Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Register map access API
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/export.h>
  12#include <linux/mutex.h>
  13#include <linux/err.h>
  14#include <linux/property.h>
  15#include <linux/rbtree.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/log2.h>
  19#include <linux/hwspinlock.h>
  20#include <asm/unaligned.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include "trace.h"
  24
  25#include "internal.h"
  26
  27/*
  28 * Sometimes for failures during very early init the trace
  29 * infrastructure isn't available early enough to be used.  For this
  30 * sort of problem defining LOG_DEVICE will add printks for basic
  31 * register I/O on a specific device.
  32 */
  33#undef LOG_DEVICE
  34
  35#ifdef LOG_DEVICE
  36static inline bool regmap_should_log(struct regmap *map)
  37{
  38	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
  39}
  40#else
  41static inline bool regmap_should_log(struct regmap *map) { return false; }
  42#endif
  43
  44
  45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  46			       unsigned int mask, unsigned int val,
  47			       bool *change, bool force_write);
  48
  49static int _regmap_bus_reg_read(void *context, unsigned int reg,
  50				unsigned int *val);
  51static int _regmap_bus_read(void *context, unsigned int reg,
  52			    unsigned int *val);
  53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  54				       unsigned int val);
  55static int _regmap_bus_reg_write(void *context, unsigned int reg,
  56				 unsigned int val);
  57static int _regmap_bus_raw_write(void *context, unsigned int reg,
  58				 unsigned int val);
  59
  60bool regmap_reg_in_ranges(unsigned int reg,
  61			  const struct regmap_range *ranges,
  62			  unsigned int nranges)
  63{
  64	const struct regmap_range *r;
  65	int i;
  66
  67	for (i = 0, r = ranges; i < nranges; i++, r++)
  68		if (regmap_reg_in_range(reg, r))
  69			return true;
  70	return false;
  71}
  72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  73
  74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  75			      const struct regmap_access_table *table)
  76{
  77	/* Check "no ranges" first */
  78	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  79		return false;
  80
  81	/* In case zero "yes ranges" are supplied, any reg is OK */
  82	if (!table->n_yes_ranges)
  83		return true;
  84
  85	return regmap_reg_in_ranges(reg, table->yes_ranges,
  86				    table->n_yes_ranges);
  87}
  88EXPORT_SYMBOL_GPL(regmap_check_range_table);
  89
  90bool regmap_writeable(struct regmap *map, unsigned int reg)
  91{
  92	if (map->max_register && reg > map->max_register)
  93		return false;
  94
  95	if (map->writeable_reg)
  96		return map->writeable_reg(map->dev, reg);
  97
  98	if (map->wr_table)
  99		return regmap_check_range_table(map, reg, map->wr_table);
 100
 101	return true;
 102}
 103
 104bool regmap_cached(struct regmap *map, unsigned int reg)
 105{
 106	int ret;
 107	unsigned int val;
 108
 109	if (map->cache_type == REGCACHE_NONE)
 110		return false;
 111
 112	if (!map->cache_ops)
 113		return false;
 114
 115	if (map->max_register && reg > map->max_register)
 116		return false;
 117
 118	map->lock(map->lock_arg);
 119	ret = regcache_read(map, reg, &val);
 120	map->unlock(map->lock_arg);
 121	if (ret)
 122		return false;
 123
 124	return true;
 125}
 126
 127bool regmap_readable(struct regmap *map, unsigned int reg)
 128{
 129	if (!map->reg_read)
 130		return false;
 131
 132	if (map->max_register && reg > map->max_register)
 133		return false;
 134
 135	if (map->format.format_write)
 136		return false;
 137
 138	if (map->readable_reg)
 139		return map->readable_reg(map->dev, reg);
 140
 141	if (map->rd_table)
 142		return regmap_check_range_table(map, reg, map->rd_table);
 143
 144	return true;
 145}
 146
 147bool regmap_volatile(struct regmap *map, unsigned int reg)
 148{
 149	if (!map->format.format_write && !regmap_readable(map, reg))
 150		return false;
 151
 152	if (map->volatile_reg)
 153		return map->volatile_reg(map->dev, reg);
 154
 155	if (map->volatile_table)
 156		return regmap_check_range_table(map, reg, map->volatile_table);
 157
 158	if (map->cache_ops)
 159		return false;
 160	else
 161		return true;
 162}
 163
 164bool regmap_precious(struct regmap *map, unsigned int reg)
 165{
 166	if (!regmap_readable(map, reg))
 167		return false;
 168
 169	if (map->precious_reg)
 170		return map->precious_reg(map->dev, reg);
 171
 172	if (map->precious_table)
 173		return regmap_check_range_table(map, reg, map->precious_table);
 174
 175	return false;
 176}
 177
 178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
 179{
 180	if (map->writeable_noinc_reg)
 181		return map->writeable_noinc_reg(map->dev, reg);
 182
 183	if (map->wr_noinc_table)
 184		return regmap_check_range_table(map, reg, map->wr_noinc_table);
 185
 186	return true;
 187}
 188
 189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
 190{
 191	if (map->readable_noinc_reg)
 192		return map->readable_noinc_reg(map->dev, reg);
 193
 194	if (map->rd_noinc_table)
 195		return regmap_check_range_table(map, reg, map->rd_noinc_table);
 196
 197	return true;
 198}
 199
 200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 201	size_t num)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < num; i++)
 206		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 207			return false;
 208
 209	return true;
 210}
 211
 212static void regmap_format_12_20_write(struct regmap *map,
 213				     unsigned int reg, unsigned int val)
 214{
 215	u8 *out = map->work_buf;
 216
 217	out[0] = reg >> 4;
 218	out[1] = (reg << 4) | (val >> 16);
 219	out[2] = val >> 8;
 220	out[3] = val;
 221}
 222
 223
 224static void regmap_format_2_6_write(struct regmap *map,
 225				     unsigned int reg, unsigned int val)
 226{
 227	u8 *out = map->work_buf;
 228
 229	*out = (reg << 6) | val;
 230}
 231
 232static void regmap_format_4_12_write(struct regmap *map,
 233				     unsigned int reg, unsigned int val)
 234{
 235	__be16 *out = map->work_buf;
 236	*out = cpu_to_be16((reg << 12) | val);
 237}
 238
 239static void regmap_format_7_9_write(struct regmap *map,
 240				    unsigned int reg, unsigned int val)
 241{
 242	__be16 *out = map->work_buf;
 243	*out = cpu_to_be16((reg << 9) | val);
 244}
 245
 246static void regmap_format_7_17_write(struct regmap *map,
 247				    unsigned int reg, unsigned int val)
 248{
 249	u8 *out = map->work_buf;
 250
 251	out[2] = val;
 252	out[1] = val >> 8;
 253	out[0] = (val >> 16) | (reg << 1);
 254}
 255
 256static void regmap_format_10_14_write(struct regmap *map,
 257				    unsigned int reg, unsigned int val)
 258{
 259	u8 *out = map->work_buf;
 260
 261	out[2] = val;
 262	out[1] = (val >> 8) | (reg << 6);
 263	out[0] = reg >> 2;
 264}
 265
 266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 267{
 268	u8 *b = buf;
 269
 270	b[0] = val << shift;
 271}
 272
 273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 274{
 275	put_unaligned_be16(val << shift, buf);
 
 
 276}
 277
 278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 279{
 280	put_unaligned_le16(val << shift, buf);
 
 
 281}
 282
 283static void regmap_format_16_native(void *buf, unsigned int val,
 284				    unsigned int shift)
 285{
 286	u16 v = val << shift;
 287
 288	memcpy(buf, &v, sizeof(v));
 289}
 290
 291static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 292{
 293	u8 *b = buf;
 294
 295	val <<= shift;
 296
 297	b[0] = val >> 16;
 298	b[1] = val >> 8;
 299	b[2] = val;
 300}
 301
 302static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 303{
 304	put_unaligned_be32(val << shift, buf);
 
 
 305}
 306
 307static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 308{
 309	put_unaligned_le32(val << shift, buf);
 
 
 310}
 311
 312static void regmap_format_32_native(void *buf, unsigned int val,
 313				    unsigned int shift)
 314{
 315	u32 v = val << shift;
 316
 317	memcpy(buf, &v, sizeof(v));
 318}
 319
 320#ifdef CONFIG_64BIT
 321static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 322{
 323	put_unaligned_be64((u64) val << shift, buf);
 
 
 324}
 325
 326static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 327{
 328	put_unaligned_le64((u64) val << shift, buf);
 
 
 329}
 330
 331static void regmap_format_64_native(void *buf, unsigned int val,
 332				    unsigned int shift)
 333{
 334	u64 v = (u64) val << shift;
 335
 336	memcpy(buf, &v, sizeof(v));
 337}
 338#endif
 339
 340static void regmap_parse_inplace_noop(void *buf)
 341{
 342}
 343
 344static unsigned int regmap_parse_8(const void *buf)
 345{
 346	const u8 *b = buf;
 347
 348	return b[0];
 349}
 350
 351static unsigned int regmap_parse_16_be(const void *buf)
 352{
 353	return get_unaligned_be16(buf);
 
 
 354}
 355
 356static unsigned int regmap_parse_16_le(const void *buf)
 357{
 358	return get_unaligned_le16(buf);
 
 
 359}
 360
 361static void regmap_parse_16_be_inplace(void *buf)
 362{
 363	u16 v = get_unaligned_be16(buf);
 364
 365	memcpy(buf, &v, sizeof(v));
 366}
 367
 368static void regmap_parse_16_le_inplace(void *buf)
 369{
 370	u16 v = get_unaligned_le16(buf);
 371
 372	memcpy(buf, &v, sizeof(v));
 373}
 374
 375static unsigned int regmap_parse_16_native(const void *buf)
 376{
 377	u16 v;
 378
 379	memcpy(&v, buf, sizeof(v));
 380	return v;
 381}
 382
 383static unsigned int regmap_parse_24(const void *buf)
 384{
 385	const u8 *b = buf;
 386	unsigned int ret = b[2];
 387	ret |= ((unsigned int)b[1]) << 8;
 388	ret |= ((unsigned int)b[0]) << 16;
 389
 390	return ret;
 391}
 392
 393static unsigned int regmap_parse_32_be(const void *buf)
 394{
 395	return get_unaligned_be32(buf);
 
 
 396}
 397
 398static unsigned int regmap_parse_32_le(const void *buf)
 399{
 400	return get_unaligned_le32(buf);
 
 
 401}
 402
 403static void regmap_parse_32_be_inplace(void *buf)
 404{
 405	u32 v = get_unaligned_be32(buf);
 406
 407	memcpy(buf, &v, sizeof(v));
 408}
 409
 410static void regmap_parse_32_le_inplace(void *buf)
 411{
 412	u32 v = get_unaligned_le32(buf);
 413
 414	memcpy(buf, &v, sizeof(v));
 415}
 416
 417static unsigned int regmap_parse_32_native(const void *buf)
 418{
 419	u32 v;
 420
 421	memcpy(&v, buf, sizeof(v));
 422	return v;
 423}
 424
 425#ifdef CONFIG_64BIT
 426static unsigned int regmap_parse_64_be(const void *buf)
 427{
 428	return get_unaligned_be64(buf);
 
 
 429}
 430
 431static unsigned int regmap_parse_64_le(const void *buf)
 432{
 433	return get_unaligned_le64(buf);
 
 
 434}
 435
 436static void regmap_parse_64_be_inplace(void *buf)
 437{
 438	u64 v =  get_unaligned_be64(buf);
 439
 440	memcpy(buf, &v, sizeof(v));
 441}
 442
 443static void regmap_parse_64_le_inplace(void *buf)
 444{
 445	u64 v = get_unaligned_le64(buf);
 446
 447	memcpy(buf, &v, sizeof(v));
 448}
 449
 450static unsigned int regmap_parse_64_native(const void *buf)
 451{
 452	u64 v;
 453
 454	memcpy(&v, buf, sizeof(v));
 455	return v;
 456}
 457#endif
 458
 459static void regmap_lock_hwlock(void *__map)
 460{
 461	struct regmap *map = __map;
 462
 463	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 464}
 465
 466static void regmap_lock_hwlock_irq(void *__map)
 467{
 468	struct regmap *map = __map;
 469
 470	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 471}
 472
 473static void regmap_lock_hwlock_irqsave(void *__map)
 474{
 475	struct regmap *map = __map;
 476
 477	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 478				    &map->spinlock_flags);
 479}
 480
 481static void regmap_unlock_hwlock(void *__map)
 482{
 483	struct regmap *map = __map;
 484
 485	hwspin_unlock(map->hwlock);
 486}
 487
 488static void regmap_unlock_hwlock_irq(void *__map)
 489{
 490	struct regmap *map = __map;
 491
 492	hwspin_unlock_irq(map->hwlock);
 493}
 494
 495static void regmap_unlock_hwlock_irqrestore(void *__map)
 496{
 497	struct regmap *map = __map;
 498
 499	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 500}
 501
 502static void regmap_lock_unlock_none(void *__map)
 503{
 504
 505}
 506
 507static void regmap_lock_mutex(void *__map)
 508{
 509	struct regmap *map = __map;
 510	mutex_lock(&map->mutex);
 511}
 512
 513static void regmap_unlock_mutex(void *__map)
 514{
 515	struct regmap *map = __map;
 516	mutex_unlock(&map->mutex);
 517}
 518
 519static void regmap_lock_spinlock(void *__map)
 520__acquires(&map->spinlock)
 521{
 522	struct regmap *map = __map;
 523	unsigned long flags;
 524
 525	spin_lock_irqsave(&map->spinlock, flags);
 526	map->spinlock_flags = flags;
 527}
 528
 529static void regmap_unlock_spinlock(void *__map)
 530__releases(&map->spinlock)
 531{
 532	struct regmap *map = __map;
 533	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 534}
 535
 536static void dev_get_regmap_release(struct device *dev, void *res)
 537{
 538	/*
 539	 * We don't actually have anything to do here; the goal here
 540	 * is not to manage the regmap but to provide a simple way to
 541	 * get the regmap back given a struct device.
 542	 */
 543}
 544
 545static bool _regmap_range_add(struct regmap *map,
 546			      struct regmap_range_node *data)
 547{
 548	struct rb_root *root = &map->range_tree;
 549	struct rb_node **new = &(root->rb_node), *parent = NULL;
 550
 551	while (*new) {
 552		struct regmap_range_node *this =
 553			rb_entry(*new, struct regmap_range_node, node);
 554
 555		parent = *new;
 556		if (data->range_max < this->range_min)
 557			new = &((*new)->rb_left);
 558		else if (data->range_min > this->range_max)
 559			new = &((*new)->rb_right);
 560		else
 561			return false;
 562	}
 563
 564	rb_link_node(&data->node, parent, new);
 565	rb_insert_color(&data->node, root);
 566
 567	return true;
 568}
 569
 570static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 571						      unsigned int reg)
 572{
 573	struct rb_node *node = map->range_tree.rb_node;
 574
 575	while (node) {
 576		struct regmap_range_node *this =
 577			rb_entry(node, struct regmap_range_node, node);
 578
 579		if (reg < this->range_min)
 580			node = node->rb_left;
 581		else if (reg > this->range_max)
 582			node = node->rb_right;
 583		else
 584			return this;
 585	}
 586
 587	return NULL;
 588}
 589
 590static void regmap_range_exit(struct regmap *map)
 591{
 592	struct rb_node *next;
 593	struct regmap_range_node *range_node;
 594
 595	next = rb_first(&map->range_tree);
 596	while (next) {
 597		range_node = rb_entry(next, struct regmap_range_node, node);
 598		next = rb_next(&range_node->node);
 599		rb_erase(&range_node->node, &map->range_tree);
 600		kfree(range_node);
 601	}
 602
 603	kfree(map->selector_work_buf);
 604}
 605
 606static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
 607{
 608	if (config->name) {
 609		const char *name = kstrdup_const(config->name, GFP_KERNEL);
 610
 611		if (!name)
 612			return -ENOMEM;
 613
 614		kfree_const(map->name);
 615		map->name = name;
 616	}
 617
 618	return 0;
 619}
 620
 621int regmap_attach_dev(struct device *dev, struct regmap *map,
 622		      const struct regmap_config *config)
 623{
 624	struct regmap **m;
 625	int ret;
 626
 627	map->dev = dev;
 628
 629	ret = regmap_set_name(map, config);
 630	if (ret)
 631		return ret;
 632
 633	regmap_debugfs_init(map);
 634
 635	/* Add a devres resource for dev_get_regmap() */
 636	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 637	if (!m) {
 638		regmap_debugfs_exit(map);
 639		return -ENOMEM;
 640	}
 641	*m = map;
 642	devres_add(dev, m);
 643
 644	return 0;
 645}
 646EXPORT_SYMBOL_GPL(regmap_attach_dev);
 647
 648static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 649					const struct regmap_config *config)
 650{
 651	enum regmap_endian endian;
 652
 653	/* Retrieve the endianness specification from the regmap config */
 654	endian = config->reg_format_endian;
 655
 656	/* If the regmap config specified a non-default value, use that */
 657	if (endian != REGMAP_ENDIAN_DEFAULT)
 658		return endian;
 659
 660	/* Retrieve the endianness specification from the bus config */
 661	if (bus && bus->reg_format_endian_default)
 662		endian = bus->reg_format_endian_default;
 663
 664	/* If the bus specified a non-default value, use that */
 665	if (endian != REGMAP_ENDIAN_DEFAULT)
 666		return endian;
 667
 668	/* Use this if no other value was found */
 669	return REGMAP_ENDIAN_BIG;
 670}
 671
 672enum regmap_endian regmap_get_val_endian(struct device *dev,
 673					 const struct regmap_bus *bus,
 674					 const struct regmap_config *config)
 675{
 676	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 677	enum regmap_endian endian;
 678
 679	/* Retrieve the endianness specification from the regmap config */
 680	endian = config->val_format_endian;
 681
 682	/* If the regmap config specified a non-default value, use that */
 683	if (endian != REGMAP_ENDIAN_DEFAULT)
 684		return endian;
 685
 686	/* If the firmware node exist try to get endianness from it */
 687	if (fwnode_property_read_bool(fwnode, "big-endian"))
 688		endian = REGMAP_ENDIAN_BIG;
 689	else if (fwnode_property_read_bool(fwnode, "little-endian"))
 690		endian = REGMAP_ENDIAN_LITTLE;
 691	else if (fwnode_property_read_bool(fwnode, "native-endian"))
 692		endian = REGMAP_ENDIAN_NATIVE;
 693
 694	/* If the endianness was specified in fwnode, use that */
 695	if (endian != REGMAP_ENDIAN_DEFAULT)
 696		return endian;
 
 
 
 
 
 697
 698	/* Retrieve the endianness specification from the bus config */
 699	if (bus && bus->val_format_endian_default)
 700		endian = bus->val_format_endian_default;
 701
 702	/* If the bus specified a non-default value, use that */
 703	if (endian != REGMAP_ENDIAN_DEFAULT)
 704		return endian;
 705
 706	/* Use this if no other value was found */
 707	return REGMAP_ENDIAN_BIG;
 708}
 709EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 710
 711struct regmap *__regmap_init(struct device *dev,
 712			     const struct regmap_bus *bus,
 713			     void *bus_context,
 714			     const struct regmap_config *config,
 715			     struct lock_class_key *lock_key,
 716			     const char *lock_name)
 717{
 718	struct regmap *map;
 719	int ret = -EINVAL;
 720	enum regmap_endian reg_endian, val_endian;
 721	int i, j;
 722
 723	if (!config)
 724		goto err;
 725
 726	map = kzalloc(sizeof(*map), GFP_KERNEL);
 727	if (map == NULL) {
 728		ret = -ENOMEM;
 729		goto err;
 730	}
 731
 732	ret = regmap_set_name(map, config);
 733	if (ret)
 734		goto err_map;
 735
 736	ret = -EINVAL; /* Later error paths rely on this */
 
 
 737
 738	if (config->disable_locking) {
 739		map->lock = map->unlock = regmap_lock_unlock_none;
 740		map->can_sleep = config->can_sleep;
 741		regmap_debugfs_disable(map);
 742	} else if (config->lock && config->unlock) {
 743		map->lock = config->lock;
 744		map->unlock = config->unlock;
 745		map->lock_arg = config->lock_arg;
 746		map->can_sleep = config->can_sleep;
 747	} else if (config->use_hwlock) {
 748		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 749		if (!map->hwlock) {
 750			ret = -ENXIO;
 751			goto err_name;
 752		}
 753
 754		switch (config->hwlock_mode) {
 755		case HWLOCK_IRQSTATE:
 756			map->lock = regmap_lock_hwlock_irqsave;
 757			map->unlock = regmap_unlock_hwlock_irqrestore;
 758			break;
 759		case HWLOCK_IRQ:
 760			map->lock = regmap_lock_hwlock_irq;
 761			map->unlock = regmap_unlock_hwlock_irq;
 762			break;
 763		default:
 764			map->lock = regmap_lock_hwlock;
 765			map->unlock = regmap_unlock_hwlock;
 766			break;
 767		}
 768
 769		map->lock_arg = map;
 770	} else {
 771		if ((bus && bus->fast_io) ||
 772		    config->fast_io) {
 773			spin_lock_init(&map->spinlock);
 774			map->lock = regmap_lock_spinlock;
 775			map->unlock = regmap_unlock_spinlock;
 776			lockdep_set_class_and_name(&map->spinlock,
 777						   lock_key, lock_name);
 778		} else {
 779			mutex_init(&map->mutex);
 780			map->lock = regmap_lock_mutex;
 781			map->unlock = regmap_unlock_mutex;
 782			map->can_sleep = true;
 783			lockdep_set_class_and_name(&map->mutex,
 784						   lock_key, lock_name);
 785		}
 786		map->lock_arg = map;
 787	}
 788
 789	/*
 790	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 791	 * scratch buffers with sleeping allocations.
 792	 */
 793	if ((bus && bus->fast_io) || config->fast_io)
 794		map->alloc_flags = GFP_ATOMIC;
 795	else
 796		map->alloc_flags = GFP_KERNEL;
 797
 798	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 799	map->format.pad_bytes = config->pad_bits / 8;
 800	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 801	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 802			config->val_bits + config->pad_bits, 8);
 803	map->reg_shift = config->pad_bits % 8;
 804	if (config->reg_stride)
 805		map->reg_stride = config->reg_stride;
 806	else
 807		map->reg_stride = 1;
 808	if (is_power_of_2(map->reg_stride))
 809		map->reg_stride_order = ilog2(map->reg_stride);
 810	else
 811		map->reg_stride_order = -1;
 812	map->use_single_read = config->use_single_read || !bus || !bus->read;
 813	map->use_single_write = config->use_single_write || !bus || !bus->write;
 814	map->can_multi_write = config->can_multi_write && bus && bus->write;
 815	if (bus) {
 816		map->max_raw_read = bus->max_raw_read;
 817		map->max_raw_write = bus->max_raw_write;
 818	}
 819	map->dev = dev;
 820	map->bus = bus;
 821	map->bus_context = bus_context;
 822	map->max_register = config->max_register;
 823	map->wr_table = config->wr_table;
 824	map->rd_table = config->rd_table;
 825	map->volatile_table = config->volatile_table;
 826	map->precious_table = config->precious_table;
 827	map->wr_noinc_table = config->wr_noinc_table;
 828	map->rd_noinc_table = config->rd_noinc_table;
 829	map->writeable_reg = config->writeable_reg;
 830	map->readable_reg = config->readable_reg;
 831	map->volatile_reg = config->volatile_reg;
 832	map->precious_reg = config->precious_reg;
 833	map->writeable_noinc_reg = config->writeable_noinc_reg;
 834	map->readable_noinc_reg = config->readable_noinc_reg;
 835	map->cache_type = config->cache_type;
 836
 837	spin_lock_init(&map->async_lock);
 838	INIT_LIST_HEAD(&map->async_list);
 839	INIT_LIST_HEAD(&map->async_free);
 840	init_waitqueue_head(&map->async_waitq);
 841
 842	if (config->read_flag_mask ||
 843	    config->write_flag_mask ||
 844	    config->zero_flag_mask) {
 845		map->read_flag_mask = config->read_flag_mask;
 846		map->write_flag_mask = config->write_flag_mask;
 847	} else if (bus) {
 848		map->read_flag_mask = bus->read_flag_mask;
 849	}
 850
 851	if (!bus) {
 852		map->reg_read  = config->reg_read;
 853		map->reg_write = config->reg_write;
 854
 855		map->defer_caching = false;
 856		goto skip_format_initialization;
 857	} else if (!bus->read || !bus->write) {
 858		map->reg_read = _regmap_bus_reg_read;
 859		map->reg_write = _regmap_bus_reg_write;
 860		map->reg_update_bits = bus->reg_update_bits;
 861
 862		map->defer_caching = false;
 863		goto skip_format_initialization;
 864	} else {
 865		map->reg_read  = _regmap_bus_read;
 866		map->reg_update_bits = bus->reg_update_bits;
 867	}
 868
 869	reg_endian = regmap_get_reg_endian(bus, config);
 870	val_endian = regmap_get_val_endian(dev, bus, config);
 871
 872	switch (config->reg_bits + map->reg_shift) {
 873	case 2:
 874		switch (config->val_bits) {
 875		case 6:
 876			map->format.format_write = regmap_format_2_6_write;
 877			break;
 878		default:
 879			goto err_hwlock;
 880		}
 881		break;
 882
 883	case 4:
 884		switch (config->val_bits) {
 885		case 12:
 886			map->format.format_write = regmap_format_4_12_write;
 887			break;
 888		default:
 889			goto err_hwlock;
 890		}
 891		break;
 892
 893	case 7:
 894		switch (config->val_bits) {
 895		case 9:
 896			map->format.format_write = regmap_format_7_9_write;
 897			break;
 898		case 17:
 899			map->format.format_write = regmap_format_7_17_write;
 900			break;
 901		default:
 902			goto err_hwlock;
 903		}
 904		break;
 905
 906	case 10:
 907		switch (config->val_bits) {
 908		case 14:
 909			map->format.format_write = regmap_format_10_14_write;
 910			break;
 911		default:
 912			goto err_hwlock;
 913		}
 914		break;
 915
 916	case 12:
 917		switch (config->val_bits) {
 918		case 20:
 919			map->format.format_write = regmap_format_12_20_write;
 920			break;
 921		default:
 922			goto err_hwlock;
 923		}
 924		break;
 925
 926	case 8:
 927		map->format.format_reg = regmap_format_8;
 928		break;
 929
 930	case 16:
 931		switch (reg_endian) {
 932		case REGMAP_ENDIAN_BIG:
 933			map->format.format_reg = regmap_format_16_be;
 934			break;
 935		case REGMAP_ENDIAN_LITTLE:
 936			map->format.format_reg = regmap_format_16_le;
 937			break;
 938		case REGMAP_ENDIAN_NATIVE:
 939			map->format.format_reg = regmap_format_16_native;
 940			break;
 941		default:
 942			goto err_hwlock;
 943		}
 944		break;
 945
 946	case 24:
 947		if (reg_endian != REGMAP_ENDIAN_BIG)
 948			goto err_hwlock;
 949		map->format.format_reg = regmap_format_24;
 950		break;
 951
 952	case 32:
 953		switch (reg_endian) {
 954		case REGMAP_ENDIAN_BIG:
 955			map->format.format_reg = regmap_format_32_be;
 956			break;
 957		case REGMAP_ENDIAN_LITTLE:
 958			map->format.format_reg = regmap_format_32_le;
 959			break;
 960		case REGMAP_ENDIAN_NATIVE:
 961			map->format.format_reg = regmap_format_32_native;
 962			break;
 963		default:
 964			goto err_hwlock;
 965		}
 966		break;
 967
 968#ifdef CONFIG_64BIT
 969	case 64:
 970		switch (reg_endian) {
 971		case REGMAP_ENDIAN_BIG:
 972			map->format.format_reg = regmap_format_64_be;
 973			break;
 974		case REGMAP_ENDIAN_LITTLE:
 975			map->format.format_reg = regmap_format_64_le;
 976			break;
 977		case REGMAP_ENDIAN_NATIVE:
 978			map->format.format_reg = regmap_format_64_native;
 979			break;
 980		default:
 981			goto err_hwlock;
 982		}
 983		break;
 984#endif
 985
 986	default:
 987		goto err_hwlock;
 988	}
 989
 990	if (val_endian == REGMAP_ENDIAN_NATIVE)
 991		map->format.parse_inplace = regmap_parse_inplace_noop;
 992
 993	switch (config->val_bits) {
 994	case 8:
 995		map->format.format_val = regmap_format_8;
 996		map->format.parse_val = regmap_parse_8;
 997		map->format.parse_inplace = regmap_parse_inplace_noop;
 998		break;
 999	case 16:
1000		switch (val_endian) {
1001		case REGMAP_ENDIAN_BIG:
1002			map->format.format_val = regmap_format_16_be;
1003			map->format.parse_val = regmap_parse_16_be;
1004			map->format.parse_inplace = regmap_parse_16_be_inplace;
1005			break;
1006		case REGMAP_ENDIAN_LITTLE:
1007			map->format.format_val = regmap_format_16_le;
1008			map->format.parse_val = regmap_parse_16_le;
1009			map->format.parse_inplace = regmap_parse_16_le_inplace;
1010			break;
1011		case REGMAP_ENDIAN_NATIVE:
1012			map->format.format_val = regmap_format_16_native;
1013			map->format.parse_val = regmap_parse_16_native;
1014			break;
1015		default:
1016			goto err_hwlock;
1017		}
1018		break;
1019	case 24:
1020		if (val_endian != REGMAP_ENDIAN_BIG)
1021			goto err_hwlock;
1022		map->format.format_val = regmap_format_24;
1023		map->format.parse_val = regmap_parse_24;
1024		break;
1025	case 32:
1026		switch (val_endian) {
1027		case REGMAP_ENDIAN_BIG:
1028			map->format.format_val = regmap_format_32_be;
1029			map->format.parse_val = regmap_parse_32_be;
1030			map->format.parse_inplace = regmap_parse_32_be_inplace;
1031			break;
1032		case REGMAP_ENDIAN_LITTLE:
1033			map->format.format_val = regmap_format_32_le;
1034			map->format.parse_val = regmap_parse_32_le;
1035			map->format.parse_inplace = regmap_parse_32_le_inplace;
1036			break;
1037		case REGMAP_ENDIAN_NATIVE:
1038			map->format.format_val = regmap_format_32_native;
1039			map->format.parse_val = regmap_parse_32_native;
1040			break;
1041		default:
1042			goto err_hwlock;
1043		}
1044		break;
1045#ifdef CONFIG_64BIT
1046	case 64:
1047		switch (val_endian) {
1048		case REGMAP_ENDIAN_BIG:
1049			map->format.format_val = regmap_format_64_be;
1050			map->format.parse_val = regmap_parse_64_be;
1051			map->format.parse_inplace = regmap_parse_64_be_inplace;
1052			break;
1053		case REGMAP_ENDIAN_LITTLE:
1054			map->format.format_val = regmap_format_64_le;
1055			map->format.parse_val = regmap_parse_64_le;
1056			map->format.parse_inplace = regmap_parse_64_le_inplace;
1057			break;
1058		case REGMAP_ENDIAN_NATIVE:
1059			map->format.format_val = regmap_format_64_native;
1060			map->format.parse_val = regmap_parse_64_native;
1061			break;
1062		default:
1063			goto err_hwlock;
1064		}
1065		break;
1066#endif
1067	}
1068
1069	if (map->format.format_write) {
1070		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1071		    (val_endian != REGMAP_ENDIAN_BIG))
1072			goto err_hwlock;
1073		map->use_single_write = true;
1074	}
1075
1076	if (!map->format.format_write &&
1077	    !(map->format.format_reg && map->format.format_val))
1078		goto err_hwlock;
1079
1080	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1081	if (map->work_buf == NULL) {
1082		ret = -ENOMEM;
1083		goto err_hwlock;
1084	}
1085
1086	if (map->format.format_write) {
1087		map->defer_caching = false;
1088		map->reg_write = _regmap_bus_formatted_write;
1089	} else if (map->format.format_val) {
1090		map->defer_caching = true;
1091		map->reg_write = _regmap_bus_raw_write;
1092	}
1093
1094skip_format_initialization:
1095
1096	map->range_tree = RB_ROOT;
1097	for (i = 0; i < config->num_ranges; i++) {
1098		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1099		struct regmap_range_node *new;
1100
1101		/* Sanity check */
1102		if (range_cfg->range_max < range_cfg->range_min) {
1103			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1104				range_cfg->range_max, range_cfg->range_min);
1105			goto err_range;
1106		}
1107
1108		if (range_cfg->range_max > map->max_register) {
1109			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1110				range_cfg->range_max, map->max_register);
1111			goto err_range;
1112		}
1113
1114		if (range_cfg->selector_reg > map->max_register) {
1115			dev_err(map->dev,
1116				"Invalid range %d: selector out of map\n", i);
1117			goto err_range;
1118		}
1119
1120		if (range_cfg->window_len == 0) {
1121			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1122				i);
1123			goto err_range;
1124		}
1125
1126		/* Make sure, that this register range has no selector
1127		   or data window within its boundary */
1128		for (j = 0; j < config->num_ranges; j++) {
1129			unsigned sel_reg = config->ranges[j].selector_reg;
1130			unsigned win_min = config->ranges[j].window_start;
1131			unsigned win_max = win_min +
1132					   config->ranges[j].window_len - 1;
1133
1134			/* Allow data window inside its own virtual range */
1135			if (j == i)
1136				continue;
1137
1138			if (range_cfg->range_min <= sel_reg &&
1139			    sel_reg <= range_cfg->range_max) {
1140				dev_err(map->dev,
1141					"Range %d: selector for %d in window\n",
1142					i, j);
1143				goto err_range;
1144			}
1145
1146			if (!(win_max < range_cfg->range_min ||
1147			      win_min > range_cfg->range_max)) {
1148				dev_err(map->dev,
1149					"Range %d: window for %d in window\n",
1150					i, j);
1151				goto err_range;
1152			}
1153		}
1154
1155		new = kzalloc(sizeof(*new), GFP_KERNEL);
1156		if (new == NULL) {
1157			ret = -ENOMEM;
1158			goto err_range;
1159		}
1160
1161		new->map = map;
1162		new->name = range_cfg->name;
1163		new->range_min = range_cfg->range_min;
1164		new->range_max = range_cfg->range_max;
1165		new->selector_reg = range_cfg->selector_reg;
1166		new->selector_mask = range_cfg->selector_mask;
1167		new->selector_shift = range_cfg->selector_shift;
1168		new->window_start = range_cfg->window_start;
1169		new->window_len = range_cfg->window_len;
1170
1171		if (!_regmap_range_add(map, new)) {
1172			dev_err(map->dev, "Failed to add range %d\n", i);
1173			kfree(new);
1174			goto err_range;
1175		}
1176
1177		if (map->selector_work_buf == NULL) {
1178			map->selector_work_buf =
1179				kzalloc(map->format.buf_size, GFP_KERNEL);
1180			if (map->selector_work_buf == NULL) {
1181				ret = -ENOMEM;
1182				goto err_range;
1183			}
1184		}
1185	}
1186
1187	ret = regcache_init(map, config);
1188	if (ret != 0)
1189		goto err_range;
1190
1191	if (dev) {
1192		ret = regmap_attach_dev(dev, map, config);
1193		if (ret != 0)
1194			goto err_regcache;
1195	} else {
1196		regmap_debugfs_init(map);
1197	}
1198
1199	return map;
1200
1201err_regcache:
1202	regcache_exit(map);
1203err_range:
1204	regmap_range_exit(map);
1205	kfree(map->work_buf);
1206err_hwlock:
1207	if (map->hwlock)
1208		hwspin_lock_free(map->hwlock);
1209err_name:
1210	kfree_const(map->name);
1211err_map:
1212	kfree(map);
1213err:
1214	return ERR_PTR(ret);
1215}
1216EXPORT_SYMBOL_GPL(__regmap_init);
1217
1218static void devm_regmap_release(struct device *dev, void *res)
1219{
1220	regmap_exit(*(struct regmap **)res);
1221}
1222
1223struct regmap *__devm_regmap_init(struct device *dev,
1224				  const struct regmap_bus *bus,
1225				  void *bus_context,
1226				  const struct regmap_config *config,
1227				  struct lock_class_key *lock_key,
1228				  const char *lock_name)
1229{
1230	struct regmap **ptr, *regmap;
1231
1232	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1233	if (!ptr)
1234		return ERR_PTR(-ENOMEM);
1235
1236	regmap = __regmap_init(dev, bus, bus_context, config,
1237			       lock_key, lock_name);
1238	if (!IS_ERR(regmap)) {
1239		*ptr = regmap;
1240		devres_add(dev, ptr);
1241	} else {
1242		devres_free(ptr);
1243	}
1244
1245	return regmap;
1246}
1247EXPORT_SYMBOL_GPL(__devm_regmap_init);
1248
1249static void regmap_field_init(struct regmap_field *rm_field,
1250	struct regmap *regmap, struct reg_field reg_field)
1251{
1252	rm_field->regmap = regmap;
1253	rm_field->reg = reg_field.reg;
1254	rm_field->shift = reg_field.lsb;
1255	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1256	rm_field->id_size = reg_field.id_size;
1257	rm_field->id_offset = reg_field.id_offset;
1258}
1259
1260/**
1261 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1262 *
1263 * @dev: Device that will be interacted with
1264 * @regmap: regmap bank in which this register field is located.
1265 * @reg_field: Register field with in the bank.
1266 *
1267 * The return value will be an ERR_PTR() on error or a valid pointer
1268 * to a struct regmap_field. The regmap_field will be automatically freed
1269 * by the device management code.
1270 */
1271struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1272		struct regmap *regmap, struct reg_field reg_field)
1273{
1274	struct regmap_field *rm_field = devm_kzalloc(dev,
1275					sizeof(*rm_field), GFP_KERNEL);
1276	if (!rm_field)
1277		return ERR_PTR(-ENOMEM);
1278
1279	regmap_field_init(rm_field, regmap, reg_field);
1280
1281	return rm_field;
1282
1283}
1284EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1285
1286
1287/**
1288 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1289 *
1290 * @regmap: regmap bank in which this register field is located.
1291 * @rm_field: regmap register fields within the bank.
1292 * @reg_field: Register fields within the bank.
1293 * @num_fields: Number of register fields.
1294 *
1295 * The return value will be an -ENOMEM on error or zero for success.
1296 * Newly allocated regmap_fields should be freed by calling
1297 * regmap_field_bulk_free()
1298 */
1299int regmap_field_bulk_alloc(struct regmap *regmap,
1300			    struct regmap_field **rm_field,
1301			    struct reg_field *reg_field,
1302			    int num_fields)
1303{
1304	struct regmap_field *rf;
1305	int i;
1306
1307	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1308	if (!rf)
1309		return -ENOMEM;
1310
1311	for (i = 0; i < num_fields; i++) {
1312		regmap_field_init(&rf[i], regmap, reg_field[i]);
1313		rm_field[i] = &rf[i];
1314	}
1315
1316	return 0;
1317}
1318EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1319
1320/**
1321 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1322 * fields.
1323 *
1324 * @dev: Device that will be interacted with
1325 * @regmap: regmap bank in which this register field is located.
1326 * @rm_field: regmap register fields within the bank.
1327 * @reg_field: Register fields within the bank.
1328 * @num_fields: Number of register fields.
1329 *
1330 * The return value will be an -ENOMEM on error or zero for success.
1331 * Newly allocated regmap_fields will be automatically freed by the
1332 * device management code.
1333 */
1334int devm_regmap_field_bulk_alloc(struct device *dev,
1335				 struct regmap *regmap,
1336				 struct regmap_field **rm_field,
1337				 struct reg_field *reg_field,
1338				 int num_fields)
1339{
1340	struct regmap_field *rf;
1341	int i;
1342
1343	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1344	if (!rf)
1345		return -ENOMEM;
1346
1347	for (i = 0; i < num_fields; i++) {
1348		regmap_field_init(&rf[i], regmap, reg_field[i]);
1349		rm_field[i] = &rf[i];
1350	}
1351
1352	return 0;
1353}
1354EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1355
1356/**
1357 * regmap_field_bulk_free() - Free register field allocated using
1358 *                       regmap_field_bulk_alloc.
1359 *
1360 * @field: regmap fields which should be freed.
1361 */
1362void regmap_field_bulk_free(struct regmap_field *field)
1363{
1364	kfree(field);
1365}
1366EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1367
1368/**
1369 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1370 *                            devm_regmap_field_bulk_alloc.
1371 *
1372 * @dev: Device that will be interacted with
1373 * @field: regmap field which should be freed.
1374 *
1375 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1376 * drivers need not call this function, as the memory allocated via devm
1377 * will be freed as per device-driver life-cycle.
1378 */
1379void devm_regmap_field_bulk_free(struct device *dev,
1380				 struct regmap_field *field)
1381{
1382	devm_kfree(dev, field);
1383}
1384EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1385
1386/**
1387 * devm_regmap_field_free() - Free a register field allocated using
1388 *                            devm_regmap_field_alloc.
1389 *
1390 * @dev: Device that will be interacted with
1391 * @field: regmap field which should be freed.
1392 *
1393 * Free register field allocated using devm_regmap_field_alloc(). Usually
1394 * drivers need not call this function, as the memory allocated via devm
1395 * will be freed as per device-driver life-cyle.
1396 */
1397void devm_regmap_field_free(struct device *dev,
1398	struct regmap_field *field)
1399{
1400	devm_kfree(dev, field);
1401}
1402EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1403
1404/**
1405 * regmap_field_alloc() - Allocate and initialise a register field.
1406 *
1407 * @regmap: regmap bank in which this register field is located.
1408 * @reg_field: Register field with in the bank.
1409 *
1410 * The return value will be an ERR_PTR() on error or a valid pointer
1411 * to a struct regmap_field. The regmap_field should be freed by the
1412 * user once its finished working with it using regmap_field_free().
1413 */
1414struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1415		struct reg_field reg_field)
1416{
1417	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1418
1419	if (!rm_field)
1420		return ERR_PTR(-ENOMEM);
1421
1422	regmap_field_init(rm_field, regmap, reg_field);
1423
1424	return rm_field;
1425}
1426EXPORT_SYMBOL_GPL(regmap_field_alloc);
1427
1428/**
1429 * regmap_field_free() - Free register field allocated using
1430 *                       regmap_field_alloc.
1431 *
1432 * @field: regmap field which should be freed.
1433 */
1434void regmap_field_free(struct regmap_field *field)
1435{
1436	kfree(field);
1437}
1438EXPORT_SYMBOL_GPL(regmap_field_free);
1439
1440/**
1441 * regmap_reinit_cache() - Reinitialise the current register cache
1442 *
1443 * @map: Register map to operate on.
1444 * @config: New configuration.  Only the cache data will be used.
1445 *
1446 * Discard any existing register cache for the map and initialize a
1447 * new cache.  This can be used to restore the cache to defaults or to
1448 * update the cache configuration to reflect runtime discovery of the
1449 * hardware.
1450 *
1451 * No explicit locking is done here, the user needs to ensure that
1452 * this function will not race with other calls to regmap.
1453 */
1454int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1455{
1456	int ret;
1457
1458	regcache_exit(map);
1459	regmap_debugfs_exit(map);
1460
1461	map->max_register = config->max_register;
1462	map->writeable_reg = config->writeable_reg;
1463	map->readable_reg = config->readable_reg;
1464	map->volatile_reg = config->volatile_reg;
1465	map->precious_reg = config->precious_reg;
1466	map->writeable_noinc_reg = config->writeable_noinc_reg;
1467	map->readable_noinc_reg = config->readable_noinc_reg;
1468	map->cache_type = config->cache_type;
1469
1470	ret = regmap_set_name(map, config);
1471	if (ret)
1472		return ret;
1473
1474	regmap_debugfs_init(map);
1475
1476	map->cache_bypass = false;
1477	map->cache_only = false;
1478
1479	return regcache_init(map, config);
1480}
1481EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1482
1483/**
1484 * regmap_exit() - Free a previously allocated register map
1485 *
1486 * @map: Register map to operate on.
1487 */
1488void regmap_exit(struct regmap *map)
1489{
1490	struct regmap_async *async;
1491
1492	regcache_exit(map);
1493	regmap_debugfs_exit(map);
1494	regmap_range_exit(map);
1495	if (map->bus && map->bus->free_context)
1496		map->bus->free_context(map->bus_context);
1497	kfree(map->work_buf);
1498	while (!list_empty(&map->async_free)) {
1499		async = list_first_entry_or_null(&map->async_free,
1500						 struct regmap_async,
1501						 list);
1502		list_del(&async->list);
1503		kfree(async->work_buf);
1504		kfree(async);
1505	}
1506	if (map->hwlock)
1507		hwspin_lock_free(map->hwlock);
1508	if (map->lock == regmap_lock_mutex)
1509		mutex_destroy(&map->mutex);
1510	kfree_const(map->name);
1511	kfree(map->patch);
1512	if (map->bus && map->bus->free_on_exit)
1513		kfree(map->bus);
1514	kfree(map);
1515}
1516EXPORT_SYMBOL_GPL(regmap_exit);
1517
1518static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1519{
1520	struct regmap **r = res;
1521	if (!r || !*r) {
1522		WARN_ON(!r || !*r);
1523		return 0;
1524	}
1525
1526	/* If the user didn't specify a name match any */
1527	if (data)
1528		return !strcmp((*r)->name, data);
1529	else
1530		return 1;
1531}
1532
1533/**
1534 * dev_get_regmap() - Obtain the regmap (if any) for a device
1535 *
1536 * @dev: Device to retrieve the map for
1537 * @name: Optional name for the register map, usually NULL.
1538 *
1539 * Returns the regmap for the device if one is present, or NULL.  If
1540 * name is specified then it must match the name specified when
1541 * registering the device, if it is NULL then the first regmap found
1542 * will be used.  Devices with multiple register maps are very rare,
1543 * generic code should normally not need to specify a name.
1544 */
1545struct regmap *dev_get_regmap(struct device *dev, const char *name)
1546{
1547	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1548					dev_get_regmap_match, (void *)name);
1549
1550	if (!r)
1551		return NULL;
1552	return *r;
1553}
1554EXPORT_SYMBOL_GPL(dev_get_regmap);
1555
1556/**
1557 * regmap_get_device() - Obtain the device from a regmap
1558 *
1559 * @map: Register map to operate on.
1560 *
1561 * Returns the underlying device that the regmap has been created for.
1562 */
1563struct device *regmap_get_device(struct regmap *map)
1564{
1565	return map->dev;
1566}
1567EXPORT_SYMBOL_GPL(regmap_get_device);
1568
1569static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1570			       struct regmap_range_node *range,
1571			       unsigned int val_num)
1572{
1573	void *orig_work_buf;
1574	unsigned int win_offset;
1575	unsigned int win_page;
1576	bool page_chg;
1577	int ret;
1578
1579	win_offset = (*reg - range->range_min) % range->window_len;
1580	win_page = (*reg - range->range_min) / range->window_len;
1581
1582	if (val_num > 1) {
1583		/* Bulk write shouldn't cross range boundary */
1584		if (*reg + val_num - 1 > range->range_max)
1585			return -EINVAL;
1586
1587		/* ... or single page boundary */
1588		if (val_num > range->window_len - win_offset)
1589			return -EINVAL;
1590	}
1591
1592	/* It is possible to have selector register inside data window.
1593	   In that case, selector register is located on every page and
1594	   it needs no page switching, when accessed alone. */
1595	if (val_num > 1 ||
1596	    range->window_start + win_offset != range->selector_reg) {
1597		/* Use separate work_buf during page switching */
1598		orig_work_buf = map->work_buf;
1599		map->work_buf = map->selector_work_buf;
1600
1601		ret = _regmap_update_bits(map, range->selector_reg,
1602					  range->selector_mask,
1603					  win_page << range->selector_shift,
1604					  &page_chg, false);
1605
1606		map->work_buf = orig_work_buf;
1607
1608		if (ret != 0)
1609			return ret;
1610	}
1611
1612	*reg = range->window_start + win_offset;
1613
1614	return 0;
1615}
1616
1617static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1618					  unsigned long mask)
1619{
1620	u8 *buf;
1621	int i;
1622
1623	if (!mask || !map->work_buf)
1624		return;
1625
1626	buf = map->work_buf;
1627
1628	for (i = 0; i < max_bytes; i++)
1629		buf[i] |= (mask >> (8 * i)) & 0xff;
1630}
1631
1632static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1633				  const void *val, size_t val_len, bool noinc)
1634{
1635	struct regmap_range_node *range;
1636	unsigned long flags;
1637	void *work_val = map->work_buf + map->format.reg_bytes +
1638		map->format.pad_bytes;
1639	void *buf;
1640	int ret = -ENOTSUPP;
1641	size_t len;
1642	int i;
1643
1644	WARN_ON(!map->bus);
1645
1646	/* Check for unwritable or noinc registers in range
1647	 * before we start
1648	 */
1649	if (!regmap_writeable_noinc(map, reg)) {
1650		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1651			unsigned int element =
1652				reg + regmap_get_offset(map, i);
1653			if (!regmap_writeable(map, element) ||
1654				regmap_writeable_noinc(map, element))
1655				return -EINVAL;
1656		}
1657	}
1658
1659	if (!map->cache_bypass && map->format.parse_val) {
1660		unsigned int ival;
1661		int val_bytes = map->format.val_bytes;
1662		for (i = 0; i < val_len / val_bytes; i++) {
1663			ival = map->format.parse_val(val + (i * val_bytes));
1664			ret = regcache_write(map,
1665					     reg + regmap_get_offset(map, i),
1666					     ival);
1667			if (ret) {
1668				dev_err(map->dev,
1669					"Error in caching of register: %x ret: %d\n",
1670					reg + regmap_get_offset(map, i), ret);
1671				return ret;
1672			}
1673		}
1674		if (map->cache_only) {
1675			map->cache_dirty = true;
1676			return 0;
1677		}
1678	}
1679
1680	range = _regmap_range_lookup(map, reg);
1681	if (range) {
1682		int val_num = val_len / map->format.val_bytes;
1683		int win_offset = (reg - range->range_min) % range->window_len;
1684		int win_residue = range->window_len - win_offset;
1685
1686		/* If the write goes beyond the end of the window split it */
1687		while (val_num > win_residue) {
1688			dev_dbg(map->dev, "Writing window %d/%zu\n",
1689				win_residue, val_len / map->format.val_bytes);
1690			ret = _regmap_raw_write_impl(map, reg, val,
1691						     win_residue *
1692						     map->format.val_bytes, noinc);
1693			if (ret != 0)
1694				return ret;
1695
1696			reg += win_residue;
1697			val_num -= win_residue;
1698			val += win_residue * map->format.val_bytes;
1699			val_len -= win_residue * map->format.val_bytes;
1700
1701			win_offset = (reg - range->range_min) %
1702				range->window_len;
1703			win_residue = range->window_len - win_offset;
1704		}
1705
1706		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1707		if (ret != 0)
1708			return ret;
1709	}
1710
1711	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1712	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1713				      map->write_flag_mask);
1714
1715	/*
1716	 * Essentially all I/O mechanisms will be faster with a single
1717	 * buffer to write.  Since register syncs often generate raw
1718	 * writes of single registers optimise that case.
1719	 */
1720	if (val != work_val && val_len == map->format.val_bytes) {
1721		memcpy(work_val, val, map->format.val_bytes);
1722		val = work_val;
1723	}
1724
1725	if (map->async && map->bus->async_write) {
1726		struct regmap_async *async;
1727
1728		trace_regmap_async_write_start(map, reg, val_len);
1729
1730		spin_lock_irqsave(&map->async_lock, flags);
1731		async = list_first_entry_or_null(&map->async_free,
1732						 struct regmap_async,
1733						 list);
1734		if (async)
1735			list_del(&async->list);
1736		spin_unlock_irqrestore(&map->async_lock, flags);
1737
1738		if (!async) {
1739			async = map->bus->async_alloc();
1740			if (!async)
1741				return -ENOMEM;
1742
1743			async->work_buf = kzalloc(map->format.buf_size,
1744						  GFP_KERNEL | GFP_DMA);
1745			if (!async->work_buf) {
1746				kfree(async);
1747				return -ENOMEM;
1748			}
1749		}
1750
1751		async->map = map;
1752
1753		/* If the caller supplied the value we can use it safely. */
1754		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1755		       map->format.reg_bytes + map->format.val_bytes);
1756
1757		spin_lock_irqsave(&map->async_lock, flags);
1758		list_add_tail(&async->list, &map->async_list);
1759		spin_unlock_irqrestore(&map->async_lock, flags);
1760
1761		if (val != work_val)
1762			ret = map->bus->async_write(map->bus_context,
1763						    async->work_buf,
1764						    map->format.reg_bytes +
1765						    map->format.pad_bytes,
1766						    val, val_len, async);
1767		else
1768			ret = map->bus->async_write(map->bus_context,
1769						    async->work_buf,
1770						    map->format.reg_bytes +
1771						    map->format.pad_bytes +
1772						    val_len, NULL, 0, async);
1773
1774		if (ret != 0) {
1775			dev_err(map->dev, "Failed to schedule write: %d\n",
1776				ret);
1777
1778			spin_lock_irqsave(&map->async_lock, flags);
1779			list_move(&async->list, &map->async_free);
1780			spin_unlock_irqrestore(&map->async_lock, flags);
1781		}
1782
1783		return ret;
1784	}
1785
1786	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1787
1788	/* If we're doing a single register write we can probably just
1789	 * send the work_buf directly, otherwise try to do a gather
1790	 * write.
1791	 */
1792	if (val == work_val)
1793		ret = map->bus->write(map->bus_context, map->work_buf,
1794				      map->format.reg_bytes +
1795				      map->format.pad_bytes +
1796				      val_len);
1797	else if (map->bus->gather_write)
1798		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1799					     map->format.reg_bytes +
1800					     map->format.pad_bytes,
1801					     val, val_len);
1802	else
1803		ret = -ENOTSUPP;
1804
1805	/* If that didn't work fall back on linearising by hand. */
1806	if (ret == -ENOTSUPP) {
1807		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1808		buf = kzalloc(len, GFP_KERNEL);
1809		if (!buf)
1810			return -ENOMEM;
1811
1812		memcpy(buf, map->work_buf, map->format.reg_bytes);
1813		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1814		       val, val_len);
1815		ret = map->bus->write(map->bus_context, buf, len);
1816
1817		kfree(buf);
1818	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1819		/* regcache_drop_region() takes lock that we already have,
1820		 * thus call map->cache_ops->drop() directly
1821		 */
1822		if (map->cache_ops && map->cache_ops->drop)
1823			map->cache_ops->drop(map, reg, reg + 1);
1824	}
1825
1826	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1827
1828	return ret;
1829}
1830
1831/**
1832 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1833 *
1834 * @map: Map to check.
1835 */
1836bool regmap_can_raw_write(struct regmap *map)
1837{
1838	return map->bus && map->bus->write && map->format.format_val &&
1839		map->format.format_reg;
1840}
1841EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1842
1843/**
1844 * regmap_get_raw_read_max - Get the maximum size we can read
1845 *
1846 * @map: Map to check.
1847 */
1848size_t regmap_get_raw_read_max(struct regmap *map)
1849{
1850	return map->max_raw_read;
1851}
1852EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1853
1854/**
1855 * regmap_get_raw_write_max - Get the maximum size we can read
1856 *
1857 * @map: Map to check.
1858 */
1859size_t regmap_get_raw_write_max(struct regmap *map)
1860{
1861	return map->max_raw_write;
1862}
1863EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1864
1865static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1866				       unsigned int val)
1867{
1868	int ret;
1869	struct regmap_range_node *range;
1870	struct regmap *map = context;
1871
1872	WARN_ON(!map->bus || !map->format.format_write);
1873
1874	range = _regmap_range_lookup(map, reg);
1875	if (range) {
1876		ret = _regmap_select_page(map, &reg, range, 1);
1877		if (ret != 0)
1878			return ret;
1879	}
1880
1881	map->format.format_write(map, reg, val);
1882
1883	trace_regmap_hw_write_start(map, reg, 1);
1884
1885	ret = map->bus->write(map->bus_context, map->work_buf,
1886			      map->format.buf_size);
1887
1888	trace_regmap_hw_write_done(map, reg, 1);
1889
1890	return ret;
1891}
1892
1893static int _regmap_bus_reg_write(void *context, unsigned int reg,
1894				 unsigned int val)
1895{
1896	struct regmap *map = context;
1897
1898	return map->bus->reg_write(map->bus_context, reg, val);
1899}
1900
1901static int _regmap_bus_raw_write(void *context, unsigned int reg,
1902				 unsigned int val)
1903{
1904	struct regmap *map = context;
1905
1906	WARN_ON(!map->bus || !map->format.format_val);
1907
1908	map->format.format_val(map->work_buf + map->format.reg_bytes
1909			       + map->format.pad_bytes, val, 0);
1910	return _regmap_raw_write_impl(map, reg,
1911				      map->work_buf +
1912				      map->format.reg_bytes +
1913				      map->format.pad_bytes,
1914				      map->format.val_bytes,
1915				      false);
1916}
1917
1918static inline void *_regmap_map_get_context(struct regmap *map)
1919{
1920	return (map->bus) ? map : map->bus_context;
1921}
1922
1923int _regmap_write(struct regmap *map, unsigned int reg,
1924		  unsigned int val)
1925{
1926	int ret;
1927	void *context = _regmap_map_get_context(map);
1928
1929	if (!regmap_writeable(map, reg))
1930		return -EIO;
1931
1932	if (!map->cache_bypass && !map->defer_caching) {
1933		ret = regcache_write(map, reg, val);
1934		if (ret != 0)
1935			return ret;
1936		if (map->cache_only) {
1937			map->cache_dirty = true;
1938			return 0;
1939		}
1940	}
1941
1942	ret = map->reg_write(context, reg, val);
1943	if (ret == 0) {
1944		if (regmap_should_log(map))
1945			dev_info(map->dev, "%x <= %x\n", reg, val);
1946
1947		trace_regmap_reg_write(map, reg, val);
1948	}
1949
1950	return ret;
1951}
1952
1953/**
1954 * regmap_write() - Write a value to a single register
1955 *
1956 * @map: Register map to write to
1957 * @reg: Register to write to
1958 * @val: Value to be written
1959 *
1960 * A value of zero will be returned on success, a negative errno will
1961 * be returned in error cases.
1962 */
1963int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1964{
1965	int ret;
1966
1967	if (!IS_ALIGNED(reg, map->reg_stride))
1968		return -EINVAL;
1969
1970	map->lock(map->lock_arg);
1971
1972	ret = _regmap_write(map, reg, val);
1973
1974	map->unlock(map->lock_arg);
1975
1976	return ret;
1977}
1978EXPORT_SYMBOL_GPL(regmap_write);
1979
1980/**
1981 * regmap_write_async() - Write a value to a single register asynchronously
1982 *
1983 * @map: Register map to write to
1984 * @reg: Register to write to
1985 * @val: Value to be written
1986 *
1987 * A value of zero will be returned on success, a negative errno will
1988 * be returned in error cases.
1989 */
1990int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1991{
1992	int ret;
1993
1994	if (!IS_ALIGNED(reg, map->reg_stride))
1995		return -EINVAL;
1996
1997	map->lock(map->lock_arg);
1998
1999	map->async = true;
2000
2001	ret = _regmap_write(map, reg, val);
2002
2003	map->async = false;
2004
2005	map->unlock(map->lock_arg);
2006
2007	return ret;
2008}
2009EXPORT_SYMBOL_GPL(regmap_write_async);
2010
2011int _regmap_raw_write(struct regmap *map, unsigned int reg,
2012		      const void *val, size_t val_len, bool noinc)
2013{
2014	size_t val_bytes = map->format.val_bytes;
2015	size_t val_count = val_len / val_bytes;
2016	size_t chunk_count, chunk_bytes;
2017	size_t chunk_regs = val_count;
2018	int ret, i;
2019
2020	if (!val_count)
2021		return -EINVAL;
2022
2023	if (map->use_single_write)
2024		chunk_regs = 1;
2025	else if (map->max_raw_write && val_len > map->max_raw_write)
2026		chunk_regs = map->max_raw_write / val_bytes;
2027
2028	chunk_count = val_count / chunk_regs;
2029	chunk_bytes = chunk_regs * val_bytes;
2030
2031	/* Write as many bytes as possible with chunk_size */
2032	for (i = 0; i < chunk_count; i++) {
2033		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2034		if (ret)
2035			return ret;
2036
2037		reg += regmap_get_offset(map, chunk_regs);
2038		val += chunk_bytes;
2039		val_len -= chunk_bytes;
2040	}
2041
2042	/* Write remaining bytes */
2043	if (val_len)
2044		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2045
2046	return ret;
2047}
2048
2049/**
2050 * regmap_raw_write() - Write raw values to one or more registers
2051 *
2052 * @map: Register map to write to
2053 * @reg: Initial register to write to
2054 * @val: Block of data to be written, laid out for direct transmission to the
2055 *       device
2056 * @val_len: Length of data pointed to by val.
2057 *
2058 * This function is intended to be used for things like firmware
2059 * download where a large block of data needs to be transferred to the
2060 * device.  No formatting will be done on the data provided.
2061 *
2062 * A value of zero will be returned on success, a negative errno will
2063 * be returned in error cases.
2064 */
2065int regmap_raw_write(struct regmap *map, unsigned int reg,
2066		     const void *val, size_t val_len)
2067{
2068	int ret;
2069
2070	if (!regmap_can_raw_write(map))
2071		return -EINVAL;
2072	if (val_len % map->format.val_bytes)
2073		return -EINVAL;
2074
2075	map->lock(map->lock_arg);
2076
2077	ret = _regmap_raw_write(map, reg, val, val_len, false);
2078
2079	map->unlock(map->lock_arg);
2080
2081	return ret;
2082}
2083EXPORT_SYMBOL_GPL(regmap_raw_write);
2084
2085/**
2086 * regmap_noinc_write(): Write data from a register without incrementing the
2087 *			register number
2088 *
2089 * @map: Register map to write to
2090 * @reg: Register to write to
2091 * @val: Pointer to data buffer
2092 * @val_len: Length of output buffer in bytes.
2093 *
2094 * The regmap API usually assumes that bulk bus write operations will write a
2095 * range of registers. Some devices have certain registers for which a write
2096 * operation can write to an internal FIFO.
2097 *
2098 * The target register must be volatile but registers after it can be
2099 * completely unrelated cacheable registers.
2100 *
2101 * This will attempt multiple writes as required to write val_len bytes.
2102 *
2103 * A value of zero will be returned on success, a negative errno will be
2104 * returned in error cases.
2105 */
2106int regmap_noinc_write(struct regmap *map, unsigned int reg,
2107		      const void *val, size_t val_len)
2108{
2109	size_t write_len;
2110	int ret;
2111
2112	if (!map->bus)
2113		return -EINVAL;
2114	if (!map->bus->write)
2115		return -ENOTSUPP;
2116	if (val_len % map->format.val_bytes)
2117		return -EINVAL;
2118	if (!IS_ALIGNED(reg, map->reg_stride))
2119		return -EINVAL;
2120	if (val_len == 0)
2121		return -EINVAL;
2122
2123	map->lock(map->lock_arg);
2124
2125	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2126		ret = -EINVAL;
2127		goto out_unlock;
2128	}
2129
2130	while (val_len) {
2131		if (map->max_raw_write && map->max_raw_write < val_len)
2132			write_len = map->max_raw_write;
2133		else
2134			write_len = val_len;
2135		ret = _regmap_raw_write(map, reg, val, write_len, true);
2136		if (ret)
2137			goto out_unlock;
2138		val = ((u8 *)val) + write_len;
2139		val_len -= write_len;
2140	}
2141
2142out_unlock:
2143	map->unlock(map->lock_arg);
2144	return ret;
2145}
2146EXPORT_SYMBOL_GPL(regmap_noinc_write);
2147
2148/**
2149 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2150 *                                   register field.
2151 *
2152 * @field: Register field to write to
2153 * @mask: Bitmask to change
2154 * @val: Value to be written
2155 * @change: Boolean indicating if a write was done
2156 * @async: Boolean indicating asynchronously
2157 * @force: Boolean indicating use force update
2158 *
2159 * Perform a read/modify/write cycle on the register field with change,
2160 * async, force option.
2161 *
2162 * A value of zero will be returned on success, a negative errno will
2163 * be returned in error cases.
2164 */
2165int regmap_field_update_bits_base(struct regmap_field *field,
2166				  unsigned int mask, unsigned int val,
2167				  bool *change, bool async, bool force)
2168{
2169	mask = (mask << field->shift) & field->mask;
2170
2171	return regmap_update_bits_base(field->regmap, field->reg,
2172				       mask, val << field->shift,
2173				       change, async, force);
2174}
2175EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2176
2177/**
2178 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2179 *                                    register field with port ID
2180 *
2181 * @field: Register field to write to
2182 * @id: port ID
2183 * @mask: Bitmask to change
2184 * @val: Value to be written
2185 * @change: Boolean indicating if a write was done
2186 * @async: Boolean indicating asynchronously
2187 * @force: Boolean indicating use force update
2188 *
2189 * A value of zero will be returned on success, a negative errno will
2190 * be returned in error cases.
2191 */
2192int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2193				   unsigned int mask, unsigned int val,
2194				   bool *change, bool async, bool force)
2195{
2196	if (id >= field->id_size)
2197		return -EINVAL;
2198
2199	mask = (mask << field->shift) & field->mask;
2200
2201	return regmap_update_bits_base(field->regmap,
2202				       field->reg + (field->id_offset * id),
2203				       mask, val << field->shift,
2204				       change, async, force);
2205}
2206EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2207
2208/**
2209 * regmap_bulk_write() - Write multiple registers to the device
2210 *
2211 * @map: Register map to write to
2212 * @reg: First register to be write from
2213 * @val: Block of data to be written, in native register size for device
2214 * @val_count: Number of registers to write
2215 *
2216 * This function is intended to be used for writing a large block of
2217 * data to the device either in single transfer or multiple transfer.
2218 *
2219 * A value of zero will be returned on success, a negative errno will
2220 * be returned in error cases.
2221 */
2222int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2223		     size_t val_count)
2224{
2225	int ret = 0, i;
2226	size_t val_bytes = map->format.val_bytes;
2227
2228	if (!IS_ALIGNED(reg, map->reg_stride))
2229		return -EINVAL;
2230
2231	/*
2232	 * Some devices don't support bulk write, for them we have a series of
2233	 * single write operations.
2234	 */
2235	if (!map->bus || !map->format.parse_inplace) {
2236		map->lock(map->lock_arg);
2237		for (i = 0; i < val_count; i++) {
2238			unsigned int ival;
2239
2240			switch (val_bytes) {
2241			case 1:
2242				ival = *(u8 *)(val + (i * val_bytes));
2243				break;
2244			case 2:
2245				ival = *(u16 *)(val + (i * val_bytes));
2246				break;
2247			case 4:
2248				ival = *(u32 *)(val + (i * val_bytes));
2249				break;
2250#ifdef CONFIG_64BIT
2251			case 8:
2252				ival = *(u64 *)(val + (i * val_bytes));
2253				break;
2254#endif
2255			default:
2256				ret = -EINVAL;
2257				goto out;
2258			}
2259
2260			ret = _regmap_write(map,
2261					    reg + regmap_get_offset(map, i),
2262					    ival);
2263			if (ret != 0)
2264				goto out;
2265		}
2266out:
2267		map->unlock(map->lock_arg);
2268	} else {
2269		void *wval;
2270
2271		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2272		if (!wval)
2273			return -ENOMEM;
2274
2275		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2276			map->format.parse_inplace(wval + i);
2277
2278		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2279
2280		kfree(wval);
2281	}
2282	return ret;
2283}
2284EXPORT_SYMBOL_GPL(regmap_bulk_write);
2285
2286/*
2287 * _regmap_raw_multi_reg_write()
2288 *
2289 * the (register,newvalue) pairs in regs have not been formatted, but
2290 * they are all in the same page and have been changed to being page
2291 * relative. The page register has been written if that was necessary.
2292 */
2293static int _regmap_raw_multi_reg_write(struct regmap *map,
2294				       const struct reg_sequence *regs,
2295				       size_t num_regs)
2296{
2297	int ret;
2298	void *buf;
2299	int i;
2300	u8 *u8;
2301	size_t val_bytes = map->format.val_bytes;
2302	size_t reg_bytes = map->format.reg_bytes;
2303	size_t pad_bytes = map->format.pad_bytes;
2304	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2305	size_t len = pair_size * num_regs;
2306
2307	if (!len)
2308		return -EINVAL;
2309
2310	buf = kzalloc(len, GFP_KERNEL);
2311	if (!buf)
2312		return -ENOMEM;
2313
2314	/* We have to linearise by hand. */
2315
2316	u8 = buf;
2317
2318	for (i = 0; i < num_regs; i++) {
2319		unsigned int reg = regs[i].reg;
2320		unsigned int val = regs[i].def;
2321		trace_regmap_hw_write_start(map, reg, 1);
2322		map->format.format_reg(u8, reg, map->reg_shift);
2323		u8 += reg_bytes + pad_bytes;
2324		map->format.format_val(u8, val, 0);
2325		u8 += val_bytes;
2326	}
2327	u8 = buf;
2328	*u8 |= map->write_flag_mask;
2329
2330	ret = map->bus->write(map->bus_context, buf, len);
2331
2332	kfree(buf);
2333
2334	for (i = 0; i < num_regs; i++) {
2335		int reg = regs[i].reg;
2336		trace_regmap_hw_write_done(map, reg, 1);
2337	}
2338	return ret;
2339}
2340
2341static unsigned int _regmap_register_page(struct regmap *map,
2342					  unsigned int reg,
2343					  struct regmap_range_node *range)
2344{
2345	unsigned int win_page = (reg - range->range_min) / range->window_len;
2346
2347	return win_page;
2348}
2349
2350static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2351					       struct reg_sequence *regs,
2352					       size_t num_regs)
2353{
2354	int ret;
2355	int i, n;
2356	struct reg_sequence *base;
2357	unsigned int this_page = 0;
2358	unsigned int page_change = 0;
2359	/*
2360	 * the set of registers are not neccessarily in order, but
2361	 * since the order of write must be preserved this algorithm
2362	 * chops the set each time the page changes. This also applies
2363	 * if there is a delay required at any point in the sequence.
2364	 */
2365	base = regs;
2366	for (i = 0, n = 0; i < num_regs; i++, n++) {
2367		unsigned int reg = regs[i].reg;
2368		struct regmap_range_node *range;
2369
2370		range = _regmap_range_lookup(map, reg);
2371		if (range) {
2372			unsigned int win_page = _regmap_register_page(map, reg,
2373								      range);
2374
2375			if (i == 0)
2376				this_page = win_page;
2377			if (win_page != this_page) {
2378				this_page = win_page;
2379				page_change = 1;
2380			}
2381		}
2382
2383		/* If we have both a page change and a delay make sure to
2384		 * write the regs and apply the delay before we change the
2385		 * page.
2386		 */
2387
2388		if (page_change || regs[i].delay_us) {
2389
2390				/* For situations where the first write requires
2391				 * a delay we need to make sure we don't call
2392				 * raw_multi_reg_write with n=0
2393				 * This can't occur with page breaks as we
2394				 * never write on the first iteration
2395				 */
2396				if (regs[i].delay_us && i == 0)
2397					n = 1;
2398
2399				ret = _regmap_raw_multi_reg_write(map, base, n);
2400				if (ret != 0)
2401					return ret;
2402
2403				if (regs[i].delay_us) {
2404					if (map->can_sleep)
2405						fsleep(regs[i].delay_us);
2406					else
2407						udelay(regs[i].delay_us);
2408				}
2409
2410				base += n;
2411				n = 0;
2412
2413				if (page_change) {
2414					ret = _regmap_select_page(map,
2415								  &base[n].reg,
2416								  range, 1);
2417					if (ret != 0)
2418						return ret;
2419
2420					page_change = 0;
2421				}
2422
2423		}
2424
2425	}
2426	if (n > 0)
2427		return _regmap_raw_multi_reg_write(map, base, n);
2428	return 0;
2429}
2430
2431static int _regmap_multi_reg_write(struct regmap *map,
2432				   const struct reg_sequence *regs,
2433				   size_t num_regs)
2434{
2435	int i;
2436	int ret;
2437
2438	if (!map->can_multi_write) {
2439		for (i = 0; i < num_regs; i++) {
2440			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2441			if (ret != 0)
2442				return ret;
2443
2444			if (regs[i].delay_us) {
2445				if (map->can_sleep)
2446					fsleep(regs[i].delay_us);
2447				else
2448					udelay(regs[i].delay_us);
2449			}
2450		}
2451		return 0;
2452	}
2453
2454	if (!map->format.parse_inplace)
2455		return -EINVAL;
2456
2457	if (map->writeable_reg)
2458		for (i = 0; i < num_regs; i++) {
2459			int reg = regs[i].reg;
2460			if (!map->writeable_reg(map->dev, reg))
2461				return -EINVAL;
2462			if (!IS_ALIGNED(reg, map->reg_stride))
2463				return -EINVAL;
2464		}
2465
2466	if (!map->cache_bypass) {
2467		for (i = 0; i < num_regs; i++) {
2468			unsigned int val = regs[i].def;
2469			unsigned int reg = regs[i].reg;
2470			ret = regcache_write(map, reg, val);
2471			if (ret) {
2472				dev_err(map->dev,
2473				"Error in caching of register: %x ret: %d\n",
2474								reg, ret);
2475				return ret;
2476			}
2477		}
2478		if (map->cache_only) {
2479			map->cache_dirty = true;
2480			return 0;
2481		}
2482	}
2483
2484	WARN_ON(!map->bus);
2485
2486	for (i = 0; i < num_regs; i++) {
2487		unsigned int reg = regs[i].reg;
2488		struct regmap_range_node *range;
2489
2490		/* Coalesce all the writes between a page break or a delay
2491		 * in a sequence
2492		 */
2493		range = _regmap_range_lookup(map, reg);
2494		if (range || regs[i].delay_us) {
2495			size_t len = sizeof(struct reg_sequence)*num_regs;
2496			struct reg_sequence *base = kmemdup(regs, len,
2497							   GFP_KERNEL);
2498			if (!base)
2499				return -ENOMEM;
2500			ret = _regmap_range_multi_paged_reg_write(map, base,
2501								  num_regs);
2502			kfree(base);
2503
2504			return ret;
2505		}
2506	}
2507	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2508}
2509
2510/**
2511 * regmap_multi_reg_write() - Write multiple registers to the device
2512 *
2513 * @map: Register map to write to
2514 * @regs: Array of structures containing register,value to be written
2515 * @num_regs: Number of registers to write
2516 *
2517 * Write multiple registers to the device where the set of register, value
2518 * pairs are supplied in any order, possibly not all in a single range.
2519 *
2520 * The 'normal' block write mode will send ultimately send data on the
2521 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2522 * addressed. However, this alternative block multi write mode will send
2523 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2524 * must of course support the mode.
2525 *
2526 * A value of zero will be returned on success, a negative errno will be
2527 * returned in error cases.
2528 */
2529int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2530			   int num_regs)
2531{
2532	int ret;
2533
2534	map->lock(map->lock_arg);
2535
2536	ret = _regmap_multi_reg_write(map, regs, num_regs);
2537
2538	map->unlock(map->lock_arg);
2539
2540	return ret;
2541}
2542EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2543
2544/**
2545 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2546 *                                     device but not the cache
2547 *
2548 * @map: Register map to write to
2549 * @regs: Array of structures containing register,value to be written
2550 * @num_regs: Number of registers to write
2551 *
2552 * Write multiple registers to the device but not the cache where the set
2553 * of register are supplied in any order.
2554 *
2555 * This function is intended to be used for writing a large block of data
2556 * atomically to the device in single transfer for those I2C client devices
2557 * that implement this alternative block write mode.
2558 *
2559 * A value of zero will be returned on success, a negative errno will
2560 * be returned in error cases.
2561 */
2562int regmap_multi_reg_write_bypassed(struct regmap *map,
2563				    const struct reg_sequence *regs,
2564				    int num_regs)
2565{
2566	int ret;
2567	bool bypass;
2568
2569	map->lock(map->lock_arg);
2570
2571	bypass = map->cache_bypass;
2572	map->cache_bypass = true;
2573
2574	ret = _regmap_multi_reg_write(map, regs, num_regs);
2575
2576	map->cache_bypass = bypass;
2577
2578	map->unlock(map->lock_arg);
2579
2580	return ret;
2581}
2582EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2583
2584/**
2585 * regmap_raw_write_async() - Write raw values to one or more registers
2586 *                            asynchronously
2587 *
2588 * @map: Register map to write to
2589 * @reg: Initial register to write to
2590 * @val: Block of data to be written, laid out for direct transmission to the
2591 *       device.  Must be valid until regmap_async_complete() is called.
2592 * @val_len: Length of data pointed to by val.
2593 *
2594 * This function is intended to be used for things like firmware
2595 * download where a large block of data needs to be transferred to the
2596 * device.  No formatting will be done on the data provided.
2597 *
2598 * If supported by the underlying bus the write will be scheduled
2599 * asynchronously, helping maximise I/O speed on higher speed buses
2600 * like SPI.  regmap_async_complete() can be called to ensure that all
2601 * asynchrnous writes have been completed.
2602 *
2603 * A value of zero will be returned on success, a negative errno will
2604 * be returned in error cases.
2605 */
2606int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2607			   const void *val, size_t val_len)
2608{
2609	int ret;
2610
2611	if (val_len % map->format.val_bytes)
2612		return -EINVAL;
2613	if (!IS_ALIGNED(reg, map->reg_stride))
2614		return -EINVAL;
2615
2616	map->lock(map->lock_arg);
2617
2618	map->async = true;
2619
2620	ret = _regmap_raw_write(map, reg, val, val_len, false);
2621
2622	map->async = false;
2623
2624	map->unlock(map->lock_arg);
2625
2626	return ret;
2627}
2628EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2629
2630static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2631			    unsigned int val_len, bool noinc)
2632{
2633	struct regmap_range_node *range;
2634	int ret;
2635
2636	WARN_ON(!map->bus);
2637
2638	if (!map->bus || !map->bus->read)
2639		return -EINVAL;
2640
2641	range = _regmap_range_lookup(map, reg);
2642	if (range) {
2643		ret = _regmap_select_page(map, &reg, range,
2644					  noinc ? 1 : val_len / map->format.val_bytes);
2645		if (ret != 0)
2646			return ret;
2647	}
2648
2649	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2650	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2651				      map->read_flag_mask);
2652	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2653
2654	ret = map->bus->read(map->bus_context, map->work_buf,
2655			     map->format.reg_bytes + map->format.pad_bytes,
2656			     val, val_len);
2657
2658	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2659
2660	return ret;
2661}
2662
2663static int _regmap_bus_reg_read(void *context, unsigned int reg,
2664				unsigned int *val)
2665{
2666	struct regmap *map = context;
2667
2668	return map->bus->reg_read(map->bus_context, reg, val);
2669}
2670
2671static int _regmap_bus_read(void *context, unsigned int reg,
2672			    unsigned int *val)
2673{
2674	int ret;
2675	struct regmap *map = context;
2676	void *work_val = map->work_buf + map->format.reg_bytes +
2677		map->format.pad_bytes;
2678
2679	if (!map->format.parse_val)
2680		return -EINVAL;
2681
2682	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2683	if (ret == 0)
2684		*val = map->format.parse_val(work_val);
2685
2686	return ret;
2687}
2688
2689static int _regmap_read(struct regmap *map, unsigned int reg,
2690			unsigned int *val)
2691{
2692	int ret;
2693	void *context = _regmap_map_get_context(map);
2694
2695	if (!map->cache_bypass) {
2696		ret = regcache_read(map, reg, val);
2697		if (ret == 0)
2698			return 0;
2699	}
2700
2701	if (map->cache_only)
2702		return -EBUSY;
2703
2704	if (!regmap_readable(map, reg))
2705		return -EIO;
2706
2707	ret = map->reg_read(context, reg, val);
2708	if (ret == 0) {
2709		if (regmap_should_log(map))
2710			dev_info(map->dev, "%x => %x\n", reg, *val);
2711
2712		trace_regmap_reg_read(map, reg, *val);
2713
2714		if (!map->cache_bypass)
2715			regcache_write(map, reg, *val);
2716	}
2717
2718	return ret;
2719}
2720
2721/**
2722 * regmap_read() - Read a value from a single register
2723 *
2724 * @map: Register map to read from
2725 * @reg: Register to be read from
2726 * @val: Pointer to store read value
2727 *
2728 * A value of zero will be returned on success, a negative errno will
2729 * be returned in error cases.
2730 */
2731int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2732{
2733	int ret;
2734
2735	if (!IS_ALIGNED(reg, map->reg_stride))
2736		return -EINVAL;
2737
2738	map->lock(map->lock_arg);
2739
2740	ret = _regmap_read(map, reg, val);
2741
2742	map->unlock(map->lock_arg);
2743
2744	return ret;
2745}
2746EXPORT_SYMBOL_GPL(regmap_read);
2747
2748/**
2749 * regmap_raw_read() - Read raw data from the device
2750 *
2751 * @map: Register map to read from
2752 * @reg: First register to be read from
2753 * @val: Pointer to store read value
2754 * @val_len: Size of data to read
2755 *
2756 * A value of zero will be returned on success, a negative errno will
2757 * be returned in error cases.
2758 */
2759int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2760		    size_t val_len)
2761{
2762	size_t val_bytes = map->format.val_bytes;
2763	size_t val_count = val_len / val_bytes;
2764	unsigned int v;
2765	int ret, i;
2766
2767	if (!map->bus)
2768		return -EINVAL;
2769	if (val_len % map->format.val_bytes)
2770		return -EINVAL;
2771	if (!IS_ALIGNED(reg, map->reg_stride))
2772		return -EINVAL;
2773	if (val_count == 0)
2774		return -EINVAL;
2775
2776	map->lock(map->lock_arg);
2777
2778	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2779	    map->cache_type == REGCACHE_NONE) {
2780		size_t chunk_count, chunk_bytes;
2781		size_t chunk_regs = val_count;
2782
2783		if (!map->bus->read) {
2784			ret = -ENOTSUPP;
2785			goto out;
2786		}
2787
2788		if (map->use_single_read)
2789			chunk_regs = 1;
2790		else if (map->max_raw_read && val_len > map->max_raw_read)
2791			chunk_regs = map->max_raw_read / val_bytes;
2792
2793		chunk_count = val_count / chunk_regs;
2794		chunk_bytes = chunk_regs * val_bytes;
2795
2796		/* Read bytes that fit into whole chunks */
2797		for (i = 0; i < chunk_count; i++) {
2798			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2799			if (ret != 0)
2800				goto out;
2801
2802			reg += regmap_get_offset(map, chunk_regs);
2803			val += chunk_bytes;
2804			val_len -= chunk_bytes;
2805		}
2806
2807		/* Read remaining bytes */
2808		if (val_len) {
2809			ret = _regmap_raw_read(map, reg, val, val_len, false);
2810			if (ret != 0)
2811				goto out;
2812		}
2813	} else {
2814		/* Otherwise go word by word for the cache; should be low
2815		 * cost as we expect to hit the cache.
2816		 */
2817		for (i = 0; i < val_count; i++) {
2818			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2819					   &v);
2820			if (ret != 0)
2821				goto out;
2822
2823			map->format.format_val(val + (i * val_bytes), v, 0);
2824		}
2825	}
2826
2827 out:
2828	map->unlock(map->lock_arg);
2829
2830	return ret;
2831}
2832EXPORT_SYMBOL_GPL(regmap_raw_read);
2833
2834/**
2835 * regmap_noinc_read(): Read data from a register without incrementing the
2836 *			register number
2837 *
2838 * @map: Register map to read from
2839 * @reg: Register to read from
2840 * @val: Pointer to data buffer
2841 * @val_len: Length of output buffer in bytes.
2842 *
2843 * The regmap API usually assumes that bulk bus read operations will read a
2844 * range of registers. Some devices have certain registers for which a read
2845 * operation read will read from an internal FIFO.
2846 *
2847 * The target register must be volatile but registers after it can be
2848 * completely unrelated cacheable registers.
2849 *
2850 * This will attempt multiple reads as required to read val_len bytes.
2851 *
2852 * A value of zero will be returned on success, a negative errno will be
2853 * returned in error cases.
2854 */
2855int regmap_noinc_read(struct regmap *map, unsigned int reg,
2856		      void *val, size_t val_len)
2857{
2858	size_t read_len;
2859	int ret;
2860
2861	if (!map->bus)
2862		return -EINVAL;
2863	if (!map->bus->read)
2864		return -ENOTSUPP;
2865	if (val_len % map->format.val_bytes)
2866		return -EINVAL;
2867	if (!IS_ALIGNED(reg, map->reg_stride))
2868		return -EINVAL;
2869	if (val_len == 0)
2870		return -EINVAL;
2871
2872	map->lock(map->lock_arg);
2873
2874	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2875		ret = -EINVAL;
2876		goto out_unlock;
2877	}
2878
2879	while (val_len) {
2880		if (map->max_raw_read && map->max_raw_read < val_len)
2881			read_len = map->max_raw_read;
2882		else
2883			read_len = val_len;
2884		ret = _regmap_raw_read(map, reg, val, read_len, true);
2885		if (ret)
2886			goto out_unlock;
2887		val = ((u8 *)val) + read_len;
2888		val_len -= read_len;
2889	}
2890
2891out_unlock:
2892	map->unlock(map->lock_arg);
2893	return ret;
2894}
2895EXPORT_SYMBOL_GPL(regmap_noinc_read);
2896
2897/**
2898 * regmap_field_read(): Read a value to a single register field
2899 *
2900 * @field: Register field to read from
2901 * @val: Pointer to store read value
2902 *
2903 * A value of zero will be returned on success, a negative errno will
2904 * be returned in error cases.
2905 */
2906int regmap_field_read(struct regmap_field *field, unsigned int *val)
2907{
2908	int ret;
2909	unsigned int reg_val;
2910	ret = regmap_read(field->regmap, field->reg, &reg_val);
2911	if (ret != 0)
2912		return ret;
2913
2914	reg_val &= field->mask;
2915	reg_val >>= field->shift;
2916	*val = reg_val;
2917
2918	return ret;
2919}
2920EXPORT_SYMBOL_GPL(regmap_field_read);
2921
2922/**
2923 * regmap_fields_read() - Read a value to a single register field with port ID
2924 *
2925 * @field: Register field to read from
2926 * @id: port ID
2927 * @val: Pointer to store read value
2928 *
2929 * A value of zero will be returned on success, a negative errno will
2930 * be returned in error cases.
2931 */
2932int regmap_fields_read(struct regmap_field *field, unsigned int id,
2933		       unsigned int *val)
2934{
2935	int ret;
2936	unsigned int reg_val;
2937
2938	if (id >= field->id_size)
2939		return -EINVAL;
2940
2941	ret = regmap_read(field->regmap,
2942			  field->reg + (field->id_offset * id),
2943			  &reg_val);
2944	if (ret != 0)
2945		return ret;
2946
2947	reg_val &= field->mask;
2948	reg_val >>= field->shift;
2949	*val = reg_val;
2950
2951	return ret;
2952}
2953EXPORT_SYMBOL_GPL(regmap_fields_read);
2954
2955/**
2956 * regmap_bulk_read() - Read multiple registers from the device
2957 *
2958 * @map: Register map to read from
2959 * @reg: First register to be read from
2960 * @val: Pointer to store read value, in native register size for device
2961 * @val_count: Number of registers to read
2962 *
2963 * A value of zero will be returned on success, a negative errno will
2964 * be returned in error cases.
2965 */
2966int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2967		     size_t val_count)
2968{
2969	int ret, i;
2970	size_t val_bytes = map->format.val_bytes;
2971	bool vol = regmap_volatile_range(map, reg, val_count);
2972
2973	if (!IS_ALIGNED(reg, map->reg_stride))
2974		return -EINVAL;
2975	if (val_count == 0)
2976		return -EINVAL;
2977
2978	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2979		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2980		if (ret != 0)
2981			return ret;
2982
2983		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2984			map->format.parse_inplace(val + i);
2985	} else {
2986#ifdef CONFIG_64BIT
2987		u64 *u64 = val;
2988#endif
2989		u32 *u32 = val;
2990		u16 *u16 = val;
2991		u8 *u8 = val;
2992
2993		map->lock(map->lock_arg);
2994
2995		for (i = 0; i < val_count; i++) {
2996			unsigned int ival;
2997
2998			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2999					   &ival);
3000			if (ret != 0)
3001				goto out;
3002
3003			switch (map->format.val_bytes) {
3004#ifdef CONFIG_64BIT
3005			case 8:
3006				u64[i] = ival;
3007				break;
3008#endif
3009			case 4:
3010				u32[i] = ival;
3011				break;
3012			case 2:
3013				u16[i] = ival;
3014				break;
3015			case 1:
3016				u8[i] = ival;
3017				break;
3018			default:
3019				ret = -EINVAL;
3020				goto out;
3021			}
3022		}
3023
3024out:
3025		map->unlock(map->lock_arg);
3026	}
3027
3028	return ret;
3029}
3030EXPORT_SYMBOL_GPL(regmap_bulk_read);
3031
3032static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3033			       unsigned int mask, unsigned int val,
3034			       bool *change, bool force_write)
3035{
3036	int ret;
3037	unsigned int tmp, orig;
3038
3039	if (change)
3040		*change = false;
3041
3042	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3043		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3044		if (ret == 0 && change)
3045			*change = true;
3046	} else {
3047		ret = _regmap_read(map, reg, &orig);
3048		if (ret != 0)
3049			return ret;
3050
3051		tmp = orig & ~mask;
3052		tmp |= val & mask;
3053
3054		if (force_write || (tmp != orig)) {
3055			ret = _regmap_write(map, reg, tmp);
3056			if (ret == 0 && change)
3057				*change = true;
3058		}
3059	}
3060
3061	return ret;
3062}
3063
3064/**
3065 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3066 *
3067 * @map: Register map to update
3068 * @reg: Register to update
3069 * @mask: Bitmask to change
3070 * @val: New value for bitmask
3071 * @change: Boolean indicating if a write was done
3072 * @async: Boolean indicating asynchronously
3073 * @force: Boolean indicating use force update
3074 *
3075 * Perform a read/modify/write cycle on a register map with change, async, force
3076 * options.
3077 *
3078 * If async is true:
3079 *
3080 * With most buses the read must be done synchronously so this is most useful
3081 * for devices with a cache which do not need to interact with the hardware to
3082 * determine the current register value.
3083 *
3084 * Returns zero for success, a negative number on error.
3085 */
3086int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3087			    unsigned int mask, unsigned int val,
3088			    bool *change, bool async, bool force)
3089{
3090	int ret;
3091
3092	map->lock(map->lock_arg);
3093
3094	map->async = async;
3095
3096	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3097
3098	map->async = false;
3099
3100	map->unlock(map->lock_arg);
3101
3102	return ret;
3103}
3104EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3105
3106/**
3107 * regmap_test_bits() - Check if all specified bits are set in a register.
3108 *
3109 * @map: Register map to operate on
3110 * @reg: Register to read from
3111 * @bits: Bits to test
3112 *
3113 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3114 * bits are set and a negative error number if the underlying regmap_read()
3115 * fails.
3116 */
3117int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3118{
3119	unsigned int val, ret;
3120
3121	ret = regmap_read(map, reg, &val);
3122	if (ret)
3123		return ret;
3124
3125	return (val & bits) == bits;
3126}
3127EXPORT_SYMBOL_GPL(regmap_test_bits);
3128
3129void regmap_async_complete_cb(struct regmap_async *async, int ret)
3130{
3131	struct regmap *map = async->map;
3132	bool wake;
3133
3134	trace_regmap_async_io_complete(map);
3135
3136	spin_lock(&map->async_lock);
3137	list_move(&async->list, &map->async_free);
3138	wake = list_empty(&map->async_list);
3139
3140	if (ret != 0)
3141		map->async_ret = ret;
3142
3143	spin_unlock(&map->async_lock);
3144
3145	if (wake)
3146		wake_up(&map->async_waitq);
3147}
3148EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3149
3150static int regmap_async_is_done(struct regmap *map)
3151{
3152	unsigned long flags;
3153	int ret;
3154
3155	spin_lock_irqsave(&map->async_lock, flags);
3156	ret = list_empty(&map->async_list);
3157	spin_unlock_irqrestore(&map->async_lock, flags);
3158
3159	return ret;
3160}
3161
3162/**
3163 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3164 *
3165 * @map: Map to operate on.
3166 *
3167 * Blocks until any pending asynchronous I/O has completed.  Returns
3168 * an error code for any failed I/O operations.
3169 */
3170int regmap_async_complete(struct regmap *map)
3171{
3172	unsigned long flags;
3173	int ret;
3174
3175	/* Nothing to do with no async support */
3176	if (!map->bus || !map->bus->async_write)
3177		return 0;
3178
3179	trace_regmap_async_complete_start(map);
3180
3181	wait_event(map->async_waitq, regmap_async_is_done(map));
3182
3183	spin_lock_irqsave(&map->async_lock, flags);
3184	ret = map->async_ret;
3185	map->async_ret = 0;
3186	spin_unlock_irqrestore(&map->async_lock, flags);
3187
3188	trace_regmap_async_complete_done(map);
3189
3190	return ret;
3191}
3192EXPORT_SYMBOL_GPL(regmap_async_complete);
3193
3194/**
3195 * regmap_register_patch - Register and apply register updates to be applied
3196 *                         on device initialistion
3197 *
3198 * @map: Register map to apply updates to.
3199 * @regs: Values to update.
3200 * @num_regs: Number of entries in regs.
3201 *
3202 * Register a set of register updates to be applied to the device
3203 * whenever the device registers are synchronised with the cache and
3204 * apply them immediately.  Typically this is used to apply
3205 * corrections to be applied to the device defaults on startup, such
3206 * as the updates some vendors provide to undocumented registers.
3207 *
3208 * The caller must ensure that this function cannot be called
3209 * concurrently with either itself or regcache_sync().
3210 */
3211int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3212			  int num_regs)
3213{
3214	struct reg_sequence *p;
3215	int ret;
3216	bool bypass;
3217
3218	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3219	    num_regs))
3220		return 0;
3221
3222	p = krealloc(map->patch,
3223		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3224		     GFP_KERNEL);
3225	if (p) {
3226		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3227		map->patch = p;
3228		map->patch_regs += num_regs;
3229	} else {
3230		return -ENOMEM;
3231	}
3232
3233	map->lock(map->lock_arg);
3234
3235	bypass = map->cache_bypass;
3236
3237	map->cache_bypass = true;
3238	map->async = true;
3239
3240	ret = _regmap_multi_reg_write(map, regs, num_regs);
3241
3242	map->async = false;
3243	map->cache_bypass = bypass;
3244
3245	map->unlock(map->lock_arg);
3246
3247	regmap_async_complete(map);
3248
3249	return ret;
3250}
3251EXPORT_SYMBOL_GPL(regmap_register_patch);
3252
3253/**
3254 * regmap_get_val_bytes() - Report the size of a register value
3255 *
3256 * @map: Register map to operate on.
3257 *
3258 * Report the size of a register value, mainly intended to for use by
3259 * generic infrastructure built on top of regmap.
3260 */
3261int regmap_get_val_bytes(struct regmap *map)
3262{
3263	if (map->format.format_write)
3264		return -EINVAL;
3265
3266	return map->format.val_bytes;
3267}
3268EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3269
3270/**
3271 * regmap_get_max_register() - Report the max register value
3272 *
3273 * @map: Register map to operate on.
3274 *
3275 * Report the max register value, mainly intended to for use by
3276 * generic infrastructure built on top of regmap.
3277 */
3278int regmap_get_max_register(struct regmap *map)
3279{
3280	return map->max_register ? map->max_register : -EINVAL;
3281}
3282EXPORT_SYMBOL_GPL(regmap_get_max_register);
3283
3284/**
3285 * regmap_get_reg_stride() - Report the register address stride
3286 *
3287 * @map: Register map to operate on.
3288 *
3289 * Report the register address stride, mainly intended to for use by
3290 * generic infrastructure built on top of regmap.
3291 */
3292int regmap_get_reg_stride(struct regmap *map)
3293{
3294	return map->reg_stride;
3295}
3296EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3297
3298int regmap_parse_val(struct regmap *map, const void *buf,
3299			unsigned int *val)
3300{
3301	if (!map->format.parse_val)
3302		return -EINVAL;
3303
3304	*val = map->format.parse_val(buf);
3305
3306	return 0;
3307}
3308EXPORT_SYMBOL_GPL(regmap_parse_val);
3309
3310static int __init regmap_initcall(void)
3311{
3312	regmap_debugfs_initcall();
3313
3314	return 0;
3315}
3316postcore_initcall(regmap_initcall);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Register map access API
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/export.h>
  12#include <linux/mutex.h>
  13#include <linux/err.h>
  14#include <linux/of.h>
  15#include <linux/rbtree.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/log2.h>
  19#include <linux/hwspinlock.h>
 
  20
  21#define CREATE_TRACE_POINTS
  22#include "trace.h"
  23
  24#include "internal.h"
  25
  26/*
  27 * Sometimes for failures during very early init the trace
  28 * infrastructure isn't available early enough to be used.  For this
  29 * sort of problem defining LOG_DEVICE will add printks for basic
  30 * register I/O on a specific device.
  31 */
  32#undef LOG_DEVICE
  33
  34#ifdef LOG_DEVICE
  35static inline bool regmap_should_log(struct regmap *map)
  36{
  37	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
  38}
  39#else
  40static inline bool regmap_should_log(struct regmap *map) { return false; }
  41#endif
  42
  43
  44static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  45			       unsigned int mask, unsigned int val,
  46			       bool *change, bool force_write);
  47
  48static int _regmap_bus_reg_read(void *context, unsigned int reg,
  49				unsigned int *val);
  50static int _regmap_bus_read(void *context, unsigned int reg,
  51			    unsigned int *val);
  52static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  53				       unsigned int val);
  54static int _regmap_bus_reg_write(void *context, unsigned int reg,
  55				 unsigned int val);
  56static int _regmap_bus_raw_write(void *context, unsigned int reg,
  57				 unsigned int val);
  58
  59bool regmap_reg_in_ranges(unsigned int reg,
  60			  const struct regmap_range *ranges,
  61			  unsigned int nranges)
  62{
  63	const struct regmap_range *r;
  64	int i;
  65
  66	for (i = 0, r = ranges; i < nranges; i++, r++)
  67		if (regmap_reg_in_range(reg, r))
  68			return true;
  69	return false;
  70}
  71EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  72
  73bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  74			      const struct regmap_access_table *table)
  75{
  76	/* Check "no ranges" first */
  77	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  78		return false;
  79
  80	/* In case zero "yes ranges" are supplied, any reg is OK */
  81	if (!table->n_yes_ranges)
  82		return true;
  83
  84	return regmap_reg_in_ranges(reg, table->yes_ranges,
  85				    table->n_yes_ranges);
  86}
  87EXPORT_SYMBOL_GPL(regmap_check_range_table);
  88
  89bool regmap_writeable(struct regmap *map, unsigned int reg)
  90{
  91	if (map->max_register && reg > map->max_register)
  92		return false;
  93
  94	if (map->writeable_reg)
  95		return map->writeable_reg(map->dev, reg);
  96
  97	if (map->wr_table)
  98		return regmap_check_range_table(map, reg, map->wr_table);
  99
 100	return true;
 101}
 102
 103bool regmap_cached(struct regmap *map, unsigned int reg)
 104{
 105	int ret;
 106	unsigned int val;
 107
 108	if (map->cache_type == REGCACHE_NONE)
 109		return false;
 110
 111	if (!map->cache_ops)
 112		return false;
 113
 114	if (map->max_register && reg > map->max_register)
 115		return false;
 116
 117	map->lock(map->lock_arg);
 118	ret = regcache_read(map, reg, &val);
 119	map->unlock(map->lock_arg);
 120	if (ret)
 121		return false;
 122
 123	return true;
 124}
 125
 126bool regmap_readable(struct regmap *map, unsigned int reg)
 127{
 128	if (!map->reg_read)
 129		return false;
 130
 131	if (map->max_register && reg > map->max_register)
 132		return false;
 133
 134	if (map->format.format_write)
 135		return false;
 136
 137	if (map->readable_reg)
 138		return map->readable_reg(map->dev, reg);
 139
 140	if (map->rd_table)
 141		return regmap_check_range_table(map, reg, map->rd_table);
 142
 143	return true;
 144}
 145
 146bool regmap_volatile(struct regmap *map, unsigned int reg)
 147{
 148	if (!map->format.format_write && !regmap_readable(map, reg))
 149		return false;
 150
 151	if (map->volatile_reg)
 152		return map->volatile_reg(map->dev, reg);
 153
 154	if (map->volatile_table)
 155		return regmap_check_range_table(map, reg, map->volatile_table);
 156
 157	if (map->cache_ops)
 158		return false;
 159	else
 160		return true;
 161}
 162
 163bool regmap_precious(struct regmap *map, unsigned int reg)
 164{
 165	if (!regmap_readable(map, reg))
 166		return false;
 167
 168	if (map->precious_reg)
 169		return map->precious_reg(map->dev, reg);
 170
 171	if (map->precious_table)
 172		return regmap_check_range_table(map, reg, map->precious_table);
 173
 174	return false;
 175}
 176
 177bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
 178{
 179	if (map->writeable_noinc_reg)
 180		return map->writeable_noinc_reg(map->dev, reg);
 181
 182	if (map->wr_noinc_table)
 183		return regmap_check_range_table(map, reg, map->wr_noinc_table);
 184
 185	return true;
 186}
 187
 188bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
 189{
 190	if (map->readable_noinc_reg)
 191		return map->readable_noinc_reg(map->dev, reg);
 192
 193	if (map->rd_noinc_table)
 194		return regmap_check_range_table(map, reg, map->rd_noinc_table);
 195
 196	return true;
 197}
 198
 199static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 200	size_t num)
 201{
 202	unsigned int i;
 203
 204	for (i = 0; i < num; i++)
 205		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 206			return false;
 207
 208	return true;
 209}
 210
 
 
 
 
 
 
 
 
 
 
 
 
 211static void regmap_format_2_6_write(struct regmap *map,
 212				     unsigned int reg, unsigned int val)
 213{
 214	u8 *out = map->work_buf;
 215
 216	*out = (reg << 6) | val;
 217}
 218
 219static void regmap_format_4_12_write(struct regmap *map,
 220				     unsigned int reg, unsigned int val)
 221{
 222	__be16 *out = map->work_buf;
 223	*out = cpu_to_be16((reg << 12) | val);
 224}
 225
 226static void regmap_format_7_9_write(struct regmap *map,
 227				    unsigned int reg, unsigned int val)
 228{
 229	__be16 *out = map->work_buf;
 230	*out = cpu_to_be16((reg << 9) | val);
 231}
 232
 
 
 
 
 
 
 
 
 
 
 233static void regmap_format_10_14_write(struct regmap *map,
 234				    unsigned int reg, unsigned int val)
 235{
 236	u8 *out = map->work_buf;
 237
 238	out[2] = val;
 239	out[1] = (val >> 8) | (reg << 6);
 240	out[0] = reg >> 2;
 241}
 242
 243static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 244{
 245	u8 *b = buf;
 246
 247	b[0] = val << shift;
 248}
 249
 250static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 251{
 252	__be16 *b = buf;
 253
 254	b[0] = cpu_to_be16(val << shift);
 255}
 256
 257static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 258{
 259	__le16 *b = buf;
 260
 261	b[0] = cpu_to_le16(val << shift);
 262}
 263
 264static void regmap_format_16_native(void *buf, unsigned int val,
 265				    unsigned int shift)
 266{
 267	*(u16 *)buf = val << shift;
 
 
 268}
 269
 270static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 271{
 272	u8 *b = buf;
 273
 274	val <<= shift;
 275
 276	b[0] = val >> 16;
 277	b[1] = val >> 8;
 278	b[2] = val;
 279}
 280
 281static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 282{
 283	__be32 *b = buf;
 284
 285	b[0] = cpu_to_be32(val << shift);
 286}
 287
 288static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 289{
 290	__le32 *b = buf;
 291
 292	b[0] = cpu_to_le32(val << shift);
 293}
 294
 295static void regmap_format_32_native(void *buf, unsigned int val,
 296				    unsigned int shift)
 297{
 298	*(u32 *)buf = val << shift;
 
 
 299}
 300
 301#ifdef CONFIG_64BIT
 302static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 303{
 304	__be64 *b = buf;
 305
 306	b[0] = cpu_to_be64((u64)val << shift);
 307}
 308
 309static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 310{
 311	__le64 *b = buf;
 312
 313	b[0] = cpu_to_le64((u64)val << shift);
 314}
 315
 316static void regmap_format_64_native(void *buf, unsigned int val,
 317				    unsigned int shift)
 318{
 319	*(u64 *)buf = (u64)val << shift;
 
 
 320}
 321#endif
 322
 323static void regmap_parse_inplace_noop(void *buf)
 324{
 325}
 326
 327static unsigned int regmap_parse_8(const void *buf)
 328{
 329	const u8 *b = buf;
 330
 331	return b[0];
 332}
 333
 334static unsigned int regmap_parse_16_be(const void *buf)
 335{
 336	const __be16 *b = buf;
 337
 338	return be16_to_cpu(b[0]);
 339}
 340
 341static unsigned int regmap_parse_16_le(const void *buf)
 342{
 343	const __le16 *b = buf;
 344
 345	return le16_to_cpu(b[0]);
 346}
 347
 348static void regmap_parse_16_be_inplace(void *buf)
 349{
 350	__be16 *b = buf;
 351
 352	b[0] = be16_to_cpu(b[0]);
 353}
 354
 355static void regmap_parse_16_le_inplace(void *buf)
 356{
 357	__le16 *b = buf;
 358
 359	b[0] = le16_to_cpu(b[0]);
 360}
 361
 362static unsigned int regmap_parse_16_native(const void *buf)
 363{
 364	return *(u16 *)buf;
 
 
 
 365}
 366
 367static unsigned int regmap_parse_24(const void *buf)
 368{
 369	const u8 *b = buf;
 370	unsigned int ret = b[2];
 371	ret |= ((unsigned int)b[1]) << 8;
 372	ret |= ((unsigned int)b[0]) << 16;
 373
 374	return ret;
 375}
 376
 377static unsigned int regmap_parse_32_be(const void *buf)
 378{
 379	const __be32 *b = buf;
 380
 381	return be32_to_cpu(b[0]);
 382}
 383
 384static unsigned int regmap_parse_32_le(const void *buf)
 385{
 386	const __le32 *b = buf;
 387
 388	return le32_to_cpu(b[0]);
 389}
 390
 391static void regmap_parse_32_be_inplace(void *buf)
 392{
 393	__be32 *b = buf;
 394
 395	b[0] = be32_to_cpu(b[0]);
 396}
 397
 398static void regmap_parse_32_le_inplace(void *buf)
 399{
 400	__le32 *b = buf;
 401
 402	b[0] = le32_to_cpu(b[0]);
 403}
 404
 405static unsigned int regmap_parse_32_native(const void *buf)
 406{
 407	return *(u32 *)buf;
 
 
 
 408}
 409
 410#ifdef CONFIG_64BIT
 411static unsigned int regmap_parse_64_be(const void *buf)
 412{
 413	const __be64 *b = buf;
 414
 415	return be64_to_cpu(b[0]);
 416}
 417
 418static unsigned int regmap_parse_64_le(const void *buf)
 419{
 420	const __le64 *b = buf;
 421
 422	return le64_to_cpu(b[0]);
 423}
 424
 425static void regmap_parse_64_be_inplace(void *buf)
 426{
 427	__be64 *b = buf;
 428
 429	b[0] = be64_to_cpu(b[0]);
 430}
 431
 432static void regmap_parse_64_le_inplace(void *buf)
 433{
 434	__le64 *b = buf;
 435
 436	b[0] = le64_to_cpu(b[0]);
 437}
 438
 439static unsigned int regmap_parse_64_native(const void *buf)
 440{
 441	return *(u64 *)buf;
 
 
 
 442}
 443#endif
 444
 445static void regmap_lock_hwlock(void *__map)
 446{
 447	struct regmap *map = __map;
 448
 449	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 450}
 451
 452static void regmap_lock_hwlock_irq(void *__map)
 453{
 454	struct regmap *map = __map;
 455
 456	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 457}
 458
 459static void regmap_lock_hwlock_irqsave(void *__map)
 460{
 461	struct regmap *map = __map;
 462
 463	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 464				    &map->spinlock_flags);
 465}
 466
 467static void regmap_unlock_hwlock(void *__map)
 468{
 469	struct regmap *map = __map;
 470
 471	hwspin_unlock(map->hwlock);
 472}
 473
 474static void regmap_unlock_hwlock_irq(void *__map)
 475{
 476	struct regmap *map = __map;
 477
 478	hwspin_unlock_irq(map->hwlock);
 479}
 480
 481static void regmap_unlock_hwlock_irqrestore(void *__map)
 482{
 483	struct regmap *map = __map;
 484
 485	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 486}
 487
 488static void regmap_lock_unlock_none(void *__map)
 489{
 490
 491}
 492
 493static void regmap_lock_mutex(void *__map)
 494{
 495	struct regmap *map = __map;
 496	mutex_lock(&map->mutex);
 497}
 498
 499static void regmap_unlock_mutex(void *__map)
 500{
 501	struct regmap *map = __map;
 502	mutex_unlock(&map->mutex);
 503}
 504
 505static void regmap_lock_spinlock(void *__map)
 506__acquires(&map->spinlock)
 507{
 508	struct regmap *map = __map;
 509	unsigned long flags;
 510
 511	spin_lock_irqsave(&map->spinlock, flags);
 512	map->spinlock_flags = flags;
 513}
 514
 515static void regmap_unlock_spinlock(void *__map)
 516__releases(&map->spinlock)
 517{
 518	struct regmap *map = __map;
 519	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 520}
 521
 522static void dev_get_regmap_release(struct device *dev, void *res)
 523{
 524	/*
 525	 * We don't actually have anything to do here; the goal here
 526	 * is not to manage the regmap but to provide a simple way to
 527	 * get the regmap back given a struct device.
 528	 */
 529}
 530
 531static bool _regmap_range_add(struct regmap *map,
 532			      struct regmap_range_node *data)
 533{
 534	struct rb_root *root = &map->range_tree;
 535	struct rb_node **new = &(root->rb_node), *parent = NULL;
 536
 537	while (*new) {
 538		struct regmap_range_node *this =
 539			rb_entry(*new, struct regmap_range_node, node);
 540
 541		parent = *new;
 542		if (data->range_max < this->range_min)
 543			new = &((*new)->rb_left);
 544		else if (data->range_min > this->range_max)
 545			new = &((*new)->rb_right);
 546		else
 547			return false;
 548	}
 549
 550	rb_link_node(&data->node, parent, new);
 551	rb_insert_color(&data->node, root);
 552
 553	return true;
 554}
 555
 556static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 557						      unsigned int reg)
 558{
 559	struct rb_node *node = map->range_tree.rb_node;
 560
 561	while (node) {
 562		struct regmap_range_node *this =
 563			rb_entry(node, struct regmap_range_node, node);
 564
 565		if (reg < this->range_min)
 566			node = node->rb_left;
 567		else if (reg > this->range_max)
 568			node = node->rb_right;
 569		else
 570			return this;
 571	}
 572
 573	return NULL;
 574}
 575
 576static void regmap_range_exit(struct regmap *map)
 577{
 578	struct rb_node *next;
 579	struct regmap_range_node *range_node;
 580
 581	next = rb_first(&map->range_tree);
 582	while (next) {
 583		range_node = rb_entry(next, struct regmap_range_node, node);
 584		next = rb_next(&range_node->node);
 585		rb_erase(&range_node->node, &map->range_tree);
 586		kfree(range_node);
 587	}
 588
 589	kfree(map->selector_work_buf);
 590}
 591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592int regmap_attach_dev(struct device *dev, struct regmap *map,
 593		      const struct regmap_config *config)
 594{
 595	struct regmap **m;
 
 596
 597	map->dev = dev;
 598
 599	regmap_debugfs_init(map, config->name);
 
 
 
 
 600
 601	/* Add a devres resource for dev_get_regmap() */
 602	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 603	if (!m) {
 604		regmap_debugfs_exit(map);
 605		return -ENOMEM;
 606	}
 607	*m = map;
 608	devres_add(dev, m);
 609
 610	return 0;
 611}
 612EXPORT_SYMBOL_GPL(regmap_attach_dev);
 613
 614static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 615					const struct regmap_config *config)
 616{
 617	enum regmap_endian endian;
 618
 619	/* Retrieve the endianness specification from the regmap config */
 620	endian = config->reg_format_endian;
 621
 622	/* If the regmap config specified a non-default value, use that */
 623	if (endian != REGMAP_ENDIAN_DEFAULT)
 624		return endian;
 625
 626	/* Retrieve the endianness specification from the bus config */
 627	if (bus && bus->reg_format_endian_default)
 628		endian = bus->reg_format_endian_default;
 629
 630	/* If the bus specified a non-default value, use that */
 631	if (endian != REGMAP_ENDIAN_DEFAULT)
 632		return endian;
 633
 634	/* Use this if no other value was found */
 635	return REGMAP_ENDIAN_BIG;
 636}
 637
 638enum regmap_endian regmap_get_val_endian(struct device *dev,
 639					 const struct regmap_bus *bus,
 640					 const struct regmap_config *config)
 641{
 642	struct device_node *np;
 643	enum regmap_endian endian;
 644
 645	/* Retrieve the endianness specification from the regmap config */
 646	endian = config->val_format_endian;
 647
 648	/* If the regmap config specified a non-default value, use that */
 649	if (endian != REGMAP_ENDIAN_DEFAULT)
 650		return endian;
 651
 652	/* If the dev and dev->of_node exist try to get endianness from DT */
 653	if (dev && dev->of_node) {
 654		np = dev->of_node;
 655
 656		/* Parse the device's DT node for an endianness specification */
 657		if (of_property_read_bool(np, "big-endian"))
 658			endian = REGMAP_ENDIAN_BIG;
 659		else if (of_property_read_bool(np, "little-endian"))
 660			endian = REGMAP_ENDIAN_LITTLE;
 661		else if (of_property_read_bool(np, "native-endian"))
 662			endian = REGMAP_ENDIAN_NATIVE;
 663
 664		/* If the endianness was specified in DT, use that */
 665		if (endian != REGMAP_ENDIAN_DEFAULT)
 666			return endian;
 667	}
 668
 669	/* Retrieve the endianness specification from the bus config */
 670	if (bus && bus->val_format_endian_default)
 671		endian = bus->val_format_endian_default;
 672
 673	/* If the bus specified a non-default value, use that */
 674	if (endian != REGMAP_ENDIAN_DEFAULT)
 675		return endian;
 676
 677	/* Use this if no other value was found */
 678	return REGMAP_ENDIAN_BIG;
 679}
 680EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 681
 682struct regmap *__regmap_init(struct device *dev,
 683			     const struct regmap_bus *bus,
 684			     void *bus_context,
 685			     const struct regmap_config *config,
 686			     struct lock_class_key *lock_key,
 687			     const char *lock_name)
 688{
 689	struct regmap *map;
 690	int ret = -EINVAL;
 691	enum regmap_endian reg_endian, val_endian;
 692	int i, j;
 693
 694	if (!config)
 695		goto err;
 696
 697	map = kzalloc(sizeof(*map), GFP_KERNEL);
 698	if (map == NULL) {
 699		ret = -ENOMEM;
 700		goto err;
 701	}
 702
 703	if (config->name) {
 704		map->name = kstrdup_const(config->name, GFP_KERNEL);
 705		if (!map->name) {
 706			ret = -ENOMEM;
 707			goto err_map;
 708		}
 709	}
 710
 711	if (config->disable_locking) {
 712		map->lock = map->unlock = regmap_lock_unlock_none;
 
 713		regmap_debugfs_disable(map);
 714	} else if (config->lock && config->unlock) {
 715		map->lock = config->lock;
 716		map->unlock = config->unlock;
 717		map->lock_arg = config->lock_arg;
 
 718	} else if (config->use_hwlock) {
 719		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 720		if (!map->hwlock) {
 721			ret = -ENXIO;
 722			goto err_name;
 723		}
 724
 725		switch (config->hwlock_mode) {
 726		case HWLOCK_IRQSTATE:
 727			map->lock = regmap_lock_hwlock_irqsave;
 728			map->unlock = regmap_unlock_hwlock_irqrestore;
 729			break;
 730		case HWLOCK_IRQ:
 731			map->lock = regmap_lock_hwlock_irq;
 732			map->unlock = regmap_unlock_hwlock_irq;
 733			break;
 734		default:
 735			map->lock = regmap_lock_hwlock;
 736			map->unlock = regmap_unlock_hwlock;
 737			break;
 738		}
 739
 740		map->lock_arg = map;
 741	} else {
 742		if ((bus && bus->fast_io) ||
 743		    config->fast_io) {
 744			spin_lock_init(&map->spinlock);
 745			map->lock = regmap_lock_spinlock;
 746			map->unlock = regmap_unlock_spinlock;
 747			lockdep_set_class_and_name(&map->spinlock,
 748						   lock_key, lock_name);
 749		} else {
 750			mutex_init(&map->mutex);
 751			map->lock = regmap_lock_mutex;
 752			map->unlock = regmap_unlock_mutex;
 
 753			lockdep_set_class_and_name(&map->mutex,
 754						   lock_key, lock_name);
 755		}
 756		map->lock_arg = map;
 757	}
 758
 759	/*
 760	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 761	 * scratch buffers with sleeping allocations.
 762	 */
 763	if ((bus && bus->fast_io) || config->fast_io)
 764		map->alloc_flags = GFP_ATOMIC;
 765	else
 766		map->alloc_flags = GFP_KERNEL;
 767
 768	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 769	map->format.pad_bytes = config->pad_bits / 8;
 770	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 771	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 772			config->val_bits + config->pad_bits, 8);
 773	map->reg_shift = config->pad_bits % 8;
 774	if (config->reg_stride)
 775		map->reg_stride = config->reg_stride;
 776	else
 777		map->reg_stride = 1;
 778	if (is_power_of_2(map->reg_stride))
 779		map->reg_stride_order = ilog2(map->reg_stride);
 780	else
 781		map->reg_stride_order = -1;
 782	map->use_single_read = config->use_single_read || !bus || !bus->read;
 783	map->use_single_write = config->use_single_write || !bus || !bus->write;
 784	map->can_multi_write = config->can_multi_write && bus && bus->write;
 785	if (bus) {
 786		map->max_raw_read = bus->max_raw_read;
 787		map->max_raw_write = bus->max_raw_write;
 788	}
 789	map->dev = dev;
 790	map->bus = bus;
 791	map->bus_context = bus_context;
 792	map->max_register = config->max_register;
 793	map->wr_table = config->wr_table;
 794	map->rd_table = config->rd_table;
 795	map->volatile_table = config->volatile_table;
 796	map->precious_table = config->precious_table;
 797	map->wr_noinc_table = config->wr_noinc_table;
 798	map->rd_noinc_table = config->rd_noinc_table;
 799	map->writeable_reg = config->writeable_reg;
 800	map->readable_reg = config->readable_reg;
 801	map->volatile_reg = config->volatile_reg;
 802	map->precious_reg = config->precious_reg;
 803	map->writeable_noinc_reg = config->writeable_noinc_reg;
 804	map->readable_noinc_reg = config->readable_noinc_reg;
 805	map->cache_type = config->cache_type;
 806
 807	spin_lock_init(&map->async_lock);
 808	INIT_LIST_HEAD(&map->async_list);
 809	INIT_LIST_HEAD(&map->async_free);
 810	init_waitqueue_head(&map->async_waitq);
 811
 812	if (config->read_flag_mask ||
 813	    config->write_flag_mask ||
 814	    config->zero_flag_mask) {
 815		map->read_flag_mask = config->read_flag_mask;
 816		map->write_flag_mask = config->write_flag_mask;
 817	} else if (bus) {
 818		map->read_flag_mask = bus->read_flag_mask;
 819	}
 820
 821	if (!bus) {
 822		map->reg_read  = config->reg_read;
 823		map->reg_write = config->reg_write;
 824
 825		map->defer_caching = false;
 826		goto skip_format_initialization;
 827	} else if (!bus->read || !bus->write) {
 828		map->reg_read = _regmap_bus_reg_read;
 829		map->reg_write = _regmap_bus_reg_write;
 
 830
 831		map->defer_caching = false;
 832		goto skip_format_initialization;
 833	} else {
 834		map->reg_read  = _regmap_bus_read;
 835		map->reg_update_bits = bus->reg_update_bits;
 836	}
 837
 838	reg_endian = regmap_get_reg_endian(bus, config);
 839	val_endian = regmap_get_val_endian(dev, bus, config);
 840
 841	switch (config->reg_bits + map->reg_shift) {
 842	case 2:
 843		switch (config->val_bits) {
 844		case 6:
 845			map->format.format_write = regmap_format_2_6_write;
 846			break;
 847		default:
 848			goto err_hwlock;
 849		}
 850		break;
 851
 852	case 4:
 853		switch (config->val_bits) {
 854		case 12:
 855			map->format.format_write = regmap_format_4_12_write;
 856			break;
 857		default:
 858			goto err_hwlock;
 859		}
 860		break;
 861
 862	case 7:
 863		switch (config->val_bits) {
 864		case 9:
 865			map->format.format_write = regmap_format_7_9_write;
 866			break;
 
 
 
 867		default:
 868			goto err_hwlock;
 869		}
 870		break;
 871
 872	case 10:
 873		switch (config->val_bits) {
 874		case 14:
 875			map->format.format_write = regmap_format_10_14_write;
 876			break;
 877		default:
 878			goto err_hwlock;
 879		}
 880		break;
 881
 
 
 
 
 
 
 
 
 
 
 882	case 8:
 883		map->format.format_reg = regmap_format_8;
 884		break;
 885
 886	case 16:
 887		switch (reg_endian) {
 888		case REGMAP_ENDIAN_BIG:
 889			map->format.format_reg = regmap_format_16_be;
 890			break;
 891		case REGMAP_ENDIAN_LITTLE:
 892			map->format.format_reg = regmap_format_16_le;
 893			break;
 894		case REGMAP_ENDIAN_NATIVE:
 895			map->format.format_reg = regmap_format_16_native;
 896			break;
 897		default:
 898			goto err_hwlock;
 899		}
 900		break;
 901
 902	case 24:
 903		if (reg_endian != REGMAP_ENDIAN_BIG)
 904			goto err_hwlock;
 905		map->format.format_reg = regmap_format_24;
 906		break;
 907
 908	case 32:
 909		switch (reg_endian) {
 910		case REGMAP_ENDIAN_BIG:
 911			map->format.format_reg = regmap_format_32_be;
 912			break;
 913		case REGMAP_ENDIAN_LITTLE:
 914			map->format.format_reg = regmap_format_32_le;
 915			break;
 916		case REGMAP_ENDIAN_NATIVE:
 917			map->format.format_reg = regmap_format_32_native;
 918			break;
 919		default:
 920			goto err_hwlock;
 921		}
 922		break;
 923
 924#ifdef CONFIG_64BIT
 925	case 64:
 926		switch (reg_endian) {
 927		case REGMAP_ENDIAN_BIG:
 928			map->format.format_reg = regmap_format_64_be;
 929			break;
 930		case REGMAP_ENDIAN_LITTLE:
 931			map->format.format_reg = regmap_format_64_le;
 932			break;
 933		case REGMAP_ENDIAN_NATIVE:
 934			map->format.format_reg = regmap_format_64_native;
 935			break;
 936		default:
 937			goto err_hwlock;
 938		}
 939		break;
 940#endif
 941
 942	default:
 943		goto err_hwlock;
 944	}
 945
 946	if (val_endian == REGMAP_ENDIAN_NATIVE)
 947		map->format.parse_inplace = regmap_parse_inplace_noop;
 948
 949	switch (config->val_bits) {
 950	case 8:
 951		map->format.format_val = regmap_format_8;
 952		map->format.parse_val = regmap_parse_8;
 953		map->format.parse_inplace = regmap_parse_inplace_noop;
 954		break;
 955	case 16:
 956		switch (val_endian) {
 957		case REGMAP_ENDIAN_BIG:
 958			map->format.format_val = regmap_format_16_be;
 959			map->format.parse_val = regmap_parse_16_be;
 960			map->format.parse_inplace = regmap_parse_16_be_inplace;
 961			break;
 962		case REGMAP_ENDIAN_LITTLE:
 963			map->format.format_val = regmap_format_16_le;
 964			map->format.parse_val = regmap_parse_16_le;
 965			map->format.parse_inplace = regmap_parse_16_le_inplace;
 966			break;
 967		case REGMAP_ENDIAN_NATIVE:
 968			map->format.format_val = regmap_format_16_native;
 969			map->format.parse_val = regmap_parse_16_native;
 970			break;
 971		default:
 972			goto err_hwlock;
 973		}
 974		break;
 975	case 24:
 976		if (val_endian != REGMAP_ENDIAN_BIG)
 977			goto err_hwlock;
 978		map->format.format_val = regmap_format_24;
 979		map->format.parse_val = regmap_parse_24;
 980		break;
 981	case 32:
 982		switch (val_endian) {
 983		case REGMAP_ENDIAN_BIG:
 984			map->format.format_val = regmap_format_32_be;
 985			map->format.parse_val = regmap_parse_32_be;
 986			map->format.parse_inplace = regmap_parse_32_be_inplace;
 987			break;
 988		case REGMAP_ENDIAN_LITTLE:
 989			map->format.format_val = regmap_format_32_le;
 990			map->format.parse_val = regmap_parse_32_le;
 991			map->format.parse_inplace = regmap_parse_32_le_inplace;
 992			break;
 993		case REGMAP_ENDIAN_NATIVE:
 994			map->format.format_val = regmap_format_32_native;
 995			map->format.parse_val = regmap_parse_32_native;
 996			break;
 997		default:
 998			goto err_hwlock;
 999		}
1000		break;
1001#ifdef CONFIG_64BIT
1002	case 64:
1003		switch (val_endian) {
1004		case REGMAP_ENDIAN_BIG:
1005			map->format.format_val = regmap_format_64_be;
1006			map->format.parse_val = regmap_parse_64_be;
1007			map->format.parse_inplace = regmap_parse_64_be_inplace;
1008			break;
1009		case REGMAP_ENDIAN_LITTLE:
1010			map->format.format_val = regmap_format_64_le;
1011			map->format.parse_val = regmap_parse_64_le;
1012			map->format.parse_inplace = regmap_parse_64_le_inplace;
1013			break;
1014		case REGMAP_ENDIAN_NATIVE:
1015			map->format.format_val = regmap_format_64_native;
1016			map->format.parse_val = regmap_parse_64_native;
1017			break;
1018		default:
1019			goto err_hwlock;
1020		}
1021		break;
1022#endif
1023	}
1024
1025	if (map->format.format_write) {
1026		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1027		    (val_endian != REGMAP_ENDIAN_BIG))
1028			goto err_hwlock;
1029		map->use_single_write = true;
1030	}
1031
1032	if (!map->format.format_write &&
1033	    !(map->format.format_reg && map->format.format_val))
1034		goto err_hwlock;
1035
1036	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1037	if (map->work_buf == NULL) {
1038		ret = -ENOMEM;
1039		goto err_hwlock;
1040	}
1041
1042	if (map->format.format_write) {
1043		map->defer_caching = false;
1044		map->reg_write = _regmap_bus_formatted_write;
1045	} else if (map->format.format_val) {
1046		map->defer_caching = true;
1047		map->reg_write = _regmap_bus_raw_write;
1048	}
1049
1050skip_format_initialization:
1051
1052	map->range_tree = RB_ROOT;
1053	for (i = 0; i < config->num_ranges; i++) {
1054		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1055		struct regmap_range_node *new;
1056
1057		/* Sanity check */
1058		if (range_cfg->range_max < range_cfg->range_min) {
1059			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1060				range_cfg->range_max, range_cfg->range_min);
1061			goto err_range;
1062		}
1063
1064		if (range_cfg->range_max > map->max_register) {
1065			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1066				range_cfg->range_max, map->max_register);
1067			goto err_range;
1068		}
1069
1070		if (range_cfg->selector_reg > map->max_register) {
1071			dev_err(map->dev,
1072				"Invalid range %d: selector out of map\n", i);
1073			goto err_range;
1074		}
1075
1076		if (range_cfg->window_len == 0) {
1077			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1078				i);
1079			goto err_range;
1080		}
1081
1082		/* Make sure, that this register range has no selector
1083		   or data window within its boundary */
1084		for (j = 0; j < config->num_ranges; j++) {
1085			unsigned sel_reg = config->ranges[j].selector_reg;
1086			unsigned win_min = config->ranges[j].window_start;
1087			unsigned win_max = win_min +
1088					   config->ranges[j].window_len - 1;
1089
1090			/* Allow data window inside its own virtual range */
1091			if (j == i)
1092				continue;
1093
1094			if (range_cfg->range_min <= sel_reg &&
1095			    sel_reg <= range_cfg->range_max) {
1096				dev_err(map->dev,
1097					"Range %d: selector for %d in window\n",
1098					i, j);
1099				goto err_range;
1100			}
1101
1102			if (!(win_max < range_cfg->range_min ||
1103			      win_min > range_cfg->range_max)) {
1104				dev_err(map->dev,
1105					"Range %d: window for %d in window\n",
1106					i, j);
1107				goto err_range;
1108			}
1109		}
1110
1111		new = kzalloc(sizeof(*new), GFP_KERNEL);
1112		if (new == NULL) {
1113			ret = -ENOMEM;
1114			goto err_range;
1115		}
1116
1117		new->map = map;
1118		new->name = range_cfg->name;
1119		new->range_min = range_cfg->range_min;
1120		new->range_max = range_cfg->range_max;
1121		new->selector_reg = range_cfg->selector_reg;
1122		new->selector_mask = range_cfg->selector_mask;
1123		new->selector_shift = range_cfg->selector_shift;
1124		new->window_start = range_cfg->window_start;
1125		new->window_len = range_cfg->window_len;
1126
1127		if (!_regmap_range_add(map, new)) {
1128			dev_err(map->dev, "Failed to add range %d\n", i);
1129			kfree(new);
1130			goto err_range;
1131		}
1132
1133		if (map->selector_work_buf == NULL) {
1134			map->selector_work_buf =
1135				kzalloc(map->format.buf_size, GFP_KERNEL);
1136			if (map->selector_work_buf == NULL) {
1137				ret = -ENOMEM;
1138				goto err_range;
1139			}
1140		}
1141	}
1142
1143	ret = regcache_init(map, config);
1144	if (ret != 0)
1145		goto err_range;
1146
1147	if (dev) {
1148		ret = regmap_attach_dev(dev, map, config);
1149		if (ret != 0)
1150			goto err_regcache;
1151	} else {
1152		regmap_debugfs_init(map, config->name);
1153	}
1154
1155	return map;
1156
1157err_regcache:
1158	regcache_exit(map);
1159err_range:
1160	regmap_range_exit(map);
1161	kfree(map->work_buf);
1162err_hwlock:
1163	if (map->hwlock)
1164		hwspin_lock_free(map->hwlock);
1165err_name:
1166	kfree_const(map->name);
1167err_map:
1168	kfree(map);
1169err:
1170	return ERR_PTR(ret);
1171}
1172EXPORT_SYMBOL_GPL(__regmap_init);
1173
1174static void devm_regmap_release(struct device *dev, void *res)
1175{
1176	regmap_exit(*(struct regmap **)res);
1177}
1178
1179struct regmap *__devm_regmap_init(struct device *dev,
1180				  const struct regmap_bus *bus,
1181				  void *bus_context,
1182				  const struct regmap_config *config,
1183				  struct lock_class_key *lock_key,
1184				  const char *lock_name)
1185{
1186	struct regmap **ptr, *regmap;
1187
1188	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1189	if (!ptr)
1190		return ERR_PTR(-ENOMEM);
1191
1192	regmap = __regmap_init(dev, bus, bus_context, config,
1193			       lock_key, lock_name);
1194	if (!IS_ERR(regmap)) {
1195		*ptr = regmap;
1196		devres_add(dev, ptr);
1197	} else {
1198		devres_free(ptr);
1199	}
1200
1201	return regmap;
1202}
1203EXPORT_SYMBOL_GPL(__devm_regmap_init);
1204
1205static void regmap_field_init(struct regmap_field *rm_field,
1206	struct regmap *regmap, struct reg_field reg_field)
1207{
1208	rm_field->regmap = regmap;
1209	rm_field->reg = reg_field.reg;
1210	rm_field->shift = reg_field.lsb;
1211	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1212	rm_field->id_size = reg_field.id_size;
1213	rm_field->id_offset = reg_field.id_offset;
1214}
1215
1216/**
1217 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1218 *
1219 * @dev: Device that will be interacted with
1220 * @regmap: regmap bank in which this register field is located.
1221 * @reg_field: Register field with in the bank.
1222 *
1223 * The return value will be an ERR_PTR() on error or a valid pointer
1224 * to a struct regmap_field. The regmap_field will be automatically freed
1225 * by the device management code.
1226 */
1227struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1228		struct regmap *regmap, struct reg_field reg_field)
1229{
1230	struct regmap_field *rm_field = devm_kzalloc(dev,
1231					sizeof(*rm_field), GFP_KERNEL);
1232	if (!rm_field)
1233		return ERR_PTR(-ENOMEM);
1234
1235	regmap_field_init(rm_field, regmap, reg_field);
1236
1237	return rm_field;
1238
1239}
1240EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242/**
1243 * devm_regmap_field_free() - Free a register field allocated using
1244 *                            devm_regmap_field_alloc.
1245 *
1246 * @dev: Device that will be interacted with
1247 * @field: regmap field which should be freed.
1248 *
1249 * Free register field allocated using devm_regmap_field_alloc(). Usually
1250 * drivers need not call this function, as the memory allocated via devm
1251 * will be freed as per device-driver life-cyle.
1252 */
1253void devm_regmap_field_free(struct device *dev,
1254	struct regmap_field *field)
1255{
1256	devm_kfree(dev, field);
1257}
1258EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1259
1260/**
1261 * regmap_field_alloc() - Allocate and initialise a register field.
1262 *
1263 * @regmap: regmap bank in which this register field is located.
1264 * @reg_field: Register field with in the bank.
1265 *
1266 * The return value will be an ERR_PTR() on error or a valid pointer
1267 * to a struct regmap_field. The regmap_field should be freed by the
1268 * user once its finished working with it using regmap_field_free().
1269 */
1270struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1271		struct reg_field reg_field)
1272{
1273	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1274
1275	if (!rm_field)
1276		return ERR_PTR(-ENOMEM);
1277
1278	regmap_field_init(rm_field, regmap, reg_field);
1279
1280	return rm_field;
1281}
1282EXPORT_SYMBOL_GPL(regmap_field_alloc);
1283
1284/**
1285 * regmap_field_free() - Free register field allocated using
1286 *                       regmap_field_alloc.
1287 *
1288 * @field: regmap field which should be freed.
1289 */
1290void regmap_field_free(struct regmap_field *field)
1291{
1292	kfree(field);
1293}
1294EXPORT_SYMBOL_GPL(regmap_field_free);
1295
1296/**
1297 * regmap_reinit_cache() - Reinitialise the current register cache
1298 *
1299 * @map: Register map to operate on.
1300 * @config: New configuration.  Only the cache data will be used.
1301 *
1302 * Discard any existing register cache for the map and initialize a
1303 * new cache.  This can be used to restore the cache to defaults or to
1304 * update the cache configuration to reflect runtime discovery of the
1305 * hardware.
1306 *
1307 * No explicit locking is done here, the user needs to ensure that
1308 * this function will not race with other calls to regmap.
1309 */
1310int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1311{
 
 
1312	regcache_exit(map);
1313	regmap_debugfs_exit(map);
1314
1315	map->max_register = config->max_register;
1316	map->writeable_reg = config->writeable_reg;
1317	map->readable_reg = config->readable_reg;
1318	map->volatile_reg = config->volatile_reg;
1319	map->precious_reg = config->precious_reg;
1320	map->writeable_noinc_reg = config->writeable_noinc_reg;
1321	map->readable_noinc_reg = config->readable_noinc_reg;
1322	map->cache_type = config->cache_type;
1323
1324	regmap_debugfs_init(map, config->name);
 
 
 
 
1325
1326	map->cache_bypass = false;
1327	map->cache_only = false;
1328
1329	return regcache_init(map, config);
1330}
1331EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1332
1333/**
1334 * regmap_exit() - Free a previously allocated register map
1335 *
1336 * @map: Register map to operate on.
1337 */
1338void regmap_exit(struct regmap *map)
1339{
1340	struct regmap_async *async;
1341
1342	regcache_exit(map);
1343	regmap_debugfs_exit(map);
1344	regmap_range_exit(map);
1345	if (map->bus && map->bus->free_context)
1346		map->bus->free_context(map->bus_context);
1347	kfree(map->work_buf);
1348	while (!list_empty(&map->async_free)) {
1349		async = list_first_entry_or_null(&map->async_free,
1350						 struct regmap_async,
1351						 list);
1352		list_del(&async->list);
1353		kfree(async->work_buf);
1354		kfree(async);
1355	}
1356	if (map->hwlock)
1357		hwspin_lock_free(map->hwlock);
 
 
1358	kfree_const(map->name);
 
 
 
1359	kfree(map);
1360}
1361EXPORT_SYMBOL_GPL(regmap_exit);
1362
1363static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1364{
1365	struct regmap **r = res;
1366	if (!r || !*r) {
1367		WARN_ON(!r || !*r);
1368		return 0;
1369	}
1370
1371	/* If the user didn't specify a name match any */
1372	if (data)
1373		return (*r)->name == data;
1374	else
1375		return 1;
1376}
1377
1378/**
1379 * dev_get_regmap() - Obtain the regmap (if any) for a device
1380 *
1381 * @dev: Device to retrieve the map for
1382 * @name: Optional name for the register map, usually NULL.
1383 *
1384 * Returns the regmap for the device if one is present, or NULL.  If
1385 * name is specified then it must match the name specified when
1386 * registering the device, if it is NULL then the first regmap found
1387 * will be used.  Devices with multiple register maps are very rare,
1388 * generic code should normally not need to specify a name.
1389 */
1390struct regmap *dev_get_regmap(struct device *dev, const char *name)
1391{
1392	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1393					dev_get_regmap_match, (void *)name);
1394
1395	if (!r)
1396		return NULL;
1397	return *r;
1398}
1399EXPORT_SYMBOL_GPL(dev_get_regmap);
1400
1401/**
1402 * regmap_get_device() - Obtain the device from a regmap
1403 *
1404 * @map: Register map to operate on.
1405 *
1406 * Returns the underlying device that the regmap has been created for.
1407 */
1408struct device *regmap_get_device(struct regmap *map)
1409{
1410	return map->dev;
1411}
1412EXPORT_SYMBOL_GPL(regmap_get_device);
1413
1414static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1415			       struct regmap_range_node *range,
1416			       unsigned int val_num)
1417{
1418	void *orig_work_buf;
1419	unsigned int win_offset;
1420	unsigned int win_page;
1421	bool page_chg;
1422	int ret;
1423
1424	win_offset = (*reg - range->range_min) % range->window_len;
1425	win_page = (*reg - range->range_min) / range->window_len;
1426
1427	if (val_num > 1) {
1428		/* Bulk write shouldn't cross range boundary */
1429		if (*reg + val_num - 1 > range->range_max)
1430			return -EINVAL;
1431
1432		/* ... or single page boundary */
1433		if (val_num > range->window_len - win_offset)
1434			return -EINVAL;
1435	}
1436
1437	/* It is possible to have selector register inside data window.
1438	   In that case, selector register is located on every page and
1439	   it needs no page switching, when accessed alone. */
1440	if (val_num > 1 ||
1441	    range->window_start + win_offset != range->selector_reg) {
1442		/* Use separate work_buf during page switching */
1443		orig_work_buf = map->work_buf;
1444		map->work_buf = map->selector_work_buf;
1445
1446		ret = _regmap_update_bits(map, range->selector_reg,
1447					  range->selector_mask,
1448					  win_page << range->selector_shift,
1449					  &page_chg, false);
1450
1451		map->work_buf = orig_work_buf;
1452
1453		if (ret != 0)
1454			return ret;
1455	}
1456
1457	*reg = range->window_start + win_offset;
1458
1459	return 0;
1460}
1461
1462static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1463					  unsigned long mask)
1464{
1465	u8 *buf;
1466	int i;
1467
1468	if (!mask || !map->work_buf)
1469		return;
1470
1471	buf = map->work_buf;
1472
1473	for (i = 0; i < max_bytes; i++)
1474		buf[i] |= (mask >> (8 * i)) & 0xff;
1475}
1476
1477static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1478				  const void *val, size_t val_len)
1479{
1480	struct regmap_range_node *range;
1481	unsigned long flags;
1482	void *work_val = map->work_buf + map->format.reg_bytes +
1483		map->format.pad_bytes;
1484	void *buf;
1485	int ret = -ENOTSUPP;
1486	size_t len;
1487	int i;
1488
1489	WARN_ON(!map->bus);
1490
1491	/* Check for unwritable registers before we start */
1492	for (i = 0; i < val_len / map->format.val_bytes; i++)
1493		if (!regmap_writeable(map,
1494				     reg + regmap_get_offset(map, i)))
1495			return -EINVAL;
 
 
 
 
 
 
 
1496
1497	if (!map->cache_bypass && map->format.parse_val) {
1498		unsigned int ival;
1499		int val_bytes = map->format.val_bytes;
1500		for (i = 0; i < val_len / val_bytes; i++) {
1501			ival = map->format.parse_val(val + (i * val_bytes));
1502			ret = regcache_write(map,
1503					     reg + regmap_get_offset(map, i),
1504					     ival);
1505			if (ret) {
1506				dev_err(map->dev,
1507					"Error in caching of register: %x ret: %d\n",
1508					reg + i, ret);
1509				return ret;
1510			}
1511		}
1512		if (map->cache_only) {
1513			map->cache_dirty = true;
1514			return 0;
1515		}
1516	}
1517
1518	range = _regmap_range_lookup(map, reg);
1519	if (range) {
1520		int val_num = val_len / map->format.val_bytes;
1521		int win_offset = (reg - range->range_min) % range->window_len;
1522		int win_residue = range->window_len - win_offset;
1523
1524		/* If the write goes beyond the end of the window split it */
1525		while (val_num > win_residue) {
1526			dev_dbg(map->dev, "Writing window %d/%zu\n",
1527				win_residue, val_len / map->format.val_bytes);
1528			ret = _regmap_raw_write_impl(map, reg, val,
1529						     win_residue *
1530						     map->format.val_bytes);
1531			if (ret != 0)
1532				return ret;
1533
1534			reg += win_residue;
1535			val_num -= win_residue;
1536			val += win_residue * map->format.val_bytes;
1537			val_len -= win_residue * map->format.val_bytes;
1538
1539			win_offset = (reg - range->range_min) %
1540				range->window_len;
1541			win_residue = range->window_len - win_offset;
1542		}
1543
1544		ret = _regmap_select_page(map, &reg, range, val_num);
1545		if (ret != 0)
1546			return ret;
1547	}
1548
1549	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1550	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1551				      map->write_flag_mask);
1552
1553	/*
1554	 * Essentially all I/O mechanisms will be faster with a single
1555	 * buffer to write.  Since register syncs often generate raw
1556	 * writes of single registers optimise that case.
1557	 */
1558	if (val != work_val && val_len == map->format.val_bytes) {
1559		memcpy(work_val, val, map->format.val_bytes);
1560		val = work_val;
1561	}
1562
1563	if (map->async && map->bus->async_write) {
1564		struct regmap_async *async;
1565
1566		trace_regmap_async_write_start(map, reg, val_len);
1567
1568		spin_lock_irqsave(&map->async_lock, flags);
1569		async = list_first_entry_or_null(&map->async_free,
1570						 struct regmap_async,
1571						 list);
1572		if (async)
1573			list_del(&async->list);
1574		spin_unlock_irqrestore(&map->async_lock, flags);
1575
1576		if (!async) {
1577			async = map->bus->async_alloc();
1578			if (!async)
1579				return -ENOMEM;
1580
1581			async->work_buf = kzalloc(map->format.buf_size,
1582						  GFP_KERNEL | GFP_DMA);
1583			if (!async->work_buf) {
1584				kfree(async);
1585				return -ENOMEM;
1586			}
1587		}
1588
1589		async->map = map;
1590
1591		/* If the caller supplied the value we can use it safely. */
1592		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1593		       map->format.reg_bytes + map->format.val_bytes);
1594
1595		spin_lock_irqsave(&map->async_lock, flags);
1596		list_add_tail(&async->list, &map->async_list);
1597		spin_unlock_irqrestore(&map->async_lock, flags);
1598
1599		if (val != work_val)
1600			ret = map->bus->async_write(map->bus_context,
1601						    async->work_buf,
1602						    map->format.reg_bytes +
1603						    map->format.pad_bytes,
1604						    val, val_len, async);
1605		else
1606			ret = map->bus->async_write(map->bus_context,
1607						    async->work_buf,
1608						    map->format.reg_bytes +
1609						    map->format.pad_bytes +
1610						    val_len, NULL, 0, async);
1611
1612		if (ret != 0) {
1613			dev_err(map->dev, "Failed to schedule write: %d\n",
1614				ret);
1615
1616			spin_lock_irqsave(&map->async_lock, flags);
1617			list_move(&async->list, &map->async_free);
1618			spin_unlock_irqrestore(&map->async_lock, flags);
1619		}
1620
1621		return ret;
1622	}
1623
1624	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1625
1626	/* If we're doing a single register write we can probably just
1627	 * send the work_buf directly, otherwise try to do a gather
1628	 * write.
1629	 */
1630	if (val == work_val)
1631		ret = map->bus->write(map->bus_context, map->work_buf,
1632				      map->format.reg_bytes +
1633				      map->format.pad_bytes +
1634				      val_len);
1635	else if (map->bus->gather_write)
1636		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1637					     map->format.reg_bytes +
1638					     map->format.pad_bytes,
1639					     val, val_len);
1640	else
1641		ret = -ENOTSUPP;
1642
1643	/* If that didn't work fall back on linearising by hand. */
1644	if (ret == -ENOTSUPP) {
1645		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1646		buf = kzalloc(len, GFP_KERNEL);
1647		if (!buf)
1648			return -ENOMEM;
1649
1650		memcpy(buf, map->work_buf, map->format.reg_bytes);
1651		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1652		       val, val_len);
1653		ret = map->bus->write(map->bus_context, buf, len);
1654
1655		kfree(buf);
1656	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1657		/* regcache_drop_region() takes lock that we already have,
1658		 * thus call map->cache_ops->drop() directly
1659		 */
1660		if (map->cache_ops && map->cache_ops->drop)
1661			map->cache_ops->drop(map, reg, reg + 1);
1662	}
1663
1664	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1665
1666	return ret;
1667}
1668
1669/**
1670 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1671 *
1672 * @map: Map to check.
1673 */
1674bool regmap_can_raw_write(struct regmap *map)
1675{
1676	return map->bus && map->bus->write && map->format.format_val &&
1677		map->format.format_reg;
1678}
1679EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1680
1681/**
1682 * regmap_get_raw_read_max - Get the maximum size we can read
1683 *
1684 * @map: Map to check.
1685 */
1686size_t regmap_get_raw_read_max(struct regmap *map)
1687{
1688	return map->max_raw_read;
1689}
1690EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1691
1692/**
1693 * regmap_get_raw_write_max - Get the maximum size we can read
1694 *
1695 * @map: Map to check.
1696 */
1697size_t regmap_get_raw_write_max(struct regmap *map)
1698{
1699	return map->max_raw_write;
1700}
1701EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1702
1703static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1704				       unsigned int val)
1705{
1706	int ret;
1707	struct regmap_range_node *range;
1708	struct regmap *map = context;
1709
1710	WARN_ON(!map->bus || !map->format.format_write);
1711
1712	range = _regmap_range_lookup(map, reg);
1713	if (range) {
1714		ret = _regmap_select_page(map, &reg, range, 1);
1715		if (ret != 0)
1716			return ret;
1717	}
1718
1719	map->format.format_write(map, reg, val);
1720
1721	trace_regmap_hw_write_start(map, reg, 1);
1722
1723	ret = map->bus->write(map->bus_context, map->work_buf,
1724			      map->format.buf_size);
1725
1726	trace_regmap_hw_write_done(map, reg, 1);
1727
1728	return ret;
1729}
1730
1731static int _regmap_bus_reg_write(void *context, unsigned int reg,
1732				 unsigned int val)
1733{
1734	struct regmap *map = context;
1735
1736	return map->bus->reg_write(map->bus_context, reg, val);
1737}
1738
1739static int _regmap_bus_raw_write(void *context, unsigned int reg,
1740				 unsigned int val)
1741{
1742	struct regmap *map = context;
1743
1744	WARN_ON(!map->bus || !map->format.format_val);
1745
1746	map->format.format_val(map->work_buf + map->format.reg_bytes
1747			       + map->format.pad_bytes, val, 0);
1748	return _regmap_raw_write_impl(map, reg,
1749				      map->work_buf +
1750				      map->format.reg_bytes +
1751				      map->format.pad_bytes,
1752				      map->format.val_bytes);
 
1753}
1754
1755static inline void *_regmap_map_get_context(struct regmap *map)
1756{
1757	return (map->bus) ? map : map->bus_context;
1758}
1759
1760int _regmap_write(struct regmap *map, unsigned int reg,
1761		  unsigned int val)
1762{
1763	int ret;
1764	void *context = _regmap_map_get_context(map);
1765
1766	if (!regmap_writeable(map, reg))
1767		return -EIO;
1768
1769	if (!map->cache_bypass && !map->defer_caching) {
1770		ret = regcache_write(map, reg, val);
1771		if (ret != 0)
1772			return ret;
1773		if (map->cache_only) {
1774			map->cache_dirty = true;
1775			return 0;
1776		}
1777	}
1778
1779	if (regmap_should_log(map))
1780		dev_info(map->dev, "%x <= %x\n", reg, val);
 
 
1781
1782	trace_regmap_reg_write(map, reg, val);
 
1783
1784	return map->reg_write(context, reg, val);
1785}
1786
1787/**
1788 * regmap_write() - Write a value to a single register
1789 *
1790 * @map: Register map to write to
1791 * @reg: Register to write to
1792 * @val: Value to be written
1793 *
1794 * A value of zero will be returned on success, a negative errno will
1795 * be returned in error cases.
1796 */
1797int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1798{
1799	int ret;
1800
1801	if (!IS_ALIGNED(reg, map->reg_stride))
1802		return -EINVAL;
1803
1804	map->lock(map->lock_arg);
1805
1806	ret = _regmap_write(map, reg, val);
1807
1808	map->unlock(map->lock_arg);
1809
1810	return ret;
1811}
1812EXPORT_SYMBOL_GPL(regmap_write);
1813
1814/**
1815 * regmap_write_async() - Write a value to a single register asynchronously
1816 *
1817 * @map: Register map to write to
1818 * @reg: Register to write to
1819 * @val: Value to be written
1820 *
1821 * A value of zero will be returned on success, a negative errno will
1822 * be returned in error cases.
1823 */
1824int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1825{
1826	int ret;
1827
1828	if (!IS_ALIGNED(reg, map->reg_stride))
1829		return -EINVAL;
1830
1831	map->lock(map->lock_arg);
1832
1833	map->async = true;
1834
1835	ret = _regmap_write(map, reg, val);
1836
1837	map->async = false;
1838
1839	map->unlock(map->lock_arg);
1840
1841	return ret;
1842}
1843EXPORT_SYMBOL_GPL(regmap_write_async);
1844
1845int _regmap_raw_write(struct regmap *map, unsigned int reg,
1846		      const void *val, size_t val_len)
1847{
1848	size_t val_bytes = map->format.val_bytes;
1849	size_t val_count = val_len / val_bytes;
1850	size_t chunk_count, chunk_bytes;
1851	size_t chunk_regs = val_count;
1852	int ret, i;
1853
1854	if (!val_count)
1855		return -EINVAL;
1856
1857	if (map->use_single_write)
1858		chunk_regs = 1;
1859	else if (map->max_raw_write && val_len > map->max_raw_write)
1860		chunk_regs = map->max_raw_write / val_bytes;
1861
1862	chunk_count = val_count / chunk_regs;
1863	chunk_bytes = chunk_regs * val_bytes;
1864
1865	/* Write as many bytes as possible with chunk_size */
1866	for (i = 0; i < chunk_count; i++) {
1867		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1868		if (ret)
1869			return ret;
1870
1871		reg += regmap_get_offset(map, chunk_regs);
1872		val += chunk_bytes;
1873		val_len -= chunk_bytes;
1874	}
1875
1876	/* Write remaining bytes */
1877	if (val_len)
1878		ret = _regmap_raw_write_impl(map, reg, val, val_len);
1879
1880	return ret;
1881}
1882
1883/**
1884 * regmap_raw_write() - Write raw values to one or more registers
1885 *
1886 * @map: Register map to write to
1887 * @reg: Initial register to write to
1888 * @val: Block of data to be written, laid out for direct transmission to the
1889 *       device
1890 * @val_len: Length of data pointed to by val.
1891 *
1892 * This function is intended to be used for things like firmware
1893 * download where a large block of data needs to be transferred to the
1894 * device.  No formatting will be done on the data provided.
1895 *
1896 * A value of zero will be returned on success, a negative errno will
1897 * be returned in error cases.
1898 */
1899int regmap_raw_write(struct regmap *map, unsigned int reg,
1900		     const void *val, size_t val_len)
1901{
1902	int ret;
1903
1904	if (!regmap_can_raw_write(map))
1905		return -EINVAL;
1906	if (val_len % map->format.val_bytes)
1907		return -EINVAL;
1908
1909	map->lock(map->lock_arg);
1910
1911	ret = _regmap_raw_write(map, reg, val, val_len);
1912
1913	map->unlock(map->lock_arg);
1914
1915	return ret;
1916}
1917EXPORT_SYMBOL_GPL(regmap_raw_write);
1918
1919/**
1920 * regmap_noinc_write(): Write data from a register without incrementing the
1921 *			register number
1922 *
1923 * @map: Register map to write to
1924 * @reg: Register to write to
1925 * @val: Pointer to data buffer
1926 * @val_len: Length of output buffer in bytes.
1927 *
1928 * The regmap API usually assumes that bulk bus write operations will write a
1929 * range of registers. Some devices have certain registers for which a write
1930 * operation can write to an internal FIFO.
1931 *
1932 * The target register must be volatile but registers after it can be
1933 * completely unrelated cacheable registers.
1934 *
1935 * This will attempt multiple writes as required to write val_len bytes.
1936 *
1937 * A value of zero will be returned on success, a negative errno will be
1938 * returned in error cases.
1939 */
1940int regmap_noinc_write(struct regmap *map, unsigned int reg,
1941		      const void *val, size_t val_len)
1942{
1943	size_t write_len;
1944	int ret;
1945
1946	if (!map->bus)
1947		return -EINVAL;
1948	if (!map->bus->write)
1949		return -ENOTSUPP;
1950	if (val_len % map->format.val_bytes)
1951		return -EINVAL;
1952	if (!IS_ALIGNED(reg, map->reg_stride))
1953		return -EINVAL;
1954	if (val_len == 0)
1955		return -EINVAL;
1956
1957	map->lock(map->lock_arg);
1958
1959	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1960		ret = -EINVAL;
1961		goto out_unlock;
1962	}
1963
1964	while (val_len) {
1965		if (map->max_raw_write && map->max_raw_write < val_len)
1966			write_len = map->max_raw_write;
1967		else
1968			write_len = val_len;
1969		ret = _regmap_raw_write(map, reg, val, write_len);
1970		if (ret)
1971			goto out_unlock;
1972		val = ((u8 *)val) + write_len;
1973		val_len -= write_len;
1974	}
1975
1976out_unlock:
1977	map->unlock(map->lock_arg);
1978	return ret;
1979}
1980EXPORT_SYMBOL_GPL(regmap_noinc_write);
1981
1982/**
1983 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1984 *                                   register field.
1985 *
1986 * @field: Register field to write to
1987 * @mask: Bitmask to change
1988 * @val: Value to be written
1989 * @change: Boolean indicating if a write was done
1990 * @async: Boolean indicating asynchronously
1991 * @force: Boolean indicating use force update
1992 *
1993 * Perform a read/modify/write cycle on the register field with change,
1994 * async, force option.
1995 *
1996 * A value of zero will be returned on success, a negative errno will
1997 * be returned in error cases.
1998 */
1999int regmap_field_update_bits_base(struct regmap_field *field,
2000				  unsigned int mask, unsigned int val,
2001				  bool *change, bool async, bool force)
2002{
2003	mask = (mask << field->shift) & field->mask;
2004
2005	return regmap_update_bits_base(field->regmap, field->reg,
2006				       mask, val << field->shift,
2007				       change, async, force);
2008}
2009EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2010
2011/**
2012 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2013 *                                    register field with port ID
2014 *
2015 * @field: Register field to write to
2016 * @id: port ID
2017 * @mask: Bitmask to change
2018 * @val: Value to be written
2019 * @change: Boolean indicating if a write was done
2020 * @async: Boolean indicating asynchronously
2021 * @force: Boolean indicating use force update
2022 *
2023 * A value of zero will be returned on success, a negative errno will
2024 * be returned in error cases.
2025 */
2026int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
2027				   unsigned int mask, unsigned int val,
2028				   bool *change, bool async, bool force)
2029{
2030	if (id >= field->id_size)
2031		return -EINVAL;
2032
2033	mask = (mask << field->shift) & field->mask;
2034
2035	return regmap_update_bits_base(field->regmap,
2036				       field->reg + (field->id_offset * id),
2037				       mask, val << field->shift,
2038				       change, async, force);
2039}
2040EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2041
2042/**
2043 * regmap_bulk_write() - Write multiple registers to the device
2044 *
2045 * @map: Register map to write to
2046 * @reg: First register to be write from
2047 * @val: Block of data to be written, in native register size for device
2048 * @val_count: Number of registers to write
2049 *
2050 * This function is intended to be used for writing a large block of
2051 * data to the device either in single transfer or multiple transfer.
2052 *
2053 * A value of zero will be returned on success, a negative errno will
2054 * be returned in error cases.
2055 */
2056int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2057		     size_t val_count)
2058{
2059	int ret = 0, i;
2060	size_t val_bytes = map->format.val_bytes;
2061
2062	if (!IS_ALIGNED(reg, map->reg_stride))
2063		return -EINVAL;
2064
2065	/*
2066	 * Some devices don't support bulk write, for them we have a series of
2067	 * single write operations.
2068	 */
2069	if (!map->bus || !map->format.parse_inplace) {
2070		map->lock(map->lock_arg);
2071		for (i = 0; i < val_count; i++) {
2072			unsigned int ival;
2073
2074			switch (val_bytes) {
2075			case 1:
2076				ival = *(u8 *)(val + (i * val_bytes));
2077				break;
2078			case 2:
2079				ival = *(u16 *)(val + (i * val_bytes));
2080				break;
2081			case 4:
2082				ival = *(u32 *)(val + (i * val_bytes));
2083				break;
2084#ifdef CONFIG_64BIT
2085			case 8:
2086				ival = *(u64 *)(val + (i * val_bytes));
2087				break;
2088#endif
2089			default:
2090				ret = -EINVAL;
2091				goto out;
2092			}
2093
2094			ret = _regmap_write(map,
2095					    reg + regmap_get_offset(map, i),
2096					    ival);
2097			if (ret != 0)
2098				goto out;
2099		}
2100out:
2101		map->unlock(map->lock_arg);
2102	} else {
2103		void *wval;
2104
2105		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2106		if (!wval)
2107			return -ENOMEM;
2108
2109		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2110			map->format.parse_inplace(wval + i);
2111
2112		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2113
2114		kfree(wval);
2115	}
2116	return ret;
2117}
2118EXPORT_SYMBOL_GPL(regmap_bulk_write);
2119
2120/*
2121 * _regmap_raw_multi_reg_write()
2122 *
2123 * the (register,newvalue) pairs in regs have not been formatted, but
2124 * they are all in the same page and have been changed to being page
2125 * relative. The page register has been written if that was necessary.
2126 */
2127static int _regmap_raw_multi_reg_write(struct regmap *map,
2128				       const struct reg_sequence *regs,
2129				       size_t num_regs)
2130{
2131	int ret;
2132	void *buf;
2133	int i;
2134	u8 *u8;
2135	size_t val_bytes = map->format.val_bytes;
2136	size_t reg_bytes = map->format.reg_bytes;
2137	size_t pad_bytes = map->format.pad_bytes;
2138	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2139	size_t len = pair_size * num_regs;
2140
2141	if (!len)
2142		return -EINVAL;
2143
2144	buf = kzalloc(len, GFP_KERNEL);
2145	if (!buf)
2146		return -ENOMEM;
2147
2148	/* We have to linearise by hand. */
2149
2150	u8 = buf;
2151
2152	for (i = 0; i < num_regs; i++) {
2153		unsigned int reg = regs[i].reg;
2154		unsigned int val = regs[i].def;
2155		trace_regmap_hw_write_start(map, reg, 1);
2156		map->format.format_reg(u8, reg, map->reg_shift);
2157		u8 += reg_bytes + pad_bytes;
2158		map->format.format_val(u8, val, 0);
2159		u8 += val_bytes;
2160	}
2161	u8 = buf;
2162	*u8 |= map->write_flag_mask;
2163
2164	ret = map->bus->write(map->bus_context, buf, len);
2165
2166	kfree(buf);
2167
2168	for (i = 0; i < num_regs; i++) {
2169		int reg = regs[i].reg;
2170		trace_regmap_hw_write_done(map, reg, 1);
2171	}
2172	return ret;
2173}
2174
2175static unsigned int _regmap_register_page(struct regmap *map,
2176					  unsigned int reg,
2177					  struct regmap_range_node *range)
2178{
2179	unsigned int win_page = (reg - range->range_min) / range->window_len;
2180
2181	return win_page;
2182}
2183
2184static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2185					       struct reg_sequence *regs,
2186					       size_t num_regs)
2187{
2188	int ret;
2189	int i, n;
2190	struct reg_sequence *base;
2191	unsigned int this_page = 0;
2192	unsigned int page_change = 0;
2193	/*
2194	 * the set of registers are not neccessarily in order, but
2195	 * since the order of write must be preserved this algorithm
2196	 * chops the set each time the page changes. This also applies
2197	 * if there is a delay required at any point in the sequence.
2198	 */
2199	base = regs;
2200	for (i = 0, n = 0; i < num_regs; i++, n++) {
2201		unsigned int reg = regs[i].reg;
2202		struct regmap_range_node *range;
2203
2204		range = _regmap_range_lookup(map, reg);
2205		if (range) {
2206			unsigned int win_page = _regmap_register_page(map, reg,
2207								      range);
2208
2209			if (i == 0)
2210				this_page = win_page;
2211			if (win_page != this_page) {
2212				this_page = win_page;
2213				page_change = 1;
2214			}
2215		}
2216
2217		/* If we have both a page change and a delay make sure to
2218		 * write the regs and apply the delay before we change the
2219		 * page.
2220		 */
2221
2222		if (page_change || regs[i].delay_us) {
2223
2224				/* For situations where the first write requires
2225				 * a delay we need to make sure we don't call
2226				 * raw_multi_reg_write with n=0
2227				 * This can't occur with page breaks as we
2228				 * never write on the first iteration
2229				 */
2230				if (regs[i].delay_us && i == 0)
2231					n = 1;
2232
2233				ret = _regmap_raw_multi_reg_write(map, base, n);
2234				if (ret != 0)
2235					return ret;
2236
2237				if (regs[i].delay_us)
2238					udelay(regs[i].delay_us);
 
 
 
 
2239
2240				base += n;
2241				n = 0;
2242
2243				if (page_change) {
2244					ret = _regmap_select_page(map,
2245								  &base[n].reg,
2246								  range, 1);
2247					if (ret != 0)
2248						return ret;
2249
2250					page_change = 0;
2251				}
2252
2253		}
2254
2255	}
2256	if (n > 0)
2257		return _regmap_raw_multi_reg_write(map, base, n);
2258	return 0;
2259}
2260
2261static int _regmap_multi_reg_write(struct regmap *map,
2262				   const struct reg_sequence *regs,
2263				   size_t num_regs)
2264{
2265	int i;
2266	int ret;
2267
2268	if (!map->can_multi_write) {
2269		for (i = 0; i < num_regs; i++) {
2270			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2271			if (ret != 0)
2272				return ret;
2273
2274			if (regs[i].delay_us)
2275				udelay(regs[i].delay_us);
 
 
 
 
2276		}
2277		return 0;
2278	}
2279
2280	if (!map->format.parse_inplace)
2281		return -EINVAL;
2282
2283	if (map->writeable_reg)
2284		for (i = 0; i < num_regs; i++) {
2285			int reg = regs[i].reg;
2286			if (!map->writeable_reg(map->dev, reg))
2287				return -EINVAL;
2288			if (!IS_ALIGNED(reg, map->reg_stride))
2289				return -EINVAL;
2290		}
2291
2292	if (!map->cache_bypass) {
2293		for (i = 0; i < num_regs; i++) {
2294			unsigned int val = regs[i].def;
2295			unsigned int reg = regs[i].reg;
2296			ret = regcache_write(map, reg, val);
2297			if (ret) {
2298				dev_err(map->dev,
2299				"Error in caching of register: %x ret: %d\n",
2300								reg, ret);
2301				return ret;
2302			}
2303		}
2304		if (map->cache_only) {
2305			map->cache_dirty = true;
2306			return 0;
2307		}
2308	}
2309
2310	WARN_ON(!map->bus);
2311
2312	for (i = 0; i < num_regs; i++) {
2313		unsigned int reg = regs[i].reg;
2314		struct regmap_range_node *range;
2315
2316		/* Coalesce all the writes between a page break or a delay
2317		 * in a sequence
2318		 */
2319		range = _regmap_range_lookup(map, reg);
2320		if (range || regs[i].delay_us) {
2321			size_t len = sizeof(struct reg_sequence)*num_regs;
2322			struct reg_sequence *base = kmemdup(regs, len,
2323							   GFP_KERNEL);
2324			if (!base)
2325				return -ENOMEM;
2326			ret = _regmap_range_multi_paged_reg_write(map, base,
2327								  num_regs);
2328			kfree(base);
2329
2330			return ret;
2331		}
2332	}
2333	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2334}
2335
2336/**
2337 * regmap_multi_reg_write() - Write multiple registers to the device
2338 *
2339 * @map: Register map to write to
2340 * @regs: Array of structures containing register,value to be written
2341 * @num_regs: Number of registers to write
2342 *
2343 * Write multiple registers to the device where the set of register, value
2344 * pairs are supplied in any order, possibly not all in a single range.
2345 *
2346 * The 'normal' block write mode will send ultimately send data on the
2347 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2348 * addressed. However, this alternative block multi write mode will send
2349 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2350 * must of course support the mode.
2351 *
2352 * A value of zero will be returned on success, a negative errno will be
2353 * returned in error cases.
2354 */
2355int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2356			   int num_regs)
2357{
2358	int ret;
2359
2360	map->lock(map->lock_arg);
2361
2362	ret = _regmap_multi_reg_write(map, regs, num_regs);
2363
2364	map->unlock(map->lock_arg);
2365
2366	return ret;
2367}
2368EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2369
2370/**
2371 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2372 *                                     device but not the cache
2373 *
2374 * @map: Register map to write to
2375 * @regs: Array of structures containing register,value to be written
2376 * @num_regs: Number of registers to write
2377 *
2378 * Write multiple registers to the device but not the cache where the set
2379 * of register are supplied in any order.
2380 *
2381 * This function is intended to be used for writing a large block of data
2382 * atomically to the device in single transfer for those I2C client devices
2383 * that implement this alternative block write mode.
2384 *
2385 * A value of zero will be returned on success, a negative errno will
2386 * be returned in error cases.
2387 */
2388int regmap_multi_reg_write_bypassed(struct regmap *map,
2389				    const struct reg_sequence *regs,
2390				    int num_regs)
2391{
2392	int ret;
2393	bool bypass;
2394
2395	map->lock(map->lock_arg);
2396
2397	bypass = map->cache_bypass;
2398	map->cache_bypass = true;
2399
2400	ret = _regmap_multi_reg_write(map, regs, num_regs);
2401
2402	map->cache_bypass = bypass;
2403
2404	map->unlock(map->lock_arg);
2405
2406	return ret;
2407}
2408EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2409
2410/**
2411 * regmap_raw_write_async() - Write raw values to one or more registers
2412 *                            asynchronously
2413 *
2414 * @map: Register map to write to
2415 * @reg: Initial register to write to
2416 * @val: Block of data to be written, laid out for direct transmission to the
2417 *       device.  Must be valid until regmap_async_complete() is called.
2418 * @val_len: Length of data pointed to by val.
2419 *
2420 * This function is intended to be used for things like firmware
2421 * download where a large block of data needs to be transferred to the
2422 * device.  No formatting will be done on the data provided.
2423 *
2424 * If supported by the underlying bus the write will be scheduled
2425 * asynchronously, helping maximise I/O speed on higher speed buses
2426 * like SPI.  regmap_async_complete() can be called to ensure that all
2427 * asynchrnous writes have been completed.
2428 *
2429 * A value of zero will be returned on success, a negative errno will
2430 * be returned in error cases.
2431 */
2432int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2433			   const void *val, size_t val_len)
2434{
2435	int ret;
2436
2437	if (val_len % map->format.val_bytes)
2438		return -EINVAL;
2439	if (!IS_ALIGNED(reg, map->reg_stride))
2440		return -EINVAL;
2441
2442	map->lock(map->lock_arg);
2443
2444	map->async = true;
2445
2446	ret = _regmap_raw_write(map, reg, val, val_len);
2447
2448	map->async = false;
2449
2450	map->unlock(map->lock_arg);
2451
2452	return ret;
2453}
2454EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2455
2456static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2457			    unsigned int val_len)
2458{
2459	struct regmap_range_node *range;
2460	int ret;
2461
2462	WARN_ON(!map->bus);
2463
2464	if (!map->bus || !map->bus->read)
2465		return -EINVAL;
2466
2467	range = _regmap_range_lookup(map, reg);
2468	if (range) {
2469		ret = _regmap_select_page(map, &reg, range,
2470					  val_len / map->format.val_bytes);
2471		if (ret != 0)
2472			return ret;
2473	}
2474
2475	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2476	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2477				      map->read_flag_mask);
2478	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2479
2480	ret = map->bus->read(map->bus_context, map->work_buf,
2481			     map->format.reg_bytes + map->format.pad_bytes,
2482			     val, val_len);
2483
2484	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2485
2486	return ret;
2487}
2488
2489static int _regmap_bus_reg_read(void *context, unsigned int reg,
2490				unsigned int *val)
2491{
2492	struct regmap *map = context;
2493
2494	return map->bus->reg_read(map->bus_context, reg, val);
2495}
2496
2497static int _regmap_bus_read(void *context, unsigned int reg,
2498			    unsigned int *val)
2499{
2500	int ret;
2501	struct regmap *map = context;
2502	void *work_val = map->work_buf + map->format.reg_bytes +
2503		map->format.pad_bytes;
2504
2505	if (!map->format.parse_val)
2506		return -EINVAL;
2507
2508	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2509	if (ret == 0)
2510		*val = map->format.parse_val(work_val);
2511
2512	return ret;
2513}
2514
2515static int _regmap_read(struct regmap *map, unsigned int reg,
2516			unsigned int *val)
2517{
2518	int ret;
2519	void *context = _regmap_map_get_context(map);
2520
2521	if (!map->cache_bypass) {
2522		ret = regcache_read(map, reg, val);
2523		if (ret == 0)
2524			return 0;
2525	}
2526
2527	if (map->cache_only)
2528		return -EBUSY;
2529
2530	if (!regmap_readable(map, reg))
2531		return -EIO;
2532
2533	ret = map->reg_read(context, reg, val);
2534	if (ret == 0) {
2535		if (regmap_should_log(map))
2536			dev_info(map->dev, "%x => %x\n", reg, *val);
2537
2538		trace_regmap_reg_read(map, reg, *val);
2539
2540		if (!map->cache_bypass)
2541			regcache_write(map, reg, *val);
2542	}
2543
2544	return ret;
2545}
2546
2547/**
2548 * regmap_read() - Read a value from a single register
2549 *
2550 * @map: Register map to read from
2551 * @reg: Register to be read from
2552 * @val: Pointer to store read value
2553 *
2554 * A value of zero will be returned on success, a negative errno will
2555 * be returned in error cases.
2556 */
2557int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2558{
2559	int ret;
2560
2561	if (!IS_ALIGNED(reg, map->reg_stride))
2562		return -EINVAL;
2563
2564	map->lock(map->lock_arg);
2565
2566	ret = _regmap_read(map, reg, val);
2567
2568	map->unlock(map->lock_arg);
2569
2570	return ret;
2571}
2572EXPORT_SYMBOL_GPL(regmap_read);
2573
2574/**
2575 * regmap_raw_read() - Read raw data from the device
2576 *
2577 * @map: Register map to read from
2578 * @reg: First register to be read from
2579 * @val: Pointer to store read value
2580 * @val_len: Size of data to read
2581 *
2582 * A value of zero will be returned on success, a negative errno will
2583 * be returned in error cases.
2584 */
2585int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2586		    size_t val_len)
2587{
2588	size_t val_bytes = map->format.val_bytes;
2589	size_t val_count = val_len / val_bytes;
2590	unsigned int v;
2591	int ret, i;
2592
2593	if (!map->bus)
2594		return -EINVAL;
2595	if (val_len % map->format.val_bytes)
2596		return -EINVAL;
2597	if (!IS_ALIGNED(reg, map->reg_stride))
2598		return -EINVAL;
2599	if (val_count == 0)
2600		return -EINVAL;
2601
2602	map->lock(map->lock_arg);
2603
2604	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2605	    map->cache_type == REGCACHE_NONE) {
2606		size_t chunk_count, chunk_bytes;
2607		size_t chunk_regs = val_count;
2608
2609		if (!map->bus->read) {
2610			ret = -ENOTSUPP;
2611			goto out;
2612		}
2613
2614		if (map->use_single_read)
2615			chunk_regs = 1;
2616		else if (map->max_raw_read && val_len > map->max_raw_read)
2617			chunk_regs = map->max_raw_read / val_bytes;
2618
2619		chunk_count = val_count / chunk_regs;
2620		chunk_bytes = chunk_regs * val_bytes;
2621
2622		/* Read bytes that fit into whole chunks */
2623		for (i = 0; i < chunk_count; i++) {
2624			ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2625			if (ret != 0)
2626				goto out;
2627
2628			reg += regmap_get_offset(map, chunk_regs);
2629			val += chunk_bytes;
2630			val_len -= chunk_bytes;
2631		}
2632
2633		/* Read remaining bytes */
2634		if (val_len) {
2635			ret = _regmap_raw_read(map, reg, val, val_len);
2636			if (ret != 0)
2637				goto out;
2638		}
2639	} else {
2640		/* Otherwise go word by word for the cache; should be low
2641		 * cost as we expect to hit the cache.
2642		 */
2643		for (i = 0; i < val_count; i++) {
2644			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2645					   &v);
2646			if (ret != 0)
2647				goto out;
2648
2649			map->format.format_val(val + (i * val_bytes), v, 0);
2650		}
2651	}
2652
2653 out:
2654	map->unlock(map->lock_arg);
2655
2656	return ret;
2657}
2658EXPORT_SYMBOL_GPL(regmap_raw_read);
2659
2660/**
2661 * regmap_noinc_read(): Read data from a register without incrementing the
2662 *			register number
2663 *
2664 * @map: Register map to read from
2665 * @reg: Register to read from
2666 * @val: Pointer to data buffer
2667 * @val_len: Length of output buffer in bytes.
2668 *
2669 * The regmap API usually assumes that bulk bus read operations will read a
2670 * range of registers. Some devices have certain registers for which a read
2671 * operation read will read from an internal FIFO.
2672 *
2673 * The target register must be volatile but registers after it can be
2674 * completely unrelated cacheable registers.
2675 *
2676 * This will attempt multiple reads as required to read val_len bytes.
2677 *
2678 * A value of zero will be returned on success, a negative errno will be
2679 * returned in error cases.
2680 */
2681int regmap_noinc_read(struct regmap *map, unsigned int reg,
2682		      void *val, size_t val_len)
2683{
2684	size_t read_len;
2685	int ret;
2686
2687	if (!map->bus)
2688		return -EINVAL;
2689	if (!map->bus->read)
2690		return -ENOTSUPP;
2691	if (val_len % map->format.val_bytes)
2692		return -EINVAL;
2693	if (!IS_ALIGNED(reg, map->reg_stride))
2694		return -EINVAL;
2695	if (val_len == 0)
2696		return -EINVAL;
2697
2698	map->lock(map->lock_arg);
2699
2700	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2701		ret = -EINVAL;
2702		goto out_unlock;
2703	}
2704
2705	while (val_len) {
2706		if (map->max_raw_read && map->max_raw_read < val_len)
2707			read_len = map->max_raw_read;
2708		else
2709			read_len = val_len;
2710		ret = _regmap_raw_read(map, reg, val, read_len);
2711		if (ret)
2712			goto out_unlock;
2713		val = ((u8 *)val) + read_len;
2714		val_len -= read_len;
2715	}
2716
2717out_unlock:
2718	map->unlock(map->lock_arg);
2719	return ret;
2720}
2721EXPORT_SYMBOL_GPL(regmap_noinc_read);
2722
2723/**
2724 * regmap_field_read(): Read a value to a single register field
2725 *
2726 * @field: Register field to read from
2727 * @val: Pointer to store read value
2728 *
2729 * A value of zero will be returned on success, a negative errno will
2730 * be returned in error cases.
2731 */
2732int regmap_field_read(struct regmap_field *field, unsigned int *val)
2733{
2734	int ret;
2735	unsigned int reg_val;
2736	ret = regmap_read(field->regmap, field->reg, &reg_val);
2737	if (ret != 0)
2738		return ret;
2739
2740	reg_val &= field->mask;
2741	reg_val >>= field->shift;
2742	*val = reg_val;
2743
2744	return ret;
2745}
2746EXPORT_SYMBOL_GPL(regmap_field_read);
2747
2748/**
2749 * regmap_fields_read() - Read a value to a single register field with port ID
2750 *
2751 * @field: Register field to read from
2752 * @id: port ID
2753 * @val: Pointer to store read value
2754 *
2755 * A value of zero will be returned on success, a negative errno will
2756 * be returned in error cases.
2757 */
2758int regmap_fields_read(struct regmap_field *field, unsigned int id,
2759		       unsigned int *val)
2760{
2761	int ret;
2762	unsigned int reg_val;
2763
2764	if (id >= field->id_size)
2765		return -EINVAL;
2766
2767	ret = regmap_read(field->regmap,
2768			  field->reg + (field->id_offset * id),
2769			  &reg_val);
2770	if (ret != 0)
2771		return ret;
2772
2773	reg_val &= field->mask;
2774	reg_val >>= field->shift;
2775	*val = reg_val;
2776
2777	return ret;
2778}
2779EXPORT_SYMBOL_GPL(regmap_fields_read);
2780
2781/**
2782 * regmap_bulk_read() - Read multiple registers from the device
2783 *
2784 * @map: Register map to read from
2785 * @reg: First register to be read from
2786 * @val: Pointer to store read value, in native register size for device
2787 * @val_count: Number of registers to read
2788 *
2789 * A value of zero will be returned on success, a negative errno will
2790 * be returned in error cases.
2791 */
2792int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2793		     size_t val_count)
2794{
2795	int ret, i;
2796	size_t val_bytes = map->format.val_bytes;
2797	bool vol = regmap_volatile_range(map, reg, val_count);
2798
2799	if (!IS_ALIGNED(reg, map->reg_stride))
2800		return -EINVAL;
2801	if (val_count == 0)
2802		return -EINVAL;
2803
2804	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2805		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2806		if (ret != 0)
2807			return ret;
2808
2809		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2810			map->format.parse_inplace(val + i);
2811	} else {
2812#ifdef CONFIG_64BIT
2813		u64 *u64 = val;
2814#endif
2815		u32 *u32 = val;
2816		u16 *u16 = val;
2817		u8 *u8 = val;
2818
2819		map->lock(map->lock_arg);
2820
2821		for (i = 0; i < val_count; i++) {
2822			unsigned int ival;
2823
2824			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2825					   &ival);
2826			if (ret != 0)
2827				goto out;
2828
2829			switch (map->format.val_bytes) {
2830#ifdef CONFIG_64BIT
2831			case 8:
2832				u64[i] = ival;
2833				break;
2834#endif
2835			case 4:
2836				u32[i] = ival;
2837				break;
2838			case 2:
2839				u16[i] = ival;
2840				break;
2841			case 1:
2842				u8[i] = ival;
2843				break;
2844			default:
2845				ret = -EINVAL;
2846				goto out;
2847			}
2848		}
2849
2850out:
2851		map->unlock(map->lock_arg);
2852	}
2853
2854	return ret;
2855}
2856EXPORT_SYMBOL_GPL(regmap_bulk_read);
2857
2858static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2859			       unsigned int mask, unsigned int val,
2860			       bool *change, bool force_write)
2861{
2862	int ret;
2863	unsigned int tmp, orig;
2864
2865	if (change)
2866		*change = false;
2867
2868	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2869		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2870		if (ret == 0 && change)
2871			*change = true;
2872	} else {
2873		ret = _regmap_read(map, reg, &orig);
2874		if (ret != 0)
2875			return ret;
2876
2877		tmp = orig & ~mask;
2878		tmp |= val & mask;
2879
2880		if (force_write || (tmp != orig)) {
2881			ret = _regmap_write(map, reg, tmp);
2882			if (ret == 0 && change)
2883				*change = true;
2884		}
2885	}
2886
2887	return ret;
2888}
2889
2890/**
2891 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2892 *
2893 * @map: Register map to update
2894 * @reg: Register to update
2895 * @mask: Bitmask to change
2896 * @val: New value for bitmask
2897 * @change: Boolean indicating if a write was done
2898 * @async: Boolean indicating asynchronously
2899 * @force: Boolean indicating use force update
2900 *
2901 * Perform a read/modify/write cycle on a register map with change, async, force
2902 * options.
2903 *
2904 * If async is true:
2905 *
2906 * With most buses the read must be done synchronously so this is most useful
2907 * for devices with a cache which do not need to interact with the hardware to
2908 * determine the current register value.
2909 *
2910 * Returns zero for success, a negative number on error.
2911 */
2912int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2913			    unsigned int mask, unsigned int val,
2914			    bool *change, bool async, bool force)
2915{
2916	int ret;
2917
2918	map->lock(map->lock_arg);
2919
2920	map->async = async;
2921
2922	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2923
2924	map->async = false;
2925
2926	map->unlock(map->lock_arg);
2927
2928	return ret;
2929}
2930EXPORT_SYMBOL_GPL(regmap_update_bits_base);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2931
2932void regmap_async_complete_cb(struct regmap_async *async, int ret)
2933{
2934	struct regmap *map = async->map;
2935	bool wake;
2936
2937	trace_regmap_async_io_complete(map);
2938
2939	spin_lock(&map->async_lock);
2940	list_move(&async->list, &map->async_free);
2941	wake = list_empty(&map->async_list);
2942
2943	if (ret != 0)
2944		map->async_ret = ret;
2945
2946	spin_unlock(&map->async_lock);
2947
2948	if (wake)
2949		wake_up(&map->async_waitq);
2950}
2951EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2952
2953static int regmap_async_is_done(struct regmap *map)
2954{
2955	unsigned long flags;
2956	int ret;
2957
2958	spin_lock_irqsave(&map->async_lock, flags);
2959	ret = list_empty(&map->async_list);
2960	spin_unlock_irqrestore(&map->async_lock, flags);
2961
2962	return ret;
2963}
2964
2965/**
2966 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2967 *
2968 * @map: Map to operate on.
2969 *
2970 * Blocks until any pending asynchronous I/O has completed.  Returns
2971 * an error code for any failed I/O operations.
2972 */
2973int regmap_async_complete(struct regmap *map)
2974{
2975	unsigned long flags;
2976	int ret;
2977
2978	/* Nothing to do with no async support */
2979	if (!map->bus || !map->bus->async_write)
2980		return 0;
2981
2982	trace_regmap_async_complete_start(map);
2983
2984	wait_event(map->async_waitq, regmap_async_is_done(map));
2985
2986	spin_lock_irqsave(&map->async_lock, flags);
2987	ret = map->async_ret;
2988	map->async_ret = 0;
2989	spin_unlock_irqrestore(&map->async_lock, flags);
2990
2991	trace_regmap_async_complete_done(map);
2992
2993	return ret;
2994}
2995EXPORT_SYMBOL_GPL(regmap_async_complete);
2996
2997/**
2998 * regmap_register_patch - Register and apply register updates to be applied
2999 *                         on device initialistion
3000 *
3001 * @map: Register map to apply updates to.
3002 * @regs: Values to update.
3003 * @num_regs: Number of entries in regs.
3004 *
3005 * Register a set of register updates to be applied to the device
3006 * whenever the device registers are synchronised with the cache and
3007 * apply them immediately.  Typically this is used to apply
3008 * corrections to be applied to the device defaults on startup, such
3009 * as the updates some vendors provide to undocumented registers.
3010 *
3011 * The caller must ensure that this function cannot be called
3012 * concurrently with either itself or regcache_sync().
3013 */
3014int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3015			  int num_regs)
3016{
3017	struct reg_sequence *p;
3018	int ret;
3019	bool bypass;
3020
3021	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3022	    num_regs))
3023		return 0;
3024
3025	p = krealloc(map->patch,
3026		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3027		     GFP_KERNEL);
3028	if (p) {
3029		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3030		map->patch = p;
3031		map->patch_regs += num_regs;
3032	} else {
3033		return -ENOMEM;
3034	}
3035
3036	map->lock(map->lock_arg);
3037
3038	bypass = map->cache_bypass;
3039
3040	map->cache_bypass = true;
3041	map->async = true;
3042
3043	ret = _regmap_multi_reg_write(map, regs, num_regs);
3044
3045	map->async = false;
3046	map->cache_bypass = bypass;
3047
3048	map->unlock(map->lock_arg);
3049
3050	regmap_async_complete(map);
3051
3052	return ret;
3053}
3054EXPORT_SYMBOL_GPL(regmap_register_patch);
3055
3056/**
3057 * regmap_get_val_bytes() - Report the size of a register value
3058 *
3059 * @map: Register map to operate on.
3060 *
3061 * Report the size of a register value, mainly intended to for use by
3062 * generic infrastructure built on top of regmap.
3063 */
3064int regmap_get_val_bytes(struct regmap *map)
3065{
3066	if (map->format.format_write)
3067		return -EINVAL;
3068
3069	return map->format.val_bytes;
3070}
3071EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3072
3073/**
3074 * regmap_get_max_register() - Report the max register value
3075 *
3076 * @map: Register map to operate on.
3077 *
3078 * Report the max register value, mainly intended to for use by
3079 * generic infrastructure built on top of regmap.
3080 */
3081int regmap_get_max_register(struct regmap *map)
3082{
3083	return map->max_register ? map->max_register : -EINVAL;
3084}
3085EXPORT_SYMBOL_GPL(regmap_get_max_register);
3086
3087/**
3088 * regmap_get_reg_stride() - Report the register address stride
3089 *
3090 * @map: Register map to operate on.
3091 *
3092 * Report the register address stride, mainly intended to for use by
3093 * generic infrastructure built on top of regmap.
3094 */
3095int regmap_get_reg_stride(struct regmap *map)
3096{
3097	return map->reg_stride;
3098}
3099EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3100
3101int regmap_parse_val(struct regmap *map, const void *buf,
3102			unsigned int *val)
3103{
3104	if (!map->format.parse_val)
3105		return -EINVAL;
3106
3107	*val = map->format.parse_val(buf);
3108
3109	return 0;
3110}
3111EXPORT_SYMBOL_GPL(regmap_parse_val);
3112
3113static int __init regmap_initcall(void)
3114{
3115	regmap_debugfs_initcall();
3116
3117	return 0;
3118}
3119postcore_initcall(regmap_initcall);