Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/cpufreq.h>
  13#include <linux/device.h>
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/string.h>
  20#include <linux/kdev_t.h>
  21#include <linux/notifier.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/genhd.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/netdevice.h>
  28#include <linux/sched/signal.h>
  29#include <linux/sched/mm.h>
  30#include <linux/sysfs.h>
  31#include <linux/dma-map-ops.h> /* for dma_default_coherent */
  32
  33#include "base.h"
  34#include "power/power.h"
  35
  36#ifdef CONFIG_SYSFS_DEPRECATED
  37#ifdef CONFIG_SYSFS_DEPRECATED_V2
  38long sysfs_deprecated = 1;
  39#else
  40long sysfs_deprecated = 0;
  41#endif
  42static int __init sysfs_deprecated_setup(char *arg)
  43{
  44	return kstrtol(arg, 10, &sysfs_deprecated);
  45}
  46early_param("sysfs.deprecated", sysfs_deprecated_setup);
  47#endif
  48
  49/* Device links support. */
  50static LIST_HEAD(deferred_sync);
  51static unsigned int defer_sync_state_count = 1;
  52static DEFINE_MUTEX(fwnode_link_lock);
  53static bool fw_devlink_is_permissive(void);
  54static bool fw_devlink_drv_reg_done;
  55
  56/**
  57 * fwnode_link_add - Create a link between two fwnode_handles.
  58 * @con: Consumer end of the link.
  59 * @sup: Supplier end of the link.
  60 *
  61 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
  62 * represents the detail that the firmware lists @sup fwnode as supplying a
  63 * resource to @con.
  64 *
  65 * The driver core will use the fwnode link to create a device link between the
  66 * two device objects corresponding to @con and @sup when they are created. The
  67 * driver core will automatically delete the fwnode link between @con and @sup
  68 * after doing that.
  69 *
  70 * Attempts to create duplicate links between the same pair of fwnode handles
  71 * are ignored and there is no reference counting.
  72 */
  73int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
  74{
  75	struct fwnode_link *link;
  76	int ret = 0;
  77
  78	mutex_lock(&fwnode_link_lock);
  79
  80	list_for_each_entry(link, &sup->consumers, s_hook)
  81		if (link->consumer == con)
  82			goto out;
  83
  84	link = kzalloc(sizeof(*link), GFP_KERNEL);
  85	if (!link) {
  86		ret = -ENOMEM;
  87		goto out;
  88	}
  89
  90	link->supplier = sup;
  91	INIT_LIST_HEAD(&link->s_hook);
  92	link->consumer = con;
  93	INIT_LIST_HEAD(&link->c_hook);
  94
  95	list_add(&link->s_hook, &sup->consumers);
  96	list_add(&link->c_hook, &con->suppliers);
  97out:
  98	mutex_unlock(&fwnode_link_lock);
  99
 100	return ret;
 101}
 102
 103/**
 104 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
 105 * @fwnode: fwnode whose supplier links need to be deleted
 106 *
 107 * Deletes all supplier links connecting directly to @fwnode.
 108 */
 109static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
 110{
 111	struct fwnode_link *link, *tmp;
 112
 113	mutex_lock(&fwnode_link_lock);
 114	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
 115		list_del(&link->s_hook);
 116		list_del(&link->c_hook);
 117		kfree(link);
 118	}
 119	mutex_unlock(&fwnode_link_lock);
 120}
 121
 122/**
 123 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
 124 * @fwnode: fwnode whose consumer links need to be deleted
 125 *
 126 * Deletes all consumer links connecting directly to @fwnode.
 127 */
 128static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
 129{
 130	struct fwnode_link *link, *tmp;
 131
 132	mutex_lock(&fwnode_link_lock);
 133	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
 134		list_del(&link->s_hook);
 135		list_del(&link->c_hook);
 136		kfree(link);
 137	}
 138	mutex_unlock(&fwnode_link_lock);
 139}
 140
 141/**
 142 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
 143 * @fwnode: fwnode whose links needs to be deleted
 144 *
 145 * Deletes all links connecting directly to a fwnode.
 146 */
 147void fwnode_links_purge(struct fwnode_handle *fwnode)
 148{
 149	fwnode_links_purge_suppliers(fwnode);
 150	fwnode_links_purge_consumers(fwnode);
 151}
 152
 153void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
 154{
 155	struct fwnode_handle *child;
 156
 157	/* Don't purge consumer links of an added child */
 158	if (fwnode->dev)
 159		return;
 160
 161	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
 162	fwnode_links_purge_consumers(fwnode);
 163
 164	fwnode_for_each_available_child_node(fwnode, child)
 165		fw_devlink_purge_absent_suppliers(child);
 166}
 167EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
 168
 169#ifdef CONFIG_SRCU
 170static DEFINE_MUTEX(device_links_lock);
 171DEFINE_STATIC_SRCU(device_links_srcu);
 172
 173static inline void device_links_write_lock(void)
 174{
 175	mutex_lock(&device_links_lock);
 176}
 177
 178static inline void device_links_write_unlock(void)
 179{
 180	mutex_unlock(&device_links_lock);
 181}
 182
 183int device_links_read_lock(void) __acquires(&device_links_srcu)
 184{
 185	return srcu_read_lock(&device_links_srcu);
 186}
 187
 188void device_links_read_unlock(int idx) __releases(&device_links_srcu)
 189{
 190	srcu_read_unlock(&device_links_srcu, idx);
 191}
 192
 193int device_links_read_lock_held(void)
 194{
 195	return srcu_read_lock_held(&device_links_srcu);
 196}
 197
 198static void device_link_synchronize_removal(void)
 199{
 200	synchronize_srcu(&device_links_srcu);
 201}
 202
 203static void device_link_remove_from_lists(struct device_link *link)
 204{
 205	list_del_rcu(&link->s_node);
 206	list_del_rcu(&link->c_node);
 207}
 208#else /* !CONFIG_SRCU */
 209static DECLARE_RWSEM(device_links_lock);
 210
 211static inline void device_links_write_lock(void)
 212{
 213	down_write(&device_links_lock);
 214}
 215
 216static inline void device_links_write_unlock(void)
 217{
 218	up_write(&device_links_lock);
 219}
 220
 221int device_links_read_lock(void)
 222{
 223	down_read(&device_links_lock);
 224	return 0;
 225}
 226
 227void device_links_read_unlock(int not_used)
 228{
 229	up_read(&device_links_lock);
 230}
 231
 232#ifdef CONFIG_DEBUG_LOCK_ALLOC
 233int device_links_read_lock_held(void)
 234{
 235	return lockdep_is_held(&device_links_lock);
 236}
 237#endif
 238
 239static inline void device_link_synchronize_removal(void)
 240{
 241}
 242
 243static void device_link_remove_from_lists(struct device_link *link)
 244{
 245	list_del(&link->s_node);
 246	list_del(&link->c_node);
 247}
 248#endif /* !CONFIG_SRCU */
 249
 250static bool device_is_ancestor(struct device *dev, struct device *target)
 251{
 252	while (target->parent) {
 253		target = target->parent;
 254		if (dev == target)
 255			return true;
 256	}
 257	return false;
 258}
 259
 260/**
 261 * device_is_dependent - Check if one device depends on another one
 262 * @dev: Device to check dependencies for.
 263 * @target: Device to check against.
 264 *
 265 * Check if @target depends on @dev or any device dependent on it (its child or
 266 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 267 */
 268int device_is_dependent(struct device *dev, void *target)
 269{
 270	struct device_link *link;
 271	int ret;
 272
 273	/*
 274	 * The "ancestors" check is needed to catch the case when the target
 275	 * device has not been completely initialized yet and it is still
 276	 * missing from the list of children of its parent device.
 277	 */
 278	if (dev == target || device_is_ancestor(dev, target))
 279		return 1;
 280
 281	ret = device_for_each_child(dev, target, device_is_dependent);
 282	if (ret)
 283		return ret;
 284
 285	list_for_each_entry(link, &dev->links.consumers, s_node) {
 286		if ((link->flags & ~DL_FLAG_INFERRED) ==
 287		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 288			continue;
 289
 290		if (link->consumer == target)
 291			return 1;
 292
 293		ret = device_is_dependent(link->consumer, target);
 294		if (ret)
 295			break;
 296	}
 297	return ret;
 298}
 299
 300static void device_link_init_status(struct device_link *link,
 301				    struct device *consumer,
 302				    struct device *supplier)
 303{
 304	switch (supplier->links.status) {
 305	case DL_DEV_PROBING:
 306		switch (consumer->links.status) {
 307		case DL_DEV_PROBING:
 308			/*
 309			 * A consumer driver can create a link to a supplier
 310			 * that has not completed its probing yet as long as it
 311			 * knows that the supplier is already functional (for
 312			 * example, it has just acquired some resources from the
 313			 * supplier).
 314			 */
 315			link->status = DL_STATE_CONSUMER_PROBE;
 316			break;
 317		default:
 318			link->status = DL_STATE_DORMANT;
 319			break;
 320		}
 321		break;
 322	case DL_DEV_DRIVER_BOUND:
 323		switch (consumer->links.status) {
 324		case DL_DEV_PROBING:
 325			link->status = DL_STATE_CONSUMER_PROBE;
 326			break;
 327		case DL_DEV_DRIVER_BOUND:
 328			link->status = DL_STATE_ACTIVE;
 329			break;
 330		default:
 331			link->status = DL_STATE_AVAILABLE;
 332			break;
 333		}
 334		break;
 335	case DL_DEV_UNBINDING:
 336		link->status = DL_STATE_SUPPLIER_UNBIND;
 337		break;
 338	default:
 339		link->status = DL_STATE_DORMANT;
 340		break;
 341	}
 342}
 343
 344static int device_reorder_to_tail(struct device *dev, void *not_used)
 345{
 346	struct device_link *link;
 347
 348	/*
 349	 * Devices that have not been registered yet will be put to the ends
 350	 * of the lists during the registration, so skip them here.
 351	 */
 352	if (device_is_registered(dev))
 353		devices_kset_move_last(dev);
 354
 355	if (device_pm_initialized(dev))
 356		device_pm_move_last(dev);
 357
 358	device_for_each_child(dev, NULL, device_reorder_to_tail);
 359	list_for_each_entry(link, &dev->links.consumers, s_node) {
 360		if ((link->flags & ~DL_FLAG_INFERRED) ==
 361		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 362			continue;
 363		device_reorder_to_tail(link->consumer, NULL);
 364	}
 365
 366	return 0;
 367}
 368
 369/**
 370 * device_pm_move_to_tail - Move set of devices to the end of device lists
 371 * @dev: Device to move
 372 *
 373 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 374 *
 375 * It moves the @dev along with all of its children and all of its consumers
 376 * to the ends of the device_kset and dpm_list, recursively.
 377 */
 378void device_pm_move_to_tail(struct device *dev)
 379{
 380	int idx;
 381
 382	idx = device_links_read_lock();
 383	device_pm_lock();
 384	device_reorder_to_tail(dev, NULL);
 385	device_pm_unlock();
 386	device_links_read_unlock(idx);
 387}
 388
 389#define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
 390
 391static ssize_t status_show(struct device *dev,
 392			   struct device_attribute *attr, char *buf)
 393{
 394	const char *output;
 395
 396	switch (to_devlink(dev)->status) {
 397	case DL_STATE_NONE:
 398		output = "not tracked";
 399		break;
 400	case DL_STATE_DORMANT:
 401		output = "dormant";
 402		break;
 403	case DL_STATE_AVAILABLE:
 404		output = "available";
 405		break;
 406	case DL_STATE_CONSUMER_PROBE:
 407		output = "consumer probing";
 408		break;
 409	case DL_STATE_ACTIVE:
 410		output = "active";
 411		break;
 412	case DL_STATE_SUPPLIER_UNBIND:
 413		output = "supplier unbinding";
 414		break;
 415	default:
 416		output = "unknown";
 417		break;
 418	}
 419
 420	return sysfs_emit(buf, "%s\n", output);
 421}
 422static DEVICE_ATTR_RO(status);
 423
 424static ssize_t auto_remove_on_show(struct device *dev,
 425				   struct device_attribute *attr, char *buf)
 426{
 427	struct device_link *link = to_devlink(dev);
 428	const char *output;
 429
 430	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 431		output = "supplier unbind";
 432	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 433		output = "consumer unbind";
 434	else
 435		output = "never";
 436
 437	return sysfs_emit(buf, "%s\n", output);
 438}
 439static DEVICE_ATTR_RO(auto_remove_on);
 440
 441static ssize_t runtime_pm_show(struct device *dev,
 442			       struct device_attribute *attr, char *buf)
 443{
 444	struct device_link *link = to_devlink(dev);
 445
 446	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
 447}
 448static DEVICE_ATTR_RO(runtime_pm);
 449
 450static ssize_t sync_state_only_show(struct device *dev,
 451				    struct device_attribute *attr, char *buf)
 452{
 453	struct device_link *link = to_devlink(dev);
 454
 455	return sysfs_emit(buf, "%d\n",
 456			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 457}
 458static DEVICE_ATTR_RO(sync_state_only);
 459
 460static struct attribute *devlink_attrs[] = {
 461	&dev_attr_status.attr,
 462	&dev_attr_auto_remove_on.attr,
 463	&dev_attr_runtime_pm.attr,
 464	&dev_attr_sync_state_only.attr,
 465	NULL,
 466};
 467ATTRIBUTE_GROUPS(devlink);
 468
 469static void device_link_release_fn(struct work_struct *work)
 470{
 471	struct device_link *link = container_of(work, struct device_link, rm_work);
 472
 473	/* Ensure that all references to the link object have been dropped. */
 474	device_link_synchronize_removal();
 475
 476	while (refcount_dec_not_one(&link->rpm_active))
 477		pm_runtime_put(link->supplier);
 478
 479	put_device(link->consumer);
 480	put_device(link->supplier);
 481	kfree(link);
 482}
 483
 484static void devlink_dev_release(struct device *dev)
 485{
 486	struct device_link *link = to_devlink(dev);
 487
 488	INIT_WORK(&link->rm_work, device_link_release_fn);
 489	/*
 490	 * It may take a while to complete this work because of the SRCU
 491	 * synchronization in device_link_release_fn() and if the consumer or
 492	 * supplier devices get deleted when it runs, so put it into the "long"
 493	 * workqueue.
 494	 */
 495	queue_work(system_long_wq, &link->rm_work);
 496}
 497
 498static struct class devlink_class = {
 499	.name = "devlink",
 500	.owner = THIS_MODULE,
 501	.dev_groups = devlink_groups,
 502	.dev_release = devlink_dev_release,
 503};
 504
 505static int devlink_add_symlinks(struct device *dev,
 506				struct class_interface *class_intf)
 507{
 508	int ret;
 509	size_t len;
 510	struct device_link *link = to_devlink(dev);
 511	struct device *sup = link->supplier;
 512	struct device *con = link->consumer;
 513	char *buf;
 514
 515	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 516		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 517	len += strlen(":");
 518	len += strlen("supplier:") + 1;
 519	buf = kzalloc(len, GFP_KERNEL);
 520	if (!buf)
 521		return -ENOMEM;
 522
 523	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
 524	if (ret)
 525		goto out;
 526
 527	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
 528	if (ret)
 529		goto err_con;
 530
 531	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 532	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
 533	if (ret)
 534		goto err_con_dev;
 535
 536	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 537	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
 538	if (ret)
 539		goto err_sup_dev;
 540
 541	goto out;
 542
 543err_sup_dev:
 544	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 545	sysfs_remove_link(&sup->kobj, buf);
 546err_con_dev:
 547	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 548err_con:
 549	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 550out:
 551	kfree(buf);
 552	return ret;
 553}
 554
 555static void devlink_remove_symlinks(struct device *dev,
 556				   struct class_interface *class_intf)
 557{
 558	struct device_link *link = to_devlink(dev);
 559	size_t len;
 560	struct device *sup = link->supplier;
 561	struct device *con = link->consumer;
 562	char *buf;
 563
 564	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 565	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 566
 567	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 568		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 569	len += strlen(":");
 570	len += strlen("supplier:") + 1;
 571	buf = kzalloc(len, GFP_KERNEL);
 572	if (!buf) {
 573		WARN(1, "Unable to properly free device link symlinks!\n");
 574		return;
 575	}
 576
 577	if (device_is_registered(con)) {
 578		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 579		sysfs_remove_link(&con->kobj, buf);
 580	}
 581	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 582	sysfs_remove_link(&sup->kobj, buf);
 583	kfree(buf);
 584}
 585
 586static struct class_interface devlink_class_intf = {
 587	.class = &devlink_class,
 588	.add_dev = devlink_add_symlinks,
 589	.remove_dev = devlink_remove_symlinks,
 590};
 591
 592static int __init devlink_class_init(void)
 593{
 594	int ret;
 595
 596	ret = class_register(&devlink_class);
 597	if (ret)
 598		return ret;
 599
 600	ret = class_interface_register(&devlink_class_intf);
 601	if (ret)
 602		class_unregister(&devlink_class);
 603
 604	return ret;
 605}
 606postcore_initcall(devlink_class_init);
 607
 608#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 609			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
 610			       DL_FLAG_AUTOPROBE_CONSUMER  | \
 611			       DL_FLAG_SYNC_STATE_ONLY | \
 612			       DL_FLAG_INFERRED)
 613
 614#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 615			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 616
 617/**
 618 * device_link_add - Create a link between two devices.
 619 * @consumer: Consumer end of the link.
 620 * @supplier: Supplier end of the link.
 621 * @flags: Link flags.
 622 *
 623 * The caller is responsible for the proper synchronization of the link creation
 624 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 625 * runtime PM framework to take the link into account.  Second, if the
 626 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 627 * be forced into the active meta state and reference-counted upon the creation
 628 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 629 * ignored.
 630 *
 631 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 632 * expected to release the link returned by it directly with the help of either
 633 * device_link_del() or device_link_remove().
 634 *
 635 * If that flag is not set, however, the caller of this function is handing the
 636 * management of the link over to the driver core entirely and its return value
 637 * can only be used to check whether or not the link is present.  In that case,
 638 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 639 * flags can be used to indicate to the driver core when the link can be safely
 640 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 641 * that the link is not going to be used (by the given caller of this function)
 642 * after unbinding the consumer or supplier driver, respectively, from its
 643 * device, so the link can be deleted at that point.  If none of them is set,
 644 * the link will be maintained until one of the devices pointed to by it (either
 645 * the consumer or the supplier) is unregistered.
 646 *
 647 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 648 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 649 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 650 * be used to request the driver core to automatically probe for a consumer
 651 * driver after successfully binding a driver to the supplier device.
 652 *
 653 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 654 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 655 * the same time is invalid and will cause NULL to be returned upfront.
 656 * However, if a device link between the given @consumer and @supplier pair
 657 * exists already when this function is called for them, the existing link will
 658 * be returned regardless of its current type and status (the link's flags may
 659 * be modified then).  The caller of this function is then expected to treat
 660 * the link as though it has just been created, so (in particular) if
 661 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 662 * explicitly when not needed any more (as stated above).
 663 *
 664 * A side effect of the link creation is re-ordering of dpm_list and the
 665 * devices_kset list by moving the consumer device and all devices depending
 666 * on it to the ends of these lists (that does not happen to devices that have
 667 * not been registered when this function is called).
 668 *
 669 * The supplier device is required to be registered when this function is called
 670 * and NULL will be returned if that is not the case.  The consumer device need
 671 * not be registered, however.
 672 */
 673struct device_link *device_link_add(struct device *consumer,
 674				    struct device *supplier, u32 flags)
 675{
 676	struct device_link *link;
 677
 678	if (!consumer || !supplier || consumer == supplier ||
 679	    flags & ~DL_ADD_VALID_FLAGS ||
 680	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 681	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
 682	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
 683	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 684	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 685		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 686		return NULL;
 687
 688	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 689		if (pm_runtime_get_sync(supplier) < 0) {
 690			pm_runtime_put_noidle(supplier);
 691			return NULL;
 692		}
 693	}
 694
 695	if (!(flags & DL_FLAG_STATELESS))
 696		flags |= DL_FLAG_MANAGED;
 697
 698	device_links_write_lock();
 699	device_pm_lock();
 700
 701	/*
 702	 * If the supplier has not been fully registered yet or there is a
 703	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
 704	 * the supplier already in the graph, return NULL. If the link is a
 705	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
 706	 * because it only affects sync_state() callbacks.
 707	 */
 708	if (!device_pm_initialized(supplier)
 709	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
 710		  device_is_dependent(consumer, supplier))) {
 711		link = NULL;
 712		goto out;
 713	}
 714
 715	/*
 716	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
 717	 * So, only create it if the consumer hasn't probed yet.
 718	 */
 719	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
 720	    consumer->links.status != DL_DEV_NO_DRIVER &&
 721	    consumer->links.status != DL_DEV_PROBING) {
 722		link = NULL;
 723		goto out;
 724	}
 725
 726	/*
 727	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 728	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 729	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 730	 */
 731	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 732		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 733
 734	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 735		if (link->consumer != consumer)
 736			continue;
 737
 738		if (link->flags & DL_FLAG_INFERRED &&
 739		    !(flags & DL_FLAG_INFERRED))
 740			link->flags &= ~DL_FLAG_INFERRED;
 741
 742		if (flags & DL_FLAG_PM_RUNTIME) {
 743			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 744				pm_runtime_new_link(consumer);
 745				link->flags |= DL_FLAG_PM_RUNTIME;
 746			}
 747			if (flags & DL_FLAG_RPM_ACTIVE)
 748				refcount_inc(&link->rpm_active);
 749		}
 750
 751		if (flags & DL_FLAG_STATELESS) {
 
 752			kref_get(&link->kref);
 753			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 754			    !(link->flags & DL_FLAG_STATELESS)) {
 755				link->flags |= DL_FLAG_STATELESS;
 756				goto reorder;
 757			} else {
 758				link->flags |= DL_FLAG_STATELESS;
 759				goto out;
 760			}
 761		}
 762
 763		/*
 764		 * If the life time of the link following from the new flags is
 765		 * longer than indicated by the flags of the existing link,
 766		 * update the existing link to stay around longer.
 767		 */
 768		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 769			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 770				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 771				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 772			}
 773		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 774			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 775					 DL_FLAG_AUTOREMOVE_SUPPLIER);
 776		}
 777		if (!(link->flags & DL_FLAG_MANAGED)) {
 778			kref_get(&link->kref);
 779			link->flags |= DL_FLAG_MANAGED;
 780			device_link_init_status(link, consumer, supplier);
 781		}
 782		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 783		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
 784			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
 785			goto reorder;
 786		}
 787
 788		goto out;
 789	}
 790
 791	link = kzalloc(sizeof(*link), GFP_KERNEL);
 792	if (!link)
 793		goto out;
 794
 795	refcount_set(&link->rpm_active, 1);
 796
 
 
 
 
 
 
 
 797	get_device(supplier);
 798	link->supplier = supplier;
 799	INIT_LIST_HEAD(&link->s_node);
 800	get_device(consumer);
 801	link->consumer = consumer;
 802	INIT_LIST_HEAD(&link->c_node);
 803	link->flags = flags;
 804	kref_init(&link->kref);
 805
 806	link->link_dev.class = &devlink_class;
 807	device_set_pm_not_required(&link->link_dev);
 808	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
 809		     dev_bus_name(supplier), dev_name(supplier),
 810		     dev_bus_name(consumer), dev_name(consumer));
 811	if (device_register(&link->link_dev)) {
 812		put_device(consumer);
 813		put_device(supplier);
 814		kfree(link);
 815		link = NULL;
 816		goto out;
 817	}
 818
 819	if (flags & DL_FLAG_PM_RUNTIME) {
 820		if (flags & DL_FLAG_RPM_ACTIVE)
 821			refcount_inc(&link->rpm_active);
 822
 823		pm_runtime_new_link(consumer);
 824	}
 825
 826	/* Determine the initial link state. */
 827	if (flags & DL_FLAG_STATELESS)
 828		link->status = DL_STATE_NONE;
 829	else
 830		device_link_init_status(link, consumer, supplier);
 831
 832	/*
 833	 * Some callers expect the link creation during consumer driver probe to
 834	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 835	 */
 836	if (link->status == DL_STATE_CONSUMER_PROBE &&
 837	    flags & DL_FLAG_PM_RUNTIME)
 838		pm_runtime_resume(supplier);
 839
 840	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 841	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 842
 843	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
 844		dev_dbg(consumer,
 845			"Linked as a sync state only consumer to %s\n",
 846			dev_name(supplier));
 847		goto out;
 848	}
 849
 850reorder:
 851	/*
 852	 * Move the consumer and all of the devices depending on it to the end
 853	 * of dpm_list and the devices_kset list.
 854	 *
 855	 * It is necessary to hold dpm_list locked throughout all that or else
 856	 * we may end up suspending with a wrong ordering of it.
 857	 */
 858	device_reorder_to_tail(consumer, NULL);
 859
 
 
 
 860	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 861
 862out:
 863	device_pm_unlock();
 864	device_links_write_unlock();
 865
 866	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 867		pm_runtime_put(supplier);
 868
 869	return link;
 870}
 871EXPORT_SYMBOL_GPL(device_link_add);
 872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873static void __device_link_del(struct kref *kref)
 874{
 875	struct device_link *link = container_of(kref, struct device_link, kref);
 876
 877	dev_dbg(link->consumer, "Dropping the link to %s\n",
 878		dev_name(link->supplier));
 879
 880	pm_runtime_drop_link(link);
 
 881
 882	device_link_remove_from_lists(link);
 883	device_unregister(&link->link_dev);
 
 884}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885
 886static void device_link_put_kref(struct device_link *link)
 887{
 888	if (link->flags & DL_FLAG_STATELESS)
 889		kref_put(&link->kref, __device_link_del);
 890	else if (!device_is_registered(link->consumer))
 891		__device_link_del(&link->kref);
 892	else
 893		WARN(1, "Unable to drop a managed device link reference\n");
 894}
 895
 896/**
 897 * device_link_del - Delete a stateless link between two devices.
 898 * @link: Device link to delete.
 899 *
 900 * The caller must ensure proper synchronization of this function with runtime
 901 * PM.  If the link was added multiple times, it needs to be deleted as often.
 902 * Care is required for hotplugged devices:  Their links are purged on removal
 903 * and calling device_link_del() is then no longer allowed.
 904 */
 905void device_link_del(struct device_link *link)
 906{
 907	device_links_write_lock();
 
 908	device_link_put_kref(link);
 
 909	device_links_write_unlock();
 910}
 911EXPORT_SYMBOL_GPL(device_link_del);
 912
 913/**
 914 * device_link_remove - Delete a stateless link between two devices.
 915 * @consumer: Consumer end of the link.
 916 * @supplier: Supplier end of the link.
 917 *
 918 * The caller must ensure proper synchronization of this function with runtime
 919 * PM.
 920 */
 921void device_link_remove(void *consumer, struct device *supplier)
 922{
 923	struct device_link *link;
 924
 925	if (WARN_ON(consumer == supplier))
 926		return;
 927
 928	device_links_write_lock();
 
 929
 930	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 931		if (link->consumer == consumer) {
 932			device_link_put_kref(link);
 933			break;
 934		}
 935	}
 936
 
 937	device_links_write_unlock();
 938}
 939EXPORT_SYMBOL_GPL(device_link_remove);
 940
 941static void device_links_missing_supplier(struct device *dev)
 942{
 943	struct device_link *link;
 944
 945	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 946		if (link->status != DL_STATE_CONSUMER_PROBE)
 947			continue;
 948
 949		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
 950			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 951		} else {
 952			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 953			WRITE_ONCE(link->status, DL_STATE_DORMANT);
 954		}
 955	}
 956}
 957
 958/**
 959 * device_links_check_suppliers - Check presence of supplier drivers.
 960 * @dev: Consumer device.
 961 *
 962 * Check links from this device to any suppliers.  Walk the list of the device's
 963 * links to suppliers and see if all of them are available.  If not, simply
 964 * return -EPROBE_DEFER.
 965 *
 966 * We need to guarantee that the supplier will not go away after the check has
 967 * been positive here.  It only can go away in __device_release_driver() and
 968 * that function  checks the device's links to consumers.  This means we need to
 969 * mark the link as "consumer probe in progress" to make the supplier removal
 970 * wait for us to complete (or bad things may happen).
 971 *
 972 * Links without the DL_FLAG_MANAGED flag set are ignored.
 973 */
 974int device_links_check_suppliers(struct device *dev)
 975{
 976	struct device_link *link;
 977	int ret = 0;
 978
 979	/*
 980	 * Device waiting for supplier to become available is not allowed to
 981	 * probe.
 982	 */
 983	mutex_lock(&fwnode_link_lock);
 984	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
 985	    !fw_devlink_is_permissive()) {
 986		dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n",
 987			list_first_entry(&dev->fwnode->suppliers,
 988			struct fwnode_link,
 989			c_hook)->supplier);
 990		mutex_unlock(&fwnode_link_lock);
 991		return -EPROBE_DEFER;
 992	}
 993	mutex_unlock(&fwnode_link_lock);
 994
 995	device_links_write_lock();
 996
 997	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 998		if (!(link->flags & DL_FLAG_MANAGED))
 999			continue;
1000
1001		if (link->status != DL_STATE_AVAILABLE &&
1002		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1003			device_links_missing_supplier(dev);
1004			dev_dbg(dev, "probe deferral - supplier %s not ready\n",
1005				dev_name(link->supplier));
1006			ret = -EPROBE_DEFER;
1007			break;
1008		}
1009		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1010	}
1011	dev->links.status = DL_DEV_PROBING;
1012
1013	device_links_write_unlock();
1014	return ret;
1015}
1016
1017/**
1018 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1019 * @dev: Device to call sync_state() on
1020 * @list: List head to queue the @dev on
1021 *
1022 * Queues a device for a sync_state() callback when the device links write lock
1023 * isn't held. This allows the sync_state() execution flow to use device links
1024 * APIs.  The caller must ensure this function is called with
1025 * device_links_write_lock() held.
1026 *
1027 * This function does a get_device() to make sure the device is not freed while
1028 * on this list.
1029 *
1030 * So the caller must also ensure that device_links_flush_sync_list() is called
1031 * as soon as the caller releases device_links_write_lock().  This is necessary
1032 * to make sure the sync_state() is called in a timely fashion and the
1033 * put_device() is called on this device.
1034 */
1035static void __device_links_queue_sync_state(struct device *dev,
1036					    struct list_head *list)
1037{
1038	struct device_link *link;
1039
1040	if (!dev_has_sync_state(dev))
1041		return;
1042	if (dev->state_synced)
1043		return;
1044
1045	list_for_each_entry(link, &dev->links.consumers, s_node) {
1046		if (!(link->flags & DL_FLAG_MANAGED))
1047			continue;
1048		if (link->status != DL_STATE_ACTIVE)
1049			return;
1050	}
1051
1052	/*
1053	 * Set the flag here to avoid adding the same device to a list more
1054	 * than once. This can happen if new consumers get added to the device
1055	 * and probed before the list is flushed.
1056	 */
1057	dev->state_synced = true;
1058
1059	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1060		return;
1061
1062	get_device(dev);
1063	list_add_tail(&dev->links.defer_sync, list);
1064}
1065
1066/**
1067 * device_links_flush_sync_list - Call sync_state() on a list of devices
1068 * @list: List of devices to call sync_state() on
1069 * @dont_lock_dev: Device for which lock is already held by the caller
1070 *
1071 * Calls sync_state() on all the devices that have been queued for it. This
1072 * function is used in conjunction with __device_links_queue_sync_state(). The
1073 * @dont_lock_dev parameter is useful when this function is called from a
1074 * context where a device lock is already held.
1075 */
1076static void device_links_flush_sync_list(struct list_head *list,
1077					 struct device *dont_lock_dev)
1078{
1079	struct device *dev, *tmp;
1080
1081	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1082		list_del_init(&dev->links.defer_sync);
1083
1084		if (dev != dont_lock_dev)
1085			device_lock(dev);
1086
1087		if (dev->bus->sync_state)
1088			dev->bus->sync_state(dev);
1089		else if (dev->driver && dev->driver->sync_state)
1090			dev->driver->sync_state(dev);
1091
1092		if (dev != dont_lock_dev)
1093			device_unlock(dev);
1094
1095		put_device(dev);
1096	}
1097}
1098
1099void device_links_supplier_sync_state_pause(void)
1100{
1101	device_links_write_lock();
1102	defer_sync_state_count++;
1103	device_links_write_unlock();
1104}
1105
1106void device_links_supplier_sync_state_resume(void)
1107{
1108	struct device *dev, *tmp;
1109	LIST_HEAD(sync_list);
1110
1111	device_links_write_lock();
1112	if (!defer_sync_state_count) {
1113		WARN(true, "Unmatched sync_state pause/resume!");
1114		goto out;
1115	}
1116	defer_sync_state_count--;
1117	if (defer_sync_state_count)
1118		goto out;
1119
1120	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1121		/*
1122		 * Delete from deferred_sync list before queuing it to
1123		 * sync_list because defer_sync is used for both lists.
1124		 */
1125		list_del_init(&dev->links.defer_sync);
1126		__device_links_queue_sync_state(dev, &sync_list);
1127	}
1128out:
1129	device_links_write_unlock();
1130
1131	device_links_flush_sync_list(&sync_list, NULL);
1132}
1133
1134static int sync_state_resume_initcall(void)
1135{
1136	device_links_supplier_sync_state_resume();
1137	return 0;
1138}
1139late_initcall(sync_state_resume_initcall);
1140
1141static void __device_links_supplier_defer_sync(struct device *sup)
1142{
1143	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1144		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1145}
1146
1147static void device_link_drop_managed(struct device_link *link)
1148{
1149	link->flags &= ~DL_FLAG_MANAGED;
1150	WRITE_ONCE(link->status, DL_STATE_NONE);
1151	kref_put(&link->kref, __device_link_del);
1152}
1153
1154static ssize_t waiting_for_supplier_show(struct device *dev,
1155					 struct device_attribute *attr,
1156					 char *buf)
1157{
1158	bool val;
1159
1160	device_lock(dev);
1161	val = !list_empty(&dev->fwnode->suppliers);
1162	device_unlock(dev);
1163	return sysfs_emit(buf, "%u\n", val);
1164}
1165static DEVICE_ATTR_RO(waiting_for_supplier);
1166
1167/**
1168 * device_links_force_bind - Prepares device to be force bound
1169 * @dev: Consumer device.
1170 *
1171 * device_bind_driver() force binds a device to a driver without calling any
1172 * driver probe functions. So the consumer really isn't going to wait for any
1173 * supplier before it's bound to the driver. We still want the device link
1174 * states to be sensible when this happens.
1175 *
1176 * In preparation for device_bind_driver(), this function goes through each
1177 * supplier device links and checks if the supplier is bound. If it is, then
1178 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1179 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1180 */
1181void device_links_force_bind(struct device *dev)
1182{
1183	struct device_link *link, *ln;
1184
1185	device_links_write_lock();
1186
1187	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1188		if (!(link->flags & DL_FLAG_MANAGED))
1189			continue;
1190
1191		if (link->status != DL_STATE_AVAILABLE) {
1192			device_link_drop_managed(link);
1193			continue;
1194		}
1195		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1196	}
1197	dev->links.status = DL_DEV_PROBING;
1198
1199	device_links_write_unlock();
1200}
1201
1202/**
1203 * device_links_driver_bound - Update device links after probing its driver.
1204 * @dev: Device to update the links for.
1205 *
1206 * The probe has been successful, so update links from this device to any
1207 * consumers by changing their status to "available".
1208 *
1209 * Also change the status of @dev's links to suppliers to "active".
1210 *
1211 * Links without the DL_FLAG_MANAGED flag set are ignored.
1212 */
1213void device_links_driver_bound(struct device *dev)
1214{
1215	struct device_link *link, *ln;
1216	LIST_HEAD(sync_list);
1217
1218	/*
1219	 * If a device binds successfully, it's expected to have created all
1220	 * the device links it needs to or make new device links as it needs
1221	 * them. So, fw_devlink no longer needs to create device links to any
1222	 * of the device's suppliers.
1223	 *
1224	 * Also, if a child firmware node of this bound device is not added as
1225	 * a device by now, assume it is never going to be added and make sure
1226	 * other devices don't defer probe indefinitely by waiting for such a
1227	 * child device.
1228	 */
1229	if (dev->fwnode && dev->fwnode->dev == dev) {
1230		struct fwnode_handle *child;
1231		fwnode_links_purge_suppliers(dev->fwnode);
1232		fwnode_for_each_available_child_node(dev->fwnode, child)
1233			fw_devlink_purge_absent_suppliers(child);
1234	}
1235	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1236
1237	device_links_write_lock();
1238
1239	list_for_each_entry(link, &dev->links.consumers, s_node) {
1240		if (!(link->flags & DL_FLAG_MANAGED))
1241			continue;
1242
1243		/*
1244		 * Links created during consumer probe may be in the "consumer
1245		 * probe" state to start with if the supplier is still probing
1246		 * when they are created and they may become "active" if the
1247		 * consumer probe returns first.  Skip them here.
1248		 */
1249		if (link->status == DL_STATE_CONSUMER_PROBE ||
1250		    link->status == DL_STATE_ACTIVE)
1251			continue;
1252
1253		WARN_ON(link->status != DL_STATE_DORMANT);
1254		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1255
1256		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1257			driver_deferred_probe_add(link->consumer);
1258	}
1259
1260	if (defer_sync_state_count)
1261		__device_links_supplier_defer_sync(dev);
1262	else
1263		__device_links_queue_sync_state(dev, &sync_list);
1264
1265	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1266		struct device *supplier;
1267
1268		if (!(link->flags & DL_FLAG_MANAGED))
1269			continue;
1270
1271		supplier = link->supplier;
1272		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1273			/*
1274			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1275			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1276			 * save to drop the managed link completely.
1277			 */
1278			device_link_drop_managed(link);
1279		} else {
1280			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1281			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1282		}
1283
1284		/*
1285		 * This needs to be done even for the deleted
1286		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1287		 * device link that was preventing the supplier from getting a
1288		 * sync_state() call.
1289		 */
1290		if (defer_sync_state_count)
1291			__device_links_supplier_defer_sync(supplier);
1292		else
1293			__device_links_queue_sync_state(supplier, &sync_list);
1294	}
1295
1296	dev->links.status = DL_DEV_DRIVER_BOUND;
1297
1298	device_links_write_unlock();
 
1299
1300	device_links_flush_sync_list(&sync_list, dev);
 
 
 
 
1301}
1302
1303/**
1304 * __device_links_no_driver - Update links of a device without a driver.
1305 * @dev: Device without a drvier.
1306 *
1307 * Delete all non-persistent links from this device to any suppliers.
1308 *
1309 * Persistent links stay around, but their status is changed to "available",
1310 * unless they already are in the "supplier unbind in progress" state in which
1311 * case they need not be updated.
1312 *
1313 * Links without the DL_FLAG_MANAGED flag set are ignored.
1314 */
1315static void __device_links_no_driver(struct device *dev)
1316{
1317	struct device_link *link, *ln;
1318
1319	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1320		if (!(link->flags & DL_FLAG_MANAGED))
1321			continue;
1322
1323		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1324			device_link_drop_managed(link);
1325			continue;
1326		}
1327
1328		if (link->status != DL_STATE_CONSUMER_PROBE &&
1329		    link->status != DL_STATE_ACTIVE)
1330			continue;
1331
1332		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1333			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1334		} else {
1335			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1336			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1337		}
1338	}
1339
1340	dev->links.status = DL_DEV_NO_DRIVER;
1341}
1342
1343/**
1344 * device_links_no_driver - Update links after failing driver probe.
1345 * @dev: Device whose driver has just failed to probe.
1346 *
1347 * Clean up leftover links to consumers for @dev and invoke
1348 * %__device_links_no_driver() to update links to suppliers for it as
1349 * appropriate.
1350 *
1351 * Links without the DL_FLAG_MANAGED flag set are ignored.
1352 */
1353void device_links_no_driver(struct device *dev)
1354{
1355	struct device_link *link;
1356
1357	device_links_write_lock();
1358
1359	list_for_each_entry(link, &dev->links.consumers, s_node) {
1360		if (!(link->flags & DL_FLAG_MANAGED))
1361			continue;
1362
1363		/*
1364		 * The probe has failed, so if the status of the link is
1365		 * "consumer probe" or "active", it must have been added by
1366		 * a probing consumer while this device was still probing.
1367		 * Change its state to "dormant", as it represents a valid
1368		 * relationship, but it is not functionally meaningful.
1369		 */
1370		if (link->status == DL_STATE_CONSUMER_PROBE ||
1371		    link->status == DL_STATE_ACTIVE)
1372			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1373	}
1374
1375	__device_links_no_driver(dev);
1376
1377	device_links_write_unlock();
1378}
1379
1380/**
1381 * device_links_driver_cleanup - Update links after driver removal.
1382 * @dev: Device whose driver has just gone away.
1383 *
1384 * Update links to consumers for @dev by changing their status to "dormant" and
1385 * invoke %__device_links_no_driver() to update links to suppliers for it as
1386 * appropriate.
1387 *
1388 * Links without the DL_FLAG_MANAGED flag set are ignored.
1389 */
1390void device_links_driver_cleanup(struct device *dev)
1391{
1392	struct device_link *link, *ln;
1393
1394	device_links_write_lock();
1395
1396	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1397		if (!(link->flags & DL_FLAG_MANAGED))
1398			continue;
1399
1400		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1401		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1402
1403		/*
1404		 * autoremove the links between this @dev and its consumer
1405		 * devices that are not active, i.e. where the link state
1406		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1407		 */
1408		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1409		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1410			device_link_drop_managed(link);
1411
1412		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1413	}
1414
1415	list_del_init(&dev->links.defer_sync);
1416	__device_links_no_driver(dev);
1417
1418	device_links_write_unlock();
1419}
1420
1421/**
1422 * device_links_busy - Check if there are any busy links to consumers.
1423 * @dev: Device to check.
1424 *
1425 * Check each consumer of the device and return 'true' if its link's status
1426 * is one of "consumer probe" or "active" (meaning that the given consumer is
1427 * probing right now or its driver is present).  Otherwise, change the link
1428 * state to "supplier unbind" to prevent the consumer from being probed
1429 * successfully going forward.
1430 *
1431 * Return 'false' if there are no probing or active consumers.
1432 *
1433 * Links without the DL_FLAG_MANAGED flag set are ignored.
1434 */
1435bool device_links_busy(struct device *dev)
1436{
1437	struct device_link *link;
1438	bool ret = false;
1439
1440	device_links_write_lock();
1441
1442	list_for_each_entry(link, &dev->links.consumers, s_node) {
1443		if (!(link->flags & DL_FLAG_MANAGED))
1444			continue;
1445
1446		if (link->status == DL_STATE_CONSUMER_PROBE
1447		    || link->status == DL_STATE_ACTIVE) {
1448			ret = true;
1449			break;
1450		}
1451		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1452	}
1453
1454	dev->links.status = DL_DEV_UNBINDING;
1455
1456	device_links_write_unlock();
1457	return ret;
1458}
1459
1460/**
1461 * device_links_unbind_consumers - Force unbind consumers of the given device.
1462 * @dev: Device to unbind the consumers of.
1463 *
1464 * Walk the list of links to consumers for @dev and if any of them is in the
1465 * "consumer probe" state, wait for all device probes in progress to complete
1466 * and start over.
1467 *
1468 * If that's not the case, change the status of the link to "supplier unbind"
1469 * and check if the link was in the "active" state.  If so, force the consumer
1470 * driver to unbind and start over (the consumer will not re-probe as we have
1471 * changed the state of the link already).
1472 *
1473 * Links without the DL_FLAG_MANAGED flag set are ignored.
1474 */
1475void device_links_unbind_consumers(struct device *dev)
1476{
1477	struct device_link *link;
1478
1479 start:
1480	device_links_write_lock();
1481
1482	list_for_each_entry(link, &dev->links.consumers, s_node) {
1483		enum device_link_state status;
1484
1485		if (!(link->flags & DL_FLAG_MANAGED) ||
1486		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1487			continue;
1488
1489		status = link->status;
1490		if (status == DL_STATE_CONSUMER_PROBE) {
1491			device_links_write_unlock();
1492
1493			wait_for_device_probe();
1494			goto start;
1495		}
1496		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1497		if (status == DL_STATE_ACTIVE) {
1498			struct device *consumer = link->consumer;
1499
1500			get_device(consumer);
1501
1502			device_links_write_unlock();
1503
1504			device_release_driver_internal(consumer, NULL,
1505						       consumer->parent);
1506			put_device(consumer);
1507			goto start;
1508		}
1509	}
1510
1511	device_links_write_unlock();
1512}
1513
1514/**
1515 * device_links_purge - Delete existing links to other devices.
1516 * @dev: Target device.
1517 */
1518static void device_links_purge(struct device *dev)
1519{
1520	struct device_link *link, *ln;
1521
1522	if (dev->class == &devlink_class)
1523		return;
1524
1525	/*
1526	 * Delete all of the remaining links from this device to any other
1527	 * devices (either consumers or suppliers).
1528	 */
1529	device_links_write_lock();
1530
1531	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1532		WARN_ON(link->status == DL_STATE_ACTIVE);
1533		__device_link_del(&link->kref);
1534	}
1535
1536	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1537		WARN_ON(link->status != DL_STATE_DORMANT &&
1538			link->status != DL_STATE_NONE);
1539		__device_link_del(&link->kref);
1540	}
1541
1542	device_links_write_unlock();
1543}
1544
1545#define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1546					 DL_FLAG_SYNC_STATE_ONLY)
1547#define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1548					 DL_FLAG_AUTOPROBE_CONSUMER)
1549#define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1550					 DL_FLAG_PM_RUNTIME)
1551
1552static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1553static int __init fw_devlink_setup(char *arg)
1554{
1555	if (!arg)
1556		return -EINVAL;
1557
1558	if (strcmp(arg, "off") == 0) {
1559		fw_devlink_flags = 0;
1560	} else if (strcmp(arg, "permissive") == 0) {
1561		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1562	} else if (strcmp(arg, "on") == 0) {
1563		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1564	} else if (strcmp(arg, "rpm") == 0) {
1565		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1566	}
1567	return 0;
1568}
1569early_param("fw_devlink", fw_devlink_setup);
1570
1571static bool fw_devlink_strict;
1572static int __init fw_devlink_strict_setup(char *arg)
1573{
1574	return strtobool(arg, &fw_devlink_strict);
1575}
1576early_param("fw_devlink.strict", fw_devlink_strict_setup);
1577
1578u32 fw_devlink_get_flags(void)
1579{
1580	return fw_devlink_flags;
1581}
1582
1583static bool fw_devlink_is_permissive(void)
1584{
1585	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1586}
1587
1588bool fw_devlink_is_strict(void)
1589{
1590	return fw_devlink_strict && !fw_devlink_is_permissive();
1591}
1592
1593static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1594{
1595	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1596		return;
1597
1598	fwnode_call_int_op(fwnode, add_links);
1599	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1600}
1601
1602static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1603{
1604	struct fwnode_handle *child = NULL;
1605
1606	fw_devlink_parse_fwnode(fwnode);
1607
1608	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1609		fw_devlink_parse_fwtree(child);
1610}
1611
1612static void fw_devlink_relax_link(struct device_link *link)
1613{
1614	if (!(link->flags & DL_FLAG_INFERRED))
1615		return;
1616
1617	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1618		return;
1619
1620	pm_runtime_drop_link(link);
1621	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1622	dev_dbg(link->consumer, "Relaxing link with %s\n",
1623		dev_name(link->supplier));
1624}
1625
1626static int fw_devlink_no_driver(struct device *dev, void *data)
1627{
1628	struct device_link *link = to_devlink(dev);
1629
1630	if (!link->supplier->can_match)
1631		fw_devlink_relax_link(link);
1632
1633	return 0;
1634}
1635
1636void fw_devlink_drivers_done(void)
1637{
1638	fw_devlink_drv_reg_done = true;
1639	device_links_write_lock();
1640	class_for_each_device(&devlink_class, NULL, NULL,
1641			      fw_devlink_no_driver);
1642	device_links_write_unlock();
1643}
1644
1645static void fw_devlink_unblock_consumers(struct device *dev)
1646{
1647	struct device_link *link;
1648
1649	if (!fw_devlink_flags || fw_devlink_is_permissive())
1650		return;
1651
1652	device_links_write_lock();
1653	list_for_each_entry(link, &dev->links.consumers, s_node)
1654		fw_devlink_relax_link(link);
1655	device_links_write_unlock();
1656}
1657
1658/**
1659 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1660 * @con: Device to check dependencies for.
1661 * @sup: Device to check against.
1662 *
1663 * Check if @sup depends on @con or any device dependent on it (its child or
1664 * its consumer etc).  When such a cyclic dependency is found, convert all
1665 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1666 * This is the equivalent of doing fw_devlink=permissive just between the
1667 * devices in the cycle. We need to do this because, at this point, fw_devlink
1668 * can't tell which of these dependencies is not a real dependency.
1669 *
1670 * Return 1 if a cycle is found. Otherwise, return 0.
1671 */
1672static int fw_devlink_relax_cycle(struct device *con, void *sup)
1673{
1674	struct device_link *link;
1675	int ret;
1676
1677	if (con == sup)
1678		return 1;
1679
1680	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1681	if (ret)
1682		return ret;
1683
1684	list_for_each_entry(link, &con->links.consumers, s_node) {
1685		if ((link->flags & ~DL_FLAG_INFERRED) ==
1686		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1687			continue;
1688
1689		if (!fw_devlink_relax_cycle(link->consumer, sup))
1690			continue;
1691
1692		ret = 1;
1693
1694		fw_devlink_relax_link(link);
1695	}
1696	return ret;
1697}
1698
1699/**
1700 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1701 * @con: consumer device for the device link
1702 * @sup_handle: fwnode handle of supplier
1703 * @flags: devlink flags
1704 *
1705 * This function will try to create a device link between the consumer device
1706 * @con and the supplier device represented by @sup_handle.
1707 *
1708 * The supplier has to be provided as a fwnode because incorrect cycles in
1709 * fwnode links can sometimes cause the supplier device to never be created.
1710 * This function detects such cases and returns an error if it cannot create a
1711 * device link from the consumer to a missing supplier.
1712 *
1713 * Returns,
1714 * 0 on successfully creating a device link
1715 * -EINVAL if the device link cannot be created as expected
1716 * -EAGAIN if the device link cannot be created right now, but it may be
1717 *  possible to do that in the future
1718 */
1719static int fw_devlink_create_devlink(struct device *con,
1720				     struct fwnode_handle *sup_handle, u32 flags)
1721{
1722	struct device *sup_dev;
1723	int ret = 0;
1724
1725	/*
1726	 * In some cases, a device P might also be a supplier to its child node
1727	 * C. However, this would defer the probe of C until the probe of P
1728	 * completes successfully. This is perfectly fine in the device driver
1729	 * model. device_add() doesn't guarantee probe completion of the device
1730	 * by the time it returns.
1731	 *
1732	 * However, there are a few drivers that assume C will finish probing
1733	 * as soon as it's added and before P finishes probing. So, we provide
1734	 * a flag to let fw_devlink know not to delay the probe of C until the
1735	 * probe of P completes successfully.
1736	 *
1737	 * When such a flag is set, we can't create device links where P is the
1738	 * supplier of C as that would delay the probe of C.
1739	 */
1740	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1741	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
1742		return -EINVAL;
1743
1744	sup_dev = get_dev_from_fwnode(sup_handle);
1745	if (sup_dev) {
1746		/*
1747		 * If it's one of those drivers that don't actually bind to
1748		 * their device using driver core, then don't wait on this
1749		 * supplier device indefinitely.
1750		 */
1751		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1752		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1753			ret = -EINVAL;
1754			goto out;
1755		}
1756
1757		/*
1758		 * If this fails, it is due to cycles in device links.  Just
1759		 * give up on this link and treat it as invalid.
1760		 */
1761		if (!device_link_add(con, sup_dev, flags) &&
1762		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1763			dev_info(con, "Fixing up cyclic dependency with %s\n",
1764				 dev_name(sup_dev));
1765			device_links_write_lock();
1766			fw_devlink_relax_cycle(con, sup_dev);
1767			device_links_write_unlock();
1768			device_link_add(con, sup_dev,
1769					FW_DEVLINK_FLAGS_PERMISSIVE);
1770			ret = -EINVAL;
1771		}
1772
1773		goto out;
1774	}
1775
1776	/* Supplier that's already initialized without a struct device. */
1777	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1778		return -EINVAL;
1779
1780	/*
1781	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1782	 * cycles. So cycle detection isn't necessary and shouldn't be
1783	 * done.
1784	 */
1785	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1786		return -EAGAIN;
1787
1788	/*
1789	 * If we can't find the supplier device from its fwnode, it might be
1790	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1791	 * be broken by applying logic. Check for these types of cycles and
1792	 * break them so that devices in the cycle probe properly.
1793	 *
1794	 * If the supplier's parent is dependent on the consumer, then the
1795	 * consumer and supplier have a cyclic dependency. Since fw_devlink
1796	 * can't tell which of the inferred dependencies are incorrect, don't
1797	 * enforce probe ordering between any of the devices in this cyclic
1798	 * dependency. Do this by relaxing all the fw_devlink device links in
1799	 * this cycle and by treating the fwnode link between the consumer and
1800	 * the supplier as an invalid dependency.
1801	 */
1802	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1803	if (sup_dev && device_is_dependent(con, sup_dev)) {
1804		dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1805			 sup_handle, dev_name(sup_dev));
1806		device_links_write_lock();
1807		fw_devlink_relax_cycle(con, sup_dev);
1808		device_links_write_unlock();
1809		ret = -EINVAL;
1810	} else {
1811		/*
1812		 * Can't check for cycles or no cycles. So let's try
1813		 * again later.
1814		 */
1815		ret = -EAGAIN;
1816	}
1817
1818out:
1819	put_device(sup_dev);
1820	return ret;
1821}
1822
1823/**
1824 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1825 * @dev: Device that needs to be linked to its consumers
1826 *
1827 * This function looks at all the consumer fwnodes of @dev and creates device
1828 * links between the consumer device and @dev (supplier).
1829 *
1830 * If the consumer device has not been added yet, then this function creates a
1831 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1832 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1833 * sync_state() callback before the real consumer device gets to be added and
1834 * then probed.
1835 *
1836 * Once device links are created from the real consumer to @dev (supplier), the
1837 * fwnode links are deleted.
1838 */
1839static void __fw_devlink_link_to_consumers(struct device *dev)
1840{
1841	struct fwnode_handle *fwnode = dev->fwnode;
1842	struct fwnode_link *link, *tmp;
1843
1844	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1845		u32 dl_flags = fw_devlink_get_flags();
1846		struct device *con_dev;
1847		bool own_link = true;
1848		int ret;
1849
1850		con_dev = get_dev_from_fwnode(link->consumer);
1851		/*
1852		 * If consumer device is not available yet, make a "proxy"
1853		 * SYNC_STATE_ONLY link from the consumer's parent device to
1854		 * the supplier device. This is necessary to make sure the
1855		 * supplier doesn't get a sync_state() callback before the real
1856		 * consumer can create a device link to the supplier.
1857		 *
1858		 * This proxy link step is needed to handle the case where the
1859		 * consumer's parent device is added before the supplier.
1860		 */
1861		if (!con_dev) {
1862			con_dev = fwnode_get_next_parent_dev(link->consumer);
1863			/*
1864			 * However, if the consumer's parent device is also the
1865			 * parent of the supplier, don't create a
1866			 * consumer-supplier link from the parent to its child
1867			 * device. Such a dependency is impossible.
1868			 */
1869			if (con_dev &&
1870			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1871				put_device(con_dev);
1872				con_dev = NULL;
1873			} else {
1874				own_link = false;
1875				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1876			}
1877		}
1878
1879		if (!con_dev)
1880			continue;
1881
1882		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1883		put_device(con_dev);
1884		if (!own_link || ret == -EAGAIN)
1885			continue;
1886
1887		list_del(&link->s_hook);
1888		list_del(&link->c_hook);
1889		kfree(link);
1890	}
1891}
1892
1893/**
1894 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1895 * @dev: The consumer device that needs to be linked to its suppliers
1896 * @fwnode: Root of the fwnode tree that is used to create device links
1897 *
1898 * This function looks at all the supplier fwnodes of fwnode tree rooted at
1899 * @fwnode and creates device links between @dev (consumer) and all the
1900 * supplier devices of the entire fwnode tree at @fwnode.
1901 *
1902 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1903 * and the real suppliers of @dev. Once these device links are created, the
1904 * fwnode links are deleted. When such device links are successfully created,
1905 * this function is called recursively on those supplier devices. This is
1906 * needed to detect and break some invalid cycles in fwnode links.  See
1907 * fw_devlink_create_devlink() for more details.
1908 *
1909 * In addition, it also looks at all the suppliers of the entire fwnode tree
1910 * because some of the child devices of @dev that have not been added yet
1911 * (because @dev hasn't probed) might already have their suppliers added to
1912 * driver core. So, this function creates SYNC_STATE_ONLY device links between
1913 * @dev (consumer) and these suppliers to make sure they don't execute their
1914 * sync_state() callbacks before these child devices have a chance to create
1915 * their device links. The fwnode links that correspond to the child devices
1916 * aren't delete because they are needed later to create the device links
1917 * between the real consumer and supplier devices.
1918 */
1919static void __fw_devlink_link_to_suppliers(struct device *dev,
1920					   struct fwnode_handle *fwnode)
1921{
1922	bool own_link = (dev->fwnode == fwnode);
1923	struct fwnode_link *link, *tmp;
1924	struct fwnode_handle *child = NULL;
1925	u32 dl_flags;
1926
1927	if (own_link)
1928		dl_flags = fw_devlink_get_flags();
1929	else
1930		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1931
1932	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1933		int ret;
1934		struct device *sup_dev;
1935		struct fwnode_handle *sup = link->supplier;
1936
1937		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1938		if (!own_link || ret == -EAGAIN)
1939			continue;
1940
1941		list_del(&link->s_hook);
1942		list_del(&link->c_hook);
1943		kfree(link);
1944
1945		/* If no device link was created, nothing more to do. */
1946		if (ret)
1947			continue;
1948
1949		/*
1950		 * If a device link was successfully created to a supplier, we
1951		 * now need to try and link the supplier to all its suppliers.
1952		 *
1953		 * This is needed to detect and delete false dependencies in
1954		 * fwnode links that haven't been converted to a device link
1955		 * yet. See comments in fw_devlink_create_devlink() for more
1956		 * details on the false dependency.
1957		 *
1958		 * Without deleting these false dependencies, some devices will
1959		 * never probe because they'll keep waiting for their false
1960		 * dependency fwnode links to be converted to device links.
1961		 */
1962		sup_dev = get_dev_from_fwnode(sup);
1963		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1964		put_device(sup_dev);
1965	}
1966
1967	/*
1968	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1969	 * all the descendants. This proxy link step is needed to handle the
1970	 * case where the supplier is added before the consumer's parent device
1971	 * (@dev).
1972	 */
1973	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1974		__fw_devlink_link_to_suppliers(dev, child);
1975}
1976
1977static void fw_devlink_link_device(struct device *dev)
1978{
1979	struct fwnode_handle *fwnode = dev->fwnode;
1980
1981	if (!fw_devlink_flags)
1982		return;
1983
1984	fw_devlink_parse_fwtree(fwnode);
1985
1986	mutex_lock(&fwnode_link_lock);
1987	__fw_devlink_link_to_consumers(dev);
1988	__fw_devlink_link_to_suppliers(dev, fwnode);
1989	mutex_unlock(&fwnode_link_lock);
1990}
1991
1992/* Device links support end. */
1993
1994int (*platform_notify)(struct device *dev) = NULL;
1995int (*platform_notify_remove)(struct device *dev) = NULL;
1996static struct kobject *dev_kobj;
1997struct kobject *sysfs_dev_char_kobj;
1998struct kobject *sysfs_dev_block_kobj;
1999
2000static DEFINE_MUTEX(device_hotplug_lock);
2001
2002void lock_device_hotplug(void)
2003{
2004	mutex_lock(&device_hotplug_lock);
2005}
2006
2007void unlock_device_hotplug(void)
2008{
2009	mutex_unlock(&device_hotplug_lock);
2010}
2011
2012int lock_device_hotplug_sysfs(void)
2013{
2014	if (mutex_trylock(&device_hotplug_lock))
2015		return 0;
2016
2017	/* Avoid busy looping (5 ms of sleep should do). */
2018	msleep(5);
2019	return restart_syscall();
2020}
2021
2022#ifdef CONFIG_BLOCK
2023static inline int device_is_not_partition(struct device *dev)
2024{
2025	return !(dev->type == &part_type);
2026}
2027#else
2028static inline int device_is_not_partition(struct device *dev)
2029{
2030	return 1;
2031}
2032#endif
2033
2034static int
2035device_platform_notify(struct device *dev, enum kobject_action action)
2036{
2037	int ret;
2038
2039	ret = acpi_platform_notify(dev, action);
2040	if (ret)
2041		return ret;
2042
2043	ret = software_node_notify(dev, action);
2044	if (ret)
2045		return ret;
2046
2047	if (platform_notify && action == KOBJ_ADD)
2048		platform_notify(dev);
2049	else if (platform_notify_remove && action == KOBJ_REMOVE)
2050		platform_notify_remove(dev);
2051	return 0;
2052}
2053
2054/**
2055 * dev_driver_string - Return a device's driver name, if at all possible
2056 * @dev: struct device to get the name of
2057 *
2058 * Will return the device's driver's name if it is bound to a device.  If
2059 * the device is not bound to a driver, it will return the name of the bus
2060 * it is attached to.  If it is not attached to a bus either, an empty
2061 * string will be returned.
2062 */
2063const char *dev_driver_string(const struct device *dev)
2064{
2065	struct device_driver *drv;
2066
2067	/* dev->driver can change to NULL underneath us because of unbinding,
2068	 * so be careful about accessing it.  dev->bus and dev->class should
2069	 * never change once they are set, so they don't need special care.
2070	 */
2071	drv = READ_ONCE(dev->driver);
2072	return drv ? drv->name : dev_bus_name(dev);
 
 
2073}
2074EXPORT_SYMBOL(dev_driver_string);
2075
2076#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2077
2078static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2079			     char *buf)
2080{
2081	struct device_attribute *dev_attr = to_dev_attr(attr);
2082	struct device *dev = kobj_to_dev(kobj);
2083	ssize_t ret = -EIO;
2084
2085	if (dev_attr->show)
2086		ret = dev_attr->show(dev, dev_attr, buf);
2087	if (ret >= (ssize_t)PAGE_SIZE) {
2088		printk("dev_attr_show: %pS returned bad count\n",
2089				dev_attr->show);
2090	}
2091	return ret;
2092}
2093
2094static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2095			      const char *buf, size_t count)
2096{
2097	struct device_attribute *dev_attr = to_dev_attr(attr);
2098	struct device *dev = kobj_to_dev(kobj);
2099	ssize_t ret = -EIO;
2100
2101	if (dev_attr->store)
2102		ret = dev_attr->store(dev, dev_attr, buf, count);
2103	return ret;
2104}
2105
2106static const struct sysfs_ops dev_sysfs_ops = {
2107	.show	= dev_attr_show,
2108	.store	= dev_attr_store,
2109};
2110
2111#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2112
2113ssize_t device_store_ulong(struct device *dev,
2114			   struct device_attribute *attr,
2115			   const char *buf, size_t size)
2116{
2117	struct dev_ext_attribute *ea = to_ext_attr(attr);
2118	int ret;
2119	unsigned long new;
2120
2121	ret = kstrtoul(buf, 0, &new);
2122	if (ret)
2123		return ret;
2124	*(unsigned long *)(ea->var) = new;
2125	/* Always return full write size even if we didn't consume all */
2126	return size;
2127}
2128EXPORT_SYMBOL_GPL(device_store_ulong);
2129
2130ssize_t device_show_ulong(struct device *dev,
2131			  struct device_attribute *attr,
2132			  char *buf)
2133{
2134	struct dev_ext_attribute *ea = to_ext_attr(attr);
2135	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2136}
2137EXPORT_SYMBOL_GPL(device_show_ulong);
2138
2139ssize_t device_store_int(struct device *dev,
2140			 struct device_attribute *attr,
2141			 const char *buf, size_t size)
2142{
2143	struct dev_ext_attribute *ea = to_ext_attr(attr);
2144	int ret;
2145	long new;
2146
2147	ret = kstrtol(buf, 0, &new);
2148	if (ret)
2149		return ret;
2150
2151	if (new > INT_MAX || new < INT_MIN)
2152		return -EINVAL;
2153	*(int *)(ea->var) = new;
2154	/* Always return full write size even if we didn't consume all */
2155	return size;
2156}
2157EXPORT_SYMBOL_GPL(device_store_int);
2158
2159ssize_t device_show_int(struct device *dev,
2160			struct device_attribute *attr,
2161			char *buf)
2162{
2163	struct dev_ext_attribute *ea = to_ext_attr(attr);
2164
2165	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2166}
2167EXPORT_SYMBOL_GPL(device_show_int);
2168
2169ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2170			  const char *buf, size_t size)
2171{
2172	struct dev_ext_attribute *ea = to_ext_attr(attr);
2173
2174	if (strtobool(buf, ea->var) < 0)
2175		return -EINVAL;
2176
2177	return size;
2178}
2179EXPORT_SYMBOL_GPL(device_store_bool);
2180
2181ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2182			 char *buf)
2183{
2184	struct dev_ext_attribute *ea = to_ext_attr(attr);
2185
2186	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2187}
2188EXPORT_SYMBOL_GPL(device_show_bool);
2189
2190/**
2191 * device_release - free device structure.
2192 * @kobj: device's kobject.
2193 *
2194 * This is called once the reference count for the object
2195 * reaches 0. We forward the call to the device's release
2196 * method, which should handle actually freeing the structure.
2197 */
2198static void device_release(struct kobject *kobj)
2199{
2200	struct device *dev = kobj_to_dev(kobj);
2201	struct device_private *p = dev->p;
2202
2203	/*
2204	 * Some platform devices are driven without driver attached
2205	 * and managed resources may have been acquired.  Make sure
2206	 * all resources are released.
2207	 *
2208	 * Drivers still can add resources into device after device
2209	 * is deleted but alive, so release devres here to avoid
2210	 * possible memory leak.
2211	 */
2212	devres_release_all(dev);
2213
2214	kfree(dev->dma_range_map);
2215
2216	if (dev->release)
2217		dev->release(dev);
2218	else if (dev->type && dev->type->release)
2219		dev->type->release(dev);
2220	else if (dev->class && dev->class->dev_release)
2221		dev->class->dev_release(dev);
2222	else
2223		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2224			dev_name(dev));
2225	kfree(p);
2226}
2227
2228static const void *device_namespace(struct kobject *kobj)
2229{
2230	struct device *dev = kobj_to_dev(kobj);
2231	const void *ns = NULL;
2232
2233	if (dev->class && dev->class->ns_type)
2234		ns = dev->class->namespace(dev);
2235
2236	return ns;
2237}
2238
2239static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2240{
2241	struct device *dev = kobj_to_dev(kobj);
2242
2243	if (dev->class && dev->class->get_ownership)
2244		dev->class->get_ownership(dev, uid, gid);
2245}
2246
2247static struct kobj_type device_ktype = {
2248	.release	= device_release,
2249	.sysfs_ops	= &dev_sysfs_ops,
2250	.namespace	= device_namespace,
2251	.get_ownership	= device_get_ownership,
2252};
2253
2254
2255static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2256{
2257	struct kobj_type *ktype = get_ktype(kobj);
2258
2259	if (ktype == &device_ktype) {
2260		struct device *dev = kobj_to_dev(kobj);
2261		if (dev->bus)
2262			return 1;
2263		if (dev->class)
2264			return 1;
2265	}
2266	return 0;
2267}
2268
2269static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2270{
2271	struct device *dev = kobj_to_dev(kobj);
2272
2273	if (dev->bus)
2274		return dev->bus->name;
2275	if (dev->class)
2276		return dev->class->name;
2277	return NULL;
2278}
2279
2280static int dev_uevent(struct kset *kset, struct kobject *kobj,
2281		      struct kobj_uevent_env *env)
2282{
2283	struct device *dev = kobj_to_dev(kobj);
2284	int retval = 0;
2285
2286	/* add device node properties if present */
2287	if (MAJOR(dev->devt)) {
2288		const char *tmp;
2289		const char *name;
2290		umode_t mode = 0;
2291		kuid_t uid = GLOBAL_ROOT_UID;
2292		kgid_t gid = GLOBAL_ROOT_GID;
2293
2294		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2295		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2296		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2297		if (name) {
2298			add_uevent_var(env, "DEVNAME=%s", name);
2299			if (mode)
2300				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2301			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2302				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2303			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2304				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2305			kfree(tmp);
2306		}
2307	}
2308
2309	if (dev->type && dev->type->name)
2310		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2311
2312	if (dev->driver)
2313		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2314
2315	/* Add common DT information about the device */
2316	of_device_uevent(dev, env);
2317
2318	/* have the bus specific function add its stuff */
2319	if (dev->bus && dev->bus->uevent) {
2320		retval = dev->bus->uevent(dev, env);
2321		if (retval)
2322			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2323				 dev_name(dev), __func__, retval);
2324	}
2325
2326	/* have the class specific function add its stuff */
2327	if (dev->class && dev->class->dev_uevent) {
2328		retval = dev->class->dev_uevent(dev, env);
2329		if (retval)
2330			pr_debug("device: '%s': %s: class uevent() "
2331				 "returned %d\n", dev_name(dev),
2332				 __func__, retval);
2333	}
2334
2335	/* have the device type specific function add its stuff */
2336	if (dev->type && dev->type->uevent) {
2337		retval = dev->type->uevent(dev, env);
2338		if (retval)
2339			pr_debug("device: '%s': %s: dev_type uevent() "
2340				 "returned %d\n", dev_name(dev),
2341				 __func__, retval);
2342	}
2343
2344	return retval;
2345}
2346
2347static const struct kset_uevent_ops device_uevent_ops = {
2348	.filter =	dev_uevent_filter,
2349	.name =		dev_uevent_name,
2350	.uevent =	dev_uevent,
2351};
2352
2353static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2354			   char *buf)
2355{
2356	struct kobject *top_kobj;
2357	struct kset *kset;
2358	struct kobj_uevent_env *env = NULL;
2359	int i;
2360	int len = 0;
2361	int retval;
2362
2363	/* search the kset, the device belongs to */
2364	top_kobj = &dev->kobj;
2365	while (!top_kobj->kset && top_kobj->parent)
2366		top_kobj = top_kobj->parent;
2367	if (!top_kobj->kset)
2368		goto out;
2369
2370	kset = top_kobj->kset;
2371	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2372		goto out;
2373
2374	/* respect filter */
2375	if (kset->uevent_ops && kset->uevent_ops->filter)
2376		if (!kset->uevent_ops->filter(kset, &dev->kobj))
2377			goto out;
2378
2379	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2380	if (!env)
2381		return -ENOMEM;
2382
2383	/* let the kset specific function add its keys */
2384	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2385	if (retval)
2386		goto out;
2387
2388	/* copy keys to file */
2389	for (i = 0; i < env->envp_idx; i++)
2390		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2391out:
2392	kfree(env);
2393	return len;
2394}
2395
2396static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2397			    const char *buf, size_t count)
2398{
2399	int rc;
2400
2401	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2402
2403	if (rc) {
2404		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2405		return rc;
2406	}
2407
2408	return count;
2409}
2410static DEVICE_ATTR_RW(uevent);
2411
2412static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2413			   char *buf)
2414{
2415	bool val;
2416
2417	device_lock(dev);
2418	val = !dev->offline;
2419	device_unlock(dev);
2420	return sysfs_emit(buf, "%u\n", val);
2421}
2422
2423static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2424			    const char *buf, size_t count)
2425{
2426	bool val;
2427	int ret;
2428
2429	ret = strtobool(buf, &val);
2430	if (ret < 0)
2431		return ret;
2432
2433	ret = lock_device_hotplug_sysfs();
2434	if (ret)
2435		return ret;
2436
2437	ret = val ? device_online(dev) : device_offline(dev);
2438	unlock_device_hotplug();
2439	return ret < 0 ? ret : count;
2440}
2441static DEVICE_ATTR_RW(online);
2442
2443static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2444			      char *buf)
2445{
2446	const char *loc;
2447
2448	switch (dev->removable) {
2449	case DEVICE_REMOVABLE:
2450		loc = "removable";
2451		break;
2452	case DEVICE_FIXED:
2453		loc = "fixed";
2454		break;
2455	default:
2456		loc = "unknown";
2457	}
2458	return sysfs_emit(buf, "%s\n", loc);
2459}
2460static DEVICE_ATTR_RO(removable);
2461
2462int device_add_groups(struct device *dev, const struct attribute_group **groups)
2463{
2464	return sysfs_create_groups(&dev->kobj, groups);
2465}
2466EXPORT_SYMBOL_GPL(device_add_groups);
2467
2468void device_remove_groups(struct device *dev,
2469			  const struct attribute_group **groups)
2470{
2471	sysfs_remove_groups(&dev->kobj, groups);
2472}
2473EXPORT_SYMBOL_GPL(device_remove_groups);
2474
2475union device_attr_group_devres {
2476	const struct attribute_group *group;
2477	const struct attribute_group **groups;
2478};
2479
2480static int devm_attr_group_match(struct device *dev, void *res, void *data)
2481{
2482	return ((union device_attr_group_devres *)res)->group == data;
2483}
2484
2485static void devm_attr_group_remove(struct device *dev, void *res)
2486{
2487	union device_attr_group_devres *devres = res;
2488	const struct attribute_group *group = devres->group;
2489
2490	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2491	sysfs_remove_group(&dev->kobj, group);
2492}
2493
2494static void devm_attr_groups_remove(struct device *dev, void *res)
2495{
2496	union device_attr_group_devres *devres = res;
2497	const struct attribute_group **groups = devres->groups;
2498
2499	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2500	sysfs_remove_groups(&dev->kobj, groups);
2501}
2502
2503/**
2504 * devm_device_add_group - given a device, create a managed attribute group
2505 * @dev:	The device to create the group for
2506 * @grp:	The attribute group to create
2507 *
2508 * This function creates a group for the first time.  It will explicitly
2509 * warn and error if any of the attribute files being created already exist.
2510 *
2511 * Returns 0 on success or error code on failure.
2512 */
2513int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2514{
2515	union device_attr_group_devres *devres;
2516	int error;
2517
2518	devres = devres_alloc(devm_attr_group_remove,
2519			      sizeof(*devres), GFP_KERNEL);
2520	if (!devres)
2521		return -ENOMEM;
2522
2523	error = sysfs_create_group(&dev->kobj, grp);
2524	if (error) {
2525		devres_free(devres);
2526		return error;
2527	}
2528
2529	devres->group = grp;
2530	devres_add(dev, devres);
2531	return 0;
2532}
2533EXPORT_SYMBOL_GPL(devm_device_add_group);
2534
2535/**
2536 * devm_device_remove_group: remove a managed group from a device
2537 * @dev:	device to remove the group from
2538 * @grp:	group to remove
2539 *
2540 * This function removes a group of attributes from a device. The attributes
2541 * previously have to have been created for this group, otherwise it will fail.
2542 */
2543void devm_device_remove_group(struct device *dev,
2544			      const struct attribute_group *grp)
2545{
2546	WARN_ON(devres_release(dev, devm_attr_group_remove,
2547			       devm_attr_group_match,
2548			       /* cast away const */ (void *)grp));
2549}
2550EXPORT_SYMBOL_GPL(devm_device_remove_group);
2551
2552/**
2553 * devm_device_add_groups - create a bunch of managed attribute groups
2554 * @dev:	The device to create the group for
2555 * @groups:	The attribute groups to create, NULL terminated
2556 *
2557 * This function creates a bunch of managed attribute groups.  If an error
2558 * occurs when creating a group, all previously created groups will be
2559 * removed, unwinding everything back to the original state when this
2560 * function was called.  It will explicitly warn and error if any of the
2561 * attribute files being created already exist.
2562 *
2563 * Returns 0 on success or error code from sysfs_create_group on failure.
2564 */
2565int devm_device_add_groups(struct device *dev,
2566			   const struct attribute_group **groups)
2567{
2568	union device_attr_group_devres *devres;
2569	int error;
2570
2571	devres = devres_alloc(devm_attr_groups_remove,
2572			      sizeof(*devres), GFP_KERNEL);
2573	if (!devres)
2574		return -ENOMEM;
2575
2576	error = sysfs_create_groups(&dev->kobj, groups);
2577	if (error) {
2578		devres_free(devres);
2579		return error;
2580	}
2581
2582	devres->groups = groups;
2583	devres_add(dev, devres);
2584	return 0;
2585}
2586EXPORT_SYMBOL_GPL(devm_device_add_groups);
2587
2588/**
2589 * devm_device_remove_groups - remove a list of managed groups
2590 *
2591 * @dev:	The device for the groups to be removed from
2592 * @groups:	NULL terminated list of groups to be removed
2593 *
2594 * If groups is not NULL, remove the specified groups from the device.
2595 */
2596void devm_device_remove_groups(struct device *dev,
2597			       const struct attribute_group **groups)
2598{
2599	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2600			       devm_attr_group_match,
2601			       /* cast away const */ (void *)groups));
2602}
2603EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2604
2605static int device_add_attrs(struct device *dev)
2606{
2607	struct class *class = dev->class;
2608	const struct device_type *type = dev->type;
2609	int error;
2610
2611	if (class) {
2612		error = device_add_groups(dev, class->dev_groups);
2613		if (error)
2614			return error;
2615	}
2616
2617	if (type) {
2618		error = device_add_groups(dev, type->groups);
2619		if (error)
2620			goto err_remove_class_groups;
2621	}
2622
2623	error = device_add_groups(dev, dev->groups);
2624	if (error)
2625		goto err_remove_type_groups;
2626
2627	if (device_supports_offline(dev) && !dev->offline_disabled) {
2628		error = device_create_file(dev, &dev_attr_online);
2629		if (error)
2630			goto err_remove_dev_groups;
2631	}
2632
2633	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2634		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2635		if (error)
2636			goto err_remove_dev_online;
2637	}
2638
2639	if (dev_removable_is_valid(dev)) {
2640		error = device_create_file(dev, &dev_attr_removable);
2641		if (error)
2642			goto err_remove_dev_waiting_for_supplier;
2643	}
2644
2645	return 0;
2646
2647 err_remove_dev_waiting_for_supplier:
2648	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2649 err_remove_dev_online:
2650	device_remove_file(dev, &dev_attr_online);
2651 err_remove_dev_groups:
2652	device_remove_groups(dev, dev->groups);
2653 err_remove_type_groups:
2654	if (type)
2655		device_remove_groups(dev, type->groups);
2656 err_remove_class_groups:
2657	if (class)
2658		device_remove_groups(dev, class->dev_groups);
2659
2660	return error;
2661}
2662
2663static void device_remove_attrs(struct device *dev)
2664{
2665	struct class *class = dev->class;
2666	const struct device_type *type = dev->type;
2667
2668	device_remove_file(dev, &dev_attr_removable);
2669	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2670	device_remove_file(dev, &dev_attr_online);
2671	device_remove_groups(dev, dev->groups);
2672
2673	if (type)
2674		device_remove_groups(dev, type->groups);
2675
2676	if (class)
2677		device_remove_groups(dev, class->dev_groups);
2678}
2679
2680static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2681			char *buf)
2682{
2683	return print_dev_t(buf, dev->devt);
2684}
2685static DEVICE_ATTR_RO(dev);
2686
2687/* /sys/devices/ */
2688struct kset *devices_kset;
2689
2690/**
2691 * devices_kset_move_before - Move device in the devices_kset's list.
2692 * @deva: Device to move.
2693 * @devb: Device @deva should come before.
2694 */
2695static void devices_kset_move_before(struct device *deva, struct device *devb)
2696{
2697	if (!devices_kset)
2698		return;
2699	pr_debug("devices_kset: Moving %s before %s\n",
2700		 dev_name(deva), dev_name(devb));
2701	spin_lock(&devices_kset->list_lock);
2702	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2703	spin_unlock(&devices_kset->list_lock);
2704}
2705
2706/**
2707 * devices_kset_move_after - Move device in the devices_kset's list.
2708 * @deva: Device to move
2709 * @devb: Device @deva should come after.
2710 */
2711static void devices_kset_move_after(struct device *deva, struct device *devb)
2712{
2713	if (!devices_kset)
2714		return;
2715	pr_debug("devices_kset: Moving %s after %s\n",
2716		 dev_name(deva), dev_name(devb));
2717	spin_lock(&devices_kset->list_lock);
2718	list_move(&deva->kobj.entry, &devb->kobj.entry);
2719	spin_unlock(&devices_kset->list_lock);
2720}
2721
2722/**
2723 * devices_kset_move_last - move the device to the end of devices_kset's list.
2724 * @dev: device to move
2725 */
2726void devices_kset_move_last(struct device *dev)
2727{
2728	if (!devices_kset)
2729		return;
2730	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2731	spin_lock(&devices_kset->list_lock);
2732	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2733	spin_unlock(&devices_kset->list_lock);
2734}
2735
2736/**
2737 * device_create_file - create sysfs attribute file for device.
2738 * @dev: device.
2739 * @attr: device attribute descriptor.
2740 */
2741int device_create_file(struct device *dev,
2742		       const struct device_attribute *attr)
2743{
2744	int error = 0;
2745
2746	if (dev) {
2747		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2748			"Attribute %s: write permission without 'store'\n",
2749			attr->attr.name);
2750		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2751			"Attribute %s: read permission without 'show'\n",
2752			attr->attr.name);
2753		error = sysfs_create_file(&dev->kobj, &attr->attr);
2754	}
2755
2756	return error;
2757}
2758EXPORT_SYMBOL_GPL(device_create_file);
2759
2760/**
2761 * device_remove_file - remove sysfs attribute file.
2762 * @dev: device.
2763 * @attr: device attribute descriptor.
2764 */
2765void device_remove_file(struct device *dev,
2766			const struct device_attribute *attr)
2767{
2768	if (dev)
2769		sysfs_remove_file(&dev->kobj, &attr->attr);
2770}
2771EXPORT_SYMBOL_GPL(device_remove_file);
2772
2773/**
2774 * device_remove_file_self - remove sysfs attribute file from its own method.
2775 * @dev: device.
2776 * @attr: device attribute descriptor.
2777 *
2778 * See kernfs_remove_self() for details.
2779 */
2780bool device_remove_file_self(struct device *dev,
2781			     const struct device_attribute *attr)
2782{
2783	if (dev)
2784		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2785	else
2786		return false;
2787}
2788EXPORT_SYMBOL_GPL(device_remove_file_self);
2789
2790/**
2791 * device_create_bin_file - create sysfs binary attribute file for device.
2792 * @dev: device.
2793 * @attr: device binary attribute descriptor.
2794 */
2795int device_create_bin_file(struct device *dev,
2796			   const struct bin_attribute *attr)
2797{
2798	int error = -EINVAL;
2799	if (dev)
2800		error = sysfs_create_bin_file(&dev->kobj, attr);
2801	return error;
2802}
2803EXPORT_SYMBOL_GPL(device_create_bin_file);
2804
2805/**
2806 * device_remove_bin_file - remove sysfs binary attribute file
2807 * @dev: device.
2808 * @attr: device binary attribute descriptor.
2809 */
2810void device_remove_bin_file(struct device *dev,
2811			    const struct bin_attribute *attr)
2812{
2813	if (dev)
2814		sysfs_remove_bin_file(&dev->kobj, attr);
2815}
2816EXPORT_SYMBOL_GPL(device_remove_bin_file);
2817
2818static void klist_children_get(struct klist_node *n)
2819{
2820	struct device_private *p = to_device_private_parent(n);
2821	struct device *dev = p->device;
2822
2823	get_device(dev);
2824}
2825
2826static void klist_children_put(struct klist_node *n)
2827{
2828	struct device_private *p = to_device_private_parent(n);
2829	struct device *dev = p->device;
2830
2831	put_device(dev);
2832}
2833
2834/**
2835 * device_initialize - init device structure.
2836 * @dev: device.
2837 *
2838 * This prepares the device for use by other layers by initializing
2839 * its fields.
2840 * It is the first half of device_register(), if called by
2841 * that function, though it can also be called separately, so one
2842 * may use @dev's fields. In particular, get_device()/put_device()
2843 * may be used for reference counting of @dev after calling this
2844 * function.
2845 *
2846 * All fields in @dev must be initialized by the caller to 0, except
2847 * for those explicitly set to some other value.  The simplest
2848 * approach is to use kzalloc() to allocate the structure containing
2849 * @dev.
2850 *
2851 * NOTE: Use put_device() to give up your reference instead of freeing
2852 * @dev directly once you have called this function.
2853 */
2854void device_initialize(struct device *dev)
2855{
2856	dev->kobj.kset = devices_kset;
2857	kobject_init(&dev->kobj, &device_ktype);
2858	INIT_LIST_HEAD(&dev->dma_pools);
2859	mutex_init(&dev->mutex);
2860#ifdef CONFIG_PROVE_LOCKING
2861	mutex_init(&dev->lockdep_mutex);
2862#endif
2863	lockdep_set_novalidate_class(&dev->mutex);
2864	spin_lock_init(&dev->devres_lock);
2865	INIT_LIST_HEAD(&dev->devres_head);
2866	device_pm_init(dev);
2867	set_dev_node(dev, -1);
2868#ifdef CONFIG_GENERIC_MSI_IRQ
2869	raw_spin_lock_init(&dev->msi_lock);
2870	INIT_LIST_HEAD(&dev->msi_list);
2871#endif
2872	INIT_LIST_HEAD(&dev->links.consumers);
2873	INIT_LIST_HEAD(&dev->links.suppliers);
2874	INIT_LIST_HEAD(&dev->links.defer_sync);
2875	dev->links.status = DL_DEV_NO_DRIVER;
2876#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2877    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2878    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2879	dev->dma_coherent = dma_default_coherent;
2880#endif
2881}
2882EXPORT_SYMBOL_GPL(device_initialize);
2883
2884struct kobject *virtual_device_parent(struct device *dev)
2885{
2886	static struct kobject *virtual_dir = NULL;
2887
2888	if (!virtual_dir)
2889		virtual_dir = kobject_create_and_add("virtual",
2890						     &devices_kset->kobj);
2891
2892	return virtual_dir;
2893}
2894
2895struct class_dir {
2896	struct kobject kobj;
2897	struct class *class;
2898};
2899
2900#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2901
2902static void class_dir_release(struct kobject *kobj)
2903{
2904	struct class_dir *dir = to_class_dir(kobj);
2905	kfree(dir);
2906}
2907
2908static const
2909struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2910{
2911	struct class_dir *dir = to_class_dir(kobj);
2912	return dir->class->ns_type;
2913}
2914
2915static struct kobj_type class_dir_ktype = {
2916	.release	= class_dir_release,
2917	.sysfs_ops	= &kobj_sysfs_ops,
2918	.child_ns_type	= class_dir_child_ns_type
2919};
2920
2921static struct kobject *
2922class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2923{
2924	struct class_dir *dir;
2925	int retval;
2926
2927	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2928	if (!dir)
2929		return ERR_PTR(-ENOMEM);
2930
2931	dir->class = class;
2932	kobject_init(&dir->kobj, &class_dir_ktype);
2933
2934	dir->kobj.kset = &class->p->glue_dirs;
2935
2936	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2937	if (retval < 0) {
2938		kobject_put(&dir->kobj);
2939		return ERR_PTR(retval);
2940	}
2941	return &dir->kobj;
2942}
2943
2944static DEFINE_MUTEX(gdp_mutex);
2945
2946static struct kobject *get_device_parent(struct device *dev,
2947					 struct device *parent)
2948{
2949	if (dev->class) {
2950		struct kobject *kobj = NULL;
2951		struct kobject *parent_kobj;
2952		struct kobject *k;
2953
2954#ifdef CONFIG_BLOCK
2955		/* block disks show up in /sys/block */
2956		if (sysfs_deprecated && dev->class == &block_class) {
2957			if (parent && parent->class == &block_class)
2958				return &parent->kobj;
2959			return &block_class.p->subsys.kobj;
2960		}
2961#endif
2962
2963		/*
2964		 * If we have no parent, we live in "virtual".
2965		 * Class-devices with a non class-device as parent, live
2966		 * in a "glue" directory to prevent namespace collisions.
2967		 */
2968		if (parent == NULL)
2969			parent_kobj = virtual_device_parent(dev);
2970		else if (parent->class && !dev->class->ns_type)
2971			return &parent->kobj;
2972		else
2973			parent_kobj = &parent->kobj;
2974
2975		mutex_lock(&gdp_mutex);
2976
2977		/* find our class-directory at the parent and reference it */
2978		spin_lock(&dev->class->p->glue_dirs.list_lock);
2979		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2980			if (k->parent == parent_kobj) {
2981				kobj = kobject_get(k);
2982				break;
2983			}
2984		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2985		if (kobj) {
2986			mutex_unlock(&gdp_mutex);
2987			return kobj;
2988		}
2989
2990		/* or create a new class-directory at the parent device */
2991		k = class_dir_create_and_add(dev->class, parent_kobj);
2992		/* do not emit an uevent for this simple "glue" directory */
2993		mutex_unlock(&gdp_mutex);
2994		return k;
2995	}
2996
2997	/* subsystems can specify a default root directory for their devices */
2998	if (!parent && dev->bus && dev->bus->dev_root)
2999		return &dev->bus->dev_root->kobj;
3000
3001	if (parent)
3002		return &parent->kobj;
3003	return NULL;
3004}
3005
3006static inline bool live_in_glue_dir(struct kobject *kobj,
3007				    struct device *dev)
3008{
3009	if (!kobj || !dev->class ||
3010	    kobj->kset != &dev->class->p->glue_dirs)
3011		return false;
3012	return true;
3013}
3014
3015static inline struct kobject *get_glue_dir(struct device *dev)
3016{
3017	return dev->kobj.parent;
3018}
3019
3020/*
3021 * make sure cleaning up dir as the last step, we need to make
3022 * sure .release handler of kobject is run with holding the
3023 * global lock
3024 */
3025static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3026{
3027	unsigned int ref;
3028
3029	/* see if we live in a "glue" directory */
3030	if (!live_in_glue_dir(glue_dir, dev))
3031		return;
3032
3033	mutex_lock(&gdp_mutex);
3034	/**
3035	 * There is a race condition between removing glue directory
3036	 * and adding a new device under the glue directory.
3037	 *
3038	 * CPU1:                                         CPU2:
3039	 *
3040	 * device_add()
3041	 *   get_device_parent()
3042	 *     class_dir_create_and_add()
3043	 *       kobject_add_internal()
3044	 *         create_dir()    // create glue_dir
3045	 *
3046	 *                                               device_add()
3047	 *                                                 get_device_parent()
3048	 *                                                   kobject_get() // get glue_dir
3049	 *
3050	 * device_del()
3051	 *   cleanup_glue_dir()
3052	 *     kobject_del(glue_dir)
3053	 *
3054	 *                                               kobject_add()
3055	 *                                                 kobject_add_internal()
3056	 *                                                   create_dir() // in glue_dir
3057	 *                                                     sysfs_create_dir_ns()
3058	 *                                                       kernfs_create_dir_ns(sd)
3059	 *
3060	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3061	 *       sysfs_put()        // free glue_dir->sd
3062	 *
3063	 *                                                         // sd is freed
3064	 *                                                         kernfs_new_node(sd)
3065	 *                                                           kernfs_get(glue_dir)
3066	 *                                                           kernfs_add_one()
3067	 *                                                           kernfs_put()
3068	 *
3069	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3070	 * a new device under glue dir, the glue_dir kobject reference count
3071	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3072	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3073	 * and sysfs_put(). This result in glue_dir->sd is freed.
3074	 *
3075	 * Then the CPU2 will see a stale "empty" but still potentially used
3076	 * glue dir around in kernfs_new_node().
3077	 *
3078	 * In order to avoid this happening, we also should make sure that
3079	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3080	 * for glue_dir kobj is 1.
3081	 */
3082	ref = kref_read(&glue_dir->kref);
3083	if (!kobject_has_children(glue_dir) && !--ref)
3084		kobject_del(glue_dir);
3085	kobject_put(glue_dir);
3086	mutex_unlock(&gdp_mutex);
3087}
3088
3089static int device_add_class_symlinks(struct device *dev)
3090{
3091	struct device_node *of_node = dev_of_node(dev);
3092	int error;
3093
3094	if (of_node) {
3095		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3096		if (error)
3097			dev_warn(dev, "Error %d creating of_node link\n",error);
3098		/* An error here doesn't warrant bringing down the device */
3099	}
3100
3101	if (!dev->class)
3102		return 0;
3103
3104	error = sysfs_create_link(&dev->kobj,
3105				  &dev->class->p->subsys.kobj,
3106				  "subsystem");
3107	if (error)
3108		goto out_devnode;
3109
3110	if (dev->parent && device_is_not_partition(dev)) {
3111		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3112					  "device");
3113		if (error)
3114			goto out_subsys;
3115	}
3116
3117#ifdef CONFIG_BLOCK
3118	/* /sys/block has directories and does not need symlinks */
3119	if (sysfs_deprecated && dev->class == &block_class)
3120		return 0;
3121#endif
3122
3123	/* link in the class directory pointing to the device */
3124	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3125				  &dev->kobj, dev_name(dev));
3126	if (error)
3127		goto out_device;
3128
3129	return 0;
3130
3131out_device:
3132	sysfs_remove_link(&dev->kobj, "device");
3133
3134out_subsys:
3135	sysfs_remove_link(&dev->kobj, "subsystem");
3136out_devnode:
3137	sysfs_remove_link(&dev->kobj, "of_node");
3138	return error;
3139}
3140
3141static void device_remove_class_symlinks(struct device *dev)
3142{
3143	if (dev_of_node(dev))
3144		sysfs_remove_link(&dev->kobj, "of_node");
3145
3146	if (!dev->class)
3147		return;
3148
3149	if (dev->parent && device_is_not_partition(dev))
3150		sysfs_remove_link(&dev->kobj, "device");
3151	sysfs_remove_link(&dev->kobj, "subsystem");
3152#ifdef CONFIG_BLOCK
3153	if (sysfs_deprecated && dev->class == &block_class)
3154		return;
3155#endif
3156	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3157}
3158
3159/**
3160 * dev_set_name - set a device name
3161 * @dev: device
3162 * @fmt: format string for the device's name
3163 */
3164int dev_set_name(struct device *dev, const char *fmt, ...)
3165{
3166	va_list vargs;
3167	int err;
3168
3169	va_start(vargs, fmt);
3170	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3171	va_end(vargs);
3172	return err;
3173}
3174EXPORT_SYMBOL_GPL(dev_set_name);
3175
3176/**
3177 * device_to_dev_kobj - select a /sys/dev/ directory for the device
3178 * @dev: device
3179 *
3180 * By default we select char/ for new entries.  Setting class->dev_obj
3181 * to NULL prevents an entry from being created.  class->dev_kobj must
3182 * be set (or cleared) before any devices are registered to the class
3183 * otherwise device_create_sys_dev_entry() and
3184 * device_remove_sys_dev_entry() will disagree about the presence of
3185 * the link.
3186 */
3187static struct kobject *device_to_dev_kobj(struct device *dev)
3188{
3189	struct kobject *kobj;
3190
3191	if (dev->class)
3192		kobj = dev->class->dev_kobj;
3193	else
3194		kobj = sysfs_dev_char_kobj;
3195
3196	return kobj;
3197}
3198
3199static int device_create_sys_dev_entry(struct device *dev)
3200{
3201	struct kobject *kobj = device_to_dev_kobj(dev);
3202	int error = 0;
3203	char devt_str[15];
3204
3205	if (kobj) {
3206		format_dev_t(devt_str, dev->devt);
3207		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3208	}
3209
3210	return error;
3211}
3212
3213static void device_remove_sys_dev_entry(struct device *dev)
3214{
3215	struct kobject *kobj = device_to_dev_kobj(dev);
3216	char devt_str[15];
3217
3218	if (kobj) {
3219		format_dev_t(devt_str, dev->devt);
3220		sysfs_remove_link(kobj, devt_str);
3221	}
3222}
3223
3224static int device_private_init(struct device *dev)
3225{
3226	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3227	if (!dev->p)
3228		return -ENOMEM;
3229	dev->p->device = dev;
3230	klist_init(&dev->p->klist_children, klist_children_get,
3231		   klist_children_put);
3232	INIT_LIST_HEAD(&dev->p->deferred_probe);
3233	return 0;
3234}
3235
3236/**
3237 * device_add - add device to device hierarchy.
3238 * @dev: device.
3239 *
3240 * This is part 2 of device_register(), though may be called
3241 * separately _iff_ device_initialize() has been called separately.
3242 *
3243 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3244 * to the global and sibling lists for the device, then
3245 * adds it to the other relevant subsystems of the driver model.
3246 *
3247 * Do not call this routine or device_register() more than once for
3248 * any device structure.  The driver model core is not designed to work
3249 * with devices that get unregistered and then spring back to life.
3250 * (Among other things, it's very hard to guarantee that all references
3251 * to the previous incarnation of @dev have been dropped.)  Allocate
3252 * and register a fresh new struct device instead.
3253 *
3254 * NOTE: _Never_ directly free @dev after calling this function, even
3255 * if it returned an error! Always use put_device() to give up your
3256 * reference instead.
3257 *
3258 * Rule of thumb is: if device_add() succeeds, you should call
3259 * device_del() when you want to get rid of it. If device_add() has
3260 * *not* succeeded, use *only* put_device() to drop the reference
3261 * count.
3262 */
3263int device_add(struct device *dev)
3264{
3265	struct device *parent;
3266	struct kobject *kobj;
3267	struct class_interface *class_intf;
3268	int error = -EINVAL;
3269	struct kobject *glue_dir = NULL;
3270
3271	dev = get_device(dev);
3272	if (!dev)
3273		goto done;
3274
3275	if (!dev->p) {
3276		error = device_private_init(dev);
3277		if (error)
3278			goto done;
3279	}
3280
3281	/*
3282	 * for statically allocated devices, which should all be converted
3283	 * some day, we need to initialize the name. We prevent reading back
3284	 * the name, and force the use of dev_name()
3285	 */
3286	if (dev->init_name) {
3287		dev_set_name(dev, "%s", dev->init_name);
3288		dev->init_name = NULL;
3289	}
3290
3291	/* subsystems can specify simple device enumeration */
3292	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3293		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3294
3295	if (!dev_name(dev)) {
3296		error = -EINVAL;
3297		goto name_error;
3298	}
3299
3300	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3301
3302	parent = get_device(dev->parent);
3303	kobj = get_device_parent(dev, parent);
3304	if (IS_ERR(kobj)) {
3305		error = PTR_ERR(kobj);
3306		goto parent_error;
3307	}
3308	if (kobj)
3309		dev->kobj.parent = kobj;
3310
3311	/* use parent numa_node */
3312	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3313		set_dev_node(dev, dev_to_node(parent));
3314
3315	/* first, register with generic layer. */
3316	/* we require the name to be set before, and pass NULL */
3317	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3318	if (error) {
3319		glue_dir = get_glue_dir(dev);
3320		goto Error;
3321	}
3322
3323	/* notify platform of device entry */
3324	error = device_platform_notify(dev, KOBJ_ADD);
3325	if (error)
3326		goto platform_error;
3327
3328	error = device_create_file(dev, &dev_attr_uevent);
3329	if (error)
3330		goto attrError;
3331
3332	error = device_add_class_symlinks(dev);
3333	if (error)
3334		goto SymlinkError;
3335	error = device_add_attrs(dev);
3336	if (error)
3337		goto AttrsError;
3338	error = bus_add_device(dev);
3339	if (error)
3340		goto BusError;
3341	error = dpm_sysfs_add(dev);
3342	if (error)
3343		goto DPMError;
3344	device_pm_add(dev);
3345
3346	if (MAJOR(dev->devt)) {
3347		error = device_create_file(dev, &dev_attr_dev);
3348		if (error)
3349			goto DevAttrError;
3350
3351		error = device_create_sys_dev_entry(dev);
3352		if (error)
3353			goto SysEntryError;
3354
3355		devtmpfs_create_node(dev);
3356	}
3357
3358	/* Notify clients of device addition.  This call must come
3359	 * after dpm_sysfs_add() and before kobject_uevent().
3360	 */
3361	if (dev->bus)
3362		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3363					     BUS_NOTIFY_ADD_DEVICE, dev);
3364
3365	kobject_uevent(&dev->kobj, KOBJ_ADD);
3366
3367	/*
3368	 * Check if any of the other devices (consumers) have been waiting for
3369	 * this device (supplier) to be added so that they can create a device
3370	 * link to it.
3371	 *
3372	 * This needs to happen after device_pm_add() because device_link_add()
3373	 * requires the supplier be registered before it's called.
3374	 *
3375	 * But this also needs to happen before bus_probe_device() to make sure
3376	 * waiting consumers can link to it before the driver is bound to the
3377	 * device and the driver sync_state callback is called for this device.
3378	 */
3379	if (dev->fwnode && !dev->fwnode->dev) {
3380		dev->fwnode->dev = dev;
3381		fw_devlink_link_device(dev);
3382	}
3383
3384	bus_probe_device(dev);
3385
3386	/*
3387	 * If all driver registration is done and a newly added device doesn't
3388	 * match with any driver, don't block its consumers from probing in
3389	 * case the consumer device is able to operate without this supplier.
3390	 */
3391	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3392		fw_devlink_unblock_consumers(dev);
3393
3394	if (parent)
3395		klist_add_tail(&dev->p->knode_parent,
3396			       &parent->p->klist_children);
3397
3398	if (dev->class) {
3399		mutex_lock(&dev->class->p->mutex);
3400		/* tie the class to the device */
3401		klist_add_tail(&dev->p->knode_class,
3402			       &dev->class->p->klist_devices);
3403
3404		/* notify any interfaces that the device is here */
3405		list_for_each_entry(class_intf,
3406				    &dev->class->p->interfaces, node)
3407			if (class_intf->add_dev)
3408				class_intf->add_dev(dev, class_intf);
3409		mutex_unlock(&dev->class->p->mutex);
3410	}
3411done:
3412	put_device(dev);
3413	return error;
3414 SysEntryError:
3415	if (MAJOR(dev->devt))
3416		device_remove_file(dev, &dev_attr_dev);
3417 DevAttrError:
3418	device_pm_remove(dev);
3419	dpm_sysfs_remove(dev);
3420 DPMError:
3421	bus_remove_device(dev);
3422 BusError:
3423	device_remove_attrs(dev);
3424 AttrsError:
3425	device_remove_class_symlinks(dev);
3426 SymlinkError:
3427	device_remove_file(dev, &dev_attr_uevent);
3428 attrError:
3429	device_platform_notify(dev, KOBJ_REMOVE);
3430platform_error:
3431	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3432	glue_dir = get_glue_dir(dev);
3433	kobject_del(&dev->kobj);
3434 Error:
3435	cleanup_glue_dir(dev, glue_dir);
3436parent_error:
3437	put_device(parent);
3438name_error:
3439	kfree(dev->p);
3440	dev->p = NULL;
3441	goto done;
3442}
3443EXPORT_SYMBOL_GPL(device_add);
3444
3445/**
3446 * device_register - register a device with the system.
3447 * @dev: pointer to the device structure
3448 *
3449 * This happens in two clean steps - initialize the device
3450 * and add it to the system. The two steps can be called
3451 * separately, but this is the easiest and most common.
3452 * I.e. you should only call the two helpers separately if
3453 * have a clearly defined need to use and refcount the device
3454 * before it is added to the hierarchy.
3455 *
3456 * For more information, see the kerneldoc for device_initialize()
3457 * and device_add().
3458 *
3459 * NOTE: _Never_ directly free @dev after calling this function, even
3460 * if it returned an error! Always use put_device() to give up the
3461 * reference initialized in this function instead.
3462 */
3463int device_register(struct device *dev)
3464{
3465	device_initialize(dev);
3466	return device_add(dev);
3467}
3468EXPORT_SYMBOL_GPL(device_register);
3469
3470/**
3471 * get_device - increment reference count for device.
3472 * @dev: device.
3473 *
3474 * This simply forwards the call to kobject_get(), though
3475 * we do take care to provide for the case that we get a NULL
3476 * pointer passed in.
3477 */
3478struct device *get_device(struct device *dev)
3479{
3480	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3481}
3482EXPORT_SYMBOL_GPL(get_device);
3483
3484/**
3485 * put_device - decrement reference count.
3486 * @dev: device in question.
3487 */
3488void put_device(struct device *dev)
3489{
3490	/* might_sleep(); */
3491	if (dev)
3492		kobject_put(&dev->kobj);
3493}
3494EXPORT_SYMBOL_GPL(put_device);
3495
3496bool kill_device(struct device *dev)
3497{
3498	/*
3499	 * Require the device lock and set the "dead" flag to guarantee that
3500	 * the update behavior is consistent with the other bitfields near
3501	 * it and that we cannot have an asynchronous probe routine trying
3502	 * to run while we are tearing out the bus/class/sysfs from
3503	 * underneath the device.
3504	 */
3505	device_lock_assert(dev);
3506
3507	if (dev->p->dead)
3508		return false;
3509	dev->p->dead = true;
3510	return true;
3511}
3512EXPORT_SYMBOL_GPL(kill_device);
3513
3514/**
3515 * device_del - delete device from system.
3516 * @dev: device.
3517 *
3518 * This is the first part of the device unregistration
3519 * sequence. This removes the device from the lists we control
3520 * from here, has it removed from the other driver model
3521 * subsystems it was added to in device_add(), and removes it
3522 * from the kobject hierarchy.
3523 *
3524 * NOTE: this should be called manually _iff_ device_add() was
3525 * also called manually.
3526 */
3527void device_del(struct device *dev)
3528{
3529	struct device *parent = dev->parent;
3530	struct kobject *glue_dir = NULL;
3531	struct class_interface *class_intf;
3532	unsigned int noio_flag;
3533
3534	device_lock(dev);
3535	kill_device(dev);
3536	device_unlock(dev);
3537
3538	if (dev->fwnode && dev->fwnode->dev == dev)
3539		dev->fwnode->dev = NULL;
3540
3541	/* Notify clients of device removal.  This call must come
3542	 * before dpm_sysfs_remove().
3543	 */
3544	noio_flag = memalloc_noio_save();
3545	if (dev->bus)
3546		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3547					     BUS_NOTIFY_DEL_DEVICE, dev);
3548
3549	dpm_sysfs_remove(dev);
3550	if (parent)
3551		klist_del(&dev->p->knode_parent);
3552	if (MAJOR(dev->devt)) {
3553		devtmpfs_delete_node(dev);
3554		device_remove_sys_dev_entry(dev);
3555		device_remove_file(dev, &dev_attr_dev);
3556	}
3557	if (dev->class) {
3558		device_remove_class_symlinks(dev);
3559
3560		mutex_lock(&dev->class->p->mutex);
3561		/* notify any interfaces that the device is now gone */
3562		list_for_each_entry(class_intf,
3563				    &dev->class->p->interfaces, node)
3564			if (class_intf->remove_dev)
3565				class_intf->remove_dev(dev, class_intf);
3566		/* remove the device from the class list */
3567		klist_del(&dev->p->knode_class);
3568		mutex_unlock(&dev->class->p->mutex);
3569	}
3570	device_remove_file(dev, &dev_attr_uevent);
3571	device_remove_attrs(dev);
3572	bus_remove_device(dev);
3573	device_pm_remove(dev);
3574	driver_deferred_probe_del(dev);
3575	device_platform_notify(dev, KOBJ_REMOVE);
3576	device_remove_properties(dev);
3577	device_links_purge(dev);
3578
3579	if (dev->bus)
3580		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3581					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3582	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3583	glue_dir = get_glue_dir(dev);
3584	kobject_del(&dev->kobj);
3585	cleanup_glue_dir(dev, glue_dir);
3586	memalloc_noio_restore(noio_flag);
3587	put_device(parent);
3588}
3589EXPORT_SYMBOL_GPL(device_del);
3590
3591/**
3592 * device_unregister - unregister device from system.
3593 * @dev: device going away.
3594 *
3595 * We do this in two parts, like we do device_register(). First,
3596 * we remove it from all the subsystems with device_del(), then
3597 * we decrement the reference count via put_device(). If that
3598 * is the final reference count, the device will be cleaned up
3599 * via device_release() above. Otherwise, the structure will
3600 * stick around until the final reference to the device is dropped.
3601 */
3602void device_unregister(struct device *dev)
3603{
3604	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3605	device_del(dev);
3606	put_device(dev);
3607}
3608EXPORT_SYMBOL_GPL(device_unregister);
3609
3610static struct device *prev_device(struct klist_iter *i)
3611{
3612	struct klist_node *n = klist_prev(i);
3613	struct device *dev = NULL;
3614	struct device_private *p;
3615
3616	if (n) {
3617		p = to_device_private_parent(n);
3618		dev = p->device;
3619	}
3620	return dev;
3621}
3622
3623static struct device *next_device(struct klist_iter *i)
3624{
3625	struct klist_node *n = klist_next(i);
3626	struct device *dev = NULL;
3627	struct device_private *p;
3628
3629	if (n) {
3630		p = to_device_private_parent(n);
3631		dev = p->device;
3632	}
3633	return dev;
3634}
3635
3636/**
3637 * device_get_devnode - path of device node file
3638 * @dev: device
3639 * @mode: returned file access mode
3640 * @uid: returned file owner
3641 * @gid: returned file group
3642 * @tmp: possibly allocated string
3643 *
3644 * Return the relative path of a possible device node.
3645 * Non-default names may need to allocate a memory to compose
3646 * a name. This memory is returned in tmp and needs to be
3647 * freed by the caller.
3648 */
3649const char *device_get_devnode(struct device *dev,
3650			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3651			       const char **tmp)
3652{
3653	char *s;
3654
3655	*tmp = NULL;
3656
3657	/* the device type may provide a specific name */
3658	if (dev->type && dev->type->devnode)
3659		*tmp = dev->type->devnode(dev, mode, uid, gid);
3660	if (*tmp)
3661		return *tmp;
3662
3663	/* the class may provide a specific name */
3664	if (dev->class && dev->class->devnode)
3665		*tmp = dev->class->devnode(dev, mode);
3666	if (*tmp)
3667		return *tmp;
3668
3669	/* return name without allocation, tmp == NULL */
3670	if (strchr(dev_name(dev), '!') == NULL)
3671		return dev_name(dev);
3672
3673	/* replace '!' in the name with '/' */
3674	s = kstrdup(dev_name(dev), GFP_KERNEL);
3675	if (!s)
3676		return NULL;
3677	strreplace(s, '!', '/');
3678	return *tmp = s;
3679}
3680
3681/**
3682 * device_for_each_child - device child iterator.
3683 * @parent: parent struct device.
3684 * @fn: function to be called for each device.
3685 * @data: data for the callback.
3686 *
3687 * Iterate over @parent's child devices, and call @fn for each,
3688 * passing it @data.
3689 *
3690 * We check the return of @fn each time. If it returns anything
3691 * other than 0, we break out and return that value.
3692 */
3693int device_for_each_child(struct device *parent, void *data,
3694			  int (*fn)(struct device *dev, void *data))
3695{
3696	struct klist_iter i;
3697	struct device *child;
3698	int error = 0;
3699
3700	if (!parent->p)
3701		return 0;
3702
3703	klist_iter_init(&parent->p->klist_children, &i);
3704	while (!error && (child = next_device(&i)))
3705		error = fn(child, data);
3706	klist_iter_exit(&i);
3707	return error;
3708}
3709EXPORT_SYMBOL_GPL(device_for_each_child);
3710
3711/**
3712 * device_for_each_child_reverse - device child iterator in reversed order.
3713 * @parent: parent struct device.
3714 * @fn: function to be called for each device.
3715 * @data: data for the callback.
3716 *
3717 * Iterate over @parent's child devices, and call @fn for each,
3718 * passing it @data.
3719 *
3720 * We check the return of @fn each time. If it returns anything
3721 * other than 0, we break out and return that value.
3722 */
3723int device_for_each_child_reverse(struct device *parent, void *data,
3724				  int (*fn)(struct device *dev, void *data))
3725{
3726	struct klist_iter i;
3727	struct device *child;
3728	int error = 0;
3729
3730	if (!parent->p)
3731		return 0;
3732
3733	klist_iter_init(&parent->p->klist_children, &i);
3734	while ((child = prev_device(&i)) && !error)
3735		error = fn(child, data);
3736	klist_iter_exit(&i);
3737	return error;
3738}
3739EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3740
3741/**
3742 * device_find_child - device iterator for locating a particular device.
3743 * @parent: parent struct device
3744 * @match: Callback function to check device
3745 * @data: Data to pass to match function
3746 *
3747 * This is similar to the device_for_each_child() function above, but it
3748 * returns a reference to a device that is 'found' for later use, as
3749 * determined by the @match callback.
3750 *
3751 * The callback should return 0 if the device doesn't match and non-zero
3752 * if it does.  If the callback returns non-zero and a reference to the
3753 * current device can be obtained, this function will return to the caller
3754 * and not iterate over any more devices.
3755 *
3756 * NOTE: you will need to drop the reference with put_device() after use.
3757 */
3758struct device *device_find_child(struct device *parent, void *data,
3759				 int (*match)(struct device *dev, void *data))
3760{
3761	struct klist_iter i;
3762	struct device *child;
3763
3764	if (!parent)
3765		return NULL;
3766
3767	klist_iter_init(&parent->p->klist_children, &i);
3768	while ((child = next_device(&i)))
3769		if (match(child, data) && get_device(child))
3770			break;
3771	klist_iter_exit(&i);
3772	return child;
3773}
3774EXPORT_SYMBOL_GPL(device_find_child);
3775
3776/**
3777 * device_find_child_by_name - device iterator for locating a child device.
3778 * @parent: parent struct device
3779 * @name: name of the child device
3780 *
3781 * This is similar to the device_find_child() function above, but it
3782 * returns a reference to a device that has the name @name.
3783 *
3784 * NOTE: you will need to drop the reference with put_device() after use.
3785 */
3786struct device *device_find_child_by_name(struct device *parent,
3787					 const char *name)
3788{
3789	struct klist_iter i;
3790	struct device *child;
3791
3792	if (!parent)
3793		return NULL;
3794
3795	klist_iter_init(&parent->p->klist_children, &i);
3796	while ((child = next_device(&i)))
3797		if (sysfs_streq(dev_name(child), name) && get_device(child))
3798			break;
3799	klist_iter_exit(&i);
3800	return child;
3801}
3802EXPORT_SYMBOL_GPL(device_find_child_by_name);
3803
3804int __init devices_init(void)
3805{
3806	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3807	if (!devices_kset)
3808		return -ENOMEM;
3809	dev_kobj = kobject_create_and_add("dev", NULL);
3810	if (!dev_kobj)
3811		goto dev_kobj_err;
3812	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3813	if (!sysfs_dev_block_kobj)
3814		goto block_kobj_err;
3815	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3816	if (!sysfs_dev_char_kobj)
3817		goto char_kobj_err;
3818
3819	return 0;
3820
3821 char_kobj_err:
3822	kobject_put(sysfs_dev_block_kobj);
3823 block_kobj_err:
3824	kobject_put(dev_kobj);
3825 dev_kobj_err:
3826	kset_unregister(devices_kset);
3827	return -ENOMEM;
3828}
3829
3830static int device_check_offline(struct device *dev, void *not_used)
3831{
3832	int ret;
3833
3834	ret = device_for_each_child(dev, NULL, device_check_offline);
3835	if (ret)
3836		return ret;
3837
3838	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3839}
3840
3841/**
3842 * device_offline - Prepare the device for hot-removal.
3843 * @dev: Device to be put offline.
3844 *
3845 * Execute the device bus type's .offline() callback, if present, to prepare
3846 * the device for a subsequent hot-removal.  If that succeeds, the device must
3847 * not be used until either it is removed or its bus type's .online() callback
3848 * is executed.
3849 *
3850 * Call under device_hotplug_lock.
3851 */
3852int device_offline(struct device *dev)
3853{
3854	int ret;
3855
3856	if (dev->offline_disabled)
3857		return -EPERM;
3858
3859	ret = device_for_each_child(dev, NULL, device_check_offline);
3860	if (ret)
3861		return ret;
3862
3863	device_lock(dev);
3864	if (device_supports_offline(dev)) {
3865		if (dev->offline) {
3866			ret = 1;
3867		} else {
3868			ret = dev->bus->offline(dev);
3869			if (!ret) {
3870				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3871				dev->offline = true;
3872			}
3873		}
3874	}
3875	device_unlock(dev);
3876
3877	return ret;
3878}
3879
3880/**
3881 * device_online - Put the device back online after successful device_offline().
3882 * @dev: Device to be put back online.
3883 *
3884 * If device_offline() has been successfully executed for @dev, but the device
3885 * has not been removed subsequently, execute its bus type's .online() callback
3886 * to indicate that the device can be used again.
3887 *
3888 * Call under device_hotplug_lock.
3889 */
3890int device_online(struct device *dev)
3891{
3892	int ret = 0;
3893
3894	device_lock(dev);
3895	if (device_supports_offline(dev)) {
3896		if (dev->offline) {
3897			ret = dev->bus->online(dev);
3898			if (!ret) {
3899				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3900				dev->offline = false;
3901			}
3902		} else {
3903			ret = 1;
3904		}
3905	}
3906	device_unlock(dev);
3907
3908	return ret;
3909}
3910
3911struct root_device {
3912	struct device dev;
3913	struct module *owner;
3914};
3915
3916static inline struct root_device *to_root_device(struct device *d)
3917{
3918	return container_of(d, struct root_device, dev);
3919}
3920
3921static void root_device_release(struct device *dev)
3922{
3923	kfree(to_root_device(dev));
3924}
3925
3926/**
3927 * __root_device_register - allocate and register a root device
3928 * @name: root device name
3929 * @owner: owner module of the root device, usually THIS_MODULE
3930 *
3931 * This function allocates a root device and registers it
3932 * using device_register(). In order to free the returned
3933 * device, use root_device_unregister().
3934 *
3935 * Root devices are dummy devices which allow other devices
3936 * to be grouped under /sys/devices. Use this function to
3937 * allocate a root device and then use it as the parent of
3938 * any device which should appear under /sys/devices/{name}
3939 *
3940 * The /sys/devices/{name} directory will also contain a
3941 * 'module' symlink which points to the @owner directory
3942 * in sysfs.
3943 *
3944 * Returns &struct device pointer on success, or ERR_PTR() on error.
3945 *
3946 * Note: You probably want to use root_device_register().
3947 */
3948struct device *__root_device_register(const char *name, struct module *owner)
3949{
3950	struct root_device *root;
3951	int err = -ENOMEM;
3952
3953	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3954	if (!root)
3955		return ERR_PTR(err);
3956
3957	err = dev_set_name(&root->dev, "%s", name);
3958	if (err) {
3959		kfree(root);
3960		return ERR_PTR(err);
3961	}
3962
3963	root->dev.release = root_device_release;
3964
3965	err = device_register(&root->dev);
3966	if (err) {
3967		put_device(&root->dev);
3968		return ERR_PTR(err);
3969	}
3970
3971#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3972	if (owner) {
3973		struct module_kobject *mk = &owner->mkobj;
3974
3975		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3976		if (err) {
3977			device_unregister(&root->dev);
3978			return ERR_PTR(err);
3979		}
3980		root->owner = owner;
3981	}
3982#endif
3983
3984	return &root->dev;
3985}
3986EXPORT_SYMBOL_GPL(__root_device_register);
3987
3988/**
3989 * root_device_unregister - unregister and free a root device
3990 * @dev: device going away
3991 *
3992 * This function unregisters and cleans up a device that was created by
3993 * root_device_register().
3994 */
3995void root_device_unregister(struct device *dev)
3996{
3997	struct root_device *root = to_root_device(dev);
3998
3999	if (root->owner)
4000		sysfs_remove_link(&root->dev.kobj, "module");
4001
4002	device_unregister(dev);
4003}
4004EXPORT_SYMBOL_GPL(root_device_unregister);
4005
4006
4007static void device_create_release(struct device *dev)
4008{
4009	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4010	kfree(dev);
4011}
4012
4013static __printf(6, 0) struct device *
4014device_create_groups_vargs(struct class *class, struct device *parent,
4015			   dev_t devt, void *drvdata,
4016			   const struct attribute_group **groups,
4017			   const char *fmt, va_list args)
4018{
4019	struct device *dev = NULL;
4020	int retval = -ENODEV;
4021
4022	if (class == NULL || IS_ERR(class))
4023		goto error;
4024
4025	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4026	if (!dev) {
4027		retval = -ENOMEM;
4028		goto error;
4029	}
4030
4031	device_initialize(dev);
4032	dev->devt = devt;
4033	dev->class = class;
4034	dev->parent = parent;
4035	dev->groups = groups;
4036	dev->release = device_create_release;
4037	dev_set_drvdata(dev, drvdata);
4038
4039	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4040	if (retval)
4041		goto error;
4042
4043	retval = device_add(dev);
4044	if (retval)
4045		goto error;
4046
4047	return dev;
4048
4049error:
4050	put_device(dev);
4051	return ERR_PTR(retval);
4052}
4053
4054/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4055 * device_create - creates a device and registers it with sysfs
4056 * @class: pointer to the struct class that this device should be registered to
4057 * @parent: pointer to the parent struct device of this new device, if any
4058 * @devt: the dev_t for the char device to be added
4059 * @drvdata: the data to be added to the device for callbacks
4060 * @fmt: string for the device's name
4061 *
4062 * This function can be used by char device classes.  A struct device
4063 * will be created in sysfs, registered to the specified class.
4064 *
4065 * A "dev" file will be created, showing the dev_t for the device, if
4066 * the dev_t is not 0,0.
4067 * If a pointer to a parent struct device is passed in, the newly created
4068 * struct device will be a child of that device in sysfs.
4069 * The pointer to the struct device will be returned from the call.
4070 * Any further sysfs files that might be required can be created using this
4071 * pointer.
4072 *
4073 * Returns &struct device pointer on success, or ERR_PTR() on error.
4074 *
4075 * Note: the struct class passed to this function must have previously
4076 * been created with a call to class_create().
4077 */
4078struct device *device_create(struct class *class, struct device *parent,
4079			     dev_t devt, void *drvdata, const char *fmt, ...)
4080{
4081	va_list vargs;
4082	struct device *dev;
4083
4084	va_start(vargs, fmt);
4085	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4086					  fmt, vargs);
4087	va_end(vargs);
4088	return dev;
4089}
4090EXPORT_SYMBOL_GPL(device_create);
4091
4092/**
4093 * device_create_with_groups - creates a device and registers it with sysfs
4094 * @class: pointer to the struct class that this device should be registered to
4095 * @parent: pointer to the parent struct device of this new device, if any
4096 * @devt: the dev_t for the char device to be added
4097 * @drvdata: the data to be added to the device for callbacks
4098 * @groups: NULL-terminated list of attribute groups to be created
4099 * @fmt: string for the device's name
4100 *
4101 * This function can be used by char device classes.  A struct device
4102 * will be created in sysfs, registered to the specified class.
4103 * Additional attributes specified in the groups parameter will also
4104 * be created automatically.
4105 *
4106 * A "dev" file will be created, showing the dev_t for the device, if
4107 * the dev_t is not 0,0.
4108 * If a pointer to a parent struct device is passed in, the newly created
4109 * struct device will be a child of that device in sysfs.
4110 * The pointer to the struct device will be returned from the call.
4111 * Any further sysfs files that might be required can be created using this
4112 * pointer.
4113 *
4114 * Returns &struct device pointer on success, or ERR_PTR() on error.
4115 *
4116 * Note: the struct class passed to this function must have previously
4117 * been created with a call to class_create().
4118 */
4119struct device *device_create_with_groups(struct class *class,
4120					 struct device *parent, dev_t devt,
4121					 void *drvdata,
4122					 const struct attribute_group **groups,
4123					 const char *fmt, ...)
4124{
4125	va_list vargs;
4126	struct device *dev;
4127
4128	va_start(vargs, fmt);
4129	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4130					 fmt, vargs);
4131	va_end(vargs);
4132	return dev;
4133}
4134EXPORT_SYMBOL_GPL(device_create_with_groups);
4135
4136/**
4137 * device_destroy - removes a device that was created with device_create()
4138 * @class: pointer to the struct class that this device was registered with
4139 * @devt: the dev_t of the device that was previously registered
4140 *
4141 * This call unregisters and cleans up a device that was created with a
4142 * call to device_create().
4143 */
4144void device_destroy(struct class *class, dev_t devt)
4145{
4146	struct device *dev;
4147
4148	dev = class_find_device_by_devt(class, devt);
4149	if (dev) {
4150		put_device(dev);
4151		device_unregister(dev);
4152	}
4153}
4154EXPORT_SYMBOL_GPL(device_destroy);
4155
4156/**
4157 * device_rename - renames a device
4158 * @dev: the pointer to the struct device to be renamed
4159 * @new_name: the new name of the device
4160 *
4161 * It is the responsibility of the caller to provide mutual
4162 * exclusion between two different calls of device_rename
4163 * on the same device to ensure that new_name is valid and
4164 * won't conflict with other devices.
4165 *
4166 * Note: Don't call this function.  Currently, the networking layer calls this
4167 * function, but that will change.  The following text from Kay Sievers offers
4168 * some insight:
4169 *
4170 * Renaming devices is racy at many levels, symlinks and other stuff are not
4171 * replaced atomically, and you get a "move" uevent, but it's not easy to
4172 * connect the event to the old and new device. Device nodes are not renamed at
4173 * all, there isn't even support for that in the kernel now.
4174 *
4175 * In the meantime, during renaming, your target name might be taken by another
4176 * driver, creating conflicts. Or the old name is taken directly after you
4177 * renamed it -- then you get events for the same DEVPATH, before you even see
4178 * the "move" event. It's just a mess, and nothing new should ever rely on
4179 * kernel device renaming. Besides that, it's not even implemented now for
4180 * other things than (driver-core wise very simple) network devices.
4181 *
4182 * We are currently about to change network renaming in udev to completely
4183 * disallow renaming of devices in the same namespace as the kernel uses,
4184 * because we can't solve the problems properly, that arise with swapping names
4185 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4186 * be allowed to some other name than eth[0-9]*, for the aforementioned
4187 * reasons.
4188 *
4189 * Make up a "real" name in the driver before you register anything, or add
4190 * some other attributes for userspace to find the device, or use udev to add
4191 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4192 * don't even want to get into that and try to implement the missing pieces in
4193 * the core. We really have other pieces to fix in the driver core mess. :)
4194 */
4195int device_rename(struct device *dev, const char *new_name)
4196{
4197	struct kobject *kobj = &dev->kobj;
4198	char *old_device_name = NULL;
4199	int error;
4200
4201	dev = get_device(dev);
4202	if (!dev)
4203		return -EINVAL;
4204
4205	dev_dbg(dev, "renaming to %s\n", new_name);
4206
4207	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4208	if (!old_device_name) {
4209		error = -ENOMEM;
4210		goto out;
4211	}
4212
4213	if (dev->class) {
4214		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4215					     kobj, old_device_name,
4216					     new_name, kobject_namespace(kobj));
4217		if (error)
4218			goto out;
4219	}
4220
4221	error = kobject_rename(kobj, new_name);
4222	if (error)
4223		goto out;
4224
4225out:
4226	put_device(dev);
4227
4228	kfree(old_device_name);
4229
4230	return error;
4231}
4232EXPORT_SYMBOL_GPL(device_rename);
4233
4234static int device_move_class_links(struct device *dev,
4235				   struct device *old_parent,
4236				   struct device *new_parent)
4237{
4238	int error = 0;
4239
4240	if (old_parent)
4241		sysfs_remove_link(&dev->kobj, "device");
4242	if (new_parent)
4243		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4244					  "device");
4245	return error;
4246}
4247
4248/**
4249 * device_move - moves a device to a new parent
4250 * @dev: the pointer to the struct device to be moved
4251 * @new_parent: the new parent of the device (can be NULL)
4252 * @dpm_order: how to reorder the dpm_list
4253 */
4254int device_move(struct device *dev, struct device *new_parent,
4255		enum dpm_order dpm_order)
4256{
4257	int error;
4258	struct device *old_parent;
4259	struct kobject *new_parent_kobj;
4260
4261	dev = get_device(dev);
4262	if (!dev)
4263		return -EINVAL;
4264
4265	device_pm_lock();
4266	new_parent = get_device(new_parent);
4267	new_parent_kobj = get_device_parent(dev, new_parent);
4268	if (IS_ERR(new_parent_kobj)) {
4269		error = PTR_ERR(new_parent_kobj);
4270		put_device(new_parent);
4271		goto out;
4272	}
4273
4274	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4275		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4276	error = kobject_move(&dev->kobj, new_parent_kobj);
4277	if (error) {
4278		cleanup_glue_dir(dev, new_parent_kobj);
4279		put_device(new_parent);
4280		goto out;
4281	}
4282	old_parent = dev->parent;
4283	dev->parent = new_parent;
4284	if (old_parent)
4285		klist_remove(&dev->p->knode_parent);
4286	if (new_parent) {
4287		klist_add_tail(&dev->p->knode_parent,
4288			       &new_parent->p->klist_children);
4289		set_dev_node(dev, dev_to_node(new_parent));
4290	}
4291
4292	if (dev->class) {
4293		error = device_move_class_links(dev, old_parent, new_parent);
4294		if (error) {
4295			/* We ignore errors on cleanup since we're hosed anyway... */
4296			device_move_class_links(dev, new_parent, old_parent);
4297			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4298				if (new_parent)
4299					klist_remove(&dev->p->knode_parent);
4300				dev->parent = old_parent;
4301				if (old_parent) {
4302					klist_add_tail(&dev->p->knode_parent,
4303						       &old_parent->p->klist_children);
4304					set_dev_node(dev, dev_to_node(old_parent));
4305				}
4306			}
4307			cleanup_glue_dir(dev, new_parent_kobj);
4308			put_device(new_parent);
4309			goto out;
4310		}
4311	}
4312	switch (dpm_order) {
4313	case DPM_ORDER_NONE:
4314		break;
4315	case DPM_ORDER_DEV_AFTER_PARENT:
4316		device_pm_move_after(dev, new_parent);
4317		devices_kset_move_after(dev, new_parent);
4318		break;
4319	case DPM_ORDER_PARENT_BEFORE_DEV:
4320		device_pm_move_before(new_parent, dev);
4321		devices_kset_move_before(new_parent, dev);
4322		break;
4323	case DPM_ORDER_DEV_LAST:
4324		device_pm_move_last(dev);
4325		devices_kset_move_last(dev);
4326		break;
4327	}
4328
4329	put_device(old_parent);
4330out:
4331	device_pm_unlock();
4332	put_device(dev);
4333	return error;
4334}
4335EXPORT_SYMBOL_GPL(device_move);
4336
4337static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4338				     kgid_t kgid)
4339{
4340	struct kobject *kobj = &dev->kobj;
4341	struct class *class = dev->class;
4342	const struct device_type *type = dev->type;
4343	int error;
4344
4345	if (class) {
4346		/*
4347		 * Change the device groups of the device class for @dev to
4348		 * @kuid/@kgid.
4349		 */
4350		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4351						  kgid);
4352		if (error)
4353			return error;
4354	}
4355
4356	if (type) {
4357		/*
4358		 * Change the device groups of the device type for @dev to
4359		 * @kuid/@kgid.
4360		 */
4361		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4362						  kgid);
4363		if (error)
4364			return error;
4365	}
4366
4367	/* Change the device groups of @dev to @kuid/@kgid. */
4368	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4369	if (error)
4370		return error;
4371
4372	if (device_supports_offline(dev) && !dev->offline_disabled) {
4373		/* Change online device attributes of @dev to @kuid/@kgid. */
4374		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4375						kuid, kgid);
4376		if (error)
4377			return error;
4378	}
4379
4380	return 0;
4381}
4382
4383/**
4384 * device_change_owner - change the owner of an existing device.
4385 * @dev: device.
4386 * @kuid: new owner's kuid
4387 * @kgid: new owner's kgid
4388 *
4389 * This changes the owner of @dev and its corresponding sysfs entries to
4390 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4391 * core.
4392 *
4393 * Returns 0 on success or error code on failure.
4394 */
4395int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4396{
4397	int error;
4398	struct kobject *kobj = &dev->kobj;
4399
4400	dev = get_device(dev);
4401	if (!dev)
4402		return -EINVAL;
4403
4404	/*
4405	 * Change the kobject and the default attributes and groups of the
4406	 * ktype associated with it to @kuid/@kgid.
4407	 */
4408	error = sysfs_change_owner(kobj, kuid, kgid);
4409	if (error)
4410		goto out;
4411
4412	/*
4413	 * Change the uevent file for @dev to the new owner. The uevent file
4414	 * was created in a separate step when @dev got added and we mirror
4415	 * that step here.
4416	 */
4417	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4418					kgid);
4419	if (error)
4420		goto out;
4421
4422	/*
4423	 * Change the device groups, the device groups associated with the
4424	 * device class, and the groups associated with the device type of @dev
4425	 * to @kuid/@kgid.
4426	 */
4427	error = device_attrs_change_owner(dev, kuid, kgid);
4428	if (error)
4429		goto out;
4430
4431	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4432	if (error)
4433		goto out;
4434
4435#ifdef CONFIG_BLOCK
4436	if (sysfs_deprecated && dev->class == &block_class)
4437		goto out;
4438#endif
4439
4440	/*
4441	 * Change the owner of the symlink located in the class directory of
4442	 * the device class associated with @dev which points to the actual
4443	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4444	 * symlink shows the same permissions as its target.
4445	 */
4446	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4447					dev_name(dev), kuid, kgid);
4448	if (error)
4449		goto out;
4450
4451out:
4452	put_device(dev);
4453	return error;
4454}
4455EXPORT_SYMBOL_GPL(device_change_owner);
4456
4457/**
4458 * device_shutdown - call ->shutdown() on each device to shutdown.
4459 */
4460void device_shutdown(void)
4461{
4462	struct device *dev, *parent;
4463
4464	wait_for_device_probe();
4465	device_block_probing();
4466
4467	cpufreq_suspend();
4468
4469	spin_lock(&devices_kset->list_lock);
4470	/*
4471	 * Walk the devices list backward, shutting down each in turn.
4472	 * Beware that device unplug events may also start pulling
4473	 * devices offline, even as the system is shutting down.
4474	 */
4475	while (!list_empty(&devices_kset->list)) {
4476		dev = list_entry(devices_kset->list.prev, struct device,
4477				kobj.entry);
4478
4479		/*
4480		 * hold reference count of device's parent to
4481		 * prevent it from being freed because parent's
4482		 * lock is to be held
4483		 */
4484		parent = get_device(dev->parent);
4485		get_device(dev);
4486		/*
4487		 * Make sure the device is off the kset list, in the
4488		 * event that dev->*->shutdown() doesn't remove it.
4489		 */
4490		list_del_init(&dev->kobj.entry);
4491		spin_unlock(&devices_kset->list_lock);
4492
4493		/* hold lock to avoid race with probe/release */
4494		if (parent)
4495			device_lock(parent);
4496		device_lock(dev);
4497
4498		/* Don't allow any more runtime suspends */
4499		pm_runtime_get_noresume(dev);
4500		pm_runtime_barrier(dev);
4501
4502		if (dev->class && dev->class->shutdown_pre) {
4503			if (initcall_debug)
4504				dev_info(dev, "shutdown_pre\n");
4505			dev->class->shutdown_pre(dev);
4506		}
4507		if (dev->bus && dev->bus->shutdown) {
4508			if (initcall_debug)
4509				dev_info(dev, "shutdown\n");
4510			dev->bus->shutdown(dev);
4511		} else if (dev->driver && dev->driver->shutdown) {
4512			if (initcall_debug)
4513				dev_info(dev, "shutdown\n");
4514			dev->driver->shutdown(dev);
4515		}
4516
4517		device_unlock(dev);
4518		if (parent)
4519			device_unlock(parent);
4520
4521		put_device(dev);
4522		put_device(parent);
4523
4524		spin_lock(&devices_kset->list_lock);
4525	}
4526	spin_unlock(&devices_kset->list_lock);
4527}
4528
4529/*
4530 * Device logging functions
4531 */
4532
4533#ifdef CONFIG_PRINTK
4534static void
4535set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4536{
4537	const char *subsys;
4538
4539	memset(dev_info, 0, sizeof(*dev_info));
4540
4541	if (dev->class)
4542		subsys = dev->class->name;
4543	else if (dev->bus)
4544		subsys = dev->bus->name;
4545	else
4546		return;
4547
4548	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
 
 
4549
4550	/*
4551	 * Add device identifier DEVICE=:
4552	 *   b12:8         block dev_t
4553	 *   c127:3        char dev_t
4554	 *   n8            netdev ifindex
4555	 *   +sound:card0  subsystem:devname
4556	 */
4557	if (MAJOR(dev->devt)) {
4558		char c;
4559
4560		if (strcmp(subsys, "block") == 0)
4561			c = 'b';
4562		else
4563			c = 'c';
4564
4565		snprintf(dev_info->device, sizeof(dev_info->device),
4566			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
 
4567	} else if (strcmp(subsys, "net") == 0) {
4568		struct net_device *net = to_net_dev(dev);
4569
4570		snprintf(dev_info->device, sizeof(dev_info->device),
4571			 "n%u", net->ifindex);
 
4572	} else {
4573		snprintf(dev_info->device, sizeof(dev_info->device),
4574			 "+%s:%s", subsys, dev_name(dev));
 
4575	}
 
 
 
 
 
 
 
 
 
4576}
4577
4578int dev_vprintk_emit(int level, const struct device *dev,
4579		     const char *fmt, va_list args)
4580{
4581	struct dev_printk_info dev_info;
 
4582
4583	set_dev_info(dev, &dev_info);
4584
4585	return vprintk_emit(0, level, &dev_info, fmt, args);
4586}
4587EXPORT_SYMBOL(dev_vprintk_emit);
4588
4589int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4590{
4591	va_list args;
4592	int r;
4593
4594	va_start(args, fmt);
4595
4596	r = dev_vprintk_emit(level, dev, fmt, args);
4597
4598	va_end(args);
4599
4600	return r;
4601}
4602EXPORT_SYMBOL(dev_printk_emit);
4603
4604static void __dev_printk(const char *level, const struct device *dev,
4605			struct va_format *vaf)
4606{
4607	if (dev)
4608		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4609				dev_driver_string(dev), dev_name(dev), vaf);
4610	else
4611		printk("%s(NULL device *): %pV", level, vaf);
4612}
4613
4614void dev_printk(const char *level, const struct device *dev,
4615		const char *fmt, ...)
4616{
4617	struct va_format vaf;
4618	va_list args;
4619
4620	va_start(args, fmt);
4621
4622	vaf.fmt = fmt;
4623	vaf.va = &args;
4624
4625	__dev_printk(level, dev, &vaf);
4626
4627	va_end(args);
4628}
4629EXPORT_SYMBOL(dev_printk);
4630
4631#define define_dev_printk_level(func, kern_level)		\
4632void func(const struct device *dev, const char *fmt, ...)	\
4633{								\
4634	struct va_format vaf;					\
4635	va_list args;						\
4636								\
4637	va_start(args, fmt);					\
4638								\
4639	vaf.fmt = fmt;						\
4640	vaf.va = &args;						\
4641								\
4642	__dev_printk(kern_level, dev, &vaf);			\
4643								\
4644	va_end(args);						\
4645}								\
4646EXPORT_SYMBOL(func);
4647
4648define_dev_printk_level(_dev_emerg, KERN_EMERG);
4649define_dev_printk_level(_dev_alert, KERN_ALERT);
4650define_dev_printk_level(_dev_crit, KERN_CRIT);
4651define_dev_printk_level(_dev_err, KERN_ERR);
4652define_dev_printk_level(_dev_warn, KERN_WARNING);
4653define_dev_printk_level(_dev_notice, KERN_NOTICE);
4654define_dev_printk_level(_dev_info, KERN_INFO);
4655
4656#endif
4657
4658/**
4659 * dev_err_probe - probe error check and log helper
4660 * @dev: the pointer to the struct device
4661 * @err: error value to test
4662 * @fmt: printf-style format string
4663 * @...: arguments as specified in the format string
4664 *
4665 * This helper implements common pattern present in probe functions for error
4666 * checking: print debug or error message depending if the error value is
4667 * -EPROBE_DEFER and propagate error upwards.
4668 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4669 * checked later by reading devices_deferred debugfs attribute.
4670 * It replaces code sequence::
4671 *
4672 * 	if (err != -EPROBE_DEFER)
4673 * 		dev_err(dev, ...);
4674 * 	else
4675 * 		dev_dbg(dev, ...);
4676 * 	return err;
4677 *
4678 * with::
4679 *
4680 * 	return dev_err_probe(dev, err, ...);
4681 *
4682 * Returns @err.
4683 *
4684 */
4685int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4686{
4687	struct va_format vaf;
4688	va_list args;
4689
4690	va_start(args, fmt);
4691	vaf.fmt = fmt;
4692	vaf.va = &args;
4693
4694	if (err != -EPROBE_DEFER) {
4695		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4696	} else {
4697		device_set_deferred_probe_reason(dev, &vaf);
4698		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4699	}
4700
4701	va_end(args);
4702
4703	return err;
4704}
4705EXPORT_SYMBOL_GPL(dev_err_probe);
4706
4707static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4708{
4709	return fwnode && !IS_ERR(fwnode->secondary);
4710}
4711
4712/**
4713 * set_primary_fwnode - Change the primary firmware node of a given device.
4714 * @dev: Device to handle.
4715 * @fwnode: New primary firmware node of the device.
4716 *
4717 * Set the device's firmware node pointer to @fwnode, but if a secondary
4718 * firmware node of the device is present, preserve it.
4719 *
4720 * Valid fwnode cases are:
4721 *  - primary --> secondary --> -ENODEV
4722 *  - primary --> NULL
4723 *  - secondary --> -ENODEV
4724 *  - NULL
4725 */
4726void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4727{
4728	struct device *parent = dev->parent;
4729	struct fwnode_handle *fn = dev->fwnode;
4730
4731	if (fwnode) {
 
 
4732		if (fwnode_is_primary(fn))
4733			fn = fn->secondary;
4734
4735		if (fn) {
4736			WARN_ON(fwnode->secondary);
4737			fwnode->secondary = fn;
4738		}
4739		dev->fwnode = fwnode;
4740	} else {
4741		if (fwnode_is_primary(fn)) {
4742			dev->fwnode = fn->secondary;
4743			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4744			if (!(parent && fn == parent->fwnode))
4745				fn->secondary = NULL;
4746		} else {
4747			dev->fwnode = NULL;
4748		}
4749	}
4750}
4751EXPORT_SYMBOL_GPL(set_primary_fwnode);
4752
4753/**
4754 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4755 * @dev: Device to handle.
4756 * @fwnode: New secondary firmware node of the device.
4757 *
4758 * If a primary firmware node of the device is present, set its secondary
4759 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4760 * @fwnode.
4761 */
4762void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4763{
4764	if (fwnode)
4765		fwnode->secondary = ERR_PTR(-ENODEV);
4766
4767	if (fwnode_is_primary(dev->fwnode))
4768		dev->fwnode->secondary = fwnode;
4769	else
4770		dev->fwnode = fwnode;
4771}
4772EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4773
4774/**
4775 * device_set_of_node_from_dev - reuse device-tree node of another device
4776 * @dev: device whose device-tree node is being set
4777 * @dev2: device whose device-tree node is being reused
4778 *
4779 * Takes another reference to the new device-tree node after first dropping
4780 * any reference held to the old node.
4781 */
4782void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4783{
4784	of_node_put(dev->of_node);
4785	dev->of_node = of_node_get(dev2->of_node);
4786	dev->of_node_reused = true;
4787}
4788EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4789
4790void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4791{
4792	dev->fwnode = fwnode;
4793	dev->of_node = to_of_node(fwnode);
4794}
4795EXPORT_SYMBOL_GPL(device_set_node);
4796
4797int device_match_name(struct device *dev, const void *name)
4798{
4799	return sysfs_streq(dev_name(dev), name);
4800}
4801EXPORT_SYMBOL_GPL(device_match_name);
4802
4803int device_match_of_node(struct device *dev, const void *np)
4804{
4805	return dev->of_node == np;
4806}
4807EXPORT_SYMBOL_GPL(device_match_of_node);
4808
4809int device_match_fwnode(struct device *dev, const void *fwnode)
4810{
4811	return dev_fwnode(dev) == fwnode;
4812}
4813EXPORT_SYMBOL_GPL(device_match_fwnode);
4814
4815int device_match_devt(struct device *dev, const void *pdevt)
4816{
4817	return dev->devt == *(dev_t *)pdevt;
4818}
4819EXPORT_SYMBOL_GPL(device_match_devt);
4820
4821int device_match_acpi_dev(struct device *dev, const void *adev)
4822{
4823	return ACPI_COMPANION(dev) == adev;
4824}
4825EXPORT_SYMBOL(device_match_acpi_dev);
4826
4827int device_match_any(struct device *dev, const void *unused)
4828{
4829	return 1;
4830}
4831EXPORT_SYMBOL_GPL(device_match_any);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/cpufreq.h>
  13#include <linux/device.h>
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/string.h>
  20#include <linux/kdev_t.h>
  21#include <linux/notifier.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/genhd.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/netdevice.h>
  28#include <linux/sched/signal.h>
 
  29#include <linux/sysfs.h>
 
  30
  31#include "base.h"
  32#include "power/power.h"
  33
  34#ifdef CONFIG_SYSFS_DEPRECATED
  35#ifdef CONFIG_SYSFS_DEPRECATED_V2
  36long sysfs_deprecated = 1;
  37#else
  38long sysfs_deprecated = 0;
  39#endif
  40static int __init sysfs_deprecated_setup(char *arg)
  41{
  42	return kstrtol(arg, 10, &sysfs_deprecated);
  43}
  44early_param("sysfs.deprecated", sysfs_deprecated_setup);
  45#endif
  46
  47/* Device links support. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48
  49#ifdef CONFIG_SRCU
  50static DEFINE_MUTEX(device_links_lock);
  51DEFINE_STATIC_SRCU(device_links_srcu);
  52
  53static inline void device_links_write_lock(void)
  54{
  55	mutex_lock(&device_links_lock);
  56}
  57
  58static inline void device_links_write_unlock(void)
  59{
  60	mutex_unlock(&device_links_lock);
  61}
  62
  63int device_links_read_lock(void)
  64{
  65	return srcu_read_lock(&device_links_srcu);
  66}
  67
  68void device_links_read_unlock(int idx)
  69{
  70	srcu_read_unlock(&device_links_srcu, idx);
  71}
  72
  73int device_links_read_lock_held(void)
  74{
  75	return srcu_read_lock_held(&device_links_srcu);
  76}
 
 
 
 
 
 
 
 
 
 
 
  77#else /* !CONFIG_SRCU */
  78static DECLARE_RWSEM(device_links_lock);
  79
  80static inline void device_links_write_lock(void)
  81{
  82	down_write(&device_links_lock);
  83}
  84
  85static inline void device_links_write_unlock(void)
  86{
  87	up_write(&device_links_lock);
  88}
  89
  90int device_links_read_lock(void)
  91{
  92	down_read(&device_links_lock);
  93	return 0;
  94}
  95
  96void device_links_read_unlock(int not_used)
  97{
  98	up_read(&device_links_lock);
  99}
 100
 101#ifdef CONFIG_DEBUG_LOCK_ALLOC
 102int device_links_read_lock_held(void)
 103{
 104	return lockdep_is_held(&device_links_lock);
 105}
 106#endif
 
 
 
 
 
 
 
 
 
 
 107#endif /* !CONFIG_SRCU */
 108
 
 
 
 
 
 
 
 
 
 
 109/**
 110 * device_is_dependent - Check if one device depends on another one
 111 * @dev: Device to check dependencies for.
 112 * @target: Device to check against.
 113 *
 114 * Check if @target depends on @dev or any device dependent on it (its child or
 115 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 116 */
 117static int device_is_dependent(struct device *dev, void *target)
 118{
 119	struct device_link *link;
 120	int ret;
 121
 122	if (dev == target)
 
 
 
 
 
 123		return 1;
 124
 125	ret = device_for_each_child(dev, target, device_is_dependent);
 126	if (ret)
 127		return ret;
 128
 129	list_for_each_entry(link, &dev->links.consumers, s_node) {
 
 
 
 
 130		if (link->consumer == target)
 131			return 1;
 132
 133		ret = device_is_dependent(link->consumer, target);
 134		if (ret)
 135			break;
 136	}
 137	return ret;
 138}
 139
 140static void device_link_init_status(struct device_link *link,
 141				    struct device *consumer,
 142				    struct device *supplier)
 143{
 144	switch (supplier->links.status) {
 145	case DL_DEV_PROBING:
 146		switch (consumer->links.status) {
 147		case DL_DEV_PROBING:
 148			/*
 149			 * A consumer driver can create a link to a supplier
 150			 * that has not completed its probing yet as long as it
 151			 * knows that the supplier is already functional (for
 152			 * example, it has just acquired some resources from the
 153			 * supplier).
 154			 */
 155			link->status = DL_STATE_CONSUMER_PROBE;
 156			break;
 157		default:
 158			link->status = DL_STATE_DORMANT;
 159			break;
 160		}
 161		break;
 162	case DL_DEV_DRIVER_BOUND:
 163		switch (consumer->links.status) {
 164		case DL_DEV_PROBING:
 165			link->status = DL_STATE_CONSUMER_PROBE;
 166			break;
 167		case DL_DEV_DRIVER_BOUND:
 168			link->status = DL_STATE_ACTIVE;
 169			break;
 170		default:
 171			link->status = DL_STATE_AVAILABLE;
 172			break;
 173		}
 174		break;
 175	case DL_DEV_UNBINDING:
 176		link->status = DL_STATE_SUPPLIER_UNBIND;
 177		break;
 178	default:
 179		link->status = DL_STATE_DORMANT;
 180		break;
 181	}
 182}
 183
 184static int device_reorder_to_tail(struct device *dev, void *not_used)
 185{
 186	struct device_link *link;
 187
 188	/*
 189	 * Devices that have not been registered yet will be put to the ends
 190	 * of the lists during the registration, so skip them here.
 191	 */
 192	if (device_is_registered(dev))
 193		devices_kset_move_last(dev);
 194
 195	if (device_pm_initialized(dev))
 196		device_pm_move_last(dev);
 197
 198	device_for_each_child(dev, NULL, device_reorder_to_tail);
 199	list_for_each_entry(link, &dev->links.consumers, s_node)
 
 
 
 200		device_reorder_to_tail(link->consumer, NULL);
 
 201
 202	return 0;
 203}
 204
 205/**
 206 * device_pm_move_to_tail - Move set of devices to the end of device lists
 207 * @dev: Device to move
 208 *
 209 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 210 *
 211 * It moves the @dev along with all of its children and all of its consumers
 212 * to the ends of the device_kset and dpm_list, recursively.
 213 */
 214void device_pm_move_to_tail(struct device *dev)
 215{
 216	int idx;
 217
 218	idx = device_links_read_lock();
 219	device_pm_lock();
 220	device_reorder_to_tail(dev, NULL);
 221	device_pm_unlock();
 222	device_links_read_unlock(idx);
 223}
 224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 226			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
 227			       DL_FLAG_AUTOPROBE_CONSUMER)
 
 
 228
 229#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 230			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 231
 232/**
 233 * device_link_add - Create a link between two devices.
 234 * @consumer: Consumer end of the link.
 235 * @supplier: Supplier end of the link.
 236 * @flags: Link flags.
 237 *
 238 * The caller is responsible for the proper synchronization of the link creation
 239 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 240 * runtime PM framework to take the link into account.  Second, if the
 241 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 242 * be forced into the active metastate and reference-counted upon the creation
 243 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 244 * ignored.
 245 *
 246 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 247 * expected to release the link returned by it directly with the help of either
 248 * device_link_del() or device_link_remove().
 249 *
 250 * If that flag is not set, however, the caller of this function is handing the
 251 * management of the link over to the driver core entirely and its return value
 252 * can only be used to check whether or not the link is present.  In that case,
 253 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 254 * flags can be used to indicate to the driver core when the link can be safely
 255 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 256 * that the link is not going to be used (by the given caller of this function)
 257 * after unbinding the consumer or supplier driver, respectively, from its
 258 * device, so the link can be deleted at that point.  If none of them is set,
 259 * the link will be maintained until one of the devices pointed to by it (either
 260 * the consumer or the supplier) is unregistered.
 261 *
 262 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 263 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 264 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 265 * be used to request the driver core to automaticall probe for a consmer
 266 * driver after successfully binding a driver to the supplier device.
 267 *
 268 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 269 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 270 * the same time is invalid and will cause NULL to be returned upfront.
 271 * However, if a device link between the given @consumer and @supplier pair
 272 * exists already when this function is called for them, the existing link will
 273 * be returned regardless of its current type and status (the link's flags may
 274 * be modified then).  The caller of this function is then expected to treat
 275 * the link as though it has just been created, so (in particular) if
 276 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 277 * explicitly when not needed any more (as stated above).
 278 *
 279 * A side effect of the link creation is re-ordering of dpm_list and the
 280 * devices_kset list by moving the consumer device and all devices depending
 281 * on it to the ends of these lists (that does not happen to devices that have
 282 * not been registered when this function is called).
 283 *
 284 * The supplier device is required to be registered when this function is called
 285 * and NULL will be returned if that is not the case.  The consumer device need
 286 * not be registered, however.
 287 */
 288struct device_link *device_link_add(struct device *consumer,
 289				    struct device *supplier, u32 flags)
 290{
 291	struct device_link *link;
 292
 293	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
 
 294	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 
 
 295	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 296	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 297		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 298		return NULL;
 299
 300	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 301		if (pm_runtime_get_sync(supplier) < 0) {
 302			pm_runtime_put_noidle(supplier);
 303			return NULL;
 304		}
 305	}
 306
 307	if (!(flags & DL_FLAG_STATELESS))
 308		flags |= DL_FLAG_MANAGED;
 309
 310	device_links_write_lock();
 311	device_pm_lock();
 312
 313	/*
 314	 * If the supplier has not been fully registered yet or there is a
 315	 * reverse dependency between the consumer and the supplier already in
 316	 * the graph, return NULL.
 
 
 317	 */
 318	if (!device_pm_initialized(supplier)
 319	    || device_is_dependent(consumer, supplier)) {
 
 
 
 
 
 
 
 
 
 
 
 
 320		link = NULL;
 321		goto out;
 322	}
 323
 324	/*
 325	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 326	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 327	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 328	 */
 329	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 330		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 331
 332	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 333		if (link->consumer != consumer)
 334			continue;
 335
 
 
 
 
 336		if (flags & DL_FLAG_PM_RUNTIME) {
 337			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 338				pm_runtime_new_link(consumer);
 339				link->flags |= DL_FLAG_PM_RUNTIME;
 340			}
 341			if (flags & DL_FLAG_RPM_ACTIVE)
 342				refcount_inc(&link->rpm_active);
 343		}
 344
 345		if (flags & DL_FLAG_STATELESS) {
 346			link->flags |= DL_FLAG_STATELESS;
 347			kref_get(&link->kref);
 348			goto out;
 
 
 
 
 
 
 
 349		}
 350
 351		/*
 352		 * If the life time of the link following from the new flags is
 353		 * longer than indicated by the flags of the existing link,
 354		 * update the existing link to stay around longer.
 355		 */
 356		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 357			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 358				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 359				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 360			}
 361		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 362			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 363					 DL_FLAG_AUTOREMOVE_SUPPLIER);
 364		}
 365		if (!(link->flags & DL_FLAG_MANAGED)) {
 366			kref_get(&link->kref);
 367			link->flags |= DL_FLAG_MANAGED;
 368			device_link_init_status(link, consumer, supplier);
 369		}
 
 
 
 
 
 
 370		goto out;
 371	}
 372
 373	link = kzalloc(sizeof(*link), GFP_KERNEL);
 374	if (!link)
 375		goto out;
 376
 377	refcount_set(&link->rpm_active, 1);
 378
 379	if (flags & DL_FLAG_PM_RUNTIME) {
 380		if (flags & DL_FLAG_RPM_ACTIVE)
 381			refcount_inc(&link->rpm_active);
 382
 383		pm_runtime_new_link(consumer);
 384	}
 385
 386	get_device(supplier);
 387	link->supplier = supplier;
 388	INIT_LIST_HEAD(&link->s_node);
 389	get_device(consumer);
 390	link->consumer = consumer;
 391	INIT_LIST_HEAD(&link->c_node);
 392	link->flags = flags;
 393	kref_init(&link->kref);
 394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 395	/* Determine the initial link state. */
 396	if (flags & DL_FLAG_STATELESS)
 397		link->status = DL_STATE_NONE;
 398	else
 399		device_link_init_status(link, consumer, supplier);
 400
 401	/*
 402	 * Some callers expect the link creation during consumer driver probe to
 403	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 404	 */
 405	if (link->status == DL_STATE_CONSUMER_PROBE &&
 406	    flags & DL_FLAG_PM_RUNTIME)
 407		pm_runtime_resume(supplier);
 408
 
 
 
 
 
 
 
 
 
 
 
 409	/*
 410	 * Move the consumer and all of the devices depending on it to the end
 411	 * of dpm_list and the devices_kset list.
 412	 *
 413	 * It is necessary to hold dpm_list locked throughout all that or else
 414	 * we may end up suspending with a wrong ordering of it.
 415	 */
 416	device_reorder_to_tail(consumer, NULL);
 417
 418	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 419	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 420
 421	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 422
 423 out:
 424	device_pm_unlock();
 425	device_links_write_unlock();
 426
 427	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 428		pm_runtime_put(supplier);
 429
 430	return link;
 431}
 432EXPORT_SYMBOL_GPL(device_link_add);
 433
 434static void device_link_free(struct device_link *link)
 435{
 436	while (refcount_dec_not_one(&link->rpm_active))
 437		pm_runtime_put(link->supplier);
 438
 439	put_device(link->consumer);
 440	put_device(link->supplier);
 441	kfree(link);
 442}
 443
 444#ifdef CONFIG_SRCU
 445static void __device_link_free_srcu(struct rcu_head *rhead)
 446{
 447	device_link_free(container_of(rhead, struct device_link, rcu_head));
 448}
 449
 450static void __device_link_del(struct kref *kref)
 451{
 452	struct device_link *link = container_of(kref, struct device_link, kref);
 453
 454	dev_dbg(link->consumer, "Dropping the link to %s\n",
 455		dev_name(link->supplier));
 456
 457	if (link->flags & DL_FLAG_PM_RUNTIME)
 458		pm_runtime_drop_link(link->consumer);
 459
 460	list_del_rcu(&link->s_node);
 461	list_del_rcu(&link->c_node);
 462	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
 463}
 464#else /* !CONFIG_SRCU */
 465static void __device_link_del(struct kref *kref)
 466{
 467	struct device_link *link = container_of(kref, struct device_link, kref);
 468
 469	dev_info(link->consumer, "Dropping the link to %s\n",
 470		 dev_name(link->supplier));
 471
 472	if (link->flags & DL_FLAG_PM_RUNTIME)
 473		pm_runtime_drop_link(link->consumer);
 474
 475	list_del(&link->s_node);
 476	list_del(&link->c_node);
 477	device_link_free(link);
 478}
 479#endif /* !CONFIG_SRCU */
 480
 481static void device_link_put_kref(struct device_link *link)
 482{
 483	if (link->flags & DL_FLAG_STATELESS)
 484		kref_put(&link->kref, __device_link_del);
 
 
 485	else
 486		WARN(1, "Unable to drop a managed device link reference\n");
 487}
 488
 489/**
 490 * device_link_del - Delete a stateless link between two devices.
 491 * @link: Device link to delete.
 492 *
 493 * The caller must ensure proper synchronization of this function with runtime
 494 * PM.  If the link was added multiple times, it needs to be deleted as often.
 495 * Care is required for hotplugged devices:  Their links are purged on removal
 496 * and calling device_link_del() is then no longer allowed.
 497 */
 498void device_link_del(struct device_link *link)
 499{
 500	device_links_write_lock();
 501	device_pm_lock();
 502	device_link_put_kref(link);
 503	device_pm_unlock();
 504	device_links_write_unlock();
 505}
 506EXPORT_SYMBOL_GPL(device_link_del);
 507
 508/**
 509 * device_link_remove - Delete a stateless link between two devices.
 510 * @consumer: Consumer end of the link.
 511 * @supplier: Supplier end of the link.
 512 *
 513 * The caller must ensure proper synchronization of this function with runtime
 514 * PM.
 515 */
 516void device_link_remove(void *consumer, struct device *supplier)
 517{
 518	struct device_link *link;
 519
 520	if (WARN_ON(consumer == supplier))
 521		return;
 522
 523	device_links_write_lock();
 524	device_pm_lock();
 525
 526	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 527		if (link->consumer == consumer) {
 528			device_link_put_kref(link);
 529			break;
 530		}
 531	}
 532
 533	device_pm_unlock();
 534	device_links_write_unlock();
 535}
 536EXPORT_SYMBOL_GPL(device_link_remove);
 537
 538static void device_links_missing_supplier(struct device *dev)
 539{
 540	struct device_link *link;
 541
 542	list_for_each_entry(link, &dev->links.suppliers, c_node)
 543		if (link->status == DL_STATE_CONSUMER_PROBE)
 
 
 
 544			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 
 
 
 
 
 545}
 546
 547/**
 548 * device_links_check_suppliers - Check presence of supplier drivers.
 549 * @dev: Consumer device.
 550 *
 551 * Check links from this device to any suppliers.  Walk the list of the device's
 552 * links to suppliers and see if all of them are available.  If not, simply
 553 * return -EPROBE_DEFER.
 554 *
 555 * We need to guarantee that the supplier will not go away after the check has
 556 * been positive here.  It only can go away in __device_release_driver() and
 557 * that function  checks the device's links to consumers.  This means we need to
 558 * mark the link as "consumer probe in progress" to make the supplier removal
 559 * wait for us to complete (or bad things may happen).
 560 *
 561 * Links without the DL_FLAG_MANAGED flag set are ignored.
 562 */
 563int device_links_check_suppliers(struct device *dev)
 564{
 565	struct device_link *link;
 566	int ret = 0;
 567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568	device_links_write_lock();
 569
 570	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 571		if (!(link->flags & DL_FLAG_MANAGED))
 572			continue;
 573
 574		if (link->status != DL_STATE_AVAILABLE) {
 
 575			device_links_missing_supplier(dev);
 
 
 576			ret = -EPROBE_DEFER;
 577			break;
 578		}
 579		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
 580	}
 581	dev->links.status = DL_DEV_PROBING;
 582
 583	device_links_write_unlock();
 584	return ret;
 585}
 586
 587/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588 * device_links_driver_bound - Update device links after probing its driver.
 589 * @dev: Device to update the links for.
 590 *
 591 * The probe has been successful, so update links from this device to any
 592 * consumers by changing their status to "available".
 593 *
 594 * Also change the status of @dev's links to suppliers to "active".
 595 *
 596 * Links without the DL_FLAG_MANAGED flag set are ignored.
 597 */
 598void device_links_driver_bound(struct device *dev)
 599{
 600	struct device_link *link;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601
 602	device_links_write_lock();
 603
 604	list_for_each_entry(link, &dev->links.consumers, s_node) {
 605		if (!(link->flags & DL_FLAG_MANAGED))
 606			continue;
 607
 608		/*
 609		 * Links created during consumer probe may be in the "consumer
 610		 * probe" state to start with if the supplier is still probing
 611		 * when they are created and they may become "active" if the
 612		 * consumer probe returns first.  Skip them here.
 613		 */
 614		if (link->status == DL_STATE_CONSUMER_PROBE ||
 615		    link->status == DL_STATE_ACTIVE)
 616			continue;
 617
 618		WARN_ON(link->status != DL_STATE_DORMANT);
 619		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 620
 621		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
 622			driver_deferred_probe_add(link->consumer);
 623	}
 624
 625	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 
 
 
 
 
 
 
 626		if (!(link->flags & DL_FLAG_MANAGED))
 627			continue;
 628
 629		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
 630		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 631	}
 632
 633	dev->links.status = DL_DEV_DRIVER_BOUND;
 634
 635	device_links_write_unlock();
 636}
 637
 638static void device_link_drop_managed(struct device_link *link)
 639{
 640	link->flags &= ~DL_FLAG_MANAGED;
 641	WRITE_ONCE(link->status, DL_STATE_NONE);
 642	kref_put(&link->kref, __device_link_del);
 643}
 644
 645/**
 646 * __device_links_no_driver - Update links of a device without a driver.
 647 * @dev: Device without a drvier.
 648 *
 649 * Delete all non-persistent links from this device to any suppliers.
 650 *
 651 * Persistent links stay around, but their status is changed to "available",
 652 * unless they already are in the "supplier unbind in progress" state in which
 653 * case they need not be updated.
 654 *
 655 * Links without the DL_FLAG_MANAGED flag set are ignored.
 656 */
 657static void __device_links_no_driver(struct device *dev)
 658{
 659	struct device_link *link, *ln;
 660
 661	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
 662		if (!(link->flags & DL_FLAG_MANAGED))
 663			continue;
 664
 665		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 666			device_link_drop_managed(link);
 667		else if (link->status == DL_STATE_CONSUMER_PROBE ||
 668			 link->status == DL_STATE_ACTIVE)
 
 
 
 
 
 
 669			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 
 
 
 
 670	}
 671
 672	dev->links.status = DL_DEV_NO_DRIVER;
 673}
 674
 675/**
 676 * device_links_no_driver - Update links after failing driver probe.
 677 * @dev: Device whose driver has just failed to probe.
 678 *
 679 * Clean up leftover links to consumers for @dev and invoke
 680 * %__device_links_no_driver() to update links to suppliers for it as
 681 * appropriate.
 682 *
 683 * Links without the DL_FLAG_MANAGED flag set are ignored.
 684 */
 685void device_links_no_driver(struct device *dev)
 686{
 687	struct device_link *link;
 688
 689	device_links_write_lock();
 690
 691	list_for_each_entry(link, &dev->links.consumers, s_node) {
 692		if (!(link->flags & DL_FLAG_MANAGED))
 693			continue;
 694
 695		/*
 696		 * The probe has failed, so if the status of the link is
 697		 * "consumer probe" or "active", it must have been added by
 698		 * a probing consumer while this device was still probing.
 699		 * Change its state to "dormant", as it represents a valid
 700		 * relationship, but it is not functionally meaningful.
 701		 */
 702		if (link->status == DL_STATE_CONSUMER_PROBE ||
 703		    link->status == DL_STATE_ACTIVE)
 704			WRITE_ONCE(link->status, DL_STATE_DORMANT);
 705	}
 706
 707	__device_links_no_driver(dev);
 708
 709	device_links_write_unlock();
 710}
 711
 712/**
 713 * device_links_driver_cleanup - Update links after driver removal.
 714 * @dev: Device whose driver has just gone away.
 715 *
 716 * Update links to consumers for @dev by changing their status to "dormant" and
 717 * invoke %__device_links_no_driver() to update links to suppliers for it as
 718 * appropriate.
 719 *
 720 * Links without the DL_FLAG_MANAGED flag set are ignored.
 721 */
 722void device_links_driver_cleanup(struct device *dev)
 723{
 724	struct device_link *link, *ln;
 725
 726	device_links_write_lock();
 727
 728	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
 729		if (!(link->flags & DL_FLAG_MANAGED))
 730			continue;
 731
 732		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
 733		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
 734
 735		/*
 736		 * autoremove the links between this @dev and its consumer
 737		 * devices that are not active, i.e. where the link state
 738		 * has moved to DL_STATE_SUPPLIER_UNBIND.
 739		 */
 740		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
 741		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 742			device_link_drop_managed(link);
 743
 744		WRITE_ONCE(link->status, DL_STATE_DORMANT);
 745	}
 746
 
 747	__device_links_no_driver(dev);
 748
 749	device_links_write_unlock();
 750}
 751
 752/**
 753 * device_links_busy - Check if there are any busy links to consumers.
 754 * @dev: Device to check.
 755 *
 756 * Check each consumer of the device and return 'true' if its link's status
 757 * is one of "consumer probe" or "active" (meaning that the given consumer is
 758 * probing right now or its driver is present).  Otherwise, change the link
 759 * state to "supplier unbind" to prevent the consumer from being probed
 760 * successfully going forward.
 761 *
 762 * Return 'false' if there are no probing or active consumers.
 763 *
 764 * Links without the DL_FLAG_MANAGED flag set are ignored.
 765 */
 766bool device_links_busy(struct device *dev)
 767{
 768	struct device_link *link;
 769	bool ret = false;
 770
 771	device_links_write_lock();
 772
 773	list_for_each_entry(link, &dev->links.consumers, s_node) {
 774		if (!(link->flags & DL_FLAG_MANAGED))
 775			continue;
 776
 777		if (link->status == DL_STATE_CONSUMER_PROBE
 778		    || link->status == DL_STATE_ACTIVE) {
 779			ret = true;
 780			break;
 781		}
 782		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
 783	}
 784
 785	dev->links.status = DL_DEV_UNBINDING;
 786
 787	device_links_write_unlock();
 788	return ret;
 789}
 790
 791/**
 792 * device_links_unbind_consumers - Force unbind consumers of the given device.
 793 * @dev: Device to unbind the consumers of.
 794 *
 795 * Walk the list of links to consumers for @dev and if any of them is in the
 796 * "consumer probe" state, wait for all device probes in progress to complete
 797 * and start over.
 798 *
 799 * If that's not the case, change the status of the link to "supplier unbind"
 800 * and check if the link was in the "active" state.  If so, force the consumer
 801 * driver to unbind and start over (the consumer will not re-probe as we have
 802 * changed the state of the link already).
 803 *
 804 * Links without the DL_FLAG_MANAGED flag set are ignored.
 805 */
 806void device_links_unbind_consumers(struct device *dev)
 807{
 808	struct device_link *link;
 809
 810 start:
 811	device_links_write_lock();
 812
 813	list_for_each_entry(link, &dev->links.consumers, s_node) {
 814		enum device_link_state status;
 815
 816		if (!(link->flags & DL_FLAG_MANAGED))
 
 817			continue;
 818
 819		status = link->status;
 820		if (status == DL_STATE_CONSUMER_PROBE) {
 821			device_links_write_unlock();
 822
 823			wait_for_device_probe();
 824			goto start;
 825		}
 826		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
 827		if (status == DL_STATE_ACTIVE) {
 828			struct device *consumer = link->consumer;
 829
 830			get_device(consumer);
 831
 832			device_links_write_unlock();
 833
 834			device_release_driver_internal(consumer, NULL,
 835						       consumer->parent);
 836			put_device(consumer);
 837			goto start;
 838		}
 839	}
 840
 841	device_links_write_unlock();
 842}
 843
 844/**
 845 * device_links_purge - Delete existing links to other devices.
 846 * @dev: Target device.
 847 */
 848static void device_links_purge(struct device *dev)
 849{
 850	struct device_link *link, *ln;
 851
 
 
 
 852	/*
 853	 * Delete all of the remaining links from this device to any other
 854	 * devices (either consumers or suppliers).
 855	 */
 856	device_links_write_lock();
 857
 858	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
 859		WARN_ON(link->status == DL_STATE_ACTIVE);
 860		__device_link_del(&link->kref);
 861	}
 862
 863	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
 864		WARN_ON(link->status != DL_STATE_DORMANT &&
 865			link->status != DL_STATE_NONE);
 866		__device_link_del(&link->kref);
 867	}
 868
 869	device_links_write_unlock();
 870}
 871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 872/* Device links support end. */
 873
 874int (*platform_notify)(struct device *dev) = NULL;
 875int (*platform_notify_remove)(struct device *dev) = NULL;
 876static struct kobject *dev_kobj;
 877struct kobject *sysfs_dev_char_kobj;
 878struct kobject *sysfs_dev_block_kobj;
 879
 880static DEFINE_MUTEX(device_hotplug_lock);
 881
 882void lock_device_hotplug(void)
 883{
 884	mutex_lock(&device_hotplug_lock);
 885}
 886
 887void unlock_device_hotplug(void)
 888{
 889	mutex_unlock(&device_hotplug_lock);
 890}
 891
 892int lock_device_hotplug_sysfs(void)
 893{
 894	if (mutex_trylock(&device_hotplug_lock))
 895		return 0;
 896
 897	/* Avoid busy looping (5 ms of sleep should do). */
 898	msleep(5);
 899	return restart_syscall();
 900}
 901
 902#ifdef CONFIG_BLOCK
 903static inline int device_is_not_partition(struct device *dev)
 904{
 905	return !(dev->type == &part_type);
 906}
 907#else
 908static inline int device_is_not_partition(struct device *dev)
 909{
 910	return 1;
 911}
 912#endif
 913
 914static int
 915device_platform_notify(struct device *dev, enum kobject_action action)
 916{
 917	int ret;
 918
 919	ret = acpi_platform_notify(dev, action);
 920	if (ret)
 921		return ret;
 922
 923	ret = software_node_notify(dev, action);
 924	if (ret)
 925		return ret;
 926
 927	if (platform_notify && action == KOBJ_ADD)
 928		platform_notify(dev);
 929	else if (platform_notify_remove && action == KOBJ_REMOVE)
 930		platform_notify_remove(dev);
 931	return 0;
 932}
 933
 934/**
 935 * dev_driver_string - Return a device's driver name, if at all possible
 936 * @dev: struct device to get the name of
 937 *
 938 * Will return the device's driver's name if it is bound to a device.  If
 939 * the device is not bound to a driver, it will return the name of the bus
 940 * it is attached to.  If it is not attached to a bus either, an empty
 941 * string will be returned.
 942 */
 943const char *dev_driver_string(const struct device *dev)
 944{
 945	struct device_driver *drv;
 946
 947	/* dev->driver can change to NULL underneath us because of unbinding,
 948	 * so be careful about accessing it.  dev->bus and dev->class should
 949	 * never change once they are set, so they don't need special care.
 950	 */
 951	drv = READ_ONCE(dev->driver);
 952	return drv ? drv->name :
 953			(dev->bus ? dev->bus->name :
 954			(dev->class ? dev->class->name : ""));
 955}
 956EXPORT_SYMBOL(dev_driver_string);
 957
 958#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
 959
 960static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
 961			     char *buf)
 962{
 963	struct device_attribute *dev_attr = to_dev_attr(attr);
 964	struct device *dev = kobj_to_dev(kobj);
 965	ssize_t ret = -EIO;
 966
 967	if (dev_attr->show)
 968		ret = dev_attr->show(dev, dev_attr, buf);
 969	if (ret >= (ssize_t)PAGE_SIZE) {
 970		printk("dev_attr_show: %pS returned bad count\n",
 971				dev_attr->show);
 972	}
 973	return ret;
 974}
 975
 976static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
 977			      const char *buf, size_t count)
 978{
 979	struct device_attribute *dev_attr = to_dev_attr(attr);
 980	struct device *dev = kobj_to_dev(kobj);
 981	ssize_t ret = -EIO;
 982
 983	if (dev_attr->store)
 984		ret = dev_attr->store(dev, dev_attr, buf, count);
 985	return ret;
 986}
 987
 988static const struct sysfs_ops dev_sysfs_ops = {
 989	.show	= dev_attr_show,
 990	.store	= dev_attr_store,
 991};
 992
 993#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
 994
 995ssize_t device_store_ulong(struct device *dev,
 996			   struct device_attribute *attr,
 997			   const char *buf, size_t size)
 998{
 999	struct dev_ext_attribute *ea = to_ext_attr(attr);
1000	int ret;
1001	unsigned long new;
1002
1003	ret = kstrtoul(buf, 0, &new);
1004	if (ret)
1005		return ret;
1006	*(unsigned long *)(ea->var) = new;
1007	/* Always return full write size even if we didn't consume all */
1008	return size;
1009}
1010EXPORT_SYMBOL_GPL(device_store_ulong);
1011
1012ssize_t device_show_ulong(struct device *dev,
1013			  struct device_attribute *attr,
1014			  char *buf)
1015{
1016	struct dev_ext_attribute *ea = to_ext_attr(attr);
1017	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1018}
1019EXPORT_SYMBOL_GPL(device_show_ulong);
1020
1021ssize_t device_store_int(struct device *dev,
1022			 struct device_attribute *attr,
1023			 const char *buf, size_t size)
1024{
1025	struct dev_ext_attribute *ea = to_ext_attr(attr);
1026	int ret;
1027	long new;
1028
1029	ret = kstrtol(buf, 0, &new);
1030	if (ret)
1031		return ret;
1032
1033	if (new > INT_MAX || new < INT_MIN)
1034		return -EINVAL;
1035	*(int *)(ea->var) = new;
1036	/* Always return full write size even if we didn't consume all */
1037	return size;
1038}
1039EXPORT_SYMBOL_GPL(device_store_int);
1040
1041ssize_t device_show_int(struct device *dev,
1042			struct device_attribute *attr,
1043			char *buf)
1044{
1045	struct dev_ext_attribute *ea = to_ext_attr(attr);
1046
1047	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1048}
1049EXPORT_SYMBOL_GPL(device_show_int);
1050
1051ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1052			  const char *buf, size_t size)
1053{
1054	struct dev_ext_attribute *ea = to_ext_attr(attr);
1055
1056	if (strtobool(buf, ea->var) < 0)
1057		return -EINVAL;
1058
1059	return size;
1060}
1061EXPORT_SYMBOL_GPL(device_store_bool);
1062
1063ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1064			 char *buf)
1065{
1066	struct dev_ext_attribute *ea = to_ext_attr(attr);
1067
1068	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1069}
1070EXPORT_SYMBOL_GPL(device_show_bool);
1071
1072/**
1073 * device_release - free device structure.
1074 * @kobj: device's kobject.
1075 *
1076 * This is called once the reference count for the object
1077 * reaches 0. We forward the call to the device's release
1078 * method, which should handle actually freeing the structure.
1079 */
1080static void device_release(struct kobject *kobj)
1081{
1082	struct device *dev = kobj_to_dev(kobj);
1083	struct device_private *p = dev->p;
1084
1085	/*
1086	 * Some platform devices are driven without driver attached
1087	 * and managed resources may have been acquired.  Make sure
1088	 * all resources are released.
1089	 *
1090	 * Drivers still can add resources into device after device
1091	 * is deleted but alive, so release devres here to avoid
1092	 * possible memory leak.
1093	 */
1094	devres_release_all(dev);
1095
 
 
1096	if (dev->release)
1097		dev->release(dev);
1098	else if (dev->type && dev->type->release)
1099		dev->type->release(dev);
1100	else if (dev->class && dev->class->dev_release)
1101		dev->class->dev_release(dev);
1102	else
1103		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n",
1104			dev_name(dev));
1105	kfree(p);
1106}
1107
1108static const void *device_namespace(struct kobject *kobj)
1109{
1110	struct device *dev = kobj_to_dev(kobj);
1111	const void *ns = NULL;
1112
1113	if (dev->class && dev->class->ns_type)
1114		ns = dev->class->namespace(dev);
1115
1116	return ns;
1117}
1118
1119static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1120{
1121	struct device *dev = kobj_to_dev(kobj);
1122
1123	if (dev->class && dev->class->get_ownership)
1124		dev->class->get_ownership(dev, uid, gid);
1125}
1126
1127static struct kobj_type device_ktype = {
1128	.release	= device_release,
1129	.sysfs_ops	= &dev_sysfs_ops,
1130	.namespace	= device_namespace,
1131	.get_ownership	= device_get_ownership,
1132};
1133
1134
1135static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1136{
1137	struct kobj_type *ktype = get_ktype(kobj);
1138
1139	if (ktype == &device_ktype) {
1140		struct device *dev = kobj_to_dev(kobj);
1141		if (dev->bus)
1142			return 1;
1143		if (dev->class)
1144			return 1;
1145	}
1146	return 0;
1147}
1148
1149static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1150{
1151	struct device *dev = kobj_to_dev(kobj);
1152
1153	if (dev->bus)
1154		return dev->bus->name;
1155	if (dev->class)
1156		return dev->class->name;
1157	return NULL;
1158}
1159
1160static int dev_uevent(struct kset *kset, struct kobject *kobj,
1161		      struct kobj_uevent_env *env)
1162{
1163	struct device *dev = kobj_to_dev(kobj);
1164	int retval = 0;
1165
1166	/* add device node properties if present */
1167	if (MAJOR(dev->devt)) {
1168		const char *tmp;
1169		const char *name;
1170		umode_t mode = 0;
1171		kuid_t uid = GLOBAL_ROOT_UID;
1172		kgid_t gid = GLOBAL_ROOT_GID;
1173
1174		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1175		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1176		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1177		if (name) {
1178			add_uevent_var(env, "DEVNAME=%s", name);
1179			if (mode)
1180				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1181			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1182				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1183			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1184				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1185			kfree(tmp);
1186		}
1187	}
1188
1189	if (dev->type && dev->type->name)
1190		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1191
1192	if (dev->driver)
1193		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1194
1195	/* Add common DT information about the device */
1196	of_device_uevent(dev, env);
1197
1198	/* have the bus specific function add its stuff */
1199	if (dev->bus && dev->bus->uevent) {
1200		retval = dev->bus->uevent(dev, env);
1201		if (retval)
1202			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1203				 dev_name(dev), __func__, retval);
1204	}
1205
1206	/* have the class specific function add its stuff */
1207	if (dev->class && dev->class->dev_uevent) {
1208		retval = dev->class->dev_uevent(dev, env);
1209		if (retval)
1210			pr_debug("device: '%s': %s: class uevent() "
1211				 "returned %d\n", dev_name(dev),
1212				 __func__, retval);
1213	}
1214
1215	/* have the device type specific function add its stuff */
1216	if (dev->type && dev->type->uevent) {
1217		retval = dev->type->uevent(dev, env);
1218		if (retval)
1219			pr_debug("device: '%s': %s: dev_type uevent() "
1220				 "returned %d\n", dev_name(dev),
1221				 __func__, retval);
1222	}
1223
1224	return retval;
1225}
1226
1227static const struct kset_uevent_ops device_uevent_ops = {
1228	.filter =	dev_uevent_filter,
1229	.name =		dev_uevent_name,
1230	.uevent =	dev_uevent,
1231};
1232
1233static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1234			   char *buf)
1235{
1236	struct kobject *top_kobj;
1237	struct kset *kset;
1238	struct kobj_uevent_env *env = NULL;
1239	int i;
1240	size_t count = 0;
1241	int retval;
1242
1243	/* search the kset, the device belongs to */
1244	top_kobj = &dev->kobj;
1245	while (!top_kobj->kset && top_kobj->parent)
1246		top_kobj = top_kobj->parent;
1247	if (!top_kobj->kset)
1248		goto out;
1249
1250	kset = top_kobj->kset;
1251	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1252		goto out;
1253
1254	/* respect filter */
1255	if (kset->uevent_ops && kset->uevent_ops->filter)
1256		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1257			goto out;
1258
1259	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1260	if (!env)
1261		return -ENOMEM;
1262
1263	/* let the kset specific function add its keys */
1264	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1265	if (retval)
1266		goto out;
1267
1268	/* copy keys to file */
1269	for (i = 0; i < env->envp_idx; i++)
1270		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1271out:
1272	kfree(env);
1273	return count;
1274}
1275
1276static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1277			    const char *buf, size_t count)
1278{
1279	int rc;
1280
1281	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1282
1283	if (rc) {
1284		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1285		return rc;
1286	}
1287
1288	return count;
1289}
1290static DEVICE_ATTR_RW(uevent);
1291
1292static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1293			   char *buf)
1294{
1295	bool val;
1296
1297	device_lock(dev);
1298	val = !dev->offline;
1299	device_unlock(dev);
1300	return sprintf(buf, "%u\n", val);
1301}
1302
1303static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1304			    const char *buf, size_t count)
1305{
1306	bool val;
1307	int ret;
1308
1309	ret = strtobool(buf, &val);
1310	if (ret < 0)
1311		return ret;
1312
1313	ret = lock_device_hotplug_sysfs();
1314	if (ret)
1315		return ret;
1316
1317	ret = val ? device_online(dev) : device_offline(dev);
1318	unlock_device_hotplug();
1319	return ret < 0 ? ret : count;
1320}
1321static DEVICE_ATTR_RW(online);
1322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1323int device_add_groups(struct device *dev, const struct attribute_group **groups)
1324{
1325	return sysfs_create_groups(&dev->kobj, groups);
1326}
1327EXPORT_SYMBOL_GPL(device_add_groups);
1328
1329void device_remove_groups(struct device *dev,
1330			  const struct attribute_group **groups)
1331{
1332	sysfs_remove_groups(&dev->kobj, groups);
1333}
1334EXPORT_SYMBOL_GPL(device_remove_groups);
1335
1336union device_attr_group_devres {
1337	const struct attribute_group *group;
1338	const struct attribute_group **groups;
1339};
1340
1341static int devm_attr_group_match(struct device *dev, void *res, void *data)
1342{
1343	return ((union device_attr_group_devres *)res)->group == data;
1344}
1345
1346static void devm_attr_group_remove(struct device *dev, void *res)
1347{
1348	union device_attr_group_devres *devres = res;
1349	const struct attribute_group *group = devres->group;
1350
1351	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1352	sysfs_remove_group(&dev->kobj, group);
1353}
1354
1355static void devm_attr_groups_remove(struct device *dev, void *res)
1356{
1357	union device_attr_group_devres *devres = res;
1358	const struct attribute_group **groups = devres->groups;
1359
1360	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1361	sysfs_remove_groups(&dev->kobj, groups);
1362}
1363
1364/**
1365 * devm_device_add_group - given a device, create a managed attribute group
1366 * @dev:	The device to create the group for
1367 * @grp:	The attribute group to create
1368 *
1369 * This function creates a group for the first time.  It will explicitly
1370 * warn and error if any of the attribute files being created already exist.
1371 *
1372 * Returns 0 on success or error code on failure.
1373 */
1374int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1375{
1376	union device_attr_group_devres *devres;
1377	int error;
1378
1379	devres = devres_alloc(devm_attr_group_remove,
1380			      sizeof(*devres), GFP_KERNEL);
1381	if (!devres)
1382		return -ENOMEM;
1383
1384	error = sysfs_create_group(&dev->kobj, grp);
1385	if (error) {
1386		devres_free(devres);
1387		return error;
1388	}
1389
1390	devres->group = grp;
1391	devres_add(dev, devres);
1392	return 0;
1393}
1394EXPORT_SYMBOL_GPL(devm_device_add_group);
1395
1396/**
1397 * devm_device_remove_group: remove a managed group from a device
1398 * @dev:	device to remove the group from
1399 * @grp:	group to remove
1400 *
1401 * This function removes a group of attributes from a device. The attributes
1402 * previously have to have been created for this group, otherwise it will fail.
1403 */
1404void devm_device_remove_group(struct device *dev,
1405			      const struct attribute_group *grp)
1406{
1407	WARN_ON(devres_release(dev, devm_attr_group_remove,
1408			       devm_attr_group_match,
1409			       /* cast away const */ (void *)grp));
1410}
1411EXPORT_SYMBOL_GPL(devm_device_remove_group);
1412
1413/**
1414 * devm_device_add_groups - create a bunch of managed attribute groups
1415 * @dev:	The device to create the group for
1416 * @groups:	The attribute groups to create, NULL terminated
1417 *
1418 * This function creates a bunch of managed attribute groups.  If an error
1419 * occurs when creating a group, all previously created groups will be
1420 * removed, unwinding everything back to the original state when this
1421 * function was called.  It will explicitly warn and error if any of the
1422 * attribute files being created already exist.
1423 *
1424 * Returns 0 on success or error code from sysfs_create_group on failure.
1425 */
1426int devm_device_add_groups(struct device *dev,
1427			   const struct attribute_group **groups)
1428{
1429	union device_attr_group_devres *devres;
1430	int error;
1431
1432	devres = devres_alloc(devm_attr_groups_remove,
1433			      sizeof(*devres), GFP_KERNEL);
1434	if (!devres)
1435		return -ENOMEM;
1436
1437	error = sysfs_create_groups(&dev->kobj, groups);
1438	if (error) {
1439		devres_free(devres);
1440		return error;
1441	}
1442
1443	devres->groups = groups;
1444	devres_add(dev, devres);
1445	return 0;
1446}
1447EXPORT_SYMBOL_GPL(devm_device_add_groups);
1448
1449/**
1450 * devm_device_remove_groups - remove a list of managed groups
1451 *
1452 * @dev:	The device for the groups to be removed from
1453 * @groups:	NULL terminated list of groups to be removed
1454 *
1455 * If groups is not NULL, remove the specified groups from the device.
1456 */
1457void devm_device_remove_groups(struct device *dev,
1458			       const struct attribute_group **groups)
1459{
1460	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1461			       devm_attr_group_match,
1462			       /* cast away const */ (void *)groups));
1463}
1464EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1465
1466static int device_add_attrs(struct device *dev)
1467{
1468	struct class *class = dev->class;
1469	const struct device_type *type = dev->type;
1470	int error;
1471
1472	if (class) {
1473		error = device_add_groups(dev, class->dev_groups);
1474		if (error)
1475			return error;
1476	}
1477
1478	if (type) {
1479		error = device_add_groups(dev, type->groups);
1480		if (error)
1481			goto err_remove_class_groups;
1482	}
1483
1484	error = device_add_groups(dev, dev->groups);
1485	if (error)
1486		goto err_remove_type_groups;
1487
1488	if (device_supports_offline(dev) && !dev->offline_disabled) {
1489		error = device_create_file(dev, &dev_attr_online);
1490		if (error)
1491			goto err_remove_dev_groups;
1492	}
1493
 
 
 
 
 
 
 
 
 
 
 
 
1494	return 0;
1495
 
 
 
 
1496 err_remove_dev_groups:
1497	device_remove_groups(dev, dev->groups);
1498 err_remove_type_groups:
1499	if (type)
1500		device_remove_groups(dev, type->groups);
1501 err_remove_class_groups:
1502	if (class)
1503		device_remove_groups(dev, class->dev_groups);
1504
1505	return error;
1506}
1507
1508static void device_remove_attrs(struct device *dev)
1509{
1510	struct class *class = dev->class;
1511	const struct device_type *type = dev->type;
1512
 
 
1513	device_remove_file(dev, &dev_attr_online);
1514	device_remove_groups(dev, dev->groups);
1515
1516	if (type)
1517		device_remove_groups(dev, type->groups);
1518
1519	if (class)
1520		device_remove_groups(dev, class->dev_groups);
1521}
1522
1523static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1524			char *buf)
1525{
1526	return print_dev_t(buf, dev->devt);
1527}
1528static DEVICE_ATTR_RO(dev);
1529
1530/* /sys/devices/ */
1531struct kset *devices_kset;
1532
1533/**
1534 * devices_kset_move_before - Move device in the devices_kset's list.
1535 * @deva: Device to move.
1536 * @devb: Device @deva should come before.
1537 */
1538static void devices_kset_move_before(struct device *deva, struct device *devb)
1539{
1540	if (!devices_kset)
1541		return;
1542	pr_debug("devices_kset: Moving %s before %s\n",
1543		 dev_name(deva), dev_name(devb));
1544	spin_lock(&devices_kset->list_lock);
1545	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1546	spin_unlock(&devices_kset->list_lock);
1547}
1548
1549/**
1550 * devices_kset_move_after - Move device in the devices_kset's list.
1551 * @deva: Device to move
1552 * @devb: Device @deva should come after.
1553 */
1554static void devices_kset_move_after(struct device *deva, struct device *devb)
1555{
1556	if (!devices_kset)
1557		return;
1558	pr_debug("devices_kset: Moving %s after %s\n",
1559		 dev_name(deva), dev_name(devb));
1560	spin_lock(&devices_kset->list_lock);
1561	list_move(&deva->kobj.entry, &devb->kobj.entry);
1562	spin_unlock(&devices_kset->list_lock);
1563}
1564
1565/**
1566 * devices_kset_move_last - move the device to the end of devices_kset's list.
1567 * @dev: device to move
1568 */
1569void devices_kset_move_last(struct device *dev)
1570{
1571	if (!devices_kset)
1572		return;
1573	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1574	spin_lock(&devices_kset->list_lock);
1575	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1576	spin_unlock(&devices_kset->list_lock);
1577}
1578
1579/**
1580 * device_create_file - create sysfs attribute file for device.
1581 * @dev: device.
1582 * @attr: device attribute descriptor.
1583 */
1584int device_create_file(struct device *dev,
1585		       const struct device_attribute *attr)
1586{
1587	int error = 0;
1588
1589	if (dev) {
1590		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1591			"Attribute %s: write permission without 'store'\n",
1592			attr->attr.name);
1593		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1594			"Attribute %s: read permission without 'show'\n",
1595			attr->attr.name);
1596		error = sysfs_create_file(&dev->kobj, &attr->attr);
1597	}
1598
1599	return error;
1600}
1601EXPORT_SYMBOL_GPL(device_create_file);
1602
1603/**
1604 * device_remove_file - remove sysfs attribute file.
1605 * @dev: device.
1606 * @attr: device attribute descriptor.
1607 */
1608void device_remove_file(struct device *dev,
1609			const struct device_attribute *attr)
1610{
1611	if (dev)
1612		sysfs_remove_file(&dev->kobj, &attr->attr);
1613}
1614EXPORT_SYMBOL_GPL(device_remove_file);
1615
1616/**
1617 * device_remove_file_self - remove sysfs attribute file from its own method.
1618 * @dev: device.
1619 * @attr: device attribute descriptor.
1620 *
1621 * See kernfs_remove_self() for details.
1622 */
1623bool device_remove_file_self(struct device *dev,
1624			     const struct device_attribute *attr)
1625{
1626	if (dev)
1627		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1628	else
1629		return false;
1630}
1631EXPORT_SYMBOL_GPL(device_remove_file_self);
1632
1633/**
1634 * device_create_bin_file - create sysfs binary attribute file for device.
1635 * @dev: device.
1636 * @attr: device binary attribute descriptor.
1637 */
1638int device_create_bin_file(struct device *dev,
1639			   const struct bin_attribute *attr)
1640{
1641	int error = -EINVAL;
1642	if (dev)
1643		error = sysfs_create_bin_file(&dev->kobj, attr);
1644	return error;
1645}
1646EXPORT_SYMBOL_GPL(device_create_bin_file);
1647
1648/**
1649 * device_remove_bin_file - remove sysfs binary attribute file
1650 * @dev: device.
1651 * @attr: device binary attribute descriptor.
1652 */
1653void device_remove_bin_file(struct device *dev,
1654			    const struct bin_attribute *attr)
1655{
1656	if (dev)
1657		sysfs_remove_bin_file(&dev->kobj, attr);
1658}
1659EXPORT_SYMBOL_GPL(device_remove_bin_file);
1660
1661static void klist_children_get(struct klist_node *n)
1662{
1663	struct device_private *p = to_device_private_parent(n);
1664	struct device *dev = p->device;
1665
1666	get_device(dev);
1667}
1668
1669static void klist_children_put(struct klist_node *n)
1670{
1671	struct device_private *p = to_device_private_parent(n);
1672	struct device *dev = p->device;
1673
1674	put_device(dev);
1675}
1676
1677/**
1678 * device_initialize - init device structure.
1679 * @dev: device.
1680 *
1681 * This prepares the device for use by other layers by initializing
1682 * its fields.
1683 * It is the first half of device_register(), if called by
1684 * that function, though it can also be called separately, so one
1685 * may use @dev's fields. In particular, get_device()/put_device()
1686 * may be used for reference counting of @dev after calling this
1687 * function.
1688 *
1689 * All fields in @dev must be initialized by the caller to 0, except
1690 * for those explicitly set to some other value.  The simplest
1691 * approach is to use kzalloc() to allocate the structure containing
1692 * @dev.
1693 *
1694 * NOTE: Use put_device() to give up your reference instead of freeing
1695 * @dev directly once you have called this function.
1696 */
1697void device_initialize(struct device *dev)
1698{
1699	dev->kobj.kset = devices_kset;
1700	kobject_init(&dev->kobj, &device_ktype);
1701	INIT_LIST_HEAD(&dev->dma_pools);
1702	mutex_init(&dev->mutex);
1703#ifdef CONFIG_PROVE_LOCKING
1704	mutex_init(&dev->lockdep_mutex);
1705#endif
1706	lockdep_set_novalidate_class(&dev->mutex);
1707	spin_lock_init(&dev->devres_lock);
1708	INIT_LIST_HEAD(&dev->devres_head);
1709	device_pm_init(dev);
1710	set_dev_node(dev, -1);
1711#ifdef CONFIG_GENERIC_MSI_IRQ
 
1712	INIT_LIST_HEAD(&dev->msi_list);
1713#endif
1714	INIT_LIST_HEAD(&dev->links.consumers);
1715	INIT_LIST_HEAD(&dev->links.suppliers);
 
1716	dev->links.status = DL_DEV_NO_DRIVER;
 
 
 
 
 
1717}
1718EXPORT_SYMBOL_GPL(device_initialize);
1719
1720struct kobject *virtual_device_parent(struct device *dev)
1721{
1722	static struct kobject *virtual_dir = NULL;
1723
1724	if (!virtual_dir)
1725		virtual_dir = kobject_create_and_add("virtual",
1726						     &devices_kset->kobj);
1727
1728	return virtual_dir;
1729}
1730
1731struct class_dir {
1732	struct kobject kobj;
1733	struct class *class;
1734};
1735
1736#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1737
1738static void class_dir_release(struct kobject *kobj)
1739{
1740	struct class_dir *dir = to_class_dir(kobj);
1741	kfree(dir);
1742}
1743
1744static const
1745struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1746{
1747	struct class_dir *dir = to_class_dir(kobj);
1748	return dir->class->ns_type;
1749}
1750
1751static struct kobj_type class_dir_ktype = {
1752	.release	= class_dir_release,
1753	.sysfs_ops	= &kobj_sysfs_ops,
1754	.child_ns_type	= class_dir_child_ns_type
1755};
1756
1757static struct kobject *
1758class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1759{
1760	struct class_dir *dir;
1761	int retval;
1762
1763	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1764	if (!dir)
1765		return ERR_PTR(-ENOMEM);
1766
1767	dir->class = class;
1768	kobject_init(&dir->kobj, &class_dir_ktype);
1769
1770	dir->kobj.kset = &class->p->glue_dirs;
1771
1772	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1773	if (retval < 0) {
1774		kobject_put(&dir->kobj);
1775		return ERR_PTR(retval);
1776	}
1777	return &dir->kobj;
1778}
1779
1780static DEFINE_MUTEX(gdp_mutex);
1781
1782static struct kobject *get_device_parent(struct device *dev,
1783					 struct device *parent)
1784{
1785	if (dev->class) {
1786		struct kobject *kobj = NULL;
1787		struct kobject *parent_kobj;
1788		struct kobject *k;
1789
1790#ifdef CONFIG_BLOCK
1791		/* block disks show up in /sys/block */
1792		if (sysfs_deprecated && dev->class == &block_class) {
1793			if (parent && parent->class == &block_class)
1794				return &parent->kobj;
1795			return &block_class.p->subsys.kobj;
1796		}
1797#endif
1798
1799		/*
1800		 * If we have no parent, we live in "virtual".
1801		 * Class-devices with a non class-device as parent, live
1802		 * in a "glue" directory to prevent namespace collisions.
1803		 */
1804		if (parent == NULL)
1805			parent_kobj = virtual_device_parent(dev);
1806		else if (parent->class && !dev->class->ns_type)
1807			return &parent->kobj;
1808		else
1809			parent_kobj = &parent->kobj;
1810
1811		mutex_lock(&gdp_mutex);
1812
1813		/* find our class-directory at the parent and reference it */
1814		spin_lock(&dev->class->p->glue_dirs.list_lock);
1815		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1816			if (k->parent == parent_kobj) {
1817				kobj = kobject_get(k);
1818				break;
1819			}
1820		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1821		if (kobj) {
1822			mutex_unlock(&gdp_mutex);
1823			return kobj;
1824		}
1825
1826		/* or create a new class-directory at the parent device */
1827		k = class_dir_create_and_add(dev->class, parent_kobj);
1828		/* do not emit an uevent for this simple "glue" directory */
1829		mutex_unlock(&gdp_mutex);
1830		return k;
1831	}
1832
1833	/* subsystems can specify a default root directory for their devices */
1834	if (!parent && dev->bus && dev->bus->dev_root)
1835		return &dev->bus->dev_root->kobj;
1836
1837	if (parent)
1838		return &parent->kobj;
1839	return NULL;
1840}
1841
1842static inline bool live_in_glue_dir(struct kobject *kobj,
1843				    struct device *dev)
1844{
1845	if (!kobj || !dev->class ||
1846	    kobj->kset != &dev->class->p->glue_dirs)
1847		return false;
1848	return true;
1849}
1850
1851static inline struct kobject *get_glue_dir(struct device *dev)
1852{
1853	return dev->kobj.parent;
1854}
1855
1856/*
1857 * make sure cleaning up dir as the last step, we need to make
1858 * sure .release handler of kobject is run with holding the
1859 * global lock
1860 */
1861static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1862{
1863	unsigned int ref;
1864
1865	/* see if we live in a "glue" directory */
1866	if (!live_in_glue_dir(glue_dir, dev))
1867		return;
1868
1869	mutex_lock(&gdp_mutex);
1870	/**
1871	 * There is a race condition between removing glue directory
1872	 * and adding a new device under the glue directory.
1873	 *
1874	 * CPU1:                                         CPU2:
1875	 *
1876	 * device_add()
1877	 *   get_device_parent()
1878	 *     class_dir_create_and_add()
1879	 *       kobject_add_internal()
1880	 *         create_dir()    // create glue_dir
1881	 *
1882	 *                                               device_add()
1883	 *                                                 get_device_parent()
1884	 *                                                   kobject_get() // get glue_dir
1885	 *
1886	 * device_del()
1887	 *   cleanup_glue_dir()
1888	 *     kobject_del(glue_dir)
1889	 *
1890	 *                                               kobject_add()
1891	 *                                                 kobject_add_internal()
1892	 *                                                   create_dir() // in glue_dir
1893	 *                                                     sysfs_create_dir_ns()
1894	 *                                                       kernfs_create_dir_ns(sd)
1895	 *
1896	 *       sysfs_remove_dir() // glue_dir->sd=NULL
1897	 *       sysfs_put()        // free glue_dir->sd
1898	 *
1899	 *                                                         // sd is freed
1900	 *                                                         kernfs_new_node(sd)
1901	 *                                                           kernfs_get(glue_dir)
1902	 *                                                           kernfs_add_one()
1903	 *                                                           kernfs_put()
1904	 *
1905	 * Before CPU1 remove last child device under glue dir, if CPU2 add
1906	 * a new device under glue dir, the glue_dir kobject reference count
1907	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
1908	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
1909	 * and sysfs_put(). This result in glue_dir->sd is freed.
1910	 *
1911	 * Then the CPU2 will see a stale "empty" but still potentially used
1912	 * glue dir around in kernfs_new_node().
1913	 *
1914	 * In order to avoid this happening, we also should make sure that
1915	 * kernfs_node for glue_dir is released in CPU1 only when refcount
1916	 * for glue_dir kobj is 1.
1917	 */
1918	ref = kref_read(&glue_dir->kref);
1919	if (!kobject_has_children(glue_dir) && !--ref)
1920		kobject_del(glue_dir);
1921	kobject_put(glue_dir);
1922	mutex_unlock(&gdp_mutex);
1923}
1924
1925static int device_add_class_symlinks(struct device *dev)
1926{
1927	struct device_node *of_node = dev_of_node(dev);
1928	int error;
1929
1930	if (of_node) {
1931		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1932		if (error)
1933			dev_warn(dev, "Error %d creating of_node link\n",error);
1934		/* An error here doesn't warrant bringing down the device */
1935	}
1936
1937	if (!dev->class)
1938		return 0;
1939
1940	error = sysfs_create_link(&dev->kobj,
1941				  &dev->class->p->subsys.kobj,
1942				  "subsystem");
1943	if (error)
1944		goto out_devnode;
1945
1946	if (dev->parent && device_is_not_partition(dev)) {
1947		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1948					  "device");
1949		if (error)
1950			goto out_subsys;
1951	}
1952
1953#ifdef CONFIG_BLOCK
1954	/* /sys/block has directories and does not need symlinks */
1955	if (sysfs_deprecated && dev->class == &block_class)
1956		return 0;
1957#endif
1958
1959	/* link in the class directory pointing to the device */
1960	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1961				  &dev->kobj, dev_name(dev));
1962	if (error)
1963		goto out_device;
1964
1965	return 0;
1966
1967out_device:
1968	sysfs_remove_link(&dev->kobj, "device");
1969
1970out_subsys:
1971	sysfs_remove_link(&dev->kobj, "subsystem");
1972out_devnode:
1973	sysfs_remove_link(&dev->kobj, "of_node");
1974	return error;
1975}
1976
1977static void device_remove_class_symlinks(struct device *dev)
1978{
1979	if (dev_of_node(dev))
1980		sysfs_remove_link(&dev->kobj, "of_node");
1981
1982	if (!dev->class)
1983		return;
1984
1985	if (dev->parent && device_is_not_partition(dev))
1986		sysfs_remove_link(&dev->kobj, "device");
1987	sysfs_remove_link(&dev->kobj, "subsystem");
1988#ifdef CONFIG_BLOCK
1989	if (sysfs_deprecated && dev->class == &block_class)
1990		return;
1991#endif
1992	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1993}
1994
1995/**
1996 * dev_set_name - set a device name
1997 * @dev: device
1998 * @fmt: format string for the device's name
1999 */
2000int dev_set_name(struct device *dev, const char *fmt, ...)
2001{
2002	va_list vargs;
2003	int err;
2004
2005	va_start(vargs, fmt);
2006	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2007	va_end(vargs);
2008	return err;
2009}
2010EXPORT_SYMBOL_GPL(dev_set_name);
2011
2012/**
2013 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2014 * @dev: device
2015 *
2016 * By default we select char/ for new entries.  Setting class->dev_obj
2017 * to NULL prevents an entry from being created.  class->dev_kobj must
2018 * be set (or cleared) before any devices are registered to the class
2019 * otherwise device_create_sys_dev_entry() and
2020 * device_remove_sys_dev_entry() will disagree about the presence of
2021 * the link.
2022 */
2023static struct kobject *device_to_dev_kobj(struct device *dev)
2024{
2025	struct kobject *kobj;
2026
2027	if (dev->class)
2028		kobj = dev->class->dev_kobj;
2029	else
2030		kobj = sysfs_dev_char_kobj;
2031
2032	return kobj;
2033}
2034
2035static int device_create_sys_dev_entry(struct device *dev)
2036{
2037	struct kobject *kobj = device_to_dev_kobj(dev);
2038	int error = 0;
2039	char devt_str[15];
2040
2041	if (kobj) {
2042		format_dev_t(devt_str, dev->devt);
2043		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2044	}
2045
2046	return error;
2047}
2048
2049static void device_remove_sys_dev_entry(struct device *dev)
2050{
2051	struct kobject *kobj = device_to_dev_kobj(dev);
2052	char devt_str[15];
2053
2054	if (kobj) {
2055		format_dev_t(devt_str, dev->devt);
2056		sysfs_remove_link(kobj, devt_str);
2057	}
2058}
2059
2060static int device_private_init(struct device *dev)
2061{
2062	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2063	if (!dev->p)
2064		return -ENOMEM;
2065	dev->p->device = dev;
2066	klist_init(&dev->p->klist_children, klist_children_get,
2067		   klist_children_put);
2068	INIT_LIST_HEAD(&dev->p->deferred_probe);
2069	return 0;
2070}
2071
2072/**
2073 * device_add - add device to device hierarchy.
2074 * @dev: device.
2075 *
2076 * This is part 2 of device_register(), though may be called
2077 * separately _iff_ device_initialize() has been called separately.
2078 *
2079 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2080 * to the global and sibling lists for the device, then
2081 * adds it to the other relevant subsystems of the driver model.
2082 *
2083 * Do not call this routine or device_register() more than once for
2084 * any device structure.  The driver model core is not designed to work
2085 * with devices that get unregistered and then spring back to life.
2086 * (Among other things, it's very hard to guarantee that all references
2087 * to the previous incarnation of @dev have been dropped.)  Allocate
2088 * and register a fresh new struct device instead.
2089 *
2090 * NOTE: _Never_ directly free @dev after calling this function, even
2091 * if it returned an error! Always use put_device() to give up your
2092 * reference instead.
2093 *
2094 * Rule of thumb is: if device_add() succeeds, you should call
2095 * device_del() when you want to get rid of it. If device_add() has
2096 * *not* succeeded, use *only* put_device() to drop the reference
2097 * count.
2098 */
2099int device_add(struct device *dev)
2100{
2101	struct device *parent;
2102	struct kobject *kobj;
2103	struct class_interface *class_intf;
2104	int error = -EINVAL;
2105	struct kobject *glue_dir = NULL;
2106
2107	dev = get_device(dev);
2108	if (!dev)
2109		goto done;
2110
2111	if (!dev->p) {
2112		error = device_private_init(dev);
2113		if (error)
2114			goto done;
2115	}
2116
2117	/*
2118	 * for statically allocated devices, which should all be converted
2119	 * some day, we need to initialize the name. We prevent reading back
2120	 * the name, and force the use of dev_name()
2121	 */
2122	if (dev->init_name) {
2123		dev_set_name(dev, "%s", dev->init_name);
2124		dev->init_name = NULL;
2125	}
2126
2127	/* subsystems can specify simple device enumeration */
2128	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2129		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2130
2131	if (!dev_name(dev)) {
2132		error = -EINVAL;
2133		goto name_error;
2134	}
2135
2136	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2137
2138	parent = get_device(dev->parent);
2139	kobj = get_device_parent(dev, parent);
2140	if (IS_ERR(kobj)) {
2141		error = PTR_ERR(kobj);
2142		goto parent_error;
2143	}
2144	if (kobj)
2145		dev->kobj.parent = kobj;
2146
2147	/* use parent numa_node */
2148	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2149		set_dev_node(dev, dev_to_node(parent));
2150
2151	/* first, register with generic layer. */
2152	/* we require the name to be set before, and pass NULL */
2153	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2154	if (error) {
2155		glue_dir = get_glue_dir(dev);
2156		goto Error;
2157	}
2158
2159	/* notify platform of device entry */
2160	error = device_platform_notify(dev, KOBJ_ADD);
2161	if (error)
2162		goto platform_error;
2163
2164	error = device_create_file(dev, &dev_attr_uevent);
2165	if (error)
2166		goto attrError;
2167
2168	error = device_add_class_symlinks(dev);
2169	if (error)
2170		goto SymlinkError;
2171	error = device_add_attrs(dev);
2172	if (error)
2173		goto AttrsError;
2174	error = bus_add_device(dev);
2175	if (error)
2176		goto BusError;
2177	error = dpm_sysfs_add(dev);
2178	if (error)
2179		goto DPMError;
2180	device_pm_add(dev);
2181
2182	if (MAJOR(dev->devt)) {
2183		error = device_create_file(dev, &dev_attr_dev);
2184		if (error)
2185			goto DevAttrError;
2186
2187		error = device_create_sys_dev_entry(dev);
2188		if (error)
2189			goto SysEntryError;
2190
2191		devtmpfs_create_node(dev);
2192	}
2193
2194	/* Notify clients of device addition.  This call must come
2195	 * after dpm_sysfs_add() and before kobject_uevent().
2196	 */
2197	if (dev->bus)
2198		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2199					     BUS_NOTIFY_ADD_DEVICE, dev);
2200
2201	kobject_uevent(&dev->kobj, KOBJ_ADD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2202	bus_probe_device(dev);
 
 
 
 
 
 
 
 
 
2203	if (parent)
2204		klist_add_tail(&dev->p->knode_parent,
2205			       &parent->p->klist_children);
2206
2207	if (dev->class) {
2208		mutex_lock(&dev->class->p->mutex);
2209		/* tie the class to the device */
2210		klist_add_tail(&dev->p->knode_class,
2211			       &dev->class->p->klist_devices);
2212
2213		/* notify any interfaces that the device is here */
2214		list_for_each_entry(class_intf,
2215				    &dev->class->p->interfaces, node)
2216			if (class_intf->add_dev)
2217				class_intf->add_dev(dev, class_intf);
2218		mutex_unlock(&dev->class->p->mutex);
2219	}
2220done:
2221	put_device(dev);
2222	return error;
2223 SysEntryError:
2224	if (MAJOR(dev->devt))
2225		device_remove_file(dev, &dev_attr_dev);
2226 DevAttrError:
2227	device_pm_remove(dev);
2228	dpm_sysfs_remove(dev);
2229 DPMError:
2230	bus_remove_device(dev);
2231 BusError:
2232	device_remove_attrs(dev);
2233 AttrsError:
2234	device_remove_class_symlinks(dev);
2235 SymlinkError:
2236	device_remove_file(dev, &dev_attr_uevent);
2237 attrError:
2238	device_platform_notify(dev, KOBJ_REMOVE);
2239platform_error:
2240	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2241	glue_dir = get_glue_dir(dev);
2242	kobject_del(&dev->kobj);
2243 Error:
2244	cleanup_glue_dir(dev, glue_dir);
2245parent_error:
2246	put_device(parent);
2247name_error:
2248	kfree(dev->p);
2249	dev->p = NULL;
2250	goto done;
2251}
2252EXPORT_SYMBOL_GPL(device_add);
2253
2254/**
2255 * device_register - register a device with the system.
2256 * @dev: pointer to the device structure
2257 *
2258 * This happens in two clean steps - initialize the device
2259 * and add it to the system. The two steps can be called
2260 * separately, but this is the easiest and most common.
2261 * I.e. you should only call the two helpers separately if
2262 * have a clearly defined need to use and refcount the device
2263 * before it is added to the hierarchy.
2264 *
2265 * For more information, see the kerneldoc for device_initialize()
2266 * and device_add().
2267 *
2268 * NOTE: _Never_ directly free @dev after calling this function, even
2269 * if it returned an error! Always use put_device() to give up the
2270 * reference initialized in this function instead.
2271 */
2272int device_register(struct device *dev)
2273{
2274	device_initialize(dev);
2275	return device_add(dev);
2276}
2277EXPORT_SYMBOL_GPL(device_register);
2278
2279/**
2280 * get_device - increment reference count for device.
2281 * @dev: device.
2282 *
2283 * This simply forwards the call to kobject_get(), though
2284 * we do take care to provide for the case that we get a NULL
2285 * pointer passed in.
2286 */
2287struct device *get_device(struct device *dev)
2288{
2289	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2290}
2291EXPORT_SYMBOL_GPL(get_device);
2292
2293/**
2294 * put_device - decrement reference count.
2295 * @dev: device in question.
2296 */
2297void put_device(struct device *dev)
2298{
2299	/* might_sleep(); */
2300	if (dev)
2301		kobject_put(&dev->kobj);
2302}
2303EXPORT_SYMBOL_GPL(put_device);
2304
2305bool kill_device(struct device *dev)
2306{
2307	/*
2308	 * Require the device lock and set the "dead" flag to guarantee that
2309	 * the update behavior is consistent with the other bitfields near
2310	 * it and that we cannot have an asynchronous probe routine trying
2311	 * to run while we are tearing out the bus/class/sysfs from
2312	 * underneath the device.
2313	 */
2314	lockdep_assert_held(&dev->mutex);
2315
2316	if (dev->p->dead)
2317		return false;
2318	dev->p->dead = true;
2319	return true;
2320}
2321EXPORT_SYMBOL_GPL(kill_device);
2322
2323/**
2324 * device_del - delete device from system.
2325 * @dev: device.
2326 *
2327 * This is the first part of the device unregistration
2328 * sequence. This removes the device from the lists we control
2329 * from here, has it removed from the other driver model
2330 * subsystems it was added to in device_add(), and removes it
2331 * from the kobject hierarchy.
2332 *
2333 * NOTE: this should be called manually _iff_ device_add() was
2334 * also called manually.
2335 */
2336void device_del(struct device *dev)
2337{
2338	struct device *parent = dev->parent;
2339	struct kobject *glue_dir = NULL;
2340	struct class_interface *class_intf;
 
2341
2342	device_lock(dev);
2343	kill_device(dev);
2344	device_unlock(dev);
2345
 
 
 
2346	/* Notify clients of device removal.  This call must come
2347	 * before dpm_sysfs_remove().
2348	 */
 
2349	if (dev->bus)
2350		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2351					     BUS_NOTIFY_DEL_DEVICE, dev);
2352
2353	dpm_sysfs_remove(dev);
2354	if (parent)
2355		klist_del(&dev->p->knode_parent);
2356	if (MAJOR(dev->devt)) {
2357		devtmpfs_delete_node(dev);
2358		device_remove_sys_dev_entry(dev);
2359		device_remove_file(dev, &dev_attr_dev);
2360	}
2361	if (dev->class) {
2362		device_remove_class_symlinks(dev);
2363
2364		mutex_lock(&dev->class->p->mutex);
2365		/* notify any interfaces that the device is now gone */
2366		list_for_each_entry(class_intf,
2367				    &dev->class->p->interfaces, node)
2368			if (class_intf->remove_dev)
2369				class_intf->remove_dev(dev, class_intf);
2370		/* remove the device from the class list */
2371		klist_del(&dev->p->knode_class);
2372		mutex_unlock(&dev->class->p->mutex);
2373	}
2374	device_remove_file(dev, &dev_attr_uevent);
2375	device_remove_attrs(dev);
2376	bus_remove_device(dev);
2377	device_pm_remove(dev);
2378	driver_deferred_probe_del(dev);
2379	device_platform_notify(dev, KOBJ_REMOVE);
2380	device_remove_properties(dev);
2381	device_links_purge(dev);
2382
2383	if (dev->bus)
2384		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2385					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2386	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2387	glue_dir = get_glue_dir(dev);
2388	kobject_del(&dev->kobj);
2389	cleanup_glue_dir(dev, glue_dir);
 
2390	put_device(parent);
2391}
2392EXPORT_SYMBOL_GPL(device_del);
2393
2394/**
2395 * device_unregister - unregister device from system.
2396 * @dev: device going away.
2397 *
2398 * We do this in two parts, like we do device_register(). First,
2399 * we remove it from all the subsystems with device_del(), then
2400 * we decrement the reference count via put_device(). If that
2401 * is the final reference count, the device will be cleaned up
2402 * via device_release() above. Otherwise, the structure will
2403 * stick around until the final reference to the device is dropped.
2404 */
2405void device_unregister(struct device *dev)
2406{
2407	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2408	device_del(dev);
2409	put_device(dev);
2410}
2411EXPORT_SYMBOL_GPL(device_unregister);
2412
2413static struct device *prev_device(struct klist_iter *i)
2414{
2415	struct klist_node *n = klist_prev(i);
2416	struct device *dev = NULL;
2417	struct device_private *p;
2418
2419	if (n) {
2420		p = to_device_private_parent(n);
2421		dev = p->device;
2422	}
2423	return dev;
2424}
2425
2426static struct device *next_device(struct klist_iter *i)
2427{
2428	struct klist_node *n = klist_next(i);
2429	struct device *dev = NULL;
2430	struct device_private *p;
2431
2432	if (n) {
2433		p = to_device_private_parent(n);
2434		dev = p->device;
2435	}
2436	return dev;
2437}
2438
2439/**
2440 * device_get_devnode - path of device node file
2441 * @dev: device
2442 * @mode: returned file access mode
2443 * @uid: returned file owner
2444 * @gid: returned file group
2445 * @tmp: possibly allocated string
2446 *
2447 * Return the relative path of a possible device node.
2448 * Non-default names may need to allocate a memory to compose
2449 * a name. This memory is returned in tmp and needs to be
2450 * freed by the caller.
2451 */
2452const char *device_get_devnode(struct device *dev,
2453			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2454			       const char **tmp)
2455{
2456	char *s;
2457
2458	*tmp = NULL;
2459
2460	/* the device type may provide a specific name */
2461	if (dev->type && dev->type->devnode)
2462		*tmp = dev->type->devnode(dev, mode, uid, gid);
2463	if (*tmp)
2464		return *tmp;
2465
2466	/* the class may provide a specific name */
2467	if (dev->class && dev->class->devnode)
2468		*tmp = dev->class->devnode(dev, mode);
2469	if (*tmp)
2470		return *tmp;
2471
2472	/* return name without allocation, tmp == NULL */
2473	if (strchr(dev_name(dev), '!') == NULL)
2474		return dev_name(dev);
2475
2476	/* replace '!' in the name with '/' */
2477	s = kstrdup(dev_name(dev), GFP_KERNEL);
2478	if (!s)
2479		return NULL;
2480	strreplace(s, '!', '/');
2481	return *tmp = s;
2482}
2483
2484/**
2485 * device_for_each_child - device child iterator.
2486 * @parent: parent struct device.
2487 * @fn: function to be called for each device.
2488 * @data: data for the callback.
2489 *
2490 * Iterate over @parent's child devices, and call @fn for each,
2491 * passing it @data.
2492 *
2493 * We check the return of @fn each time. If it returns anything
2494 * other than 0, we break out and return that value.
2495 */
2496int device_for_each_child(struct device *parent, void *data,
2497			  int (*fn)(struct device *dev, void *data))
2498{
2499	struct klist_iter i;
2500	struct device *child;
2501	int error = 0;
2502
2503	if (!parent->p)
2504		return 0;
2505
2506	klist_iter_init(&parent->p->klist_children, &i);
2507	while (!error && (child = next_device(&i)))
2508		error = fn(child, data);
2509	klist_iter_exit(&i);
2510	return error;
2511}
2512EXPORT_SYMBOL_GPL(device_for_each_child);
2513
2514/**
2515 * device_for_each_child_reverse - device child iterator in reversed order.
2516 * @parent: parent struct device.
2517 * @fn: function to be called for each device.
2518 * @data: data for the callback.
2519 *
2520 * Iterate over @parent's child devices, and call @fn for each,
2521 * passing it @data.
2522 *
2523 * We check the return of @fn each time. If it returns anything
2524 * other than 0, we break out and return that value.
2525 */
2526int device_for_each_child_reverse(struct device *parent, void *data,
2527				  int (*fn)(struct device *dev, void *data))
2528{
2529	struct klist_iter i;
2530	struct device *child;
2531	int error = 0;
2532
2533	if (!parent->p)
2534		return 0;
2535
2536	klist_iter_init(&parent->p->klist_children, &i);
2537	while ((child = prev_device(&i)) && !error)
2538		error = fn(child, data);
2539	klist_iter_exit(&i);
2540	return error;
2541}
2542EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2543
2544/**
2545 * device_find_child - device iterator for locating a particular device.
2546 * @parent: parent struct device
2547 * @match: Callback function to check device
2548 * @data: Data to pass to match function
2549 *
2550 * This is similar to the device_for_each_child() function above, but it
2551 * returns a reference to a device that is 'found' for later use, as
2552 * determined by the @match callback.
2553 *
2554 * The callback should return 0 if the device doesn't match and non-zero
2555 * if it does.  If the callback returns non-zero and a reference to the
2556 * current device can be obtained, this function will return to the caller
2557 * and not iterate over any more devices.
2558 *
2559 * NOTE: you will need to drop the reference with put_device() after use.
2560 */
2561struct device *device_find_child(struct device *parent, void *data,
2562				 int (*match)(struct device *dev, void *data))
2563{
2564	struct klist_iter i;
2565	struct device *child;
2566
2567	if (!parent)
2568		return NULL;
2569
2570	klist_iter_init(&parent->p->klist_children, &i);
2571	while ((child = next_device(&i)))
2572		if (match(child, data) && get_device(child))
2573			break;
2574	klist_iter_exit(&i);
2575	return child;
2576}
2577EXPORT_SYMBOL_GPL(device_find_child);
2578
2579/**
2580 * device_find_child_by_name - device iterator for locating a child device.
2581 * @parent: parent struct device
2582 * @name: name of the child device
2583 *
2584 * This is similar to the device_find_child() function above, but it
2585 * returns a reference to a device that has the name @name.
2586 *
2587 * NOTE: you will need to drop the reference with put_device() after use.
2588 */
2589struct device *device_find_child_by_name(struct device *parent,
2590					 const char *name)
2591{
2592	struct klist_iter i;
2593	struct device *child;
2594
2595	if (!parent)
2596		return NULL;
2597
2598	klist_iter_init(&parent->p->klist_children, &i);
2599	while ((child = next_device(&i)))
2600		if (!strcmp(dev_name(child), name) && get_device(child))
2601			break;
2602	klist_iter_exit(&i);
2603	return child;
2604}
2605EXPORT_SYMBOL_GPL(device_find_child_by_name);
2606
2607int __init devices_init(void)
2608{
2609	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2610	if (!devices_kset)
2611		return -ENOMEM;
2612	dev_kobj = kobject_create_and_add("dev", NULL);
2613	if (!dev_kobj)
2614		goto dev_kobj_err;
2615	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2616	if (!sysfs_dev_block_kobj)
2617		goto block_kobj_err;
2618	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2619	if (!sysfs_dev_char_kobj)
2620		goto char_kobj_err;
2621
2622	return 0;
2623
2624 char_kobj_err:
2625	kobject_put(sysfs_dev_block_kobj);
2626 block_kobj_err:
2627	kobject_put(dev_kobj);
2628 dev_kobj_err:
2629	kset_unregister(devices_kset);
2630	return -ENOMEM;
2631}
2632
2633static int device_check_offline(struct device *dev, void *not_used)
2634{
2635	int ret;
2636
2637	ret = device_for_each_child(dev, NULL, device_check_offline);
2638	if (ret)
2639		return ret;
2640
2641	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2642}
2643
2644/**
2645 * device_offline - Prepare the device for hot-removal.
2646 * @dev: Device to be put offline.
2647 *
2648 * Execute the device bus type's .offline() callback, if present, to prepare
2649 * the device for a subsequent hot-removal.  If that succeeds, the device must
2650 * not be used until either it is removed or its bus type's .online() callback
2651 * is executed.
2652 *
2653 * Call under device_hotplug_lock.
2654 */
2655int device_offline(struct device *dev)
2656{
2657	int ret;
2658
2659	if (dev->offline_disabled)
2660		return -EPERM;
2661
2662	ret = device_for_each_child(dev, NULL, device_check_offline);
2663	if (ret)
2664		return ret;
2665
2666	device_lock(dev);
2667	if (device_supports_offline(dev)) {
2668		if (dev->offline) {
2669			ret = 1;
2670		} else {
2671			ret = dev->bus->offline(dev);
2672			if (!ret) {
2673				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2674				dev->offline = true;
2675			}
2676		}
2677	}
2678	device_unlock(dev);
2679
2680	return ret;
2681}
2682
2683/**
2684 * device_online - Put the device back online after successful device_offline().
2685 * @dev: Device to be put back online.
2686 *
2687 * If device_offline() has been successfully executed for @dev, but the device
2688 * has not been removed subsequently, execute its bus type's .online() callback
2689 * to indicate that the device can be used again.
2690 *
2691 * Call under device_hotplug_lock.
2692 */
2693int device_online(struct device *dev)
2694{
2695	int ret = 0;
2696
2697	device_lock(dev);
2698	if (device_supports_offline(dev)) {
2699		if (dev->offline) {
2700			ret = dev->bus->online(dev);
2701			if (!ret) {
2702				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2703				dev->offline = false;
2704			}
2705		} else {
2706			ret = 1;
2707		}
2708	}
2709	device_unlock(dev);
2710
2711	return ret;
2712}
2713
2714struct root_device {
2715	struct device dev;
2716	struct module *owner;
2717};
2718
2719static inline struct root_device *to_root_device(struct device *d)
2720{
2721	return container_of(d, struct root_device, dev);
2722}
2723
2724static void root_device_release(struct device *dev)
2725{
2726	kfree(to_root_device(dev));
2727}
2728
2729/**
2730 * __root_device_register - allocate and register a root device
2731 * @name: root device name
2732 * @owner: owner module of the root device, usually THIS_MODULE
2733 *
2734 * This function allocates a root device and registers it
2735 * using device_register(). In order to free the returned
2736 * device, use root_device_unregister().
2737 *
2738 * Root devices are dummy devices which allow other devices
2739 * to be grouped under /sys/devices. Use this function to
2740 * allocate a root device and then use it as the parent of
2741 * any device which should appear under /sys/devices/{name}
2742 *
2743 * The /sys/devices/{name} directory will also contain a
2744 * 'module' symlink which points to the @owner directory
2745 * in sysfs.
2746 *
2747 * Returns &struct device pointer on success, or ERR_PTR() on error.
2748 *
2749 * Note: You probably want to use root_device_register().
2750 */
2751struct device *__root_device_register(const char *name, struct module *owner)
2752{
2753	struct root_device *root;
2754	int err = -ENOMEM;
2755
2756	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2757	if (!root)
2758		return ERR_PTR(err);
2759
2760	err = dev_set_name(&root->dev, "%s", name);
2761	if (err) {
2762		kfree(root);
2763		return ERR_PTR(err);
2764	}
2765
2766	root->dev.release = root_device_release;
2767
2768	err = device_register(&root->dev);
2769	if (err) {
2770		put_device(&root->dev);
2771		return ERR_PTR(err);
2772	}
2773
2774#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2775	if (owner) {
2776		struct module_kobject *mk = &owner->mkobj;
2777
2778		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2779		if (err) {
2780			device_unregister(&root->dev);
2781			return ERR_PTR(err);
2782		}
2783		root->owner = owner;
2784	}
2785#endif
2786
2787	return &root->dev;
2788}
2789EXPORT_SYMBOL_GPL(__root_device_register);
2790
2791/**
2792 * root_device_unregister - unregister and free a root device
2793 * @dev: device going away
2794 *
2795 * This function unregisters and cleans up a device that was created by
2796 * root_device_register().
2797 */
2798void root_device_unregister(struct device *dev)
2799{
2800	struct root_device *root = to_root_device(dev);
2801
2802	if (root->owner)
2803		sysfs_remove_link(&root->dev.kobj, "module");
2804
2805	device_unregister(dev);
2806}
2807EXPORT_SYMBOL_GPL(root_device_unregister);
2808
2809
2810static void device_create_release(struct device *dev)
2811{
2812	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2813	kfree(dev);
2814}
2815
2816static __printf(6, 0) struct device *
2817device_create_groups_vargs(struct class *class, struct device *parent,
2818			   dev_t devt, void *drvdata,
2819			   const struct attribute_group **groups,
2820			   const char *fmt, va_list args)
2821{
2822	struct device *dev = NULL;
2823	int retval = -ENODEV;
2824
2825	if (class == NULL || IS_ERR(class))
2826		goto error;
2827
2828	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2829	if (!dev) {
2830		retval = -ENOMEM;
2831		goto error;
2832	}
2833
2834	device_initialize(dev);
2835	dev->devt = devt;
2836	dev->class = class;
2837	dev->parent = parent;
2838	dev->groups = groups;
2839	dev->release = device_create_release;
2840	dev_set_drvdata(dev, drvdata);
2841
2842	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2843	if (retval)
2844		goto error;
2845
2846	retval = device_add(dev);
2847	if (retval)
2848		goto error;
2849
2850	return dev;
2851
2852error:
2853	put_device(dev);
2854	return ERR_PTR(retval);
2855}
2856
2857/**
2858 * device_create_vargs - creates a device and registers it with sysfs
2859 * @class: pointer to the struct class that this device should be registered to
2860 * @parent: pointer to the parent struct device of this new device, if any
2861 * @devt: the dev_t for the char device to be added
2862 * @drvdata: the data to be added to the device for callbacks
2863 * @fmt: string for the device's name
2864 * @args: va_list for the device's name
2865 *
2866 * This function can be used by char device classes.  A struct device
2867 * will be created in sysfs, registered to the specified class.
2868 *
2869 * A "dev" file will be created, showing the dev_t for the device, if
2870 * the dev_t is not 0,0.
2871 * If a pointer to a parent struct device is passed in, the newly created
2872 * struct device will be a child of that device in sysfs.
2873 * The pointer to the struct device will be returned from the call.
2874 * Any further sysfs files that might be required can be created using this
2875 * pointer.
2876 *
2877 * Returns &struct device pointer on success, or ERR_PTR() on error.
2878 *
2879 * Note: the struct class passed to this function must have previously
2880 * been created with a call to class_create().
2881 */
2882struct device *device_create_vargs(struct class *class, struct device *parent,
2883				   dev_t devt, void *drvdata, const char *fmt,
2884				   va_list args)
2885{
2886	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2887					  fmt, args);
2888}
2889EXPORT_SYMBOL_GPL(device_create_vargs);
2890
2891/**
2892 * device_create - creates a device and registers it with sysfs
2893 * @class: pointer to the struct class that this device should be registered to
2894 * @parent: pointer to the parent struct device of this new device, if any
2895 * @devt: the dev_t for the char device to be added
2896 * @drvdata: the data to be added to the device for callbacks
2897 * @fmt: string for the device's name
2898 *
2899 * This function can be used by char device classes.  A struct device
2900 * will be created in sysfs, registered to the specified class.
2901 *
2902 * A "dev" file will be created, showing the dev_t for the device, if
2903 * the dev_t is not 0,0.
2904 * If a pointer to a parent struct device is passed in, the newly created
2905 * struct device will be a child of that device in sysfs.
2906 * The pointer to the struct device will be returned from the call.
2907 * Any further sysfs files that might be required can be created using this
2908 * pointer.
2909 *
2910 * Returns &struct device pointer on success, or ERR_PTR() on error.
2911 *
2912 * Note: the struct class passed to this function must have previously
2913 * been created with a call to class_create().
2914 */
2915struct device *device_create(struct class *class, struct device *parent,
2916			     dev_t devt, void *drvdata, const char *fmt, ...)
2917{
2918	va_list vargs;
2919	struct device *dev;
2920
2921	va_start(vargs, fmt);
2922	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
 
2923	va_end(vargs);
2924	return dev;
2925}
2926EXPORT_SYMBOL_GPL(device_create);
2927
2928/**
2929 * device_create_with_groups - creates a device and registers it with sysfs
2930 * @class: pointer to the struct class that this device should be registered to
2931 * @parent: pointer to the parent struct device of this new device, if any
2932 * @devt: the dev_t for the char device to be added
2933 * @drvdata: the data to be added to the device for callbacks
2934 * @groups: NULL-terminated list of attribute groups to be created
2935 * @fmt: string for the device's name
2936 *
2937 * This function can be used by char device classes.  A struct device
2938 * will be created in sysfs, registered to the specified class.
2939 * Additional attributes specified in the groups parameter will also
2940 * be created automatically.
2941 *
2942 * A "dev" file will be created, showing the dev_t for the device, if
2943 * the dev_t is not 0,0.
2944 * If a pointer to a parent struct device is passed in, the newly created
2945 * struct device will be a child of that device in sysfs.
2946 * The pointer to the struct device will be returned from the call.
2947 * Any further sysfs files that might be required can be created using this
2948 * pointer.
2949 *
2950 * Returns &struct device pointer on success, or ERR_PTR() on error.
2951 *
2952 * Note: the struct class passed to this function must have previously
2953 * been created with a call to class_create().
2954 */
2955struct device *device_create_with_groups(struct class *class,
2956					 struct device *parent, dev_t devt,
2957					 void *drvdata,
2958					 const struct attribute_group **groups,
2959					 const char *fmt, ...)
2960{
2961	va_list vargs;
2962	struct device *dev;
2963
2964	va_start(vargs, fmt);
2965	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2966					 fmt, vargs);
2967	va_end(vargs);
2968	return dev;
2969}
2970EXPORT_SYMBOL_GPL(device_create_with_groups);
2971
2972/**
2973 * device_destroy - removes a device that was created with device_create()
2974 * @class: pointer to the struct class that this device was registered with
2975 * @devt: the dev_t of the device that was previously registered
2976 *
2977 * This call unregisters and cleans up a device that was created with a
2978 * call to device_create().
2979 */
2980void device_destroy(struct class *class, dev_t devt)
2981{
2982	struct device *dev;
2983
2984	dev = class_find_device_by_devt(class, devt);
2985	if (dev) {
2986		put_device(dev);
2987		device_unregister(dev);
2988	}
2989}
2990EXPORT_SYMBOL_GPL(device_destroy);
2991
2992/**
2993 * device_rename - renames a device
2994 * @dev: the pointer to the struct device to be renamed
2995 * @new_name: the new name of the device
2996 *
2997 * It is the responsibility of the caller to provide mutual
2998 * exclusion between two different calls of device_rename
2999 * on the same device to ensure that new_name is valid and
3000 * won't conflict with other devices.
3001 *
3002 * Note: Don't call this function.  Currently, the networking layer calls this
3003 * function, but that will change.  The following text from Kay Sievers offers
3004 * some insight:
3005 *
3006 * Renaming devices is racy at many levels, symlinks and other stuff are not
3007 * replaced atomically, and you get a "move" uevent, but it's not easy to
3008 * connect the event to the old and new device. Device nodes are not renamed at
3009 * all, there isn't even support for that in the kernel now.
3010 *
3011 * In the meantime, during renaming, your target name might be taken by another
3012 * driver, creating conflicts. Or the old name is taken directly after you
3013 * renamed it -- then you get events for the same DEVPATH, before you even see
3014 * the "move" event. It's just a mess, and nothing new should ever rely on
3015 * kernel device renaming. Besides that, it's not even implemented now for
3016 * other things than (driver-core wise very simple) network devices.
3017 *
3018 * We are currently about to change network renaming in udev to completely
3019 * disallow renaming of devices in the same namespace as the kernel uses,
3020 * because we can't solve the problems properly, that arise with swapping names
3021 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3022 * be allowed to some other name than eth[0-9]*, for the aforementioned
3023 * reasons.
3024 *
3025 * Make up a "real" name in the driver before you register anything, or add
3026 * some other attributes for userspace to find the device, or use udev to add
3027 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3028 * don't even want to get into that and try to implement the missing pieces in
3029 * the core. We really have other pieces to fix in the driver core mess. :)
3030 */
3031int device_rename(struct device *dev, const char *new_name)
3032{
3033	struct kobject *kobj = &dev->kobj;
3034	char *old_device_name = NULL;
3035	int error;
3036
3037	dev = get_device(dev);
3038	if (!dev)
3039		return -EINVAL;
3040
3041	dev_dbg(dev, "renaming to %s\n", new_name);
3042
3043	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3044	if (!old_device_name) {
3045		error = -ENOMEM;
3046		goto out;
3047	}
3048
3049	if (dev->class) {
3050		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3051					     kobj, old_device_name,
3052					     new_name, kobject_namespace(kobj));
3053		if (error)
3054			goto out;
3055	}
3056
3057	error = kobject_rename(kobj, new_name);
3058	if (error)
3059		goto out;
3060
3061out:
3062	put_device(dev);
3063
3064	kfree(old_device_name);
3065
3066	return error;
3067}
3068EXPORT_SYMBOL_GPL(device_rename);
3069
3070static int device_move_class_links(struct device *dev,
3071				   struct device *old_parent,
3072				   struct device *new_parent)
3073{
3074	int error = 0;
3075
3076	if (old_parent)
3077		sysfs_remove_link(&dev->kobj, "device");
3078	if (new_parent)
3079		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3080					  "device");
3081	return error;
3082}
3083
3084/**
3085 * device_move - moves a device to a new parent
3086 * @dev: the pointer to the struct device to be moved
3087 * @new_parent: the new parent of the device (can be NULL)
3088 * @dpm_order: how to reorder the dpm_list
3089 */
3090int device_move(struct device *dev, struct device *new_parent,
3091		enum dpm_order dpm_order)
3092{
3093	int error;
3094	struct device *old_parent;
3095	struct kobject *new_parent_kobj;
3096
3097	dev = get_device(dev);
3098	if (!dev)
3099		return -EINVAL;
3100
3101	device_pm_lock();
3102	new_parent = get_device(new_parent);
3103	new_parent_kobj = get_device_parent(dev, new_parent);
3104	if (IS_ERR(new_parent_kobj)) {
3105		error = PTR_ERR(new_parent_kobj);
3106		put_device(new_parent);
3107		goto out;
3108	}
3109
3110	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3111		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3112	error = kobject_move(&dev->kobj, new_parent_kobj);
3113	if (error) {
3114		cleanup_glue_dir(dev, new_parent_kobj);
3115		put_device(new_parent);
3116		goto out;
3117	}
3118	old_parent = dev->parent;
3119	dev->parent = new_parent;
3120	if (old_parent)
3121		klist_remove(&dev->p->knode_parent);
3122	if (new_parent) {
3123		klist_add_tail(&dev->p->knode_parent,
3124			       &new_parent->p->klist_children);
3125		set_dev_node(dev, dev_to_node(new_parent));
3126	}
3127
3128	if (dev->class) {
3129		error = device_move_class_links(dev, old_parent, new_parent);
3130		if (error) {
3131			/* We ignore errors on cleanup since we're hosed anyway... */
3132			device_move_class_links(dev, new_parent, old_parent);
3133			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3134				if (new_parent)
3135					klist_remove(&dev->p->knode_parent);
3136				dev->parent = old_parent;
3137				if (old_parent) {
3138					klist_add_tail(&dev->p->knode_parent,
3139						       &old_parent->p->klist_children);
3140					set_dev_node(dev, dev_to_node(old_parent));
3141				}
3142			}
3143			cleanup_glue_dir(dev, new_parent_kobj);
3144			put_device(new_parent);
3145			goto out;
3146		}
3147	}
3148	switch (dpm_order) {
3149	case DPM_ORDER_NONE:
3150		break;
3151	case DPM_ORDER_DEV_AFTER_PARENT:
3152		device_pm_move_after(dev, new_parent);
3153		devices_kset_move_after(dev, new_parent);
3154		break;
3155	case DPM_ORDER_PARENT_BEFORE_DEV:
3156		device_pm_move_before(new_parent, dev);
3157		devices_kset_move_before(new_parent, dev);
3158		break;
3159	case DPM_ORDER_DEV_LAST:
3160		device_pm_move_last(dev);
3161		devices_kset_move_last(dev);
3162		break;
3163	}
3164
3165	put_device(old_parent);
3166out:
3167	device_pm_unlock();
3168	put_device(dev);
3169	return error;
3170}
3171EXPORT_SYMBOL_GPL(device_move);
3172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3173/**
3174 * device_shutdown - call ->shutdown() on each device to shutdown.
3175 */
3176void device_shutdown(void)
3177{
3178	struct device *dev, *parent;
3179
3180	wait_for_device_probe();
3181	device_block_probing();
3182
3183	cpufreq_suspend();
3184
3185	spin_lock(&devices_kset->list_lock);
3186	/*
3187	 * Walk the devices list backward, shutting down each in turn.
3188	 * Beware that device unplug events may also start pulling
3189	 * devices offline, even as the system is shutting down.
3190	 */
3191	while (!list_empty(&devices_kset->list)) {
3192		dev = list_entry(devices_kset->list.prev, struct device,
3193				kobj.entry);
3194
3195		/*
3196		 * hold reference count of device's parent to
3197		 * prevent it from being freed because parent's
3198		 * lock is to be held
3199		 */
3200		parent = get_device(dev->parent);
3201		get_device(dev);
3202		/*
3203		 * Make sure the device is off the kset list, in the
3204		 * event that dev->*->shutdown() doesn't remove it.
3205		 */
3206		list_del_init(&dev->kobj.entry);
3207		spin_unlock(&devices_kset->list_lock);
3208
3209		/* hold lock to avoid race with probe/release */
3210		if (parent)
3211			device_lock(parent);
3212		device_lock(dev);
3213
3214		/* Don't allow any more runtime suspends */
3215		pm_runtime_get_noresume(dev);
3216		pm_runtime_barrier(dev);
3217
3218		if (dev->class && dev->class->shutdown_pre) {
3219			if (initcall_debug)
3220				dev_info(dev, "shutdown_pre\n");
3221			dev->class->shutdown_pre(dev);
3222		}
3223		if (dev->bus && dev->bus->shutdown) {
3224			if (initcall_debug)
3225				dev_info(dev, "shutdown\n");
3226			dev->bus->shutdown(dev);
3227		} else if (dev->driver && dev->driver->shutdown) {
3228			if (initcall_debug)
3229				dev_info(dev, "shutdown\n");
3230			dev->driver->shutdown(dev);
3231		}
3232
3233		device_unlock(dev);
3234		if (parent)
3235			device_unlock(parent);
3236
3237		put_device(dev);
3238		put_device(parent);
3239
3240		spin_lock(&devices_kset->list_lock);
3241	}
3242	spin_unlock(&devices_kset->list_lock);
3243}
3244
3245/*
3246 * Device logging functions
3247 */
3248
3249#ifdef CONFIG_PRINTK
3250static int
3251create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3252{
3253	const char *subsys;
3254	size_t pos = 0;
 
3255
3256	if (dev->class)
3257		subsys = dev->class->name;
3258	else if (dev->bus)
3259		subsys = dev->bus->name;
3260	else
3261		return 0;
3262
3263	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3264	if (pos >= hdrlen)
3265		goto overflow;
3266
3267	/*
3268	 * Add device identifier DEVICE=:
3269	 *   b12:8         block dev_t
3270	 *   c127:3        char dev_t
3271	 *   n8            netdev ifindex
3272	 *   +sound:card0  subsystem:devname
3273	 */
3274	if (MAJOR(dev->devt)) {
3275		char c;
3276
3277		if (strcmp(subsys, "block") == 0)
3278			c = 'b';
3279		else
3280			c = 'c';
3281		pos++;
3282		pos += snprintf(hdr + pos, hdrlen - pos,
3283				"DEVICE=%c%u:%u",
3284				c, MAJOR(dev->devt), MINOR(dev->devt));
3285	} else if (strcmp(subsys, "net") == 0) {
3286		struct net_device *net = to_net_dev(dev);
3287
3288		pos++;
3289		pos += snprintf(hdr + pos, hdrlen - pos,
3290				"DEVICE=n%u", net->ifindex);
3291	} else {
3292		pos++;
3293		pos += snprintf(hdr + pos, hdrlen - pos,
3294				"DEVICE=+%s:%s", subsys, dev_name(dev));
3295	}
3296
3297	if (pos >= hdrlen)
3298		goto overflow;
3299
3300	return pos;
3301
3302overflow:
3303	dev_WARN(dev, "device/subsystem name too long");
3304	return 0;
3305}
3306
3307int dev_vprintk_emit(int level, const struct device *dev,
3308		     const char *fmt, va_list args)
3309{
3310	char hdr[128];
3311	size_t hdrlen;
3312
3313	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3314
3315	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3316}
3317EXPORT_SYMBOL(dev_vprintk_emit);
3318
3319int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3320{
3321	va_list args;
3322	int r;
3323
3324	va_start(args, fmt);
3325
3326	r = dev_vprintk_emit(level, dev, fmt, args);
3327
3328	va_end(args);
3329
3330	return r;
3331}
3332EXPORT_SYMBOL(dev_printk_emit);
3333
3334static void __dev_printk(const char *level, const struct device *dev,
3335			struct va_format *vaf)
3336{
3337	if (dev)
3338		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3339				dev_driver_string(dev), dev_name(dev), vaf);
3340	else
3341		printk("%s(NULL device *): %pV", level, vaf);
3342}
3343
3344void dev_printk(const char *level, const struct device *dev,
3345		const char *fmt, ...)
3346{
3347	struct va_format vaf;
3348	va_list args;
3349
3350	va_start(args, fmt);
3351
3352	vaf.fmt = fmt;
3353	vaf.va = &args;
3354
3355	__dev_printk(level, dev, &vaf);
3356
3357	va_end(args);
3358}
3359EXPORT_SYMBOL(dev_printk);
3360
3361#define define_dev_printk_level(func, kern_level)		\
3362void func(const struct device *dev, const char *fmt, ...)	\
3363{								\
3364	struct va_format vaf;					\
3365	va_list args;						\
3366								\
3367	va_start(args, fmt);					\
3368								\
3369	vaf.fmt = fmt;						\
3370	vaf.va = &args;						\
3371								\
3372	__dev_printk(kern_level, dev, &vaf);			\
3373								\
3374	va_end(args);						\
3375}								\
3376EXPORT_SYMBOL(func);
3377
3378define_dev_printk_level(_dev_emerg, KERN_EMERG);
3379define_dev_printk_level(_dev_alert, KERN_ALERT);
3380define_dev_printk_level(_dev_crit, KERN_CRIT);
3381define_dev_printk_level(_dev_err, KERN_ERR);
3382define_dev_printk_level(_dev_warn, KERN_WARNING);
3383define_dev_printk_level(_dev_notice, KERN_NOTICE);
3384define_dev_printk_level(_dev_info, KERN_INFO);
3385
3386#endif
3387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3388static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3389{
3390	return fwnode && !IS_ERR(fwnode->secondary);
3391}
3392
3393/**
3394 * set_primary_fwnode - Change the primary firmware node of a given device.
3395 * @dev: Device to handle.
3396 * @fwnode: New primary firmware node of the device.
3397 *
3398 * Set the device's firmware node pointer to @fwnode, but if a secondary
3399 * firmware node of the device is present, preserve it.
 
 
 
 
 
 
3400 */
3401void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3402{
 
 
 
3403	if (fwnode) {
3404		struct fwnode_handle *fn = dev->fwnode;
3405
3406		if (fwnode_is_primary(fn))
3407			fn = fn->secondary;
3408
3409		if (fn) {
3410			WARN_ON(fwnode->secondary);
3411			fwnode->secondary = fn;
3412		}
3413		dev->fwnode = fwnode;
3414	} else {
3415		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3416			dev->fwnode->secondary : NULL;
 
 
 
 
 
 
3417	}
3418}
3419EXPORT_SYMBOL_GPL(set_primary_fwnode);
3420
3421/**
3422 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3423 * @dev: Device to handle.
3424 * @fwnode: New secondary firmware node of the device.
3425 *
3426 * If a primary firmware node of the device is present, set its secondary
3427 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3428 * @fwnode.
3429 */
3430void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3431{
3432	if (fwnode)
3433		fwnode->secondary = ERR_PTR(-ENODEV);
3434
3435	if (fwnode_is_primary(dev->fwnode))
3436		dev->fwnode->secondary = fwnode;
3437	else
3438		dev->fwnode = fwnode;
3439}
 
3440
3441/**
3442 * device_set_of_node_from_dev - reuse device-tree node of another device
3443 * @dev: device whose device-tree node is being set
3444 * @dev2: device whose device-tree node is being reused
3445 *
3446 * Takes another reference to the new device-tree node after first dropping
3447 * any reference held to the old node.
3448 */
3449void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3450{
3451	of_node_put(dev->of_node);
3452	dev->of_node = of_node_get(dev2->of_node);
3453	dev->of_node_reused = true;
3454}
3455EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
 
 
 
 
 
 
 
3456
3457int device_match_name(struct device *dev, const void *name)
3458{
3459	return sysfs_streq(dev_name(dev), name);
3460}
3461EXPORT_SYMBOL_GPL(device_match_name);
3462
3463int device_match_of_node(struct device *dev, const void *np)
3464{
3465	return dev->of_node == np;
3466}
3467EXPORT_SYMBOL_GPL(device_match_of_node);
3468
3469int device_match_fwnode(struct device *dev, const void *fwnode)
3470{
3471	return dev_fwnode(dev) == fwnode;
3472}
3473EXPORT_SYMBOL_GPL(device_match_fwnode);
3474
3475int device_match_devt(struct device *dev, const void *pdevt)
3476{
3477	return dev->devt == *(dev_t *)pdevt;
3478}
3479EXPORT_SYMBOL_GPL(device_match_devt);
3480
3481int device_match_acpi_dev(struct device *dev, const void *adev)
3482{
3483	return ACPI_COMPANION(dev) == adev;
3484}
3485EXPORT_SYMBOL(device_match_acpi_dev);
3486
3487int device_match_any(struct device *dev, const void *unused)
3488{
3489	return 1;
3490}
3491EXPORT_SYMBOL_GPL(device_match_any);