Linux Audio

Check our new training course

Loading...
v5.14.15
   1/*
   2 * Copyright © 2014 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <drm/drm_atomic_helper.h>
  25
  26#include "display/intel_dp.h"
  27
  28#include "i915_drv.h"
  29#include "intel_atomic.h"
  30#include "intel_de.h"
  31#include "intel_display_types.h"
  32#include "intel_dp_aux.h"
  33#include "intel_hdmi.h"
  34#include "intel_psr.h"
  35#include "intel_sprite.h"
  36#include "skl_universal_plane.h"
  37
  38/**
  39 * DOC: Panel Self Refresh (PSR/SRD)
  40 *
  41 * Since Haswell Display controller supports Panel Self-Refresh on display
  42 * panels witch have a remote frame buffer (RFB) implemented according to PSR
  43 * spec in eDP1.3. PSR feature allows the display to go to lower standby states
  44 * when system is idle but display is on as it eliminates display refresh
  45 * request to DDR memory completely as long as the frame buffer for that
  46 * display is unchanged.
  47 *
  48 * Panel Self Refresh must be supported by both Hardware (source) and
  49 * Panel (sink).
  50 *
  51 * PSR saves power by caching the framebuffer in the panel RFB, which allows us
  52 * to power down the link and memory controller. For DSI panels the same idea
  53 * is called "manual mode".
  54 *
  55 * The implementation uses the hardware-based PSR support which automatically
  56 * enters/exits self-refresh mode. The hardware takes care of sending the
  57 * required DP aux message and could even retrain the link (that part isn't
  58 * enabled yet though). The hardware also keeps track of any frontbuffer
  59 * changes to know when to exit self-refresh mode again. Unfortunately that
  60 * part doesn't work too well, hence why the i915 PSR support uses the
  61 * software frontbuffer tracking to make sure it doesn't miss a screen
  62 * update. For this integration intel_psr_invalidate() and intel_psr_flush()
  63 * get called by the frontbuffer tracking code. Note that because of locking
  64 * issues the self-refresh re-enable code is done from a work queue, which
  65 * must be correctly synchronized/cancelled when shutting down the pipe."
  66 *
  67 * DC3CO (DC3 clock off)
  68 *
  69 * On top of PSR2, GEN12 adds a intermediate power savings state that turns
  70 * clock off automatically during PSR2 idle state.
  71 * The smaller overhead of DC3co entry/exit vs. the overhead of PSR2 deep sleep
  72 * entry/exit allows the HW to enter a low-power state even when page flipping
  73 * periodically (for instance a 30fps video playback scenario).
  74 *
  75 * Every time a flips occurs PSR2 will get out of deep sleep state(if it was),
  76 * so DC3CO is enabled and tgl_dc3co_disable_work is schedule to run after 6
  77 * frames, if no other flip occurs and the function above is executed, DC3CO is
  78 * disabled and PSR2 is configured to enter deep sleep, resetting again in case
  79 * of another flip.
  80 * Front buffer modifications do not trigger DC3CO activation on purpose as it
  81 * would bring a lot of complexity and most of the moderns systems will only
  82 * use page flips.
  83 */
  84
  85static bool psr_global_enabled(struct intel_dp *intel_dp)
  86{
  87	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
  88
  89	switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
  90	case I915_PSR_DEBUG_DEFAULT:
  91		return i915->params.enable_psr;
  92	case I915_PSR_DEBUG_DISABLE:
  93		return false;
  94	default:
  95		return true;
  96	}
  97}
  98
  99static bool psr2_global_enabled(struct intel_dp *intel_dp)
 
 100{
 101	switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
 
 
 
 
 102	case I915_PSR_DEBUG_DISABLE:
 103	case I915_PSR_DEBUG_FORCE_PSR1:
 104		return false;
 105	default:
 106		return true;
 107	}
 108}
 109
 110static void psr_irq_control(struct intel_dp *intel_dp)
 111{
 112	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 113	enum transcoder trans_shift;
 114	i915_reg_t imr_reg;
 115	u32 mask, val;
 
 
 
 
 
 
 
 
 
 
 116
 117	/*
 118	 * gen12+ has registers relative to transcoder and one per transcoder
 119	 * using the same bit definition: handle it as TRANSCODER_EDP to force
 120	 * 0 shift in bit definition
 121	 */
 122	if (DISPLAY_VER(dev_priv) >= 12) {
 123		trans_shift = 0;
 124		imr_reg = TRANS_PSR_IMR(intel_dp->psr.transcoder);
 125	} else {
 126		trans_shift = intel_dp->psr.transcoder;
 127		imr_reg = EDP_PSR_IMR;
 
 
 
 
 
 
 
 
 128	}
 129
 130	mask = EDP_PSR_ERROR(trans_shift);
 131	if (intel_dp->psr.debug & I915_PSR_DEBUG_IRQ)
 132		mask |= EDP_PSR_POST_EXIT(trans_shift) |
 133			EDP_PSR_PRE_ENTRY(trans_shift);
 134
 135	/* Warning: it is masking/setting reserved bits too */
 136	val = intel_de_read(dev_priv, imr_reg);
 137	val &= ~EDP_PSR_TRANS_MASK(trans_shift);
 138	val |= ~mask;
 139	intel_de_write(dev_priv, imr_reg, val);
 140}
 141
 142static void psr_event_print(struct drm_i915_private *i915,
 143			    u32 val, bool psr2_enabled)
 144{
 145	drm_dbg_kms(&i915->drm, "PSR exit events: 0x%x\n", val);
 146	if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
 147		drm_dbg_kms(&i915->drm, "\tPSR2 watchdog timer expired\n");
 148	if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
 149		drm_dbg_kms(&i915->drm, "\tPSR2 disabled\n");
 150	if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
 151		drm_dbg_kms(&i915->drm, "\tSU dirty FIFO underrun\n");
 152	if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
 153		drm_dbg_kms(&i915->drm, "\tSU CRC FIFO underrun\n");
 154	if (val & PSR_EVENT_GRAPHICS_RESET)
 155		drm_dbg_kms(&i915->drm, "\tGraphics reset\n");
 156	if (val & PSR_EVENT_PCH_INTERRUPT)
 157		drm_dbg_kms(&i915->drm, "\tPCH interrupt\n");
 158	if (val & PSR_EVENT_MEMORY_UP)
 159		drm_dbg_kms(&i915->drm, "\tMemory up\n");
 160	if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
 161		drm_dbg_kms(&i915->drm, "\tFront buffer modification\n");
 162	if (val & PSR_EVENT_WD_TIMER_EXPIRE)
 163		drm_dbg_kms(&i915->drm, "\tPSR watchdog timer expired\n");
 164	if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
 165		drm_dbg_kms(&i915->drm, "\tPIPE registers updated\n");
 166	if (val & PSR_EVENT_REGISTER_UPDATE)
 167		drm_dbg_kms(&i915->drm, "\tRegister updated\n");
 168	if (val & PSR_EVENT_HDCP_ENABLE)
 169		drm_dbg_kms(&i915->drm, "\tHDCP enabled\n");
 170	if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
 171		drm_dbg_kms(&i915->drm, "\tKVMR session enabled\n");
 172	if (val & PSR_EVENT_VBI_ENABLE)
 173		drm_dbg_kms(&i915->drm, "\tVBI enabled\n");
 174	if (val & PSR_EVENT_LPSP_MODE_EXIT)
 175		drm_dbg_kms(&i915->drm, "\tLPSP mode exited\n");
 176	if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
 177		drm_dbg_kms(&i915->drm, "\tPSR disabled\n");
 178}
 179
 180void intel_psr_irq_handler(struct intel_dp *intel_dp, u32 psr_iir)
 181{
 182	enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
 183	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 184	ktime_t time_ns =  ktime_get();
 185	enum transcoder trans_shift;
 186	i915_reg_t imr_reg;
 187
 188	if (DISPLAY_VER(dev_priv) >= 12) {
 189		trans_shift = 0;
 190		imr_reg = TRANS_PSR_IMR(intel_dp->psr.transcoder);
 191	} else {
 192		trans_shift = intel_dp->psr.transcoder;
 193		imr_reg = EDP_PSR_IMR;
 194	}
 
 
 
 
 
 
 195
 196	if (psr_iir & EDP_PSR_PRE_ENTRY(trans_shift)) {
 197		intel_dp->psr.last_entry_attempt = time_ns;
 198		drm_dbg_kms(&dev_priv->drm,
 199			    "[transcoder %s] PSR entry attempt in 2 vblanks\n",
 200			    transcoder_name(cpu_transcoder));
 201	}
 202
 203	if (psr_iir & EDP_PSR_POST_EXIT(trans_shift)) {
 204		intel_dp->psr.last_exit = time_ns;
 205		drm_dbg_kms(&dev_priv->drm,
 206			    "[transcoder %s] PSR exit completed\n",
 207			    transcoder_name(cpu_transcoder));
 208
 209		if (DISPLAY_VER(dev_priv) >= 9) {
 210			u32 val = intel_de_read(dev_priv,
 211						PSR_EVENT(cpu_transcoder));
 212			bool psr2_enabled = intel_dp->psr.psr2_enabled;
 213
 214			intel_de_write(dev_priv, PSR_EVENT(cpu_transcoder),
 215				       val);
 216			psr_event_print(dev_priv, val, psr2_enabled);
 217		}
 218	}
 219
 220	if (psr_iir & EDP_PSR_ERROR(trans_shift)) {
 221		u32 val;
 
 
 
 222
 223		drm_warn(&dev_priv->drm, "[transcoder %s] PSR aux error\n",
 224			 transcoder_name(cpu_transcoder));
 
 
 
 
 
 
 225
 226		intel_dp->psr.irq_aux_error = true;
 
 
 
 
 227
 228		/*
 229		 * If this interruption is not masked it will keep
 230		 * interrupting so fast that it prevents the scheduled
 231		 * work to run.
 232		 * Also after a PSR error, we don't want to arm PSR
 233		 * again so we don't care about unmask the interruption
 234		 * or unset irq_aux_error.
 235		 */
 236		val = intel_de_read(dev_priv, imr_reg);
 237		val |= EDP_PSR_ERROR(trans_shift);
 238		intel_de_write(dev_priv, imr_reg, val);
 239
 240		schedule_work(&intel_dp->psr.work);
 241	}
 242}
 243
 244static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
 245{
 246	u8 alpm_caps = 0;
 247
 248	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
 249			      &alpm_caps) != 1)
 250		return false;
 251	return alpm_caps & DP_ALPM_CAP;
 252}
 253
 254static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
 255{
 256	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
 257	u8 val = 8; /* assume the worst if we can't read the value */
 258
 259	if (drm_dp_dpcd_readb(&intel_dp->aux,
 260			      DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
 261		val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
 262	else
 263		drm_dbg_kms(&i915->drm,
 264			    "Unable to get sink synchronization latency, assuming 8 frames\n");
 265	return val;
 266}
 267
 268static u16 intel_dp_get_su_x_granulartiy(struct intel_dp *intel_dp)
 269{
 270	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
 271	u16 val;
 272	ssize_t r;
 273
 274	/*
 275	 * Returning the default X granularity if granularity not required or
 276	 * if DPCD read fails
 277	 */
 278	if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED))
 279		return 4;
 280
 281	r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &val, 2);
 282	if (r != 2)
 283		drm_dbg_kms(&i915->drm,
 284			    "Unable to read DP_PSR2_SU_X_GRANULARITY\n");
 285
 286	/*
 287	 * Spec says that if the value read is 0 the default granularity should
 288	 * be used instead.
 289	 */
 290	if (r != 2 || val == 0)
 291		val = 4;
 292
 293	return val;
 294}
 295
 296void intel_psr_init_dpcd(struct intel_dp *intel_dp)
 297{
 298	struct drm_i915_private *dev_priv =
 299		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
 300
 301	drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
 302			 sizeof(intel_dp->psr_dpcd));
 303
 304	if (!intel_dp->psr_dpcd[0])
 305		return;
 306	drm_dbg_kms(&dev_priv->drm, "eDP panel supports PSR version %x\n",
 307		    intel_dp->psr_dpcd[0]);
 308
 309	if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) {
 310		drm_dbg_kms(&dev_priv->drm,
 311			    "PSR support not currently available for this panel\n");
 312		return;
 313	}
 314
 315	if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
 316		drm_dbg_kms(&dev_priv->drm,
 317			    "Panel lacks power state control, PSR cannot be enabled\n");
 318		return;
 319	}
 320
 321	intel_dp->psr.sink_support = true;
 322	intel_dp->psr.sink_sync_latency =
 323		intel_dp_get_sink_sync_latency(intel_dp);
 324
 325	if (DISPLAY_VER(dev_priv) >= 9 &&
 
 
 
 326	    (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
 327		bool y_req = intel_dp->psr_dpcd[1] &
 328			     DP_PSR2_SU_Y_COORDINATE_REQUIRED;
 329		bool alpm = intel_dp_get_alpm_status(intel_dp);
 330
 331		/*
 332		 * All panels that supports PSR version 03h (PSR2 +
 333		 * Y-coordinate) can handle Y-coordinates in VSC but we are
 334		 * only sure that it is going to be used when required by the
 335		 * panel. This way panel is capable to do selective update
 336		 * without a aux frame sync.
 337		 *
 338		 * To support PSR version 02h and PSR version 03h without
 339		 * Y-coordinate requirement panels we would need to enable
 340		 * GTC first.
 341		 */
 342		intel_dp->psr.sink_psr2_support = y_req && alpm;
 343		drm_dbg_kms(&dev_priv->drm, "PSR2 %ssupported\n",
 344			    intel_dp->psr.sink_psr2_support ? "" : "not ");
 345
 346		if (intel_dp->psr.sink_psr2_support) {
 347			intel_dp->psr.colorimetry_support =
 348				intel_dp_get_colorimetry_status(intel_dp);
 349			intel_dp->psr.su_x_granularity =
 350				intel_dp_get_su_x_granulartiy(intel_dp);
 351		}
 352	}
 353}
 354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
 356{
 357	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 358	u32 aux_clock_divider, aux_ctl;
 359	int i;
 360	static const u8 aux_msg[] = {
 361		[0] = DP_AUX_NATIVE_WRITE << 4,
 362		[1] = DP_SET_POWER >> 8,
 363		[2] = DP_SET_POWER & 0xff,
 364		[3] = 1 - 1,
 365		[4] = DP_SET_POWER_D0,
 366	};
 367	u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
 368			   EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
 369			   EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
 370			   EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
 371
 372	BUILD_BUG_ON(sizeof(aux_msg) > 20);
 373	for (i = 0; i < sizeof(aux_msg); i += 4)
 374		intel_de_write(dev_priv,
 375			       EDP_PSR_AUX_DATA(intel_dp->psr.transcoder, i >> 2),
 376			       intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
 377
 378	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
 379
 380	/* Start with bits set for DDI_AUX_CTL register */
 381	aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
 382					     aux_clock_divider);
 383
 384	/* Select only valid bits for SRD_AUX_CTL */
 385	aux_ctl &= psr_aux_mask;
 386	intel_de_write(dev_priv, EDP_PSR_AUX_CTL(intel_dp->psr.transcoder),
 387		       aux_ctl);
 388}
 389
 390static void intel_psr_enable_sink(struct intel_dp *intel_dp)
 391{
 392	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 393	u8 dpcd_val = DP_PSR_ENABLE;
 394
 395	/* Enable ALPM at sink for psr2 */
 396	if (intel_dp->psr.psr2_enabled) {
 397		drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
 398				   DP_ALPM_ENABLE |
 399				   DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE);
 400
 401		dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
 402	} else {
 403		if (intel_dp->psr.link_standby)
 404			dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
 405
 406		if (DISPLAY_VER(dev_priv) >= 8)
 407			dpcd_val |= DP_PSR_CRC_VERIFICATION;
 408	}
 409
 410	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
 411
 412	drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
 413}
 414
 415static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
 416{
 417	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 418	u32 val = 0;
 419
 420	if (DISPLAY_VER(dev_priv) >= 11)
 421		val |= EDP_PSR_TP4_TIME_0US;
 422
 423	if (dev_priv->params.psr_safest_params) {
 424		val |= EDP_PSR_TP1_TIME_2500us;
 425		val |= EDP_PSR_TP2_TP3_TIME_2500us;
 426		goto check_tp3_sel;
 427	}
 428
 429	if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
 430		val |= EDP_PSR_TP1_TIME_0us;
 431	else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
 432		val |= EDP_PSR_TP1_TIME_100us;
 433	else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
 434		val |= EDP_PSR_TP1_TIME_500us;
 435	else
 436		val |= EDP_PSR_TP1_TIME_2500us;
 437
 438	if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
 439		val |= EDP_PSR_TP2_TP3_TIME_0us;
 440	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
 441		val |= EDP_PSR_TP2_TP3_TIME_100us;
 442	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
 443		val |= EDP_PSR_TP2_TP3_TIME_500us;
 444	else
 445		val |= EDP_PSR_TP2_TP3_TIME_2500us;
 446
 447check_tp3_sel:
 448	if (intel_dp_source_supports_hbr2(intel_dp) &&
 449	    drm_dp_tps3_supported(intel_dp->dpcd))
 450		val |= EDP_PSR_TP1_TP3_SEL;
 451	else
 452		val |= EDP_PSR_TP1_TP2_SEL;
 453
 454	return val;
 455}
 456
 457static u8 psr_compute_idle_frames(struct intel_dp *intel_dp)
 458{
 459	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 460	int idle_frames;
 
 461
 462	/* Let's use 6 as the minimum to cover all known cases including the
 463	 * off-by-one issue that HW has in some cases.
 464	 */
 465	idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
 466	idle_frames = max(idle_frames, intel_dp->psr.sink_sync_latency + 1);
 467
 468	if (drm_WARN_ON(&dev_priv->drm, idle_frames > 0xf))
 469		idle_frames = 0xf;
 470
 471	return idle_frames;
 472}
 473
 474static void hsw_activate_psr1(struct intel_dp *intel_dp)
 475{
 476	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 477	u32 max_sleep_time = 0x1f;
 478	u32 val = EDP_PSR_ENABLE;
 479
 480	val |= psr_compute_idle_frames(intel_dp) << EDP_PSR_IDLE_FRAME_SHIFT;
 481
 482	val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
 483	if (IS_HASWELL(dev_priv))
 484		val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
 485
 486	if (intel_dp->psr.link_standby)
 487		val |= EDP_PSR_LINK_STANDBY;
 488
 489	val |= intel_psr1_get_tp_time(intel_dp);
 490
 491	if (DISPLAY_VER(dev_priv) >= 8)
 492		val |= EDP_PSR_CRC_ENABLE;
 493
 494	val |= (intel_de_read(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder)) &
 495		EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK);
 496	intel_de_write(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder), val);
 497}
 498
 499static u32 intel_psr2_get_tp_time(struct intel_dp *intel_dp)
 500{
 501	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 502	u32 val = 0;
 
 
 
 
 
 
 
 
 503
 504	if (dev_priv->params.psr_safest_params)
 505		return EDP_PSR2_TP2_TIME_2500us;
 
 
 
 506
 507	if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
 508	    dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
 509		val |= EDP_PSR2_TP2_TIME_50us;
 510	else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
 511		val |= EDP_PSR2_TP2_TIME_100us;
 512	else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
 513		val |= EDP_PSR2_TP2_TIME_500us;
 514	else
 515		val |= EDP_PSR2_TP2_TIME_2500us;
 516
 517	return val;
 518}
 519
 520static void hsw_activate_psr2(struct intel_dp *intel_dp)
 521{
 522	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 523	u32 val;
 524
 525	val = psr_compute_idle_frames(intel_dp) << EDP_PSR2_IDLE_FRAME_SHIFT;
 526
 527	val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
 528	if (DISPLAY_VER(dev_priv) >= 10 && DISPLAY_VER(dev_priv) <= 12)
 529		val |= EDP_Y_COORDINATE_ENABLE;
 530
 531	val |= EDP_PSR2_FRAME_BEFORE_SU(intel_dp->psr.sink_sync_latency + 1);
 532	val |= intel_psr2_get_tp_time(intel_dp);
 533
 534	if (DISPLAY_VER(dev_priv) >= 12) {
 535		/*
 536		 * TODO: 7 lines of IO_BUFFER_WAKE and FAST_WAKE are default
 537		 * values from BSpec. In order to setting an optimal power
 538		 * consumption, lower than 4k resoluition mode needs to decrese
 539		 * IO_BUFFER_WAKE and FAST_WAKE. And higher than 4K resolution
 540		 * mode needs to increase IO_BUFFER_WAKE and FAST_WAKE.
 541		 */
 542		val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2;
 543		val |= TGL_EDP_PSR2_IO_BUFFER_WAKE(7);
 544		val |= TGL_EDP_PSR2_FAST_WAKE(7);
 545	} else if (DISPLAY_VER(dev_priv) >= 9) {
 546		val |= EDP_PSR2_IO_BUFFER_WAKE(7);
 547		val |= EDP_PSR2_FAST_WAKE(7);
 548	}
 549
 550	if (intel_dp->psr.psr2_sel_fetch_enabled) {
 551		/* WA 1408330847 */
 552		if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_A0) ||
 553		    IS_RKL_REVID(dev_priv, RKL_REVID_A0, RKL_REVID_A0))
 554			intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
 555				     DIS_RAM_BYPASS_PSR2_MAN_TRACK,
 556				     DIS_RAM_BYPASS_PSR2_MAN_TRACK);
 557
 558		intel_de_write(dev_priv,
 559			       PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder),
 560			       PSR2_MAN_TRK_CTL_ENABLE);
 561	} else if (HAS_PSR2_SEL_FETCH(dev_priv)) {
 562		intel_de_write(dev_priv,
 563			       PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder), 0);
 564	}
 565
 566	/*
 567	 * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
 568	 * recommending keep this bit unset while PSR2 is enabled.
 569	 */
 570	intel_de_write(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder), 0);
 571
 572	intel_de_write(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
 573}
 574
 575static bool
 576transcoder_has_psr2(struct drm_i915_private *dev_priv, enum transcoder trans)
 577{
 578	if (DISPLAY_VER(dev_priv) < 9)
 579		return false;
 580	else if (DISPLAY_VER(dev_priv) >= 12)
 581		return trans == TRANSCODER_A;
 582	else
 583		return trans == TRANSCODER_EDP;
 584}
 585
 586static u32 intel_get_frame_time_us(const struct intel_crtc_state *cstate)
 587{
 588	if (!cstate || !cstate->hw.active)
 589		return 0;
 590
 591	return DIV_ROUND_UP(1000 * 1000,
 592			    drm_mode_vrefresh(&cstate->hw.adjusted_mode));
 593}
 594
 595static void psr2_program_idle_frames(struct intel_dp *intel_dp,
 596				     u32 idle_frames)
 597{
 598	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 599	u32 val;
 600
 601	idle_frames <<=  EDP_PSR2_IDLE_FRAME_SHIFT;
 602	val = intel_de_read(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder));
 603	val &= ~EDP_PSR2_IDLE_FRAME_MASK;
 604	val |= idle_frames;
 605	intel_de_write(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
 606}
 607
 608static void tgl_psr2_enable_dc3co(struct intel_dp *intel_dp)
 609{
 610	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 611
 612	psr2_program_idle_frames(intel_dp, 0);
 613	intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO);
 614}
 615
 616static void tgl_psr2_disable_dc3co(struct intel_dp *intel_dp)
 617{
 618	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 619
 620	intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
 621	psr2_program_idle_frames(intel_dp, psr_compute_idle_frames(intel_dp));
 622}
 623
 624static void tgl_dc3co_disable_work(struct work_struct *work)
 625{
 626	struct intel_dp *intel_dp =
 627		container_of(work, typeof(*intel_dp), psr.dc3co_work.work);
 628
 629	mutex_lock(&intel_dp->psr.lock);
 630	/* If delayed work is pending, it is not idle */
 631	if (delayed_work_pending(&intel_dp->psr.dc3co_work))
 632		goto unlock;
 633
 634	tgl_psr2_disable_dc3co(intel_dp);
 635unlock:
 636	mutex_unlock(&intel_dp->psr.lock);
 637}
 638
 639static void tgl_disallow_dc3co_on_psr2_exit(struct intel_dp *intel_dp)
 640{
 641	if (!intel_dp->psr.dc3co_exitline)
 642		return;
 643
 644	cancel_delayed_work(&intel_dp->psr.dc3co_work);
 645	/* Before PSR2 exit disallow dc3co*/
 646	tgl_psr2_disable_dc3co(intel_dp);
 647}
 648
 649static bool
 650dc3co_is_pipe_port_compatible(struct intel_dp *intel_dp,
 651			      struct intel_crtc_state *crtc_state)
 652{
 653	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
 654	enum pipe pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
 655	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 656	enum port port = dig_port->base.port;
 657
 658	if (IS_ALDERLAKE_P(dev_priv))
 659		return pipe <= PIPE_B && port <= PORT_B;
 660	else
 661		return pipe == PIPE_A && port == PORT_A;
 662}
 663
 664static void
 665tgl_dc3co_exitline_compute_config(struct intel_dp *intel_dp,
 666				  struct intel_crtc_state *crtc_state)
 667{
 668	const u32 crtc_vdisplay = crtc_state->uapi.adjusted_mode.crtc_vdisplay;
 669	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 670	u32 exit_scanlines;
 671
 672	/*
 673	 * FIXME: Due to the changed sequence of activating/deactivating DC3CO,
 674	 * disable DC3CO until the changed dc3co activating/deactivating sequence
 675	 * is applied. B.Specs:49196
 676	 */
 677	return;
 678
 679	/*
 680	 * DMC's DC3CO exit mechanism has an issue with Selective Fecth
 681	 * TODO: when the issue is addressed, this restriction should be removed.
 682	 */
 683	if (crtc_state->enable_psr2_sel_fetch)
 684		return;
 685
 686	if (!(dev_priv->dmc.allowed_dc_mask & DC_STATE_EN_DC3CO))
 687		return;
 688
 689	if (!dc3co_is_pipe_port_compatible(intel_dp, crtc_state))
 690		return;
 691
 692	/*
 693	 * DC3CO Exit time 200us B.Spec 49196
 694	 * PSR2 transcoder Early Exit scanlines = ROUNDUP(200 / line time) + 1
 695	 */
 696	exit_scanlines =
 697		intel_usecs_to_scanlines(&crtc_state->uapi.adjusted_mode, 200) + 1;
 698
 699	if (drm_WARN_ON(&dev_priv->drm, exit_scanlines > crtc_vdisplay))
 700		return;
 701
 702	crtc_state->dc3co_exitline = crtc_vdisplay - exit_scanlines;
 703}
 704
 705static bool intel_psr2_sel_fetch_config_valid(struct intel_dp *intel_dp,
 706					      struct intel_crtc_state *crtc_state)
 707{
 708	struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
 709	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 710	struct intel_plane_state *plane_state;
 711	struct intel_plane *plane;
 712	int i;
 713
 714	if (!dev_priv->params.enable_psr2_sel_fetch &&
 715	    intel_dp->psr.debug != I915_PSR_DEBUG_ENABLE_SEL_FETCH) {
 716		drm_dbg_kms(&dev_priv->drm,
 717			    "PSR2 sel fetch not enabled, disabled by parameter\n");
 718		return false;
 719	}
 720
 721	if (crtc_state->uapi.async_flip) {
 722		drm_dbg_kms(&dev_priv->drm,
 723			    "PSR2 sel fetch not enabled, async flip enabled\n");
 724		return false;
 725	}
 726
 727	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
 728		if (plane_state->uapi.rotation != DRM_MODE_ROTATE_0) {
 729			drm_dbg_kms(&dev_priv->drm,
 730				    "PSR2 sel fetch not enabled, plane rotated\n");
 731			return false;
 732		}
 733	}
 734
 735	/* Wa_14010254185 Wa_14010103792 */
 736	if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B1)) {
 737		drm_dbg_kms(&dev_priv->drm,
 738			    "PSR2 sel fetch not enabled, missing the implementation of WAs\n");
 739		return false;
 740	}
 741
 742	return crtc_state->enable_psr2_sel_fetch = true;
 743}
 744
 745static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
 746				    struct intel_crtc_state *crtc_state)
 747{
 748	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 749	int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay;
 750	int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay;
 751	int psr_max_h = 0, psr_max_v = 0, max_bpp = 0;
 752
 753	if (!intel_dp->psr.sink_psr2_support)
 754		return false;
 755
 756	/* JSL and EHL only supports eDP 1.3 */
 757	if (IS_JSL_EHL(dev_priv)) {
 758		drm_dbg_kms(&dev_priv->drm, "PSR2 not supported by phy\n");
 759		return false;
 760	}
 761
 762	/* Wa_16011181250 */
 763	if (IS_ROCKETLAKE(dev_priv) || IS_ALDERLAKE_S(dev_priv)) {
 764		drm_dbg_kms(&dev_priv->drm, "PSR2 is defeatured for this platform\n");
 765		return false;
 766	}
 767
 768	/*
 769	 * We are missing the implementation of some workarounds to enabled PSR2
 770	 * in Alderlake_P, until ready PSR2 should be kept disabled.
 771	 */
 772	if (IS_ALDERLAKE_P(dev_priv)) {
 773		drm_dbg_kms(&dev_priv->drm, "PSR2 is missing the implementation of workarounds\n");
 774		return false;
 775	}
 776
 777	if (!transcoder_has_psr2(dev_priv, crtc_state->cpu_transcoder)) {
 778		drm_dbg_kms(&dev_priv->drm,
 779			    "PSR2 not supported in transcoder %s\n",
 780			    transcoder_name(crtc_state->cpu_transcoder));
 781		return false;
 782	}
 783
 784	if (!psr2_global_enabled(intel_dp)) {
 785		drm_dbg_kms(&dev_priv->drm, "PSR2 disabled by flag\n");
 786		return false;
 787	}
 788
 789	/*
 790	 * DSC and PSR2 cannot be enabled simultaneously. If a requested
 791	 * resolution requires DSC to be enabled, priority is given to DSC
 792	 * over PSR2.
 793	 */
 794	if (crtc_state->dsc.compression_enable) {
 795		drm_dbg_kms(&dev_priv->drm,
 796			    "PSR2 cannot be enabled since DSC is enabled\n");
 797		return false;
 798	}
 799
 800	if (crtc_state->crc_enabled) {
 801		drm_dbg_kms(&dev_priv->drm,
 802			    "PSR2 not enabled because it would inhibit pipe CRC calculation\n");
 803		return false;
 804	}
 805
 806	if (DISPLAY_VER(dev_priv) >= 12) {
 807		psr_max_h = 5120;
 808		psr_max_v = 3200;
 809		max_bpp = 30;
 810	} else if (DISPLAY_VER(dev_priv) >= 10) {
 811		psr_max_h = 4096;
 812		psr_max_v = 2304;
 813		max_bpp = 24;
 814	} else if (DISPLAY_VER(dev_priv) == 9) {
 815		psr_max_h = 3640;
 816		psr_max_v = 2304;
 817		max_bpp = 24;
 818	}
 819
 820	if (crtc_state->pipe_bpp > max_bpp) {
 821		drm_dbg_kms(&dev_priv->drm,
 822			    "PSR2 not enabled, pipe bpp %d > max supported %d\n",
 823			    crtc_state->pipe_bpp, max_bpp);
 824		return false;
 825	}
 826
 827	/*
 828	 * HW sends SU blocks of size four scan lines, which means the starting
 829	 * X coordinate and Y granularity requirements will always be met. We
 830	 * only need to validate the SU block width is a multiple of
 831	 * x granularity.
 832	 */
 833	if (crtc_hdisplay % intel_dp->psr.su_x_granularity) {
 834		drm_dbg_kms(&dev_priv->drm,
 835			    "PSR2 not enabled, hdisplay(%d) not multiple of %d\n",
 836			    crtc_hdisplay, intel_dp->psr.su_x_granularity);
 837		return false;
 838	}
 839
 840	if (HAS_PSR2_SEL_FETCH(dev_priv)) {
 841		if (!intel_psr2_sel_fetch_config_valid(intel_dp, crtc_state) &&
 842		    !HAS_PSR_HW_TRACKING(dev_priv)) {
 843			drm_dbg_kms(&dev_priv->drm,
 844				    "PSR2 not enabled, selective fetch not valid and no HW tracking available\n");
 845			return false;
 846		}
 847	}
 848
 849	/* Wa_2209313811 */
 850	if (!crtc_state->enable_psr2_sel_fetch &&
 851	    IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B1)) {
 852		drm_dbg_kms(&dev_priv->drm, "PSR2 HW tracking is not supported this Display stepping\n");
 853		return false;
 854	}
 855
 856	if (!crtc_state->enable_psr2_sel_fetch &&
 857	    (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v)) {
 858		drm_dbg_kms(&dev_priv->drm,
 859			    "PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
 860			    crtc_hdisplay, crtc_vdisplay,
 861			    psr_max_h, psr_max_v);
 862		return false;
 863	}
 864
 865	tgl_dc3co_exitline_compute_config(intel_dp, crtc_state);
 866	return true;
 867}
 868
 869void intel_psr_compute_config(struct intel_dp *intel_dp,
 870			      struct intel_crtc_state *crtc_state)
 871{
 
 872	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 873	const struct drm_display_mode *adjusted_mode =
 874		&crtc_state->hw.adjusted_mode;
 875	int psr_setup_time;
 876
 877	/*
 878	 * Current PSR panels dont work reliably with VRR enabled
 879	 * So if VRR is enabled, do not enable PSR.
 880	 */
 881	if (crtc_state->vrr.enable)
 882		return;
 883
 884	if (!CAN_PSR(intel_dp))
 885		return;
 886
 887	if (!psr_global_enabled(intel_dp)) {
 888		drm_dbg_kms(&dev_priv->drm, "PSR disabled by flag\n");
 
 
 
 
 
 
 
 889		return;
 890	}
 891
 892	if (intel_dp->psr.sink_not_reliable) {
 893		drm_dbg_kms(&dev_priv->drm,
 894			    "PSR sink implementation is not reliable\n");
 895		return;
 896	}
 897
 898	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
 899		drm_dbg_kms(&dev_priv->drm,
 900			    "PSR condition failed: Interlaced mode enabled\n");
 901		return;
 902	}
 903
 904	psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
 905	if (psr_setup_time < 0) {
 906		drm_dbg_kms(&dev_priv->drm,
 907			    "PSR condition failed: Invalid PSR setup time (0x%02x)\n",
 908			    intel_dp->psr_dpcd[1]);
 909		return;
 910	}
 911
 912	if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
 913	    adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
 914		drm_dbg_kms(&dev_priv->drm,
 915			    "PSR condition failed: PSR setup time (%d us) too long\n",
 916			    psr_setup_time);
 917		return;
 918	}
 919
 920	crtc_state->has_psr = true;
 921	crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
 922	crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
 923}
 924
 925void intel_psr_get_config(struct intel_encoder *encoder,
 926			  struct intel_crtc_state *pipe_config)
 927{
 928	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 929	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 930	struct intel_dp *intel_dp;
 931	u32 val;
 932
 933	if (!dig_port)
 934		return;
 935
 936	intel_dp = &dig_port->dp;
 937	if (!CAN_PSR(intel_dp))
 938		return;
 939
 940	mutex_lock(&intel_dp->psr.lock);
 941	if (!intel_dp->psr.enabled)
 942		goto unlock;
 943
 944	/*
 945	 * Not possible to read EDP_PSR/PSR2_CTL registers as it is
 946	 * enabled/disabled because of frontbuffer tracking and others.
 947	 */
 948	pipe_config->has_psr = true;
 949	pipe_config->has_psr2 = intel_dp->psr.psr2_enabled;
 950	pipe_config->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
 951
 952	if (!intel_dp->psr.psr2_enabled)
 953		goto unlock;
 954
 955	if (HAS_PSR2_SEL_FETCH(dev_priv)) {
 956		val = intel_de_read(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder));
 957		if (val & PSR2_MAN_TRK_CTL_ENABLE)
 958			pipe_config->enable_psr2_sel_fetch = true;
 959	}
 960
 961	if (DISPLAY_VER(dev_priv) >= 12) {
 962		val = intel_de_read(dev_priv, EXITLINE(intel_dp->psr.transcoder));
 963		val &= EXITLINE_MASK;
 964		pipe_config->dc3co_exitline = val;
 965	}
 966unlock:
 967	mutex_unlock(&intel_dp->psr.lock);
 968}
 969
 970static void intel_psr_activate(struct intel_dp *intel_dp)
 971{
 972	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 973	enum transcoder transcoder = intel_dp->psr.transcoder;
 974
 975	if (transcoder_has_psr2(dev_priv, transcoder))
 976		drm_WARN_ON(&dev_priv->drm,
 977			    intel_de_read(dev_priv, EDP_PSR2_CTL(transcoder)) & EDP_PSR2_ENABLE);
 978
 979	drm_WARN_ON(&dev_priv->drm,
 980		    intel_de_read(dev_priv, EDP_PSR_CTL(transcoder)) & EDP_PSR_ENABLE);
 981	drm_WARN_ON(&dev_priv->drm, intel_dp->psr.active);
 982	lockdep_assert_held(&intel_dp->psr.lock);
 983
 984	/* psr1 and psr2 are mutually exclusive.*/
 985	if (intel_dp->psr.psr2_enabled)
 986		hsw_activate_psr2(intel_dp);
 987	else
 988		hsw_activate_psr1(intel_dp);
 989
 990	intel_dp->psr.active = true;
 991}
 992
 993static void intel_psr_enable_source(struct intel_dp *intel_dp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994{
 995	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 996	enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
 997	u32 mask;
 998
 999	/* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
1000	 * use hardcoded values PSR AUX transactions
1001	 */
1002	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1003		hsw_psr_setup_aux(intel_dp);
1004
1005	if (intel_dp->psr.psr2_enabled && DISPLAY_VER(dev_priv) == 9) {
1006		i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
1007		u32 chicken = intel_de_read(dev_priv, reg);
 
 
1008
1009		chicken |= PSR2_VSC_ENABLE_PROG_HEADER |
1010			   PSR2_ADD_VERTICAL_LINE_COUNT;
1011		intel_de_write(dev_priv, reg, chicken);
1012	}
1013
1014	/*
1015	 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
1016	 * mask LPSP to avoid dependency on other drivers that might block
1017	 * runtime_pm besides preventing  other hw tracking issues now we
1018	 * can rely on frontbuffer tracking.
1019	 */
1020	mask = EDP_PSR_DEBUG_MASK_MEMUP |
1021	       EDP_PSR_DEBUG_MASK_HPD |
1022	       EDP_PSR_DEBUG_MASK_LPSP |
1023	       EDP_PSR_DEBUG_MASK_MAX_SLEEP;
1024
1025	if (DISPLAY_VER(dev_priv) < 11)
1026		mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
1027
1028	intel_de_write(dev_priv, EDP_PSR_DEBUG(intel_dp->psr.transcoder),
1029		       mask);
1030
1031	psr_irq_control(intel_dp);
1032
1033	if (intel_dp->psr.dc3co_exitline) {
1034		u32 val;
1035
1036		/*
1037		 * TODO: if future platforms supports DC3CO in more than one
1038		 * transcoder, EXITLINE will need to be unset when disabling PSR
1039		 */
1040		val = intel_de_read(dev_priv, EXITLINE(cpu_transcoder));
1041		val &= ~EXITLINE_MASK;
1042		val |= intel_dp->psr.dc3co_exitline << EXITLINE_SHIFT;
1043		val |= EXITLINE_ENABLE;
1044		intel_de_write(dev_priv, EXITLINE(cpu_transcoder), val);
1045	}
1046
1047	if (HAS_PSR_HW_TRACKING(dev_priv) && HAS_PSR2_SEL_FETCH(dev_priv))
1048		intel_de_rmw(dev_priv, CHICKEN_PAR1_1, IGNORE_PSR2_HW_TRACKING,
1049			     intel_dp->psr.psr2_sel_fetch_enabled ?
1050			     IGNORE_PSR2_HW_TRACKING : 0);
1051}
1052
1053static bool psr_interrupt_error_check(struct intel_dp *intel_dp)
 
1054{
1055	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1056	u32 val;
1057
1058	/*
1059	 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
1060	 * will still keep the error set even after the reset done in the
1061	 * irq_preinstall and irq_uninstall hooks.
1062	 * And enabling in this situation cause the screen to freeze in the
1063	 * first time that PSR HW tries to activate so lets keep PSR disabled
1064	 * to avoid any rendering problems.
1065	 */
1066	if (DISPLAY_VER(dev_priv) >= 12) {
1067		val = intel_de_read(dev_priv,
1068				    TRANS_PSR_IIR(intel_dp->psr.transcoder));
1069		val &= EDP_PSR_ERROR(0);
1070	} else {
1071		val = intel_de_read(dev_priv, EDP_PSR_IIR);
1072		val &= EDP_PSR_ERROR(intel_dp->psr.transcoder);
1073	}
1074	if (val) {
1075		intel_dp->psr.sink_not_reliable = true;
1076		drm_dbg_kms(&dev_priv->drm,
1077			    "PSR interruption error set, not enabling PSR\n");
1078		return false;
1079	}
1080
1081	return true;
1082}
1083
1084static void intel_psr_enable_locked(struct intel_dp *intel_dp,
1085				    const struct intel_crtc_state *crtc_state,
1086				    const struct drm_connector_state *conn_state)
1087{
1088	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1089	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1090	struct intel_encoder *encoder = &dig_port->base;
1091	u32 val;
1092
1093	drm_WARN_ON(&dev_priv->drm, intel_dp->psr.enabled);
 
 
1094
1095	intel_dp->psr.psr2_enabled = crtc_state->has_psr2;
1096	intel_dp->psr.busy_frontbuffer_bits = 0;
1097	intel_dp->psr.pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
1098	intel_dp->psr.transcoder = crtc_state->cpu_transcoder;
1099	/* DC5/DC6 requires at least 6 idle frames */
1100	val = usecs_to_jiffies(intel_get_frame_time_us(crtc_state) * 6);
1101	intel_dp->psr.dc3co_exit_delay = val;
1102	intel_dp->psr.dc3co_exitline = crtc_state->dc3co_exitline;
1103	intel_dp->psr.psr2_sel_fetch_enabled = crtc_state->enable_psr2_sel_fetch;
1104
1105	if (!psr_interrupt_error_check(intel_dp))
1106		return;
1107
1108	drm_dbg_kms(&dev_priv->drm, "Enabling PSR%s\n",
1109		    intel_dp->psr.psr2_enabled ? "2" : "1");
1110	intel_dp_compute_psr_vsc_sdp(intel_dp, crtc_state, conn_state,
1111				     &intel_dp->psr.vsc);
1112	intel_write_dp_vsc_sdp(encoder, crtc_state, &intel_dp->psr.vsc);
1113	intel_psr_enable_sink(intel_dp);
1114	intel_psr_enable_source(intel_dp);
1115	intel_dp->psr.enabled = true;
1116	intel_dp->psr.paused = false;
1117
1118	intel_psr_activate(intel_dp);
1119}
1120
1121/**
1122 * intel_psr_enable - Enable PSR
1123 * @intel_dp: Intel DP
1124 * @crtc_state: new CRTC state
1125 * @conn_state: new CONNECTOR state
1126 *
1127 * This function can only be called after the pipe is fully trained and enabled.
1128 */
1129void intel_psr_enable(struct intel_dp *intel_dp,
1130		      const struct intel_crtc_state *crtc_state,
1131		      const struct drm_connector_state *conn_state)
1132{
1133	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1134
1135	if (!CAN_PSR(intel_dp))
1136		return;
1137
1138	if (!crtc_state->has_psr)
1139		return;
1140
1141	drm_WARN_ON(&dev_priv->drm, dev_priv->drrs.dp);
 
 
1142
1143	mutex_lock(&intel_dp->psr.lock);
1144	intel_psr_enable_locked(intel_dp, crtc_state, conn_state);
1145	mutex_unlock(&intel_dp->psr.lock);
 
 
 
 
 
 
1146}
1147
1148static void intel_psr_exit(struct intel_dp *intel_dp)
1149{
1150	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1151	u32 val;
1152
1153	if (!intel_dp->psr.active) {
1154		if (transcoder_has_psr2(dev_priv, intel_dp->psr.transcoder)) {
1155			val = intel_de_read(dev_priv,
1156					    EDP_PSR2_CTL(intel_dp->psr.transcoder));
1157			drm_WARN_ON(&dev_priv->drm, val & EDP_PSR2_ENABLE);
1158		}
1159
1160		val = intel_de_read(dev_priv,
1161				    EDP_PSR_CTL(intel_dp->psr.transcoder));
1162		drm_WARN_ON(&dev_priv->drm, val & EDP_PSR_ENABLE);
1163
1164		return;
1165	}
1166
1167	if (intel_dp->psr.psr2_enabled) {
1168		tgl_disallow_dc3co_on_psr2_exit(intel_dp);
1169		val = intel_de_read(dev_priv,
1170				    EDP_PSR2_CTL(intel_dp->psr.transcoder));
1171		drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR2_ENABLE));
1172		val &= ~EDP_PSR2_ENABLE;
1173		intel_de_write(dev_priv,
1174			       EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
1175	} else {
1176		val = intel_de_read(dev_priv,
1177				    EDP_PSR_CTL(intel_dp->psr.transcoder));
1178		drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR_ENABLE));
1179		val &= ~EDP_PSR_ENABLE;
1180		intel_de_write(dev_priv,
1181			       EDP_PSR_CTL(intel_dp->psr.transcoder), val);
1182	}
1183	intel_dp->psr.active = false;
1184}
1185
1186static void intel_psr_wait_exit_locked(struct intel_dp *intel_dp)
1187{
1188	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1189	i915_reg_t psr_status;
1190	u32 psr_status_mask;
1191
1192	if (intel_dp->psr.psr2_enabled) {
1193		psr_status = EDP_PSR2_STATUS(intel_dp->psr.transcoder);
 
 
 
 
 
 
 
 
 
 
1194		psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
1195	} else {
1196		psr_status = EDP_PSR_STATUS(intel_dp->psr.transcoder);
1197		psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
1198	}
1199
1200	/* Wait till PSR is idle */
1201	if (intel_de_wait_for_clear(dev_priv, psr_status,
1202				    psr_status_mask, 2000))
1203		drm_err(&dev_priv->drm, "Timed out waiting PSR idle state\n");
1204}
1205
1206static void intel_psr_disable_locked(struct intel_dp *intel_dp)
1207{
1208	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1209
1210	lockdep_assert_held(&intel_dp->psr.lock);
1211
1212	if (!intel_dp->psr.enabled)
1213		return;
1214
1215	drm_dbg_kms(&dev_priv->drm, "Disabling PSR%s\n",
1216		    intel_dp->psr.psr2_enabled ? "2" : "1");
1217
1218	intel_psr_exit(intel_dp);
1219	intel_psr_wait_exit_locked(intel_dp);
1220
1221	/* WA 1408330847 */
1222	if (intel_dp->psr.psr2_sel_fetch_enabled &&
1223	    (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_A0) ||
1224	     IS_RKL_REVID(dev_priv, RKL_REVID_A0, RKL_REVID_A0)))
1225		intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
1226			     DIS_RAM_BYPASS_PSR2_MAN_TRACK, 0);
1227
1228	/* Disable PSR on Sink */
1229	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
1230
1231	if (intel_dp->psr.psr2_enabled)
1232		drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 0);
1233
1234	intel_dp->psr.enabled = false;
1235}
1236
1237/**
1238 * intel_psr_disable - Disable PSR
1239 * @intel_dp: Intel DP
1240 * @old_crtc_state: old CRTC state
1241 *
1242 * This function needs to be called before disabling pipe.
1243 */
1244void intel_psr_disable(struct intel_dp *intel_dp,
1245		       const struct intel_crtc_state *old_crtc_state)
1246{
1247	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1248
1249	if (!old_crtc_state->has_psr)
1250		return;
1251
1252	if (drm_WARN_ON(&dev_priv->drm, !CAN_PSR(intel_dp)))
1253		return;
1254
1255	mutex_lock(&intel_dp->psr.lock);
1256
1257	intel_psr_disable_locked(intel_dp);
1258
1259	mutex_unlock(&intel_dp->psr.lock);
1260	cancel_work_sync(&intel_dp->psr.work);
1261	cancel_delayed_work_sync(&intel_dp->psr.dc3co_work);
1262}
1263
1264/**
1265 * intel_psr_pause - Pause PSR
1266 * @intel_dp: Intel DP
1267 *
1268 * This function need to be called after enabling psr.
1269 */
1270void intel_psr_pause(struct intel_dp *intel_dp)
1271{
1272	struct intel_psr *psr = &intel_dp->psr;
1273
1274	if (!CAN_PSR(intel_dp))
1275		return;
1276
1277	mutex_lock(&psr->lock);
1278
1279	if (!psr->enabled) {
1280		mutex_unlock(&psr->lock);
1281		return;
1282	}
1283
1284	intel_psr_exit(intel_dp);
1285	intel_psr_wait_exit_locked(intel_dp);
1286	psr->paused = true;
1287
1288	mutex_unlock(&psr->lock);
1289
1290	cancel_work_sync(&psr->work);
1291	cancel_delayed_work_sync(&psr->dc3co_work);
1292}
1293
1294/**
1295 * intel_psr_resume - Resume PSR
1296 * @intel_dp: Intel DP
1297 *
1298 * This function need to be called after pausing psr.
1299 */
1300void intel_psr_resume(struct intel_dp *intel_dp)
1301{
1302	struct intel_psr *psr = &intel_dp->psr;
1303
1304	if (!CAN_PSR(intel_dp))
1305		return;
1306
1307	mutex_lock(&psr->lock);
1308
1309	if (!psr->paused)
1310		goto unlock;
1311
1312	psr->paused = false;
1313	intel_psr_activate(intel_dp);
1314
1315unlock:
1316	mutex_unlock(&psr->lock);
1317}
1318
1319static void psr_force_hw_tracking_exit(struct intel_dp *intel_dp)
1320{
1321	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1322
1323	if (DISPLAY_VER(dev_priv) >= 9)
1324		/*
1325		 * Display WA #0884: skl+
1326		 * This documented WA for bxt can be safely applied
1327		 * broadly so we can force HW tracking to exit PSR
1328		 * instead of disabling and re-enabling.
1329		 * Workaround tells us to write 0 to CUR_SURFLIVE_A,
1330		 * but it makes more sense write to the current active
1331		 * pipe.
1332		 */
1333		intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0);
1334	else
1335		/*
1336		 * A write to CURSURFLIVE do not cause HW tracking to exit PSR
1337		 * on older gens so doing the manual exit instead.
1338		 */
1339		intel_psr_exit(intel_dp);
1340}
1341
1342void intel_psr2_program_plane_sel_fetch(struct intel_plane *plane,
1343					const struct intel_crtc_state *crtc_state,
1344					const struct intel_plane_state *plane_state,
1345					int color_plane)
1346{
1347	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1348	enum pipe pipe = plane->pipe;
1349	const struct drm_rect *clip;
1350	u32 val, offset;
1351	int ret, x, y;
1352
1353	if (!crtc_state->enable_psr2_sel_fetch)
1354		return;
1355
1356	val = plane_state ? plane_state->ctl : 0;
1357	val &= plane->id == PLANE_CURSOR ? val : PLANE_SEL_FETCH_CTL_ENABLE;
1358	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id), val);
1359	if (!val || plane->id == PLANE_CURSOR)
1360		return;
1361
1362	clip = &plane_state->psr2_sel_fetch_area;
1363
1364	val = (clip->y1 + plane_state->uapi.dst.y1) << 16;
1365	val |= plane_state->uapi.dst.x1;
1366	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_POS(pipe, plane->id), val);
1367
1368	/* TODO: consider auxiliary surfaces */
1369	x = plane_state->uapi.src.x1 >> 16;
1370	y = (plane_state->uapi.src.y1 >> 16) + clip->y1;
1371	ret = skl_calc_main_surface_offset(plane_state, &x, &y, &offset);
1372	if (ret)
1373		drm_warn_once(&dev_priv->drm, "skl_calc_main_surface_offset() returned %i\n",
1374			      ret);
1375	val = y << 16 | x;
1376	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_OFFSET(pipe, plane->id),
1377			  val);
1378
1379	/* Sizes are 0 based */
1380	val = (drm_rect_height(clip) - 1) << 16;
1381	val |= (drm_rect_width(&plane_state->uapi.src) >> 16) - 1;
1382	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_SIZE(pipe, plane->id), val);
1383}
1384
1385void intel_psr2_program_trans_man_trk_ctl(const struct intel_crtc_state *crtc_state)
1386{
1387	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1388
1389	if (!HAS_PSR2_SEL_FETCH(dev_priv) ||
1390	    !crtc_state->enable_psr2_sel_fetch)
1391		return;
1392
1393	intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(crtc_state->cpu_transcoder),
1394		       crtc_state->psr2_man_track_ctl);
1395}
1396
1397static void psr2_man_trk_ctl_calc(struct intel_crtc_state *crtc_state,
1398				  struct drm_rect *clip, bool full_update)
1399{
1400	u32 val = PSR2_MAN_TRK_CTL_ENABLE;
1401
1402	if (full_update) {
1403		val |= PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME;
1404		goto exit;
1405	}
1406
1407	if (clip->y1 == -1)
1408		goto exit;
1409
1410	drm_WARN_ON(crtc_state->uapi.crtc->dev, clip->y1 % 4 || clip->y2 % 4);
1411
1412	val |= PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE;
1413	val |= PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(clip->y1 / 4 + 1);
1414	val |= PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(clip->y2 / 4 + 1);
1415exit:
1416	crtc_state->psr2_man_track_ctl = val;
1417}
1418
1419static void clip_area_update(struct drm_rect *overlap_damage_area,
1420			     struct drm_rect *damage_area)
1421{
1422	if (overlap_damage_area->y1 == -1) {
1423		overlap_damage_area->y1 = damage_area->y1;
1424		overlap_damage_area->y2 = damage_area->y2;
1425		return;
1426	}
1427
1428	if (damage_area->y1 < overlap_damage_area->y1)
1429		overlap_damage_area->y1 = damage_area->y1;
1430
1431	if (damage_area->y2 > overlap_damage_area->y2)
1432		overlap_damage_area->y2 = damage_area->y2;
1433}
1434
1435int intel_psr2_sel_fetch_update(struct intel_atomic_state *state,
1436				struct intel_crtc *crtc)
1437{
1438	struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
1439	struct drm_rect pipe_clip = { .x1 = 0, .y1 = -1, .x2 = INT_MAX, .y2 = -1 };
1440	struct intel_plane_state *new_plane_state, *old_plane_state;
1441	struct intel_plane *plane;
1442	bool full_update = false;
1443	int i, ret;
1444
1445	if (!crtc_state->enable_psr2_sel_fetch)
1446		return 0;
1447
1448	ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
1449	if (ret)
1450		return ret;
1451
1452	/*
1453	 * Calculate minimal selective fetch area of each plane and calculate
1454	 * the pipe damaged area.
1455	 * In the next loop the plane selective fetch area will actually be set
1456	 * using whole pipe damaged area.
1457	 */
1458	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
1459					     new_plane_state, i) {
1460		struct drm_rect src, damaged_area = { .y1 = -1 };
1461		struct drm_mode_rect *damaged_clips;
1462		u32 num_clips, j;
1463
1464		if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc)
1465			continue;
1466
1467		if (!new_plane_state->uapi.visible &&
1468		    !old_plane_state->uapi.visible)
1469			continue;
1470
1471		/*
1472		 * TODO: Not clear how to handle planes with negative position,
1473		 * also planes are not updated if they have a negative X
1474		 * position so for now doing a full update in this cases
1475		 */
1476		if (new_plane_state->uapi.dst.y1 < 0 ||
1477		    new_plane_state->uapi.dst.x1 < 0) {
1478			full_update = true;
1479			break;
1480		}
1481
1482		num_clips = drm_plane_get_damage_clips_count(&new_plane_state->uapi);
1483
1484		/*
1485		 * If visibility or plane moved, mark the whole plane area as
1486		 * damaged as it needs to be complete redraw in the new and old
1487		 * position.
1488		 */
1489		if (new_plane_state->uapi.visible != old_plane_state->uapi.visible ||
1490		    !drm_rect_equals(&new_plane_state->uapi.dst,
1491				     &old_plane_state->uapi.dst)) {
1492			if (old_plane_state->uapi.visible) {
1493				damaged_area.y1 = old_plane_state->uapi.dst.y1;
1494				damaged_area.y2 = old_plane_state->uapi.dst.y2;
1495				clip_area_update(&pipe_clip, &damaged_area);
1496			}
1497
1498			if (new_plane_state->uapi.visible) {
1499				damaged_area.y1 = new_plane_state->uapi.dst.y1;
1500				damaged_area.y2 = new_plane_state->uapi.dst.y2;
1501				clip_area_update(&pipe_clip, &damaged_area);
1502			}
1503			continue;
1504		} else if (new_plane_state->uapi.alpha != old_plane_state->uapi.alpha ||
1505			   (!num_clips &&
1506			    new_plane_state->uapi.fb != old_plane_state->uapi.fb)) {
1507			/*
1508			 * If the plane don't have damaged areas but the
1509			 * framebuffer changed or alpha changed, mark the whole
1510			 * plane area as damaged.
1511			 */
1512			damaged_area.y1 = new_plane_state->uapi.dst.y1;
1513			damaged_area.y2 = new_plane_state->uapi.dst.y2;
1514			clip_area_update(&pipe_clip, &damaged_area);
1515			continue;
1516		}
1517
1518		drm_rect_fp_to_int(&src, &new_plane_state->uapi.src);
1519		damaged_clips = drm_plane_get_damage_clips(&new_plane_state->uapi);
1520
1521		for (j = 0; j < num_clips; j++) {
1522			struct drm_rect clip;
1523
1524			clip.x1 = damaged_clips[j].x1;
1525			clip.y1 = damaged_clips[j].y1;
1526			clip.x2 = damaged_clips[j].x2;
1527			clip.y2 = damaged_clips[j].y2;
1528			if (drm_rect_intersect(&clip, &src))
1529				clip_area_update(&damaged_area, &clip);
1530		}
1531
1532		if (damaged_area.y1 == -1)
1533			continue;
1534
1535		damaged_area.y1 += new_plane_state->uapi.dst.y1 - src.y1;
1536		damaged_area.y2 += new_plane_state->uapi.dst.y1 - src.y1;
1537		clip_area_update(&pipe_clip, &damaged_area);
1538	}
1539
1540	if (full_update)
1541		goto skip_sel_fetch_set_loop;
1542
1543	/* It must be aligned to 4 lines */
1544	pipe_clip.y1 -= pipe_clip.y1 % 4;
1545	if (pipe_clip.y2 % 4)
1546		pipe_clip.y2 = ((pipe_clip.y2 / 4) + 1) * 4;
1547
1548	/*
1549	 * Now that we have the pipe damaged area check if it intersect with
1550	 * every plane, if it does set the plane selective fetch area.
1551	 */
1552	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
1553					     new_plane_state, i) {
1554		struct drm_rect *sel_fetch_area, inter;
1555
1556		if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc ||
1557		    !new_plane_state->uapi.visible)
1558			continue;
1559
1560		inter = pipe_clip;
1561		if (!drm_rect_intersect(&inter, &new_plane_state->uapi.dst))
1562			continue;
1563
1564		sel_fetch_area = &new_plane_state->psr2_sel_fetch_area;
1565		sel_fetch_area->y1 = inter.y1 - new_plane_state->uapi.dst.y1;
1566		sel_fetch_area->y2 = inter.y2 - new_plane_state->uapi.dst.y1;
1567	}
1568
1569skip_sel_fetch_set_loop:
1570	psr2_man_trk_ctl_calc(crtc_state, &pipe_clip, full_update);
1571	return 0;
1572}
1573
1574/**
1575 * intel_psr_update - Update PSR state
1576 * @intel_dp: Intel DP
1577 * @crtc_state: new CRTC state
1578 * @conn_state: new CONNECTOR state
1579 *
1580 * This functions will update PSR states, disabling, enabling or switching PSR
1581 * version when executing fastsets. For full modeset, intel_psr_disable() and
1582 * intel_psr_enable() should be called instead.
1583 */
1584void intel_psr_update(struct intel_dp *intel_dp,
1585		      const struct intel_crtc_state *crtc_state,
1586		      const struct drm_connector_state *conn_state)
1587{
1588	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1589	struct intel_psr *psr = &intel_dp->psr;
1590	bool enable, psr2_enable;
1591
1592	if (!CAN_PSR(intel_dp))
1593		return;
1594
1595	mutex_lock(&intel_dp->psr.lock);
1596
1597	enable = crtc_state->has_psr;
1598	psr2_enable = crtc_state->has_psr2;
1599
1600	if (enable == psr->enabled && psr2_enable == psr->psr2_enabled &&
1601	    crtc_state->enable_psr2_sel_fetch == psr->psr2_sel_fetch_enabled) {
1602		/* Force a PSR exit when enabling CRC to avoid CRC timeouts */
1603		if (crtc_state->crc_enabled && psr->enabled)
1604			psr_force_hw_tracking_exit(intel_dp);
1605		else if (DISPLAY_VER(dev_priv) < 9 && psr->enabled) {
1606			/*
1607			 * Activate PSR again after a force exit when enabling
1608			 * CRC in older gens
1609			 */
1610			if (!intel_dp->psr.active &&
1611			    !intel_dp->psr.busy_frontbuffer_bits)
1612				schedule_work(&intel_dp->psr.work);
1613		}
1614
1615		goto unlock;
1616	}
1617
1618	if (psr->enabled)
1619		intel_psr_disable_locked(intel_dp);
1620
1621	if (enable)
1622		intel_psr_enable_locked(intel_dp, crtc_state, conn_state);
1623
1624unlock:
1625	mutex_unlock(&intel_dp->psr.lock);
1626}
1627
1628/**
1629 * psr_wait_for_idle - wait for PSR1 to idle
1630 * @intel_dp: Intel DP
1631 * @out_value: PSR status in case of failure
1632 *
1633 * Returns: 0 on success or -ETIMEOUT if PSR status does not idle.
 
1634 *
 
1635 */
1636static int psr_wait_for_idle(struct intel_dp *intel_dp, u32 *out_value)
 
1637{
1638	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 
 
 
 
 
 
 
 
1639
1640	/*
1641	 * From bspec: Panel Self Refresh (BDW+)
1642	 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
1643	 * exit training time + 1.5 ms of aux channel handshake. 50 ms is
1644	 * defensive enough to cover everything.
1645	 */
1646	return __intel_wait_for_register(&dev_priv->uncore,
1647					 EDP_PSR_STATUS(intel_dp->psr.transcoder),
1648					 EDP_PSR_STATUS_STATE_MASK,
1649					 EDP_PSR_STATUS_STATE_IDLE, 2, 50,
1650					 out_value);
1651}
1652
1653/**
1654 * intel_psr_wait_for_idle - wait for PSR1 to idle
1655 * @new_crtc_state: new CRTC state
1656 *
1657 * This function is expected to be called from pipe_update_start() where it is
1658 * not expected to race with PSR enable or disable.
1659 */
1660void intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state)
1661{
1662	struct drm_i915_private *dev_priv = to_i915(new_crtc_state->uapi.crtc->dev);
1663	struct intel_encoder *encoder;
1664
1665	if (!new_crtc_state->has_psr)
1666		return;
1667
1668	for_each_intel_encoder_mask_with_psr(&dev_priv->drm, encoder,
1669					     new_crtc_state->uapi.encoder_mask) {
1670		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1671		u32 psr_status;
1672
1673		mutex_lock(&intel_dp->psr.lock);
1674		if (!intel_dp->psr.enabled || intel_dp->psr.psr2_enabled) {
1675			mutex_unlock(&intel_dp->psr.lock);
1676			continue;
1677		}
1678
1679		/* when the PSR1 is enabled */
1680		if (psr_wait_for_idle(intel_dp, &psr_status))
1681			drm_err(&dev_priv->drm,
1682				"PSR idle timed out 0x%x, atomic update may fail\n",
1683				psr_status);
1684		mutex_unlock(&intel_dp->psr.lock);
1685	}
1686}
1687
1688static bool __psr_wait_for_idle_locked(struct intel_dp *intel_dp)
1689{
1690	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1691	i915_reg_t reg;
1692	u32 mask;
1693	int err;
1694
1695	if (!intel_dp->psr.enabled)
1696		return false;
1697
1698	if (intel_dp->psr.psr2_enabled) {
1699		reg = EDP_PSR2_STATUS(intel_dp->psr.transcoder);
1700		mask = EDP_PSR2_STATUS_STATE_MASK;
1701	} else {
1702		reg = EDP_PSR_STATUS(intel_dp->psr.transcoder);
1703		mask = EDP_PSR_STATUS_STATE_MASK;
1704	}
1705
1706	mutex_unlock(&intel_dp->psr.lock);
1707
1708	err = intel_de_wait_for_clear(dev_priv, reg, mask, 50);
1709	if (err)
1710		drm_err(&dev_priv->drm,
1711			"Timed out waiting for PSR Idle for re-enable\n");
1712
1713	/* After the unlocked wait, verify that PSR is still wanted! */
1714	mutex_lock(&intel_dp->psr.lock);
1715	return err == 0 && intel_dp->psr.enabled;
1716}
1717
1718static int intel_psr_fastset_force(struct drm_i915_private *dev_priv)
1719{
1720	struct drm_connector_list_iter conn_iter;
1721	struct drm_device *dev = &dev_priv->drm;
1722	struct drm_modeset_acquire_ctx ctx;
1723	struct drm_atomic_state *state;
1724	struct drm_connector *conn;
1725	int err = 0;
1726
1727	state = drm_atomic_state_alloc(dev);
1728	if (!state)
1729		return -ENOMEM;
1730
1731	drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
1732	state->acquire_ctx = &ctx;
1733
1734retry:
1735
1736	drm_connector_list_iter_begin(dev, &conn_iter);
1737	drm_for_each_connector_iter(conn, &conn_iter) {
1738		struct drm_connector_state *conn_state;
1739		struct drm_crtc_state *crtc_state;
 
1740
1741		if (conn->connector_type != DRM_MODE_CONNECTOR_eDP)
1742			continue;
1743
1744		conn_state = drm_atomic_get_connector_state(state, conn);
1745		if (IS_ERR(conn_state)) {
1746			err = PTR_ERR(conn_state);
1747			break;
1748		}
1749
1750		if (!conn_state->crtc)
1751			continue;
1752
1753		crtc_state = drm_atomic_get_crtc_state(state, conn_state->crtc);
1754		if (IS_ERR(crtc_state)) {
1755			err = PTR_ERR(crtc_state);
1756			break;
1757		}
1758
1759		/* Mark mode as changed to trigger a pipe->update() */
1760		crtc_state->mode_changed = true;
1761	}
1762	drm_connector_list_iter_end(&conn_iter);
1763
1764	if (err == 0)
1765		err = drm_atomic_commit(state);
1766
 
1767	if (err == -EDEADLK) {
1768		drm_atomic_state_clear(state);
1769		err = drm_modeset_backoff(&ctx);
1770		if (!err)
1771			goto retry;
1772	}
1773
1774	drm_modeset_drop_locks(&ctx);
1775	drm_modeset_acquire_fini(&ctx);
1776	drm_atomic_state_put(state);
1777
1778	return err;
1779}
1780
1781int intel_psr_debug_set(struct intel_dp *intel_dp, u64 val)
1782{
1783	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1784	const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
1785	u32 old_mode;
1786	int ret;
1787
1788	if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
1789	    mode > I915_PSR_DEBUG_ENABLE_SEL_FETCH) {
1790		drm_dbg_kms(&dev_priv->drm, "Invalid debug mask %llx\n", val);
1791		return -EINVAL;
1792	}
1793
1794	ret = mutex_lock_interruptible(&intel_dp->psr.lock);
1795	if (ret)
1796		return ret;
1797
1798	old_mode = intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK;
1799	intel_dp->psr.debug = val;
 
1800
1801	/*
1802	 * Do it right away if it's already enabled, otherwise it will be done
1803	 * when enabling the source.
1804	 */
1805	if (intel_dp->psr.enabled)
1806		psr_irq_control(intel_dp);
1807
1808	mutex_unlock(&intel_dp->psr.lock);
1809
1810	if (old_mode != mode)
1811		ret = intel_psr_fastset_force(dev_priv);
1812
1813	return ret;
1814}
1815
1816static void intel_psr_handle_irq(struct intel_dp *intel_dp)
1817{
1818	struct intel_psr *psr = &intel_dp->psr;
1819
1820	intel_psr_disable_locked(intel_dp);
1821	psr->sink_not_reliable = true;
1822	/* let's make sure that sink is awaken */
1823	drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
1824}
1825
1826static void intel_psr_work(struct work_struct *work)
1827{
1828	struct intel_dp *intel_dp =
1829		container_of(work, typeof(*intel_dp), psr.work);
1830
1831	mutex_lock(&intel_dp->psr.lock);
1832
1833	if (!intel_dp->psr.enabled)
1834		goto unlock;
1835
1836	if (READ_ONCE(intel_dp->psr.irq_aux_error))
1837		intel_psr_handle_irq(intel_dp);
1838
1839	/*
1840	 * We have to make sure PSR is ready for re-enable
1841	 * otherwise it keeps disabled until next full enable/disable cycle.
1842	 * PSR might take some time to get fully disabled
1843	 * and be ready for re-enable.
1844	 */
1845	if (!__psr_wait_for_idle_locked(intel_dp))
1846		goto unlock;
1847
1848	/*
1849	 * The delayed work can race with an invalidate hence we need to
1850	 * recheck. Since psr_flush first clears this and then reschedules we
1851	 * won't ever miss a flush when bailing out here.
1852	 */
1853	if (intel_dp->psr.busy_frontbuffer_bits || intel_dp->psr.active)
1854		goto unlock;
1855
1856	intel_psr_activate(intel_dp);
1857unlock:
1858	mutex_unlock(&intel_dp->psr.lock);
1859}
1860
1861/**
1862 * intel_psr_invalidate - Invalidade PSR
1863 * @dev_priv: i915 device
1864 * @frontbuffer_bits: frontbuffer plane tracking bits
1865 * @origin: which operation caused the invalidate
1866 *
1867 * Since the hardware frontbuffer tracking has gaps we need to integrate
1868 * with the software frontbuffer tracking. This function gets called every
1869 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
1870 * disabled if the frontbuffer mask contains a buffer relevant to PSR.
1871 *
1872 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
1873 */
1874void intel_psr_invalidate(struct drm_i915_private *dev_priv,
1875			  unsigned frontbuffer_bits, enum fb_op_origin origin)
1876{
1877	struct intel_encoder *encoder;
 
1878
1879	if (origin == ORIGIN_FLIP)
1880		return;
1881
1882	for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
1883		unsigned int pipe_frontbuffer_bits = frontbuffer_bits;
1884		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1885
1886		mutex_lock(&intel_dp->psr.lock);
1887		if (!intel_dp->psr.enabled) {
1888			mutex_unlock(&intel_dp->psr.lock);
1889			continue;
1890		}
1891
1892		pipe_frontbuffer_bits &=
1893			INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe);
1894		intel_dp->psr.busy_frontbuffer_bits |= pipe_frontbuffer_bits;
1895
1896		if (pipe_frontbuffer_bits)
1897			intel_psr_exit(intel_dp);
1898
1899		mutex_unlock(&intel_dp->psr.lock);
1900	}
1901}
1902/*
1903 * When we will be completely rely on PSR2 S/W tracking in future,
1904 * intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP
1905 * event also therefore tgl_dc3co_flush() require to be changed
1906 * accordingly in future.
1907 */
1908static void
1909tgl_dc3co_flush(struct intel_dp *intel_dp, unsigned int frontbuffer_bits,
1910		enum fb_op_origin origin)
1911{
1912	mutex_lock(&intel_dp->psr.lock);
1913
1914	if (!intel_dp->psr.dc3co_exitline)
1915		goto unlock;
1916
1917	if (!intel_dp->psr.psr2_enabled || !intel_dp->psr.active)
1918		goto unlock;
1919
1920	/*
1921	 * At every frontbuffer flush flip event modified delay of delayed work,
1922	 * when delayed work schedules that means display has been idle.
1923	 */
1924	if (!(frontbuffer_bits &
1925	    INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe)))
1926		goto unlock;
1927
1928	tgl_psr2_enable_dc3co(intel_dp);
1929	mod_delayed_work(system_wq, &intel_dp->psr.dc3co_work,
1930			 intel_dp->psr.dc3co_exit_delay);
1931
1932unlock:
1933	mutex_unlock(&intel_dp->psr.lock);
1934}
1935
1936/**
1937 * intel_psr_flush - Flush PSR
1938 * @dev_priv: i915 device
1939 * @frontbuffer_bits: frontbuffer plane tracking bits
1940 * @origin: which operation caused the flush
1941 *
1942 * Since the hardware frontbuffer tracking has gaps we need to integrate
1943 * with the software frontbuffer tracking. This function gets called every
1944 * time frontbuffer rendering has completed and flushed out to memory. PSR
1945 * can be enabled again if no other frontbuffer relevant to PSR is dirty.
1946 *
1947 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
1948 */
1949void intel_psr_flush(struct drm_i915_private *dev_priv,
1950		     unsigned frontbuffer_bits, enum fb_op_origin origin)
1951{
1952	struct intel_encoder *encoder;
 
1953
1954	for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
1955		unsigned int pipe_frontbuffer_bits = frontbuffer_bits;
1956		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1957
1958		if (origin == ORIGIN_FLIP) {
1959			tgl_dc3co_flush(intel_dp, frontbuffer_bits, origin);
1960			continue;
1961		}
1962
1963		mutex_lock(&intel_dp->psr.lock);
1964		if (!intel_dp->psr.enabled) {
1965			mutex_unlock(&intel_dp->psr.lock);
1966			continue;
1967		}
1968
1969		pipe_frontbuffer_bits &=
1970			INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe);
1971		intel_dp->psr.busy_frontbuffer_bits &= ~pipe_frontbuffer_bits;
1972
1973		/*
1974		 * If the PSR is paused by an explicit intel_psr_paused() call,
1975		 * we have to ensure that the PSR is not activated until
1976		 * intel_psr_resume() is called.
1977		 */
1978		if (intel_dp->psr.paused) {
1979			mutex_unlock(&intel_dp->psr.lock);
1980			continue;
1981		}
1982
1983		/* By definition flush = invalidate + flush */
1984		if (pipe_frontbuffer_bits)
1985			psr_force_hw_tracking_exit(intel_dp);
1986
1987		if (!intel_dp->psr.active && !intel_dp->psr.busy_frontbuffer_bits)
1988			schedule_work(&intel_dp->psr.work);
1989		mutex_unlock(&intel_dp->psr.lock);
1990	}
1991}
1992
1993/**
1994 * intel_psr_init - Init basic PSR work and mutex.
1995 * @intel_dp: Intel DP
1996 *
1997 * This function is called after the initializing connector.
1998 * (the initializing of connector treats the handling of connector capabilities)
1999 * And it initializes basic PSR stuff for each DP Encoder.
2000 */
2001void intel_psr_init(struct intel_dp *intel_dp)
2002{
2003	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2004	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2005
2006	if (!HAS_PSR(dev_priv))
2007		return;
2008
2009	/*
2010	 * HSW spec explicitly says PSR is tied to port A.
2011	 * BDW+ platforms have a instance of PSR registers per transcoder but
2012	 * BDW, GEN9 and GEN11 are not validated by HW team in other transcoder
2013	 * than eDP one.
2014	 * For now it only supports one instance of PSR for BDW, GEN9 and GEN11.
2015	 * So lets keep it hardcoded to PORT_A for BDW, GEN9 and GEN11.
2016	 * But GEN12 supports a instance of PSR registers per transcoder.
2017	 */
2018	if (DISPLAY_VER(dev_priv) < 12 && dig_port->base.port != PORT_A) {
2019		drm_dbg_kms(&dev_priv->drm,
2020			    "PSR condition failed: Port not supported\n");
2021		return;
2022	}
2023
2024	intel_dp->psr.source_support = true;
 
2025
2026	if (IS_HASWELL(dev_priv))
2027		/*
2028		 * HSW don't have PSR registers on the same space as transcoder
2029		 * so set this to a value that when subtract to the register
2030		 * in transcoder space results in the right offset for HSW
2031		 */
2032		dev_priv->hsw_psr_mmio_adjust = _SRD_CTL_EDP - _HSW_EDP_PSR_BASE;
2033
2034	if (dev_priv->params.enable_psr == -1)
2035		if (DISPLAY_VER(dev_priv) < 9 || !dev_priv->vbt.psr.enable)
2036			dev_priv->params.enable_psr = 0;
 
 
 
 
 
 
 
 
 
 
 
2037
2038	/* Set link_standby x link_off defaults */
2039	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2040		/* HSW and BDW require workarounds that we don't implement. */
2041		intel_dp->psr.link_standby = false;
2042	else if (DISPLAY_VER(dev_priv) < 12)
2043		/* For new platforms up to TGL let's respect VBT back again */
2044		intel_dp->psr.link_standby = dev_priv->vbt.psr.full_link;
2045
2046	INIT_WORK(&intel_dp->psr.work, intel_psr_work);
2047	INIT_DELAYED_WORK(&intel_dp->psr.dc3co_work, tgl_dc3co_disable_work);
2048	mutex_init(&intel_dp->psr.lock);
2049}
2050
2051static int psr_get_status_and_error_status(struct intel_dp *intel_dp,
2052					   u8 *status, u8 *error_status)
2053{
2054	struct drm_dp_aux *aux = &intel_dp->aux;
2055	int ret;
2056
2057	ret = drm_dp_dpcd_readb(aux, DP_PSR_STATUS, status);
2058	if (ret != 1)
2059		return ret;
2060
2061	ret = drm_dp_dpcd_readb(aux, DP_PSR_ERROR_STATUS, error_status);
2062	if (ret != 1)
2063		return ret;
2064
2065	*status = *status & DP_PSR_SINK_STATE_MASK;
2066
2067	return 0;
2068}
2069
2070static void psr_alpm_check(struct intel_dp *intel_dp)
2071{
2072	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2073	struct drm_dp_aux *aux = &intel_dp->aux;
2074	struct intel_psr *psr = &intel_dp->psr;
2075	u8 val;
2076	int r;
2077
2078	if (!psr->psr2_enabled)
2079		return;
2080
2081	r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val);
2082	if (r != 1) {
2083		drm_err(&dev_priv->drm, "Error reading ALPM status\n");
2084		return;
2085	}
2086
2087	if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) {
2088		intel_psr_disable_locked(intel_dp);
2089		psr->sink_not_reliable = true;
2090		drm_dbg_kms(&dev_priv->drm,
2091			    "ALPM lock timeout error, disabling PSR\n");
2092
2093		/* Clearing error */
2094		drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val);
2095	}
2096}
2097
2098static void psr_capability_changed_check(struct intel_dp *intel_dp)
2099{
2100	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2101	struct intel_psr *psr = &intel_dp->psr;
2102	u8 val;
2103	int r;
2104
2105	r = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ESI, &val);
2106	if (r != 1) {
2107		drm_err(&dev_priv->drm, "Error reading DP_PSR_ESI\n");
2108		return;
2109	}
2110
2111	if (val & DP_PSR_CAPS_CHANGE) {
2112		intel_psr_disable_locked(intel_dp);
2113		psr->sink_not_reliable = true;
2114		drm_dbg_kms(&dev_priv->drm,
2115			    "Sink PSR capability changed, disabling PSR\n");
2116
2117		/* Clearing it */
2118		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ESI, val);
2119	}
2120}
2121
2122void intel_psr_short_pulse(struct intel_dp *intel_dp)
2123{
2124	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2125	struct intel_psr *psr = &intel_dp->psr;
2126	u8 status, error_status;
2127	const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
2128			  DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
2129			  DP_PSR_LINK_CRC_ERROR;
2130
2131	if (!CAN_PSR(intel_dp))
2132		return;
2133
2134	mutex_lock(&psr->lock);
2135
2136	if (!psr->enabled)
2137		goto exit;
2138
2139	if (psr_get_status_and_error_status(intel_dp, &status, &error_status)) {
2140		drm_err(&dev_priv->drm,
2141			"Error reading PSR status or error status\n");
2142		goto exit;
2143	}
2144
2145	if (status == DP_PSR_SINK_INTERNAL_ERROR || (error_status & errors)) {
 
2146		intel_psr_disable_locked(intel_dp);
2147		psr->sink_not_reliable = true;
2148	}
2149
2150	if (status == DP_PSR_SINK_INTERNAL_ERROR && !error_status)
2151		drm_dbg_kms(&dev_priv->drm,
2152			    "PSR sink internal error, disabling PSR\n");
2153	if (error_status & DP_PSR_RFB_STORAGE_ERROR)
2154		drm_dbg_kms(&dev_priv->drm,
2155			    "PSR RFB storage error, disabling PSR\n");
2156	if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
2157		drm_dbg_kms(&dev_priv->drm,
2158			    "PSR VSC SDP uncorrectable error, disabling PSR\n");
2159	if (error_status & DP_PSR_LINK_CRC_ERROR)
2160		drm_dbg_kms(&dev_priv->drm,
2161			    "PSR Link CRC error, disabling PSR\n");
2162
2163	if (error_status & ~errors)
2164		drm_err(&dev_priv->drm,
2165			"PSR_ERROR_STATUS unhandled errors %x\n",
2166			error_status & ~errors);
2167	/* clear status register */
2168	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, error_status);
2169
2170	psr_alpm_check(intel_dp);
2171	psr_capability_changed_check(intel_dp);
2172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2173exit:
2174	mutex_unlock(&psr->lock);
2175}
2176
2177bool intel_psr_enabled(struct intel_dp *intel_dp)
2178{
 
2179	bool ret;
2180
2181	if (!CAN_PSR(intel_dp))
2182		return false;
2183
2184	mutex_lock(&intel_dp->psr.lock);
2185	ret = intel_dp->psr.enabled;
2186	mutex_unlock(&intel_dp->psr.lock);
2187
2188	return ret;
2189}
v5.4
   1/*
   2 * Copyright © 2014 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <drm/drm_atomic_helper.h>
  25
  26#include "display/intel_dp.h"
  27
  28#include "i915_drv.h"
 
 
  29#include "intel_display_types.h"
 
 
  30#include "intel_psr.h"
  31#include "intel_sprite.h"
 
  32
  33/**
  34 * DOC: Panel Self Refresh (PSR/SRD)
  35 *
  36 * Since Haswell Display controller supports Panel Self-Refresh on display
  37 * panels witch have a remote frame buffer (RFB) implemented according to PSR
  38 * spec in eDP1.3. PSR feature allows the display to go to lower standby states
  39 * when system is idle but display is on as it eliminates display refresh
  40 * request to DDR memory completely as long as the frame buffer for that
  41 * display is unchanged.
  42 *
  43 * Panel Self Refresh must be supported by both Hardware (source) and
  44 * Panel (sink).
  45 *
  46 * PSR saves power by caching the framebuffer in the panel RFB, which allows us
  47 * to power down the link and memory controller. For DSI panels the same idea
  48 * is called "manual mode".
  49 *
  50 * The implementation uses the hardware-based PSR support which automatically
  51 * enters/exits self-refresh mode. The hardware takes care of sending the
  52 * required DP aux message and could even retrain the link (that part isn't
  53 * enabled yet though). The hardware also keeps track of any frontbuffer
  54 * changes to know when to exit self-refresh mode again. Unfortunately that
  55 * part doesn't work too well, hence why the i915 PSR support uses the
  56 * software frontbuffer tracking to make sure it doesn't miss a screen
  57 * update. For this integration intel_psr_invalidate() and intel_psr_flush()
  58 * get called by the frontbuffer tracking code. Note that because of locking
  59 * issues the self-refresh re-enable code is done from a work queue, which
  60 * must be correctly synchronized/cancelled when shutting down the pipe."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61 */
  62
  63static bool psr_global_enabled(u32 debug)
  64{
  65	switch (debug & I915_PSR_DEBUG_MODE_MASK) {
 
 
  66	case I915_PSR_DEBUG_DEFAULT:
  67		return i915_modparams.enable_psr;
  68	case I915_PSR_DEBUG_DISABLE:
  69		return false;
  70	default:
  71		return true;
  72	}
  73}
  74
  75static bool intel_psr2_enabled(struct drm_i915_private *dev_priv,
  76			       const struct intel_crtc_state *crtc_state)
  77{
  78	/* Cannot enable DSC and PSR2 simultaneously */
  79	WARN_ON(crtc_state->dsc_params.compression_enable &&
  80		crtc_state->has_psr2);
  81
  82	switch (dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
  83	case I915_PSR_DEBUG_DISABLE:
  84	case I915_PSR_DEBUG_FORCE_PSR1:
  85		return false;
  86	default:
  87		return crtc_state->has_psr2;
  88	}
  89}
  90
  91static int edp_psr_shift(enum transcoder cpu_transcoder)
  92{
  93	switch (cpu_transcoder) {
  94	case TRANSCODER_A:
  95		return EDP_PSR_TRANSCODER_A_SHIFT;
  96	case TRANSCODER_B:
  97		return EDP_PSR_TRANSCODER_B_SHIFT;
  98	case TRANSCODER_C:
  99		return EDP_PSR_TRANSCODER_C_SHIFT;
 100	default:
 101		MISSING_CASE(cpu_transcoder);
 102		/* fallthrough */
 103	case TRANSCODER_EDP:
 104		return EDP_PSR_TRANSCODER_EDP_SHIFT;
 105	}
 106}
 107
 108void intel_psr_irq_control(struct drm_i915_private *dev_priv, u32 debug)
 109{
 110	u32 debug_mask, mask;
 111	enum transcoder cpu_transcoder;
 112	u32 transcoders = BIT(TRANSCODER_EDP);
 113
 114	if (INTEL_GEN(dev_priv) >= 8)
 115		transcoders |= BIT(TRANSCODER_A) |
 116			       BIT(TRANSCODER_B) |
 117			       BIT(TRANSCODER_C);
 118
 119	debug_mask = 0;
 120	mask = 0;
 121	for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
 122		int shift = edp_psr_shift(cpu_transcoder);
 123
 124		mask |= EDP_PSR_ERROR(shift);
 125		debug_mask |= EDP_PSR_POST_EXIT(shift) |
 126			      EDP_PSR_PRE_ENTRY(shift);
 127	}
 128
 129	if (debug & I915_PSR_DEBUG_IRQ)
 130		mask |= debug_mask;
 
 
 131
 132	I915_WRITE(EDP_PSR_IMR, ~mask);
 
 
 
 
 133}
 134
 135static void psr_event_print(u32 val, bool psr2_enabled)
 
 136{
 137	DRM_DEBUG_KMS("PSR exit events: 0x%x\n", val);
 138	if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
 139		DRM_DEBUG_KMS("\tPSR2 watchdog timer expired\n");
 140	if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
 141		DRM_DEBUG_KMS("\tPSR2 disabled\n");
 142	if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
 143		DRM_DEBUG_KMS("\tSU dirty FIFO underrun\n");
 144	if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
 145		DRM_DEBUG_KMS("\tSU CRC FIFO underrun\n");
 146	if (val & PSR_EVENT_GRAPHICS_RESET)
 147		DRM_DEBUG_KMS("\tGraphics reset\n");
 148	if (val & PSR_EVENT_PCH_INTERRUPT)
 149		DRM_DEBUG_KMS("\tPCH interrupt\n");
 150	if (val & PSR_EVENT_MEMORY_UP)
 151		DRM_DEBUG_KMS("\tMemory up\n");
 152	if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
 153		DRM_DEBUG_KMS("\tFront buffer modification\n");
 154	if (val & PSR_EVENT_WD_TIMER_EXPIRE)
 155		DRM_DEBUG_KMS("\tPSR watchdog timer expired\n");
 156	if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
 157		DRM_DEBUG_KMS("\tPIPE registers updated\n");
 158	if (val & PSR_EVENT_REGISTER_UPDATE)
 159		DRM_DEBUG_KMS("\tRegister updated\n");
 160	if (val & PSR_EVENT_HDCP_ENABLE)
 161		DRM_DEBUG_KMS("\tHDCP enabled\n");
 162	if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
 163		DRM_DEBUG_KMS("\tKVMR session enabled\n");
 164	if (val & PSR_EVENT_VBI_ENABLE)
 165		DRM_DEBUG_KMS("\tVBI enabled\n");
 166	if (val & PSR_EVENT_LPSP_MODE_EXIT)
 167		DRM_DEBUG_KMS("\tLPSP mode exited\n");
 168	if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
 169		DRM_DEBUG_KMS("\tPSR disabled\n");
 170}
 171
 172void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
 173{
 174	u32 transcoders = BIT(TRANSCODER_EDP);
 175	enum transcoder cpu_transcoder;
 176	ktime_t time_ns =  ktime_get();
 177	u32 mask = 0;
 
 178
 179	if (INTEL_GEN(dev_priv) >= 8)
 180		transcoders |= BIT(TRANSCODER_A) |
 181			       BIT(TRANSCODER_B) |
 182			       BIT(TRANSCODER_C);
 183
 184	for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
 185		int shift = edp_psr_shift(cpu_transcoder);
 186
 187		if (psr_iir & EDP_PSR_ERROR(shift)) {
 188			DRM_WARN("[transcoder %s] PSR aux error\n",
 189				 transcoder_name(cpu_transcoder));
 190
 191			dev_priv->psr.irq_aux_error = true;
 192
 193			/*
 194			 * If this interruption is not masked it will keep
 195			 * interrupting so fast that it prevents the scheduled
 196			 * work to run.
 197			 * Also after a PSR error, we don't want to arm PSR
 198			 * again so we don't care about unmask the interruption
 199			 * or unset irq_aux_error.
 200			 */
 201			mask |= EDP_PSR_ERROR(shift);
 
 
 
 
 
 
 
 
 
 
 
 
 202		}
 
 203
 204		if (psr_iir & EDP_PSR_PRE_ENTRY(shift)) {
 205			dev_priv->psr.last_entry_attempt = time_ns;
 206			DRM_DEBUG_KMS("[transcoder %s] PSR entry attempt in 2 vblanks\n",
 207				      transcoder_name(cpu_transcoder));
 208		}
 209
 210		if (psr_iir & EDP_PSR_POST_EXIT(shift)) {
 211			dev_priv->psr.last_exit = time_ns;
 212			DRM_DEBUG_KMS("[transcoder %s] PSR exit completed\n",
 213				      transcoder_name(cpu_transcoder));
 214
 215			if (INTEL_GEN(dev_priv) >= 9) {
 216				u32 val = I915_READ(PSR_EVENT(cpu_transcoder));
 217				bool psr2_enabled = dev_priv->psr.psr2_enabled;
 218
 219				I915_WRITE(PSR_EVENT(cpu_transcoder), val);
 220				psr_event_print(val, psr2_enabled);
 221			}
 222		}
 223	}
 224
 225	if (mask) {
 226		mask |= I915_READ(EDP_PSR_IMR);
 227		I915_WRITE(EDP_PSR_IMR, mask);
 
 
 
 
 
 
 
 
 228
 229		schedule_work(&dev_priv->psr.work);
 230	}
 231}
 232
 233static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
 234{
 235	u8 alpm_caps = 0;
 236
 237	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
 238			      &alpm_caps) != 1)
 239		return false;
 240	return alpm_caps & DP_ALPM_CAP;
 241}
 242
 243static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
 244{
 
 245	u8 val = 8; /* assume the worst if we can't read the value */
 246
 247	if (drm_dp_dpcd_readb(&intel_dp->aux,
 248			      DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
 249		val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
 250	else
 251		DRM_DEBUG_KMS("Unable to get sink synchronization latency, assuming 8 frames\n");
 
 252	return val;
 253}
 254
 255static u16 intel_dp_get_su_x_granulartiy(struct intel_dp *intel_dp)
 256{
 
 257	u16 val;
 258	ssize_t r;
 259
 260	/*
 261	 * Returning the default X granularity if granularity not required or
 262	 * if DPCD read fails
 263	 */
 264	if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED))
 265		return 4;
 266
 267	r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &val, 2);
 268	if (r != 2)
 269		DRM_DEBUG_KMS("Unable to read DP_PSR2_SU_X_GRANULARITY\n");
 
 270
 271	/*
 272	 * Spec says that if the value read is 0 the default granularity should
 273	 * be used instead.
 274	 */
 275	if (r != 2 || val == 0)
 276		val = 4;
 277
 278	return val;
 279}
 280
 281void intel_psr_init_dpcd(struct intel_dp *intel_dp)
 282{
 283	struct drm_i915_private *dev_priv =
 284		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
 285
 286	drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
 287			 sizeof(intel_dp->psr_dpcd));
 288
 289	if (!intel_dp->psr_dpcd[0])
 290		return;
 291	DRM_DEBUG_KMS("eDP panel supports PSR version %x\n",
 292		      intel_dp->psr_dpcd[0]);
 293
 294	if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) {
 295		DRM_DEBUG_KMS("PSR support not currently available for this panel\n");
 
 296		return;
 297	}
 298
 299	if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
 300		DRM_DEBUG_KMS("Panel lacks power state control, PSR cannot be enabled\n");
 
 301		return;
 302	}
 303
 304	dev_priv->psr.sink_support = true;
 305	dev_priv->psr.sink_sync_latency =
 306		intel_dp_get_sink_sync_latency(intel_dp);
 307
 308	WARN_ON(dev_priv->psr.dp);
 309	dev_priv->psr.dp = intel_dp;
 310
 311	if (INTEL_GEN(dev_priv) >= 9 &&
 312	    (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
 313		bool y_req = intel_dp->psr_dpcd[1] &
 314			     DP_PSR2_SU_Y_COORDINATE_REQUIRED;
 315		bool alpm = intel_dp_get_alpm_status(intel_dp);
 316
 317		/*
 318		 * All panels that supports PSR version 03h (PSR2 +
 319		 * Y-coordinate) can handle Y-coordinates in VSC but we are
 320		 * only sure that it is going to be used when required by the
 321		 * panel. This way panel is capable to do selective update
 322		 * without a aux frame sync.
 323		 *
 324		 * To support PSR version 02h and PSR version 03h without
 325		 * Y-coordinate requirement panels we would need to enable
 326		 * GTC first.
 327		 */
 328		dev_priv->psr.sink_psr2_support = y_req && alpm;
 329		DRM_DEBUG_KMS("PSR2 %ssupported\n",
 330			      dev_priv->psr.sink_psr2_support ? "" : "not ");
 331
 332		if (dev_priv->psr.sink_psr2_support) {
 333			dev_priv->psr.colorimetry_support =
 334				intel_dp_get_colorimetry_status(intel_dp);
 335			dev_priv->psr.su_x_granularity =
 336				intel_dp_get_su_x_granulartiy(intel_dp);
 337		}
 338	}
 339}
 340
 341static void intel_psr_setup_vsc(struct intel_dp *intel_dp,
 342				const struct intel_crtc_state *crtc_state)
 343{
 344	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 345	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 346	struct dp_sdp psr_vsc;
 347
 348	if (dev_priv->psr.psr2_enabled) {
 349		/* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
 350		memset(&psr_vsc, 0, sizeof(psr_vsc));
 351		psr_vsc.sdp_header.HB0 = 0;
 352		psr_vsc.sdp_header.HB1 = 0x7;
 353		if (dev_priv->psr.colorimetry_support) {
 354			psr_vsc.sdp_header.HB2 = 0x5;
 355			psr_vsc.sdp_header.HB3 = 0x13;
 356		} else {
 357			psr_vsc.sdp_header.HB2 = 0x4;
 358			psr_vsc.sdp_header.HB3 = 0xe;
 359		}
 360	} else {
 361		/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
 362		memset(&psr_vsc, 0, sizeof(psr_vsc));
 363		psr_vsc.sdp_header.HB0 = 0;
 364		psr_vsc.sdp_header.HB1 = 0x7;
 365		psr_vsc.sdp_header.HB2 = 0x2;
 366		psr_vsc.sdp_header.HB3 = 0x8;
 367	}
 368
 369	intel_dig_port->write_infoframe(&intel_dig_port->base,
 370					crtc_state,
 371					DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc));
 372}
 373
 374static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
 375{
 376	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 377	u32 aux_clock_divider, aux_ctl;
 378	int i;
 379	static const u8 aux_msg[] = {
 380		[0] = DP_AUX_NATIVE_WRITE << 4,
 381		[1] = DP_SET_POWER >> 8,
 382		[2] = DP_SET_POWER & 0xff,
 383		[3] = 1 - 1,
 384		[4] = DP_SET_POWER_D0,
 385	};
 386	u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
 387			   EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
 388			   EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
 389			   EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
 390
 391	BUILD_BUG_ON(sizeof(aux_msg) > 20);
 392	for (i = 0; i < sizeof(aux_msg); i += 4)
 393		I915_WRITE(EDP_PSR_AUX_DATA(i >> 2),
 394			   intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
 
 395
 396	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
 397
 398	/* Start with bits set for DDI_AUX_CTL register */
 399	aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
 400					     aux_clock_divider);
 401
 402	/* Select only valid bits for SRD_AUX_CTL */
 403	aux_ctl &= psr_aux_mask;
 404	I915_WRITE(EDP_PSR_AUX_CTL, aux_ctl);
 
 405}
 406
 407static void intel_psr_enable_sink(struct intel_dp *intel_dp)
 408{
 409	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 410	u8 dpcd_val = DP_PSR_ENABLE;
 411
 412	/* Enable ALPM at sink for psr2 */
 413	if (dev_priv->psr.psr2_enabled) {
 414		drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
 415				   DP_ALPM_ENABLE);
 
 
 416		dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
 417	} else {
 418		if (dev_priv->psr.link_standby)
 419			dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
 420
 421		if (INTEL_GEN(dev_priv) >= 8)
 422			dpcd_val |= DP_PSR_CRC_VERIFICATION;
 423	}
 424
 425	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
 426
 427	drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
 428}
 429
 430static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
 431{
 432	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 433	u32 val = 0;
 434
 435	if (INTEL_GEN(dev_priv) >= 11)
 436		val |= EDP_PSR_TP4_TIME_0US;
 437
 
 
 
 
 
 
 438	if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
 439		val |= EDP_PSR_TP1_TIME_0us;
 440	else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
 441		val |= EDP_PSR_TP1_TIME_100us;
 442	else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
 443		val |= EDP_PSR_TP1_TIME_500us;
 444	else
 445		val |= EDP_PSR_TP1_TIME_2500us;
 446
 447	if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
 448		val |= EDP_PSR_TP2_TP3_TIME_0us;
 449	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
 450		val |= EDP_PSR_TP2_TP3_TIME_100us;
 451	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
 452		val |= EDP_PSR_TP2_TP3_TIME_500us;
 453	else
 454		val |= EDP_PSR_TP2_TP3_TIME_2500us;
 455
 
 456	if (intel_dp_source_supports_hbr2(intel_dp) &&
 457	    drm_dp_tps3_supported(intel_dp->dpcd))
 458		val |= EDP_PSR_TP1_TP3_SEL;
 459	else
 460		val |= EDP_PSR_TP1_TP2_SEL;
 461
 462	return val;
 463}
 464
 465static void hsw_activate_psr1(struct intel_dp *intel_dp)
 466{
 467	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 468	u32 max_sleep_time = 0x1f;
 469	u32 val = EDP_PSR_ENABLE;
 470
 471	/* Let's use 6 as the minimum to cover all known cases including the
 472	 * off-by-one issue that HW has in some cases.
 473	 */
 474	int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
 
 
 
 
 
 
 
 475
 476	/* sink_sync_latency of 8 means source has to wait for more than 8
 477	 * frames, we'll go with 9 frames for now
 478	 */
 479	idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
 480	val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
 
 
 481
 482	val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
 483	if (IS_HASWELL(dev_priv))
 484		val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
 485
 486	if (dev_priv->psr.link_standby)
 487		val |= EDP_PSR_LINK_STANDBY;
 488
 489	val |= intel_psr1_get_tp_time(intel_dp);
 490
 491	if (INTEL_GEN(dev_priv) >= 8)
 492		val |= EDP_PSR_CRC_ENABLE;
 493
 494	val |= I915_READ(EDP_PSR_CTL) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK;
 495	I915_WRITE(EDP_PSR_CTL, val);
 
 496}
 497
 498static void hsw_activate_psr2(struct intel_dp *intel_dp)
 499{
 500	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 501	u32 val;
 502
 503	/* Let's use 6 as the minimum to cover all known cases including the
 504	 * off-by-one issue that HW has in some cases.
 505	 */
 506	int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
 507
 508	idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
 509	val = idle_frames << EDP_PSR2_IDLE_FRAME_SHIFT;
 510
 511	val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
 512	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
 513		val |= EDP_Y_COORDINATE_ENABLE;
 514
 515	val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
 516
 517	if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
 518	    dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
 519		val |= EDP_PSR2_TP2_TIME_50us;
 520	else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
 521		val |= EDP_PSR2_TP2_TIME_100us;
 522	else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
 523		val |= EDP_PSR2_TP2_TIME_500us;
 524	else
 525		val |= EDP_PSR2_TP2_TIME_2500us;
 526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 527	/*
 528	 * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
 529	 * recommending keep this bit unset while PSR2 is enabled.
 530	 */
 531	I915_WRITE(EDP_PSR_CTL, 0);
 532
 533	I915_WRITE(EDP_PSR2_CTL, val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534}
 535
 536static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
 537				    struct intel_crtc_state *crtc_state)
 538{
 539	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 540	int crtc_hdisplay = crtc_state->base.adjusted_mode.crtc_hdisplay;
 541	int crtc_vdisplay = crtc_state->base.adjusted_mode.crtc_vdisplay;
 542	int psr_max_h = 0, psr_max_v = 0;
 543
 544	if (!dev_priv->psr.sink_psr2_support)
 545		return false;
 546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547	/*
 548	 * DSC and PSR2 cannot be enabled simultaneously. If a requested
 549	 * resolution requires DSC to be enabled, priority is given to DSC
 550	 * over PSR2.
 551	 */
 552	if (crtc_state->dsc_params.compression_enable) {
 553		DRM_DEBUG_KMS("PSR2 cannot be enabled since DSC is enabled\n");
 
 
 
 
 
 
 
 554		return false;
 555	}
 556
 557	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
 
 
 
 
 558		psr_max_h = 4096;
 559		psr_max_v = 2304;
 560	} else if (IS_GEN(dev_priv, 9)) {
 
 561		psr_max_h = 3640;
 562		psr_max_v = 2304;
 
 563	}
 564
 565	if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) {
 566		DRM_DEBUG_KMS("PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
 567			      crtc_hdisplay, crtc_vdisplay,
 568			      psr_max_h, psr_max_v);
 569		return false;
 570	}
 571
 572	/*
 573	 * HW sends SU blocks of size four scan lines, which means the starting
 574	 * X coordinate and Y granularity requirements will always be met. We
 575	 * only need to validate the SU block width is a multiple of
 576	 * x granularity.
 577	 */
 578	if (crtc_hdisplay % dev_priv->psr.su_x_granularity) {
 579		DRM_DEBUG_KMS("PSR2 not enabled, hdisplay(%d) not multiple of %d\n",
 580			      crtc_hdisplay, dev_priv->psr.su_x_granularity);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 581		return false;
 582	}
 583
 584	if (crtc_state->crc_enabled) {
 585		DRM_DEBUG_KMS("PSR2 not enabled because it would inhibit pipe CRC calculation\n");
 
 
 
 
 586		return false;
 587	}
 588
 
 589	return true;
 590}
 591
 592void intel_psr_compute_config(struct intel_dp *intel_dp,
 593			      struct intel_crtc_state *crtc_state)
 594{
 595	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
 596	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 597	const struct drm_display_mode *adjusted_mode =
 598		&crtc_state->base.adjusted_mode;
 599	int psr_setup_time;
 600
 601	if (!CAN_PSR(dev_priv))
 
 
 
 
 602		return;
 603
 604	if (intel_dp != dev_priv->psr.dp)
 605		return;
 606
 607	/*
 608	 * HSW spec explicitly says PSR is tied to port A.
 609	 * BDW+ platforms with DDI implementation of PSR have different
 610	 * PSR registers per transcoder and we only implement transcoder EDP
 611	 * ones. Since by Display design transcoder EDP is tied to port A
 612	 * we can safely escape based on the port A.
 613	 */
 614	if (dig_port->base.port != PORT_A) {
 615		DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
 616		return;
 617	}
 618
 619	if (dev_priv->psr.sink_not_reliable) {
 620		DRM_DEBUG_KMS("PSR sink implementation is not reliable\n");
 
 621		return;
 622	}
 623
 624	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
 625		DRM_DEBUG_KMS("PSR condition failed: Interlaced mode enabled\n");
 
 626		return;
 627	}
 628
 629	psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
 630	if (psr_setup_time < 0) {
 631		DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
 632			      intel_dp->psr_dpcd[1]);
 
 633		return;
 634	}
 635
 636	if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
 637	    adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
 638		DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
 639			      psr_setup_time);
 
 640		return;
 641	}
 642
 643	crtc_state->has_psr = true;
 644	crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645}
 646
 647static void intel_psr_activate(struct intel_dp *intel_dp)
 648{
 649	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 
 650
 651	if (INTEL_GEN(dev_priv) >= 9)
 652		WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
 653	WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
 654	WARN_ON(dev_priv->psr.active);
 655	lockdep_assert_held(&dev_priv->psr.lock);
 
 
 
 656
 657	/* psr1 and psr2 are mutually exclusive.*/
 658	if (dev_priv->psr.psr2_enabled)
 659		hsw_activate_psr2(intel_dp);
 660	else
 661		hsw_activate_psr1(intel_dp);
 662
 663	dev_priv->psr.active = true;
 664}
 665
 666static i915_reg_t gen9_chicken_trans_reg(struct drm_i915_private *dev_priv,
 667					 enum transcoder cpu_transcoder)
 668{
 669	static const i915_reg_t regs[] = {
 670		[TRANSCODER_A] = CHICKEN_TRANS_A,
 671		[TRANSCODER_B] = CHICKEN_TRANS_B,
 672		[TRANSCODER_C] = CHICKEN_TRANS_C,
 673		[TRANSCODER_EDP] = CHICKEN_TRANS_EDP,
 674	};
 675
 676	WARN_ON(INTEL_GEN(dev_priv) < 9);
 677
 678	if (WARN_ON(cpu_transcoder >= ARRAY_SIZE(regs) ||
 679		    !regs[cpu_transcoder].reg))
 680		cpu_transcoder = TRANSCODER_A;
 681
 682	return regs[cpu_transcoder];
 683}
 684
 685static void intel_psr_enable_source(struct intel_dp *intel_dp,
 686				    const struct intel_crtc_state *crtc_state)
 687{
 688	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 689	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
 690	u32 mask;
 691
 692	/* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
 693	 * use hardcoded values PSR AUX transactions
 694	 */
 695	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
 696		hsw_psr_setup_aux(intel_dp);
 697
 698	if (dev_priv->psr.psr2_enabled && (IS_GEN(dev_priv, 9) &&
 699					   !IS_GEMINILAKE(dev_priv))) {
 700		i915_reg_t reg = gen9_chicken_trans_reg(dev_priv,
 701							cpu_transcoder);
 702		u32 chicken = I915_READ(reg);
 703
 704		chicken |= PSR2_VSC_ENABLE_PROG_HEADER |
 705			   PSR2_ADD_VERTICAL_LINE_COUNT;
 706		I915_WRITE(reg, chicken);
 707	}
 708
 709	/*
 710	 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
 711	 * mask LPSP to avoid dependency on other drivers that might block
 712	 * runtime_pm besides preventing  other hw tracking issues now we
 713	 * can rely on frontbuffer tracking.
 714	 */
 715	mask = EDP_PSR_DEBUG_MASK_MEMUP |
 716	       EDP_PSR_DEBUG_MASK_HPD |
 717	       EDP_PSR_DEBUG_MASK_LPSP |
 718	       EDP_PSR_DEBUG_MASK_MAX_SLEEP;
 719
 720	if (INTEL_GEN(dev_priv) < 11)
 721		mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
 722
 723	I915_WRITE(EDP_PSR_DEBUG, mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 724}
 725
 726static void intel_psr_enable_locked(struct drm_i915_private *dev_priv,
 727				    const struct intel_crtc_state *crtc_state)
 728{
 729	struct intel_dp *intel_dp = dev_priv->psr.dp;
 
 730
 731	WARN_ON(dev_priv->psr.enabled);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732
 733	dev_priv->psr.psr2_enabled = intel_psr2_enabled(dev_priv, crtc_state);
 734	dev_priv->psr.busy_frontbuffer_bits = 0;
 735	dev_priv->psr.pipe = to_intel_crtc(crtc_state->base.crtc)->pipe;
 736
 737	DRM_DEBUG_KMS("Enabling PSR%s\n",
 738		      dev_priv->psr.psr2_enabled ? "2" : "1");
 739	intel_psr_setup_vsc(intel_dp, crtc_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740	intel_psr_enable_sink(intel_dp);
 741	intel_psr_enable_source(intel_dp, crtc_state);
 742	dev_priv->psr.enabled = true;
 
 743
 744	intel_psr_activate(intel_dp);
 745}
 746
 747/**
 748 * intel_psr_enable - Enable PSR
 749 * @intel_dp: Intel DP
 750 * @crtc_state: new CRTC state
 
 751 *
 752 * This function can only be called after the pipe is fully trained and enabled.
 753 */
 754void intel_psr_enable(struct intel_dp *intel_dp,
 755		      const struct intel_crtc_state *crtc_state)
 
 756{
 757	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 758
 759	if (!crtc_state->has_psr)
 760		return;
 761
 762	if (WARN_ON(!CAN_PSR(dev_priv)))
 763		return;
 764
 765	WARN_ON(dev_priv->drrs.dp);
 766
 767	mutex_lock(&dev_priv->psr.lock);
 768
 769	if (!psr_global_enabled(dev_priv->psr.debug)) {
 770		DRM_DEBUG_KMS("PSR disabled by flag\n");
 771		goto unlock;
 772	}
 773
 774	intel_psr_enable_locked(dev_priv, crtc_state);
 775
 776unlock:
 777	mutex_unlock(&dev_priv->psr.lock);
 778}
 779
 780static void intel_psr_exit(struct drm_i915_private *dev_priv)
 781{
 
 782	u32 val;
 783
 784	if (!dev_priv->psr.active) {
 785		if (INTEL_GEN(dev_priv) >= 9)
 786			WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
 787		WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
 
 
 
 
 
 
 
 788		return;
 789	}
 790
 791	if (dev_priv->psr.psr2_enabled) {
 792		val = I915_READ(EDP_PSR2_CTL);
 793		WARN_ON(!(val & EDP_PSR2_ENABLE));
 794		I915_WRITE(EDP_PSR2_CTL, val & ~EDP_PSR2_ENABLE);
 
 
 
 
 795	} else {
 796		val = I915_READ(EDP_PSR_CTL);
 797		WARN_ON(!(val & EDP_PSR_ENABLE));
 798		I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
 
 
 
 799	}
 800	dev_priv->psr.active = false;
 801}
 802
 803static void intel_psr_disable_locked(struct intel_dp *intel_dp)
 804{
 805	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 806	i915_reg_t psr_status;
 807	u32 psr_status_mask;
 808
 809	lockdep_assert_held(&dev_priv->psr.lock);
 810
 811	if (!dev_priv->psr.enabled)
 812		return;
 813
 814	DRM_DEBUG_KMS("Disabling PSR%s\n",
 815		      dev_priv->psr.psr2_enabled ? "2" : "1");
 816
 817	intel_psr_exit(dev_priv);
 818
 819	if (dev_priv->psr.psr2_enabled) {
 820		psr_status = EDP_PSR2_STATUS;
 821		psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
 822	} else {
 823		psr_status = EDP_PSR_STATUS;
 824		psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
 825	}
 826
 827	/* Wait till PSR is idle */
 828	if (intel_de_wait_for_clear(dev_priv, psr_status,
 829				    psr_status_mask, 2000))
 830		DRM_ERROR("Timed out waiting PSR idle state\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831
 832	/* Disable PSR on Sink */
 833	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
 834
 835	dev_priv->psr.enabled = false;
 
 
 
 836}
 837
 838/**
 839 * intel_psr_disable - Disable PSR
 840 * @intel_dp: Intel DP
 841 * @old_crtc_state: old CRTC state
 842 *
 843 * This function needs to be called before disabling pipe.
 844 */
 845void intel_psr_disable(struct intel_dp *intel_dp,
 846		       const struct intel_crtc_state *old_crtc_state)
 847{
 848	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 849
 850	if (!old_crtc_state->has_psr)
 851		return;
 852
 853	if (WARN_ON(!CAN_PSR(dev_priv)))
 854		return;
 855
 856	mutex_lock(&dev_priv->psr.lock);
 857
 858	intel_psr_disable_locked(intel_dp);
 859
 860	mutex_unlock(&dev_priv->psr.lock);
 861	cancel_work_sync(&dev_priv->psr.work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862}
 863
 864static void psr_force_hw_tracking_exit(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865{
 866	if (INTEL_GEN(dev_priv) >= 9)
 
 
 867		/*
 868		 * Display WA #0884: skl+
 869		 * This documented WA for bxt can be safely applied
 870		 * broadly so we can force HW tracking to exit PSR
 871		 * instead of disabling and re-enabling.
 872		 * Workaround tells us to write 0 to CUR_SURFLIVE_A,
 873		 * but it makes more sense write to the current active
 874		 * pipe.
 875		 */
 876		I915_WRITE(CURSURFLIVE(dev_priv->psr.pipe), 0);
 877	else
 878		/*
 879		 * A write to CURSURFLIVE do not cause HW tracking to exit PSR
 880		 * on older gens so doing the manual exit instead.
 881		 */
 882		intel_psr_exit(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883}
 884
 885/**
 886 * intel_psr_update - Update PSR state
 887 * @intel_dp: Intel DP
 888 * @crtc_state: new CRTC state
 
 889 *
 890 * This functions will update PSR states, disabling, enabling or switching PSR
 891 * version when executing fastsets. For full modeset, intel_psr_disable() and
 892 * intel_psr_enable() should be called instead.
 893 */
 894void intel_psr_update(struct intel_dp *intel_dp,
 895		      const struct intel_crtc_state *crtc_state)
 
 896{
 897	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 898	struct i915_psr *psr = &dev_priv->psr;
 899	bool enable, psr2_enable;
 900
 901	if (!CAN_PSR(dev_priv) || READ_ONCE(psr->dp) != intel_dp)
 902		return;
 903
 904	mutex_lock(&dev_priv->psr.lock);
 905
 906	enable = crtc_state->has_psr && psr_global_enabled(psr->debug);
 907	psr2_enable = intel_psr2_enabled(dev_priv, crtc_state);
 908
 909	if (enable == psr->enabled && psr2_enable == psr->psr2_enabled) {
 
 910		/* Force a PSR exit when enabling CRC to avoid CRC timeouts */
 911		if (crtc_state->crc_enabled && psr->enabled)
 912			psr_force_hw_tracking_exit(dev_priv);
 913		else if (INTEL_GEN(dev_priv) < 9 && psr->enabled) {
 914			/*
 915			 * Activate PSR again after a force exit when enabling
 916			 * CRC in older gens
 917			 */
 918			if (!dev_priv->psr.active &&
 919			    !dev_priv->psr.busy_frontbuffer_bits)
 920				schedule_work(&dev_priv->psr.work);
 921		}
 922
 923		goto unlock;
 924	}
 925
 926	if (psr->enabled)
 927		intel_psr_disable_locked(intel_dp);
 928
 929	if (enable)
 930		intel_psr_enable_locked(dev_priv, crtc_state);
 931
 932unlock:
 933	mutex_unlock(&dev_priv->psr.lock);
 934}
 935
 936/**
 937 * intel_psr_wait_for_idle - wait for PSR1 to idle
 938 * @new_crtc_state: new CRTC state
 939 * @out_value: PSR status in case of failure
 940 *
 941 * This function is expected to be called from pipe_update_start() where it is
 942 * not expected to race with PSR enable or disable.
 943 *
 944 * Returns: 0 on success or -ETIMEOUT if PSR status does not idle.
 945 */
 946int intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state,
 947			    u32 *out_value)
 948{
 949	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
 950	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 951
 952	if (!dev_priv->psr.enabled || !new_crtc_state->has_psr)
 953		return 0;
 954
 955	/* FIXME: Update this for PSR2 if we need to wait for idle */
 956	if (READ_ONCE(dev_priv->psr.psr2_enabled))
 957		return 0;
 958
 959	/*
 960	 * From bspec: Panel Self Refresh (BDW+)
 961	 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
 962	 * exit training time + 1.5 ms of aux channel handshake. 50 ms is
 963	 * defensive enough to cover everything.
 964	 */
 965
 966	return __intel_wait_for_register(&dev_priv->uncore, EDP_PSR_STATUS,
 967					 EDP_PSR_STATUS_STATE_MASK,
 968					 EDP_PSR_STATUS_STATE_IDLE, 2, 50,
 969					 out_value);
 970}
 971
 972static bool __psr_wait_for_idle_locked(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 973{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974	i915_reg_t reg;
 975	u32 mask;
 976	int err;
 977
 978	if (!dev_priv->psr.enabled)
 979		return false;
 980
 981	if (dev_priv->psr.psr2_enabled) {
 982		reg = EDP_PSR2_STATUS;
 983		mask = EDP_PSR2_STATUS_STATE_MASK;
 984	} else {
 985		reg = EDP_PSR_STATUS;
 986		mask = EDP_PSR_STATUS_STATE_MASK;
 987	}
 988
 989	mutex_unlock(&dev_priv->psr.lock);
 990
 991	err = intel_de_wait_for_clear(dev_priv, reg, mask, 50);
 992	if (err)
 993		DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
 
 994
 995	/* After the unlocked wait, verify that PSR is still wanted! */
 996	mutex_lock(&dev_priv->psr.lock);
 997	return err == 0 && dev_priv->psr.enabled;
 998}
 999
1000static int intel_psr_fastset_force(struct drm_i915_private *dev_priv)
1001{
 
1002	struct drm_device *dev = &dev_priv->drm;
1003	struct drm_modeset_acquire_ctx ctx;
1004	struct drm_atomic_state *state;
1005	struct drm_crtc *crtc;
1006	int err;
1007
1008	state = drm_atomic_state_alloc(dev);
1009	if (!state)
1010		return -ENOMEM;
1011
1012	drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
1013	state->acquire_ctx = &ctx;
1014
1015retry:
1016	drm_for_each_crtc(crtc, dev) {
 
 
 
1017		struct drm_crtc_state *crtc_state;
1018		struct intel_crtc_state *intel_crtc_state;
1019
1020		crtc_state = drm_atomic_get_crtc_state(state, crtc);
1021		if (IS_ERR(crtc_state)) {
1022			err = PTR_ERR(crtc_state);
1023			goto error;
 
 
 
1024		}
1025
1026		intel_crtc_state = to_intel_crtc_state(crtc_state);
 
1027
1028		if (crtc_state->active && intel_crtc_state->has_psr) {
1029			/* Mark mode as changed to trigger a pipe->update() */
1030			crtc_state->mode_changed = true;
1031			break;
1032		}
 
 
 
1033	}
 
1034
1035	err = drm_atomic_commit(state);
 
1036
1037error:
1038	if (err == -EDEADLK) {
1039		drm_atomic_state_clear(state);
1040		err = drm_modeset_backoff(&ctx);
1041		if (!err)
1042			goto retry;
1043	}
1044
1045	drm_modeset_drop_locks(&ctx);
1046	drm_modeset_acquire_fini(&ctx);
1047	drm_atomic_state_put(state);
1048
1049	return err;
1050}
1051
1052int intel_psr_debug_set(struct drm_i915_private *dev_priv, u64 val)
1053{
 
1054	const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
1055	u32 old_mode;
1056	int ret;
1057
1058	if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
1059	    mode > I915_PSR_DEBUG_FORCE_PSR1) {
1060		DRM_DEBUG_KMS("Invalid debug mask %llx\n", val);
1061		return -EINVAL;
1062	}
1063
1064	ret = mutex_lock_interruptible(&dev_priv->psr.lock);
1065	if (ret)
1066		return ret;
1067
1068	old_mode = dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK;
1069	dev_priv->psr.debug = val;
1070	intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
1071
1072	mutex_unlock(&dev_priv->psr.lock);
 
 
 
 
 
 
 
1073
1074	if (old_mode != mode)
1075		ret = intel_psr_fastset_force(dev_priv);
1076
1077	return ret;
1078}
1079
1080static void intel_psr_handle_irq(struct drm_i915_private *dev_priv)
1081{
1082	struct i915_psr *psr = &dev_priv->psr;
1083
1084	intel_psr_disable_locked(psr->dp);
1085	psr->sink_not_reliable = true;
1086	/* let's make sure that sink is awaken */
1087	drm_dp_dpcd_writeb(&psr->dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
1088}
1089
1090static void intel_psr_work(struct work_struct *work)
1091{
1092	struct drm_i915_private *dev_priv =
1093		container_of(work, typeof(*dev_priv), psr.work);
1094
1095	mutex_lock(&dev_priv->psr.lock);
1096
1097	if (!dev_priv->psr.enabled)
1098		goto unlock;
1099
1100	if (READ_ONCE(dev_priv->psr.irq_aux_error))
1101		intel_psr_handle_irq(dev_priv);
1102
1103	/*
1104	 * We have to make sure PSR is ready for re-enable
1105	 * otherwise it keeps disabled until next full enable/disable cycle.
1106	 * PSR might take some time to get fully disabled
1107	 * and be ready for re-enable.
1108	 */
1109	if (!__psr_wait_for_idle_locked(dev_priv))
1110		goto unlock;
1111
1112	/*
1113	 * The delayed work can race with an invalidate hence we need to
1114	 * recheck. Since psr_flush first clears this and then reschedules we
1115	 * won't ever miss a flush when bailing out here.
1116	 */
1117	if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active)
1118		goto unlock;
1119
1120	intel_psr_activate(dev_priv->psr.dp);
1121unlock:
1122	mutex_unlock(&dev_priv->psr.lock);
1123}
1124
1125/**
1126 * intel_psr_invalidate - Invalidade PSR
1127 * @dev_priv: i915 device
1128 * @frontbuffer_bits: frontbuffer plane tracking bits
1129 * @origin: which operation caused the invalidate
1130 *
1131 * Since the hardware frontbuffer tracking has gaps we need to integrate
1132 * with the software frontbuffer tracking. This function gets called every
1133 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
1134 * disabled if the frontbuffer mask contains a buffer relevant to PSR.
1135 *
1136 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
1137 */
1138void intel_psr_invalidate(struct drm_i915_private *dev_priv,
1139			  unsigned frontbuffer_bits, enum fb_op_origin origin)
1140{
1141	if (!CAN_PSR(dev_priv))
1142		return;
1143
1144	if (origin == ORIGIN_FLIP)
1145		return;
1146
1147	mutex_lock(&dev_priv->psr.lock);
1148	if (!dev_priv->psr.enabled) {
1149		mutex_unlock(&dev_priv->psr.lock);
1150		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1151	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1152
1153	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1154	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
 
 
 
 
 
1155
1156	if (frontbuffer_bits)
1157		intel_psr_exit(dev_priv);
 
1158
1159	mutex_unlock(&dev_priv->psr.lock);
 
1160}
1161
1162/**
1163 * intel_psr_flush - Flush PSR
1164 * @dev_priv: i915 device
1165 * @frontbuffer_bits: frontbuffer plane tracking bits
1166 * @origin: which operation caused the flush
1167 *
1168 * Since the hardware frontbuffer tracking has gaps we need to integrate
1169 * with the software frontbuffer tracking. This function gets called every
1170 * time frontbuffer rendering has completed and flushed out to memory. PSR
1171 * can be enabled again if no other frontbuffer relevant to PSR is dirty.
1172 *
1173 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
1174 */
1175void intel_psr_flush(struct drm_i915_private *dev_priv,
1176		     unsigned frontbuffer_bits, enum fb_op_origin origin)
1177{
1178	if (!CAN_PSR(dev_priv))
1179		return;
1180
1181	if (origin == ORIGIN_FLIP)
1182		return;
 
 
 
 
 
 
1183
1184	mutex_lock(&dev_priv->psr.lock);
1185	if (!dev_priv->psr.enabled) {
1186		mutex_unlock(&dev_priv->psr.lock);
1187		return;
1188	}
1189
1190	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1191	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
 
1192
1193	/* By definition flush = invalidate + flush */
1194	if (frontbuffer_bits)
1195		psr_force_hw_tracking_exit(dev_priv);
 
 
 
 
 
 
1196
1197	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
1198		schedule_work(&dev_priv->psr.work);
1199	mutex_unlock(&dev_priv->psr.lock);
 
 
 
 
 
1200}
1201
1202/**
1203 * intel_psr_init - Init basic PSR work and mutex.
1204 * @dev_priv: i915 device private
1205 *
1206 * This function is  called only once at driver load to initialize basic
1207 * PSR stuff.
 
1208 */
1209void intel_psr_init(struct drm_i915_private *dev_priv)
1210{
1211	u32 val;
 
1212
1213	if (!HAS_PSR(dev_priv))
1214		return;
1215
1216	dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
1217		HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
 
 
 
 
 
 
 
 
 
 
 
 
1218
1219	if (!dev_priv->psr.sink_support)
1220		return;
1221
1222	if (i915_modparams.enable_psr == -1)
1223		if (INTEL_GEN(dev_priv) < 9 || !dev_priv->vbt.psr.enable)
1224			i915_modparams.enable_psr = 0;
 
 
 
 
1225
1226	/*
1227	 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
1228	 * will still keep the error set even after the reset done in the
1229	 * irq_preinstall and irq_uninstall hooks.
1230	 * And enabling in this situation cause the screen to freeze in the
1231	 * first time that PSR HW tries to activate so lets keep PSR disabled
1232	 * to avoid any rendering problems.
1233	 */
1234	val = I915_READ(EDP_PSR_IIR);
1235	val &= EDP_PSR_ERROR(edp_psr_shift(TRANSCODER_EDP));
1236	if (val) {
1237		DRM_DEBUG_KMS("PSR interruption error set\n");
1238		dev_priv->psr.sink_not_reliable = true;
1239	}
1240
1241	/* Set link_standby x link_off defaults */
1242	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1243		/* HSW and BDW require workarounds that we don't implement. */
1244		dev_priv->psr.link_standby = false;
1245	else
1246		/* For new platforms let's respect VBT back again */
1247		dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1248
1249	INIT_WORK(&dev_priv->psr.work, intel_psr_work);
1250	mutex_init(&dev_priv->psr.lock);
 
1251}
1252
1253void intel_psr_short_pulse(struct intel_dp *intel_dp)
1254{
1255	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1256	struct i915_psr *psr = &dev_priv->psr;
1257	u8 val;
1258	const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
1259			  DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
1260			  DP_PSR_LINK_CRC_ERROR;
1261
1262	if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1263		return;
1264
1265	mutex_lock(&psr->lock);
1266
1267	if (!psr->enabled || psr->dp != intel_dp)
1268		goto exit;
1269
1270	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_STATUS, &val) != 1) {
1271		DRM_ERROR("PSR_STATUS dpcd read failed\n");
 
1272		goto exit;
1273	}
1274
1275	if ((val & DP_PSR_SINK_STATE_MASK) == DP_PSR_SINK_INTERNAL_ERROR) {
1276		DRM_DEBUG_KMS("PSR sink internal error, disabling PSR\n");
1277		intel_psr_disable_locked(intel_dp);
1278		psr->sink_not_reliable = true;
1279	}
1280
1281	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ERROR_STATUS, &val) != 1) {
1282		DRM_ERROR("PSR_ERROR_STATUS dpcd read failed\n");
1283		goto exit;
1284	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285
1286	if (val & DP_PSR_RFB_STORAGE_ERROR)
1287		DRM_DEBUG_KMS("PSR RFB storage error, disabling PSR\n");
1288	if (val & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
1289		DRM_DEBUG_KMS("PSR VSC SDP uncorrectable error, disabling PSR\n");
1290	if (val & DP_PSR_LINK_CRC_ERROR)
1291		DRM_ERROR("PSR Link CRC error, disabling PSR\n");
1292
1293	if (val & ~errors)
1294		DRM_ERROR("PSR_ERROR_STATUS unhandled errors %x\n",
1295			  val & ~errors);
1296	if (val & errors) {
1297		intel_psr_disable_locked(intel_dp);
1298		psr->sink_not_reliable = true;
1299	}
1300	/* clear status register */
1301	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, val);
1302exit:
1303	mutex_unlock(&psr->lock);
1304}
1305
1306bool intel_psr_enabled(struct intel_dp *intel_dp)
1307{
1308	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1309	bool ret;
1310
1311	if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1312		return false;
1313
1314	mutex_lock(&dev_priv->psr.lock);
1315	ret = (dev_priv->psr.dp == intel_dp && dev_priv->psr.enabled);
1316	mutex_unlock(&dev_priv->psr.lock);
1317
1318	return ret;
1319}