Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * 
  4 * Common boot and setup code.
  5 *
  6 * Copyright (C) 2001 PPC64 Team, IBM Corp
  7 */
  8
  9#include <linux/export.h>
 10#include <linux/string.h>
 11#include <linux/sched.h>
 12#include <linux/init.h>
 13#include <linux/kernel.h>
 14#include <linux/reboot.h>
 15#include <linux/delay.h>
 16#include <linux/initrd.h>
 17#include <linux/seq_file.h>
 18#include <linux/ioport.h>
 19#include <linux/console.h>
 20#include <linux/utsname.h>
 21#include <linux/tty.h>
 22#include <linux/root_dev.h>
 23#include <linux/notifier.h>
 24#include <linux/cpu.h>
 25#include <linux/unistd.h>
 26#include <linux/serial.h>
 27#include <linux/serial_8250.h>
 28#include <linux/memblock.h>
 29#include <linux/pci.h>
 30#include <linux/lockdep.h>
 31#include <linux/memory.h>
 32#include <linux/nmi.h>
 33#include <linux/pgtable.h>
 34
 35#include <asm/debugfs.h>
 36#include <asm/kvm_guest.h>
 37#include <asm/io.h>
 38#include <asm/kdump.h>
 39#include <asm/prom.h>
 40#include <asm/processor.h>
 
 41#include <asm/smp.h>
 42#include <asm/elf.h>
 43#include <asm/machdep.h>
 44#include <asm/paca.h>
 45#include <asm/time.h>
 46#include <asm/cputable.h>
 47#include <asm/dt_cpu_ftrs.h>
 48#include <asm/sections.h>
 49#include <asm/btext.h>
 50#include <asm/nvram.h>
 51#include <asm/setup.h>
 52#include <asm/rtas.h>
 53#include <asm/iommu.h>
 54#include <asm/serial.h>
 55#include <asm/cache.h>
 56#include <asm/page.h>
 57#include <asm/mmu.h>
 58#include <asm/firmware.h>
 59#include <asm/xmon.h>
 60#include <asm/udbg.h>
 61#include <asm/kexec.h>
 62#include <asm/code-patching.h>
 63#include <asm/livepatch.h>
 64#include <asm/opal.h>
 65#include <asm/cputhreads.h>
 66#include <asm/hw_irq.h>
 67#include <asm/feature-fixups.h>
 68#include <asm/kup.h>
 69#include <asm/early_ioremap.h>
 70#include <asm/pgalloc.h>
 71#include <asm/asm-prototypes.h>
 72
 73#include "setup.h"
 74
 
 
 
 
 
 
 75int spinning_secondaries;
 76u64 ppc64_pft_size;
 77
 78struct ppc64_caches ppc64_caches = {
 79	.l1d = {
 80		.block_size = 0x40,
 81		.log_block_size = 6,
 82	},
 83	.l1i = {
 84		.block_size = 0x40,
 85		.log_block_size = 6
 86	},
 87};
 88EXPORT_SYMBOL_GPL(ppc64_caches);
 89
 90#if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
 91void __init setup_tlb_core_data(void)
 92{
 93	int cpu;
 94
 95	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
 96
 97	for_each_possible_cpu(cpu) {
 98		int first = cpu_first_thread_sibling(cpu);
 99
100		/*
101		 * If we boot via kdump on a non-primary thread,
102		 * make sure we point at the thread that actually
103		 * set up this TLB.
104		 */
105		if (cpu_first_thread_sibling(boot_cpuid) == first)
106			first = boot_cpuid;
107
108		paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
109
110		/*
111		 * If we have threads, we need either tlbsrx.
112		 * or e6500 tablewalk mode, or else TLB handlers
113		 * will be racy and could produce duplicate entries.
114		 * Should we panic instead?
115		 */
116		WARN_ONCE(smt_enabled_at_boot >= 2 &&
117			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
118			  book3e_htw_mode != PPC_HTW_E6500,
119			  "%s: unsupported MMU configuration\n", __func__);
120	}
121}
122#endif
123
124#ifdef CONFIG_SMP
125
126static char *smt_enabled_cmdline;
127
128/* Look for ibm,smt-enabled OF option */
129void __init check_smt_enabled(void)
130{
131	struct device_node *dn;
132	const char *smt_option;
133
134	/* Default to enabling all threads */
135	smt_enabled_at_boot = threads_per_core;
136
137	/* Allow the command line to overrule the OF option */
138	if (smt_enabled_cmdline) {
139		if (!strcmp(smt_enabled_cmdline, "on"))
140			smt_enabled_at_boot = threads_per_core;
141		else if (!strcmp(smt_enabled_cmdline, "off"))
142			smt_enabled_at_boot = 0;
143		else {
144			int smt;
145			int rc;
146
147			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
148			if (!rc)
149				smt_enabled_at_boot =
150					min(threads_per_core, smt);
151		}
152	} else {
153		dn = of_find_node_by_path("/options");
154		if (dn) {
155			smt_option = of_get_property(dn, "ibm,smt-enabled",
156						     NULL);
157
158			if (smt_option) {
159				if (!strcmp(smt_option, "on"))
160					smt_enabled_at_boot = threads_per_core;
161				else if (!strcmp(smt_option, "off"))
162					smt_enabled_at_boot = 0;
163			}
164
165			of_node_put(dn);
166		}
167	}
168}
169
170/* Look for smt-enabled= cmdline option */
171static int __init early_smt_enabled(char *p)
172{
173	smt_enabled_cmdline = p;
174	return 0;
175}
176early_param("smt-enabled", early_smt_enabled);
177
178#endif /* CONFIG_SMP */
179
180/** Fix up paca fields required for the boot cpu */
181static void __init fixup_boot_paca(void)
182{
183	/* The boot cpu is started */
184	get_paca()->cpu_start = 1;
185	/* Allow percpu accesses to work until we setup percpu data */
186	get_paca()->data_offset = 0;
187	/* Mark interrupts disabled in PACA */
188	irq_soft_mask_set(IRQS_DISABLED);
189}
190
191static void __init configure_exceptions(void)
192{
193	/*
194	 * Setup the trampolines from the lowmem exception vectors
195	 * to the kdump kernel when not using a relocatable kernel.
196	 */
197	setup_kdump_trampoline();
198
199	/* Under a PAPR hypervisor, we need hypercalls */
200	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
201		/* Enable AIL if possible */
202		if (!pseries_enable_reloc_on_exc()) {
203			init_task.thread.fscr &= ~FSCR_SCV;
204			cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
205		}
206
207		/*
208		 * Tell the hypervisor that we want our exceptions to
209		 * be taken in little endian mode.
210		 *
211		 * We don't call this for big endian as our calling convention
212		 * makes us always enter in BE, and the call may fail under
213		 * some circumstances with kdump.
214		 */
215#ifdef __LITTLE_ENDIAN__
216		pseries_little_endian_exceptions();
217#endif
218	} else {
219		/* Set endian mode using OPAL */
220		if (firmware_has_feature(FW_FEATURE_OPAL))
221			opal_configure_cores();
222
223		/* AIL on native is done in cpu_ready_for_interrupts() */
224	}
225}
226
227static void cpu_ready_for_interrupts(void)
228{
229	/*
230	 * Enable AIL if supported, and we are in hypervisor mode. This
231	 * is called once for every processor.
232	 *
233	 * If we are not in hypervisor mode the job is done once for
234	 * the whole partition in configure_exceptions().
235	 */
236	if (cpu_has_feature(CPU_FTR_HVMODE)) {
 
237		unsigned long lpcr = mfspr(SPRN_LPCR);
238		unsigned long new_lpcr = lpcr;
239
240		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
241			/* P10 DD1 does not have HAIL */
242			if (pvr_version_is(PVR_POWER10) &&
243					(mfspr(SPRN_PVR) & 0xf00) == 0x100)
244				new_lpcr |= LPCR_AIL_3;
245			else
246				new_lpcr |= LPCR_HAIL;
247		} else if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
248			new_lpcr |= LPCR_AIL_3;
249		}
250
251		if (new_lpcr != lpcr)
252			mtspr(SPRN_LPCR, new_lpcr);
253	}
254
255	/*
256	 * Set HFSCR:TM based on CPU features:
257	 * In the special case of TM no suspend (P9N DD2.1), Linux is
258	 * told TM is off via the dt-ftrs but told to (partially) use
259	 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
260	 * will be off from dt-ftrs but we need to turn it on for the
261	 * no suspend case.
262	 */
263	if (cpu_has_feature(CPU_FTR_HVMODE)) {
264		if (cpu_has_feature(CPU_FTR_TM_COMP))
265			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
266		else
267			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
268	}
269
270	/* Set IR and DR in PACA MSR */
271	get_paca()->kernel_msr = MSR_KERNEL;
272}
273
274unsigned long spr_default_dscr = 0;
275
276static void __init record_spr_defaults(void)
277{
278	if (early_cpu_has_feature(CPU_FTR_DSCR))
279		spr_default_dscr = mfspr(SPRN_DSCR);
280}
281
282/*
283 * Early initialization entry point. This is called by head.S
284 * with MMU translation disabled. We rely on the "feature" of
285 * the CPU that ignores the top 2 bits of the address in real
286 * mode so we can access kernel globals normally provided we
287 * only toy with things in the RMO region. From here, we do
288 * some early parsing of the device-tree to setup out MEMBLOCK
289 * data structures, and allocate & initialize the hash table
290 * and segment tables so we can start running with translation
291 * enabled.
292 *
293 * It is this function which will call the probe() callback of
294 * the various platform types and copy the matching one to the
295 * global ppc_md structure. Your platform can eventually do
296 * some very early initializations from the probe() routine, but
297 * this is not recommended, be very careful as, for example, the
298 * device-tree is not accessible via normal means at this point.
299 */
300
301void __init early_setup(unsigned long dt_ptr)
302{
303	static __initdata struct paca_struct boot_paca;
304
305	/* -------- printk is _NOT_ safe to use here ! ------- */
306
307	/*
308	 * Assume we're on cpu 0 for now.
309	 *
310	 * We need to load a PACA very early for a few reasons.
311	 *
312	 * The stack protector canary is stored in the paca, so as soon as we
313	 * call any stack protected code we need r13 pointing somewhere valid.
314	 *
315	 * If we are using kcov it will call in_task() in its instrumentation,
316	 * which relies on the current task from the PACA.
317	 *
318	 * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as
319	 * printk(), which can trigger both stack protector and kcov.
320	 *
321	 * percpu variables and spin locks also use the paca.
322	 *
323	 * So set up a temporary paca. It will be replaced below once we know
324	 * what CPU we are on.
325	 */
326	initialise_paca(&boot_paca, 0);
327	setup_paca(&boot_paca);
328	fixup_boot_paca();
329
330	/* -------- printk is now safe to use ------- */
331
332	/* Try new device tree based feature discovery ... */
333	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
334		/* Otherwise use the old style CPU table */
335		identify_cpu(0, mfspr(SPRN_PVR));
336
337	/* Enable early debugging if any specified (see udbg.h) */
338	udbg_early_init();
339
340	udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr);
341
342	/*
343	 * Do early initialization using the flattened device
344	 * tree, such as retrieving the physical memory map or
345	 * calculating/retrieving the hash table size.
346	 */
347	early_init_devtree(__va(dt_ptr));
348
349	/* Now we know the logical id of our boot cpu, setup the paca. */
350	if (boot_cpuid != 0) {
351		/* Poison paca_ptrs[0] again if it's not the boot cpu */
352		memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
353	}
354	setup_paca(paca_ptrs[boot_cpuid]);
355	fixup_boot_paca();
356
357	/*
358	 * Configure exception handlers. This include setting up trampolines
359	 * if needed, setting exception endian mode, etc...
360	 */
361	configure_exceptions();
362
363	/*
364	 * Configure Kernel Userspace Protection. This needs to happen before
365	 * feature fixups for platforms that implement this using features.
366	 */
367	setup_kup();
368
369	/* Apply all the dynamic patching */
370	apply_feature_fixups();
371	setup_feature_keys();
372
373	/* Initialize the hash table or TLB handling */
374	early_init_mmu();
375
376	early_ioremap_setup();
377
378	/*
379	 * After firmware and early platform setup code has set things up,
380	 * we note the SPR values for configurable control/performance
381	 * registers, and use those as initial defaults.
382	 */
383	record_spr_defaults();
384
385	/*
386	 * At this point, we can let interrupts switch to virtual mode
387	 * (the MMU has been setup), so adjust the MSR in the PACA to
388	 * have IR and DR set and enable AIL if it exists
389	 */
390	cpu_ready_for_interrupts();
391
392	/*
393	 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
394	 * will only actually get enabled on the boot cpu much later once
395	 * ftrace itself has been initialized.
396	 */
397	this_cpu_enable_ftrace();
398
399	udbg_printf(" <- %s()\n", __func__);
400
401#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
402	/*
403	 * This needs to be done *last* (after the above udbg_printf() even)
404	 *
405	 * Right after we return from this function, we turn on the MMU
406	 * which means the real-mode access trick that btext does will
407	 * no longer work, it needs to switch to using a real MMU
408	 * mapping. This call will ensure that it does
409	 */
410	btext_map();
411#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
412}
413
414#ifdef CONFIG_SMP
415void early_setup_secondary(void)
416{
417	/* Mark interrupts disabled in PACA */
418	irq_soft_mask_set(IRQS_DISABLED);
419
420	/* Initialize the hash table or TLB handling */
421	early_init_mmu_secondary();
422
423	/* Perform any KUP setup that is per-cpu */
424	setup_kup();
425
426	/*
427	 * At this point, we can let interrupts switch to virtual mode
428	 * (the MMU has been setup), so adjust the MSR in the PACA to
429	 * have IR and DR set.
430	 */
431	cpu_ready_for_interrupts();
432}
433
434#endif /* CONFIG_SMP */
435
436void panic_smp_self_stop(void)
437{
438	hard_irq_disable();
439	spin_begin();
440	while (1)
441		spin_cpu_relax();
442}
443
444#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
445static bool use_spinloop(void)
446{
447	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
448		/*
449		 * See comments in head_64.S -- not all platforms insert
450		 * secondaries at __secondary_hold and wait at the spin
451		 * loop.
452		 */
453		if (firmware_has_feature(FW_FEATURE_OPAL))
454			return false;
455		return true;
456	}
457
458	/*
459	 * When book3e boots from kexec, the ePAPR spin table does
460	 * not get used.
461	 */
462	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
463}
464
465void smp_release_cpus(void)
466{
467	unsigned long *ptr;
468	int i;
469
470	if (!use_spinloop())
471		return;
472
 
 
473	/* All secondary cpus are spinning on a common spinloop, release them
474	 * all now so they can start to spin on their individual paca
475	 * spinloops. For non SMP kernels, the secondary cpus never get out
476	 * of the common spinloop.
477	 */
478
479	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
480			- PHYSICAL_START);
481	*ptr = ppc_function_entry(generic_secondary_smp_init);
482
483	/* And wait a bit for them to catch up */
484	for (i = 0; i < 100000; i++) {
485		mb();
486		HMT_low();
487		if (spinning_secondaries == 0)
488			break;
489		udelay(1);
490	}
491	pr_debug("spinning_secondaries = %d\n", spinning_secondaries);
 
 
492}
493#endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
494
495/*
496 * Initialize some remaining members of the ppc64_caches and systemcfg
497 * structures
498 * (at least until we get rid of them completely). This is mostly some
499 * cache informations about the CPU that will be used by cache flush
500 * routines and/or provided to userland
501 */
502
503static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
504			    u32 bsize, u32 sets)
505{
506	info->size = size;
507	info->sets = sets;
508	info->line_size = lsize;
509	info->block_size = bsize;
510	info->log_block_size = __ilog2(bsize);
511	if (bsize)
512		info->blocks_per_page = PAGE_SIZE / bsize;
513	else
514		info->blocks_per_page = 0;
515
516	if (sets == 0)
517		info->assoc = 0xffff;
518	else
519		info->assoc = size / (sets * lsize);
520}
521
522static bool __init parse_cache_info(struct device_node *np,
523				    bool icache,
524				    struct ppc_cache_info *info)
525{
526	static const char *ipropnames[] __initdata = {
527		"i-cache-size",
528		"i-cache-sets",
529		"i-cache-block-size",
530		"i-cache-line-size",
531	};
532	static const char *dpropnames[] __initdata = {
533		"d-cache-size",
534		"d-cache-sets",
535		"d-cache-block-size",
536		"d-cache-line-size",
537	};
538	const char **propnames = icache ? ipropnames : dpropnames;
539	const __be32 *sizep, *lsizep, *bsizep, *setsp;
540	u32 size, lsize, bsize, sets;
541	bool success = true;
542
543	size = 0;
544	sets = -1u;
545	lsize = bsize = cur_cpu_spec->dcache_bsize;
546	sizep = of_get_property(np, propnames[0], NULL);
547	if (sizep != NULL)
548		size = be32_to_cpu(*sizep);
549	setsp = of_get_property(np, propnames[1], NULL);
550	if (setsp != NULL)
551		sets = be32_to_cpu(*setsp);
552	bsizep = of_get_property(np, propnames[2], NULL);
553	lsizep = of_get_property(np, propnames[3], NULL);
554	if (bsizep == NULL)
555		bsizep = lsizep;
556	if (lsizep == NULL)
557		lsizep = bsizep;
558	if (lsizep != NULL)
559		lsize = be32_to_cpu(*lsizep);
560	if (bsizep != NULL)
561		bsize = be32_to_cpu(*bsizep);
562	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
563		success = false;
564
565	/*
566	 * OF is weird .. it represents fully associative caches
567	 * as "1 way" which doesn't make much sense and doesn't
568	 * leave room for direct mapped. We'll assume that 0
569	 * in OF means direct mapped for that reason.
570	 */
571	if (sets == 1)
572		sets = 0;
573	else if (sets == 0)
574		sets = 1;
575
576	init_cache_info(info, size, lsize, bsize, sets);
577
578	return success;
579}
580
581void __init initialize_cache_info(void)
582{
583	struct device_node *cpu = NULL, *l2, *l3 = NULL;
584	u32 pvr;
585
 
 
586	/*
587	 * All shipping POWER8 machines have a firmware bug that
588	 * puts incorrect information in the device-tree. This will
589	 * be (hopefully) fixed for future chips but for now hard
590	 * code the values if we are running on one of these
591	 */
592	pvr = PVR_VER(mfspr(SPRN_PVR));
593	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
594	    pvr == PVR_POWER8NVL) {
595						/* size    lsize   blk  sets */
596		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
597		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
598		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
599		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
600	} else
601		cpu = of_find_node_by_type(NULL, "cpu");
602
603	/*
604	 * We're assuming *all* of the CPUs have the same
605	 * d-cache and i-cache sizes... -Peter
606	 */
607	if (cpu) {
608		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
609			pr_warn("Argh, can't find dcache properties !\n");
610
611		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
612			pr_warn("Argh, can't find icache properties !\n");
613
614		/*
615		 * Try to find the L2 and L3 if any. Assume they are
616		 * unified and use the D-side properties.
617		 */
618		l2 = of_find_next_cache_node(cpu);
619		of_node_put(cpu);
620		if (l2) {
621			parse_cache_info(l2, false, &ppc64_caches.l2);
622			l3 = of_find_next_cache_node(l2);
623			of_node_put(l2);
624		}
625		if (l3) {
626			parse_cache_info(l3, false, &ppc64_caches.l3);
627			of_node_put(l3);
628		}
629	}
630
631	/* For use by binfmt_elf */
632	dcache_bsize = ppc64_caches.l1d.block_size;
633	icache_bsize = ppc64_caches.l1i.block_size;
634
635	cur_cpu_spec->dcache_bsize = dcache_bsize;
636	cur_cpu_spec->icache_bsize = icache_bsize;
 
 
637}
638
639/*
640 * This returns the limit below which memory accesses to the linear
641 * mapping are guarnateed not to cause an architectural exception (e.g.,
642 * TLB or SLB miss fault).
643 *
644 * This is used to allocate PACAs and various interrupt stacks that
645 * that are accessed early in interrupt handlers that must not cause
646 * re-entrant interrupts.
647 */
648__init u64 ppc64_bolted_size(void)
649{
650#ifdef CONFIG_PPC_BOOK3E
651	/* Freescale BookE bolts the entire linear mapping */
652	/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
653	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
654		return linear_map_top;
655	/* Other BookE, we assume the first GB is bolted */
656	return 1ul << 30;
657#else
658	/* BookS radix, does not take faults on linear mapping */
659	if (early_radix_enabled())
660		return ULONG_MAX;
661
662	/* BookS hash, the first segment is bolted */
663	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
664		return 1UL << SID_SHIFT_1T;
665	return 1UL << SID_SHIFT;
666#endif
667}
668
669static void *__init alloc_stack(unsigned long limit, int cpu)
670{
671	void *ptr;
672
673	BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
674
675	ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_ALIGN,
676				     MEMBLOCK_LOW_LIMIT, limit,
677				     early_cpu_to_node(cpu));
678	if (!ptr)
679		panic("cannot allocate stacks");
680
681	return ptr;
682}
683
684void __init irqstack_early_init(void)
685{
686	u64 limit = ppc64_bolted_size();
687	unsigned int i;
688
689	/*
690	 * Interrupt stacks must be in the first segment since we
691	 * cannot afford to take SLB misses on them. They are not
692	 * accessed in realmode.
693	 */
694	for_each_possible_cpu(i) {
695		softirq_ctx[i] = alloc_stack(limit, i);
696		hardirq_ctx[i] = alloc_stack(limit, i);
697	}
698}
699
700#ifdef CONFIG_PPC_BOOK3E
701void __init exc_lvl_early_init(void)
702{
703	unsigned int i;
704
705	for_each_possible_cpu(i) {
706		void *sp;
707
708		sp = alloc_stack(ULONG_MAX, i);
709		critirq_ctx[i] = sp;
710		paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
711
712		sp = alloc_stack(ULONG_MAX, i);
713		dbgirq_ctx[i] = sp;
714		paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
715
716		sp = alloc_stack(ULONG_MAX, i);
717		mcheckirq_ctx[i] = sp;
718		paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
719	}
720
721	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
722		patch_exception(0x040, exc_debug_debug_book3e);
723}
724#endif
725
726/*
727 * Stack space used when we detect a bad kernel stack pointer, and
728 * early in SMP boots before relocation is enabled. Exclusive emergency
729 * stack for machine checks.
730 */
731void __init emergency_stack_init(void)
732{
733	u64 limit, mce_limit;
734	unsigned int i;
735
736	/*
737	 * Emergency stacks must be under 256MB, we cannot afford to take
738	 * SLB misses on them. The ABI also requires them to be 128-byte
739	 * aligned.
740	 *
741	 * Since we use these as temporary stacks during secondary CPU
742	 * bringup, machine check, system reset, and HMI, we need to get
743	 * at them in real mode. This means they must also be within the RMO
744	 * region.
745	 *
746	 * The IRQ stacks allocated elsewhere in this file are zeroed and
747	 * initialized in kernel/irq.c. These are initialized here in order
748	 * to have emergency stacks available as early as possible.
749	 */
750	limit = mce_limit = min(ppc64_bolted_size(), ppc64_rma_size);
751
752	/*
753	 * Machine check on pseries calls rtas, but can't use the static
754	 * rtas_args due to a machine check hitting while the lock is held.
755	 * rtas args have to be under 4GB, so the machine check stack is
756	 * limited to 4GB so args can be put on stack.
757	 */
758	if (firmware_has_feature(FW_FEATURE_LPAR) && mce_limit > SZ_4G)
759		mce_limit = SZ_4G;
760
761	for_each_possible_cpu(i) {
762		paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
763
764#ifdef CONFIG_PPC_BOOK3S_64
765		/* emergency stack for NMI exception handling. */
766		paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
767
768		/* emergency stack for machine check exception handling. */
769		paca_ptrs[i]->mc_emergency_sp = alloc_stack(mce_limit, i) + THREAD_SIZE;
770#endif
771	}
772}
773
774#ifdef CONFIG_SMP
775/**
776 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
777 * @cpu: cpu to allocate for
778 * @size: size allocation in bytes
779 * @align: alignment
780 *
781 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
782 * does the right thing for NUMA regardless of the current
783 * configuration.
784 *
785 * RETURNS:
786 * Pointer to the allocated area on success, NULL on failure.
787 */
788static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
789					size_t align)
790{
791	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
792#ifdef CONFIG_NUMA
793	int node = early_cpu_to_node(cpu);
794	void *ptr;
795
796	if (!node_online(node) || !NODE_DATA(node)) {
797		ptr = memblock_alloc_from(size, align, goal);
798		pr_info("cpu %d has no node %d or node-local memory\n",
799			cpu, node);
800		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
801			 cpu, size, __pa(ptr));
802	} else {
803		ptr = memblock_alloc_try_nid(size, align, goal,
804					     MEMBLOCK_ALLOC_ACCESSIBLE, node);
805		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
806			 "%016lx\n", cpu, size, node, __pa(ptr));
807	}
808	return ptr;
809#else
810	return memblock_alloc_from(size, align, goal);
811#endif
812}
813
814static void __init pcpu_free_bootmem(void *ptr, size_t size)
815{
816	memblock_free(__pa(ptr), size);
817}
818
819static int pcpu_cpu_distance(unsigned int from, unsigned int to)
820{
821	if (early_cpu_to_node(from) == early_cpu_to_node(to))
822		return LOCAL_DISTANCE;
823	else
824		return REMOTE_DISTANCE;
825}
826
827unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
828EXPORT_SYMBOL(__per_cpu_offset);
829
830static void __init pcpu_populate_pte(unsigned long addr)
831{
832	pgd_t *pgd = pgd_offset_k(addr);
833	p4d_t *p4d;
834	pud_t *pud;
835	pmd_t *pmd;
836
837	p4d = p4d_offset(pgd, addr);
838	if (p4d_none(*p4d)) {
839		pud_t *new;
840
841		new = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE);
842		if (!new)
843			goto err_alloc;
844		p4d_populate(&init_mm, p4d, new);
845	}
846
847	pud = pud_offset(p4d, addr);
848	if (pud_none(*pud)) {
849		pmd_t *new;
850
851		new = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE);
852		if (!new)
853			goto err_alloc;
854		pud_populate(&init_mm, pud, new);
855	}
856
857	pmd = pmd_offset(pud, addr);
858	if (!pmd_present(*pmd)) {
859		pte_t *new;
860
861		new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE);
862		if (!new)
863			goto err_alloc;
864		pmd_populate_kernel(&init_mm, pmd, new);
865	}
866
867	return;
868
869err_alloc:
870	panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
871	      __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
872}
873
874
875void __init setup_per_cpu_areas(void)
876{
877	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
878	size_t atom_size;
879	unsigned long delta;
880	unsigned int cpu;
881	int rc = -EINVAL;
882
883	/*
884	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
885	 * to group units.  For larger mappings, use 1M atom which
886	 * should be large enough to contain a number of units.
887	 */
888	if (mmu_linear_psize == MMU_PAGE_4K)
889		atom_size = PAGE_SIZE;
890	else
891		atom_size = 1 << 20;
892
893	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
894		rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
895					    pcpu_alloc_bootmem, pcpu_free_bootmem);
896		if (rc)
897			pr_warn("PERCPU: %s allocator failed (%d), "
898				"falling back to page size\n",
899				pcpu_fc_names[pcpu_chosen_fc], rc);
900	}
901
902	if (rc < 0)
903		rc = pcpu_page_first_chunk(0, pcpu_alloc_bootmem, pcpu_free_bootmem,
904					   pcpu_populate_pte);
905	if (rc < 0)
906		panic("cannot initialize percpu area (err=%d)", rc);
907
908	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
909	for_each_possible_cpu(cpu) {
910                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
911		paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
912	}
913}
914#endif
915
916#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
917unsigned long memory_block_size_bytes(void)
918{
919	if (ppc_md.memory_block_size)
920		return ppc_md.memory_block_size();
921
922	return MIN_MEMORY_BLOCK_SIZE;
923}
924#endif
925
926#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
927struct ppc_pci_io ppc_pci_io;
928EXPORT_SYMBOL(ppc_pci_io);
929#endif
930
931#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
932u64 hw_nmi_get_sample_period(int watchdog_thresh)
933{
934	return ppc_proc_freq * watchdog_thresh;
935}
936#endif
937
938/*
939 * The perf based hardlockup detector breaks PMU event based branches, so
940 * disable it by default. Book3S has a soft-nmi hardlockup detector based
941 * on the decrementer interrupt, so it does not suffer from this problem.
942 *
943 * It is likely to get false positives in KVM guests, so disable it there
944 * by default too. PowerVM will not stop or arbitrarily oversubscribe
945 * CPUs, but give a minimum regular allotment even with SPLPAR, so enable
946 * the detector for non-KVM guests, assume PowerVM.
947 */
948static int __init disable_hardlockup_detector(void)
949{
950#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
951	hardlockup_detector_disable();
952#else
953	if (firmware_has_feature(FW_FEATURE_LPAR)) {
954		if (is_kvm_guest())
955			hardlockup_detector_disable();
956	}
957#endif
958
959	return 0;
960}
961early_initcall(disable_hardlockup_detector);
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * 
  4 * Common boot and setup code.
  5 *
  6 * Copyright (C) 2001 PPC64 Team, IBM Corp
  7 */
  8
  9#include <linux/export.h>
 10#include <linux/string.h>
 11#include <linux/sched.h>
 12#include <linux/init.h>
 13#include <linux/kernel.h>
 14#include <linux/reboot.h>
 15#include <linux/delay.h>
 16#include <linux/initrd.h>
 17#include <linux/seq_file.h>
 18#include <linux/ioport.h>
 19#include <linux/console.h>
 20#include <linux/utsname.h>
 21#include <linux/tty.h>
 22#include <linux/root_dev.h>
 23#include <linux/notifier.h>
 24#include <linux/cpu.h>
 25#include <linux/unistd.h>
 26#include <linux/serial.h>
 27#include <linux/serial_8250.h>
 28#include <linux/memblock.h>
 29#include <linux/pci.h>
 30#include <linux/lockdep.h>
 31#include <linux/memory.h>
 32#include <linux/nmi.h>
 
 33
 34#include <asm/debugfs.h>
 
 35#include <asm/io.h>
 36#include <asm/kdump.h>
 37#include <asm/prom.h>
 38#include <asm/processor.h>
 39#include <asm/pgtable.h>
 40#include <asm/smp.h>
 41#include <asm/elf.h>
 42#include <asm/machdep.h>
 43#include <asm/paca.h>
 44#include <asm/time.h>
 45#include <asm/cputable.h>
 46#include <asm/dt_cpu_ftrs.h>
 47#include <asm/sections.h>
 48#include <asm/btext.h>
 49#include <asm/nvram.h>
 50#include <asm/setup.h>
 51#include <asm/rtas.h>
 52#include <asm/iommu.h>
 53#include <asm/serial.h>
 54#include <asm/cache.h>
 55#include <asm/page.h>
 56#include <asm/mmu.h>
 57#include <asm/firmware.h>
 58#include <asm/xmon.h>
 59#include <asm/udbg.h>
 60#include <asm/kexec.h>
 61#include <asm/code-patching.h>
 62#include <asm/livepatch.h>
 63#include <asm/opal.h>
 64#include <asm/cputhreads.h>
 65#include <asm/hw_irq.h>
 66#include <asm/feature-fixups.h>
 67#include <asm/kup.h>
 
 
 
 68
 69#include "setup.h"
 70
 71#ifdef DEBUG
 72#define DBG(fmt...) udbg_printf(fmt)
 73#else
 74#define DBG(fmt...)
 75#endif
 76
 77int spinning_secondaries;
 78u64 ppc64_pft_size;
 79
 80struct ppc64_caches ppc64_caches = {
 81	.l1d = {
 82		.block_size = 0x40,
 83		.log_block_size = 6,
 84	},
 85	.l1i = {
 86		.block_size = 0x40,
 87		.log_block_size = 6
 88	},
 89};
 90EXPORT_SYMBOL_GPL(ppc64_caches);
 91
 92#if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
 93void __init setup_tlb_core_data(void)
 94{
 95	int cpu;
 96
 97	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
 98
 99	for_each_possible_cpu(cpu) {
100		int first = cpu_first_thread_sibling(cpu);
101
102		/*
103		 * If we boot via kdump on a non-primary thread,
104		 * make sure we point at the thread that actually
105		 * set up this TLB.
106		 */
107		if (cpu_first_thread_sibling(boot_cpuid) == first)
108			first = boot_cpuid;
109
110		paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
111
112		/*
113		 * If we have threads, we need either tlbsrx.
114		 * or e6500 tablewalk mode, or else TLB handlers
115		 * will be racy and could produce duplicate entries.
116		 * Should we panic instead?
117		 */
118		WARN_ONCE(smt_enabled_at_boot >= 2 &&
119			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
120			  book3e_htw_mode != PPC_HTW_E6500,
121			  "%s: unsupported MMU configuration\n", __func__);
122	}
123}
124#endif
125
126#ifdef CONFIG_SMP
127
128static char *smt_enabled_cmdline;
129
130/* Look for ibm,smt-enabled OF option */
131void __init check_smt_enabled(void)
132{
133	struct device_node *dn;
134	const char *smt_option;
135
136	/* Default to enabling all threads */
137	smt_enabled_at_boot = threads_per_core;
138
139	/* Allow the command line to overrule the OF option */
140	if (smt_enabled_cmdline) {
141		if (!strcmp(smt_enabled_cmdline, "on"))
142			smt_enabled_at_boot = threads_per_core;
143		else if (!strcmp(smt_enabled_cmdline, "off"))
144			smt_enabled_at_boot = 0;
145		else {
146			int smt;
147			int rc;
148
149			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
150			if (!rc)
151				smt_enabled_at_boot =
152					min(threads_per_core, smt);
153		}
154	} else {
155		dn = of_find_node_by_path("/options");
156		if (dn) {
157			smt_option = of_get_property(dn, "ibm,smt-enabled",
158						     NULL);
159
160			if (smt_option) {
161				if (!strcmp(smt_option, "on"))
162					smt_enabled_at_boot = threads_per_core;
163				else if (!strcmp(smt_option, "off"))
164					smt_enabled_at_boot = 0;
165			}
166
167			of_node_put(dn);
168		}
169	}
170}
171
172/* Look for smt-enabled= cmdline option */
173static int __init early_smt_enabled(char *p)
174{
175	smt_enabled_cmdline = p;
176	return 0;
177}
178early_param("smt-enabled", early_smt_enabled);
179
180#endif /* CONFIG_SMP */
181
182/** Fix up paca fields required for the boot cpu */
183static void __init fixup_boot_paca(void)
184{
185	/* The boot cpu is started */
186	get_paca()->cpu_start = 1;
187	/* Allow percpu accesses to work until we setup percpu data */
188	get_paca()->data_offset = 0;
189	/* Mark interrupts disabled in PACA */
190	irq_soft_mask_set(IRQS_DISABLED);
191}
192
193static void __init configure_exceptions(void)
194{
195	/*
196	 * Setup the trampolines from the lowmem exception vectors
197	 * to the kdump kernel when not using a relocatable kernel.
198	 */
199	setup_kdump_trampoline();
200
201	/* Under a PAPR hypervisor, we need hypercalls */
202	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
203		/* Enable AIL if possible */
204		pseries_enable_reloc_on_exc();
 
 
 
205
206		/*
207		 * Tell the hypervisor that we want our exceptions to
208		 * be taken in little endian mode.
209		 *
210		 * We don't call this for big endian as our calling convention
211		 * makes us always enter in BE, and the call may fail under
212		 * some circumstances with kdump.
213		 */
214#ifdef __LITTLE_ENDIAN__
215		pseries_little_endian_exceptions();
216#endif
217	} else {
218		/* Set endian mode using OPAL */
219		if (firmware_has_feature(FW_FEATURE_OPAL))
220			opal_configure_cores();
221
222		/* AIL on native is done in cpu_ready_for_interrupts() */
223	}
224}
225
226static void cpu_ready_for_interrupts(void)
227{
228	/*
229	 * Enable AIL if supported, and we are in hypervisor mode. This
230	 * is called once for every processor.
231	 *
232	 * If we are not in hypervisor mode the job is done once for
233	 * the whole partition in configure_exceptions().
234	 */
235	if (cpu_has_feature(CPU_FTR_HVMODE) &&
236	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
237		unsigned long lpcr = mfspr(SPRN_LPCR);
238		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
239	}
240
241	/*
242	 * Set HFSCR:TM based on CPU features:
243	 * In the special case of TM no suspend (P9N DD2.1), Linux is
244	 * told TM is off via the dt-ftrs but told to (partially) use
245	 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
246	 * will be off from dt-ftrs but we need to turn it on for the
247	 * no suspend case.
248	 */
249	if (cpu_has_feature(CPU_FTR_HVMODE)) {
250		if (cpu_has_feature(CPU_FTR_TM_COMP))
251			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
252		else
253			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
254	}
255
256	/* Set IR and DR in PACA MSR */
257	get_paca()->kernel_msr = MSR_KERNEL;
258}
259
260unsigned long spr_default_dscr = 0;
261
262void __init record_spr_defaults(void)
263{
264	if (early_cpu_has_feature(CPU_FTR_DSCR))
265		spr_default_dscr = mfspr(SPRN_DSCR);
266}
267
268/*
269 * Early initialization entry point. This is called by head.S
270 * with MMU translation disabled. We rely on the "feature" of
271 * the CPU that ignores the top 2 bits of the address in real
272 * mode so we can access kernel globals normally provided we
273 * only toy with things in the RMO region. From here, we do
274 * some early parsing of the device-tree to setup out MEMBLOCK
275 * data structures, and allocate & initialize the hash table
276 * and segment tables so we can start running with translation
277 * enabled.
278 *
279 * It is this function which will call the probe() callback of
280 * the various platform types and copy the matching one to the
281 * global ppc_md structure. Your platform can eventually do
282 * some very early initializations from the probe() routine, but
283 * this is not recommended, be very careful as, for example, the
284 * device-tree is not accessible via normal means at this point.
285 */
286
287void __init early_setup(unsigned long dt_ptr)
288{
289	static __initdata struct paca_struct boot_paca;
290
291	/* -------- printk is _NOT_ safe to use here ! ------- */
292
293	/* Try new device tree based feature discovery ... */
294	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
295		/* Otherwise use the old style CPU table */
296		identify_cpu(0, mfspr(SPRN_PVR));
297
298	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
 
 
 
 
 
 
 
 
 
 
 
 
 
299	initialise_paca(&boot_paca, 0);
300	setup_paca(&boot_paca);
301	fixup_boot_paca();
302
303	/* -------- printk is now safe to use ------- */
304
 
 
 
 
 
305	/* Enable early debugging if any specified (see udbg.h) */
306	udbg_early_init();
307
308 	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
309
310	/*
311	 * Do early initialization using the flattened device
312	 * tree, such as retrieving the physical memory map or
313	 * calculating/retrieving the hash table size.
314	 */
315	early_init_devtree(__va(dt_ptr));
316
317	/* Now we know the logical id of our boot cpu, setup the paca. */
318	if (boot_cpuid != 0) {
319		/* Poison paca_ptrs[0] again if it's not the boot cpu */
320		memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
321	}
322	setup_paca(paca_ptrs[boot_cpuid]);
323	fixup_boot_paca();
324
325	/*
326	 * Configure exception handlers. This include setting up trampolines
327	 * if needed, setting exception endian mode, etc...
328	 */
329	configure_exceptions();
330
331	/*
332	 * Configure Kernel Userspace Protection. This needs to happen before
333	 * feature fixups for platforms that implement this using features.
334	 */
335	setup_kup();
336
337	/* Apply all the dynamic patching */
338	apply_feature_fixups();
339	setup_feature_keys();
340
341	/* Initialize the hash table or TLB handling */
342	early_init_mmu();
343
 
 
344	/*
345	 * After firmware and early platform setup code has set things up,
346	 * we note the SPR values for configurable control/performance
347	 * registers, and use those as initial defaults.
348	 */
349	record_spr_defaults();
350
351	/*
352	 * At this point, we can let interrupts switch to virtual mode
353	 * (the MMU has been setup), so adjust the MSR in the PACA to
354	 * have IR and DR set and enable AIL if it exists
355	 */
356	cpu_ready_for_interrupts();
357
358	/*
359	 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
360	 * will only actually get enabled on the boot cpu much later once
361	 * ftrace itself has been initialized.
362	 */
363	this_cpu_enable_ftrace();
364
365	DBG(" <- early_setup()\n");
366
367#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
368	/*
369	 * This needs to be done *last* (after the above DBG() even)
370	 *
371	 * Right after we return from this function, we turn on the MMU
372	 * which means the real-mode access trick that btext does will
373	 * no longer work, it needs to switch to using a real MMU
374	 * mapping. This call will ensure that it does
375	 */
376	btext_map();
377#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
378}
379
380#ifdef CONFIG_SMP
381void early_setup_secondary(void)
382{
383	/* Mark interrupts disabled in PACA */
384	irq_soft_mask_set(IRQS_DISABLED);
385
386	/* Initialize the hash table or TLB handling */
387	early_init_mmu_secondary();
388
389	/* Perform any KUP setup that is per-cpu */
390	setup_kup();
391
392	/*
393	 * At this point, we can let interrupts switch to virtual mode
394	 * (the MMU has been setup), so adjust the MSR in the PACA to
395	 * have IR and DR set.
396	 */
397	cpu_ready_for_interrupts();
398}
399
400#endif /* CONFIG_SMP */
401
402void panic_smp_self_stop(void)
403{
404	hard_irq_disable();
405	spin_begin();
406	while (1)
407		spin_cpu_relax();
408}
409
410#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
411static bool use_spinloop(void)
412{
413	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
414		/*
415		 * See comments in head_64.S -- not all platforms insert
416		 * secondaries at __secondary_hold and wait at the spin
417		 * loop.
418		 */
419		if (firmware_has_feature(FW_FEATURE_OPAL))
420			return false;
421		return true;
422	}
423
424	/*
425	 * When book3e boots from kexec, the ePAPR spin table does
426	 * not get used.
427	 */
428	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
429}
430
431void smp_release_cpus(void)
432{
433	unsigned long *ptr;
434	int i;
435
436	if (!use_spinloop())
437		return;
438
439	DBG(" -> smp_release_cpus()\n");
440
441	/* All secondary cpus are spinning on a common spinloop, release them
442	 * all now so they can start to spin on their individual paca
443	 * spinloops. For non SMP kernels, the secondary cpus never get out
444	 * of the common spinloop.
445	 */
446
447	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
448			- PHYSICAL_START);
449	*ptr = ppc_function_entry(generic_secondary_smp_init);
450
451	/* And wait a bit for them to catch up */
452	for (i = 0; i < 100000; i++) {
453		mb();
454		HMT_low();
455		if (spinning_secondaries == 0)
456			break;
457		udelay(1);
458	}
459	DBG("spinning_secondaries = %d\n", spinning_secondaries);
460
461	DBG(" <- smp_release_cpus()\n");
462}
463#endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
464
465/*
466 * Initialize some remaining members of the ppc64_caches and systemcfg
467 * structures
468 * (at least until we get rid of them completely). This is mostly some
469 * cache informations about the CPU that will be used by cache flush
470 * routines and/or provided to userland
471 */
472
473static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
474			    u32 bsize, u32 sets)
475{
476	info->size = size;
477	info->sets = sets;
478	info->line_size = lsize;
479	info->block_size = bsize;
480	info->log_block_size = __ilog2(bsize);
481	if (bsize)
482		info->blocks_per_page = PAGE_SIZE / bsize;
483	else
484		info->blocks_per_page = 0;
485
486	if (sets == 0)
487		info->assoc = 0xffff;
488	else
489		info->assoc = size / (sets * lsize);
490}
491
492static bool __init parse_cache_info(struct device_node *np,
493				    bool icache,
494				    struct ppc_cache_info *info)
495{
496	static const char *ipropnames[] __initdata = {
497		"i-cache-size",
498		"i-cache-sets",
499		"i-cache-block-size",
500		"i-cache-line-size",
501	};
502	static const char *dpropnames[] __initdata = {
503		"d-cache-size",
504		"d-cache-sets",
505		"d-cache-block-size",
506		"d-cache-line-size",
507	};
508	const char **propnames = icache ? ipropnames : dpropnames;
509	const __be32 *sizep, *lsizep, *bsizep, *setsp;
510	u32 size, lsize, bsize, sets;
511	bool success = true;
512
513	size = 0;
514	sets = -1u;
515	lsize = bsize = cur_cpu_spec->dcache_bsize;
516	sizep = of_get_property(np, propnames[0], NULL);
517	if (sizep != NULL)
518		size = be32_to_cpu(*sizep);
519	setsp = of_get_property(np, propnames[1], NULL);
520	if (setsp != NULL)
521		sets = be32_to_cpu(*setsp);
522	bsizep = of_get_property(np, propnames[2], NULL);
523	lsizep = of_get_property(np, propnames[3], NULL);
524	if (bsizep == NULL)
525		bsizep = lsizep;
 
 
526	if (lsizep != NULL)
527		lsize = be32_to_cpu(*lsizep);
528	if (bsizep != NULL)
529		bsize = be32_to_cpu(*bsizep);
530	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
531		success = false;
532
533	/*
534	 * OF is weird .. it represents fully associative caches
535	 * as "1 way" which doesn't make much sense and doesn't
536	 * leave room for direct mapped. We'll assume that 0
537	 * in OF means direct mapped for that reason.
538	 */
539	if (sets == 1)
540		sets = 0;
541	else if (sets == 0)
542		sets = 1;
543
544	init_cache_info(info, size, lsize, bsize, sets);
545
546	return success;
547}
548
549void __init initialize_cache_info(void)
550{
551	struct device_node *cpu = NULL, *l2, *l3 = NULL;
552	u32 pvr;
553
554	DBG(" -> initialize_cache_info()\n");
555
556	/*
557	 * All shipping POWER8 machines have a firmware bug that
558	 * puts incorrect information in the device-tree. This will
559	 * be (hopefully) fixed for future chips but for now hard
560	 * code the values if we are running on one of these
561	 */
562	pvr = PVR_VER(mfspr(SPRN_PVR));
563	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
564	    pvr == PVR_POWER8NVL) {
565						/* size    lsize   blk  sets */
566		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
567		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
568		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
569		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
570	} else
571		cpu = of_find_node_by_type(NULL, "cpu");
572
573	/*
574	 * We're assuming *all* of the CPUs have the same
575	 * d-cache and i-cache sizes... -Peter
576	 */
577	if (cpu) {
578		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
579			DBG("Argh, can't find dcache properties !\n");
580
581		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
582			DBG("Argh, can't find icache properties !\n");
583
584		/*
585		 * Try to find the L2 and L3 if any. Assume they are
586		 * unified and use the D-side properties.
587		 */
588		l2 = of_find_next_cache_node(cpu);
589		of_node_put(cpu);
590		if (l2) {
591			parse_cache_info(l2, false, &ppc64_caches.l2);
592			l3 = of_find_next_cache_node(l2);
593			of_node_put(l2);
594		}
595		if (l3) {
596			parse_cache_info(l3, false, &ppc64_caches.l3);
597			of_node_put(l3);
598		}
599	}
600
601	/* For use by binfmt_elf */
602	dcache_bsize = ppc64_caches.l1d.block_size;
603	icache_bsize = ppc64_caches.l1i.block_size;
604
605	cur_cpu_spec->dcache_bsize = dcache_bsize;
606	cur_cpu_spec->icache_bsize = icache_bsize;
607
608	DBG(" <- initialize_cache_info()\n");
609}
610
611/*
612 * This returns the limit below which memory accesses to the linear
613 * mapping are guarnateed not to cause an architectural exception (e.g.,
614 * TLB or SLB miss fault).
615 *
616 * This is used to allocate PACAs and various interrupt stacks that
617 * that are accessed early in interrupt handlers that must not cause
618 * re-entrant interrupts.
619 */
620__init u64 ppc64_bolted_size(void)
621{
622#ifdef CONFIG_PPC_BOOK3E
623	/* Freescale BookE bolts the entire linear mapping */
624	/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
625	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
626		return linear_map_top;
627	/* Other BookE, we assume the first GB is bolted */
628	return 1ul << 30;
629#else
630	/* BookS radix, does not take faults on linear mapping */
631	if (early_radix_enabled())
632		return ULONG_MAX;
633
634	/* BookS hash, the first segment is bolted */
635	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
636		return 1UL << SID_SHIFT_1T;
637	return 1UL << SID_SHIFT;
638#endif
639}
640
641static void *__init alloc_stack(unsigned long limit, int cpu)
642{
643	void *ptr;
644
645	BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
646
647	ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_SIZE,
648				     MEMBLOCK_LOW_LIMIT, limit,
649				     early_cpu_to_node(cpu));
650	if (!ptr)
651		panic("cannot allocate stacks");
652
653	return ptr;
654}
655
656void __init irqstack_early_init(void)
657{
658	u64 limit = ppc64_bolted_size();
659	unsigned int i;
660
661	/*
662	 * Interrupt stacks must be in the first segment since we
663	 * cannot afford to take SLB misses on them. They are not
664	 * accessed in realmode.
665	 */
666	for_each_possible_cpu(i) {
667		softirq_ctx[i] = alloc_stack(limit, i);
668		hardirq_ctx[i] = alloc_stack(limit, i);
669	}
670}
671
672#ifdef CONFIG_PPC_BOOK3E
673void __init exc_lvl_early_init(void)
674{
675	unsigned int i;
676
677	for_each_possible_cpu(i) {
678		void *sp;
679
680		sp = alloc_stack(ULONG_MAX, i);
681		critirq_ctx[i] = sp;
682		paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
683
684		sp = alloc_stack(ULONG_MAX, i);
685		dbgirq_ctx[i] = sp;
686		paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
687
688		sp = alloc_stack(ULONG_MAX, i);
689		mcheckirq_ctx[i] = sp;
690		paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
691	}
692
693	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
694		patch_exception(0x040, exc_debug_debug_book3e);
695}
696#endif
697
698/*
699 * Stack space used when we detect a bad kernel stack pointer, and
700 * early in SMP boots before relocation is enabled. Exclusive emergency
701 * stack for machine checks.
702 */
703void __init emergency_stack_init(void)
704{
705	u64 limit;
706	unsigned int i;
707
708	/*
709	 * Emergency stacks must be under 256MB, we cannot afford to take
710	 * SLB misses on them. The ABI also requires them to be 128-byte
711	 * aligned.
712	 *
713	 * Since we use these as temporary stacks during secondary CPU
714	 * bringup, machine check, system reset, and HMI, we need to get
715	 * at them in real mode. This means they must also be within the RMO
716	 * region.
717	 *
718	 * The IRQ stacks allocated elsewhere in this file are zeroed and
719	 * initialized in kernel/irq.c. These are initialized here in order
720	 * to have emergency stacks available as early as possible.
721	 */
722	limit = min(ppc64_bolted_size(), ppc64_rma_size);
 
 
 
 
 
 
 
 
 
723
724	for_each_possible_cpu(i) {
725		paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
726
727#ifdef CONFIG_PPC_BOOK3S_64
728		/* emergency stack for NMI exception handling. */
729		paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
730
731		/* emergency stack for machine check exception handling. */
732		paca_ptrs[i]->mc_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
733#endif
734	}
735}
736
737#ifdef CONFIG_SMP
738#define PCPU_DYN_SIZE		()
739
740static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
 
 
 
 
 
 
 
 
 
 
 
 
741{
742	return memblock_alloc_try_nid(size, align, __pa(MAX_DMA_ADDRESS),
743				      MEMBLOCK_ALLOC_ACCESSIBLE,
744				      early_cpu_to_node(cpu));
 
745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
746}
747
748static void __init pcpu_fc_free(void *ptr, size_t size)
749{
750	memblock_free(__pa(ptr), size);
751}
752
753static int pcpu_cpu_distance(unsigned int from, unsigned int to)
754{
755	if (early_cpu_to_node(from) == early_cpu_to_node(to))
756		return LOCAL_DISTANCE;
757	else
758		return REMOTE_DISTANCE;
759}
760
761unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
762EXPORT_SYMBOL(__per_cpu_offset);
763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
764void __init setup_per_cpu_areas(void)
765{
766	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
767	size_t atom_size;
768	unsigned long delta;
769	unsigned int cpu;
770	int rc;
771
772	/*
773	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
774	 * to group units.  For larger mappings, use 1M atom which
775	 * should be large enough to contain a number of units.
776	 */
777	if (mmu_linear_psize == MMU_PAGE_4K)
778		atom_size = PAGE_SIZE;
779	else
780		atom_size = 1 << 20;
781
782	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
783				    pcpu_fc_alloc, pcpu_fc_free);
 
 
 
 
 
 
 
 
 
 
784	if (rc < 0)
785		panic("cannot initialize percpu area (err=%d)", rc);
786
787	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
788	for_each_possible_cpu(cpu) {
789                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
790		paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
791	}
792}
793#endif
794
795#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
796unsigned long memory_block_size_bytes(void)
797{
798	if (ppc_md.memory_block_size)
799		return ppc_md.memory_block_size();
800
801	return MIN_MEMORY_BLOCK_SIZE;
802}
803#endif
804
805#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
806struct ppc_pci_io ppc_pci_io;
807EXPORT_SYMBOL(ppc_pci_io);
808#endif
809
810#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
811u64 hw_nmi_get_sample_period(int watchdog_thresh)
812{
813	return ppc_proc_freq * watchdog_thresh;
814}
815#endif
816
817/*
818 * The perf based hardlockup detector breaks PMU event based branches, so
819 * disable it by default. Book3S has a soft-nmi hardlockup detector based
820 * on the decrementer interrupt, so it does not suffer from this problem.
821 *
822 * It is likely to get false positives in VM guests, so disable it there
823 * by default too.
 
 
824 */
825static int __init disable_hardlockup_detector(void)
826{
827#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
828	hardlockup_detector_disable();
829#else
830	if (firmware_has_feature(FW_FEATURE_LPAR))
831		hardlockup_detector_disable();
 
 
832#endif
833
834	return 0;
835}
836early_initcall(disable_hardlockup_detector);
837
838#ifdef CONFIG_PPC_BOOK3S_64
839static enum l1d_flush_type enabled_flush_types;
840static void *l1d_flush_fallback_area;
841static bool no_rfi_flush;
842bool rfi_flush;
843
844static int __init handle_no_rfi_flush(char *p)
845{
846	pr_info("rfi-flush: disabled on command line.");
847	no_rfi_flush = true;
848	return 0;
849}
850early_param("no_rfi_flush", handle_no_rfi_flush);
851
852/*
853 * The RFI flush is not KPTI, but because users will see doco that says to use
854 * nopti we hijack that option here to also disable the RFI flush.
855 */
856static int __init handle_no_pti(char *p)
857{
858	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
859	handle_no_rfi_flush(NULL);
860	return 0;
861}
862early_param("nopti", handle_no_pti);
863
864static void do_nothing(void *unused)
865{
866	/*
867	 * We don't need to do the flush explicitly, just enter+exit kernel is
868	 * sufficient, the RFI exit handlers will do the right thing.
869	 */
870}
871
872void rfi_flush_enable(bool enable)
873{
874	if (enable) {
875		do_rfi_flush_fixups(enabled_flush_types);
876		on_each_cpu(do_nothing, NULL, 1);
877	} else
878		do_rfi_flush_fixups(L1D_FLUSH_NONE);
879
880	rfi_flush = enable;
881}
882
883static void __ref init_fallback_flush(void)
884{
885	u64 l1d_size, limit;
886	int cpu;
887
888	/* Only allocate the fallback flush area once (at boot time). */
889	if (l1d_flush_fallback_area)
890		return;
891
892	l1d_size = ppc64_caches.l1d.size;
893
894	/*
895	 * If there is no d-cache-size property in the device tree, l1d_size
896	 * could be zero. That leads to the loop in the asm wrapping around to
897	 * 2^64-1, and then walking off the end of the fallback area and
898	 * eventually causing a page fault which is fatal. Just default to
899	 * something vaguely sane.
900	 */
901	if (!l1d_size)
902		l1d_size = (64 * 1024);
903
904	limit = min(ppc64_bolted_size(), ppc64_rma_size);
905
906	/*
907	 * Align to L1d size, and size it at 2x L1d size, to catch possible
908	 * hardware prefetch runoff. We don't have a recipe for load patterns to
909	 * reliably avoid the prefetcher.
910	 */
911	l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2,
912						l1d_size, MEMBLOCK_LOW_LIMIT,
913						limit, NUMA_NO_NODE);
914	if (!l1d_flush_fallback_area)
915		panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n",
916		      __func__, l1d_size * 2, l1d_size, &limit);
917
918
919	for_each_possible_cpu(cpu) {
920		struct paca_struct *paca = paca_ptrs[cpu];
921		paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
922		paca->l1d_flush_size = l1d_size;
923	}
924}
925
926void setup_rfi_flush(enum l1d_flush_type types, bool enable)
927{
928	if (types & L1D_FLUSH_FALLBACK) {
929		pr_info("rfi-flush: fallback displacement flush available\n");
930		init_fallback_flush();
931	}
932
933	if (types & L1D_FLUSH_ORI)
934		pr_info("rfi-flush: ori type flush available\n");
935
936	if (types & L1D_FLUSH_MTTRIG)
937		pr_info("rfi-flush: mttrig type flush available\n");
938
939	enabled_flush_types = types;
940
941	if (!no_rfi_flush && !cpu_mitigations_off())
942		rfi_flush_enable(enable);
943}
944
945#ifdef CONFIG_DEBUG_FS
946static int rfi_flush_set(void *data, u64 val)
947{
948	bool enable;
949
950	if (val == 1)
951		enable = true;
952	else if (val == 0)
953		enable = false;
954	else
955		return -EINVAL;
956
957	/* Only do anything if we're changing state */
958	if (enable != rfi_flush)
959		rfi_flush_enable(enable);
960
961	return 0;
962}
963
964static int rfi_flush_get(void *data, u64 *val)
965{
966	*val = rfi_flush ? 1 : 0;
967	return 0;
968}
969
970DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
971
972static __init int rfi_flush_debugfs_init(void)
973{
974	debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
975	return 0;
976}
977device_initcall(rfi_flush_debugfs_init);
978#endif
979#endif /* CONFIG_PPC_BOOK3S_64 */