vid)
3264{
3265 struct ice_netdev_priv *np = netdev_priv(netdev);
3266 struct ice_vsi *vsi = np->vsi;
3267 int ret;
3268
3269 /* don't allow removal of VLAN 0 */
3270 if (!vid)
3271 return 0;
3272
3273 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3274 * information
3275 */
3276 ret = ice_vsi_kill_vlan(vsi, vid);
3277 if (ret)
3278 return ret;
3279
3280 /* Disable pruning when VLAN 0 is the only VLAN rule */
3281 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3282 ret = ice_cfg_vlan_pruning(vsi, false, false);
3283
3284 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
3285 return ret;
3286}
3287
3288/**
3289 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3290 * @pf: board private structure
3291 *
3292 * Returns 0 on success, negative value on failure
3293 */
3294static int ice_setup_pf_sw(struct ice_pf *pf)
3295{
3296 struct ice_vsi *vsi;
3297 int status = 0;
3298
3299 if (ice_is_reset_in_progress(pf->state))
3300 return -EBUSY;
3301
3302 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3303 if (!vsi)
3304 return -ENOMEM;
3305
3306 status = ice_cfg_netdev(vsi);
3307 if (status) {
3308 status = -ENODEV;
3309 goto unroll_vsi_setup;
3310 }
3311 /* netdev has to be configured before setting frame size */
3312 ice_vsi_cfg_frame_size(vsi);
3313
3314 /* Setup DCB netlink interface */
3315 ice_dcbnl_setup(vsi);
3316
3317 /* registering the NAPI handler requires both the queues and
3318 * netdev to be created, which are done in ice_pf_vsi_setup()
3319 * and ice_cfg_netdev() respectively
3320 */
3321 ice_napi_add(vsi);
3322
3323 status = ice_set_cpu_rx_rmap(vsi);
3324 if (status) {
3325 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3326 vsi->vsi_num, status);
3327 status = -EINVAL;
3328 goto unroll_napi_add;
3329 }
3330 status = ice_init_mac_fltr(pf);
3331 if (status)
3332 goto free_cpu_rx_map;
3333
3334 return status;
3335
3336free_cpu_rx_map:
3337 ice_free_cpu_rx_rmap(vsi);
3338
3339unroll_napi_add:
3340 if (vsi) {
3341 ice_napi_del(vsi);
3342 if (vsi->netdev) {
3343 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3344 free_netdev(vsi->netdev);
3345 vsi->netdev = NULL;
3346 }
3347 }
3348
3349unroll_vsi_setup:
3350 ice_vsi_release(vsi);
3351 return status;
3352}
3353
3354/**
3355 * ice_get_avail_q_count - Get count of queues in use
3356 * @pf_qmap: bitmap to get queue use count from
3357 * @lock: pointer to a mutex that protects access to pf_qmap
3358 * @size: size of the bitmap
3359 */
3360static u16
3361ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3362{
3363 unsigned long bit;
3364 u16 count = 0;
3365
3366 mutex_lock(lock);
3367 for_each_clear_bit(bit, pf_qmap, size)
3368 count++;
3369 mutex_unlock(lock);
3370
3371 return count;
3372}
3373
3374/**
3375 * ice_get_avail_txq_count - Get count of Tx queues in use
3376 * @pf: pointer to an ice_pf instance
3377 */
3378u16 ice_get_avail_txq_count(struct ice_pf *pf)
3379{
3380 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3381 pf->max_pf_txqs);
3382}
3383
3384/**
3385 * ice_get_avail_rxq_count - Get count of Rx queues in use
3386 * @pf: pointer to an ice_pf instance
3387 */
3388u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3389{
3390 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3391 pf->max_pf_rxqs);
3392}
3393
3394/**
3395 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3396 * @pf: board private structure to initialize
3397 */
3398static void ice_deinit_pf(struct ice_pf *pf)
3399{
3400 ice_service_task_stop(pf);
3401 mutex_destroy(&pf->sw_mutex);
3402 mutex_destroy(&pf->tc_mutex);
3403 mutex_destroy(&pf->avail_q_mutex);
3404
3405 if (pf->avail_txqs) {
3406 bitmap_free(pf->avail_txqs);
3407 pf->avail_txqs = NULL;
3408 }
3409
3410 if (pf->avail_rxqs) {
3411 bitmap_free(pf->avail_rxqs);
3412 pf->avail_rxqs = NULL;
3413 }
3414
3415 if (pf->ptp.clock)
3416 ptp_clock_unregister(pf->ptp.clock);
3417}
3418
3419/**
3420 * ice_set_pf_caps - set PFs capability flags
3421 * @pf: pointer to the PF instance
3422 */
3423static void ice_set_pf_caps(struct ice_pf *pf)
3424{
3425 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3426
3427 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3428 clear_bit(ICE_FLAG_AUX_ENA, pf->flags);
3429 if (func_caps->common_cap.rdma) {
3430 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3431 set_bit(ICE_FLAG_AUX_ENA, pf->flags);
3432 }
3433 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3434 if (func_caps->common_cap.dcb)
3435 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3436 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3437 if (func_caps->common_cap.sr_iov_1_1) {
3438 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3439 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3440 ICE_MAX_VF_COUNT);
3441 }
3442 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3443 if (func_caps->common_cap.rss_table_size)
3444 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3445
3446 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3447 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3448 u16 unused;
3449
3450 /* ctrl_vsi_idx will be set to a valid value when flow director
3451 * is setup by ice_init_fdir
3452 */
3453 pf->ctrl_vsi_idx = ICE_NO_VSI;
3454 set_bit(ICE_FLAG_FD_ENA, pf->flags);
3455 /* force guaranteed filter pool for PF */
3456 ice_alloc_fd_guar_item(&pf->hw, &unused,
3457 func_caps->fd_fltr_guar);
3458 /* force shared filter pool for PF */
3459 ice_alloc_fd_shrd_item(&pf->hw, &unused,
3460 func_caps->fd_fltr_best_effort);
3461 }
3462
3463 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3464 if (func_caps->common_cap.ieee_1588)
3465 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3466
3467 pf->max_pf_txqs = func_caps->common_cap.num_txq;
3468 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3469}
3470
3471/**
3472 * ice_init_pf - Initialize general software structures (struct ice_pf)
3473 * @pf: board private structure to initialize
3474 */
3475static int ice_init_pf(struct ice_pf *pf)
3476{
3477 ice_set_pf_caps(pf);
3478
3479 mutex_init(&pf->sw_mutex);
3480 mutex_init(&pf->tc_mutex);
3481
3482 INIT_HLIST_HEAD(&pf->aq_wait_list);
3483 spin_lock_init(&pf->aq_wait_lock);
3484 init_waitqueue_head(&pf->aq_wait_queue);
3485
3486 init_waitqueue_head(&pf->reset_wait_queue);
3487
3488 /* setup service timer and periodic service task */
3489 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3490 pf->serv_tmr_period = HZ;
3491 INIT_WORK(&pf->serv_task, ice_service_task);
3492 clear_bit(ICE_SERVICE_SCHED, pf->state);
3493
3494 mutex_init(&pf->avail_q_mutex);
3495 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3496 if (!pf->avail_txqs)
3497 return -ENOMEM;
3498
3499 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3500 if (!pf->avail_rxqs) {
3501 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3502 pf->avail_txqs = NULL;
3503 return -ENOMEM;
3504 }
3505
3506 return 0;
3507}
3508
3509/**
3510 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3511 * @pf: board private structure
3512 *
3513 * compute the number of MSIX vectors required (v_budget) and request from
3514 * the OS. Return the number of vectors reserved or negative on failure
3515 */
3516static int ice_ena_msix_range(struct ice_pf *pf)
3517{
3518 int num_cpus, v_left, v_actual, v_other, v_budget = 0;
3519 struct device *dev = ice_pf_to_dev(pf);
3520 int needed, err, i;
3521
3522 v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3523 num_cpus = num_online_cpus();
3524
3525 /* reserve for LAN miscellaneous handler */
3526 needed = ICE_MIN_LAN_OICR_MSIX;
3527 if (v_left < needed)
3528 goto no_hw_vecs_left_err;
3529 v_budget += needed;
3530 v_left -= needed;
3531
3532 /* reserve for flow director */
3533 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3534 needed = ICE_FDIR_MSIX;
3535 if (v_left < needed)
3536 goto no_hw_vecs_left_err;
3537 v_budget += needed;
3538 v_left -= needed;
3539 }
3540
3541 /* total used for non-traffic vectors */
3542 v_other = v_budget;
3543
3544 /* reserve vectors for LAN traffic */
3545 needed = num_cpus;
3546 if (v_left < needed)
3547 goto no_hw_vecs_left_err;
3548 pf->num_lan_msix = needed;
3549 v_budget += needed;
3550 v_left -= needed;
3551
3552 /* reserve vectors for RDMA auxiliary driver */
3553 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) {
3554 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
3555 if (v_left < needed)
3556 goto no_hw_vecs_left_err;
3557 pf->num_rdma_msix = needed;
3558 v_budget += needed;
3559 v_left -= needed;
3560 }
3561
3562 pf->msix_entries = devm_kcalloc(dev, v_budget,
3563 sizeof(*pf->msix_entries), GFP_KERNEL);
3564 if (!pf->msix_entries) {
3565 err = -ENOMEM;
3566 goto exit_err;
3567 }
3568
3569 for (i = 0; i < v_budget; i++)
3570 pf->msix_entries[i].entry = i;
3571
3572 /* actually reserve the vectors */
3573 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3574 ICE_MIN_MSIX, v_budget);
3575 if (v_actual < 0) {
3576 dev_err(dev, "unable to reserve MSI-X vectors\n");
3577 err = v_actual;
3578 goto msix_err;
3579 }
3580
3581 if (v_actual < v_budget) {
3582 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3583 v_budget, v_actual);
3584
3585 if (v_actual < ICE_MIN_MSIX) {
3586 /* error if we can't get minimum vectors */
3587 pci_disable_msix(pf->pdev);
3588 err = -ERANGE;
3589 goto msix_err;
3590 } else {
3591 int v_remain = v_actual - v_other;
3592 int v_rdma = 0, v_min_rdma = 0;
3593
3594 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) {
3595 /* Need at least 1 interrupt in addition to
3596 * AEQ MSIX
3597 */
3598 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
3599 v_min_rdma = ICE_MIN_RDMA_MSIX;
3600 }
3601
3602 if (v_actual == ICE_MIN_MSIX ||
3603 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) {
3604 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n");
3605 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3606
3607 pf->num_rdma_msix = 0;
3608 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3609 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
3610 (v_remain - v_rdma < v_rdma)) {
3611 /* Support minimum RDMA and give remaining
3612 * vectors to LAN MSIX
3613 */
3614 pf->num_rdma_msix = v_min_rdma;
3615 pf->num_lan_msix = v_remain - v_min_rdma;
3616 } else {
3617 /* Split remaining MSIX with RDMA after
3618 * accounting for AEQ MSIX
3619 */
3620 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
3621 ICE_RDMA_NUM_AEQ_MSIX;
3622 pf->num_lan_msix = v_remain - pf->num_rdma_msix;
3623 }
3624
3625 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
3626 pf->num_lan_msix);
3627
3628 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
3629 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
3630 pf->num_rdma_msix);
3631 }
3632 }
3633
3634 return v_actual;
3635
3636msix_err:
3637 devm_kfree(dev, pf->msix_entries);
3638 goto exit_err;
3639
3640no_hw_vecs_left_err:
3641 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3642 needed, v_left);
3643 err = -ERANGE;
3644exit_err:
3645 pf->num_rdma_msix = 0;
3646 pf->num_lan_msix = 0;
3647 return err;
3648}
3649
3650/**
3651 * ice_dis_msix - Disable MSI-X interrupt setup in OS
3652 * @pf: board private structure
3653 */
3654static void ice_dis_msix(struct ice_pf *pf)
3655{
3656 pci_disable_msix(pf->pdev);
3657 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3658 pf->msix_entries = NULL;
3659}
3660
3661/**
3662 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3663 * @pf: board private structure
3664 */
3665static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3666{
3667 ice_dis_msix(pf);
3668
3669 if (pf->irq_tracker) {
3670 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3671 pf->irq_tracker = NULL;
3672 }
3673}
3674
3675/**
3676 * ice_init_interrupt_scheme - Determine proper interrupt scheme
3677 * @pf: board private structure to initialize
3678 */
3679static int ice_init_interrupt_scheme(struct ice_pf *pf)
3680{
3681 int vectors;
3682
3683 vectors = ice_ena_msix_range(pf);
3684
3685 if (vectors < 0)
3686 return vectors;
3687
3688 /* set up vector assignment tracking */
3689 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
3690 struct_size(pf->irq_tracker, list, vectors),
3691 GFP_KERNEL);
3692 if (!pf->irq_tracker) {
3693 ice_dis_msix(pf);
3694 return -ENOMEM;
3695 }
3696
3697 /* populate SW interrupts pool with number of OS granted IRQs. */
3698 pf->num_avail_sw_msix = (u16)vectors;
3699 pf->irq_tracker->num_entries = (u16)vectors;
3700 pf->irq_tracker->end = pf->irq_tracker->num_entries;
3701
3702 return 0;
3703}
3704
3705/**
3706 * ice_is_wol_supported - check if WoL is supported
3707 * @hw: pointer to hardware info
3708 *
3709 * Check if WoL is supported based on the HW configuration.
3710 * Returns true if NVM supports and enables WoL for this port, false otherwise
3711 */
3712bool ice_is_wol_supported(struct ice_hw *hw)
3713{
3714 u16 wol_ctrl;
3715
3716 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3717 * word) indicates WoL is not supported on the corresponding PF ID.
3718 */
3719 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3720 return false;
3721
3722 return !(BIT(hw->port_info->lport) & wol_ctrl);
3723}
3724
3725/**
3726 * ice_vsi_recfg_qs - Change the number of queues on a VSI
3727 * @vsi: VSI being changed
3728 * @new_rx: new number of Rx queues
3729 * @new_tx: new number of Tx queues
3730 *
3731 * Only change the number of queues if new_tx, or new_rx is non-0.
3732 *
3733 * Returns 0 on success.
3734 */
3735int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3736{
3737 struct ice_pf *pf = vsi->back;
3738 int err = 0, timeout = 50;
3739
3740 if (!new_rx && !new_tx)
3741 return -EINVAL;
3742
3743 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
3744 timeout--;
3745 if (!timeout)
3746 return -EBUSY;
3747 usleep_range(1000, 2000);
3748 }
3749
3750 if (new_tx)
3751 vsi->req_txq = (u16)new_tx;
3752 if (new_rx)
3753 vsi->req_rxq = (u16)new_rx;
3754
3755 /* set for the next time the netdev is started */
3756 if (!netif_running(vsi->netdev)) {
3757 ice_vsi_rebuild(vsi, false);
3758 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3759 goto done;
3760 }
3761
3762 ice_vsi_close(vsi);
3763 ice_vsi_rebuild(vsi, false);
3764 ice_pf_dcb_recfg(pf);
3765 ice_vsi_open(vsi);
3766done:
3767 clear_bit(ICE_CFG_BUSY, pf->state);
3768 return err;
3769}
3770
3771/**
3772 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3773 * @pf: PF to configure
3774 *
3775 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3776 * VSI can still Tx/Rx VLAN tagged packets.
3777 */
3778static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3779{
3780 struct ice_vsi *vsi = ice_get_main_vsi(pf);
3781 struct ice_vsi_ctx *ctxt;
3782 enum ice_status status;
3783 struct ice_hw *hw;
3784
3785 if (!vsi)
3786 return;
3787
3788 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3789 if (!ctxt)
3790 return;
3791
3792 hw = &pf->hw;
3793 ctxt->info = vsi->info;
3794
3795 ctxt->info.valid_sections =
3796 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3797 ICE_AQ_VSI_PROP_SECURITY_VALID |
3798 ICE_AQ_VSI_PROP_SW_VALID);
3799
3800 /* disable VLAN anti-spoof */
3801 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3802 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3803
3804 /* disable VLAN pruning and keep all other settings */
3805 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3806
3807 /* allow all VLANs on Tx and don't strip on Rx */
3808 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3809 ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3810
3811 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3812 if (status) {
3813 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3814 ice_stat_str(status),
3815 ice_aq_str(hw->adminq.sq_last_status));
3816 } else {
3817 vsi->info.sec_flags = ctxt->info.sec_flags;
3818 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3819 vsi->info.vlan_flags = ctxt->info.vlan_flags;
3820 }
3821
3822 kfree(ctxt);
3823}
3824
3825/**
3826 * ice_log_pkg_init - log result of DDP package load
3827 * @hw: pointer to hardware info
3828 * @status: status of package load
3829 */
3830static void
3831ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3832{
3833 struct ice_pf *pf = (struct ice_pf *)hw->back;
3834 struct device *dev = ice_pf_to_dev(pf);
3835
3836 switch (*status) {
3837 case ICE_SUCCESS:
3838 /* The package download AdminQ command returned success because
3839 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3840 * already a package loaded on the device.
3841 */
3842 if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3843 hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3844 hw->pkg_ver.update == hw->active_pkg_ver.update &&
3845 hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3846 !memcmp(hw->pkg_name, hw->active_pkg_name,
3847 sizeof(hw->pkg_name))) {
3848 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3849 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3850 hw->active_pkg_name,
3851 hw->active_pkg_ver.major,
3852 hw->active_pkg_ver.minor,
3853 hw->active_pkg_ver.update,
3854 hw->active_pkg_ver.draft);
3855 else
3856 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3857 hw->active_pkg_name,
3858 hw->active_pkg_ver.major,
3859 hw->active_pkg_ver.minor,
3860 hw->active_pkg_ver.update,
3861 hw->active_pkg_ver.draft);
3862 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3863 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3864 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
3865 hw->active_pkg_name,
3866 hw->active_pkg_ver.major,
3867 hw->active_pkg_ver.minor,
3868 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3869 *status = ICE_ERR_NOT_SUPPORTED;
3870 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3871 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3872 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3873 hw->active_pkg_name,
3874 hw->active_pkg_ver.major,
3875 hw->active_pkg_ver.minor,
3876 hw->active_pkg_ver.update,
3877 hw->active_pkg_ver.draft,
3878 hw->pkg_name,
3879 hw->pkg_ver.major,
3880 hw->pkg_ver.minor,
3881 hw->pkg_ver.update,
3882 hw->pkg_ver.draft);
3883 } else {
3884 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n");
3885 *status = ICE_ERR_NOT_SUPPORTED;
3886 }
3887 break;
3888 case ICE_ERR_FW_DDP_MISMATCH:
3889 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
3890 break;
3891 case ICE_ERR_BUF_TOO_SHORT:
3892 case ICE_ERR_CFG:
3893 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3894 break;
3895 case ICE_ERR_NOT_SUPPORTED:
3896 /* Package File version not supported */
3897 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3898 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3899 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3900 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
3901 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3902 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3903 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3904 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
3905 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3906 break;
3907 case ICE_ERR_AQ_ERROR:
3908 switch (hw->pkg_dwnld_status) {
3909 case ICE_AQ_RC_ENOSEC:
3910 case ICE_AQ_RC_EBADSIG:
3911 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
3912 return;
3913 case ICE_AQ_RC_ESVN:
3914 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
3915 return;
3916 case ICE_AQ_RC_EBADMAN:
3917 case ICE_AQ_RC_EBADBUF:
3918 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
3919 /* poll for reset to complete */
3920 if (ice_check_reset(hw))
3921 dev_err(dev, "Error resetting device. Please reload the driver\n");
3922 return;
3923 default:
3924 break;
3925 }
3926 fallthrough;
3927 default:
3928 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n",
3929 *status);
3930 break;
3931 }
3932}
3933
3934/**
3935 * ice_load_pkg - load/reload the DDP Package file
3936 * @firmware: firmware structure when firmware requested or NULL for reload
3937 * @pf: pointer to the PF instance
3938 *
3939 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3940 * initialize HW tables.
3941 */
3942static void
3943ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3944{
3945 enum ice_status status = ICE_ERR_PARAM;
3946 struct device *dev = ice_pf_to_dev(pf);
3947 struct ice_hw *hw = &pf->hw;
3948
3949 /* Load DDP Package */
3950 if (firmware && !hw->pkg_copy) {
3951 status = ice_copy_and_init_pkg(hw, firmware->data,
3952 firmware->size);
3953 ice_log_pkg_init(hw, &status);
3954 } else if (!firmware && hw->pkg_copy) {
3955 /* Reload package during rebuild after CORER/GLOBR reset */
3956 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3957 ice_log_pkg_init(hw, &status);
3958 } else {
3959 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3960 }
3961
3962 if (status) {
3963 /* Safe Mode */
3964 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3965 return;
3966 }
3967
3968 /* Successful download package is the precondition for advanced
3969 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3970 */
3971 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3972}
3973
3974/**
3975 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3976 * @pf: pointer to the PF structure
3977 *
3978 * There is no error returned here because the driver should be able to handle
3979 * 128 Byte cache lines, so we only print a warning in case issues are seen,
3980 * specifically with Tx.
3981 */
3982static void ice_verify_cacheline_size(struct ice_pf *pf)
3983{
3984 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3985 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3986 ICE_CACHE_LINE_BYTES);
3987}
3988
3989/**
3990 * ice_send_version - update firmware with driver version
3991 * @pf: PF struct
3992 *
3993 * Returns ICE_SUCCESS on success, else error code
3994 */
3995static enum ice_status ice_send_version(struct ice_pf *pf)
3996{
3997 struct ice_driver_ver dv;
3998
3999 dv.major_ver = 0xff;
4000 dv.minor_ver = 0xff;
4001 dv.build_ver = 0xff;
4002 dv.subbuild_ver = 0;
4003 strscpy((char *)dv.driver_string, UTS_RELEASE,
4004 sizeof(dv.driver_string));
4005 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4006}
4007
4008/**
4009 * ice_init_fdir - Initialize flow director VSI and configuration
4010 * @pf: pointer to the PF instance
4011 *
4012 * returns 0 on success, negative on error
4013 */
4014static int ice_init_fdir(struct ice_pf *pf)
4015{
4016 struct device *dev = ice_pf_to_dev(pf);
4017 struct ice_vsi *ctrl_vsi;
4018 int err;
4019
4020 /* Side Band Flow Director needs to have a control VSI.
4021 * Allocate it and store it in the PF.
4022 */
4023 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4024 if (!ctrl_vsi) {
4025 dev_dbg(dev, "could not create control VSI\n");
4026 return -ENOMEM;
4027 }
4028
4029 err = ice_vsi_open_ctrl(ctrl_vsi);
4030 if (err) {
4031 dev_dbg(dev, "could not open control VSI\n");
4032 goto err_vsi_open;
4033 }
4034
4035 mutex_init(&pf->hw.fdir_fltr_lock);
4036
4037 err = ice_fdir_create_dflt_rules(pf);
4038 if (err)
4039 goto err_fdir_rule;
4040
4041 return 0;
4042
4043err_fdir_rule:
4044 ice_fdir_release_flows(&pf->hw);
4045 ice_vsi_close(ctrl_vsi);
4046err_vsi_open:
4047 ice_vsi_release(ctrl_vsi);
4048 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4049 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4050 pf->ctrl_vsi_idx = ICE_NO_VSI;
4051 }
4052 return err;
4053}
4054
4055/**
4056 * ice_get_opt_fw_name - return optional firmware file name or NULL
4057 * @pf: pointer to the PF instance
4058 */
4059static char *ice_get_opt_fw_name(struct ice_pf *pf)
4060{
4061 /* Optional firmware name same as default with additional dash
4062 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4063 */
4064 struct pci_dev *pdev = pf->pdev;
4065 char *opt_fw_filename;
4066 u64 dsn;
4067
4068 /* Determine the name of the optional file using the DSN (two
4069 * dwords following the start of the DSN Capability).
4070 */
4071 dsn = pci_get_dsn(pdev);
4072 if (!dsn)
4073 return NULL;
4074
4075 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4076 if (!opt_fw_filename)
4077 return NULL;
4078
4079 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4080 ICE_DDP_PKG_PATH, dsn);
4081
4082 return opt_fw_filename;
4083}
4084
4085/**
4086 * ice_request_fw - Device initialization routine
4087 * @pf: pointer to the PF instance
4088 */
4089static void ice_request_fw(struct ice_pf *pf)
4090{
4091 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4092 const struct firmware *firmware = NULL;
4093 struct device *dev = ice_pf_to_dev(pf);
4094 int err = 0;
4095
4096 /* optional device-specific DDP (if present) overrides the default DDP
4097 * package file. kernel logs a debug message if the file doesn't exist,
4098 * and warning messages for other errors.
4099 */
4100 if (opt_fw_filename) {
4101 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4102 if (err) {
4103 kfree(opt_fw_filename);
4104 goto dflt_pkg_load;
4105 }
4106
4107 /* request for firmware was successful. Download to device */
4108 ice_load_pkg(firmware, pf);
4109 kfree(opt_fw_filename);
4110 release_firmware(firmware);
4111 return;
4112 }
4113
4114dflt_pkg_load:
4115 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4116 if (err) {
4117 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4118 return;
4119 }
4120
4121 /* request for firmware was successful. Download to device */
4122 ice_load_pkg(firmware, pf);
4123 release_firmware(firmware);
4124}
4125
4126/**
4127 * ice_print_wake_reason - show the wake up cause in the log
4128 * @pf: pointer to the PF struct
4129 */
4130static void ice_print_wake_reason(struct ice_pf *pf)
4131{
4132 u32 wus = pf->wakeup_reason;
4133 const char *wake_str;
4134
4135 /* if no wake event, nothing to print */
4136 if (!wus)
4137 return;
4138
4139 if (wus & PFPM_WUS_LNKC_M)
4140 wake_str = "Link\n";
4141 else if (wus & PFPM_WUS_MAG_M)
4142 wake_str = "Magic Packet\n";
4143 else if (wus & PFPM_WUS_MNG_M)
4144 wake_str = "Management\n";
4145 else if (wus & PFPM_WUS_FW_RST_WK_M)
4146 wake_str = "Firmware Reset\n";
4147 else
4148 wake_str = "Unknown\n";
4149
4150 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4151}
4152
4153/**
4154 * ice_register_netdev - register netdev and devlink port
4155 * @pf: pointer to the PF struct
4156 */
4157static int ice_register_netdev(struct ice_pf *pf)
4158{
4159 struct ice_vsi *vsi;
4160 int err = 0;
4161
4162 vsi = ice_get_main_vsi(pf);
4163 if (!vsi || !vsi->netdev)
4164 return -EIO;
4165
4166 err = register_netdev(vsi->netdev);
4167 if (err)
4168 goto err_register_netdev;
4169
4170 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4171 netif_carrier_off(vsi->netdev);
4172 netif_tx_stop_all_queues(vsi->netdev);
4173 err = ice_devlink_create_port(vsi);
4174 if (err)
4175 goto err_devlink_create;
4176
4177 devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev);
4178
4179 return 0;
4180err_devlink_create:
4181 unregister_netdev(vsi->netdev);
4182 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4183err_register_netdev:
4184 free_netdev(vsi->netdev);
4185 vsi->netdev = NULL;
4186 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4187 return err;
4188}
4189
4190/**
4191 * ice_probe - Device initialization routine
4192 * @pdev: PCI device information struct
4193 * @ent: entry in ice_pci_tbl
4194 *
4195 * Returns 0 on success, negative on failure
4196 */
4197static int
4198ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4199{
4200 struct device *dev = &pdev->dev;
4201 struct ice_pf *pf;
4202 struct ice_hw *hw;
4203 int i, err;
4204
4205 if (pdev->is_virtfn) {
4206 dev_err(dev, "can't probe a virtual function\n");
4207 return -EINVAL;
4208 }
4209
4210 /* this driver uses devres, see
4211 * Documentation/driver-api/driver-model/devres.rst
4212 */
4213 err = pcim_enable_device(pdev);
4214 if (err)
4215 return err;
4216
4217 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4218 if (err) {
4219 dev_err(dev, "BAR0 I/O map error %d\n", err);
4220 return err;
4221 }
4222
4223 pf = ice_allocate_pf(dev);
4224 if (!pf)
4225 return -ENOMEM;
4226
4227 /* initialize Auxiliary index to invalid value */
4228 pf->aux_idx = -1;
4229
4230 /* set up for high or low DMA */
4231 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4232 if (err)
4233 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
4234 if (err) {
4235 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4236 return err;
4237 }
4238
4239 pci_enable_pcie_error_reporting(pdev);
4240 pci_set_master(pdev);
4241
4242 pf->pdev = pdev;
4243 pci_set_drvdata(pdev, pf);
4244 set_bit(ICE_DOWN, pf->state);
4245 /* Disable service task until DOWN bit is cleared */
4246 set_bit(ICE_SERVICE_DIS, pf->state);
4247
4248 hw = &pf->hw;
4249 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4250 pci_save_state(pdev);
4251
4252 hw->back = pf;
4253 hw->vendor_id = pdev->vendor;
4254 hw->device_id = pdev->device;
4255 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4256 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4257 hw->subsystem_device_id = pdev->subsystem_device;
4258 hw->bus.device = PCI_SLOT(pdev->devfn);
4259 hw->bus.func = PCI_FUNC(pdev->devfn);
4260 ice_set_ctrlq_len(hw);
4261
4262 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4263
4264 err = ice_devlink_register(pf);
4265 if (err) {
4266 dev_err(dev, "ice_devlink_register failed: %d\n", err);
4267 goto err_exit_unroll;
4268 }
4269
4270#ifndef CONFIG_DYNAMIC_DEBUG
4271 if (debug < -1)
4272 hw->debug_mask = debug;
4273#endif
4274
4275 err = ice_init_hw(hw);
4276 if (err) {
4277 dev_err(dev, "ice_init_hw failed: %d\n", err);
4278 err = -EIO;
4279 goto err_exit_unroll;
4280 }
4281
4282 ice_request_fw(pf);
4283
4284 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4285 * set in pf->state, which will cause ice_is_safe_mode to return
4286 * true
4287 */
4288 if (ice_is_safe_mode(pf)) {
4289 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4290 /* we already got function/device capabilities but these don't
4291 * reflect what the driver needs to do in safe mode. Instead of
4292 * adding conditional logic everywhere to ignore these
4293 * device/function capabilities, override them.
4294 */
4295 ice_set_safe_mode_caps(hw);
4296 }
4297
4298 err = ice_init_pf(pf);
4299 if (err) {
4300 dev_err(dev, "ice_init_pf failed: %d\n", err);
4301 goto err_init_pf_unroll;
4302 }
4303
4304 ice_devlink_init_regions(pf);
4305
4306 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4307 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4308 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4309 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4310 i = 0;
4311 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4312 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4313 pf->hw.tnl.valid_count[TNL_VXLAN];
4314 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4315 UDP_TUNNEL_TYPE_VXLAN;
4316 i++;
4317 }
4318 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4319 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4320 pf->hw.tnl.valid_count[TNL_GENEVE];
4321 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4322 UDP_TUNNEL_TYPE_GENEVE;
4323 i++;
4324 }
4325
4326 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4327 if (!pf->num_alloc_vsi) {
4328 err = -EIO;
4329 goto err_init_pf_unroll;
4330 }
4331 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4332 dev_warn(&pf->pdev->dev,
4333 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4334 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4335 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4336 }
4337
4338 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4339 GFP_KERNEL);
4340 if (!pf->vsi) {
4341 err = -ENOMEM;
4342 goto err_init_pf_unroll;
4343 }
4344
4345 err = ice_init_interrupt_scheme(pf);
4346 if (err) {
4347 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4348 err = -EIO;
4349 goto err_init_vsi_unroll;
4350 }
4351
4352 /* In case of MSIX we are going to setup the misc vector right here
4353 * to handle admin queue events etc. In case of legacy and MSI
4354 * the misc functionality and queue processing is combined in
4355 * the same vector and that gets setup at open.
4356 */
4357 err = ice_req_irq_msix_misc(pf);
4358 if (err) {
4359 dev_err(dev, "setup of misc vector failed: %d\n", err);
4360 goto err_init_interrupt_unroll;
4361 }
4362
4363 /* create switch struct for the switch element created by FW on boot */
4364 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4365 if (!pf->first_sw) {
4366 err = -ENOMEM;
4367 goto err_msix_misc_unroll;
4368 }
4369
4370 if (hw->evb_veb)
4371 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4372 else
4373 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4374
4375 pf->first_sw->pf = pf;
4376
4377 /* record the sw_id available for later use */
4378 pf->first_sw->sw_id = hw->port_info->sw_id;
4379
4380 err = ice_setup_pf_sw(pf);
4381 if (err) {
4382 dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4383 goto err_alloc_sw_unroll;
4384 }
4385
4386 clear_bit(ICE_SERVICE_DIS, pf->state);
4387
4388 /* tell the firmware we are up */
4389 err = ice_send_version(pf);
4390 if (err) {
4391 dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4392 UTS_RELEASE, err);
4393 goto err_send_version_unroll;
4394 }
4395
4396 /* since everything is good, start the service timer */
4397 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4398
4399 err = ice_init_link_events(pf->hw.port_info);
4400 if (err) {
4401 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4402 goto err_send_version_unroll;
4403 }
4404
4405 /* not a fatal error if this fails */
4406 err = ice_init_nvm_phy_type(pf->hw.port_info);
4407 if (err)
4408 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4409
4410 /* not a fatal error if this fails */
4411 err = ice_update_link_info(pf->hw.port_info);
4412 if (err)
4413 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4414
4415 ice_init_link_dflt_override(pf->hw.port_info);
4416
4417 ice_check_module_power(pf, pf->hw.port_info->phy.link_info.link_cfg_err);
4418
4419 /* if media available, initialize PHY settings */
4420 if (pf->hw.port_info->phy.link_info.link_info &
4421 ICE_AQ_MEDIA_AVAILABLE) {
4422 /* not a fatal error if this fails */
4423 err = ice_init_phy_user_cfg(pf->hw.port_info);
4424 if (err)
4425 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4426
4427 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4428 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4429
4430 if (vsi)
4431 ice_configure_phy(vsi);
4432 }
4433 } else {
4434 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4435 }
4436
4437 ice_verify_cacheline_size(pf);
4438
4439 /* Save wakeup reason register for later use */
4440 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4441
4442 /* check for a power management event */
4443 ice_print_wake_reason(pf);
4444
4445 /* clear wake status, all bits */
4446 wr32(hw, PFPM_WUS, U32_MAX);
4447
4448 /* Disable WoL at init, wait for user to enable */
4449 device_set_wakeup_enable(dev, false);
4450
4451 if (ice_is_safe_mode(pf)) {
4452 ice_set_safe_mode_vlan_cfg(pf);
4453 goto probe_done;
4454 }
4455
4456 /* initialize DDP driven features */
4457 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4458 ice_ptp_init(pf);
4459
4460 /* Note: Flow director init failure is non-fatal to load */
4461 if (ice_init_fdir(pf))
4462 dev_err(dev, "could not initialize flow director\n");
4463
4464 /* Note: DCB init failure is non-fatal to load */
4465 if (ice_init_pf_dcb(pf, false)) {
4466 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4467 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4468 } else {
4469 ice_cfg_lldp_mib_change(&pf->hw, true);
4470 }
4471
4472 if (ice_init_lag(pf))
4473 dev_warn(dev, "Failed to init link aggregation support\n");
4474
4475 /* print PCI link speed and width */
4476 pcie_print_link_status(pf->pdev);
4477
4478probe_done:
4479 err = ice_register_netdev(pf);
4480 if (err)
4481 goto err_netdev_reg;
4482
4483 /* ready to go, so clear down state bit */
4484 clear_bit(ICE_DOWN, pf->state);
4485 if (ice_is_aux_ena(pf)) {
4486 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4487 if (pf->aux_idx < 0) {
4488 dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4489 err = -ENOMEM;
4490 goto err_netdev_reg;
4491 }
4492
4493 err = ice_init_rdma(pf);
4494 if (err) {
4495 dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4496 err = -EIO;
4497 goto err_init_aux_unroll;
4498 }
4499 } else {
4500 dev_warn(dev, "RDMA is not supported on this device\n");
4501 }
4502
4503 return 0;
4504
4505err_init_aux_unroll:
4506 pf->adev = NULL;
4507 ida_free(&ice_aux_ida, pf->aux_idx);
4508err_netdev_reg:
4509err_send_version_unroll:
4510 ice_vsi_release_all(pf);
4511err_alloc_sw_unroll:
4512 set_bit(ICE_SERVICE_DIS, pf->state);
4513 set_bit(ICE_DOWN, pf->state);
4514 devm_kfree(dev, pf->first_sw);
4515err_msix_misc_unroll:
4516 ice_free_irq_msix_misc(pf);
4517err_init_interrupt_unroll:
4518 ice_clear_interrupt_scheme(pf);
4519err_init_vsi_unroll:
4520 devm_kfree(dev, pf->vsi);
4521err_init_pf_unroll:
4522 ice_deinit_pf(pf);
4523 ice_devlink_destroy_regions(pf);
4524 ice_deinit_hw(hw);
4525err_exit_unroll:
4526 ice_devlink_unregister(pf);
4527 pci_disable_pcie_error_reporting(pdev);
4528 pci_disable_device(pdev);
4529 return err;
4530}
4531
4532/**
4533 * ice_set_wake - enable or disable Wake on LAN
4534 * @pf: pointer to the PF struct
4535 *
4536 * Simple helper for WoL control
4537 */
4538static void ice_set_wake(struct ice_pf *pf)
4539{
4540 struct ice_hw *hw = &pf->hw;
4541 bool wol = pf->wol_ena;
4542
4543 /* clear wake state, otherwise new wake events won't fire */
4544 wr32(hw, PFPM_WUS, U32_MAX);
4545
4546 /* enable / disable APM wake up, no RMW needed */
4547 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4548
4549 /* set magic packet filter enabled */
4550 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4551}
4552
4553/**
4554 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
4555 * @pf: pointer to the PF struct
4556 *
4557 * Issue firmware command to enable multicast magic wake, making
4558 * sure that any locally administered address (LAA) is used for
4559 * wake, and that PF reset doesn't undo the LAA.
4560 */
4561static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4562{
4563 struct device *dev = ice_pf_to_dev(pf);
4564 struct ice_hw *hw = &pf->hw;
4565 enum ice_status status;
4566 u8 mac_addr[ETH_ALEN];
4567 struct ice_vsi *vsi;
4568 u8 flags;
4569
4570 if (!pf->wol_ena)
4571 return;
4572
4573 vsi = ice_get_main_vsi(pf);
4574 if (!vsi)
4575 return;
4576
4577 /* Get current MAC address in case it's an LAA */
4578 if (vsi->netdev)
4579 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4580 else
4581 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4582
4583 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4584 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4585 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4586
4587 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4588 if (status)
4589 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4590 ice_stat_str(status),
4591 ice_aq_str(hw->adminq.sq_last_status));
4592}
4593
4594/**
4595 * ice_remove - Device removal routine
4596 * @pdev: PCI device information struct
4597 */
4598static void ice_remove(struct pci_dev *pdev)
4599{
4600 struct ice_pf *pf = pci_get_drvdata(pdev);
4601 int i;
4602
4603 if (!pf)
4604 return;
4605
4606 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4607 if (!ice_is_reset_in_progress(pf->state))
4608 break;
4609 msleep(100);
4610 }
4611
4612 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4613 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
4614 ice_free_vfs(pf);
4615 }
4616
4617 ice_service_task_stop(pf);
4618
4619 ice_aq_cancel_waiting_tasks(pf);
4620 ice_unplug_aux_dev(pf);
4621 if (pf->aux_idx >= 0)
4622 ida_free(&ice_aux_ida, pf->aux_idx);
4623 set_bit(ICE_DOWN, pf->state);
4624
4625 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4626 ice_deinit_lag(pf);
4627 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4628 ice_ptp_release(pf);
4629 if (!ice_is_safe_mode(pf))
4630 ice_remove_arfs(pf);
4631 ice_setup_mc_magic_wake(pf);
4632 ice_vsi_release_all(pf);
4633 ice_set_wake(pf);
4634 ice_free_irq_msix_misc(pf);
4635 ice_for_each_vsi(pf, i) {
4636 if (!pf->vsi[i])
4637 continue;
4638 ice_vsi_free_q_vectors(pf->vsi[i]);
4639 }
4640 ice_deinit_pf(pf);
4641 ice_devlink_destroy_regions(pf);
4642 ice_deinit_hw(&pf->hw);
4643 ice_devlink_unregister(pf);
4644
4645 /* Issue a PFR as part of the prescribed driver unload flow. Do not
4646 * do it via ice_schedule_reset() since there is no need to rebuild
4647 * and the service task is already stopped.
4648 */
4649 ice_reset(&pf->hw, ICE_RESET_PFR);
4650 pci_wait_for_pending_transaction(pdev);
4651 ice_clear_interrupt_scheme(pf);
4652 pci_disable_pcie_error_reporting(pdev);
4653 pci_disable_device(pdev);
4654}
4655
4656/**
4657 * ice_shutdown - PCI callback for shutting down device
4658 * @pdev: PCI device information struct
4659 */
4660static void ice_shutdown(struct pci_dev *pdev)
4661{
4662 struct ice_pf *pf = pci_get_drvdata(pdev);
4663
4664 ice_remove(pdev);
4665
4666 if (system_state == SYSTEM_POWER_OFF) {
4667 pci_wake_from_d3(pdev, pf->wol_ena);
4668 pci_set_power_state(pdev, PCI_D3hot);
4669 }
4670}
4671
4672#ifdef CONFIG_PM
4673/**
4674 * ice_prepare_for_shutdown - prep for PCI shutdown
4675 * @pf: board private structure
4676 *
4677 * Inform or close all dependent features in prep for PCI device shutdown
4678 */
4679static void ice_prepare_for_shutdown(struct ice_pf *pf)
4680{
4681 struct ice_hw *hw = &pf->hw;
4682 u32 v;
4683
4684 /* Notify VFs of impending reset */
4685 if (ice_check_sq_alive(hw, &hw->mailboxq))
4686 ice_vc_notify_reset(pf);
4687
4688 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4689
4690 /* disable the VSIs and their queues that are not already DOWN */
4691 ice_pf_dis_all_vsi(pf, false);
4692
4693 ice_for_each_vsi(pf, v)
4694 if (pf->vsi[v])
4695 pf->vsi[v]->vsi_num = 0;
4696
4697 ice_shutdown_all_ctrlq(hw);
4698}
4699
4700/**
4701 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4702 * @pf: board private structure to reinitialize
4703 *
4704 * This routine reinitialize interrupt scheme that was cleared during
4705 * power management suspend callback.
4706 *
4707 * This should be called during resume routine to re-allocate the q_vectors
4708 * and reacquire interrupts.
4709 */
4710static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4711{
4712 struct device *dev = ice_pf_to_dev(pf);
4713 int ret, v;
4714
4715 /* Since we clear MSIX flag during suspend, we need to
4716 * set it back during resume...
4717 */
4718
4719 ret = ice_init_interrupt_scheme(pf);
4720 if (ret) {
4721 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4722 return ret;
4723 }
4724
4725 /* Remap vectors and rings, after successful re-init interrupts */
4726 ice_for_each_vsi(pf, v) {
4727 if (!pf->vsi[v])
4728 continue;
4729
4730 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4731 if (ret)
4732 goto err_reinit;
4733 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4734 }
4735
4736 ret = ice_req_irq_msix_misc(pf);
4737 if (ret) {
4738 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4739 ret);
4740 goto err_reinit;
4741 }
4742
4743 return 0;
4744
4745err_reinit:
4746 while (v--)
4747 if (pf->vsi[v])
4748 ice_vsi_free_q_vectors(pf->vsi[v]);
4749
4750 return ret;
4751}
4752
4753/**
4754 * ice_suspend
4755 * @dev: generic device information structure
4756 *
4757 * Power Management callback to quiesce the device and prepare
4758 * for D3 transition.
4759 */
4760static int __maybe_unused ice_suspend(struct device *dev)
4761{
4762 struct pci_dev *pdev = to_pci_dev(dev);
4763 struct ice_pf *pf;
4764 int disabled, v;
4765
4766 pf = pci_get_drvdata(pdev);
4767
4768 if (!ice_pf_state_is_nominal(pf)) {
4769 dev_err(dev, "Device is not ready, no need to suspend it\n");
4770 return -EBUSY;
4771 }
4772
4773 /* Stop watchdog tasks until resume completion.
4774 * Even though it is most likely that the service task is
4775 * disabled if the device is suspended or down, the service task's
4776 * state is controlled by a different state bit, and we should
4777 * store and honor whatever state that bit is in at this point.
4778 */
4779 disabled = ice_service_task_stop(pf);
4780
4781 ice_unplug_aux_dev(pf);
4782
4783 /* Already suspended?, then there is nothing to do */
4784 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
4785 if (!disabled)
4786 ice_service_task_restart(pf);
4787 return 0;
4788 }
4789
4790 if (test_bit(ICE_DOWN, pf->state) ||
4791 ice_is_reset_in_progress(pf->state)) {
4792 dev_err(dev, "can't suspend device in reset or already down\n");
4793 if (!disabled)
4794 ice_service_task_restart(pf);
4795 return 0;
4796 }
4797
4798 ice_setup_mc_magic_wake(pf);
4799
4800 ice_prepare_for_shutdown(pf);
4801
4802 ice_set_wake(pf);
4803
4804 /* Free vectors, clear the interrupt scheme and release IRQs
4805 * for proper hibernation, especially with large number of CPUs.
4806 * Otherwise hibernation might fail when mapping all the vectors back
4807 * to CPU0.
4808 */
4809 ice_free_irq_msix_misc(pf);
4810 ice_for_each_vsi(pf, v) {
4811 if (!pf->vsi[v])
4812 continue;
4813 ice_vsi_free_q_vectors(pf->vsi[v]);
4814 }
4815 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf));
4816 ice_clear_interrupt_scheme(pf);
4817
4818 pci_save_state(pdev);
4819 pci_wake_from_d3(pdev, pf->wol_ena);
4820 pci_set_power_state(pdev, PCI_D3hot);
4821 return 0;
4822}
4823
4824/**
4825 * ice_resume - PM callback for waking up from D3
4826 * @dev: generic device information structure
4827 */
4828static int __maybe_unused ice_resume(struct device *dev)
4829{
4830 struct pci_dev *pdev = to_pci_dev(dev);
4831 enum ice_reset_req reset_type;
4832 struct ice_pf *pf;
4833 struct ice_hw *hw;
4834 int ret;
4835
4836 pci_set_power_state(pdev, PCI_D0);
4837 pci_restore_state(pdev);
4838 pci_save_state(pdev);
4839
4840 if (!pci_device_is_present(pdev))
4841 return -ENODEV;
4842
4843 ret = pci_enable_device_mem(pdev);
4844 if (ret) {
4845 dev_err(dev, "Cannot enable device after suspend\n");
4846 return ret;
4847 }
4848
4849 pf = pci_get_drvdata(pdev);
4850 hw = &pf->hw;
4851
4852 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4853 ice_print_wake_reason(pf);
4854
4855 /* We cleared the interrupt scheme when we suspended, so we need to
4856 * restore it now to resume device functionality.
4857 */
4858 ret = ice_reinit_interrupt_scheme(pf);
4859 if (ret)
4860 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4861
4862 clear_bit(ICE_DOWN, pf->state);
4863 /* Now perform PF reset and rebuild */
4864 reset_type = ICE_RESET_PFR;
4865 /* re-enable service task for reset, but allow reset to schedule it */
4866 clear_bit(ICE_SERVICE_DIS, pf->state);
4867
4868 if (ice_schedule_reset(pf, reset_type))
4869 dev_err(dev, "Reset during resume failed.\n");
4870
4871 clear_bit(ICE_SUSPENDED, pf->state);
4872 ice_service_task_restart(pf);
4873
4874 /* Restart the service task */
4875 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4876
4877 return 0;
4878}
4879#endif /* CONFIG_PM */
4880
4881/**
4882 * ice_pci_err_detected - warning that PCI error has been detected
4883 * @pdev: PCI device information struct
4884 * @err: the type of PCI error
4885 *
4886 * Called to warn that something happened on the PCI bus and the error handling
4887 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
4888 */
4889static pci_ers_result_t
4890ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4891{
4892 struct ice_pf *pf = pci_get_drvdata(pdev);
4893
4894 if (!pf) {
4895 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4896 __func__, err);
4897 return PCI_ERS_RESULT_DISCONNECT;
4898 }
4899
4900 if (!test_bit(ICE_SUSPENDED, pf->state)) {
4901 ice_service_task_stop(pf);
4902
4903 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
4904 set_bit(ICE_PFR_REQ, pf->state);
4905 ice_prepare_for_reset(pf);
4906 }
4907 }
4908
4909 return PCI_ERS_RESULT_NEED_RESET;
4910}
4911
4912/**
4913 * ice_pci_err_slot_reset - a PCI slot reset has just happened
4914 * @pdev: PCI device information struct
4915 *
4916 * Called to determine if the driver can recover from the PCI slot reset by
4917 * using a register read to determine if the device is recoverable.
4918 */
4919static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4920{
4921 struct ice_pf *pf = pci_get_drvdata(pdev);
4922 pci_ers_result_t result;
4923 int err;
4924 u32 reg;
4925
4926 err = pci_enable_device_mem(pdev);
4927 if (err) {
4928 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4929 err);
4930 result = PCI_ERS_RESULT_DISCONNECT;
4931 } else {
4932 pci_set_master(pdev);
4933 pci_restore_state(pdev);
4934 pci_save_state(pdev);
4935 pci_wake_from_d3(pdev, false);
4936
4937 /* Check for life */
4938 reg = rd32(&pf->hw, GLGEN_RTRIG);
4939 if (!reg)
4940 result = PCI_ERS_RESULT_RECOVERED;
4941 else
4942 result = PCI_ERS_RESULT_DISCONNECT;
4943 }
4944
4945 err = pci_aer_clear_nonfatal_status(pdev);
4946 if (err)
4947 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4948 err);
4949 /* non-fatal, continue */
4950
4951 return result;
4952}
4953
4954/**
4955 * ice_pci_err_resume - restart operations after PCI error recovery
4956 * @pdev: PCI device information struct
4957 *
4958 * Called to allow the driver to bring things back up after PCI error and/or
4959 * reset recovery have finished
4960 */
4961static void ice_pci_err_resume(struct pci_dev *pdev)
4962{
4963 struct ice_pf *pf = pci_get_drvdata(pdev);
4964
4965 if (!pf) {
4966 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4967 __func__);
4968 return;
4969 }
4970
4971 if (test_bit(ICE_SUSPENDED, pf->state)) {
4972 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4973 __func__);
4974 return;
4975 }
4976
4977 ice_restore_all_vfs_msi_state(pdev);
4978
4979 ice_do_reset(pf, ICE_RESET_PFR);
4980 ice_service_task_restart(pf);
4981 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4982}
4983
4984/**
4985 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4986 * @pdev: PCI device information struct
4987 */
4988static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4989{
4990 struct ice_pf *pf = pci_get_drvdata(pdev);
4991
4992 if (!test_bit(ICE_SUSPENDED, pf->state)) {
4993 ice_service_task_stop(pf);
4994
4995 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
4996 set_bit(ICE_PFR_REQ, pf->state);
4997 ice_prepare_for_reset(pf);
4998 }
4999 }
5000}
5001
5002/**
5003 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5004 * @pdev: PCI device information struct
5005 */
5006static void ice_pci_err_reset_done(struct pci_dev *pdev)
5007{
5008 ice_pci_err_resume(pdev);
5009}
5010
5011/* ice_pci_tbl - PCI Device ID Table
5012 *
5013 * Wildcard entries (PCI_ANY_ID) should come last
5014 * Last entry must be all 0s
5015 *
5016 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5017 * Class, Class Mask, private data (not used) }
5018 */
5019static const struct pci_device_id ice_pci_tbl[] = {
5020 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5021 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5022 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5023 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5024 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5025 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5026 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5027 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5028 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5029 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5030 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5031 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5032 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5033 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5034 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5035 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5036 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5037 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5038 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5039 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5040 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5041 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5042 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5043 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5044 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5045 /* required last entry */
5046 { 0, }
5047};
5048MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5049
5050static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5051
5052static const struct pci_error_handlers ice_pci_err_handler = {
5053 .error_detected = ice_pci_err_detected,
5054 .slot_reset = ice_pci_err_slot_reset,
5055 .reset_prepare = ice_pci_err_reset_prepare,
5056 .reset_done = ice_pci_err_reset_done,
5057 .resume = ice_pci_err_resume
5058};
5059
5060static struct pci_driver ice_driver = {
5061 .name = KBUILD_MODNAME,
5062 .id_table = ice_pci_tbl,
5063 .probe = ice_probe,
5064 .remove = ice_remove,
5065#ifdef CONFIG_PM
5066 .driver.pm = &ice_pm_ops,
5067#endif /* CONFIG_PM */
5068 .shutdown = ice_shutdown,
5069 .sriov_configure = ice_sriov_configure,
5070 .err_handler = &ice_pci_err_handler
5071};
5072
5073/**
5074 * ice_module_init - Driver registration routine
5075 *
5076 * ice_module_init is the first routine called when the driver is
5077 * loaded. All it does is register with the PCI subsystem.
5078 */
5079static int __init ice_module_init(void)
5080{
5081 int status;
5082
5083 pr_info("%s\n", ice_driver_string);
5084 pr_info("%s\n", ice_copyright);
5085
5086 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
5087 if (!ice_wq) {
5088 pr_err("Failed to create workqueue\n");
5089 return -ENOMEM;
5090 }
5091
5092 status = pci_register_driver(&ice_driver);
5093 if (status) {
5094 pr_err("failed to register PCI driver, err %d\n", status);
5095 destroy_workqueue(ice_wq);
5096 }
5097
5098 return status;
5099}
5100module_init(ice_module_init);
5101
5102/**
5103 * ice_module_exit - Driver exit cleanup routine
5104 *
5105 * ice_module_exit is called just before the driver is removed
5106 * from memory.
5107 */
5108static void __exit ice_module_exit(void)
5109{
5110 pci_unregister_driver(&ice_driver);
5111 destroy_workqueue(ice_wq);
5112 pr_info("module unloaded\n");
5113}
5114module_exit(ice_module_exit);
5115
5116/**
5117 * ice_set_mac_address - NDO callback to set MAC address
5118 * @netdev: network interface device structure
5119 * @pi: pointer to an address structure
5120 *
5121 * Returns 0 on success, negative on failure
5122 */
5123static int ice_set_mac_address(struct net_device *netdev, void *pi)
5124{
5125 struct ice_netdev_priv *np = netdev_priv(netdev);
5126 struct ice_vsi *vsi = np->vsi;
5127 struct ice_pf *pf = vsi->back;
5128 struct ice_hw *hw = &pf->hw;
5129 struct sockaddr *addr = pi;
5130 enum ice_status status;
5131 u8 old_mac[ETH_ALEN];
5132 u8 flags = 0;
5133 int err = 0;
5134 u8 *mac;
5135
5136 mac = (u8 *)addr->sa_data;
5137
5138 if (!is_valid_ether_addr(mac))
5139 return -EADDRNOTAVAIL;
5140
5141 if (ether_addr_equal(netdev->dev_addr, mac)) {
5142 netdev_dbg(netdev, "already using mac %pM\n", mac);
5143 return 0;
5144 }
5145
5146 if (test_bit(ICE_DOWN, pf->state) ||
5147 ice_is_reset_in_progress(pf->state)) {
5148 netdev_err(netdev, "can't set mac %pM. device not ready\n",
5149 mac);
5150 return -EBUSY;
5151 }
5152
5153 netif_addr_lock_bh(netdev);
5154 ether_addr_copy(old_mac, netdev->dev_addr);
5155 /* change the netdev's MAC address */
5156 memcpy(netdev->dev_addr, mac, netdev->addr_len);
5157 netif_addr_unlock_bh(netdev);
5158
5159 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
5160 status = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5161 if (status && status != ICE_ERR_DOES_NOT_EXIST) {
5162 err = -EADDRNOTAVAIL;
5163 goto err_update_filters;
5164 }
5165
5166 /* Add filter for new MAC. If filter exists, return success */
5167 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5168 if (status == ICE_ERR_ALREADY_EXISTS)
5169 /* Although this MAC filter is already present in hardware it's
5170 * possible in some cases (e.g. bonding) that dev_addr was
5171 * modified outside of the driver and needs to be restored back
5172 * to this value.
5173 */
5174 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5175 else if (status)
5176 /* error if the new filter addition failed */
5177 err = -EADDRNOTAVAIL;
5178
5179err_update_filters:
5180 if (err) {
5181 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5182 mac);
5183 netif_addr_lock_bh(netdev);
5184 ether_addr_copy(netdev->dev_addr, old_mac);
5185 netif_addr_unlock_bh(netdev);
5186 return err;
5187 }
5188
5189 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5190 netdev->dev_addr);
5191
5192 /* write new MAC address to the firmware */
5193 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5194 status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5195 if (status) {
5196 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
5197 mac, ice_stat_str(status));
5198 }
5199 return 0;
5200}
5201
5202/**
5203 * ice_set_rx_mode - NDO callback to set the netdev filters
5204 * @netdev: network interface device structure
5205 */
5206static void ice_set_rx_mode(struct net_device *netdev)
5207{
5208 struct ice_netdev_priv *np = netdev_priv(netdev);
5209 struct ice_vsi *vsi = np->vsi;
5210
5211 if (!vsi)
5212 return;
5213
5214 /* Set the flags to synchronize filters
5215 * ndo_set_rx_mode may be triggered even without a change in netdev
5216 * flags
5217 */
5218 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5219 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5220 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5221
5222 /* schedule our worker thread which will take care of
5223 * applying the new filter changes
5224 */
5225 ice_service_task_schedule(vsi->back);
5226}
5227
5228/**
5229 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5230 * @netdev: network interface device structure
5231 * @queue_index: Queue ID
5232 * @maxrate: maximum bandwidth in Mbps
5233 */
5234static int
5235ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5236{
5237 struct ice_netdev_priv *np = netdev_priv(netdev);
5238 struct ice_vsi *vsi = np->vsi;
5239 enum ice_status status;
5240 u16 q_handle;
5241 u8 tc;
5242
5243 /* Validate maxrate requested is within permitted range */
5244 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5245 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5246 maxrate, queue_index);
5247 return -EINVAL;
5248 }
5249
5250 q_handle = vsi->tx_rings[queue_index]->q_handle;
5251 tc = ice_dcb_get_tc(vsi, queue_index);
5252
5253 /* Set BW back to default, when user set maxrate to 0 */
5254 if (!maxrate)
5255 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5256 q_handle, ICE_MAX_BW);
5257 else
5258 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5259 q_handle, ICE_MAX_BW, maxrate * 1000);
5260 if (status) {
5261 netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
5262 ice_stat_str(status));
5263 return -EIO;
5264 }
5265
5266 return 0;
5267}
5268
5269/**
5270 * ice_fdb_add - add an entry to the hardware database
5271 * @ndm: the input from the stack
5272 * @tb: pointer to array of nladdr (unused)
5273 * @dev: the net device pointer
5274 * @addr: the MAC address entry being added
5275 * @vid: VLAN ID
5276 * @flags: instructions from stack about fdb operation
5277 * @extack: netlink extended ack
5278 */
5279static int
5280ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5281 struct net_device *dev, const unsigned char *addr, u16 vid,
5282 u16 flags, struct netlink_ext_ack __always_unused *extack)
5283{
5284 int err;
5285
5286 if (vid) {
5287 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5288 return -EINVAL;
5289 }
5290 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5291 netdev_err(dev, "FDB only supports static addresses\n");
5292 return -EINVAL;
5293 }
5294
5295 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5296 err = dev_uc_add_excl(dev, addr);
5297 else if (is_multicast_ether_addr(addr))
5298 err = dev_mc_add_excl(dev, addr);
5299 else
5300 err = -EINVAL;
5301
5302 /* Only return duplicate errors if NLM_F_EXCL is set */
5303 if (err == -EEXIST && !(flags & NLM_F_EXCL))
5304 err = 0;
5305
5306 return err;
5307}
5308
5309/**
5310 * ice_fdb_del - delete an entry from the hardware database
5311 * @ndm: the input from the stack
5312 * @tb: pointer to array of nladdr (unused)
5313 * @dev: the net device pointer
5314 * @addr: the MAC address entry being added
5315 * @vid: VLAN ID
5316 */
5317static int
5318ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5319 struct net_device *dev, const unsigned char *addr,
5320 __always_unused u16 vid)
5321{
5322 int err;
5323
5324 if (ndm->ndm_state & NUD_PERMANENT) {
5325 netdev_err(dev, "FDB only supports static addresses\n");
5326 return -EINVAL;
5327 }
5328
5329 if (is_unicast_ether_addr(addr))
5330 err = dev_uc_del(dev, addr);
5331 else if (is_multicast_ether_addr(addr))
5332 err = dev_mc_del(dev, addr);
5333 else
5334 err = -EINVAL;
5335
5336 return err;
5337}
5338
5339/**
5340 * ice_set_features - set the netdev feature flags
5341 * @netdev: ptr to the netdev being adjusted
5342 * @features: the feature set that the stack is suggesting
5343 */
5344static int
5345ice_set_features(struct net_device *netdev, netdev_features_t features)
5346{
5347 struct ice_netdev_priv *np = netdev_priv(netdev);
5348 struct ice_vsi *vsi = np->vsi;
5349 struct ice_pf *pf = vsi->back;
5350 int ret = 0;
5351
5352 /* Don't set any netdev advanced features with device in Safe Mode */
5353 if (ice_is_safe_mode(vsi->back)) {
5354 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5355 return ret;
5356 }
5357
5358 /* Do not change setting during reset */
5359 if (ice_is_reset_in_progress(pf->state)) {
5360 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5361 return -EBUSY;
5362 }
5363
5364 /* Multiple features can be changed in one call so keep features in
5365 * separate if/else statements to guarantee each feature is checked
5366 */
5367 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5368 ice_vsi_manage_rss_lut(vsi, true);
5369 else if (!(features & NETIF_F_RXHASH) &&
5370 netdev->features & NETIF_F_RXHASH)
5371 ice_vsi_manage_rss_lut(vsi, false);
5372
5373 if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5374 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5375 ret = ice_vsi_manage_vlan_stripping(vsi, true);
5376 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5377 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5378 ret = ice_vsi_manage_vlan_stripping(vsi, false);
5379
5380 if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5381 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5382 ret = ice_vsi_manage_vlan_insertion(vsi);
5383 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5384 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5385 ret = ice_vsi_manage_vlan_insertion(vsi);
5386
5387 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5388 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5389 ret = ice_cfg_vlan_pruning(vsi, true, false);
5390 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5391 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5392 ret = ice_cfg_vlan_pruning(vsi, false, false);
5393
5394 if ((features & NETIF_F_NTUPLE) &&
5395 !(netdev->features & NETIF_F_NTUPLE)) {
5396 ice_vsi_manage_fdir(vsi, true);
5397 ice_init_arfs(vsi);
5398 } else if (!(features & NETIF_F_NTUPLE) &&
5399 (netdev->features & NETIF_F_NTUPLE)) {
5400 ice_vsi_manage_fdir(vsi, false);
5401 ice_clear_arfs(vsi);
5402 }
5403
5404 return ret;
5405}
5406
5407/**
5408 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5409 * @vsi: VSI to setup VLAN properties for
5410 */
5411static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5412{
5413 int ret = 0;
5414
5415 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5416 ret = ice_vsi_manage_vlan_stripping(vsi, true);
5417 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5418 ret = ice_vsi_manage_vlan_insertion(vsi);
5419
5420 return ret;
5421}
5422
5423/**
5424 * ice_vsi_cfg - Setup the VSI
5425 * @vsi: the VSI being configured
5426 *
5427 * Return 0 on success and negative value on error
5428 */
5429int ice_vsi_cfg(struct ice_vsi *vsi)
5430{
5431 int err;
5432
5433 if (vsi->netdev) {
5434 ice_set_rx_mode(vsi->netdev);
5435
5436 err = ice_vsi_vlan_setup(vsi);
5437
5438 if (err)
5439 return err;
5440 }
5441 ice_vsi_cfg_dcb_rings(vsi);
5442
5443 err = ice_vsi_cfg_lan_txqs(vsi);
5444 if (!err && ice_is_xdp_ena_vsi(vsi))
5445 err = ice_vsi_cfg_xdp_txqs(vsi);
5446 if (!err)
5447 err = ice_vsi_cfg_rxqs(vsi);
5448
5449 return err;
5450}
5451
5452/* THEORY OF MODERATION:
5453 * The below code creates custom DIM profiles for use by this driver, because
5454 * the ice driver hardware works differently than the hardware that DIMLIB was
5455 * originally made for. ice hardware doesn't have packet count limits that
5456 * can trigger an interrupt, but it *does* have interrupt rate limit support,
5457 * and this code adds that capability to be used by the driver when it's using
5458 * DIMLIB. The DIMLIB code was always designed to be a suggestion to the driver
5459 * for how to "respond" to traffic and interrupts, so this driver uses a
5460 * slightly different set of moderation parameters to get best performance.
5461 */
5462struct ice_dim {
5463 /* the throttle rate for interrupts, basically worst case delay before
5464 * an initial interrupt fires, value is stored in microseconds.
5465 */
5466 u16 itr;
5467 /* the rate limit for interrupts, which can cap a delay from a small
5468 * ITR at a certain amount of interrupts per second. f.e. a 2us ITR
5469 * could yield as much as 500,000 interrupts per second, but with a
5470 * 10us rate limit, it limits to 100,000 interrupts per second. Value
5471 * is stored in microseconds.
5472 */
5473 u16 intrl;
5474};
5475
5476/* Make a different profile for Rx that doesn't allow quite so aggressive
5477 * moderation at the high end (it maxes out at 128us or about 8k interrupts a
5478 * second. The INTRL/rate parameters here are only useful to cap small ITR
5479 * values, which is why for larger ITR's - like 128, which can only generate
5480 * 8k interrupts per second, there is no point to rate limit and the values
5481 * are set to zero. The rate limit values do affect latency, and so must
5482 * be reasonably small so to not impact latency sensitive tests.
5483 */
5484static const struct ice_dim rx_profile[] = {
5485 {2, 10},
5486 {8, 16},
5487 {32, 0},
5488 {96, 0},
5489 {128, 0}
5490};
5491
5492/* The transmit profile, which has the same sorts of values
5493 * as the previous struct
5494 */
5495static const struct ice_dim tx_profile[] = {
5496 {2, 10},
5497 {8, 16},
5498 {64, 0},
5499 {128, 0},
5500 {256, 0}
5501};
5502
5503static void ice_tx_dim_work(struct work_struct *work)
5504{
5505 struct ice_ring_container *rc;
5506 struct ice_q_vector *q_vector;
5507 struct dim *dim;
5508 u16 itr, intrl;
5509
5510 dim = container_of(work, struct dim, work);
5511 rc = container_of(dim, struct ice_ring_container, dim);
5512 q_vector = container_of(rc, struct ice_q_vector, tx);
5513
5514 if (dim->profile_ix >= ARRAY_SIZE(tx_profile))
5515 dim->profile_ix = ARRAY_SIZE(tx_profile) - 1;
5516
5517 /* look up the values in our local table */
5518 itr = tx_profile[dim->profile_ix].itr;
5519 intrl = tx_profile[dim->profile_ix].intrl;
5520
5521 ice_trace(tx_dim_work, q_vector, dim);
5522 ice_write_itr(rc, itr);
5523 ice_write_intrl(q_vector, intrl);
5524
5525 dim->state = DIM_START_MEASURE;
5526}
5527
5528static void ice_rx_dim_work(struct work_struct *work)
5529{
5530 struct ice_ring_container *rc;
5531 struct ice_q_vector *q_vector;
5532 struct dim *dim;
5533 u16 itr, intrl;
5534
5535 dim = container_of(work, struct dim, work);
5536 rc = container_of(dim, struct ice_ring_container, dim);
5537 q_vector = container_of(rc, struct ice_q_vector, rx);
5538
5539 if (dim->profile_ix >= ARRAY_SIZE(rx_profile))
5540 dim->profile_ix = ARRAY_SIZE(rx_profile) - 1;
5541
5542 /* look up the values in our local table */
5543 itr = rx_profile[dim->profile_ix].itr;
5544 intrl = rx_profile[dim->profile_ix].intrl;
5545
5546 ice_trace(rx_dim_work, q_vector, dim);
5547 ice_write_itr(rc, itr);
5548 ice_write_intrl(q_vector, intrl);
5549
5550 dim->state = DIM_START_MEASURE;
5551}
5552
5553/**
5554 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5555 * @vsi: the VSI being configured
5556 */
5557static void ice_napi_enable_all(struct ice_vsi *vsi)
5558{
5559 int q_idx;
5560
5561 if (!vsi->netdev)
5562 return;
5563
5564 ice_for_each_q_vector(vsi, q_idx) {
5565 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5566
5567 INIT_WORK(&q_vector->tx.dim.work, ice_tx_dim_work);
5568 q_vector->tx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
5569
5570 INIT_WORK(&q_vector->rx.dim.work, ice_rx_dim_work);
5571 q_vector->rx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
5572
5573 if (q_vector->rx.ring || q_vector->tx.ring)
5574 napi_enable(&q_vector->napi);
5575 }
5576}
5577
5578/**
5579 * ice_up_complete - Finish the last steps of bringing up a connection
5580 * @vsi: The VSI being configured
5581 *
5582 * Return 0 on success and negative value on error
5583 */
5584static int ice_up_complete(struct ice_vsi *vsi)
5585{
5586 struct ice_pf *pf = vsi->back;
5587 int err;
5588
5589 ice_vsi_cfg_msix(vsi);
5590
5591 /* Enable only Rx rings, Tx rings were enabled by the FW when the
5592 * Tx queue group list was configured and the context bits were
5593 * programmed using ice_vsi_cfg_txqs
5594 */
5595 err = ice_vsi_start_all_rx_rings(vsi);
5596 if (err)
5597 return err;
5598
5599 clear_bit(ICE_VSI_DOWN, vsi->state);
5600 ice_napi_enable_all(vsi);
5601 ice_vsi_ena_irq(vsi);
5602
5603 if (vsi->port_info &&
5604 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5605 vsi->netdev) {
5606 ice_print_link_msg(vsi, true);
5607 netif_tx_start_all_queues(vsi->netdev);
5608 netif_carrier_on(vsi->netdev);
5609 }
5610
5611 ice_service_task_schedule(pf);
5612
5613 return 0;
5614}
5615
5616/**
5617 * ice_up - Bring the connection back up after being down
5618 * @vsi: VSI being configured
5619 */
5620int ice_up(struct ice_vsi *vsi)
5621{
5622 int err;
5623
5624 err = ice_vsi_cfg(vsi);
5625 if (!err)
5626 err = ice_up_complete(vsi);
5627
5628 return err;
5629}
5630
5631/**
5632 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5633 * @ring: Tx or Rx ring to read stats from
5634 * @pkts: packets stats counter
5635 * @bytes: bytes stats counter
5636 *
5637 * This function fetches stats from the ring considering the atomic operations
5638 * that needs to be performed to read u64 values in 32 bit machine.
5639 */
5640static void
5641ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5642{
5643 unsigned int start;
5644 *pkts = 0;
5645 *bytes = 0;
5646
5647 if (!ring)
5648 return;
5649 do {
5650 start = u64_stats_fetch_begin_irq(&ring->syncp);
5651 *pkts = ring->stats.pkts;
5652 *bytes = ring->stats.bytes;
5653 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5654}
5655
5656/**
5657 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5658 * @vsi: the VSI to be updated
5659 * @rings: rings to work on
5660 * @count: number of rings
5661 */
5662static void
5663ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5664 u16 count)
5665{
5666 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5667 u16 i;
5668
5669 for (i = 0; i < count; i++) {
5670 struct ice_ring *ring;
5671 u64 pkts, bytes;
5672
5673 ring = READ_ONCE(rings[i]);
5674 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5675 vsi_stats->tx_packets += pkts;
5676 vsi_stats->tx_bytes += bytes;
5677 vsi->tx_restart += ring->tx_stats.restart_q;
5678 vsi->tx_busy += ring->tx_stats.tx_busy;
5679 vsi->tx_linearize += ring->tx_stats.tx_linearize;
5680 }
5681}
5682
5683/**
5684 * ice_update_vsi_ring_stats - Update VSI stats counters
5685 * @vsi: the VSI to be updated
5686 */
5687static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5688{
5689 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5690 u64 pkts, bytes;
5691 int i;
5692
5693 /* reset netdev stats */
5694 vsi_stats->tx_packets = 0;
5695 vsi_stats->tx_bytes = 0;
5696 vsi_stats->rx_packets = 0;
5697 vsi_stats->rx_bytes = 0;
5698
5699 /* reset non-netdev (extended) stats */
5700 vsi->tx_restart = 0;
5701 vsi->tx_busy = 0;
5702 vsi->tx_linearize = 0;
5703 vsi->rx_buf_failed = 0;
5704 vsi->rx_page_failed = 0;
5705
5706 rcu_read_lock();
5707
5708 /* update Tx rings counters */
5709 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
5710
5711 /* update Rx rings counters */
5712 ice_for_each_rxq(vsi, i) {
5713 struct ice_ring *ring = READ_ONCE(vsi->rx_rings[i]);
5714
5715 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5716 vsi_stats->rx_packets += pkts;
5717 vsi_stats->rx_bytes += bytes;
5718 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5719 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5720 }
5721
5722 /* update XDP Tx rings counters */
5723 if (ice_is_xdp_ena_vsi(vsi))
5724 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5725 vsi->num_xdp_txq);
5726
5727 rcu_read_unlock();
5728}
5729
5730/**
5731 * ice_update_vsi_stats - Update VSI stats counters
5732 * @vsi: the VSI to be updated
5733 */
5734void ice_update_vsi_stats(struct ice_vsi *vsi)
5735{
5736 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5737 struct ice_eth_stats *cur_es = &vsi->eth_stats;
5738 struct ice_pf *pf = vsi->back;
5739
5740 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
5741 test_bit(ICE_CFG_BUSY, pf->state))
5742 return;
5743
5744 /* get stats as recorded by Tx/Rx rings */
5745 ice_update_vsi_ring_stats(vsi);
5746
5747 /* get VSI stats as recorded by the hardware */
5748 ice_update_eth_stats(vsi);
5749
5750 cur_ns->tx_errors = cur_es->tx_errors;
5751 cur_ns->rx_dropped = cur_es->rx_discards;
5752 cur_ns->tx_dropped = cur_es->tx_discards;
5753 cur_ns->multicast = cur_es->rx_multicast;
5754
5755 /* update some more netdev stats if this is main VSI */
5756 if (vsi->type == ICE_VSI_PF) {
5757 cur_ns->rx_crc_errors = pf->stats.crc_errors;
5758 cur_ns->rx_errors = pf->stats.crc_errors +
5759 pf->stats.illegal_bytes +
5760 pf->stats.rx_len_errors +
5761 pf->stats.rx_undersize +
5762 pf->hw_csum_rx_error +
5763 pf->stats.rx_jabber +
5764 pf->stats.rx_fragments +
5765 pf->stats.rx_oversize;
5766 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5767 /* record drops from the port level */
5768 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5769 }
5770}
5771
5772/**
5773 * ice_update_pf_stats - Update PF port stats counters
5774 * @pf: PF whose stats needs to be updated
5775 */
5776void ice_update_pf_stats(struct ice_pf *pf)
5777{
5778 struct ice_hw_port_stats *prev_ps, *cur_ps;
5779 struct ice_hw *hw = &pf->hw;
5780 u16 fd_ctr_base;
5781 u8 port;
5782
5783 port = hw->port_info->lport;
5784 prev_ps = &pf->stats_prev;
5785 cur_ps = &pf->stats;
5786
5787 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5788 &prev_ps->eth.rx_bytes,
5789 &cur_ps->eth.rx_bytes);
5790
5791 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5792 &prev_ps->eth.rx_unicast,
5793 &cur_ps->eth.rx_unicast);
5794
5795 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5796 &prev_ps->eth.rx_multicast,
5797 &cur_ps->eth.rx_multicast);
5798
5799 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5800 &prev_ps->eth.rx_broadcast,
5801 &cur_ps->eth.rx_broadcast);
5802
5803 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5804 &prev_ps->eth.rx_discards,
5805 &cur_ps->eth.rx_discards);
5806
5807 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5808 &prev_ps->eth.tx_bytes,
5809 &cur_ps->eth.tx_bytes);
5810
5811 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5812 &prev_ps->eth.tx_unicast,
5813 &cur_ps->eth.tx_unicast);
5814
5815 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5816 &prev_ps->eth.tx_multicast,
5817 &cur_ps->eth.tx_multicast);
5818
5819 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5820 &prev_ps->eth.tx_broadcast,
5821 &cur_ps->eth.tx_broadcast);
5822
5823 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5824 &prev_ps->tx_dropped_link_down,
5825 &cur_ps->tx_dropped_link_down);
5826
5827 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5828 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5829
5830 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5831 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5832
5833 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5834 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5835
5836 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5837 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5838
5839 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5840 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5841
5842 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5843 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5844
5845 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5846 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5847
5848 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5849 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5850
5851 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5852 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5853
5854 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5855 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5856
5857 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5858 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5859
5860 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5861 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5862
5863 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5864 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5865
5866 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5867 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5868
5869 fd_ctr_base = hw->fd_ctr_base;
5870
5871 ice_stat_update40(hw,
5872 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5873 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5874 &cur_ps->fd_sb_match);
5875 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5876 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5877
5878 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5879 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5880
5881 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5882 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5883
5884 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5885 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5886
5887 ice_update_dcb_stats(pf);
5888
5889 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5890 &prev_ps->crc_errors, &cur_ps->crc_errors);
5891
5892 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5893 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5894
5895 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5896 &prev_ps->mac_local_faults,
5897 &cur_ps->mac_local_faults);
5898
5899 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5900 &prev_ps->mac_remote_faults,
5901 &cur_ps->mac_remote_faults);
5902
5903 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5904 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5905
5906 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5907 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5908
5909 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5910 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5911
5912 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5913 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5914
5915 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5916 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5917
5918 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5919
5920 pf->stat_prev_loaded = true;
5921}
5922
5923/**
5924 * ice_get_stats64 - get statistics for network device structure
5925 * @netdev: network interface device structure
5926 * @stats: main device statistics structure
5927 */
5928static
5929void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5930{
5931 struct ice_netdev_priv *np = netdev_priv(netdev);
5932 struct rtnl_link_stats64 *vsi_stats;
5933 struct ice_vsi *vsi = np->vsi;
5934
5935 vsi_stats = &vsi->net_stats;
5936
5937 if (!vsi->num_txq || !vsi->num_rxq)
5938 return;
5939
5940 /* netdev packet/byte stats come from ring counter. These are obtained
5941 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5942 * But, only call the update routine and read the registers if VSI is
5943 * not down.
5944 */
5945 if (!test_bit(ICE_VSI_DOWN, vsi->state))
5946 ice_update_vsi_ring_stats(vsi);
5947 stats->tx_packets = vsi_stats->tx_packets;
5948 stats->tx_bytes = vsi_stats->tx_bytes;
5949 stats->rx_packets = vsi_stats->rx_packets;
5950 stats->rx_bytes = vsi_stats->rx_bytes;
5951
5952 /* The rest of the stats can be read from the hardware but instead we
5953 * just return values that the watchdog task has already obtained from
5954 * the hardware.
5955 */
5956 stats->multicast = vsi_stats->multicast;
5957 stats->tx_errors = vsi_stats->tx_errors;
5958 stats->tx_dropped = vsi_stats->tx_dropped;
5959 stats->rx_errors = vsi_stats->rx_errors;
5960 stats->rx_dropped = vsi_stats->rx_dropped;
5961 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5962 stats->rx_length_errors = vsi_stats->rx_length_errors;
5963}
5964
5965/**
5966 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5967 * @vsi: VSI having NAPI disabled
5968 */
5969static void ice_napi_disable_all(struct ice_vsi *vsi)
5970{
5971 int q_idx;
5972
5973 if (!vsi->netdev)
5974 return;
5975
5976 ice_for_each_q_vector(vsi, q_idx) {
5977 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5978
5979 if (q_vector->rx.ring || q_vector->tx.ring)
5980 napi_disable(&q_vector->napi);
5981
5982 cancel_work_sync(&q_vector->tx.dim.work);
5983 cancel_work_sync(&q_vector->rx.dim.work);
5984 }
5985}
5986
5987/**
5988 * ice_down - Shutdown the connection
5989 * @vsi: The VSI being stopped
5990 */
5991int ice_down(struct ice_vsi *vsi)
5992{
5993 int i, tx_err, rx_err, link_err = 0;
5994
5995 /* Caller of this function is expected to set the
5996 * vsi->state ICE_DOWN bit
5997 */
5998 if (vsi->netdev) {
5999 netif_carrier_off(vsi->netdev);
6000 netif_tx_disable(vsi->netdev);
6001 }
6002
6003 ice_vsi_dis_irq(vsi);
6004
6005 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6006 if (tx_err)
6007 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6008 vsi->vsi_num, tx_err);
6009 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6010 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6011 if (tx_err)
6012 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6013 vsi->vsi_num, tx_err);
6014 }
6015
6016 rx_err = ice_vsi_stop_all_rx_rings(vsi);
6017 if (rx_err)
6018 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6019 vsi->vsi_num, rx_err);
6020
6021 ice_napi_disable_all(vsi);
6022
6023 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
6024 link_err = ice_force_phys_link_state(vsi, false);
6025 if (link_err)
6026 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
6027 vsi->vsi_num, link_err);
6028 }
6029
6030 ice_for_each_txq(vsi, i)
6031 ice_clean_tx_ring(vsi->tx_rings[i]);
6032
6033 ice_for_each_rxq(vsi, i)
6034 ice_clean_rx_ring(vsi->rx_rings[i]);
6035
6036 if (tx_err || rx_err || link_err) {
6037 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6038 vsi->vsi_num, vsi->vsw->sw_id);
6039 return -EIO;
6040 }
6041
6042 return 0;
6043}
6044
6045/**
6046 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6047 * @vsi: VSI having resources allocated
6048 *
6049 * Return 0 on success, negative on failure
6050 */
6051int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6052{
6053 int i, err = 0;
6054
6055 if (!vsi->num_txq) {
6056 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6057 vsi->vsi_num);
6058 return -EINVAL;
6059 }
6060
6061 ice_for_each_txq(vsi, i) {
6062 struct ice_ring *ring = vsi->tx_rings[i];
6063
6064 if (!ring)
6065 return -EINVAL;
6066
6067 ring->netdev = vsi->netdev;
6068 err = ice_setup_tx_ring(ring);
6069 if (err)
6070 break;
6071 }
6072
6073 return err;
6074}
6075
6076/**
6077 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6078 * @vsi: VSI having resources allocated
6079 *
6080 * Return 0 on success, negative on failure
6081 */
6082int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6083{
6084 int i, err = 0;
6085
6086 if (!vsi->num_rxq) {
6087 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6088 vsi->vsi_num);
6089 return -EINVAL;
6090 }
6091
6092 ice_for_each_rxq(vsi, i) {
6093 struct ice_ring *ring = vsi->rx_rings[i];
6094
6095 if (!ring)
6096 return -EINVAL;
6097
6098 ring->netdev = vsi->netdev;
6099 err = ice_setup_rx_ring(ring);
6100 if (err)
6101 break;
6102 }
6103
6104 return err;
6105}
6106
6107/**
6108 * ice_vsi_open_ctrl - open control VSI for use
6109 * @vsi: the VSI to open
6110 *
6111 * Initialization of the Control VSI
6112 *
6113 * Returns 0 on success, negative value on error
6114 */
6115int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6116{
6117 char int_name[ICE_INT_NAME_STR_LEN];
6118 struct ice_pf *pf = vsi->back;
6119 struct device *dev;
6120 int err;
6121
6122 dev = ice_pf_to_dev(pf);
6123 /* allocate descriptors */
6124 err = ice_vsi_setup_tx_rings(vsi);
6125 if (err)
6126 goto err_setup_tx;
6127
6128 err = ice_vsi_setup_rx_rings(vsi);
6129 if (err)
6130 goto err_setup_rx;
6131
6132 err = ice_vsi_cfg(vsi);
6133 if (err)
6134 goto err_setup_rx;
6135
6136 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6137 dev_driver_string(dev), dev_name(dev));
6138 err = ice_vsi_req_irq_msix(vsi, int_name);
6139 if (err)
6140 goto err_setup_rx;
6141
6142 ice_vsi_cfg_msix(vsi);
6143
6144 err = ice_vsi_start_all_rx_rings(vsi);
6145 if (err)
6146 goto err_up_complete;
6147
6148 clear_bit(ICE_VSI_DOWN, vsi->state);
6149 ice_vsi_ena_irq(vsi);
6150
6151 return 0;
6152
6153err_up_complete:
6154 ice_down(vsi);
6155err_setup_rx:
6156 ice_vsi_free_rx_rings(vsi);
6157err_setup_tx:
6158 ice_vsi_free_tx_rings(vsi);
6159
6160 return err;
6161}
6162
6163/**
6164 * ice_vsi_open - Called when a network interface is made active
6165 * @vsi: the VSI to open
6166 *
6167 * Initialization of the VSI
6168 *
6169 * Returns 0 on success, negative value on error
6170 */
6171static int ice_vsi_open(struct ice_vsi *vsi)
6172{
6173 char int_name[ICE_INT_NAME_STR_LEN];
6174 struct ice_pf *pf = vsi->back;
6175 int err;
6176
6177 /* allocate descriptors */
6178 err = ice_vsi_setup_tx_rings(vsi);
6179 if (err)
6180 goto err_setup_tx;
6181
6182 err = ice_vsi_setup_rx_rings(vsi);
6183 if (err)
6184 goto err_setup_rx;
6185
6186 err = ice_vsi_cfg(vsi);
6187 if (err)
6188 goto err_setup_rx;
6189
6190 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
6191 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
6192 err = ice_vsi_req_irq_msix(vsi, int_name);
6193 if (err)
6194 goto err_setup_rx;
6195
6196 /* Notify the stack of the actual queue counts. */
6197 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
6198 if (err)
6199 goto err_set_qs;
6200
6201 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
6202 if (err)
6203 goto err_set_qs;
6204
6205 err = ice_up_complete(vsi);
6206 if (err)
6207 goto err_up_complete;
6208
6209 return 0;
6210
6211err_up_complete:
6212 ice_down(vsi);
6213err_set_qs:
6214 ice_vsi_free_irq(vsi);
6215err_setup_rx:
6216 ice_vsi_free_rx_rings(vsi);
6217err_setup_tx:
6218 ice_vsi_free_tx_rings(vsi);
6219
6220 return err;
6221}
6222
6223/**
6224 * ice_vsi_release_all - Delete all VSIs
6225 * @pf: PF from which all VSIs are being removed
6226 */
6227static void ice_vsi_release_all(struct ice_pf *pf)
6228{
6229 int err, i;
6230
6231 if (!pf->vsi)
6232 return;
6233
6234 ice_for_each_vsi(pf, i) {
6235 if (!pf->vsi[i])
6236 continue;
6237
6238 err = ice_vsi_release(pf->vsi[i]);
6239 if (err)
6240 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
6241 i, err, pf->vsi[i]->vsi_num);
6242 }
6243}
6244
6245/**
6246 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
6247 * @pf: pointer to the PF instance
6248 * @type: VSI type to rebuild
6249 *
6250 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
6251 */
6252static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
6253{
6254 struct device *dev = ice_pf_to_dev(pf);
6255 enum ice_status status;
6256 int i, err;
6257
6258 ice_for_each_vsi(pf, i) {
6259 struct ice_vsi *vsi = pf->vsi[i];
6260
6261 if (!vsi || vsi->type != type)
6262 continue;
6263
6264 /* rebuild the VSI */
6265 err = ice_vsi_rebuild(vsi, true);
6266 if (err) {
6267 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
6268 err, vsi->idx, ice_vsi_type_str(type));
6269 return err;
6270 }
6271
6272 /* replay filters for the VSI */
6273 status = ice_replay_vsi(&pf->hw, vsi->idx);
6274 if (status) {
6275 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
6276 ice_stat_str(status), vsi->idx,
6277 ice_vsi_type_str(type));
6278 return -EIO;
6279 }
6280
6281 /* Re-map HW VSI number, using VSI handle that has been
6282 * previously validated in ice_replay_vsi() call above
6283 */
6284 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
6285
6286 /* enable the VSI */
6287 err = ice_ena_vsi(vsi, false);
6288 if (err) {
6289 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
6290 err, vsi->idx, ice_vsi_type_str(type));
6291 return err;
6292 }
6293
6294 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
6295 ice_vsi_type_str(type));
6296 }
6297
6298 return 0;
6299}
6300
6301/**
6302 * ice_update_pf_netdev_link - Update PF netdev link status
6303 * @pf: pointer to the PF instance
6304 */
6305static void ice_update_pf_netdev_link(struct ice_pf *pf)
6306{
6307 bool link_up;
6308 int i;
6309
6310 ice_for_each_vsi(pf, i) {
6311 struct ice_vsi *vsi = pf->vsi[i];
6312
6313 if (!vsi || vsi->type != ICE_VSI_PF)
6314 return;
6315
6316 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
6317 if (link_up) {
6318 netif_carrier_on(pf->vsi[i]->netdev);
6319 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
6320 } else {
6321 netif_carrier_off(pf->vsi[i]->netdev);
6322 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
6323 }
6324 }
6325}
6326
6327/**
6328 * ice_rebuild - rebuild after reset
6329 * @pf: PF to rebuild
6330 * @reset_type: type of reset
6331 *
6332 * Do not rebuild VF VSI in this flow because that is already handled via
6333 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
6334 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
6335 * to reset/rebuild all the VF VSI twice.
6336 */
6337static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
6338{
6339 struct device *dev = ice_pf_to_dev(pf);
6340 struct ice_hw *hw = &pf->hw;
6341 enum ice_status ret;
6342 int err;
6343
6344 if (test_bit(ICE_DOWN, pf->state))
6345 goto clear_recovery;
6346
6347 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
6348
6349 ret = ice_init_all_ctrlq(hw);
6350 if (ret) {
6351 dev_err(dev, "control queues init failed %s\n",
6352 ice_stat_str(ret));
6353 goto err_init_ctrlq;
6354 }
6355
6356 /* if DDP was previously loaded successfully */
6357 if (!ice_is_safe_mode(pf)) {
6358 /* reload the SW DB of filter tables */
6359 if (reset_type == ICE_RESET_PFR)
6360 ice_fill_blk_tbls(hw);
6361 else
6362 /* Reload DDP Package after CORER/GLOBR reset */
6363 ice_load_pkg(NULL, pf);
6364 }
6365
6366 ret = ice_clear_pf_cfg(hw);
6367 if (ret) {
6368 dev_err(dev, "clear PF configuration failed %s\n",
6369 ice_stat_str(ret));
6370 goto err_init_ctrlq;
6371 }
6372
6373 if (pf->first_sw->dflt_vsi_ena)
6374 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
6375 /* clear the default VSI configuration if it exists */
6376 pf->first_sw->dflt_vsi = NULL;
6377 pf->first_sw->dflt_vsi_ena = false;
6378
6379 ice_clear_pxe_mode(hw);
6380
6381 ret = ice_init_nvm(hw);
6382 if (ret) {
6383 dev_err(dev, "ice_init_nvm failed %s\n", ice_stat_str(ret));
6384 goto err_init_ctrlq;
6385 }
6386
6387 ret = ice_get_caps(hw);
6388 if (ret) {
6389 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
6390 goto err_init_ctrlq;
6391 }
6392
6393 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
6394 if (ret) {
6395 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
6396 goto err_init_ctrlq;
6397 }
6398
6399 err = ice_sched_init_port(hw->port_info);
6400 if (err)
6401 goto err_sched_init_port;
6402
6403 /* start misc vector */
6404 err = ice_req_irq_msix_misc(pf);
6405 if (err) {
6406 dev_err(dev, "misc vector setup failed: %d\n", err);
6407 goto err_sched_init_port;
6408 }
6409
6410 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6411 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
6412 if (!rd32(hw, PFQF_FD_SIZE)) {
6413 u16 unused, guar, b_effort;
6414
6415 guar = hw->func_caps.fd_fltr_guar;
6416 b_effort = hw->func_caps.fd_fltr_best_effort;
6417
6418 /* force guaranteed filter pool for PF */
6419 ice_alloc_fd_guar_item(hw, &unused, guar);
6420 /* force shared filter pool for PF */
6421 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
6422 }
6423 }
6424
6425 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6426 ice_dcb_rebuild(pf);
6427
6428 /* If the PF previously had enabled PTP, PTP init needs to happen before
6429 * the VSI rebuild. If not, this causes the PTP link status events to
6430 * fail.
6431 */
6432 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
6433 ice_ptp_init(pf);
6434
6435 /* rebuild PF VSI */
6436 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6437 if (err) {
6438 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6439 goto err_vsi_rebuild;
6440 }
6441
6442 /* If Flow Director is active */
6443 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6444 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6445 if (err) {
6446 dev_err(dev, "control VSI rebuild failed: %d\n", err);
6447 goto err_vsi_rebuild;
6448 }
6449
6450 /* replay HW Flow Director recipes */
6451 if (hw->fdir_prof)
6452 ice_fdir_replay_flows(hw);
6453
6454 /* replay Flow Director filters */
6455 ice_fdir_replay_fltrs(pf);
6456
6457 ice_rebuild_arfs(pf);
6458 }
6459
6460 ice_update_pf_netdev_link(pf);
6461
6462 /* tell the firmware we are up */
6463 ret = ice_send_version(pf);
6464 if (ret) {
6465 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6466 ice_stat_str(ret));
6467 goto err_vsi_rebuild;
6468 }
6469
6470 ice_replay_post(hw);
6471
6472 /* if we get here, reset flow is successful */
6473 clear_bit(ICE_RESET_FAILED, pf->state);
6474
6475 ice_plug_aux_dev(pf);
6476 return;
6477
6478err_vsi_rebuild:
6479err_sched_init_port:
6480 ice_sched_cleanup_all(hw);
6481err_init_ctrlq:
6482 ice_shutdown_all_ctrlq(hw);
6483 set_bit(ICE_RESET_FAILED, pf->state);
6484clear_recovery:
6485 /* set this bit in PF state to control service task scheduling */
6486 set_bit(ICE_NEEDS_RESTART, pf->state);
6487 dev_err(dev, "Rebuild failed, unload and reload driver\n");
6488}
6489
6490/**
6491 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6492 * @vsi: Pointer to VSI structure
6493 */
6494static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6495{
6496 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6497 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6498 else
6499 return ICE_RXBUF_3072;
6500}
6501
6502/**
6503 * ice_change_mtu - NDO callback to change the MTU
6504 * @netdev: network interface device structure
6505 * @new_mtu: new value for maximum frame size
6506 *
6507 * Returns 0 on success, negative on failure
6508 */
6509static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6510{
6511 struct ice_netdev_priv *np = netdev_priv(netdev);
6512 struct ice_vsi *vsi = np->vsi;
6513 struct ice_pf *pf = vsi->back;
6514 struct iidc_event *event;
6515 u8 count = 0;
6516 int err = 0;
6517
6518 if (new_mtu == (int)netdev->mtu) {
6519 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6520 return 0;
6521 }
6522
6523 if (ice_is_xdp_ena_vsi(vsi)) {
6524 int frame_size = ice_max_xdp_frame_size(vsi);
6525
6526 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6527 netdev_err(netdev, "max MTU for XDP usage is %d\n",
6528 frame_size - ICE_ETH_PKT_HDR_PAD);
6529 return -EINVAL;
6530 }
6531 }
6532
6533 /* if a reset is in progress, wait for some time for it to complete */
6534 do {
6535 if (ice_is_reset_in_progress(pf->state)) {
6536 count++;
6537 usleep_range(1000, 2000);
6538 } else {
6539 break;
6540 }
6541
6542 } while (count < 100);
6543
6544 if (count == 100) {
6545 netdev_err(netdev, "can't change MTU. Device is busy\n");
6546 return -EBUSY;
6547 }
6548
6549 event = kzalloc(sizeof(*event), GFP_KERNEL);
6550 if (!event)
6551 return -ENOMEM;
6552
6553 set_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type);
6554 ice_send_event_to_aux(pf, event);
6555 clear_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type);
6556
6557 netdev->mtu = (unsigned int)new_mtu;
6558
6559 /* if VSI is up, bring it down and then back up */
6560 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6561 err = ice_down(vsi);
6562 if (err) {
6563 netdev_err(netdev, "change MTU if_down err %d\n", err);
6564 goto event_after;
6565 }
6566
6567 err = ice_up(vsi);
6568 if (err) {
6569 netdev_err(netdev, "change MTU if_up err %d\n", err);
6570 goto event_after;
6571 }
6572 }
6573
6574 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6575event_after:
6576 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
6577 ice_send_event_to_aux(pf, event);
6578 kfree(event);
6579
6580 return err;
6581}
6582
6583/**
6584 * ice_do_ioctl - Access the hwtstamp interface
6585 * @netdev: network interface device structure
6586 * @ifr: interface request data
6587 * @cmd: ioctl command
6588 */
6589static int ice_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6590{
6591 struct ice_netdev_priv *np = netdev_priv(netdev);
6592 struct ice_pf *pf = np->vsi->back;
6593
6594 switch (cmd) {
6595 case SIOCGHWTSTAMP:
6596 return ice_ptp_get_ts_config(pf, ifr);
6597 case SIOCSHWTSTAMP:
6598 return ice_ptp_set_ts_config(pf, ifr);
6599 default:
6600 return -EOPNOTSUPP;
6601 }
6602}
6603
6604/**
6605 * ice_aq_str - convert AQ err code to a string
6606 * @aq_err: the AQ error code to convert
6607 */
6608const char *ice_aq_str(enum ice_aq_err aq_err)
6609{
6610 switch (aq_err) {
6611 case ICE_AQ_RC_OK:
6612 return "OK";
6613 case ICE_AQ_RC_EPERM:
6614 return "ICE_AQ_RC_EPERM";
6615 case ICE_AQ_RC_ENOENT:
6616 return "ICE_AQ_RC_ENOENT";
6617 case ICE_AQ_RC_ENOMEM:
6618 return "ICE_AQ_RC_ENOMEM";
6619 case ICE_AQ_RC_EBUSY:
6620 return "ICE_AQ_RC_EBUSY";
6621 case ICE_AQ_RC_EEXIST:
6622 return "ICE_AQ_RC_EEXIST";
6623 case ICE_AQ_RC_EINVAL:
6624 return "ICE_AQ_RC_EINVAL";
6625 case ICE_AQ_RC_ENOSPC:
6626 return "ICE_AQ_RC_ENOSPC";
6627 case ICE_AQ_RC_ENOSYS:
6628 return "ICE_AQ_RC_ENOSYS";
6629 case ICE_AQ_RC_EMODE:
6630 return "ICE_AQ_RC_EMODE";
6631 case ICE_AQ_RC_ENOSEC:
6632 return "ICE_AQ_RC_ENOSEC";
6633 case ICE_AQ_RC_EBADSIG:
6634 return "ICE_AQ_RC_EBADSIG";
6635 case ICE_AQ_RC_ESVN:
6636 return "ICE_AQ_RC_ESVN";
6637 case ICE_AQ_RC_EBADMAN:
6638 return "ICE_AQ_RC_EBADMAN";
6639 case ICE_AQ_RC_EBADBUF:
6640 return "ICE_AQ_RC_EBADBUF";
6641 }
6642
6643 return "ICE_AQ_RC_UNKNOWN";
6644}
6645
6646/**
6647 * ice_stat_str - convert status err code to a string
6648 * @stat_err: the status error code to convert
6649 */
6650const char *ice_stat_str(enum ice_status stat_err)
6651{
6652 switch (stat_err) {
6653 case ICE_SUCCESS:
6654 return "OK";
6655 case ICE_ERR_PARAM:
6656 return "ICE_ERR_PARAM";
6657 case ICE_ERR_NOT_IMPL:
6658 return "ICE_ERR_NOT_IMPL";
6659 case ICE_ERR_NOT_READY:
6660 return "ICE_ERR_NOT_READY";
6661 case ICE_ERR_NOT_SUPPORTED:
6662 return "ICE_ERR_NOT_SUPPORTED";
6663 case ICE_ERR_BAD_PTR:
6664 return "ICE_ERR_BAD_PTR";
6665 case ICE_ERR_INVAL_SIZE:
6666 return "ICE_ERR_INVAL_SIZE";
6667 case ICE_ERR_DEVICE_NOT_SUPPORTED:
6668 return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6669 case ICE_ERR_RESET_FAILED:
6670 return "ICE_ERR_RESET_FAILED";
6671 case ICE_ERR_FW_API_VER:
6672 return "ICE_ERR_FW_API_VER";
6673 case ICE_ERR_NO_MEMORY:
6674 return "ICE_ERR_NO_MEMORY";
6675 case ICE_ERR_CFG:
6676 return "ICE_ERR_CFG";
6677 case ICE_ERR_OUT_OF_RANGE:
6678 return "ICE_ERR_OUT_OF_RANGE";
6679 case ICE_ERR_ALREADY_EXISTS:
6680 return "ICE_ERR_ALREADY_EXISTS";
6681 case ICE_ERR_NVM:
6682 return "ICE_ERR_NVM";
6683 case ICE_ERR_NVM_CHECKSUM:
6684 return "ICE_ERR_NVM_CHECKSUM";
6685 case ICE_ERR_BUF_TOO_SHORT:
6686 return "ICE_ERR_BUF_TOO_SHORT";
6687 case ICE_ERR_NVM_BLANK_MODE:
6688 return "ICE_ERR_NVM_BLANK_MODE";
6689 case ICE_ERR_IN_USE:
6690 return "ICE_ERR_IN_USE";
6691 case ICE_ERR_MAX_LIMIT:
6692 return "ICE_ERR_MAX_LIMIT";
6693 case ICE_ERR_RESET_ONGOING:
6694 return "ICE_ERR_RESET_ONGOING";
6695 case ICE_ERR_HW_TABLE:
6696 return "ICE_ERR_HW_TABLE";
6697 case ICE_ERR_DOES_NOT_EXIST:
6698 return "ICE_ERR_DOES_NOT_EXIST";
6699 case ICE_ERR_FW_DDP_MISMATCH:
6700 return "ICE_ERR_FW_DDP_MISMATCH";
6701 case ICE_ERR_AQ_ERROR:
6702 return "ICE_ERR_AQ_ERROR";
6703 case ICE_ERR_AQ_TIMEOUT:
6704 return "ICE_ERR_AQ_TIMEOUT";
6705 case ICE_ERR_AQ_FULL:
6706 return "ICE_ERR_AQ_FULL";
6707 case ICE_ERR_AQ_NO_WORK:
6708 return "ICE_ERR_AQ_NO_WORK";
6709 case ICE_ERR_AQ_EMPTY:
6710 return "ICE_ERR_AQ_EMPTY";
6711 case ICE_ERR_AQ_FW_CRITICAL:
6712 return "ICE_ERR_AQ_FW_CRITICAL";
6713 }
6714
6715 return "ICE_ERR_UNKNOWN";
6716}
6717
6718/**
6719 * ice_set_rss_lut - Set RSS LUT
6720 * @vsi: Pointer to VSI structure
6721 * @lut: Lookup table
6722 * @lut_size: Lookup table size
6723 *
6724 * Returns 0 on success, negative on failure
6725 */
6726int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
6727{
6728 struct ice_aq_get_set_rss_lut_params params = {};
6729 struct ice_hw *hw = &vsi->back->hw;
6730 enum ice_status status;
6731
6732 if (!lut)
6733 return -EINVAL;
6734
6735 params.vsi_handle = vsi->idx;
6736 params.lut_size = lut_size;
6737 params.lut_type = vsi->rss_lut_type;
6738 params.lut = lut;
6739
6740 status = ice_aq_set_rss_lut(hw, ¶ms);
6741 if (status) {
6742 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %s aq_err %s\n",
6743 ice_stat_str(status),
6744 ice_aq_str(hw->adminq.sq_last_status));
6745 return -EIO;
6746 }
6747
6748 return 0;
6749}
6750
6751/**
6752 * ice_set_rss_key - Set RSS key
6753 * @vsi: Pointer to the VSI structure
6754 * @seed: RSS hash seed
6755 *
6756 * Returns 0 on success, negative on failure
6757 */
6758int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
6759{
6760 struct ice_hw *hw = &vsi->back->hw;
6761 enum ice_status status;
6762
6763 if (!seed)
6764 return -EINVAL;
6765
6766 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
6767 if (status) {
6768 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %s aq_err %s\n",
6769 ice_stat_str(status),
6770 ice_aq_str(hw->adminq.sq_last_status));
6771 return -EIO;
6772 }
6773
6774 return 0;
6775}
6776
6777/**
6778 * ice_get_rss_lut - Get RSS LUT
6779 * @vsi: Pointer to VSI structure
6780 * @lut: Buffer to store the lookup table entries
6781 * @lut_size: Size of buffer to store the lookup table entries
6782 *
6783 * Returns 0 on success, negative on failure
6784 */
6785int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
6786{
6787 struct ice_aq_get_set_rss_lut_params params = {};
6788 struct ice_hw *hw = &vsi->back->hw;
6789 enum ice_status status;
6790
6791 if (!lut)
6792 return -EINVAL;
6793
6794 params.vsi_handle = vsi->idx;
6795 params.lut_size = lut_size;
6796 params.lut_type = vsi->rss_lut_type;
6797 params.lut = lut;
6798
6799 status = ice_aq_get_rss_lut(hw, ¶ms);
6800 if (status) {
6801 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %s aq_err %s\n",
6802 ice_stat_str(status),
6803 ice_aq_str(hw->adminq.sq_last_status));
6804 return -EIO;
6805 }
6806
6807 return 0;
6808}
6809
6810/**
6811 * ice_get_rss_key - Get RSS key
6812 * @vsi: Pointer to VSI structure
6813 * @seed: Buffer to store the key in
6814 *
6815 * Returns 0 on success, negative on failure
6816 */
6817int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
6818{
6819 struct ice_hw *hw = &vsi->back->hw;
6820 enum ice_status status;
6821
6822 if (!seed)
6823 return -EINVAL;
6824
6825 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
6826 if (status) {
6827 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %s aq_err %s\n",
6828 ice_stat_str(status),
6829 ice_aq_str(hw->adminq.sq_last_status));
6830 return -EIO;
6831 }
6832
6833 return 0;
6834}
6835
6836/**
6837 * ice_bridge_getlink - Get the hardware bridge mode
6838 * @skb: skb buff
6839 * @pid: process ID
6840 * @seq: RTNL message seq
6841 * @dev: the netdev being configured
6842 * @filter_mask: filter mask passed in
6843 * @nlflags: netlink flags passed in
6844 *
6845 * Return the bridge mode (VEB/VEPA)
6846 */
6847static int
6848ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6849 struct net_device *dev, u32 filter_mask, int nlflags)
6850{
6851 struct ice_netdev_priv *np = netdev_priv(dev);
6852 struct ice_vsi *vsi = np->vsi;
6853 struct ice_pf *pf = vsi->back;
6854 u16 bmode;
6855
6856 bmode = pf->first_sw->bridge_mode;
6857
6858 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6859 filter_mask, NULL);
6860}
6861
6862/**
6863 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6864 * @vsi: Pointer to VSI structure
6865 * @bmode: Hardware bridge mode (VEB/VEPA)
6866 *
6867 * Returns 0 on success, negative on failure
6868 */
6869static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6870{
6871 struct ice_aqc_vsi_props *vsi_props;
6872 struct ice_hw *hw = &vsi->back->hw;
6873 struct ice_vsi_ctx *ctxt;
6874 enum ice_status status;
6875 int ret = 0;
6876
6877 vsi_props = &vsi->info;
6878
6879 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6880 if (!ctxt)
6881 return -ENOMEM;
6882
6883 ctxt->info = vsi->info;
6884
6885 if (bmode == BRIDGE_MODE_VEB)
6886 /* change from VEPA to VEB mode */
6887 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6888 else
6889 /* change from VEB to VEPA mode */
6890 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6891 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6892
6893 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6894 if (status) {
6895 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6896 bmode, ice_stat_str(status),
6897 ice_aq_str(hw->adminq.sq_last_status));
6898 ret = -EIO;
6899 goto out;
6900 }
6901 /* Update sw flags for book keeping */
6902 vsi_props->sw_flags = ctxt->info.sw_flags;
6903
6904out:
6905 kfree(ctxt);
6906 return ret;
6907}
6908
6909/**
6910 * ice_bridge_setlink - Set the hardware bridge mode
6911 * @dev: the netdev being configured
6912 * @nlh: RTNL message
6913 * @flags: bridge setlink flags
6914 * @extack: netlink extended ack
6915 *
6916 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6917 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6918 * not already set for all VSIs connected to this switch. And also update the
6919 * unicast switch filter rules for the corresponding switch of the netdev.
6920 */
6921static int
6922ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6923 u16 __always_unused flags,
6924 struct netlink_ext_ack __always_unused *extack)
6925{
6926 struct ice_netdev_priv *np = netdev_priv(dev);
6927 struct ice_pf *pf = np->vsi->back;
6928 struct nlattr *attr, *br_spec;
6929 struct ice_hw *hw = &pf->hw;
6930 enum ice_status status;
6931 struct ice_sw *pf_sw;
6932 int rem, v, err = 0;
6933
6934 pf_sw = pf->first_sw;
6935 /* find the attribute in the netlink message */
6936 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6937
6938 nla_for_each_nested(attr, br_spec, rem) {
6939 __u16 mode;
6940
6941 if (nla_type(attr) != IFLA_BRIDGE_MODE)
6942 continue;
6943 mode = nla_get_u16(attr);
6944 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6945 return -EINVAL;
6946 /* Continue if bridge mode is not being flipped */
6947 if (mode == pf_sw->bridge_mode)
6948 continue;
6949 /* Iterates through the PF VSI list and update the loopback
6950 * mode of the VSI
6951 */
6952 ice_for_each_vsi(pf, v) {
6953 if (!pf->vsi[v])
6954 continue;
6955 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6956 if (err)
6957 return err;
6958 }
6959
6960 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6961 /* Update the unicast switch filter rules for the corresponding
6962 * switch of the netdev
6963 */
6964 status = ice_update_sw_rule_bridge_mode(hw);
6965 if (status) {
6966 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6967 mode, ice_stat_str(status),
6968 ice_aq_str(hw->adminq.sq_last_status));
6969 /* revert hw->evb_veb */
6970 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6971 return -EIO;
6972 }
6973
6974 pf_sw->bridge_mode = mode;
6975 }
6976
6977 return 0;
6978}
6979
6980/**
6981 * ice_tx_timeout - Respond to a Tx Hang
6982 * @netdev: network interface device structure
6983 * @txqueue: Tx queue
6984 */
6985static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6986{
6987 struct ice_netdev_priv *np = netdev_priv(netdev);
6988 struct ice_ring *tx_ring = NULL;
6989 struct ice_vsi *vsi = np->vsi;
6990 struct ice_pf *pf = vsi->back;
6991 u32 i;
6992
6993 pf->tx_timeout_count++;
6994
6995 /* Check if PFC is enabled for the TC to which the queue belongs
6996 * to. If yes then Tx timeout is not caused by a hung queue, no
6997 * need to reset and rebuild
6998 */
6999 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7000 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7001 txqueue);
7002 return;
7003 }
7004
7005 /* now that we have an index, find the tx_ring struct */
7006 for (i = 0; i < vsi->num_txq; i++)
7007 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7008 if (txqueue == vsi->tx_rings[i]->q_index) {
7009 tx_ring = vsi->tx_rings[i];
7010 break;
7011 }
7012
7013 /* Reset recovery level if enough time has elapsed after last timeout.
7014 * Also ensure no new reset action happens before next timeout period.
7015 */
7016 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7017 pf->tx_timeout_recovery_level = 1;
7018 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7019 netdev->watchdog_timeo)))
7020 return;
7021
7022 if (tx_ring) {
7023 struct ice_hw *hw = &pf->hw;
7024 u32 head, val = 0;
7025
7026 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7027 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7028 /* Read interrupt register */
7029 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7030
7031 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7032 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7033 head, tx_ring->next_to_use, val);
7034 }
7035
7036 pf->tx_timeout_last_recovery = jiffies;
7037 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7038 pf->tx_timeout_recovery_level, txqueue);
7039
7040 switch (pf->tx_timeout_recovery_level) {
7041 case 1:
7042 set_bit(ICE_PFR_REQ, pf->state);
7043 break;
7044 case 2:
7045 set_bit(ICE_CORER_REQ, pf->state);
7046 break;
7047 case 3:
7048 set_bit(ICE_GLOBR_REQ, pf->state);
7049 break;
7050 default:
7051 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7052 set_bit(ICE_DOWN, pf->state);
7053 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7054 set_bit(ICE_SERVICE_DIS, pf->state);
7055 break;
7056 }
7057
7058 ice_service_task_schedule(pf);
7059 pf->tx_timeout_recovery_level++;
7060}
7061
7062/**
7063 * ice_open - Called when a network interface becomes active
7064 * @netdev: network interface device structure
7065 *
7066 * The open entry point is called when a network interface is made
7067 * active by the system (IFF_UP). At this point all resources needed
7068 * for transmit and receive operations are allocated, the interrupt
7069 * handler is registered with the OS, the netdev watchdog is enabled,
7070 * and the stack is notified that the interface is ready.
7071 *
7072 * Returns 0 on success, negative value on failure
7073 */
7074int ice_open(struct net_device *netdev)
7075{
7076 struct ice_netdev_priv *np = netdev_priv(netdev);
7077 struct ice_pf *pf = np->vsi->back;
7078
7079 if (ice_is_reset_in_progress(pf->state)) {
7080 netdev_err(netdev, "can't open net device while reset is in progress");
7081 return -EBUSY;
7082 }
7083
7084 return ice_open_internal(netdev);
7085}
7086
7087/**
7088 * ice_open_internal - Called when a network interface becomes active
7089 * @netdev: network interface device structure
7090 *
7091 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
7092 * handling routine
7093 *
7094 * Returns 0 on success, negative value on failure
7095 */
7096int ice_open_internal(struct net_device *netdev)
7097{
7098 struct ice_netdev_priv *np = netdev_priv(netdev);
7099 struct ice_vsi *vsi = np->vsi;
7100 struct ice_pf *pf = vsi->back;
7101 struct ice_port_info *pi;
7102 enum ice_status status;
7103 int err;
7104
7105 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
7106 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
7107 return -EIO;
7108 }
7109
7110 netif_carrier_off(netdev);
7111
7112 pi = vsi->port_info;
7113 status = ice_update_link_info(pi);
7114 if (status) {
7115 netdev_err(netdev, "Failed to get link info, error %s\n",
7116 ice_stat_str(status));
7117 return -EIO;
7118 }
7119
7120 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err);
7121
7122 /* Set PHY if there is media, otherwise, turn off PHY */
7123 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
7124 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
7125 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
7126 err = ice_init_phy_user_cfg(pi);
7127 if (err) {
7128 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
7129 err);
7130 return err;
7131 }
7132 }
7133
7134 err = ice_configure_phy(vsi);
7135 if (err) {
7136 netdev_err(netdev, "Failed to set physical link up, error %d\n",
7137 err);
7138 return err;
7139 }
7140 } else {
7141 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
7142 ice_set_link(vsi, false);
7143 }
7144
7145 err = ice_vsi_open(vsi);
7146 if (err)
7147 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
7148 vsi->vsi_num, vsi->vsw->sw_id);
7149
7150 /* Update existing tunnels information */
7151 udp_tunnel_get_rx_info(netdev);
7152
7153 return err;
7154}
7155
7156/**
7157 * ice_stop - Disables a network interface
7158 * @netdev: network interface device structure
7159 *
7160 * The stop entry point is called when an interface is de-activated by the OS,
7161 * and the netdevice enters the DOWN state. The hardware is still under the
7162 * driver's control, but the netdev interface is disabled.
7163 *
7164 * Returns success only - not allowed to fail
7165 */
7166int ice_stop(struct net_device *netdev)
7167{
7168 struct ice_netdev_priv *np = netdev_priv(netdev);
7169 struct ice_vsi *vsi = np->vsi;
7170 struct ice_pf *pf = vsi->back;
7171
7172 if (ice_is_reset_in_progress(pf->state)) {
7173 netdev_err(netdev, "can't stop net device while reset is in progress");
7174 return -EBUSY;
7175 }
7176
7177 ice_vsi_close(vsi);
7178
7179 return 0;
7180}
7181
7182/**
7183 * ice_features_check - Validate encapsulated packet conforms to limits
7184 * @skb: skb buffer
7185 * @netdev: This port's netdev
7186 * @features: Offload features that the stack believes apply
7187 */
7188static netdev_features_t
7189ice_features_check(struct sk_buff *skb,
7190 struct net_device __always_unused *netdev,
7191 netdev_features_t features)
7192{
7193 size_t len;
7194
7195 /* No point in doing any of this if neither checksum nor GSO are
7196 * being requested for this frame. We can rule out both by just
7197 * checking for CHECKSUM_PARTIAL
7198 */
7199 if (skb->ip_summed != CHECKSUM_PARTIAL)
7200 return features;
7201
7202 /* We cannot support GSO if the MSS is going to be less than
7203 * 64 bytes. If it is then we need to drop support for GSO.
7204 */
7205 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
7206 features &= ~NETIF_F_GSO_MASK;
7207
7208 len = skb_network_header(skb) - skb->data;
7209 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
7210 goto out_rm_features;
7211
7212 len = skb_transport_header(skb) - skb_network_header(skb);
7213 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
7214 goto out_rm_features;
7215
7216 if (skb->encapsulation) {
7217 len = skb_inner_network_header(skb) - skb_transport_header(skb);
7218 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
7219 goto out_rm_features;
7220
7221 len = skb_inner_transport_header(skb) -
7222 skb_inner_network_header(skb);
7223 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
7224 goto out_rm_features;
7225 }
7226
7227 return features;
7228out_rm_features:
7229 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
7230}
7231
7232static const struct net_device_ops ice_netdev_safe_mode_ops = {
7233 .ndo_open = ice_open,
7234 .ndo_stop = ice_stop,
7235 .ndo_start_xmit = ice_start_xmit,
7236 .ndo_set_mac_address = ice_set_mac_address,
7237 .ndo_validate_addr = eth_validate_addr,
7238 .ndo_change_mtu = ice_change_mtu,
7239 .ndo_get_stats64 = ice_get_stats64,
7240 .ndo_tx_timeout = ice_tx_timeout,
7241 .ndo_bpf = ice_xdp_safe_mode,
7242};
7243
7244static const struct net_device_ops ice_netdev_ops = {
7245 .ndo_open = ice_open,
7246 .ndo_stop = ice_stop,
7247 .ndo_start_xmit = ice_start_xmit,
7248 .ndo_features_check = ice_features_check,
7249 .ndo_set_rx_mode = ice_set_rx_mode,
7250 .ndo_set_mac_address = ice_set_mac_address,
7251 .ndo_validate_addr = eth_validate_addr,
7252 .ndo_change_mtu = ice_change_mtu,
7253 .ndo_get_stats64 = ice_get_stats64,
7254 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
7255 .ndo_do_ioctl = ice_do_ioctl,
7256 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
7257 .ndo_set_vf_mac = ice_set_vf_mac,
7258 .ndo_get_vf_config = ice_get_vf_cfg,
7259 .ndo_set_vf_trust = ice_set_vf_trust,
7260 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
7261 .ndo_set_vf_link_state = ice_set_vf_link_state,
7262 .ndo_get_vf_stats = ice_get_vf_stats,
7263 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
7264 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
7265 .ndo_set_features = ice_set_features,
7266 .ndo_bridge_getlink = ice_bridge_getlink,
7267 .ndo_bridge_setlink = ice_bridge_setlink,
7268 .ndo_fdb_add = ice_fdb_add,
7269 .ndo_fdb_del = ice_fdb_del,
7270#ifdef CONFIG_RFS_ACCEL
7271 .ndo_rx_flow_steer = ice_rx_flow_steer,
7272#endif
7273 .ndo_tx_timeout = ice_tx_timeout,
7274 .ndo_bpf = ice_xdp,
7275 .ndo_xdp_xmit = ice_xdp_xmit,
7276 .ndo_xsk_wakeup = ice_xsk_wakeup,
7277};
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include "ice.h"
9#include "ice_lib.h"
10#include "ice_dcb_lib.h"
11
12#define DRV_VERSION_MAJOR 0
13#define DRV_VERSION_MINOR 8
14#define DRV_VERSION_BUILD 1
15
16#define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \
17 __stringify(DRV_VERSION_MINOR) "." \
18 __stringify(DRV_VERSION_BUILD) "-k"
19#define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
20const char ice_drv_ver[] = DRV_VERSION;
21static const char ice_driver_string[] = DRV_SUMMARY;
22static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
23
24/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
25#define ICE_DDP_PKG_PATH "intel/ice/ddp/"
26#define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
27
28MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
29MODULE_DESCRIPTION(DRV_SUMMARY);
30MODULE_LICENSE("GPL v2");
31MODULE_VERSION(DRV_VERSION);
32MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
33
34static int debug = -1;
35module_param(debug, int, 0644);
36#ifndef CONFIG_DYNAMIC_DEBUG
37MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
38#else
39MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
40#endif /* !CONFIG_DYNAMIC_DEBUG */
41
42static struct workqueue_struct *ice_wq;
43static const struct net_device_ops ice_netdev_safe_mode_ops;
44static const struct net_device_ops ice_netdev_ops;
45
46static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
47
48static void ice_vsi_release_all(struct ice_pf *pf);
49
50/**
51 * ice_get_tx_pending - returns number of Tx descriptors not processed
52 * @ring: the ring of descriptors
53 */
54static u16 ice_get_tx_pending(struct ice_ring *ring)
55{
56 u16 head, tail;
57
58 head = ring->next_to_clean;
59 tail = ring->next_to_use;
60
61 if (head != tail)
62 return (head < tail) ?
63 tail - head : (tail + ring->count - head);
64 return 0;
65}
66
67/**
68 * ice_check_for_hang_subtask - check for and recover hung queues
69 * @pf: pointer to PF struct
70 */
71static void ice_check_for_hang_subtask(struct ice_pf *pf)
72{
73 struct ice_vsi *vsi = NULL;
74 struct ice_hw *hw;
75 unsigned int i;
76 int packets;
77 u32 v;
78
79 ice_for_each_vsi(pf, v)
80 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
81 vsi = pf->vsi[v];
82 break;
83 }
84
85 if (!vsi || test_bit(__ICE_DOWN, vsi->state))
86 return;
87
88 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
89 return;
90
91 hw = &vsi->back->hw;
92
93 for (i = 0; i < vsi->num_txq; i++) {
94 struct ice_ring *tx_ring = vsi->tx_rings[i];
95
96 if (tx_ring && tx_ring->desc) {
97 /* If packet counter has not changed the queue is
98 * likely stalled, so force an interrupt for this
99 * queue.
100 *
101 * prev_pkt would be negative if there was no
102 * pending work.
103 */
104 packets = tx_ring->stats.pkts & INT_MAX;
105 if (tx_ring->tx_stats.prev_pkt == packets) {
106 /* Trigger sw interrupt to revive the queue */
107 ice_trigger_sw_intr(hw, tx_ring->q_vector);
108 continue;
109 }
110
111 /* Memory barrier between read of packet count and call
112 * to ice_get_tx_pending()
113 */
114 smp_rmb();
115 tx_ring->tx_stats.prev_pkt =
116 ice_get_tx_pending(tx_ring) ? packets : -1;
117 }
118 }
119}
120
121/**
122 * ice_init_mac_fltr - Set initial MAC filters
123 * @pf: board private structure
124 *
125 * Set initial set of MAC filters for PF VSI; configure filters for permanent
126 * address and broadcast address. If an error is encountered, netdevice will be
127 * unregistered.
128 */
129static int ice_init_mac_fltr(struct ice_pf *pf)
130{
131 enum ice_status status;
132 u8 broadcast[ETH_ALEN];
133 struct ice_vsi *vsi;
134
135 vsi = ice_get_main_vsi(pf);
136 if (!vsi)
137 return -EINVAL;
138
139 /* To add a MAC filter, first add the MAC to a list and then
140 * pass the list to ice_add_mac.
141 */
142
143 /* Add a unicast MAC filter so the VSI can get its packets */
144 status = ice_vsi_cfg_mac_fltr(vsi, vsi->port_info->mac.perm_addr, true);
145 if (status)
146 goto unregister;
147
148 /* VSI needs to receive broadcast traffic, so add the broadcast
149 * MAC address to the list as well.
150 */
151 eth_broadcast_addr(broadcast);
152 status = ice_vsi_cfg_mac_fltr(vsi, broadcast, true);
153 if (status)
154 goto unregister;
155
156 return 0;
157unregister:
158 /* We aren't useful with no MAC filters, so unregister if we
159 * had an error
160 */
161 if (status && vsi->netdev->reg_state == NETREG_REGISTERED) {
162 dev_err(&pf->pdev->dev,
163 "Could not add MAC filters error %d. Unregistering device\n",
164 status);
165 unregister_netdev(vsi->netdev);
166 free_netdev(vsi->netdev);
167 vsi->netdev = NULL;
168 }
169
170 return -EIO;
171}
172
173/**
174 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
175 * @netdev: the net device on which the sync is happening
176 * @addr: MAC address to sync
177 *
178 * This is a callback function which is called by the in kernel device sync
179 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
180 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
181 * MAC filters from the hardware.
182 */
183static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
184{
185 struct ice_netdev_priv *np = netdev_priv(netdev);
186 struct ice_vsi *vsi = np->vsi;
187
188 if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr))
189 return -EINVAL;
190
191 return 0;
192}
193
194/**
195 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
196 * @netdev: the net device on which the unsync is happening
197 * @addr: MAC address to unsync
198 *
199 * This is a callback function which is called by the in kernel device unsync
200 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
201 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
202 * delete the MAC filters from the hardware.
203 */
204static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
205{
206 struct ice_netdev_priv *np = netdev_priv(netdev);
207 struct ice_vsi *vsi = np->vsi;
208
209 if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr))
210 return -EINVAL;
211
212 return 0;
213}
214
215/**
216 * ice_vsi_fltr_changed - check if filter state changed
217 * @vsi: VSI to be checked
218 *
219 * returns true if filter state has changed, false otherwise.
220 */
221static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
222{
223 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
224 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
225 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
226}
227
228/**
229 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
230 * @vsi: the VSI being configured
231 * @promisc_m: mask of promiscuous config bits
232 * @set_promisc: enable or disable promisc flag request
233 *
234 */
235static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
236{
237 struct ice_hw *hw = &vsi->back->hw;
238 enum ice_status status = 0;
239
240 if (vsi->type != ICE_VSI_PF)
241 return 0;
242
243 if (vsi->vlan_ena) {
244 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
245 set_promisc);
246 } else {
247 if (set_promisc)
248 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
249 0);
250 else
251 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
252 0);
253 }
254
255 if (status)
256 return -EIO;
257
258 return 0;
259}
260
261/**
262 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
263 * @vsi: ptr to the VSI
264 *
265 * Push any outstanding VSI filter changes through the AdminQ.
266 */
267static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
268{
269 struct device *dev = &vsi->back->pdev->dev;
270 struct net_device *netdev = vsi->netdev;
271 bool promisc_forced_on = false;
272 struct ice_pf *pf = vsi->back;
273 struct ice_hw *hw = &pf->hw;
274 enum ice_status status = 0;
275 u32 changed_flags = 0;
276 u8 promisc_m;
277 int err = 0;
278
279 if (!vsi->netdev)
280 return -EINVAL;
281
282 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
283 usleep_range(1000, 2000);
284
285 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
286 vsi->current_netdev_flags = vsi->netdev->flags;
287
288 INIT_LIST_HEAD(&vsi->tmp_sync_list);
289 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
290
291 if (ice_vsi_fltr_changed(vsi)) {
292 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
293 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
294 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
295
296 /* grab the netdev's addr_list_lock */
297 netif_addr_lock_bh(netdev);
298 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
299 ice_add_mac_to_unsync_list);
300 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
301 ice_add_mac_to_unsync_list);
302 /* our temp lists are populated. release lock */
303 netif_addr_unlock_bh(netdev);
304 }
305
306 /* Remove MAC addresses in the unsync list */
307 status = ice_remove_mac(hw, &vsi->tmp_unsync_list);
308 ice_free_fltr_list(dev, &vsi->tmp_unsync_list);
309 if (status) {
310 netdev_err(netdev, "Failed to delete MAC filters\n");
311 /* if we failed because of alloc failures, just bail */
312 if (status == ICE_ERR_NO_MEMORY) {
313 err = -ENOMEM;
314 goto out;
315 }
316 }
317
318 /* Add MAC addresses in the sync list */
319 status = ice_add_mac(hw, &vsi->tmp_sync_list);
320 ice_free_fltr_list(dev, &vsi->tmp_sync_list);
321 /* If filter is added successfully or already exists, do not go into
322 * 'if' condition and report it as error. Instead continue processing
323 * rest of the function.
324 */
325 if (status && status != ICE_ERR_ALREADY_EXISTS) {
326 netdev_err(netdev, "Failed to add MAC filters\n");
327 /* If there is no more space for new umac filters, VSI
328 * should go into promiscuous mode. There should be some
329 * space reserved for promiscuous filters.
330 */
331 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
332 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
333 vsi->state)) {
334 promisc_forced_on = true;
335 netdev_warn(netdev,
336 "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
337 vsi->vsi_num);
338 } else {
339 err = -EIO;
340 goto out;
341 }
342 }
343 /* check for changes in promiscuous modes */
344 if (changed_flags & IFF_ALLMULTI) {
345 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
346 if (vsi->vlan_ena)
347 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
348 else
349 promisc_m = ICE_MCAST_PROMISC_BITS;
350
351 err = ice_cfg_promisc(vsi, promisc_m, true);
352 if (err) {
353 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
354 vsi->vsi_num);
355 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
356 goto out_promisc;
357 }
358 } else if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
359 if (vsi->vlan_ena)
360 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
361 else
362 promisc_m = ICE_MCAST_PROMISC_BITS;
363
364 err = ice_cfg_promisc(vsi, promisc_m, false);
365 if (err) {
366 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
367 vsi->vsi_num);
368 vsi->current_netdev_flags |= IFF_ALLMULTI;
369 goto out_promisc;
370 }
371 }
372 }
373
374 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
375 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
376 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
377 if (vsi->current_netdev_flags & IFF_PROMISC) {
378 /* Apply Rx filter rule to get traffic from wire */
379 status = ice_cfg_dflt_vsi(hw, vsi->idx, true,
380 ICE_FLTR_RX);
381 if (status) {
382 netdev_err(netdev, "Error setting default VSI %i Rx rule\n",
383 vsi->vsi_num);
384 vsi->current_netdev_flags &= ~IFF_PROMISC;
385 err = -EIO;
386 goto out_promisc;
387 }
388 } else {
389 /* Clear Rx filter to remove traffic from wire */
390 status = ice_cfg_dflt_vsi(hw, vsi->idx, false,
391 ICE_FLTR_RX);
392 if (status) {
393 netdev_err(netdev, "Error clearing default VSI %i Rx rule\n",
394 vsi->vsi_num);
395 vsi->current_netdev_flags |= IFF_PROMISC;
396 err = -EIO;
397 goto out_promisc;
398 }
399 }
400 }
401 goto exit;
402
403out_promisc:
404 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
405 goto exit;
406out:
407 /* if something went wrong then set the changed flag so we try again */
408 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
409 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
410exit:
411 clear_bit(__ICE_CFG_BUSY, vsi->state);
412 return err;
413}
414
415/**
416 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
417 * @pf: board private structure
418 */
419static void ice_sync_fltr_subtask(struct ice_pf *pf)
420{
421 int v;
422
423 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
424 return;
425
426 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
427
428 ice_for_each_vsi(pf, v)
429 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
430 ice_vsi_sync_fltr(pf->vsi[v])) {
431 /* come back and try again later */
432 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
433 break;
434 }
435}
436
437/**
438 * ice_dis_vsi - pause a VSI
439 * @vsi: the VSI being paused
440 * @locked: is the rtnl_lock already held
441 */
442static void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
443{
444 if (test_bit(__ICE_DOWN, vsi->state))
445 return;
446
447 set_bit(__ICE_NEEDS_RESTART, vsi->state);
448
449 if (vsi->type == ICE_VSI_PF && vsi->netdev) {
450 if (netif_running(vsi->netdev)) {
451 if (!locked)
452 rtnl_lock();
453
454 ice_stop(vsi->netdev);
455
456 if (!locked)
457 rtnl_unlock();
458 } else {
459 ice_vsi_close(vsi);
460 }
461 }
462}
463
464/**
465 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
466 * @pf: the PF
467 * @locked: is the rtnl_lock already held
468 */
469#ifdef CONFIG_DCB
470void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
471#else
472static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
473#endif /* CONFIG_DCB */
474{
475 int v;
476
477 ice_for_each_vsi(pf, v)
478 if (pf->vsi[v])
479 ice_dis_vsi(pf->vsi[v], locked);
480}
481
482/**
483 * ice_prepare_for_reset - prep for the core to reset
484 * @pf: board private structure
485 *
486 * Inform or close all dependent features in prep for reset.
487 */
488static void
489ice_prepare_for_reset(struct ice_pf *pf)
490{
491 struct ice_hw *hw = &pf->hw;
492 int i;
493
494 /* already prepared for reset */
495 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
496 return;
497
498 /* Notify VFs of impending reset */
499 if (ice_check_sq_alive(hw, &hw->mailboxq))
500 ice_vc_notify_reset(pf);
501
502 /* Disable VFs until reset is completed */
503 for (i = 0; i < pf->num_alloc_vfs; i++)
504 ice_set_vf_state_qs_dis(&pf->vf[i]);
505
506 /* clear SW filtering DB */
507 ice_clear_hw_tbls(hw);
508 /* disable the VSIs and their queues that are not already DOWN */
509 ice_pf_dis_all_vsi(pf, false);
510
511 if (hw->port_info)
512 ice_sched_clear_port(hw->port_info);
513
514 ice_shutdown_all_ctrlq(hw);
515
516 set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
517}
518
519/**
520 * ice_do_reset - Initiate one of many types of resets
521 * @pf: board private structure
522 * @reset_type: reset type requested
523 * before this function was called.
524 */
525static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
526{
527 struct device *dev = &pf->pdev->dev;
528 struct ice_hw *hw = &pf->hw;
529
530 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
531 WARN_ON(in_interrupt());
532
533 ice_prepare_for_reset(pf);
534
535 /* trigger the reset */
536 if (ice_reset(hw, reset_type)) {
537 dev_err(dev, "reset %d failed\n", reset_type);
538 set_bit(__ICE_RESET_FAILED, pf->state);
539 clear_bit(__ICE_RESET_OICR_RECV, pf->state);
540 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
541 clear_bit(__ICE_PFR_REQ, pf->state);
542 clear_bit(__ICE_CORER_REQ, pf->state);
543 clear_bit(__ICE_GLOBR_REQ, pf->state);
544 return;
545 }
546
547 /* PFR is a bit of a special case because it doesn't result in an OICR
548 * interrupt. So for PFR, rebuild after the reset and clear the reset-
549 * associated state bits.
550 */
551 if (reset_type == ICE_RESET_PFR) {
552 pf->pfr_count++;
553 ice_rebuild(pf, reset_type);
554 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
555 clear_bit(__ICE_PFR_REQ, pf->state);
556 ice_reset_all_vfs(pf, true);
557 }
558}
559
560/**
561 * ice_reset_subtask - Set up for resetting the device and driver
562 * @pf: board private structure
563 */
564static void ice_reset_subtask(struct ice_pf *pf)
565{
566 enum ice_reset_req reset_type = ICE_RESET_INVAL;
567
568 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
569 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
570 * of reset is pending and sets bits in pf->state indicating the reset
571 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
572 * prepare for pending reset if not already (for PF software-initiated
573 * global resets the software should already be prepared for it as
574 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
575 * by firmware or software on other PFs, that bit is not set so prepare
576 * for the reset now), poll for reset done, rebuild and return.
577 */
578 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
579 /* Perform the largest reset requested */
580 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
581 reset_type = ICE_RESET_CORER;
582 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
583 reset_type = ICE_RESET_GLOBR;
584 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
585 reset_type = ICE_RESET_EMPR;
586 /* return if no valid reset type requested */
587 if (reset_type == ICE_RESET_INVAL)
588 return;
589 ice_prepare_for_reset(pf);
590
591 /* make sure we are ready to rebuild */
592 if (ice_check_reset(&pf->hw)) {
593 set_bit(__ICE_RESET_FAILED, pf->state);
594 } else {
595 /* done with reset. start rebuild */
596 pf->hw.reset_ongoing = false;
597 ice_rebuild(pf, reset_type);
598 /* clear bit to resume normal operations, but
599 * ICE_NEEDS_RESTART bit is set in case rebuild failed
600 */
601 clear_bit(__ICE_RESET_OICR_RECV, pf->state);
602 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
603 clear_bit(__ICE_PFR_REQ, pf->state);
604 clear_bit(__ICE_CORER_REQ, pf->state);
605 clear_bit(__ICE_GLOBR_REQ, pf->state);
606 ice_reset_all_vfs(pf, true);
607 }
608
609 return;
610 }
611
612 /* No pending resets to finish processing. Check for new resets */
613 if (test_bit(__ICE_PFR_REQ, pf->state))
614 reset_type = ICE_RESET_PFR;
615 if (test_bit(__ICE_CORER_REQ, pf->state))
616 reset_type = ICE_RESET_CORER;
617 if (test_bit(__ICE_GLOBR_REQ, pf->state))
618 reset_type = ICE_RESET_GLOBR;
619 /* If no valid reset type requested just return */
620 if (reset_type == ICE_RESET_INVAL)
621 return;
622
623 /* reset if not already down or busy */
624 if (!test_bit(__ICE_DOWN, pf->state) &&
625 !test_bit(__ICE_CFG_BUSY, pf->state)) {
626 ice_do_reset(pf, reset_type);
627 }
628}
629
630/**
631 * ice_print_topo_conflict - print topology conflict message
632 * @vsi: the VSI whose topology status is being checked
633 */
634static void ice_print_topo_conflict(struct ice_vsi *vsi)
635{
636 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
637 case ICE_AQ_LINK_TOPO_CONFLICT:
638 case ICE_AQ_LINK_MEDIA_CONFLICT:
639 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
640 break;
641 default:
642 break;
643 }
644}
645
646/**
647 * ice_print_link_msg - print link up or down message
648 * @vsi: the VSI whose link status is being queried
649 * @isup: boolean for if the link is now up or down
650 */
651void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
652{
653 struct ice_aqc_get_phy_caps_data *caps;
654 enum ice_status status;
655 const char *fec_req;
656 const char *speed;
657 const char *fec;
658 const char *fc;
659 const char *an;
660
661 if (!vsi)
662 return;
663
664 if (vsi->current_isup == isup)
665 return;
666
667 vsi->current_isup = isup;
668
669 if (!isup) {
670 netdev_info(vsi->netdev, "NIC Link is Down\n");
671 return;
672 }
673
674 switch (vsi->port_info->phy.link_info.link_speed) {
675 case ICE_AQ_LINK_SPEED_100GB:
676 speed = "100 G";
677 break;
678 case ICE_AQ_LINK_SPEED_50GB:
679 speed = "50 G";
680 break;
681 case ICE_AQ_LINK_SPEED_40GB:
682 speed = "40 G";
683 break;
684 case ICE_AQ_LINK_SPEED_25GB:
685 speed = "25 G";
686 break;
687 case ICE_AQ_LINK_SPEED_20GB:
688 speed = "20 G";
689 break;
690 case ICE_AQ_LINK_SPEED_10GB:
691 speed = "10 G";
692 break;
693 case ICE_AQ_LINK_SPEED_5GB:
694 speed = "5 G";
695 break;
696 case ICE_AQ_LINK_SPEED_2500MB:
697 speed = "2.5 G";
698 break;
699 case ICE_AQ_LINK_SPEED_1000MB:
700 speed = "1 G";
701 break;
702 case ICE_AQ_LINK_SPEED_100MB:
703 speed = "100 M";
704 break;
705 default:
706 speed = "Unknown";
707 break;
708 }
709
710 switch (vsi->port_info->fc.current_mode) {
711 case ICE_FC_FULL:
712 fc = "Rx/Tx";
713 break;
714 case ICE_FC_TX_PAUSE:
715 fc = "Tx";
716 break;
717 case ICE_FC_RX_PAUSE:
718 fc = "Rx";
719 break;
720 case ICE_FC_NONE:
721 fc = "None";
722 break;
723 default:
724 fc = "Unknown";
725 break;
726 }
727
728 /* Get FEC mode based on negotiated link info */
729 switch (vsi->port_info->phy.link_info.fec_info) {
730 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
731 /* fall through */
732 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
733 fec = "RS-FEC";
734 break;
735 case ICE_AQ_LINK_25G_KR_FEC_EN:
736 fec = "FC-FEC/BASE-R";
737 break;
738 default:
739 fec = "NONE";
740 break;
741 }
742
743 /* check if autoneg completed, might be false due to not supported */
744 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
745 an = "True";
746 else
747 an = "False";
748
749 /* Get FEC mode requested based on PHY caps last SW configuration */
750 caps = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*caps), GFP_KERNEL);
751 if (!caps) {
752 fec_req = "Unknown";
753 goto done;
754 }
755
756 status = ice_aq_get_phy_caps(vsi->port_info, false,
757 ICE_AQC_REPORT_SW_CFG, caps, NULL);
758 if (status)
759 netdev_info(vsi->netdev, "Get phy capability failed.\n");
760
761 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
762 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
763 fec_req = "RS-FEC";
764 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
765 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
766 fec_req = "FC-FEC/BASE-R";
767 else
768 fec_req = "NONE";
769
770 devm_kfree(&vsi->back->pdev->dev, caps);
771
772done:
773 netdev_info(vsi->netdev, "NIC Link is up %sbps, Requested FEC: %s, FEC: %s, Autoneg: %s, Flow Control: %s\n",
774 speed, fec_req, fec, an, fc);
775 ice_print_topo_conflict(vsi);
776}
777
778/**
779 * ice_vsi_link_event - update the VSI's netdev
780 * @vsi: the VSI on which the link event occurred
781 * @link_up: whether or not the VSI needs to be set up or down
782 */
783static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
784{
785 if (!vsi)
786 return;
787
788 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
789 return;
790
791 if (vsi->type == ICE_VSI_PF) {
792 if (link_up == netif_carrier_ok(vsi->netdev))
793 return;
794
795 if (link_up) {
796 netif_carrier_on(vsi->netdev);
797 netif_tx_wake_all_queues(vsi->netdev);
798 } else {
799 netif_carrier_off(vsi->netdev);
800 netif_tx_stop_all_queues(vsi->netdev);
801 }
802 }
803}
804
805/**
806 * ice_link_event - process the link event
807 * @pf: PF that the link event is associated with
808 * @pi: port_info for the port that the link event is associated with
809 * @link_up: true if the physical link is up and false if it is down
810 * @link_speed: current link speed received from the link event
811 *
812 * Returns 0 on success and negative on failure
813 */
814static int
815ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
816 u16 link_speed)
817{
818 struct ice_phy_info *phy_info;
819 struct ice_vsi *vsi;
820 u16 old_link_speed;
821 bool old_link;
822 int result;
823
824 phy_info = &pi->phy;
825 phy_info->link_info_old = phy_info->link_info;
826
827 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
828 old_link_speed = phy_info->link_info_old.link_speed;
829
830 /* update the link info structures and re-enable link events,
831 * don't bail on failure due to other book keeping needed
832 */
833 result = ice_update_link_info(pi);
834 if (result)
835 dev_dbg(&pf->pdev->dev,
836 "Failed to update link status and re-enable link events for port %d\n",
837 pi->lport);
838
839 /* if the old link up/down and speed is the same as the new */
840 if (link_up == old_link && link_speed == old_link_speed)
841 return result;
842
843 vsi = ice_get_main_vsi(pf);
844 if (!vsi || !vsi->port_info)
845 return -EINVAL;
846
847 /* turn off PHY if media was removed */
848 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
849 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
850 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
851
852 result = ice_aq_set_link_restart_an(pi, false, NULL);
853 if (result) {
854 dev_dbg(&pf->pdev->dev,
855 "Failed to set link down, VSI %d error %d\n",
856 vsi->vsi_num, result);
857 return result;
858 }
859 }
860
861 ice_vsi_link_event(vsi, link_up);
862 ice_print_link_msg(vsi, link_up);
863
864 if (pf->num_alloc_vfs)
865 ice_vc_notify_link_state(pf);
866
867 return result;
868}
869
870/**
871 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
872 * @pf: board private structure
873 */
874static void ice_watchdog_subtask(struct ice_pf *pf)
875{
876 int i;
877
878 /* if interface is down do nothing */
879 if (test_bit(__ICE_DOWN, pf->state) ||
880 test_bit(__ICE_CFG_BUSY, pf->state))
881 return;
882
883 /* make sure we don't do these things too often */
884 if (time_before(jiffies,
885 pf->serv_tmr_prev + pf->serv_tmr_period))
886 return;
887
888 pf->serv_tmr_prev = jiffies;
889
890 /* Update the stats for active netdevs so the network stack
891 * can look at updated numbers whenever it cares to
892 */
893 ice_update_pf_stats(pf);
894 ice_for_each_vsi(pf, i)
895 if (pf->vsi[i] && pf->vsi[i]->netdev)
896 ice_update_vsi_stats(pf->vsi[i]);
897}
898
899/**
900 * ice_init_link_events - enable/initialize link events
901 * @pi: pointer to the port_info instance
902 *
903 * Returns -EIO on failure, 0 on success
904 */
905static int ice_init_link_events(struct ice_port_info *pi)
906{
907 u16 mask;
908
909 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
910 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
911
912 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
913 dev_dbg(ice_hw_to_dev(pi->hw),
914 "Failed to set link event mask for port %d\n",
915 pi->lport);
916 return -EIO;
917 }
918
919 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
920 dev_dbg(ice_hw_to_dev(pi->hw),
921 "Failed to enable link events for port %d\n",
922 pi->lport);
923 return -EIO;
924 }
925
926 return 0;
927}
928
929/**
930 * ice_handle_link_event - handle link event via ARQ
931 * @pf: PF that the link event is associated with
932 * @event: event structure containing link status info
933 */
934static int
935ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
936{
937 struct ice_aqc_get_link_status_data *link_data;
938 struct ice_port_info *port_info;
939 int status;
940
941 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
942 port_info = pf->hw.port_info;
943 if (!port_info)
944 return -EINVAL;
945
946 status = ice_link_event(pf, port_info,
947 !!(link_data->link_info & ICE_AQ_LINK_UP),
948 le16_to_cpu(link_data->link_speed));
949 if (status)
950 dev_dbg(&pf->pdev->dev,
951 "Could not process link event, error %d\n", status);
952
953 return status;
954}
955
956/**
957 * __ice_clean_ctrlq - helper function to clean controlq rings
958 * @pf: ptr to struct ice_pf
959 * @q_type: specific Control queue type
960 */
961static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
962{
963 struct ice_rq_event_info event;
964 struct ice_hw *hw = &pf->hw;
965 struct ice_ctl_q_info *cq;
966 u16 pending, i = 0;
967 const char *qtype;
968 u32 oldval, val;
969
970 /* Do not clean control queue if/when PF reset fails */
971 if (test_bit(__ICE_RESET_FAILED, pf->state))
972 return 0;
973
974 switch (q_type) {
975 case ICE_CTL_Q_ADMIN:
976 cq = &hw->adminq;
977 qtype = "Admin";
978 break;
979 case ICE_CTL_Q_MAILBOX:
980 cq = &hw->mailboxq;
981 qtype = "Mailbox";
982 break;
983 default:
984 dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n",
985 q_type);
986 return 0;
987 }
988
989 /* check for error indications - PF_xx_AxQLEN register layout for
990 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
991 */
992 val = rd32(hw, cq->rq.len);
993 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
994 PF_FW_ARQLEN_ARQCRIT_M)) {
995 oldval = val;
996 if (val & PF_FW_ARQLEN_ARQVFE_M)
997 dev_dbg(&pf->pdev->dev,
998 "%s Receive Queue VF Error detected\n", qtype);
999 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1000 dev_dbg(&pf->pdev->dev,
1001 "%s Receive Queue Overflow Error detected\n",
1002 qtype);
1003 }
1004 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1005 dev_dbg(&pf->pdev->dev,
1006 "%s Receive Queue Critical Error detected\n",
1007 qtype);
1008 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1009 PF_FW_ARQLEN_ARQCRIT_M);
1010 if (oldval != val)
1011 wr32(hw, cq->rq.len, val);
1012 }
1013
1014 val = rd32(hw, cq->sq.len);
1015 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1016 PF_FW_ATQLEN_ATQCRIT_M)) {
1017 oldval = val;
1018 if (val & PF_FW_ATQLEN_ATQVFE_M)
1019 dev_dbg(&pf->pdev->dev,
1020 "%s Send Queue VF Error detected\n", qtype);
1021 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1022 dev_dbg(&pf->pdev->dev,
1023 "%s Send Queue Overflow Error detected\n",
1024 qtype);
1025 }
1026 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1027 dev_dbg(&pf->pdev->dev,
1028 "%s Send Queue Critical Error detected\n",
1029 qtype);
1030 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1031 PF_FW_ATQLEN_ATQCRIT_M);
1032 if (oldval != val)
1033 wr32(hw, cq->sq.len, val);
1034 }
1035
1036 event.buf_len = cq->rq_buf_size;
1037 event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len,
1038 GFP_KERNEL);
1039 if (!event.msg_buf)
1040 return 0;
1041
1042 do {
1043 enum ice_status ret;
1044 u16 opcode;
1045
1046 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1047 if (ret == ICE_ERR_AQ_NO_WORK)
1048 break;
1049 if (ret) {
1050 dev_err(&pf->pdev->dev,
1051 "%s Receive Queue event error %d\n", qtype,
1052 ret);
1053 break;
1054 }
1055
1056 opcode = le16_to_cpu(event.desc.opcode);
1057
1058 switch (opcode) {
1059 case ice_aqc_opc_get_link_status:
1060 if (ice_handle_link_event(pf, &event))
1061 dev_err(&pf->pdev->dev,
1062 "Could not handle link event\n");
1063 break;
1064 case ice_mbx_opc_send_msg_to_pf:
1065 ice_vc_process_vf_msg(pf, &event);
1066 break;
1067 case ice_aqc_opc_fw_logging:
1068 ice_output_fw_log(hw, &event.desc, event.msg_buf);
1069 break;
1070 case ice_aqc_opc_lldp_set_mib_change:
1071 ice_dcb_process_lldp_set_mib_change(pf, &event);
1072 break;
1073 default:
1074 dev_dbg(&pf->pdev->dev,
1075 "%s Receive Queue unknown event 0x%04x ignored\n",
1076 qtype, opcode);
1077 break;
1078 }
1079 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1080
1081 devm_kfree(&pf->pdev->dev, event.msg_buf);
1082
1083 return pending && (i == ICE_DFLT_IRQ_WORK);
1084}
1085
1086/**
1087 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1088 * @hw: pointer to hardware info
1089 * @cq: control queue information
1090 *
1091 * returns true if there are pending messages in a queue, false if there aren't
1092 */
1093static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1094{
1095 u16 ntu;
1096
1097 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1098 return cq->rq.next_to_clean != ntu;
1099}
1100
1101/**
1102 * ice_clean_adminq_subtask - clean the AdminQ rings
1103 * @pf: board private structure
1104 */
1105static void ice_clean_adminq_subtask(struct ice_pf *pf)
1106{
1107 struct ice_hw *hw = &pf->hw;
1108
1109 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1110 return;
1111
1112 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1113 return;
1114
1115 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1116
1117 /* There might be a situation where new messages arrive to a control
1118 * queue between processing the last message and clearing the
1119 * EVENT_PENDING bit. So before exiting, check queue head again (using
1120 * ice_ctrlq_pending) and process new messages if any.
1121 */
1122 if (ice_ctrlq_pending(hw, &hw->adminq))
1123 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1124
1125 ice_flush(hw);
1126}
1127
1128/**
1129 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1130 * @pf: board private structure
1131 */
1132static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1133{
1134 struct ice_hw *hw = &pf->hw;
1135
1136 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1137 return;
1138
1139 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1140 return;
1141
1142 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1143
1144 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1145 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1146
1147 ice_flush(hw);
1148}
1149
1150/**
1151 * ice_service_task_schedule - schedule the service task to wake up
1152 * @pf: board private structure
1153 *
1154 * If not already scheduled, this puts the task into the work queue.
1155 */
1156static void ice_service_task_schedule(struct ice_pf *pf)
1157{
1158 if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1159 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1160 !test_bit(__ICE_NEEDS_RESTART, pf->state))
1161 queue_work(ice_wq, &pf->serv_task);
1162}
1163
1164/**
1165 * ice_service_task_complete - finish up the service task
1166 * @pf: board private structure
1167 */
1168static void ice_service_task_complete(struct ice_pf *pf)
1169{
1170 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1171
1172 /* force memory (pf->state) to sync before next service task */
1173 smp_mb__before_atomic();
1174 clear_bit(__ICE_SERVICE_SCHED, pf->state);
1175}
1176
1177/**
1178 * ice_service_task_stop - stop service task and cancel works
1179 * @pf: board private structure
1180 */
1181static void ice_service_task_stop(struct ice_pf *pf)
1182{
1183 set_bit(__ICE_SERVICE_DIS, pf->state);
1184
1185 if (pf->serv_tmr.function)
1186 del_timer_sync(&pf->serv_tmr);
1187 if (pf->serv_task.func)
1188 cancel_work_sync(&pf->serv_task);
1189
1190 clear_bit(__ICE_SERVICE_SCHED, pf->state);
1191}
1192
1193/**
1194 * ice_service_task_restart - restart service task and schedule works
1195 * @pf: board private structure
1196 *
1197 * This function is needed for suspend and resume works (e.g WoL scenario)
1198 */
1199static void ice_service_task_restart(struct ice_pf *pf)
1200{
1201 clear_bit(__ICE_SERVICE_DIS, pf->state);
1202 ice_service_task_schedule(pf);
1203}
1204
1205/**
1206 * ice_service_timer - timer callback to schedule service task
1207 * @t: pointer to timer_list
1208 */
1209static void ice_service_timer(struct timer_list *t)
1210{
1211 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1212
1213 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1214 ice_service_task_schedule(pf);
1215}
1216
1217/**
1218 * ice_handle_mdd_event - handle malicious driver detect event
1219 * @pf: pointer to the PF structure
1220 *
1221 * Called from service task. OICR interrupt handler indicates MDD event
1222 */
1223static void ice_handle_mdd_event(struct ice_pf *pf)
1224{
1225 struct ice_hw *hw = &pf->hw;
1226 bool mdd_detected = false;
1227 u32 reg;
1228 int i;
1229
1230 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state))
1231 return;
1232
1233 /* find what triggered the MDD event */
1234 reg = rd32(hw, GL_MDET_TX_PQM);
1235 if (reg & GL_MDET_TX_PQM_VALID_M) {
1236 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1237 GL_MDET_TX_PQM_PF_NUM_S;
1238 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1239 GL_MDET_TX_PQM_VF_NUM_S;
1240 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1241 GL_MDET_TX_PQM_MAL_TYPE_S;
1242 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1243 GL_MDET_TX_PQM_QNUM_S);
1244
1245 if (netif_msg_tx_err(pf))
1246 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1247 event, queue, pf_num, vf_num);
1248 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1249 mdd_detected = true;
1250 }
1251
1252 reg = rd32(hw, GL_MDET_TX_TCLAN);
1253 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1254 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1255 GL_MDET_TX_TCLAN_PF_NUM_S;
1256 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1257 GL_MDET_TX_TCLAN_VF_NUM_S;
1258 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1259 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1260 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1261 GL_MDET_TX_TCLAN_QNUM_S);
1262
1263 if (netif_msg_rx_err(pf))
1264 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1265 event, queue, pf_num, vf_num);
1266 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1267 mdd_detected = true;
1268 }
1269
1270 reg = rd32(hw, GL_MDET_RX);
1271 if (reg & GL_MDET_RX_VALID_M) {
1272 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1273 GL_MDET_RX_PF_NUM_S;
1274 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1275 GL_MDET_RX_VF_NUM_S;
1276 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1277 GL_MDET_RX_MAL_TYPE_S;
1278 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1279 GL_MDET_RX_QNUM_S);
1280
1281 if (netif_msg_rx_err(pf))
1282 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1283 event, queue, pf_num, vf_num);
1284 wr32(hw, GL_MDET_RX, 0xffffffff);
1285 mdd_detected = true;
1286 }
1287
1288 if (mdd_detected) {
1289 bool pf_mdd_detected = false;
1290
1291 reg = rd32(hw, PF_MDET_TX_PQM);
1292 if (reg & PF_MDET_TX_PQM_VALID_M) {
1293 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1294 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
1295 pf_mdd_detected = true;
1296 }
1297
1298 reg = rd32(hw, PF_MDET_TX_TCLAN);
1299 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1300 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1301 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
1302 pf_mdd_detected = true;
1303 }
1304
1305 reg = rd32(hw, PF_MDET_RX);
1306 if (reg & PF_MDET_RX_VALID_M) {
1307 wr32(hw, PF_MDET_RX, 0xFFFF);
1308 dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n");
1309 pf_mdd_detected = true;
1310 }
1311 /* Queue belongs to the PF initiate a reset */
1312 if (pf_mdd_detected) {
1313 set_bit(__ICE_NEEDS_RESTART, pf->state);
1314 ice_service_task_schedule(pf);
1315 }
1316 }
1317
1318 /* check to see if one of the VFs caused the MDD */
1319 for (i = 0; i < pf->num_alloc_vfs; i++) {
1320 struct ice_vf *vf = &pf->vf[i];
1321
1322 bool vf_mdd_detected = false;
1323
1324 reg = rd32(hw, VP_MDET_TX_PQM(i));
1325 if (reg & VP_MDET_TX_PQM_VALID_M) {
1326 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1327 vf_mdd_detected = true;
1328 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
1329 i);
1330 }
1331
1332 reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1333 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1334 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1335 vf_mdd_detected = true;
1336 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
1337 i);
1338 }
1339
1340 reg = rd32(hw, VP_MDET_TX_TDPU(i));
1341 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1342 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1343 vf_mdd_detected = true;
1344 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
1345 i);
1346 }
1347
1348 reg = rd32(hw, VP_MDET_RX(i));
1349 if (reg & VP_MDET_RX_VALID_M) {
1350 wr32(hw, VP_MDET_RX(i), 0xFFFF);
1351 vf_mdd_detected = true;
1352 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n",
1353 i);
1354 }
1355
1356 if (vf_mdd_detected) {
1357 vf->num_mdd_events++;
1358 if (vf->num_mdd_events &&
1359 vf->num_mdd_events <= ICE_MDD_EVENTS_THRESHOLD)
1360 dev_info(&pf->pdev->dev,
1361 "VF %d has had %llu MDD events since last boot, Admin might need to reload AVF driver with this number of events\n",
1362 i, vf->num_mdd_events);
1363 }
1364 }
1365}
1366
1367/**
1368 * ice_force_phys_link_state - Force the physical link state
1369 * @vsi: VSI to force the physical link state to up/down
1370 * @link_up: true/false indicates to set the physical link to up/down
1371 *
1372 * Force the physical link state by getting the current PHY capabilities from
1373 * hardware and setting the PHY config based on the determined capabilities. If
1374 * link changes a link event will be triggered because both the Enable Automatic
1375 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1376 *
1377 * Returns 0 on success, negative on failure
1378 */
1379static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1380{
1381 struct ice_aqc_get_phy_caps_data *pcaps;
1382 struct ice_aqc_set_phy_cfg_data *cfg;
1383 struct ice_port_info *pi;
1384 struct device *dev;
1385 int retcode;
1386
1387 if (!vsi || !vsi->port_info || !vsi->back)
1388 return -EINVAL;
1389 if (vsi->type != ICE_VSI_PF)
1390 return 0;
1391
1392 dev = &vsi->back->pdev->dev;
1393
1394 pi = vsi->port_info;
1395
1396 pcaps = devm_kzalloc(dev, sizeof(*pcaps), GFP_KERNEL);
1397 if (!pcaps)
1398 return -ENOMEM;
1399
1400 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1401 NULL);
1402 if (retcode) {
1403 dev_err(dev,
1404 "Failed to get phy capabilities, VSI %d error %d\n",
1405 vsi->vsi_num, retcode);
1406 retcode = -EIO;
1407 goto out;
1408 }
1409
1410 /* No change in link */
1411 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1412 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1413 goto out;
1414
1415 cfg = devm_kzalloc(dev, sizeof(*cfg), GFP_KERNEL);
1416 if (!cfg) {
1417 retcode = -ENOMEM;
1418 goto out;
1419 }
1420
1421 cfg->phy_type_low = pcaps->phy_type_low;
1422 cfg->phy_type_high = pcaps->phy_type_high;
1423 cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1424 cfg->low_power_ctrl = pcaps->low_power_ctrl;
1425 cfg->eee_cap = pcaps->eee_cap;
1426 cfg->eeer_value = pcaps->eeer_value;
1427 cfg->link_fec_opt = pcaps->link_fec_options;
1428 if (link_up)
1429 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1430 else
1431 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1432
1433 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL);
1434 if (retcode) {
1435 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1436 vsi->vsi_num, retcode);
1437 retcode = -EIO;
1438 }
1439
1440 devm_kfree(dev, cfg);
1441out:
1442 devm_kfree(dev, pcaps);
1443 return retcode;
1444}
1445
1446/**
1447 * ice_check_media_subtask - Check for media; bring link up if detected.
1448 * @pf: pointer to PF struct
1449 */
1450static void ice_check_media_subtask(struct ice_pf *pf)
1451{
1452 struct ice_port_info *pi;
1453 struct ice_vsi *vsi;
1454 int err;
1455
1456 vsi = ice_get_main_vsi(pf);
1457 if (!vsi)
1458 return;
1459
1460 /* No need to check for media if it's already present or the interface
1461 * is down
1462 */
1463 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) ||
1464 test_bit(__ICE_DOWN, vsi->state))
1465 return;
1466
1467 /* Refresh link info and check if media is present */
1468 pi = vsi->port_info;
1469 err = ice_update_link_info(pi);
1470 if (err)
1471 return;
1472
1473 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
1474 err = ice_force_phys_link_state(vsi, true);
1475 if (err)
1476 return;
1477 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1478
1479 /* A Link Status Event will be generated; the event handler
1480 * will complete bringing the interface up
1481 */
1482 }
1483}
1484
1485/**
1486 * ice_service_task - manage and run subtasks
1487 * @work: pointer to work_struct contained by the PF struct
1488 */
1489static void ice_service_task(struct work_struct *work)
1490{
1491 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
1492 unsigned long start_time = jiffies;
1493
1494 /* subtasks */
1495
1496 /* process reset requests first */
1497 ice_reset_subtask(pf);
1498
1499 /* bail if a reset/recovery cycle is pending or rebuild failed */
1500 if (ice_is_reset_in_progress(pf->state) ||
1501 test_bit(__ICE_SUSPENDED, pf->state) ||
1502 test_bit(__ICE_NEEDS_RESTART, pf->state)) {
1503 ice_service_task_complete(pf);
1504 return;
1505 }
1506
1507 ice_clean_adminq_subtask(pf);
1508 ice_check_media_subtask(pf);
1509 ice_check_for_hang_subtask(pf);
1510 ice_sync_fltr_subtask(pf);
1511 ice_handle_mdd_event(pf);
1512 ice_watchdog_subtask(pf);
1513
1514 if (ice_is_safe_mode(pf)) {
1515 ice_service_task_complete(pf);
1516 return;
1517 }
1518
1519 ice_process_vflr_event(pf);
1520 ice_clean_mailboxq_subtask(pf);
1521
1522 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
1523 ice_service_task_complete(pf);
1524
1525 /* If the tasks have taken longer than one service timer period
1526 * or there is more work to be done, reset the service timer to
1527 * schedule the service task now.
1528 */
1529 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
1530 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
1531 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
1532 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
1533 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1534 mod_timer(&pf->serv_tmr, jiffies);
1535}
1536
1537/**
1538 * ice_set_ctrlq_len - helper function to set controlq length
1539 * @hw: pointer to the HW instance
1540 */
1541static void ice_set_ctrlq_len(struct ice_hw *hw)
1542{
1543 hw->adminq.num_rq_entries = ICE_AQ_LEN;
1544 hw->adminq.num_sq_entries = ICE_AQ_LEN;
1545 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
1546 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
1547 hw->mailboxq.num_rq_entries = ICE_MBXRQ_LEN;
1548 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
1549 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1550 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1551}
1552
1553/**
1554 * ice_irq_affinity_notify - Callback for affinity changes
1555 * @notify: context as to what irq was changed
1556 * @mask: the new affinity mask
1557 *
1558 * This is a callback function used by the irq_set_affinity_notifier function
1559 * so that we may register to receive changes to the irq affinity masks.
1560 */
1561static void
1562ice_irq_affinity_notify(struct irq_affinity_notify *notify,
1563 const cpumask_t *mask)
1564{
1565 struct ice_q_vector *q_vector =
1566 container_of(notify, struct ice_q_vector, affinity_notify);
1567
1568 cpumask_copy(&q_vector->affinity_mask, mask);
1569}
1570
1571/**
1572 * ice_irq_affinity_release - Callback for affinity notifier release
1573 * @ref: internal core kernel usage
1574 *
1575 * This is a callback function used by the irq_set_affinity_notifier function
1576 * to inform the current notification subscriber that they will no longer
1577 * receive notifications.
1578 */
1579static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
1580
1581/**
1582 * ice_vsi_ena_irq - Enable IRQ for the given VSI
1583 * @vsi: the VSI being configured
1584 */
1585static int ice_vsi_ena_irq(struct ice_vsi *vsi)
1586{
1587 struct ice_hw *hw = &vsi->back->hw;
1588 int i;
1589
1590 ice_for_each_q_vector(vsi, i)
1591 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
1592
1593 ice_flush(hw);
1594 return 0;
1595}
1596
1597/**
1598 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
1599 * @vsi: the VSI being configured
1600 * @basename: name for the vector
1601 */
1602static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
1603{
1604 int q_vectors = vsi->num_q_vectors;
1605 struct ice_pf *pf = vsi->back;
1606 int base = vsi->base_vector;
1607 int rx_int_idx = 0;
1608 int tx_int_idx = 0;
1609 int vector, err;
1610 int irq_num;
1611
1612 for (vector = 0; vector < q_vectors; vector++) {
1613 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
1614
1615 irq_num = pf->msix_entries[base + vector].vector;
1616
1617 if (q_vector->tx.ring && q_vector->rx.ring) {
1618 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1619 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
1620 tx_int_idx++;
1621 } else if (q_vector->rx.ring) {
1622 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1623 "%s-%s-%d", basename, "rx", rx_int_idx++);
1624 } else if (q_vector->tx.ring) {
1625 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1626 "%s-%s-%d", basename, "tx", tx_int_idx++);
1627 } else {
1628 /* skip this unused q_vector */
1629 continue;
1630 }
1631 err = devm_request_irq(&pf->pdev->dev, irq_num,
1632 vsi->irq_handler, 0,
1633 q_vector->name, q_vector);
1634 if (err) {
1635 netdev_err(vsi->netdev,
1636 "MSIX request_irq failed, error: %d\n", err);
1637 goto free_q_irqs;
1638 }
1639
1640 /* register for affinity change notifications */
1641 q_vector->affinity_notify.notify = ice_irq_affinity_notify;
1642 q_vector->affinity_notify.release = ice_irq_affinity_release;
1643 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
1644
1645 /* assign the mask for this irq */
1646 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
1647 }
1648
1649 vsi->irqs_ready = true;
1650 return 0;
1651
1652free_q_irqs:
1653 while (vector) {
1654 vector--;
1655 irq_num = pf->msix_entries[base + vector].vector,
1656 irq_set_affinity_notifier(irq_num, NULL);
1657 irq_set_affinity_hint(irq_num, NULL);
1658 devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]);
1659 }
1660 return err;
1661}
1662
1663/**
1664 * ice_ena_misc_vector - enable the non-queue interrupts
1665 * @pf: board private structure
1666 */
1667static void ice_ena_misc_vector(struct ice_pf *pf)
1668{
1669 struct ice_hw *hw = &pf->hw;
1670 u32 val;
1671
1672 /* clear things first */
1673 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
1674 rd32(hw, PFINT_OICR); /* read to clear */
1675
1676 val = (PFINT_OICR_ECC_ERR_M |
1677 PFINT_OICR_MAL_DETECT_M |
1678 PFINT_OICR_GRST_M |
1679 PFINT_OICR_PCI_EXCEPTION_M |
1680 PFINT_OICR_VFLR_M |
1681 PFINT_OICR_HMC_ERR_M |
1682 PFINT_OICR_PE_CRITERR_M);
1683
1684 wr32(hw, PFINT_OICR_ENA, val);
1685
1686 /* SW_ITR_IDX = 0, but don't change INTENA */
1687 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
1688 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
1689}
1690
1691/**
1692 * ice_misc_intr - misc interrupt handler
1693 * @irq: interrupt number
1694 * @data: pointer to a q_vector
1695 */
1696static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
1697{
1698 struct ice_pf *pf = (struct ice_pf *)data;
1699 struct ice_hw *hw = &pf->hw;
1700 irqreturn_t ret = IRQ_NONE;
1701 u32 oicr, ena_mask;
1702
1703 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1704 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1705
1706 oicr = rd32(hw, PFINT_OICR);
1707 ena_mask = rd32(hw, PFINT_OICR_ENA);
1708
1709 if (oicr & PFINT_OICR_SWINT_M) {
1710 ena_mask &= ~PFINT_OICR_SWINT_M;
1711 pf->sw_int_count++;
1712 }
1713
1714 if (oicr & PFINT_OICR_MAL_DETECT_M) {
1715 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
1716 set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
1717 }
1718 if (oicr & PFINT_OICR_VFLR_M) {
1719 ena_mask &= ~PFINT_OICR_VFLR_M;
1720 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
1721 }
1722
1723 if (oicr & PFINT_OICR_GRST_M) {
1724 u32 reset;
1725
1726 /* we have a reset warning */
1727 ena_mask &= ~PFINT_OICR_GRST_M;
1728 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
1729 GLGEN_RSTAT_RESET_TYPE_S;
1730
1731 if (reset == ICE_RESET_CORER)
1732 pf->corer_count++;
1733 else if (reset == ICE_RESET_GLOBR)
1734 pf->globr_count++;
1735 else if (reset == ICE_RESET_EMPR)
1736 pf->empr_count++;
1737 else
1738 dev_dbg(&pf->pdev->dev, "Invalid reset type %d\n",
1739 reset);
1740
1741 /* If a reset cycle isn't already in progress, we set a bit in
1742 * pf->state so that the service task can start a reset/rebuild.
1743 * We also make note of which reset happened so that peer
1744 * devices/drivers can be informed.
1745 */
1746 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
1747 if (reset == ICE_RESET_CORER)
1748 set_bit(__ICE_CORER_RECV, pf->state);
1749 else if (reset == ICE_RESET_GLOBR)
1750 set_bit(__ICE_GLOBR_RECV, pf->state);
1751 else
1752 set_bit(__ICE_EMPR_RECV, pf->state);
1753
1754 /* There are couple of different bits at play here.
1755 * hw->reset_ongoing indicates whether the hardware is
1756 * in reset. This is set to true when a reset interrupt
1757 * is received and set back to false after the driver
1758 * has determined that the hardware is out of reset.
1759 *
1760 * __ICE_RESET_OICR_RECV in pf->state indicates
1761 * that a post reset rebuild is required before the
1762 * driver is operational again. This is set above.
1763 *
1764 * As this is the start of the reset/rebuild cycle, set
1765 * both to indicate that.
1766 */
1767 hw->reset_ongoing = true;
1768 }
1769 }
1770
1771 if (oicr & PFINT_OICR_HMC_ERR_M) {
1772 ena_mask &= ~PFINT_OICR_HMC_ERR_M;
1773 dev_dbg(&pf->pdev->dev,
1774 "HMC Error interrupt - info 0x%x, data 0x%x\n",
1775 rd32(hw, PFHMC_ERRORINFO),
1776 rd32(hw, PFHMC_ERRORDATA));
1777 }
1778
1779 /* Report any remaining unexpected interrupts */
1780 oicr &= ena_mask;
1781 if (oicr) {
1782 dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n",
1783 oicr);
1784 /* If a critical error is pending there is no choice but to
1785 * reset the device.
1786 */
1787 if (oicr & (PFINT_OICR_PE_CRITERR_M |
1788 PFINT_OICR_PCI_EXCEPTION_M |
1789 PFINT_OICR_ECC_ERR_M)) {
1790 set_bit(__ICE_PFR_REQ, pf->state);
1791 ice_service_task_schedule(pf);
1792 }
1793 }
1794 ret = IRQ_HANDLED;
1795
1796 if (!test_bit(__ICE_DOWN, pf->state)) {
1797 ice_service_task_schedule(pf);
1798 ice_irq_dynamic_ena(hw, NULL, NULL);
1799 }
1800
1801 return ret;
1802}
1803
1804/**
1805 * ice_dis_ctrlq_interrupts - disable control queue interrupts
1806 * @hw: pointer to HW structure
1807 */
1808static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
1809{
1810 /* disable Admin queue Interrupt causes */
1811 wr32(hw, PFINT_FW_CTL,
1812 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
1813
1814 /* disable Mailbox queue Interrupt causes */
1815 wr32(hw, PFINT_MBX_CTL,
1816 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
1817
1818 /* disable Control queue Interrupt causes */
1819 wr32(hw, PFINT_OICR_CTL,
1820 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
1821
1822 ice_flush(hw);
1823}
1824
1825/**
1826 * ice_free_irq_msix_misc - Unroll misc vector setup
1827 * @pf: board private structure
1828 */
1829static void ice_free_irq_msix_misc(struct ice_pf *pf)
1830{
1831 struct ice_hw *hw = &pf->hw;
1832
1833 ice_dis_ctrlq_interrupts(hw);
1834
1835 /* disable OICR interrupt */
1836 wr32(hw, PFINT_OICR_ENA, 0);
1837 ice_flush(hw);
1838
1839 if (pf->msix_entries) {
1840 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
1841 devm_free_irq(&pf->pdev->dev,
1842 pf->msix_entries[pf->oicr_idx].vector, pf);
1843 }
1844
1845 pf->num_avail_sw_msix += 1;
1846 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
1847}
1848
1849/**
1850 * ice_ena_ctrlq_interrupts - enable control queue interrupts
1851 * @hw: pointer to HW structure
1852 * @reg_idx: HW vector index to associate the control queue interrupts with
1853 */
1854static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
1855{
1856 u32 val;
1857
1858 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
1859 PFINT_OICR_CTL_CAUSE_ENA_M);
1860 wr32(hw, PFINT_OICR_CTL, val);
1861
1862 /* enable Admin queue Interrupt causes */
1863 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
1864 PFINT_FW_CTL_CAUSE_ENA_M);
1865 wr32(hw, PFINT_FW_CTL, val);
1866
1867 /* enable Mailbox queue Interrupt causes */
1868 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
1869 PFINT_MBX_CTL_CAUSE_ENA_M);
1870 wr32(hw, PFINT_MBX_CTL, val);
1871
1872 ice_flush(hw);
1873}
1874
1875/**
1876 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
1877 * @pf: board private structure
1878 *
1879 * This sets up the handler for MSIX 0, which is used to manage the
1880 * non-queue interrupts, e.g. AdminQ and errors. This is not used
1881 * when in MSI or Legacy interrupt mode.
1882 */
1883static int ice_req_irq_msix_misc(struct ice_pf *pf)
1884{
1885 struct ice_hw *hw = &pf->hw;
1886 int oicr_idx, err = 0;
1887
1888 if (!pf->int_name[0])
1889 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
1890 dev_driver_string(&pf->pdev->dev),
1891 dev_name(&pf->pdev->dev));
1892
1893 /* Do not request IRQ but do enable OICR interrupt since settings are
1894 * lost during reset. Note that this function is called only during
1895 * rebuild path and not while reset is in progress.
1896 */
1897 if (ice_is_reset_in_progress(pf->state))
1898 goto skip_req_irq;
1899
1900 /* reserve one vector in irq_tracker for misc interrupts */
1901 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
1902 if (oicr_idx < 0)
1903 return oicr_idx;
1904
1905 pf->num_avail_sw_msix -= 1;
1906 pf->oicr_idx = oicr_idx;
1907
1908 err = devm_request_irq(&pf->pdev->dev,
1909 pf->msix_entries[pf->oicr_idx].vector,
1910 ice_misc_intr, 0, pf->int_name, pf);
1911 if (err) {
1912 dev_err(&pf->pdev->dev,
1913 "devm_request_irq for %s failed: %d\n",
1914 pf->int_name, err);
1915 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
1916 pf->num_avail_sw_msix += 1;
1917 return err;
1918 }
1919
1920skip_req_irq:
1921 ice_ena_misc_vector(pf);
1922
1923 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
1924 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
1925 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
1926
1927 ice_flush(hw);
1928 ice_irq_dynamic_ena(hw, NULL, NULL);
1929
1930 return 0;
1931}
1932
1933/**
1934 * ice_napi_add - register NAPI handler for the VSI
1935 * @vsi: VSI for which NAPI handler is to be registered
1936 *
1937 * This function is only called in the driver's load path. Registering the NAPI
1938 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
1939 * reset/rebuild, etc.)
1940 */
1941static void ice_napi_add(struct ice_vsi *vsi)
1942{
1943 int v_idx;
1944
1945 if (!vsi->netdev)
1946 return;
1947
1948 ice_for_each_q_vector(vsi, v_idx)
1949 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
1950 ice_napi_poll, NAPI_POLL_WEIGHT);
1951}
1952
1953/**
1954 * ice_set_ops - set netdev and ethtools ops for the given netdev
1955 * @netdev: netdev instance
1956 */
1957static void ice_set_ops(struct net_device *netdev)
1958{
1959 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1960
1961 if (ice_is_safe_mode(pf)) {
1962 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
1963 ice_set_ethtool_safe_mode_ops(netdev);
1964 return;
1965 }
1966
1967 netdev->netdev_ops = &ice_netdev_ops;
1968 ice_set_ethtool_ops(netdev);
1969}
1970
1971/**
1972 * ice_set_netdev_features - set features for the given netdev
1973 * @netdev: netdev instance
1974 */
1975static void ice_set_netdev_features(struct net_device *netdev)
1976{
1977 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1978 netdev_features_t csumo_features;
1979 netdev_features_t vlano_features;
1980 netdev_features_t dflt_features;
1981 netdev_features_t tso_features;
1982
1983 if (ice_is_safe_mode(pf)) {
1984 /* safe mode */
1985 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
1986 netdev->hw_features = netdev->features;
1987 return;
1988 }
1989
1990 dflt_features = NETIF_F_SG |
1991 NETIF_F_HIGHDMA |
1992 NETIF_F_RXHASH;
1993
1994 csumo_features = NETIF_F_RXCSUM |
1995 NETIF_F_IP_CSUM |
1996 NETIF_F_SCTP_CRC |
1997 NETIF_F_IPV6_CSUM;
1998
1999 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2000 NETIF_F_HW_VLAN_CTAG_TX |
2001 NETIF_F_HW_VLAN_CTAG_RX;
2002
2003 tso_features = NETIF_F_TSO;
2004
2005 /* set features that user can change */
2006 netdev->hw_features = dflt_features | csumo_features |
2007 vlano_features | tso_features;
2008
2009 /* enable features */
2010 netdev->features |= netdev->hw_features;
2011 /* encap and VLAN devices inherit default, csumo and tso features */
2012 netdev->hw_enc_features |= dflt_features | csumo_features |
2013 tso_features;
2014 netdev->vlan_features |= dflt_features | csumo_features |
2015 tso_features;
2016}
2017
2018/**
2019 * ice_cfg_netdev - Allocate, configure and register a netdev
2020 * @vsi: the VSI associated with the new netdev
2021 *
2022 * Returns 0 on success, negative value on failure
2023 */
2024static int ice_cfg_netdev(struct ice_vsi *vsi)
2025{
2026 struct ice_pf *pf = vsi->back;
2027 struct ice_netdev_priv *np;
2028 struct net_device *netdev;
2029 u8 mac_addr[ETH_ALEN];
2030 int err;
2031
2032 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
2033 vsi->alloc_rxq);
2034 if (!netdev)
2035 return -ENOMEM;
2036
2037 vsi->netdev = netdev;
2038 np = netdev_priv(netdev);
2039 np->vsi = vsi;
2040
2041 ice_set_netdev_features(netdev);
2042
2043 ice_set_ops(netdev);
2044
2045 if (vsi->type == ICE_VSI_PF) {
2046 SET_NETDEV_DEV(netdev, &pf->pdev->dev);
2047 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2048 ether_addr_copy(netdev->dev_addr, mac_addr);
2049 ether_addr_copy(netdev->perm_addr, mac_addr);
2050 }
2051
2052 netdev->priv_flags |= IFF_UNICAST_FLT;
2053
2054 /* Setup netdev TC information */
2055 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
2056
2057 /* setup watchdog timeout value to be 5 second */
2058 netdev->watchdog_timeo = 5 * HZ;
2059
2060 netdev->min_mtu = ETH_MIN_MTU;
2061 netdev->max_mtu = ICE_MAX_MTU;
2062
2063 err = register_netdev(vsi->netdev);
2064 if (err)
2065 return err;
2066
2067 netif_carrier_off(vsi->netdev);
2068
2069 /* make sure transmit queues start off as stopped */
2070 netif_tx_stop_all_queues(vsi->netdev);
2071
2072 return 0;
2073}
2074
2075/**
2076 * ice_fill_rss_lut - Fill the RSS lookup table with default values
2077 * @lut: Lookup table
2078 * @rss_table_size: Lookup table size
2079 * @rss_size: Range of queue number for hashing
2080 */
2081void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
2082{
2083 u16 i;
2084
2085 for (i = 0; i < rss_table_size; i++)
2086 lut[i] = i % rss_size;
2087}
2088
2089/**
2090 * ice_pf_vsi_setup - Set up a PF VSI
2091 * @pf: board private structure
2092 * @pi: pointer to the port_info instance
2093 *
2094 * Returns pointer to the successfully allocated VSI software struct
2095 * on success, otherwise returns NULL on failure.
2096 */
2097static struct ice_vsi *
2098ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
2099{
2100 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
2101}
2102
2103/**
2104 * ice_lb_vsi_setup - Set up a loopback VSI
2105 * @pf: board private structure
2106 * @pi: pointer to the port_info instance
2107 *
2108 * Returns pointer to the successfully allocated VSI software struct
2109 * on success, otherwise returns NULL on failure.
2110 */
2111struct ice_vsi *
2112ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
2113{
2114 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
2115}
2116
2117/**
2118 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
2119 * @netdev: network interface to be adjusted
2120 * @proto: unused protocol
2121 * @vid: VLAN ID to be added
2122 *
2123 * net_device_ops implementation for adding VLAN IDs
2124 */
2125static int
2126ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
2127 u16 vid)
2128{
2129 struct ice_netdev_priv *np = netdev_priv(netdev);
2130 struct ice_vsi *vsi = np->vsi;
2131 int ret;
2132
2133 if (vid >= VLAN_N_VID) {
2134 netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
2135 vid, VLAN_N_VID);
2136 return -EINVAL;
2137 }
2138
2139 if (vsi->info.pvid)
2140 return -EINVAL;
2141
2142 /* Enable VLAN pruning when VLAN 0 is added */
2143 if (unlikely(!vid)) {
2144 ret = ice_cfg_vlan_pruning(vsi, true, false);
2145 if (ret)
2146 return ret;
2147 }
2148
2149 /* Add all VLAN IDs including 0 to the switch filter. VLAN ID 0 is
2150 * needed to continue allowing all untagged packets since VLAN prune
2151 * list is applied to all packets by the switch
2152 */
2153 ret = ice_vsi_add_vlan(vsi, vid);
2154 if (!ret) {
2155 vsi->vlan_ena = true;
2156 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
2157 }
2158
2159 return ret;
2160}
2161
2162/**
2163 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
2164 * @netdev: network interface to be adjusted
2165 * @proto: unused protocol
2166 * @vid: VLAN ID to be removed
2167 *
2168 * net_device_ops implementation for removing VLAN IDs
2169 */
2170static int
2171ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
2172 u16 vid)
2173{
2174 struct ice_netdev_priv *np = netdev_priv(netdev);
2175 struct ice_vsi *vsi = np->vsi;
2176 int ret;
2177
2178 if (vsi->info.pvid)
2179 return -EINVAL;
2180
2181 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN
2182 * information
2183 */
2184 ret = ice_vsi_kill_vlan(vsi, vid);
2185 if (ret)
2186 return ret;
2187
2188 /* Disable VLAN pruning when VLAN 0 is removed */
2189 if (unlikely(!vid))
2190 ret = ice_cfg_vlan_pruning(vsi, false, false);
2191
2192 vsi->vlan_ena = false;
2193 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
2194 return ret;
2195}
2196
2197/**
2198 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
2199 * @pf: board private structure
2200 *
2201 * Returns 0 on success, negative value on failure
2202 */
2203static int ice_setup_pf_sw(struct ice_pf *pf)
2204{
2205 struct ice_vsi *vsi;
2206 int status = 0;
2207
2208 if (ice_is_reset_in_progress(pf->state))
2209 return -EBUSY;
2210
2211 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
2212 if (!vsi) {
2213 status = -ENOMEM;
2214 goto unroll_vsi_setup;
2215 }
2216
2217 status = ice_cfg_netdev(vsi);
2218 if (status) {
2219 status = -ENODEV;
2220 goto unroll_vsi_setup;
2221 }
2222
2223 /* registering the NAPI handler requires both the queues and
2224 * netdev to be created, which are done in ice_pf_vsi_setup()
2225 * and ice_cfg_netdev() respectively
2226 */
2227 ice_napi_add(vsi);
2228
2229 status = ice_init_mac_fltr(pf);
2230 if (status)
2231 goto unroll_napi_add;
2232
2233 return status;
2234
2235unroll_napi_add:
2236 if (vsi) {
2237 ice_napi_del(vsi);
2238 if (vsi->netdev) {
2239 if (vsi->netdev->reg_state == NETREG_REGISTERED)
2240 unregister_netdev(vsi->netdev);
2241 free_netdev(vsi->netdev);
2242 vsi->netdev = NULL;
2243 }
2244 }
2245
2246unroll_vsi_setup:
2247 if (vsi) {
2248 ice_vsi_free_q_vectors(vsi);
2249 ice_vsi_delete(vsi);
2250 ice_vsi_put_qs(vsi);
2251 ice_vsi_clear(vsi);
2252 }
2253 return status;
2254}
2255
2256/**
2257 * ice_get_avail_q_count - Get count of queues in use
2258 * @pf_qmap: bitmap to get queue use count from
2259 * @lock: pointer to a mutex that protects access to pf_qmap
2260 * @size: size of the bitmap
2261 */
2262static u16
2263ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
2264{
2265 u16 count = 0, bit;
2266
2267 mutex_lock(lock);
2268 for_each_clear_bit(bit, pf_qmap, size)
2269 count++;
2270 mutex_unlock(lock);
2271
2272 return count;
2273}
2274
2275/**
2276 * ice_get_avail_txq_count - Get count of Tx queues in use
2277 * @pf: pointer to an ice_pf instance
2278 */
2279u16 ice_get_avail_txq_count(struct ice_pf *pf)
2280{
2281 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
2282 pf->max_pf_txqs);
2283}
2284
2285/**
2286 * ice_get_avail_rxq_count - Get count of Rx queues in use
2287 * @pf: pointer to an ice_pf instance
2288 */
2289u16 ice_get_avail_rxq_count(struct ice_pf *pf)
2290{
2291 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
2292 pf->max_pf_rxqs);
2293}
2294
2295/**
2296 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
2297 * @pf: board private structure to initialize
2298 */
2299static void ice_deinit_pf(struct ice_pf *pf)
2300{
2301 ice_service_task_stop(pf);
2302 mutex_destroy(&pf->sw_mutex);
2303 mutex_destroy(&pf->avail_q_mutex);
2304
2305 if (pf->avail_txqs) {
2306 bitmap_free(pf->avail_txqs);
2307 pf->avail_txqs = NULL;
2308 }
2309
2310 if (pf->avail_rxqs) {
2311 bitmap_free(pf->avail_rxqs);
2312 pf->avail_rxqs = NULL;
2313 }
2314}
2315
2316/**
2317 * ice_set_pf_caps - set PFs capability flags
2318 * @pf: pointer to the PF instance
2319 */
2320static void ice_set_pf_caps(struct ice_pf *pf)
2321{
2322 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
2323
2324 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
2325 if (func_caps->common_cap.dcb)
2326 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
2327#ifdef CONFIG_PCI_IOV
2328 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
2329 if (func_caps->common_cap.sr_iov_1_1) {
2330 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
2331 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
2332 ICE_MAX_VF_COUNT);
2333 }
2334#endif /* CONFIG_PCI_IOV */
2335 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
2336 if (func_caps->common_cap.rss_table_size)
2337 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
2338
2339 pf->max_pf_txqs = func_caps->common_cap.num_txq;
2340 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
2341}
2342
2343/**
2344 * ice_init_pf - Initialize general software structures (struct ice_pf)
2345 * @pf: board private structure to initialize
2346 */
2347static int ice_init_pf(struct ice_pf *pf)
2348{
2349 ice_set_pf_caps(pf);
2350
2351 mutex_init(&pf->sw_mutex);
2352
2353 /* setup service timer and periodic service task */
2354 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
2355 pf->serv_tmr_period = HZ;
2356 INIT_WORK(&pf->serv_task, ice_service_task);
2357 clear_bit(__ICE_SERVICE_SCHED, pf->state);
2358
2359 mutex_init(&pf->avail_q_mutex);
2360 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
2361 if (!pf->avail_txqs)
2362 return -ENOMEM;
2363
2364 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
2365 if (!pf->avail_rxqs) {
2366 devm_kfree(&pf->pdev->dev, pf->avail_txqs);
2367 pf->avail_txqs = NULL;
2368 return -ENOMEM;
2369 }
2370
2371 return 0;
2372}
2373
2374/**
2375 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
2376 * @pf: board private structure
2377 *
2378 * compute the number of MSIX vectors required (v_budget) and request from
2379 * the OS. Return the number of vectors reserved or negative on failure
2380 */
2381static int ice_ena_msix_range(struct ice_pf *pf)
2382{
2383 int v_left, v_actual, v_budget = 0;
2384 int needed, err, i;
2385
2386 v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
2387
2388 /* reserve one vector for miscellaneous handler */
2389 needed = 1;
2390 if (v_left < needed)
2391 goto no_hw_vecs_left_err;
2392 v_budget += needed;
2393 v_left -= needed;
2394
2395 /* reserve vectors for LAN traffic */
2396 needed = min_t(int, num_online_cpus(), v_left);
2397 if (v_left < needed)
2398 goto no_hw_vecs_left_err;
2399 pf->num_lan_msix = needed;
2400 v_budget += needed;
2401 v_left -= needed;
2402
2403 pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget,
2404 sizeof(*pf->msix_entries), GFP_KERNEL);
2405
2406 if (!pf->msix_entries) {
2407 err = -ENOMEM;
2408 goto exit_err;
2409 }
2410
2411 for (i = 0; i < v_budget; i++)
2412 pf->msix_entries[i].entry = i;
2413
2414 /* actually reserve the vectors */
2415 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
2416 ICE_MIN_MSIX, v_budget);
2417
2418 if (v_actual < 0) {
2419 dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n");
2420 err = v_actual;
2421 goto msix_err;
2422 }
2423
2424 if (v_actual < v_budget) {
2425 dev_warn(&pf->pdev->dev,
2426 "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
2427 v_budget, v_actual);
2428/* 2 vectors for LAN (traffic + OICR) */
2429#define ICE_MIN_LAN_VECS 2
2430
2431 if (v_actual < ICE_MIN_LAN_VECS) {
2432 /* error if we can't get minimum vectors */
2433 pci_disable_msix(pf->pdev);
2434 err = -ERANGE;
2435 goto msix_err;
2436 } else {
2437 pf->num_lan_msix = ICE_MIN_LAN_VECS;
2438 }
2439 }
2440
2441 return v_actual;
2442
2443msix_err:
2444 devm_kfree(&pf->pdev->dev, pf->msix_entries);
2445 goto exit_err;
2446
2447no_hw_vecs_left_err:
2448 dev_err(&pf->pdev->dev,
2449 "not enough device MSI-X vectors. requested = %d, available = %d\n",
2450 needed, v_left);
2451 err = -ERANGE;
2452exit_err:
2453 pf->num_lan_msix = 0;
2454 return err;
2455}
2456
2457/**
2458 * ice_dis_msix - Disable MSI-X interrupt setup in OS
2459 * @pf: board private structure
2460 */
2461static void ice_dis_msix(struct ice_pf *pf)
2462{
2463 pci_disable_msix(pf->pdev);
2464 devm_kfree(&pf->pdev->dev, pf->msix_entries);
2465 pf->msix_entries = NULL;
2466}
2467
2468/**
2469 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
2470 * @pf: board private structure
2471 */
2472static void ice_clear_interrupt_scheme(struct ice_pf *pf)
2473{
2474 ice_dis_msix(pf);
2475
2476 if (pf->irq_tracker) {
2477 devm_kfree(&pf->pdev->dev, pf->irq_tracker);
2478 pf->irq_tracker = NULL;
2479 }
2480}
2481
2482/**
2483 * ice_init_interrupt_scheme - Determine proper interrupt scheme
2484 * @pf: board private structure to initialize
2485 */
2486static int ice_init_interrupt_scheme(struct ice_pf *pf)
2487{
2488 int vectors;
2489
2490 vectors = ice_ena_msix_range(pf);
2491
2492 if (vectors < 0)
2493 return vectors;
2494
2495 /* set up vector assignment tracking */
2496 pf->irq_tracker =
2497 devm_kzalloc(&pf->pdev->dev, sizeof(*pf->irq_tracker) +
2498 (sizeof(u16) * vectors), GFP_KERNEL);
2499 if (!pf->irq_tracker) {
2500 ice_dis_msix(pf);
2501 return -ENOMEM;
2502 }
2503
2504 /* populate SW interrupts pool with number of OS granted IRQs. */
2505 pf->num_avail_sw_msix = vectors;
2506 pf->irq_tracker->num_entries = vectors;
2507 pf->irq_tracker->end = pf->irq_tracker->num_entries;
2508
2509 return 0;
2510}
2511
2512/**
2513 * ice_log_pkg_init - log result of DDP package load
2514 * @hw: pointer to hardware info
2515 * @status: status of package load
2516 */
2517static void
2518ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
2519{
2520 struct ice_pf *pf = (struct ice_pf *)hw->back;
2521 struct device *dev = &pf->pdev->dev;
2522
2523 switch (*status) {
2524 case ICE_SUCCESS:
2525 /* The package download AdminQ command returned success because
2526 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
2527 * already a package loaded on the device.
2528 */
2529 if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
2530 hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
2531 hw->pkg_ver.update == hw->active_pkg_ver.update &&
2532 hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
2533 !memcmp(hw->pkg_name, hw->active_pkg_name,
2534 sizeof(hw->pkg_name))) {
2535 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
2536 dev_info(dev,
2537 "DDP package already present on device: %s version %d.%d.%d.%d\n",
2538 hw->active_pkg_name,
2539 hw->active_pkg_ver.major,
2540 hw->active_pkg_ver.minor,
2541 hw->active_pkg_ver.update,
2542 hw->active_pkg_ver.draft);
2543 else
2544 dev_info(dev,
2545 "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
2546 hw->active_pkg_name,
2547 hw->active_pkg_ver.major,
2548 hw->active_pkg_ver.minor,
2549 hw->active_pkg_ver.update,
2550 hw->active_pkg_ver.draft);
2551 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
2552 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
2553 dev_err(dev,
2554 "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
2555 hw->active_pkg_name,
2556 hw->active_pkg_ver.major,
2557 hw->active_pkg_ver.minor,
2558 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
2559 *status = ICE_ERR_NOT_SUPPORTED;
2560 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
2561 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
2562 dev_info(dev,
2563 "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
2564 hw->active_pkg_name,
2565 hw->active_pkg_ver.major,
2566 hw->active_pkg_ver.minor,
2567 hw->active_pkg_ver.update,
2568 hw->active_pkg_ver.draft,
2569 hw->pkg_name,
2570 hw->pkg_ver.major,
2571 hw->pkg_ver.minor,
2572 hw->pkg_ver.update,
2573 hw->pkg_ver.draft);
2574 } else {
2575 dev_err(dev,
2576 "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n");
2577 *status = ICE_ERR_NOT_SUPPORTED;
2578 }
2579 break;
2580 case ICE_ERR_BUF_TOO_SHORT:
2581 /* fall-through */
2582 case ICE_ERR_CFG:
2583 dev_err(dev,
2584 "The DDP package file is invalid. Entering Safe Mode.\n");
2585 break;
2586 case ICE_ERR_NOT_SUPPORTED:
2587 /* Package File version not supported */
2588 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
2589 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
2590 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
2591 dev_err(dev,
2592 "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
2593 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
2594 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
2595 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
2596 dev_err(dev,
2597 "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
2598 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
2599 break;
2600 case ICE_ERR_AQ_ERROR:
2601 switch (hw->adminq.sq_last_status) {
2602 case ICE_AQ_RC_ENOSEC:
2603 case ICE_AQ_RC_EBADSIG:
2604 dev_err(dev,
2605 "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
2606 return;
2607 case ICE_AQ_RC_ESVN:
2608 dev_err(dev,
2609 "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
2610 return;
2611 case ICE_AQ_RC_EBADMAN:
2612 case ICE_AQ_RC_EBADBUF:
2613 dev_err(dev,
2614 "An error occurred on the device while loading the DDP package. The device will be reset.\n");
2615 return;
2616 default:
2617 break;
2618 }
2619 /* fall-through */
2620 default:
2621 dev_err(dev,
2622 "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n",
2623 *status);
2624 break;
2625 }
2626}
2627
2628/**
2629 * ice_load_pkg - load/reload the DDP Package file
2630 * @firmware: firmware structure when firmware requested or NULL for reload
2631 * @pf: pointer to the PF instance
2632 *
2633 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
2634 * initialize HW tables.
2635 */
2636static void
2637ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
2638{
2639 enum ice_status status = ICE_ERR_PARAM;
2640 struct device *dev = &pf->pdev->dev;
2641 struct ice_hw *hw = &pf->hw;
2642
2643 /* Load DDP Package */
2644 if (firmware && !hw->pkg_copy) {
2645 status = ice_copy_and_init_pkg(hw, firmware->data,
2646 firmware->size);
2647 ice_log_pkg_init(hw, &status);
2648 } else if (!firmware && hw->pkg_copy) {
2649 /* Reload package during rebuild after CORER/GLOBR reset */
2650 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
2651 ice_log_pkg_init(hw, &status);
2652 } else {
2653 dev_err(dev,
2654 "The DDP package file failed to load. Entering Safe Mode.\n");
2655 }
2656
2657 if (status) {
2658 /* Safe Mode */
2659 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
2660 return;
2661 }
2662
2663 /* Successful download package is the precondition for advanced
2664 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
2665 */
2666 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
2667}
2668
2669/**
2670 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
2671 * @pf: pointer to the PF structure
2672 *
2673 * There is no error returned here because the driver should be able to handle
2674 * 128 Byte cache lines, so we only print a warning in case issues are seen,
2675 * specifically with Tx.
2676 */
2677static void ice_verify_cacheline_size(struct ice_pf *pf)
2678{
2679 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
2680 dev_warn(&pf->pdev->dev,
2681 "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
2682 ICE_CACHE_LINE_BYTES);
2683}
2684
2685/**
2686 * ice_send_version - update firmware with driver version
2687 * @pf: PF struct
2688 *
2689 * Returns ICE_SUCCESS on success, else error code
2690 */
2691static enum ice_status ice_send_version(struct ice_pf *pf)
2692{
2693 struct ice_driver_ver dv;
2694
2695 dv.major_ver = DRV_VERSION_MAJOR;
2696 dv.minor_ver = DRV_VERSION_MINOR;
2697 dv.build_ver = DRV_VERSION_BUILD;
2698 dv.subbuild_ver = 0;
2699 strscpy((char *)dv.driver_string, DRV_VERSION,
2700 sizeof(dv.driver_string));
2701 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
2702}
2703
2704/**
2705 * ice_get_opt_fw_name - return optional firmware file name or NULL
2706 * @pf: pointer to the PF instance
2707 */
2708static char *ice_get_opt_fw_name(struct ice_pf *pf)
2709{
2710 /* Optional firmware name same as default with additional dash
2711 * followed by a EUI-64 identifier (PCIe Device Serial Number)
2712 */
2713 struct pci_dev *pdev = pf->pdev;
2714 char *opt_fw_filename = NULL;
2715 u32 dword;
2716 u8 dsn[8];
2717 int pos;
2718
2719 /* Determine the name of the optional file using the DSN (two
2720 * dwords following the start of the DSN Capability).
2721 */
2722 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_DSN);
2723 if (pos) {
2724 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
2725 if (!opt_fw_filename)
2726 return NULL;
2727
2728 pci_read_config_dword(pdev, pos + 4, &dword);
2729 put_unaligned_le32(dword, &dsn[0]);
2730 pci_read_config_dword(pdev, pos + 8, &dword);
2731 put_unaligned_le32(dword, &dsn[4]);
2732 snprintf(opt_fw_filename, NAME_MAX,
2733 "%sice-%02x%02x%02x%02x%02x%02x%02x%02x.pkg",
2734 ICE_DDP_PKG_PATH,
2735 dsn[7], dsn[6], dsn[5], dsn[4],
2736 dsn[3], dsn[2], dsn[1], dsn[0]);
2737 }
2738
2739 return opt_fw_filename;
2740}
2741
2742/**
2743 * ice_request_fw - Device initialization routine
2744 * @pf: pointer to the PF instance
2745 */
2746static void ice_request_fw(struct ice_pf *pf)
2747{
2748 char *opt_fw_filename = ice_get_opt_fw_name(pf);
2749 const struct firmware *firmware = NULL;
2750 struct device *dev = &pf->pdev->dev;
2751 int err = 0;
2752
2753 /* optional device-specific DDP (if present) overrides the default DDP
2754 * package file. kernel logs a debug message if the file doesn't exist,
2755 * and warning messages for other errors.
2756 */
2757 if (opt_fw_filename) {
2758 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
2759 if (err) {
2760 kfree(opt_fw_filename);
2761 goto dflt_pkg_load;
2762 }
2763
2764 /* request for firmware was successful. Download to device */
2765 ice_load_pkg(firmware, pf);
2766 kfree(opt_fw_filename);
2767 release_firmware(firmware);
2768 return;
2769 }
2770
2771dflt_pkg_load:
2772 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
2773 if (err) {
2774 dev_err(dev,
2775 "The DDP package file was not found or could not be read. Entering Safe Mode\n");
2776 return;
2777 }
2778
2779 /* request for firmware was successful. Download to device */
2780 ice_load_pkg(firmware, pf);
2781 release_firmware(firmware);
2782}
2783
2784/**
2785 * ice_probe - Device initialization routine
2786 * @pdev: PCI device information struct
2787 * @ent: entry in ice_pci_tbl
2788 *
2789 * Returns 0 on success, negative on failure
2790 */
2791static int
2792ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
2793{
2794 struct device *dev = &pdev->dev;
2795 struct ice_pf *pf;
2796 struct ice_hw *hw;
2797 int err;
2798
2799 /* this driver uses devres, see Documentation/driver-api/driver-model/devres.rst */
2800 err = pcim_enable_device(pdev);
2801 if (err)
2802 return err;
2803
2804 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
2805 if (err) {
2806 dev_err(dev, "BAR0 I/O map error %d\n", err);
2807 return err;
2808 }
2809
2810 pf = devm_kzalloc(dev, sizeof(*pf), GFP_KERNEL);
2811 if (!pf)
2812 return -ENOMEM;
2813
2814 /* set up for high or low DMA */
2815 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
2816 if (err)
2817 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2818 if (err) {
2819 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
2820 return err;
2821 }
2822
2823 pci_enable_pcie_error_reporting(pdev);
2824 pci_set_master(pdev);
2825
2826 pf->pdev = pdev;
2827 pci_set_drvdata(pdev, pf);
2828 set_bit(__ICE_DOWN, pf->state);
2829 /* Disable service task until DOWN bit is cleared */
2830 set_bit(__ICE_SERVICE_DIS, pf->state);
2831
2832 hw = &pf->hw;
2833 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
2834 hw->back = pf;
2835 hw->vendor_id = pdev->vendor;
2836 hw->device_id = pdev->device;
2837 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2838 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2839 hw->subsystem_device_id = pdev->subsystem_device;
2840 hw->bus.device = PCI_SLOT(pdev->devfn);
2841 hw->bus.func = PCI_FUNC(pdev->devfn);
2842 ice_set_ctrlq_len(hw);
2843
2844 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
2845
2846#ifndef CONFIG_DYNAMIC_DEBUG
2847 if (debug < -1)
2848 hw->debug_mask = debug;
2849#endif
2850
2851 err = ice_init_hw(hw);
2852 if (err) {
2853 dev_err(dev, "ice_init_hw failed: %d\n", err);
2854 err = -EIO;
2855 goto err_exit_unroll;
2856 }
2857
2858 dev_info(dev, "firmware %d.%d.%d api %d.%d.%d nvm %s build 0x%08x\n",
2859 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch,
2860 hw->api_maj_ver, hw->api_min_ver, hw->api_patch,
2861 ice_nvm_version_str(hw), hw->fw_build);
2862
2863 ice_request_fw(pf);
2864
2865 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
2866 * set in pf->state, which will cause ice_is_safe_mode to return
2867 * true
2868 */
2869 if (ice_is_safe_mode(pf)) {
2870 dev_err(dev,
2871 "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
2872 /* we already got function/device capabilities but these don't
2873 * reflect what the driver needs to do in safe mode. Instead of
2874 * adding conditional logic everywhere to ignore these
2875 * device/function capabilities, override them.
2876 */
2877 ice_set_safe_mode_caps(hw);
2878 }
2879
2880 err = ice_init_pf(pf);
2881 if (err) {
2882 dev_err(dev, "ice_init_pf failed: %d\n", err);
2883 goto err_init_pf_unroll;
2884 }
2885
2886 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
2887 if (!pf->num_alloc_vsi) {
2888 err = -EIO;
2889 goto err_init_pf_unroll;
2890 }
2891
2892 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
2893 GFP_KERNEL);
2894 if (!pf->vsi) {
2895 err = -ENOMEM;
2896 goto err_init_pf_unroll;
2897 }
2898
2899 err = ice_init_interrupt_scheme(pf);
2900 if (err) {
2901 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
2902 err = -EIO;
2903 goto err_init_interrupt_unroll;
2904 }
2905
2906 /* Driver is mostly up */
2907 clear_bit(__ICE_DOWN, pf->state);
2908
2909 /* In case of MSIX we are going to setup the misc vector right here
2910 * to handle admin queue events etc. In case of legacy and MSI
2911 * the misc functionality and queue processing is combined in
2912 * the same vector and that gets setup at open.
2913 */
2914 err = ice_req_irq_msix_misc(pf);
2915 if (err) {
2916 dev_err(dev, "setup of misc vector failed: %d\n", err);
2917 goto err_init_interrupt_unroll;
2918 }
2919
2920 /* create switch struct for the switch element created by FW on boot */
2921 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
2922 if (!pf->first_sw) {
2923 err = -ENOMEM;
2924 goto err_msix_misc_unroll;
2925 }
2926
2927 if (hw->evb_veb)
2928 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
2929 else
2930 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
2931
2932 pf->first_sw->pf = pf;
2933
2934 /* record the sw_id available for later use */
2935 pf->first_sw->sw_id = hw->port_info->sw_id;
2936
2937 err = ice_setup_pf_sw(pf);
2938 if (err) {
2939 dev_err(dev, "probe failed due to setup PF switch:%d\n", err);
2940 goto err_alloc_sw_unroll;
2941 }
2942
2943 clear_bit(__ICE_SERVICE_DIS, pf->state);
2944
2945 /* tell the firmware we are up */
2946 err = ice_send_version(pf);
2947 if (err) {
2948 dev_err(dev,
2949 "probe failed sending driver version %s. error: %d\n",
2950 ice_drv_ver, err);
2951 goto err_alloc_sw_unroll;
2952 }
2953
2954 /* since everything is good, start the service timer */
2955 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
2956
2957 err = ice_init_link_events(pf->hw.port_info);
2958 if (err) {
2959 dev_err(dev, "ice_init_link_events failed: %d\n", err);
2960 goto err_alloc_sw_unroll;
2961 }
2962
2963 ice_verify_cacheline_size(pf);
2964
2965 /* If no DDP driven features have to be setup, return here */
2966 if (ice_is_safe_mode(pf))
2967 return 0;
2968
2969 /* initialize DDP driven features */
2970
2971 /* Note: DCB init failure is non-fatal to load */
2972 if (ice_init_pf_dcb(pf, false)) {
2973 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
2974 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
2975 } else {
2976 ice_cfg_lldp_mib_change(&pf->hw, true);
2977 }
2978
2979 return 0;
2980
2981err_alloc_sw_unroll:
2982 set_bit(__ICE_SERVICE_DIS, pf->state);
2983 set_bit(__ICE_DOWN, pf->state);
2984 devm_kfree(&pf->pdev->dev, pf->first_sw);
2985err_msix_misc_unroll:
2986 ice_free_irq_msix_misc(pf);
2987err_init_interrupt_unroll:
2988 ice_clear_interrupt_scheme(pf);
2989 devm_kfree(dev, pf->vsi);
2990err_init_pf_unroll:
2991 ice_deinit_pf(pf);
2992 ice_deinit_hw(hw);
2993err_exit_unroll:
2994 pci_disable_pcie_error_reporting(pdev);
2995 return err;
2996}
2997
2998/**
2999 * ice_remove - Device removal routine
3000 * @pdev: PCI device information struct
3001 */
3002static void ice_remove(struct pci_dev *pdev)
3003{
3004 struct ice_pf *pf = pci_get_drvdata(pdev);
3005 int i;
3006
3007 if (!pf)
3008 return;
3009
3010 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
3011 if (!ice_is_reset_in_progress(pf->state))
3012 break;
3013 msleep(100);
3014 }
3015
3016 set_bit(__ICE_DOWN, pf->state);
3017 ice_service_task_stop(pf);
3018
3019 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags))
3020 ice_free_vfs(pf);
3021 ice_vsi_release_all(pf);
3022 ice_free_irq_msix_misc(pf);
3023 ice_for_each_vsi(pf, i) {
3024 if (!pf->vsi[i])
3025 continue;
3026 ice_vsi_free_q_vectors(pf->vsi[i]);
3027 }
3028 ice_deinit_pf(pf);
3029 ice_deinit_hw(&pf->hw);
3030 ice_clear_interrupt_scheme(pf);
3031 /* Issue a PFR as part of the prescribed driver unload flow. Do not
3032 * do it via ice_schedule_reset() since there is no need to rebuild
3033 * and the service task is already stopped.
3034 */
3035 ice_reset(&pf->hw, ICE_RESET_PFR);
3036 pci_disable_pcie_error_reporting(pdev);
3037}
3038
3039/**
3040 * ice_pci_err_detected - warning that PCI error has been detected
3041 * @pdev: PCI device information struct
3042 * @err: the type of PCI error
3043 *
3044 * Called to warn that something happened on the PCI bus and the error handling
3045 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
3046 */
3047static pci_ers_result_t
3048ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err)
3049{
3050 struct ice_pf *pf = pci_get_drvdata(pdev);
3051
3052 if (!pf) {
3053 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
3054 __func__, err);
3055 return PCI_ERS_RESULT_DISCONNECT;
3056 }
3057
3058 if (!test_bit(__ICE_SUSPENDED, pf->state)) {
3059 ice_service_task_stop(pf);
3060
3061 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
3062 set_bit(__ICE_PFR_REQ, pf->state);
3063 ice_prepare_for_reset(pf);
3064 }
3065 }
3066
3067 return PCI_ERS_RESULT_NEED_RESET;
3068}
3069
3070/**
3071 * ice_pci_err_slot_reset - a PCI slot reset has just happened
3072 * @pdev: PCI device information struct
3073 *
3074 * Called to determine if the driver can recover from the PCI slot reset by
3075 * using a register read to determine if the device is recoverable.
3076 */
3077static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
3078{
3079 struct ice_pf *pf = pci_get_drvdata(pdev);
3080 pci_ers_result_t result;
3081 int err;
3082 u32 reg;
3083
3084 err = pci_enable_device_mem(pdev);
3085 if (err) {
3086 dev_err(&pdev->dev,
3087 "Cannot re-enable PCI device after reset, error %d\n",
3088 err);
3089 result = PCI_ERS_RESULT_DISCONNECT;
3090 } else {
3091 pci_set_master(pdev);
3092 pci_restore_state(pdev);
3093 pci_save_state(pdev);
3094 pci_wake_from_d3(pdev, false);
3095
3096 /* Check for life */
3097 reg = rd32(&pf->hw, GLGEN_RTRIG);
3098 if (!reg)
3099 result = PCI_ERS_RESULT_RECOVERED;
3100 else
3101 result = PCI_ERS_RESULT_DISCONNECT;
3102 }
3103
3104 err = pci_cleanup_aer_uncorrect_error_status(pdev);
3105 if (err)
3106 dev_dbg(&pdev->dev,
3107 "pci_cleanup_aer_uncorrect_error_status failed, error %d\n",
3108 err);
3109 /* non-fatal, continue */
3110
3111 return result;
3112}
3113
3114/**
3115 * ice_pci_err_resume - restart operations after PCI error recovery
3116 * @pdev: PCI device information struct
3117 *
3118 * Called to allow the driver to bring things back up after PCI error and/or
3119 * reset recovery have finished
3120 */
3121static void ice_pci_err_resume(struct pci_dev *pdev)
3122{
3123 struct ice_pf *pf = pci_get_drvdata(pdev);
3124
3125 if (!pf) {
3126 dev_err(&pdev->dev,
3127 "%s failed, device is unrecoverable\n", __func__);
3128 return;
3129 }
3130
3131 if (test_bit(__ICE_SUSPENDED, pf->state)) {
3132 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
3133 __func__);
3134 return;
3135 }
3136
3137 ice_do_reset(pf, ICE_RESET_PFR);
3138 ice_service_task_restart(pf);
3139 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
3140}
3141
3142/**
3143 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
3144 * @pdev: PCI device information struct
3145 */
3146static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
3147{
3148 struct ice_pf *pf = pci_get_drvdata(pdev);
3149
3150 if (!test_bit(__ICE_SUSPENDED, pf->state)) {
3151 ice_service_task_stop(pf);
3152
3153 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
3154 set_bit(__ICE_PFR_REQ, pf->state);
3155 ice_prepare_for_reset(pf);
3156 }
3157 }
3158}
3159
3160/**
3161 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
3162 * @pdev: PCI device information struct
3163 */
3164static void ice_pci_err_reset_done(struct pci_dev *pdev)
3165{
3166 ice_pci_err_resume(pdev);
3167}
3168
3169/* ice_pci_tbl - PCI Device ID Table
3170 *
3171 * Wildcard entries (PCI_ANY_ID) should come last
3172 * Last entry must be all 0s
3173 *
3174 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
3175 * Class, Class Mask, private data (not used) }
3176 */
3177static const struct pci_device_id ice_pci_tbl[] = {
3178 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
3179 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
3180 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
3181 /* required last entry */
3182 { 0, }
3183};
3184MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
3185
3186static const struct pci_error_handlers ice_pci_err_handler = {
3187 .error_detected = ice_pci_err_detected,
3188 .slot_reset = ice_pci_err_slot_reset,
3189 .reset_prepare = ice_pci_err_reset_prepare,
3190 .reset_done = ice_pci_err_reset_done,
3191 .resume = ice_pci_err_resume
3192};
3193
3194static struct pci_driver ice_driver = {
3195 .name = KBUILD_MODNAME,
3196 .id_table = ice_pci_tbl,
3197 .probe = ice_probe,
3198 .remove = ice_remove,
3199 .sriov_configure = ice_sriov_configure,
3200 .err_handler = &ice_pci_err_handler
3201};
3202
3203/**
3204 * ice_module_init - Driver registration routine
3205 *
3206 * ice_module_init is the first routine called when the driver is
3207 * loaded. All it does is register with the PCI subsystem.
3208 */
3209static int __init ice_module_init(void)
3210{
3211 int status;
3212
3213 pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver);
3214 pr_info("%s\n", ice_copyright);
3215
3216 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
3217 if (!ice_wq) {
3218 pr_err("Failed to create workqueue\n");
3219 return -ENOMEM;
3220 }
3221
3222 status = pci_register_driver(&ice_driver);
3223 if (status) {
3224 pr_err("failed to register PCI driver, err %d\n", status);
3225 destroy_workqueue(ice_wq);
3226 }
3227
3228 return status;
3229}
3230module_init(ice_module_init);
3231
3232/**
3233 * ice_module_exit - Driver exit cleanup routine
3234 *
3235 * ice_module_exit is called just before the driver is removed
3236 * from memory.
3237 */
3238static void __exit ice_module_exit(void)
3239{
3240 pci_unregister_driver(&ice_driver);
3241 destroy_workqueue(ice_wq);
3242 pr_info("module unloaded\n");
3243}
3244module_exit(ice_module_exit);
3245
3246/**
3247 * ice_set_mac_address - NDO callback to set MAC address
3248 * @netdev: network interface device structure
3249 * @pi: pointer to an address structure
3250 *
3251 * Returns 0 on success, negative on failure
3252 */
3253static int ice_set_mac_address(struct net_device *netdev, void *pi)
3254{
3255 struct ice_netdev_priv *np = netdev_priv(netdev);
3256 struct ice_vsi *vsi = np->vsi;
3257 struct ice_pf *pf = vsi->back;
3258 struct ice_hw *hw = &pf->hw;
3259 struct sockaddr *addr = pi;
3260 enum ice_status status;
3261 u8 flags = 0;
3262 int err = 0;
3263 u8 *mac;
3264
3265 mac = (u8 *)addr->sa_data;
3266
3267 if (!is_valid_ether_addr(mac))
3268 return -EADDRNOTAVAIL;
3269
3270 if (ether_addr_equal(netdev->dev_addr, mac)) {
3271 netdev_warn(netdev, "already using mac %pM\n", mac);
3272 return 0;
3273 }
3274
3275 if (test_bit(__ICE_DOWN, pf->state) ||
3276 ice_is_reset_in_progress(pf->state)) {
3277 netdev_err(netdev, "can't set mac %pM. device not ready\n",
3278 mac);
3279 return -EBUSY;
3280 }
3281
3282 /* When we change the MAC address we also have to change the MAC address
3283 * based filter rules that were created previously for the old MAC
3284 * address. So first, we remove the old filter rule using ice_remove_mac
3285 * and then create a new filter rule using ice_add_mac via
3286 * ice_vsi_cfg_mac_fltr function call for both add and/or remove
3287 * filters.
3288 */
3289 status = ice_vsi_cfg_mac_fltr(vsi, netdev->dev_addr, false);
3290 if (status) {
3291 err = -EADDRNOTAVAIL;
3292 goto err_update_filters;
3293 }
3294
3295 status = ice_vsi_cfg_mac_fltr(vsi, mac, true);
3296 if (status) {
3297 err = -EADDRNOTAVAIL;
3298 goto err_update_filters;
3299 }
3300
3301err_update_filters:
3302 if (err) {
3303 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
3304 mac);
3305 return err;
3306 }
3307
3308 /* change the netdev's MAC address */
3309 memcpy(netdev->dev_addr, mac, netdev->addr_len);
3310 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
3311 netdev->dev_addr);
3312
3313 /* write new MAC address to the firmware */
3314 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
3315 status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
3316 if (status) {
3317 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
3318 mac, status);
3319 }
3320 return 0;
3321}
3322
3323/**
3324 * ice_set_rx_mode - NDO callback to set the netdev filters
3325 * @netdev: network interface device structure
3326 */
3327static void ice_set_rx_mode(struct net_device *netdev)
3328{
3329 struct ice_netdev_priv *np = netdev_priv(netdev);
3330 struct ice_vsi *vsi = np->vsi;
3331
3332 if (!vsi)
3333 return;
3334
3335 /* Set the flags to synchronize filters
3336 * ndo_set_rx_mode may be triggered even without a change in netdev
3337 * flags
3338 */
3339 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
3340 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
3341 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
3342
3343 /* schedule our worker thread which will take care of
3344 * applying the new filter changes
3345 */
3346 ice_service_task_schedule(vsi->back);
3347}
3348
3349/**
3350 * ice_fdb_add - add an entry to the hardware database
3351 * @ndm: the input from the stack
3352 * @tb: pointer to array of nladdr (unused)
3353 * @dev: the net device pointer
3354 * @addr: the MAC address entry being added
3355 * @vid: VLAN ID
3356 * @flags: instructions from stack about fdb operation
3357 * @extack: netlink extended ack
3358 */
3359static int
3360ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
3361 struct net_device *dev, const unsigned char *addr, u16 vid,
3362 u16 flags, struct netlink_ext_ack __always_unused *extack)
3363{
3364 int err;
3365
3366 if (vid) {
3367 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
3368 return -EINVAL;
3369 }
3370 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
3371 netdev_err(dev, "FDB only supports static addresses\n");
3372 return -EINVAL;
3373 }
3374
3375 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
3376 err = dev_uc_add_excl(dev, addr);
3377 else if (is_multicast_ether_addr(addr))
3378 err = dev_mc_add_excl(dev, addr);
3379 else
3380 err = -EINVAL;
3381
3382 /* Only return duplicate errors if NLM_F_EXCL is set */
3383 if (err == -EEXIST && !(flags & NLM_F_EXCL))
3384 err = 0;
3385
3386 return err;
3387}
3388
3389/**
3390 * ice_fdb_del - delete an entry from the hardware database
3391 * @ndm: the input from the stack
3392 * @tb: pointer to array of nladdr (unused)
3393 * @dev: the net device pointer
3394 * @addr: the MAC address entry being added
3395 * @vid: VLAN ID
3396 */
3397static int
3398ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
3399 struct net_device *dev, const unsigned char *addr,
3400 __always_unused u16 vid)
3401{
3402 int err;
3403
3404 if (ndm->ndm_state & NUD_PERMANENT) {
3405 netdev_err(dev, "FDB only supports static addresses\n");
3406 return -EINVAL;
3407 }
3408
3409 if (is_unicast_ether_addr(addr))
3410 err = dev_uc_del(dev, addr);
3411 else if (is_multicast_ether_addr(addr))
3412 err = dev_mc_del(dev, addr);
3413 else
3414 err = -EINVAL;
3415
3416 return err;
3417}
3418
3419/**
3420 * ice_set_features - set the netdev feature flags
3421 * @netdev: ptr to the netdev being adjusted
3422 * @features: the feature set that the stack is suggesting
3423 */
3424static int
3425ice_set_features(struct net_device *netdev, netdev_features_t features)
3426{
3427 struct ice_netdev_priv *np = netdev_priv(netdev);
3428 struct ice_vsi *vsi = np->vsi;
3429 int ret = 0;
3430
3431 /* Don't set any netdev advanced features with device in Safe Mode */
3432 if (ice_is_safe_mode(vsi->back)) {
3433 dev_err(&vsi->back->pdev->dev,
3434 "Device is in Safe Mode - not enabling advanced netdev features\n");
3435 return ret;
3436 }
3437
3438 /* Multiple features can be changed in one call so keep features in
3439 * separate if/else statements to guarantee each feature is checked
3440 */
3441 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
3442 ret = ice_vsi_manage_rss_lut(vsi, true);
3443 else if (!(features & NETIF_F_RXHASH) &&
3444 netdev->features & NETIF_F_RXHASH)
3445 ret = ice_vsi_manage_rss_lut(vsi, false);
3446
3447 if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
3448 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3449 ret = ice_vsi_manage_vlan_stripping(vsi, true);
3450 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
3451 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3452 ret = ice_vsi_manage_vlan_stripping(vsi, false);
3453
3454 if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
3455 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3456 ret = ice_vsi_manage_vlan_insertion(vsi);
3457 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
3458 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3459 ret = ice_vsi_manage_vlan_insertion(vsi);
3460
3461 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
3462 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
3463 ret = ice_cfg_vlan_pruning(vsi, true, false);
3464 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
3465 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
3466 ret = ice_cfg_vlan_pruning(vsi, false, false);
3467
3468 return ret;
3469}
3470
3471/**
3472 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
3473 * @vsi: VSI to setup VLAN properties for
3474 */
3475static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
3476{
3477 int ret = 0;
3478
3479 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3480 ret = ice_vsi_manage_vlan_stripping(vsi, true);
3481 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
3482 ret = ice_vsi_manage_vlan_insertion(vsi);
3483
3484 return ret;
3485}
3486
3487/**
3488 * ice_vsi_cfg - Setup the VSI
3489 * @vsi: the VSI being configured
3490 *
3491 * Return 0 on success and negative value on error
3492 */
3493int ice_vsi_cfg(struct ice_vsi *vsi)
3494{
3495 int err;
3496
3497 if (vsi->netdev) {
3498 ice_set_rx_mode(vsi->netdev);
3499
3500 err = ice_vsi_vlan_setup(vsi);
3501
3502 if (err)
3503 return err;
3504 }
3505 ice_vsi_cfg_dcb_rings(vsi);
3506
3507 err = ice_vsi_cfg_lan_txqs(vsi);
3508 if (!err)
3509 err = ice_vsi_cfg_rxqs(vsi);
3510
3511 return err;
3512}
3513
3514/**
3515 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
3516 * @vsi: the VSI being configured
3517 */
3518static void ice_napi_enable_all(struct ice_vsi *vsi)
3519{
3520 int q_idx;
3521
3522 if (!vsi->netdev)
3523 return;
3524
3525 ice_for_each_q_vector(vsi, q_idx) {
3526 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
3527
3528 if (q_vector->rx.ring || q_vector->tx.ring)
3529 napi_enable(&q_vector->napi);
3530 }
3531}
3532
3533/**
3534 * ice_up_complete - Finish the last steps of bringing up a connection
3535 * @vsi: The VSI being configured
3536 *
3537 * Return 0 on success and negative value on error
3538 */
3539static int ice_up_complete(struct ice_vsi *vsi)
3540{
3541 struct ice_pf *pf = vsi->back;
3542 int err;
3543
3544 ice_vsi_cfg_msix(vsi);
3545
3546 /* Enable only Rx rings, Tx rings were enabled by the FW when the
3547 * Tx queue group list was configured and the context bits were
3548 * programmed using ice_vsi_cfg_txqs
3549 */
3550 err = ice_vsi_start_rx_rings(vsi);
3551 if (err)
3552 return err;
3553
3554 clear_bit(__ICE_DOWN, vsi->state);
3555 ice_napi_enable_all(vsi);
3556 ice_vsi_ena_irq(vsi);
3557
3558 if (vsi->port_info &&
3559 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
3560 vsi->netdev) {
3561 ice_print_link_msg(vsi, true);
3562 netif_tx_start_all_queues(vsi->netdev);
3563 netif_carrier_on(vsi->netdev);
3564 }
3565
3566 ice_service_task_schedule(pf);
3567
3568 return 0;
3569}
3570
3571/**
3572 * ice_up - Bring the connection back up after being down
3573 * @vsi: VSI being configured
3574 */
3575int ice_up(struct ice_vsi *vsi)
3576{
3577 int err;
3578
3579 err = ice_vsi_cfg(vsi);
3580 if (!err)
3581 err = ice_up_complete(vsi);
3582
3583 return err;
3584}
3585
3586/**
3587 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
3588 * @ring: Tx or Rx ring to read stats from
3589 * @pkts: packets stats counter
3590 * @bytes: bytes stats counter
3591 *
3592 * This function fetches stats from the ring considering the atomic operations
3593 * that needs to be performed to read u64 values in 32 bit machine.
3594 */
3595static void
3596ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
3597{
3598 unsigned int start;
3599 *pkts = 0;
3600 *bytes = 0;
3601
3602 if (!ring)
3603 return;
3604 do {
3605 start = u64_stats_fetch_begin_irq(&ring->syncp);
3606 *pkts = ring->stats.pkts;
3607 *bytes = ring->stats.bytes;
3608 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3609}
3610
3611/**
3612 * ice_update_vsi_ring_stats - Update VSI stats counters
3613 * @vsi: the VSI to be updated
3614 */
3615static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
3616{
3617 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
3618 struct ice_ring *ring;
3619 u64 pkts, bytes;
3620 int i;
3621
3622 /* reset netdev stats */
3623 vsi_stats->tx_packets = 0;
3624 vsi_stats->tx_bytes = 0;
3625 vsi_stats->rx_packets = 0;
3626 vsi_stats->rx_bytes = 0;
3627
3628 /* reset non-netdev (extended) stats */
3629 vsi->tx_restart = 0;
3630 vsi->tx_busy = 0;
3631 vsi->tx_linearize = 0;
3632 vsi->rx_buf_failed = 0;
3633 vsi->rx_page_failed = 0;
3634
3635 rcu_read_lock();
3636
3637 /* update Tx rings counters */
3638 ice_for_each_txq(vsi, i) {
3639 ring = READ_ONCE(vsi->tx_rings[i]);
3640 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
3641 vsi_stats->tx_packets += pkts;
3642 vsi_stats->tx_bytes += bytes;
3643 vsi->tx_restart += ring->tx_stats.restart_q;
3644 vsi->tx_busy += ring->tx_stats.tx_busy;
3645 vsi->tx_linearize += ring->tx_stats.tx_linearize;
3646 }
3647
3648 /* update Rx rings counters */
3649 ice_for_each_rxq(vsi, i) {
3650 ring = READ_ONCE(vsi->rx_rings[i]);
3651 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
3652 vsi_stats->rx_packets += pkts;
3653 vsi_stats->rx_bytes += bytes;
3654 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
3655 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
3656 }
3657
3658 rcu_read_unlock();
3659}
3660
3661/**
3662 * ice_update_vsi_stats - Update VSI stats counters
3663 * @vsi: the VSI to be updated
3664 */
3665void ice_update_vsi_stats(struct ice_vsi *vsi)
3666{
3667 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
3668 struct ice_eth_stats *cur_es = &vsi->eth_stats;
3669 struct ice_pf *pf = vsi->back;
3670
3671 if (test_bit(__ICE_DOWN, vsi->state) ||
3672 test_bit(__ICE_CFG_BUSY, pf->state))
3673 return;
3674
3675 /* get stats as recorded by Tx/Rx rings */
3676 ice_update_vsi_ring_stats(vsi);
3677
3678 /* get VSI stats as recorded by the hardware */
3679 ice_update_eth_stats(vsi);
3680
3681 cur_ns->tx_errors = cur_es->tx_errors;
3682 cur_ns->rx_dropped = cur_es->rx_discards;
3683 cur_ns->tx_dropped = cur_es->tx_discards;
3684 cur_ns->multicast = cur_es->rx_multicast;
3685
3686 /* update some more netdev stats if this is main VSI */
3687 if (vsi->type == ICE_VSI_PF) {
3688 cur_ns->rx_crc_errors = pf->stats.crc_errors;
3689 cur_ns->rx_errors = pf->stats.crc_errors +
3690 pf->stats.illegal_bytes;
3691 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
3692 /* record drops from the port level */
3693 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
3694 }
3695}
3696
3697/**
3698 * ice_update_pf_stats - Update PF port stats counters
3699 * @pf: PF whose stats needs to be updated
3700 */
3701void ice_update_pf_stats(struct ice_pf *pf)
3702{
3703 struct ice_hw_port_stats *prev_ps, *cur_ps;
3704 struct ice_hw *hw = &pf->hw;
3705 u8 port;
3706
3707 port = hw->port_info->lport;
3708 prev_ps = &pf->stats_prev;
3709 cur_ps = &pf->stats;
3710
3711 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
3712 &prev_ps->eth.rx_bytes,
3713 &cur_ps->eth.rx_bytes);
3714
3715 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
3716 &prev_ps->eth.rx_unicast,
3717 &cur_ps->eth.rx_unicast);
3718
3719 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
3720 &prev_ps->eth.rx_multicast,
3721 &cur_ps->eth.rx_multicast);
3722
3723 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
3724 &prev_ps->eth.rx_broadcast,
3725 &cur_ps->eth.rx_broadcast);
3726
3727 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
3728 &prev_ps->eth.rx_discards,
3729 &cur_ps->eth.rx_discards);
3730
3731 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
3732 &prev_ps->eth.tx_bytes,
3733 &cur_ps->eth.tx_bytes);
3734
3735 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
3736 &prev_ps->eth.tx_unicast,
3737 &cur_ps->eth.tx_unicast);
3738
3739 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
3740 &prev_ps->eth.tx_multicast,
3741 &cur_ps->eth.tx_multicast);
3742
3743 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
3744 &prev_ps->eth.tx_broadcast,
3745 &cur_ps->eth.tx_broadcast);
3746
3747 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
3748 &prev_ps->tx_dropped_link_down,
3749 &cur_ps->tx_dropped_link_down);
3750
3751 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
3752 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
3753
3754 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
3755 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
3756
3757 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
3758 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
3759
3760 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
3761 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
3762
3763 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
3764 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
3765
3766 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
3767 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
3768
3769 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
3770 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
3771
3772 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
3773 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
3774
3775 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
3776 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
3777
3778 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
3779 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
3780
3781 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
3782 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
3783
3784 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
3785 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
3786
3787 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
3788 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
3789
3790 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
3791 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
3792
3793 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
3794 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
3795
3796 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
3797 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
3798
3799 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
3800 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
3801
3802 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
3803 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
3804
3805 ice_update_dcb_stats(pf);
3806
3807 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
3808 &prev_ps->crc_errors, &cur_ps->crc_errors);
3809
3810 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
3811 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
3812
3813 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
3814 &prev_ps->mac_local_faults,
3815 &cur_ps->mac_local_faults);
3816
3817 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
3818 &prev_ps->mac_remote_faults,
3819 &cur_ps->mac_remote_faults);
3820
3821 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
3822 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
3823
3824 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
3825 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
3826
3827 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
3828 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
3829
3830 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
3831 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
3832
3833 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
3834 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
3835
3836 pf->stat_prev_loaded = true;
3837}
3838
3839/**
3840 * ice_get_stats64 - get statistics for network device structure
3841 * @netdev: network interface device structure
3842 * @stats: main device statistics structure
3843 */
3844static
3845void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3846{
3847 struct ice_netdev_priv *np = netdev_priv(netdev);
3848 struct rtnl_link_stats64 *vsi_stats;
3849 struct ice_vsi *vsi = np->vsi;
3850
3851 vsi_stats = &vsi->net_stats;
3852
3853 if (!vsi->num_txq || !vsi->num_rxq)
3854 return;
3855
3856 /* netdev packet/byte stats come from ring counter. These are obtained
3857 * by summing up ring counters (done by ice_update_vsi_ring_stats).
3858 * But, only call the update routine and read the registers if VSI is
3859 * not down.
3860 */
3861 if (!test_bit(__ICE_DOWN, vsi->state))
3862 ice_update_vsi_ring_stats(vsi);
3863 stats->tx_packets = vsi_stats->tx_packets;
3864 stats->tx_bytes = vsi_stats->tx_bytes;
3865 stats->rx_packets = vsi_stats->rx_packets;
3866 stats->rx_bytes = vsi_stats->rx_bytes;
3867
3868 /* The rest of the stats can be read from the hardware but instead we
3869 * just return values that the watchdog task has already obtained from
3870 * the hardware.
3871 */
3872 stats->multicast = vsi_stats->multicast;
3873 stats->tx_errors = vsi_stats->tx_errors;
3874 stats->tx_dropped = vsi_stats->tx_dropped;
3875 stats->rx_errors = vsi_stats->rx_errors;
3876 stats->rx_dropped = vsi_stats->rx_dropped;
3877 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
3878 stats->rx_length_errors = vsi_stats->rx_length_errors;
3879}
3880
3881/**
3882 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
3883 * @vsi: VSI having NAPI disabled
3884 */
3885static void ice_napi_disable_all(struct ice_vsi *vsi)
3886{
3887 int q_idx;
3888
3889 if (!vsi->netdev)
3890 return;
3891
3892 ice_for_each_q_vector(vsi, q_idx) {
3893 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
3894
3895 if (q_vector->rx.ring || q_vector->tx.ring)
3896 napi_disable(&q_vector->napi);
3897 }
3898}
3899
3900/**
3901 * ice_down - Shutdown the connection
3902 * @vsi: The VSI being stopped
3903 */
3904int ice_down(struct ice_vsi *vsi)
3905{
3906 int i, tx_err, rx_err, link_err = 0;
3907
3908 /* Caller of this function is expected to set the
3909 * vsi->state __ICE_DOWN bit
3910 */
3911 if (vsi->netdev) {
3912 netif_carrier_off(vsi->netdev);
3913 netif_tx_disable(vsi->netdev);
3914 }
3915
3916 ice_vsi_dis_irq(vsi);
3917
3918 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
3919 if (tx_err)
3920 netdev_err(vsi->netdev,
3921 "Failed stop Tx rings, VSI %d error %d\n",
3922 vsi->vsi_num, tx_err);
3923
3924 rx_err = ice_vsi_stop_rx_rings(vsi);
3925 if (rx_err)
3926 netdev_err(vsi->netdev,
3927 "Failed stop Rx rings, VSI %d error %d\n",
3928 vsi->vsi_num, rx_err);
3929
3930 ice_napi_disable_all(vsi);
3931
3932 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
3933 link_err = ice_force_phys_link_state(vsi, false);
3934 if (link_err)
3935 netdev_err(vsi->netdev,
3936 "Failed to set physical link down, VSI %d error %d\n",
3937 vsi->vsi_num, link_err);
3938 }
3939
3940 ice_for_each_txq(vsi, i)
3941 ice_clean_tx_ring(vsi->tx_rings[i]);
3942
3943 ice_for_each_rxq(vsi, i)
3944 ice_clean_rx_ring(vsi->rx_rings[i]);
3945
3946 if (tx_err || rx_err || link_err) {
3947 netdev_err(vsi->netdev,
3948 "Failed to close VSI 0x%04X on switch 0x%04X\n",
3949 vsi->vsi_num, vsi->vsw->sw_id);
3950 return -EIO;
3951 }
3952
3953 return 0;
3954}
3955
3956/**
3957 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
3958 * @vsi: VSI having resources allocated
3959 *
3960 * Return 0 on success, negative on failure
3961 */
3962int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
3963{
3964 int i, err = 0;
3965
3966 if (!vsi->num_txq) {
3967 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n",
3968 vsi->vsi_num);
3969 return -EINVAL;
3970 }
3971
3972 ice_for_each_txq(vsi, i) {
3973 vsi->tx_rings[i]->netdev = vsi->netdev;
3974 err = ice_setup_tx_ring(vsi->tx_rings[i]);
3975 if (err)
3976 break;
3977 }
3978
3979 return err;
3980}
3981
3982/**
3983 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
3984 * @vsi: VSI having resources allocated
3985 *
3986 * Return 0 on success, negative on failure
3987 */
3988int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
3989{
3990 int i, err = 0;
3991
3992 if (!vsi->num_rxq) {
3993 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n",
3994 vsi->vsi_num);
3995 return -EINVAL;
3996 }
3997
3998 ice_for_each_rxq(vsi, i) {
3999 vsi->rx_rings[i]->netdev = vsi->netdev;
4000 err = ice_setup_rx_ring(vsi->rx_rings[i]);
4001 if (err)
4002 break;
4003 }
4004
4005 return err;
4006}
4007
4008/**
4009 * ice_vsi_open - Called when a network interface is made active
4010 * @vsi: the VSI to open
4011 *
4012 * Initialization of the VSI
4013 *
4014 * Returns 0 on success, negative value on error
4015 */
4016static int ice_vsi_open(struct ice_vsi *vsi)
4017{
4018 char int_name[ICE_INT_NAME_STR_LEN];
4019 struct ice_pf *pf = vsi->back;
4020 int err;
4021
4022 /* allocate descriptors */
4023 err = ice_vsi_setup_tx_rings(vsi);
4024 if (err)
4025 goto err_setup_tx;
4026
4027 err = ice_vsi_setup_rx_rings(vsi);
4028 if (err)
4029 goto err_setup_rx;
4030
4031 err = ice_vsi_cfg(vsi);
4032 if (err)
4033 goto err_setup_rx;
4034
4035 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
4036 dev_driver_string(&pf->pdev->dev), vsi->netdev->name);
4037 err = ice_vsi_req_irq_msix(vsi, int_name);
4038 if (err)
4039 goto err_setup_rx;
4040
4041 /* Notify the stack of the actual queue counts. */
4042 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
4043 if (err)
4044 goto err_set_qs;
4045
4046 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
4047 if (err)
4048 goto err_set_qs;
4049
4050 err = ice_up_complete(vsi);
4051 if (err)
4052 goto err_up_complete;
4053
4054 return 0;
4055
4056err_up_complete:
4057 ice_down(vsi);
4058err_set_qs:
4059 ice_vsi_free_irq(vsi);
4060err_setup_rx:
4061 ice_vsi_free_rx_rings(vsi);
4062err_setup_tx:
4063 ice_vsi_free_tx_rings(vsi);
4064
4065 return err;
4066}
4067
4068/**
4069 * ice_vsi_release_all - Delete all VSIs
4070 * @pf: PF from which all VSIs are being removed
4071 */
4072static void ice_vsi_release_all(struct ice_pf *pf)
4073{
4074 int err, i;
4075
4076 if (!pf->vsi)
4077 return;
4078
4079 ice_for_each_vsi(pf, i) {
4080 if (!pf->vsi[i])
4081 continue;
4082
4083 err = ice_vsi_release(pf->vsi[i]);
4084 if (err)
4085 dev_dbg(&pf->pdev->dev,
4086 "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
4087 i, err, pf->vsi[i]->vsi_num);
4088 }
4089}
4090
4091/**
4092 * ice_ena_vsi - resume a VSI
4093 * @vsi: the VSI being resume
4094 * @locked: is the rtnl_lock already held
4095 */
4096static int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
4097{
4098 int err = 0;
4099
4100 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state))
4101 return 0;
4102
4103 clear_bit(__ICE_NEEDS_RESTART, vsi->state);
4104
4105 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
4106 if (netif_running(vsi->netdev)) {
4107 if (!locked)
4108 rtnl_lock();
4109
4110 err = ice_open(vsi->netdev);
4111
4112 if (!locked)
4113 rtnl_unlock();
4114 }
4115 }
4116
4117 return err;
4118}
4119
4120/**
4121 * ice_pf_ena_all_vsi - Resume all VSIs on a PF
4122 * @pf: the PF
4123 * @locked: is the rtnl_lock already held
4124 */
4125#ifdef CONFIG_DCB
4126int ice_pf_ena_all_vsi(struct ice_pf *pf, bool locked)
4127{
4128 int v;
4129
4130 ice_for_each_vsi(pf, v)
4131 if (pf->vsi[v])
4132 if (ice_ena_vsi(pf->vsi[v], locked))
4133 return -EIO;
4134
4135 return 0;
4136}
4137#endif /* CONFIG_DCB */
4138
4139/**
4140 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
4141 * @pf: pointer to the PF instance
4142 * @type: VSI type to rebuild
4143 *
4144 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
4145 */
4146static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
4147{
4148 enum ice_status status;
4149 int i, err;
4150
4151 ice_for_each_vsi(pf, i) {
4152 struct ice_vsi *vsi = pf->vsi[i];
4153
4154 if (!vsi || vsi->type != type)
4155 continue;
4156
4157 /* rebuild the VSI */
4158 err = ice_vsi_rebuild(vsi);
4159 if (err) {
4160 dev_err(&pf->pdev->dev,
4161 "rebuild VSI failed, err %d, VSI index %d, type %d\n",
4162 err, vsi->idx, type);
4163 return err;
4164 }
4165
4166 /* replay filters for the VSI */
4167 status = ice_replay_vsi(&pf->hw, vsi->idx);
4168 if (status) {
4169 dev_err(&pf->pdev->dev,
4170 "replay VSI failed, status %d, VSI index %d, type %d\n",
4171 status, vsi->idx, type);
4172 return -EIO;
4173 }
4174
4175 /* Re-map HW VSI number, using VSI handle that has been
4176 * previously validated in ice_replay_vsi() call above
4177 */
4178 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
4179
4180 /* enable the VSI */
4181 err = ice_ena_vsi(vsi, false);
4182 if (err) {
4183 dev_err(&pf->pdev->dev,
4184 "enable VSI failed, err %d, VSI index %d, type %d\n",
4185 err, vsi->idx, type);
4186 return err;
4187 }
4188
4189 dev_info(&pf->pdev->dev, "VSI rebuilt. VSI index %d, type %d\n",
4190 vsi->idx, type);
4191 }
4192
4193 return 0;
4194}
4195
4196/**
4197 * ice_update_pf_netdev_link - Update PF netdev link status
4198 * @pf: pointer to the PF instance
4199 */
4200static void ice_update_pf_netdev_link(struct ice_pf *pf)
4201{
4202 bool link_up;
4203 int i;
4204
4205 ice_for_each_vsi(pf, i) {
4206 struct ice_vsi *vsi = pf->vsi[i];
4207
4208 if (!vsi || vsi->type != ICE_VSI_PF)
4209 return;
4210
4211 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
4212 if (link_up) {
4213 netif_carrier_on(pf->vsi[i]->netdev);
4214 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
4215 } else {
4216 netif_carrier_off(pf->vsi[i]->netdev);
4217 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
4218 }
4219 }
4220}
4221
4222/**
4223 * ice_rebuild - rebuild after reset
4224 * @pf: PF to rebuild
4225 * @reset_type: type of reset
4226 */
4227static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
4228{
4229 struct device *dev = &pf->pdev->dev;
4230 struct ice_hw *hw = &pf->hw;
4231 enum ice_status ret;
4232 int err;
4233
4234 if (test_bit(__ICE_DOWN, pf->state))
4235 goto clear_recovery;
4236
4237 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
4238
4239 ret = ice_init_all_ctrlq(hw);
4240 if (ret) {
4241 dev_err(dev, "control queues init failed %d\n", ret);
4242 goto err_init_ctrlq;
4243 }
4244
4245 /* if DDP was previously loaded successfully */
4246 if (!ice_is_safe_mode(pf)) {
4247 /* reload the SW DB of filter tables */
4248 if (reset_type == ICE_RESET_PFR)
4249 ice_fill_blk_tbls(hw);
4250 else
4251 /* Reload DDP Package after CORER/GLOBR reset */
4252 ice_load_pkg(NULL, pf);
4253 }
4254
4255 ret = ice_clear_pf_cfg(hw);
4256 if (ret) {
4257 dev_err(dev, "clear PF configuration failed %d\n", ret);
4258 goto err_init_ctrlq;
4259 }
4260
4261 ice_clear_pxe_mode(hw);
4262
4263 ret = ice_get_caps(hw);
4264 if (ret) {
4265 dev_err(dev, "ice_get_caps failed %d\n", ret);
4266 goto err_init_ctrlq;
4267 }
4268
4269 err = ice_sched_init_port(hw->port_info);
4270 if (err)
4271 goto err_sched_init_port;
4272
4273 err = ice_update_link_info(hw->port_info);
4274 if (err)
4275 dev_err(&pf->pdev->dev, "Get link status error %d\n", err);
4276
4277 /* start misc vector */
4278 err = ice_req_irq_msix_misc(pf);
4279 if (err) {
4280 dev_err(dev, "misc vector setup failed: %d\n", err);
4281 goto err_sched_init_port;
4282 }
4283
4284 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
4285 ice_dcb_rebuild(pf);
4286
4287 /* rebuild PF VSI */
4288 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
4289 if (err) {
4290 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
4291 goto err_vsi_rebuild;
4292 }
4293
4294 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4295 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_VF);
4296 if (err) {
4297 dev_err(dev, "VF VSI rebuild failed: %d\n", err);
4298 goto err_vsi_rebuild;
4299 }
4300 }
4301
4302 ice_update_pf_netdev_link(pf);
4303
4304 /* tell the firmware we are up */
4305 ret = ice_send_version(pf);
4306 if (ret) {
4307 dev_err(dev,
4308 "Rebuild failed due to error sending driver version: %d\n",
4309 ret);
4310 goto err_vsi_rebuild;
4311 }
4312
4313 ice_replay_post(hw);
4314
4315 /* if we get here, reset flow is successful */
4316 clear_bit(__ICE_RESET_FAILED, pf->state);
4317 return;
4318
4319err_vsi_rebuild:
4320err_sched_init_port:
4321 ice_sched_cleanup_all(hw);
4322err_init_ctrlq:
4323 ice_shutdown_all_ctrlq(hw);
4324 set_bit(__ICE_RESET_FAILED, pf->state);
4325clear_recovery:
4326 /* set this bit in PF state to control service task scheduling */
4327 set_bit(__ICE_NEEDS_RESTART, pf->state);
4328 dev_err(dev, "Rebuild failed, unload and reload driver\n");
4329}
4330
4331/**
4332 * ice_change_mtu - NDO callback to change the MTU
4333 * @netdev: network interface device structure
4334 * @new_mtu: new value for maximum frame size
4335 *
4336 * Returns 0 on success, negative on failure
4337 */
4338static int ice_change_mtu(struct net_device *netdev, int new_mtu)
4339{
4340 struct ice_netdev_priv *np = netdev_priv(netdev);
4341 struct ice_vsi *vsi = np->vsi;
4342 struct ice_pf *pf = vsi->back;
4343 u8 count = 0;
4344
4345 if (new_mtu == netdev->mtu) {
4346 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
4347 return 0;
4348 }
4349
4350 if (new_mtu < netdev->min_mtu) {
4351 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
4352 netdev->min_mtu);
4353 return -EINVAL;
4354 } else if (new_mtu > netdev->max_mtu) {
4355 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
4356 netdev->min_mtu);
4357 return -EINVAL;
4358 }
4359 /* if a reset is in progress, wait for some time for it to complete */
4360 do {
4361 if (ice_is_reset_in_progress(pf->state)) {
4362 count++;
4363 usleep_range(1000, 2000);
4364 } else {
4365 break;
4366 }
4367
4368 } while (count < 100);
4369
4370 if (count == 100) {
4371 netdev_err(netdev, "can't change MTU. Device is busy\n");
4372 return -EBUSY;
4373 }
4374
4375 netdev->mtu = new_mtu;
4376
4377 /* if VSI is up, bring it down and then back up */
4378 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
4379 int err;
4380
4381 err = ice_down(vsi);
4382 if (err) {
4383 netdev_err(netdev, "change MTU if_up err %d\n", err);
4384 return err;
4385 }
4386
4387 err = ice_up(vsi);
4388 if (err) {
4389 netdev_err(netdev, "change MTU if_up err %d\n", err);
4390 return err;
4391 }
4392 }
4393
4394 netdev_info(netdev, "changed MTU to %d\n", new_mtu);
4395 return 0;
4396}
4397
4398/**
4399 * ice_set_rss - Set RSS keys and lut
4400 * @vsi: Pointer to VSI structure
4401 * @seed: RSS hash seed
4402 * @lut: Lookup table
4403 * @lut_size: Lookup table size
4404 *
4405 * Returns 0 on success, negative on failure
4406 */
4407int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
4408{
4409 struct ice_pf *pf = vsi->back;
4410 struct ice_hw *hw = &pf->hw;
4411 enum ice_status status;
4412
4413 if (seed) {
4414 struct ice_aqc_get_set_rss_keys *buf =
4415 (struct ice_aqc_get_set_rss_keys *)seed;
4416
4417 status = ice_aq_set_rss_key(hw, vsi->idx, buf);
4418
4419 if (status) {
4420 dev_err(&pf->pdev->dev,
4421 "Cannot set RSS key, err %d aq_err %d\n",
4422 status, hw->adminq.rq_last_status);
4423 return -EIO;
4424 }
4425 }
4426
4427 if (lut) {
4428 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
4429 lut, lut_size);
4430 if (status) {
4431 dev_err(&pf->pdev->dev,
4432 "Cannot set RSS lut, err %d aq_err %d\n",
4433 status, hw->adminq.rq_last_status);
4434 return -EIO;
4435 }
4436 }
4437
4438 return 0;
4439}
4440
4441/**
4442 * ice_get_rss - Get RSS keys and lut
4443 * @vsi: Pointer to VSI structure
4444 * @seed: Buffer to store the keys
4445 * @lut: Buffer to store the lookup table entries
4446 * @lut_size: Size of buffer to store the lookup table entries
4447 *
4448 * Returns 0 on success, negative on failure
4449 */
4450int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
4451{
4452 struct ice_pf *pf = vsi->back;
4453 struct ice_hw *hw = &pf->hw;
4454 enum ice_status status;
4455
4456 if (seed) {
4457 struct ice_aqc_get_set_rss_keys *buf =
4458 (struct ice_aqc_get_set_rss_keys *)seed;
4459
4460 status = ice_aq_get_rss_key(hw, vsi->idx, buf);
4461 if (status) {
4462 dev_err(&pf->pdev->dev,
4463 "Cannot get RSS key, err %d aq_err %d\n",
4464 status, hw->adminq.rq_last_status);
4465 return -EIO;
4466 }
4467 }
4468
4469 if (lut) {
4470 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
4471 lut, lut_size);
4472 if (status) {
4473 dev_err(&pf->pdev->dev,
4474 "Cannot get RSS lut, err %d aq_err %d\n",
4475 status, hw->adminq.rq_last_status);
4476 return -EIO;
4477 }
4478 }
4479
4480 return 0;
4481}
4482
4483/**
4484 * ice_bridge_getlink - Get the hardware bridge mode
4485 * @skb: skb buff
4486 * @pid: process ID
4487 * @seq: RTNL message seq
4488 * @dev: the netdev being configured
4489 * @filter_mask: filter mask passed in
4490 * @nlflags: netlink flags passed in
4491 *
4492 * Return the bridge mode (VEB/VEPA)
4493 */
4494static int
4495ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
4496 struct net_device *dev, u32 filter_mask, int nlflags)
4497{
4498 struct ice_netdev_priv *np = netdev_priv(dev);
4499 struct ice_vsi *vsi = np->vsi;
4500 struct ice_pf *pf = vsi->back;
4501 u16 bmode;
4502
4503 bmode = pf->first_sw->bridge_mode;
4504
4505 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
4506 filter_mask, NULL);
4507}
4508
4509/**
4510 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
4511 * @vsi: Pointer to VSI structure
4512 * @bmode: Hardware bridge mode (VEB/VEPA)
4513 *
4514 * Returns 0 on success, negative on failure
4515 */
4516static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
4517{
4518 struct device *dev = &vsi->back->pdev->dev;
4519 struct ice_aqc_vsi_props *vsi_props;
4520 struct ice_hw *hw = &vsi->back->hw;
4521 struct ice_vsi_ctx *ctxt;
4522 enum ice_status status;
4523 int ret = 0;
4524
4525 vsi_props = &vsi->info;
4526
4527 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
4528 if (!ctxt)
4529 return -ENOMEM;
4530
4531 ctxt->info = vsi->info;
4532
4533 if (bmode == BRIDGE_MODE_VEB)
4534 /* change from VEPA to VEB mode */
4535 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
4536 else
4537 /* change from VEB to VEPA mode */
4538 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
4539 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4540
4541 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4542 if (status) {
4543 dev_err(dev, "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n",
4544 bmode, status, hw->adminq.sq_last_status);
4545 ret = -EIO;
4546 goto out;
4547 }
4548 /* Update sw flags for book keeping */
4549 vsi_props->sw_flags = ctxt->info.sw_flags;
4550
4551out:
4552 devm_kfree(dev, ctxt);
4553 return ret;
4554}
4555
4556/**
4557 * ice_bridge_setlink - Set the hardware bridge mode
4558 * @dev: the netdev being configured
4559 * @nlh: RTNL message
4560 * @flags: bridge setlink flags
4561 * @extack: netlink extended ack
4562 *
4563 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
4564 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
4565 * not already set for all VSIs connected to this switch. And also update the
4566 * unicast switch filter rules for the corresponding switch of the netdev.
4567 */
4568static int
4569ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
4570 u16 __always_unused flags,
4571 struct netlink_ext_ack __always_unused *extack)
4572{
4573 struct ice_netdev_priv *np = netdev_priv(dev);
4574 struct ice_pf *pf = np->vsi->back;
4575 struct nlattr *attr, *br_spec;
4576 struct ice_hw *hw = &pf->hw;
4577 enum ice_status status;
4578 struct ice_sw *pf_sw;
4579 int rem, v, err = 0;
4580
4581 pf_sw = pf->first_sw;
4582 /* find the attribute in the netlink message */
4583 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
4584
4585 nla_for_each_nested(attr, br_spec, rem) {
4586 __u16 mode;
4587
4588 if (nla_type(attr) != IFLA_BRIDGE_MODE)
4589 continue;
4590 mode = nla_get_u16(attr);
4591 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
4592 return -EINVAL;
4593 /* Continue if bridge mode is not being flipped */
4594 if (mode == pf_sw->bridge_mode)
4595 continue;
4596 /* Iterates through the PF VSI list and update the loopback
4597 * mode of the VSI
4598 */
4599 ice_for_each_vsi(pf, v) {
4600 if (!pf->vsi[v])
4601 continue;
4602 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
4603 if (err)
4604 return err;
4605 }
4606
4607 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
4608 /* Update the unicast switch filter rules for the corresponding
4609 * switch of the netdev
4610 */
4611 status = ice_update_sw_rule_bridge_mode(hw);
4612 if (status) {
4613 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %d\n",
4614 mode, status, hw->adminq.sq_last_status);
4615 /* revert hw->evb_veb */
4616 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
4617 return -EIO;
4618 }
4619
4620 pf_sw->bridge_mode = mode;
4621 }
4622
4623 return 0;
4624}
4625
4626/**
4627 * ice_tx_timeout - Respond to a Tx Hang
4628 * @netdev: network interface device structure
4629 */
4630static void ice_tx_timeout(struct net_device *netdev)
4631{
4632 struct ice_netdev_priv *np = netdev_priv(netdev);
4633 struct ice_ring *tx_ring = NULL;
4634 struct ice_vsi *vsi = np->vsi;
4635 struct ice_pf *pf = vsi->back;
4636 int hung_queue = -1;
4637 u32 i;
4638
4639 pf->tx_timeout_count++;
4640
4641 /* find the stopped queue the same way dev_watchdog() does */
4642 for (i = 0; i < netdev->num_tx_queues; i++) {
4643 unsigned long trans_start;
4644 struct netdev_queue *q;
4645
4646 q = netdev_get_tx_queue(netdev, i);
4647 trans_start = q->trans_start;
4648 if (netif_xmit_stopped(q) &&
4649 time_after(jiffies,
4650 trans_start + netdev->watchdog_timeo)) {
4651 hung_queue = i;
4652 break;
4653 }
4654 }
4655
4656 if (i == netdev->num_tx_queues)
4657 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n");
4658 else
4659 /* now that we have an index, find the tx_ring struct */
4660 for (i = 0; i < vsi->num_txq; i++)
4661 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
4662 if (hung_queue == vsi->tx_rings[i]->q_index) {
4663 tx_ring = vsi->tx_rings[i];
4664 break;
4665 }
4666
4667 /* Reset recovery level if enough time has elapsed after last timeout.
4668 * Also ensure no new reset action happens before next timeout period.
4669 */
4670 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
4671 pf->tx_timeout_recovery_level = 1;
4672 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
4673 netdev->watchdog_timeo)))
4674 return;
4675
4676 if (tx_ring) {
4677 struct ice_hw *hw = &pf->hw;
4678 u32 head, val = 0;
4679
4680 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[hung_queue])) &
4681 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
4682 /* Read interrupt register */
4683 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
4684
4685 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %d, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
4686 vsi->vsi_num, hung_queue, tx_ring->next_to_clean,
4687 head, tx_ring->next_to_use, val);
4688 }
4689
4690 pf->tx_timeout_last_recovery = jiffies;
4691 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n",
4692 pf->tx_timeout_recovery_level, hung_queue);
4693
4694 switch (pf->tx_timeout_recovery_level) {
4695 case 1:
4696 set_bit(__ICE_PFR_REQ, pf->state);
4697 break;
4698 case 2:
4699 set_bit(__ICE_CORER_REQ, pf->state);
4700 break;
4701 case 3:
4702 set_bit(__ICE_GLOBR_REQ, pf->state);
4703 break;
4704 default:
4705 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
4706 set_bit(__ICE_DOWN, pf->state);
4707 set_bit(__ICE_NEEDS_RESTART, vsi->state);
4708 set_bit(__ICE_SERVICE_DIS, pf->state);
4709 break;
4710 }
4711
4712 ice_service_task_schedule(pf);
4713 pf->tx_timeout_recovery_level++;
4714}
4715
4716/**
4717 * ice_open - Called when a network interface becomes active
4718 * @netdev: network interface device structure
4719 *
4720 * The open entry point is called when a network interface is made
4721 * active by the system (IFF_UP). At this point all resources needed
4722 * for transmit and receive operations are allocated, the interrupt
4723 * handler is registered with the OS, the netdev watchdog is enabled,
4724 * and the stack is notified that the interface is ready.
4725 *
4726 * Returns 0 on success, negative value on failure
4727 */
4728int ice_open(struct net_device *netdev)
4729{
4730 struct ice_netdev_priv *np = netdev_priv(netdev);
4731 struct ice_vsi *vsi = np->vsi;
4732 struct ice_port_info *pi;
4733 int err;
4734
4735 if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) {
4736 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
4737 return -EIO;
4738 }
4739
4740 netif_carrier_off(netdev);
4741
4742 pi = vsi->port_info;
4743 err = ice_update_link_info(pi);
4744 if (err) {
4745 netdev_err(netdev, "Failed to get link info, error %d\n",
4746 err);
4747 return err;
4748 }
4749
4750 /* Set PHY if there is media, otherwise, turn off PHY */
4751 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
4752 err = ice_force_phys_link_state(vsi, true);
4753 if (err) {
4754 netdev_err(netdev,
4755 "Failed to set physical link up, error %d\n",
4756 err);
4757 return err;
4758 }
4759 } else {
4760 err = ice_aq_set_link_restart_an(pi, false, NULL);
4761 if (err) {
4762 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
4763 vsi->vsi_num, err);
4764 return err;
4765 }
4766 set_bit(ICE_FLAG_NO_MEDIA, vsi->back->flags);
4767 }
4768
4769 err = ice_vsi_open(vsi);
4770 if (err)
4771 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
4772 vsi->vsi_num, vsi->vsw->sw_id);
4773 return err;
4774}
4775
4776/**
4777 * ice_stop - Disables a network interface
4778 * @netdev: network interface device structure
4779 *
4780 * The stop entry point is called when an interface is de-activated by the OS,
4781 * and the netdevice enters the DOWN state. The hardware is still under the
4782 * driver's control, but the netdev interface is disabled.
4783 *
4784 * Returns success only - not allowed to fail
4785 */
4786int ice_stop(struct net_device *netdev)
4787{
4788 struct ice_netdev_priv *np = netdev_priv(netdev);
4789 struct ice_vsi *vsi = np->vsi;
4790
4791 ice_vsi_close(vsi);
4792
4793 return 0;
4794}
4795
4796/**
4797 * ice_features_check - Validate encapsulated packet conforms to limits
4798 * @skb: skb buffer
4799 * @netdev: This port's netdev
4800 * @features: Offload features that the stack believes apply
4801 */
4802static netdev_features_t
4803ice_features_check(struct sk_buff *skb,
4804 struct net_device __always_unused *netdev,
4805 netdev_features_t features)
4806{
4807 size_t len;
4808
4809 /* No point in doing any of this if neither checksum nor GSO are
4810 * being requested for this frame. We can rule out both by just
4811 * checking for CHECKSUM_PARTIAL
4812 */
4813 if (skb->ip_summed != CHECKSUM_PARTIAL)
4814 return features;
4815
4816 /* We cannot support GSO if the MSS is going to be less than
4817 * 64 bytes. If it is then we need to drop support for GSO.
4818 */
4819 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4820 features &= ~NETIF_F_GSO_MASK;
4821
4822 len = skb_network_header(skb) - skb->data;
4823 if (len & ~(ICE_TXD_MACLEN_MAX))
4824 goto out_rm_features;
4825
4826 len = skb_transport_header(skb) - skb_network_header(skb);
4827 if (len & ~(ICE_TXD_IPLEN_MAX))
4828 goto out_rm_features;
4829
4830 if (skb->encapsulation) {
4831 len = skb_inner_network_header(skb) - skb_transport_header(skb);
4832 if (len & ~(ICE_TXD_L4LEN_MAX))
4833 goto out_rm_features;
4834
4835 len = skb_inner_transport_header(skb) -
4836 skb_inner_network_header(skb);
4837 if (len & ~(ICE_TXD_IPLEN_MAX))
4838 goto out_rm_features;
4839 }
4840
4841 return features;
4842out_rm_features:
4843 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4844}
4845
4846static const struct net_device_ops ice_netdev_safe_mode_ops = {
4847 .ndo_open = ice_open,
4848 .ndo_stop = ice_stop,
4849 .ndo_start_xmit = ice_start_xmit,
4850 .ndo_set_mac_address = ice_set_mac_address,
4851 .ndo_validate_addr = eth_validate_addr,
4852 .ndo_change_mtu = ice_change_mtu,
4853 .ndo_get_stats64 = ice_get_stats64,
4854 .ndo_tx_timeout = ice_tx_timeout,
4855};
4856
4857static const struct net_device_ops ice_netdev_ops = {
4858 .ndo_open = ice_open,
4859 .ndo_stop = ice_stop,
4860 .ndo_start_xmit = ice_start_xmit,
4861 .ndo_features_check = ice_features_check,
4862 .ndo_set_rx_mode = ice_set_rx_mode,
4863 .ndo_set_mac_address = ice_set_mac_address,
4864 .ndo_validate_addr = eth_validate_addr,
4865 .ndo_change_mtu = ice_change_mtu,
4866 .ndo_get_stats64 = ice_get_stats64,
4867 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
4868 .ndo_set_vf_mac = ice_set_vf_mac,
4869 .ndo_get_vf_config = ice_get_vf_cfg,
4870 .ndo_set_vf_trust = ice_set_vf_trust,
4871 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
4872 .ndo_set_vf_link_state = ice_set_vf_link_state,
4873 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
4874 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
4875 .ndo_set_features = ice_set_features,
4876 .ndo_bridge_getlink = ice_bridge_getlink,
4877 .ndo_bridge_setlink = ice_bridge_setlink,
4878 .ndo_fdb_add = ice_fdb_add,
4879 .ndo_fdb_del = ice_fdb_del,
4880 .ndo_tx_timeout = ice_tx_timeout,
4881};