Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright IBM Corporation 2001, 2005, 2006
   4 * Copyright Dave Engebretsen & Todd Inglett 2001
   5 * Copyright Linas Vepstas 2005, 2006
   6 * Copyright 2001-2012 IBM Corporation.
   7 *
   8 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
   9 */
  10
  11#include <linux/delay.h>
  12#include <linux/sched.h>
  13#include <linux/init.h>
  14#include <linux/list.h>
  15#include <linux/pci.h>
  16#include <linux/iommu.h>
  17#include <linux/proc_fs.h>
  18#include <linux/rbtree.h>
  19#include <linux/reboot.h>
  20#include <linux/seq_file.h>
  21#include <linux/spinlock.h>
  22#include <linux/export.h>
  23#include <linux/of.h>
  24
  25#include <linux/atomic.h>
  26#include <asm/debugfs.h>
  27#include <asm/eeh.h>
  28#include <asm/eeh_event.h>
  29#include <asm/io.h>
  30#include <asm/iommu.h>
  31#include <asm/machdep.h>
  32#include <asm/ppc-pci.h>
  33#include <asm/rtas.h>
  34#include <asm/pte-walk.h>
  35
  36
  37/** Overview:
  38 *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
  39 *  dealing with PCI bus errors that can't be dealt with within the
  40 *  usual PCI framework, except by check-stopping the CPU.  Systems
  41 *  that are designed for high-availability/reliability cannot afford
  42 *  to crash due to a "mere" PCI error, thus the need for EEH.
  43 *  An EEH-capable bridge operates by converting a detected error
  44 *  into a "slot freeze", taking the PCI adapter off-line, making
  45 *  the slot behave, from the OS'es point of view, as if the slot
  46 *  were "empty": all reads return 0xff's and all writes are silently
  47 *  ignored.  EEH slot isolation events can be triggered by parity
  48 *  errors on the address or data busses (e.g. during posted writes),
  49 *  which in turn might be caused by low voltage on the bus, dust,
  50 *  vibration, humidity, radioactivity or plain-old failed hardware.
  51 *
  52 *  Note, however, that one of the leading causes of EEH slot
  53 *  freeze events are buggy device drivers, buggy device microcode,
  54 *  or buggy device hardware.  This is because any attempt by the
  55 *  device to bus-master data to a memory address that is not
  56 *  assigned to the device will trigger a slot freeze.   (The idea
  57 *  is to prevent devices-gone-wild from corrupting system memory).
  58 *  Buggy hardware/drivers will have a miserable time co-existing
  59 *  with EEH.
  60 *
  61 *  Ideally, a PCI device driver, when suspecting that an isolation
  62 *  event has occurred (e.g. by reading 0xff's), will then ask EEH
  63 *  whether this is the case, and then take appropriate steps to
  64 *  reset the PCI slot, the PCI device, and then resume operations.
  65 *  However, until that day,  the checking is done here, with the
  66 *  eeh_check_failure() routine embedded in the MMIO macros.  If
  67 *  the slot is found to be isolated, an "EEH Event" is synthesized
  68 *  and sent out for processing.
  69 */
  70
  71/* If a device driver keeps reading an MMIO register in an interrupt
  72 * handler after a slot isolation event, it might be broken.
  73 * This sets the threshold for how many read attempts we allow
  74 * before printing an error message.
  75 */
  76#define EEH_MAX_FAILS	2100000
  77
  78/* Time to wait for a PCI slot to report status, in milliseconds */
  79#define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
  80
  81/*
  82 * EEH probe mode support, which is part of the flags,
  83 * is to support multiple platforms for EEH. Some platforms
  84 * like pSeries do PCI emunation based on device tree.
  85 * However, other platforms like powernv probe PCI devices
  86 * from hardware. The flag is used to distinguish that.
  87 * In addition, struct eeh_ops::probe would be invoked for
  88 * particular OF node or PCI device so that the corresponding
  89 * PE would be created there.
  90 */
  91int eeh_subsystem_flags;
  92EXPORT_SYMBOL(eeh_subsystem_flags);
  93
  94/*
  95 * EEH allowed maximal frozen times. If one particular PE's
  96 * frozen count in last hour exceeds this limit, the PE will
  97 * be forced to be offline permanently.
  98 */
  99u32 eeh_max_freezes = 5;
 100
 101/*
 102 * Controls whether a recovery event should be scheduled when an
 103 * isolated device is discovered. This is only really useful for
 104 * debugging problems with the EEH core.
 105 */
 106bool eeh_debugfs_no_recover;
 107
 108/* Platform dependent EEH operations */
 109struct eeh_ops *eeh_ops = NULL;
 110
 111/* Lock to avoid races due to multiple reports of an error */
 112DEFINE_RAW_SPINLOCK(confirm_error_lock);
 113EXPORT_SYMBOL_GPL(confirm_error_lock);
 114
 115/* Lock to protect passed flags */
 116static DEFINE_MUTEX(eeh_dev_mutex);
 117
 118/* Buffer for reporting pci register dumps. Its here in BSS, and
 119 * not dynamically alloced, so that it ends up in RMO where RTAS
 120 * can access it.
 121 */
 122#define EEH_PCI_REGS_LOG_LEN 8192
 123static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
 124
 125/*
 126 * The struct is used to maintain the EEH global statistic
 127 * information. Besides, the EEH global statistics will be
 128 * exported to user space through procfs
 129 */
 130struct eeh_stats {
 131	u64 no_device;		/* PCI device not found		*/
 132	u64 no_dn;		/* OF node not found		*/
 133	u64 no_cfg_addr;	/* Config address not found	*/
 134	u64 ignored_check;	/* EEH check skipped		*/
 135	u64 total_mmio_ffs;	/* Total EEH checks		*/
 136	u64 false_positives;	/* Unnecessary EEH checks	*/
 137	u64 slot_resets;	/* PE reset			*/
 138};
 139
 140static struct eeh_stats eeh_stats;
 141
 142static int __init eeh_setup(char *str)
 143{
 144	if (!strcmp(str, "off"))
 145		eeh_add_flag(EEH_FORCE_DISABLED);
 146	else if (!strcmp(str, "early_log"))
 147		eeh_add_flag(EEH_EARLY_DUMP_LOG);
 148
 149	return 1;
 150}
 151__setup("eeh=", eeh_setup);
 152
 153void eeh_show_enabled(void)
 154{
 155	if (eeh_has_flag(EEH_FORCE_DISABLED))
 156		pr_info("EEH: Recovery disabled by kernel parameter.\n");
 157	else if (eeh_has_flag(EEH_ENABLED))
 158		pr_info("EEH: Capable adapter found: recovery enabled.\n");
 159	else
 160		pr_info("EEH: No capable adapters found: recovery disabled.\n");
 161}
 162
 163/*
 164 * This routine captures assorted PCI configuration space data
 165 * for the indicated PCI device, and puts them into a buffer
 166 * for RTAS error logging.
 167 */
 168static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
 169{
 
 170	u32 cfg;
 171	int cap, i;
 172	int n = 0, l = 0;
 173	char buffer[128];
 174
 
 
 
 
 
 175	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
 176			edev->pe->phb->global_number, edev->bdfn >> 8,
 177			PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
 178	pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
 179		edev->pe->phb->global_number, edev->bdfn >> 8,
 180		PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
 181
 182	eeh_ops->read_config(edev, PCI_VENDOR_ID, 4, &cfg);
 183	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
 184	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
 185
 186	eeh_ops->read_config(edev, PCI_COMMAND, 4, &cfg);
 187	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
 188	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
 189
 190	/* Gather bridge-specific registers */
 191	if (edev->mode & EEH_DEV_BRIDGE) {
 192		eeh_ops->read_config(edev, PCI_SEC_STATUS, 2, &cfg);
 193		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
 194		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
 195
 196		eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &cfg);
 197		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
 198		pr_warn("EEH: Bridge control: %04x\n", cfg);
 199	}
 200
 201	/* Dump out the PCI-X command and status regs */
 202	cap = edev->pcix_cap;
 203	if (cap) {
 204		eeh_ops->read_config(edev, cap, 4, &cfg);
 205		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
 206		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
 207
 208		eeh_ops->read_config(edev, cap+4, 4, &cfg);
 209		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
 210		pr_warn("EEH: PCI-X status: %08x\n", cfg);
 211	}
 212
 213	/* If PCI-E capable, dump PCI-E cap 10 */
 214	cap = edev->pcie_cap;
 215	if (cap) {
 216		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
 217		pr_warn("EEH: PCI-E capabilities and status follow:\n");
 218
 219		for (i=0; i<=8; i++) {
 220			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
 221			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
 222
 223			if ((i % 4) == 0) {
 224				if (i != 0)
 225					pr_warn("%s\n", buffer);
 226
 227				l = scnprintf(buffer, sizeof(buffer),
 228					      "EEH: PCI-E %02x: %08x ",
 229					      4*i, cfg);
 230			} else {
 231				l += scnprintf(buffer+l, sizeof(buffer)-l,
 232					       "%08x ", cfg);
 233			}
 234
 235		}
 236
 237		pr_warn("%s\n", buffer);
 238	}
 239
 240	/* If AER capable, dump it */
 241	cap = edev->aer_cap;
 242	if (cap) {
 243		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
 244		pr_warn("EEH: PCI-E AER capability register set follows:\n");
 245
 246		for (i=0; i<=13; i++) {
 247			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
 248			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
 249
 250			if ((i % 4) == 0) {
 251				if (i != 0)
 252					pr_warn("%s\n", buffer);
 253
 254				l = scnprintf(buffer, sizeof(buffer),
 255					      "EEH: PCI-E AER %02x: %08x ",
 256					      4*i, cfg);
 257			} else {
 258				l += scnprintf(buffer+l, sizeof(buffer)-l,
 259					       "%08x ", cfg);
 260			}
 261		}
 262
 263		pr_warn("%s\n", buffer);
 264	}
 265
 266	return n;
 267}
 268
 269static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
 270{
 271	struct eeh_dev *edev, *tmp;
 272	size_t *plen = flag;
 273
 274	eeh_pe_for_each_dev(pe, edev, tmp)
 275		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
 276					  EEH_PCI_REGS_LOG_LEN - *plen);
 277
 278	return NULL;
 279}
 280
 281/**
 282 * eeh_slot_error_detail - Generate combined log including driver log and error log
 283 * @pe: EEH PE
 284 * @severity: temporary or permanent error log
 285 *
 286 * This routine should be called to generate the combined log, which
 287 * is comprised of driver log and error log. The driver log is figured
 288 * out from the config space of the corresponding PCI device, while
 289 * the error log is fetched through platform dependent function call.
 290 */
 291void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
 292{
 293	size_t loglen = 0;
 294
 295	/*
 296	 * When the PHB is fenced or dead, it's pointless to collect
 297	 * the data from PCI config space because it should return
 298	 * 0xFF's. For ER, we still retrieve the data from the PCI
 299	 * config space.
 300	 *
 301	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
 302	 * 0xFF's is always returned from PCI config space.
 303	 *
 304	 * When the @severity is EEH_LOG_PERM, the PE is going to be
 305	 * removed. Prior to that, the drivers for devices included in
 306	 * the PE will be closed. The drivers rely on working IO path
 307	 * to bring the devices to quiet state. Otherwise, PCI traffic
 308	 * from those devices after they are removed is like to cause
 309	 * another unexpected EEH error.
 310	 */
 311	if (!(pe->type & EEH_PE_PHB)) {
 312		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
 313		    severity == EEH_LOG_PERM)
 314			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
 315
 316		/*
 317		 * The config space of some PCI devices can't be accessed
 318		 * when their PEs are in frozen state. Otherwise, fenced
 319		 * PHB might be seen. Those PEs are identified with flag
 320		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
 321		 * is set automatically when the PE is put to EEH_PE_ISOLATED.
 322		 *
 323		 * Restoring BARs possibly triggers PCI config access in
 324		 * (OPAL) firmware and then causes fenced PHB. If the
 325		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
 326		 * pointless to restore BARs and dump config space.
 327		 */
 328		eeh_ops->configure_bridge(pe);
 329		if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
 330			eeh_pe_restore_bars(pe);
 331
 332			pci_regs_buf[0] = 0;
 333			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
 334		}
 335	}
 336
 337	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
 338}
 339
 340/**
 341 * eeh_token_to_phys - Convert EEH address token to phys address
 342 * @token: I/O token, should be address in the form 0xA....
 343 *
 344 * This routine should be called to convert virtual I/O address
 345 * to physical one.
 346 */
 347static inline unsigned long eeh_token_to_phys(unsigned long token)
 348{
 349	return ppc_find_vmap_phys(token);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 350}
 351
 352/*
 353 * On PowerNV platform, we might already have fenced PHB there.
 354 * For that case, it's meaningless to recover frozen PE. Intead,
 355 * We have to handle fenced PHB firstly.
 356 */
 357static int eeh_phb_check_failure(struct eeh_pe *pe)
 358{
 359	struct eeh_pe *phb_pe;
 360	unsigned long flags;
 361	int ret;
 362
 363	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
 364		return -EPERM;
 365
 366	/* Find the PHB PE */
 367	phb_pe = eeh_phb_pe_get(pe->phb);
 368	if (!phb_pe) {
 369		pr_warn("%s Can't find PE for PHB#%x\n",
 370			__func__, pe->phb->global_number);
 371		return -EEXIST;
 372	}
 373
 374	/* If the PHB has been in problematic state */
 375	eeh_serialize_lock(&flags);
 376	if (phb_pe->state & EEH_PE_ISOLATED) {
 377		ret = 0;
 378		goto out;
 379	}
 380
 381	/* Check PHB state */
 382	ret = eeh_ops->get_state(phb_pe, NULL);
 383	if ((ret < 0) ||
 384	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
 385		ret = 0;
 386		goto out;
 387	}
 388
 389	/* Isolate the PHB and send event */
 390	eeh_pe_mark_isolated(phb_pe);
 391	eeh_serialize_unlock(flags);
 392
 393	pr_debug("EEH: PHB#%x failure detected, location: %s\n",
 394		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
 395	eeh_send_failure_event(phb_pe);
 396	return 1;
 397out:
 398	eeh_serialize_unlock(flags);
 399	return ret;
 400}
 401
 402/**
 403 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
 404 * @edev: eeh device
 405 *
 406 * Check for an EEH failure for the given device node.  Call this
 407 * routine if the result of a read was all 0xff's and you want to
 408 * find out if this is due to an EEH slot freeze.  This routine
 409 * will query firmware for the EEH status.
 410 *
 411 * Returns 0 if there has not been an EEH error; otherwise returns
 412 * a non-zero value and queues up a slot isolation event notification.
 413 *
 414 * It is safe to call this routine in an interrupt context.
 415 */
 416int eeh_dev_check_failure(struct eeh_dev *edev)
 417{
 418	int ret;
 419	unsigned long flags;
 420	struct device_node *dn;
 421	struct pci_dev *dev;
 422	struct eeh_pe *pe, *parent_pe;
 423	int rc = 0;
 424	const char *location = NULL;
 425
 426	eeh_stats.total_mmio_ffs++;
 427
 428	if (!eeh_enabled())
 429		return 0;
 430
 431	if (!edev) {
 432		eeh_stats.no_dn++;
 433		return 0;
 434	}
 435	dev = eeh_dev_to_pci_dev(edev);
 436	pe = eeh_dev_to_pe(edev);
 437
 438	/* Access to IO BARs might get this far and still not want checking. */
 439	if (!pe) {
 440		eeh_stats.ignored_check++;
 441		eeh_edev_dbg(edev, "Ignored check\n");
 442		return 0;
 443	}
 444
 
 
 
 
 
 445	/*
 446	 * On PowerNV platform, we might already have fenced PHB
 447	 * there and we need take care of that firstly.
 448	 */
 449	ret = eeh_phb_check_failure(pe);
 450	if (ret > 0)
 451		return ret;
 452
 453	/*
 454	 * If the PE isn't owned by us, we shouldn't check the
 455	 * state. Instead, let the owner handle it if the PE has
 456	 * been frozen.
 457	 */
 458	if (eeh_pe_passed(pe))
 459		return 0;
 460
 461	/* If we already have a pending isolation event for this
 462	 * slot, we know it's bad already, we don't need to check.
 463	 * Do this checking under a lock; as multiple PCI devices
 464	 * in one slot might report errors simultaneously, and we
 465	 * only want one error recovery routine running.
 466	 */
 467	eeh_serialize_lock(&flags);
 468	rc = 1;
 469	if (pe->state & EEH_PE_ISOLATED) {
 470		pe->check_count++;
 471		if (pe->check_count == EEH_MAX_FAILS) {
 472			dn = pci_device_to_OF_node(dev);
 473			if (dn)
 474				location = of_get_property(dn, "ibm,loc-code",
 475						NULL);
 476			eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
 477				pe->check_count,
 478				location ? location : "unknown",
 479				eeh_driver_name(dev));
 480			eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
 481				eeh_driver_name(dev));
 482			dump_stack();
 483		}
 484		goto dn_unlock;
 485	}
 486
 487	/*
 488	 * Now test for an EEH failure.  This is VERY expensive.
 489	 * Note that the eeh_config_addr may be a parent device
 490	 * in the case of a device behind a bridge, or it may be
 491	 * function zero of a multi-function device.
 492	 * In any case they must share a common PHB.
 493	 */
 494	ret = eeh_ops->get_state(pe, NULL);
 495
 496	/* Note that config-io to empty slots may fail;
 497	 * they are empty when they don't have children.
 498	 * We will punt with the following conditions: Failure to get
 499	 * PE's state, EEH not support and Permanently unavailable
 500	 * state, PE is in good state.
 501	 */
 502	if ((ret < 0) ||
 503	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
 504		eeh_stats.false_positives++;
 505		pe->false_positives++;
 506		rc = 0;
 507		goto dn_unlock;
 508	}
 509
 510	/*
 511	 * It should be corner case that the parent PE has been
 512	 * put into frozen state as well. We should take care
 513	 * that at first.
 514	 */
 515	parent_pe = pe->parent;
 516	while (parent_pe) {
 517		/* Hit the ceiling ? */
 518		if (parent_pe->type & EEH_PE_PHB)
 519			break;
 520
 521		/* Frozen parent PE ? */
 522		ret = eeh_ops->get_state(parent_pe, NULL);
 523		if (ret > 0 && !eeh_state_active(ret)) {
 524			pe = parent_pe;
 525			pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
 526			       pe->phb->global_number, pe->addr,
 527			       pe->phb->global_number, parent_pe->addr);
 528		}
 529
 530		/* Next parent level */
 531		parent_pe = parent_pe->parent;
 532	}
 533
 534	eeh_stats.slot_resets++;
 535
 536	/* Avoid repeated reports of this failure, including problems
 537	 * with other functions on this device, and functions under
 538	 * bridges.
 539	 */
 540	eeh_pe_mark_isolated(pe);
 541	eeh_serialize_unlock(flags);
 542
 543	/* Most EEH events are due to device driver bugs.  Having
 544	 * a stack trace will help the device-driver authors figure
 545	 * out what happened.  So print that out.
 546	 */
 547	pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
 548		__func__, pe->phb->global_number, pe->addr);
 549	eeh_send_failure_event(pe);
 550
 551	return 1;
 552
 553dn_unlock:
 554	eeh_serialize_unlock(flags);
 555	return rc;
 556}
 557
 558EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
 559
 560/**
 561 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
 562 * @token: I/O address
 563 *
 564 * Check for an EEH failure at the given I/O address. Call this
 565 * routine if the result of a read was all 0xff's and you want to
 566 * find out if this is due to an EEH slot freeze event. This routine
 567 * will query firmware for the EEH status.
 568 *
 569 * Note this routine is safe to call in an interrupt context.
 570 */
 571int eeh_check_failure(const volatile void __iomem *token)
 572{
 573	unsigned long addr;
 574	struct eeh_dev *edev;
 575
 576	/* Finding the phys addr + pci device; this is pretty quick. */
 577	addr = eeh_token_to_phys((unsigned long __force) token);
 578	edev = eeh_addr_cache_get_dev(addr);
 579	if (!edev) {
 580		eeh_stats.no_device++;
 581		return 0;
 582	}
 583
 584	return eeh_dev_check_failure(edev);
 585}
 586EXPORT_SYMBOL(eeh_check_failure);
 587
 588
 589/**
 590 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
 591 * @pe: EEH PE
 592 *
 593 * This routine should be called to reenable frozen MMIO or DMA
 594 * so that it would work correctly again. It's useful while doing
 595 * recovery or log collection on the indicated device.
 596 */
 597int eeh_pci_enable(struct eeh_pe *pe, int function)
 598{
 599	int active_flag, rc;
 600
 601	/*
 602	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
 603	 * Also, it's pointless to enable them on unfrozen PE. So
 604	 * we have to check before enabling IO or DMA.
 605	 */
 606	switch (function) {
 607	case EEH_OPT_THAW_MMIO:
 608		active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
 609		break;
 610	case EEH_OPT_THAW_DMA:
 611		active_flag = EEH_STATE_DMA_ACTIVE;
 612		break;
 613	case EEH_OPT_DISABLE:
 614	case EEH_OPT_ENABLE:
 615	case EEH_OPT_FREEZE_PE:
 616		active_flag = 0;
 617		break;
 618	default:
 619		pr_warn("%s: Invalid function %d\n",
 620			__func__, function);
 621		return -EINVAL;
 622	}
 623
 624	/*
 625	 * Check if IO or DMA has been enabled before
 626	 * enabling them.
 627	 */
 628	if (active_flag) {
 629		rc = eeh_ops->get_state(pe, NULL);
 630		if (rc < 0)
 631			return rc;
 632
 633		/* Needn't enable it at all */
 634		if (rc == EEH_STATE_NOT_SUPPORT)
 635			return 0;
 636
 637		/* It's already enabled */
 638		if (rc & active_flag)
 639			return 0;
 640	}
 641
 642
 643	/* Issue the request */
 644	rc = eeh_ops->set_option(pe, function);
 645	if (rc)
 646		pr_warn("%s: Unexpected state change %d on "
 647			"PHB#%x-PE#%x, err=%d\n",
 648			__func__, function, pe->phb->global_number,
 649			pe->addr, rc);
 650
 651	/* Check if the request is finished successfully */
 652	if (active_flag) {
 653		rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
 654		if (rc < 0)
 655			return rc;
 656
 657		if (rc & active_flag)
 658			return 0;
 659
 660		return -EIO;
 661	}
 662
 663	return rc;
 664}
 665
 666static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
 667					    void *userdata)
 668{
 669	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
 670	struct pci_dev *dev = userdata;
 671
 672	/*
 673	 * The caller should have disabled and saved the
 674	 * state for the specified device
 675	 */
 676	if (!pdev || pdev == dev)
 677		return;
 678
 679	/* Ensure we have D0 power state */
 680	pci_set_power_state(pdev, PCI_D0);
 681
 682	/* Save device state */
 683	pci_save_state(pdev);
 684
 685	/*
 686	 * Disable device to avoid any DMA traffic and
 687	 * interrupt from the device
 688	 */
 689	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
 690}
 691
 692static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
 693{
 
 694	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
 695	struct pci_dev *dev = userdata;
 696
 697	if (!pdev)
 698		return;
 699
 700	/* Apply customization from firmware */
 701	if (eeh_ops->restore_config)
 702		eeh_ops->restore_config(edev);
 703
 704	/* The caller should restore state for the specified device */
 705	if (pdev != dev)
 706		pci_restore_state(pdev);
 707}
 708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 709/**
 710 * pcibios_set_pcie_reset_state - Set PCI-E reset state
 711 * @dev: pci device struct
 712 * @state: reset state to enter
 713 *
 714 * Return value:
 715 * 	0 if success
 716 */
 717int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
 718{
 719	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
 720	struct eeh_pe *pe = eeh_dev_to_pe(edev);
 721
 722	if (!pe) {
 723		pr_err("%s: No PE found on PCI device %s\n",
 724			__func__, pci_name(dev));
 725		return -EINVAL;
 726	}
 727
 728	switch (state) {
 729	case pcie_deassert_reset:
 730		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
 731		eeh_unfreeze_pe(pe);
 732		if (!(pe->type & EEH_PE_VF))
 733			eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
 734		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
 735		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
 736		break;
 737	case pcie_hot_reset:
 738		eeh_pe_mark_isolated(pe);
 739		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
 740		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
 741		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
 742		if (!(pe->type & EEH_PE_VF))
 743			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
 744		eeh_ops->reset(pe, EEH_RESET_HOT);
 745		break;
 746	case pcie_warm_reset:
 747		eeh_pe_mark_isolated(pe);
 748		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
 749		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
 750		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
 751		if (!(pe->type & EEH_PE_VF))
 752			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
 753		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
 754		break;
 755	default:
 756		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
 757		return -EINVAL;
 758	}
 759
 760	return 0;
 761}
 762
 763/**
 764 * eeh_set_pe_freset - Check the required reset for the indicated device
 765 * @data: EEH device
 766 * @flag: return value
 767 *
 768 * Each device might have its preferred reset type: fundamental or
 769 * hot reset. The routine is used to collected the information for
 770 * the indicated device and its children so that the bunch of the
 771 * devices could be reset properly.
 772 */
 773static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
 774{
 775	struct pci_dev *dev;
 776	unsigned int *freset = (unsigned int *)flag;
 777
 778	dev = eeh_dev_to_pci_dev(edev);
 779	if (dev)
 780		*freset |= dev->needs_freset;
 781}
 782
 783static void eeh_pe_refreeze_passed(struct eeh_pe *root)
 784{
 785	struct eeh_pe *pe;
 786	int state;
 787
 788	eeh_for_each_pe(root, pe) {
 789		if (eeh_pe_passed(pe)) {
 790			state = eeh_ops->get_state(pe, NULL);
 791			if (state &
 792			   (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
 793				pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
 794					pe->phb->global_number, pe->addr);
 795				eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
 796			}
 797		}
 798	}
 799}
 800
 801/**
 802 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
 803 * @pe: EEH PE
 804 *
 805 * This function executes a full reset procedure on a PE, including setting
 806 * the appropriate flags, performing a fundamental or hot reset, and then
 807 * deactivating the reset status.  It is designed to be used within the EEH
 808 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
 809 * only performs a single operation at a time.
 810 *
 811 * This function will attempt to reset a PE three times before failing.
 812 */
 813int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
 814{
 815	int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
 816	int type = EEH_RESET_HOT;
 817	unsigned int freset = 0;
 818	int i, state = 0, ret;
 819
 820	/*
 821	 * Determine the type of reset to perform - hot or fundamental.
 822	 * Hot reset is the default operation, unless any device under the
 823	 * PE requires a fundamental reset.
 824	 */
 825	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
 826
 827	if (freset)
 828		type = EEH_RESET_FUNDAMENTAL;
 829
 830	/* Mark the PE as in reset state and block config space accesses */
 831	eeh_pe_state_mark(pe, reset_state);
 832
 833	/* Make three attempts at resetting the bus */
 834	for (i = 0; i < 3; i++) {
 835		ret = eeh_pe_reset(pe, type, include_passed);
 836		if (!ret)
 837			ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
 838					   include_passed);
 839		if (ret) {
 840			ret = -EIO;
 841			pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
 842				state, pe->phb->global_number, pe->addr, i + 1);
 843			continue;
 844		}
 845		if (i)
 846			pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
 847				pe->phb->global_number, pe->addr, i + 1);
 848
 849		/* Wait until the PE is in a functioning state */
 850		state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
 851		if (state < 0) {
 852			pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
 853				pe->phb->global_number, pe->addr);
 854			ret = -ENOTRECOVERABLE;
 855			break;
 856		}
 857		if (eeh_state_active(state))
 858			break;
 859		else
 860			pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
 861				pe->phb->global_number, pe->addr, state, i + 1);
 862	}
 863
 864	/* Resetting the PE may have unfrozen child PEs. If those PEs have been
 865	 * (potentially) passed through to a guest, re-freeze them:
 866	 */
 867	if (!include_passed)
 868		eeh_pe_refreeze_passed(pe);
 869
 870	eeh_pe_state_clear(pe, reset_state, true);
 871	return ret;
 872}
 873
 874/**
 875 * eeh_save_bars - Save device bars
 876 * @edev: PCI device associated EEH device
 877 *
 878 * Save the values of the device bars. Unlike the restore
 879 * routine, this routine is *not* recursive. This is because
 880 * PCI devices are added individually; but, for the restore,
 881 * an entire slot is reset at a time.
 882 */
 883void eeh_save_bars(struct eeh_dev *edev)
 884{
 
 885	int i;
 886
 887	if (!edev)
 
 888		return;
 889
 890	for (i = 0; i < 16; i++)
 891		eeh_ops->read_config(edev, i * 4, 4, &edev->config_space[i]);
 892
 893	/*
 894	 * For PCI bridges including root port, we need enable bus
 895	 * master explicitly. Otherwise, it can't fetch IODA table
 896	 * entries correctly. So we cache the bit in advance so that
 897	 * we can restore it after reset, either PHB range or PE range.
 898	 */
 899	if (edev->mode & EEH_DEV_BRIDGE)
 900		edev->config_space[1] |= PCI_COMMAND_MASTER;
 901}
 902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903static int eeh_reboot_notifier(struct notifier_block *nb,
 904			       unsigned long action, void *unused)
 905{
 906	eeh_clear_flag(EEH_ENABLED);
 907	return NOTIFY_DONE;
 908}
 909
 910static struct notifier_block eeh_reboot_nb = {
 911	.notifier_call = eeh_reboot_notifier,
 912};
 913
 914static int eeh_device_notifier(struct notifier_block *nb,
 915			       unsigned long action, void *data)
 916{
 917	struct device *dev = data;
 918
 919	switch (action) {
 920	/*
 921	 * Note: It's not possible to perform EEH device addition (i.e.
 922	 * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on
 923	 * the device's resources, which have not yet been set up.
 924	 */
 925	case BUS_NOTIFY_DEL_DEVICE:
 926		eeh_remove_device(to_pci_dev(dev));
 927		break;
 928	default:
 929		break;
 930	}
 931	return NOTIFY_DONE;
 932}
 933
 934static struct notifier_block eeh_device_nb = {
 935	.notifier_call = eeh_device_notifier,
 936};
 937
 938/**
 939 * eeh_init - System wide EEH initialization
 940 *
 941 * It's the platform's job to call this from an arch_initcall().
 
 
 
 
 
 
 
 
 
 
 942 */
 943int eeh_init(struct eeh_ops *ops)
 944{
 945	struct pci_controller *hose, *tmp;
 946	int ret = 0;
 947
 948	/* the platform should only initialise EEH once */
 949	if (WARN_ON(eeh_ops))
 950		return -EEXIST;
 951	if (WARN_ON(!ops))
 952		return -ENOENT;
 953	eeh_ops = ops;
 954
 955	/* Register reboot notifier */
 956	ret = register_reboot_notifier(&eeh_reboot_nb);
 957	if (ret) {
 958		pr_warn("%s: Failed to register reboot notifier (%d)\n",
 959			__func__, ret);
 960		return ret;
 961	}
 962
 963	ret = bus_register_notifier(&pci_bus_type, &eeh_device_nb);
 964	if (ret) {
 965		pr_warn("%s: Failed to register bus notifier (%d)\n",
 966			__func__, ret);
 
 
 967		return ret;
 968	}
 969
 970	/* Initialize PHB PEs */
 971	list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
 972		eeh_phb_pe_create(hose);
 973
 974	eeh_addr_cache_init();
 975
 976	/* Initialize EEH event */
 977	return eeh_event_init();
 978}
 979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980/**
 981 * eeh_probe_device() - Perform EEH initialization for the indicated pci device
 982 * @dev: pci device for which to set up EEH
 983 *
 984 * This routine must be used to complete EEH initialization for PCI
 985 * devices that were added after system boot (e.g. hotplug, dlpar).
 986 */
 987void eeh_probe_device(struct pci_dev *dev)
 988{
 
 989	struct eeh_dev *edev;
 990
 991	pr_debug("EEH: Adding device %s\n", pci_name(dev));
 992
 993	/*
 994	 * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
 995	 * already called for this device.
 996	 */
 997	if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) {
 998		pci_dbg(dev, "Already bound to an eeh_dev!\n");
 999		return;
1000	}
1001
1002	edev = eeh_ops->probe(dev);
1003	if (!edev) {
1004		pr_debug("EEH: Adding device failed\n");
 
 
1005		return;
1006	}
1007
1008	/*
1009	 * FIXME: We rely on pcibios_release_device() to remove the
1010	 * existing EEH state. The release function is only called if
1011	 * the pci_dev's refcount drops to zero so if something is
1012	 * keeping a ref to a device (e.g. a filesystem) we need to
1013	 * remove the old EEH state.
1014	 *
1015	 * FIXME: HEY MA, LOOK AT ME, NO LOCKING!
1016	 */
1017	if (edev->pdev && edev->pdev != dev) {
1018		eeh_pe_tree_remove(edev);
1019		eeh_addr_cache_rmv_dev(edev->pdev);
1020		eeh_sysfs_remove_device(edev->pdev);
 
1021
1022		/*
1023		 * We definitely should have the PCI device removed
1024		 * though it wasn't correctly. So we needn't call
1025		 * into error handler afterwards.
1026		 */
1027		edev->mode |= EEH_DEV_NO_HANDLER;
 
 
 
1028	}
1029
1030	/* bind the pdev and the edev together */
 
 
1031	edev->pdev = dev;
1032	dev->dev.archdata.edev = edev;
 
1033	eeh_addr_cache_insert_dev(dev);
1034	eeh_sysfs_add_device(dev);
1035}
1036
1037/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1038 * eeh_remove_device - Undo EEH setup for the indicated pci device
1039 * @dev: pci device to be removed
1040 *
1041 * This routine should be called when a device is removed from
1042 * a running system (e.g. by hotplug or dlpar).  It unregisters
1043 * the PCI device from the EEH subsystem.  I/O errors affecting
1044 * this device will no longer be detected after this call; thus,
1045 * i/o errors affecting this slot may leave this device unusable.
1046 */
1047void eeh_remove_device(struct pci_dev *dev)
1048{
1049	struct eeh_dev *edev;
1050
1051	if (!dev || !eeh_enabled())
1052		return;
1053	edev = pci_dev_to_eeh_dev(dev);
1054
1055	/* Unregister the device with the EEH/PCI address search system */
1056	dev_dbg(&dev->dev, "EEH: Removing device\n");
1057
1058	if (!edev || !edev->pdev || !edev->pe) {
1059		dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
1060		return;
1061	}
1062
1063	/*
1064	 * During the hotplug for EEH error recovery, we need the EEH
1065	 * device attached to the parent PE in order for BAR restore
1066	 * a bit later. So we keep it for BAR restore and remove it
1067	 * from the parent PE during the BAR resotre.
1068	 */
1069	edev->pdev = NULL;
1070
1071	/*
1072	 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1073	 * remove the sysfs files before clearing dev.archdata.edev
 
 
1074	 */
1075	if (edev->mode & EEH_DEV_SYSFS)
1076		eeh_sysfs_remove_device(dev);
 
 
 
 
1077
1078	/*
1079	 * We're removing from the PCI subsystem, that means
1080	 * the PCI device driver can't support EEH or not
1081	 * well. So we rely on hotplug completely to do recovery
1082	 * for the specific PCI device.
1083	 */
1084	edev->mode |= EEH_DEV_NO_HANDLER;
1085
1086	eeh_addr_cache_rmv_dev(dev);
1087
1088	/*
1089	 * The flag "in_error" is used to trace EEH devices for VFs
1090	 * in error state or not. It's set in eeh_report_error(). If
1091	 * it's not set, eeh_report_{reset,resume}() won't be called
1092	 * for the VF EEH device.
1093	 */
1094	edev->in_error = false;
1095	dev->dev.archdata.edev = NULL;
1096	if (!(edev->pe->state & EEH_PE_KEEP))
1097		eeh_pe_tree_remove(edev);
1098	else
1099		edev->mode |= EEH_DEV_DISCONNECTED;
1100}
1101
1102int eeh_unfreeze_pe(struct eeh_pe *pe)
1103{
1104	int ret;
1105
1106	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1107	if (ret) {
1108		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1109			__func__, ret, pe->phb->global_number, pe->addr);
1110		return ret;
1111	}
1112
1113	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1114	if (ret) {
1115		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1116			__func__, ret, pe->phb->global_number, pe->addr);
1117		return ret;
1118	}
1119
1120	return ret;
1121}
1122
1123
1124static struct pci_device_id eeh_reset_ids[] = {
1125	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1126	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1127	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1128	{ 0 }
1129};
1130
1131static int eeh_pe_change_owner(struct eeh_pe *pe)
1132{
1133	struct eeh_dev *edev, *tmp;
1134	struct pci_dev *pdev;
1135	struct pci_device_id *id;
1136	int ret;
1137
1138	/* Check PE state */
1139	ret = eeh_ops->get_state(pe, NULL);
1140	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1141		return 0;
1142
1143	/* Unfrozen PE, nothing to do */
1144	if (eeh_state_active(ret))
1145		return 0;
1146
1147	/* Frozen PE, check if it needs PE level reset */
1148	eeh_pe_for_each_dev(pe, edev, tmp) {
1149		pdev = eeh_dev_to_pci_dev(edev);
1150		if (!pdev)
1151			continue;
1152
1153		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1154			if (id->vendor != PCI_ANY_ID &&
1155			    id->vendor != pdev->vendor)
1156				continue;
1157			if (id->device != PCI_ANY_ID &&
1158			    id->device != pdev->device)
1159				continue;
1160			if (id->subvendor != PCI_ANY_ID &&
1161			    id->subvendor != pdev->subsystem_vendor)
1162				continue;
1163			if (id->subdevice != PCI_ANY_ID &&
1164			    id->subdevice != pdev->subsystem_device)
1165				continue;
1166
1167			return eeh_pe_reset_and_recover(pe);
1168		}
1169	}
1170
1171	ret = eeh_unfreeze_pe(pe);
1172	if (!ret)
1173		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1174	return ret;
1175}
1176
1177/**
1178 * eeh_dev_open - Increase count of pass through devices for PE
1179 * @pdev: PCI device
1180 *
1181 * Increase count of passed through devices for the indicated
1182 * PE. In the result, the EEH errors detected on the PE won't be
1183 * reported. The PE owner will be responsible for detection
1184 * and recovery.
1185 */
1186int eeh_dev_open(struct pci_dev *pdev)
1187{
1188	struct eeh_dev *edev;
1189	int ret = -ENODEV;
1190
1191	mutex_lock(&eeh_dev_mutex);
1192
1193	/* No PCI device ? */
1194	if (!pdev)
1195		goto out;
1196
1197	/* No EEH device or PE ? */
1198	edev = pci_dev_to_eeh_dev(pdev);
1199	if (!edev || !edev->pe)
1200		goto out;
1201
1202	/*
1203	 * The PE might have been put into frozen state, but we
1204	 * didn't detect that yet. The passed through PCI devices
1205	 * in frozen PE won't work properly. Clear the frozen state
1206	 * in advance.
1207	 */
1208	ret = eeh_pe_change_owner(edev->pe);
1209	if (ret)
1210		goto out;
1211
1212	/* Increase PE's pass through count */
1213	atomic_inc(&edev->pe->pass_dev_cnt);
1214	mutex_unlock(&eeh_dev_mutex);
1215
1216	return 0;
1217out:
1218	mutex_unlock(&eeh_dev_mutex);
1219	return ret;
1220}
1221EXPORT_SYMBOL_GPL(eeh_dev_open);
1222
1223/**
1224 * eeh_dev_release - Decrease count of pass through devices for PE
1225 * @pdev: PCI device
1226 *
1227 * Decrease count of pass through devices for the indicated PE. If
1228 * there is no passed through device in PE, the EEH errors detected
1229 * on the PE will be reported and handled as usual.
1230 */
1231void eeh_dev_release(struct pci_dev *pdev)
1232{
1233	struct eeh_dev *edev;
1234
1235	mutex_lock(&eeh_dev_mutex);
1236
1237	/* No PCI device ? */
1238	if (!pdev)
1239		goto out;
1240
1241	/* No EEH device ? */
1242	edev = pci_dev_to_eeh_dev(pdev);
1243	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1244		goto out;
1245
1246	/* Decrease PE's pass through count */
1247	WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1248	eeh_pe_change_owner(edev->pe);
1249out:
1250	mutex_unlock(&eeh_dev_mutex);
1251}
1252EXPORT_SYMBOL(eeh_dev_release);
1253
1254#ifdef CONFIG_IOMMU_API
1255
1256static int dev_has_iommu_table(struct device *dev, void *data)
1257{
1258	struct pci_dev *pdev = to_pci_dev(dev);
1259	struct pci_dev **ppdev = data;
1260
1261	if (!dev)
1262		return 0;
1263
1264	if (device_iommu_mapped(dev)) {
1265		*ppdev = pdev;
1266		return 1;
1267	}
1268
1269	return 0;
1270}
1271
1272/**
1273 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1274 * @group: IOMMU group
1275 *
1276 * The routine is called to convert IOMMU group to EEH PE.
1277 */
1278struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1279{
1280	struct pci_dev *pdev = NULL;
1281	struct eeh_dev *edev;
1282	int ret;
1283
1284	/* No IOMMU group ? */
1285	if (!group)
1286		return NULL;
1287
1288	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1289	if (!ret || !pdev)
1290		return NULL;
1291
1292	/* No EEH device or PE ? */
1293	edev = pci_dev_to_eeh_dev(pdev);
1294	if (!edev || !edev->pe)
1295		return NULL;
1296
1297	return edev->pe;
1298}
1299EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1300
1301#endif /* CONFIG_IOMMU_API */
1302
1303/**
1304 * eeh_pe_set_option - Set options for the indicated PE
1305 * @pe: EEH PE
1306 * @option: requested option
1307 *
1308 * The routine is called to enable or disable EEH functionality
1309 * on the indicated PE, to enable IO or DMA for the frozen PE.
1310 */
1311int eeh_pe_set_option(struct eeh_pe *pe, int option)
1312{
1313	int ret = 0;
1314
1315	/* Invalid PE ? */
1316	if (!pe)
1317		return -ENODEV;
1318
1319	/*
1320	 * EEH functionality could possibly be disabled, just
1321	 * return error for the case. And the EEH functinality
1322	 * isn't expected to be disabled on one specific PE.
1323	 */
1324	switch (option) {
1325	case EEH_OPT_ENABLE:
1326		if (eeh_enabled()) {
1327			ret = eeh_pe_change_owner(pe);
1328			break;
1329		}
1330		ret = -EIO;
1331		break;
1332	case EEH_OPT_DISABLE:
1333		break;
1334	case EEH_OPT_THAW_MMIO:
1335	case EEH_OPT_THAW_DMA:
1336	case EEH_OPT_FREEZE_PE:
1337		if (!eeh_ops || !eeh_ops->set_option) {
1338			ret = -ENOENT;
1339			break;
1340		}
1341
1342		ret = eeh_pci_enable(pe, option);
1343		break;
1344	default:
1345		pr_debug("%s: Option %d out of range (%d, %d)\n",
1346			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1347		ret = -EINVAL;
1348	}
1349
1350	return ret;
1351}
1352EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1353
1354/**
1355 * eeh_pe_get_state - Retrieve PE's state
1356 * @pe: EEH PE
1357 *
1358 * Retrieve the PE's state, which includes 3 aspects: enabled
1359 * DMA, enabled IO and asserted reset.
1360 */
1361int eeh_pe_get_state(struct eeh_pe *pe)
1362{
1363	int result, ret = 0;
1364	bool rst_active, dma_en, mmio_en;
1365
1366	/* Existing PE ? */
1367	if (!pe)
1368		return -ENODEV;
1369
1370	if (!eeh_ops || !eeh_ops->get_state)
1371		return -ENOENT;
1372
1373	/*
1374	 * If the parent PE is owned by the host kernel and is undergoing
1375	 * error recovery, we should return the PE state as temporarily
1376	 * unavailable so that the error recovery on the guest is suspended
1377	 * until the recovery completes on the host.
1378	 */
1379	if (pe->parent &&
1380	    !(pe->state & EEH_PE_REMOVED) &&
1381	    (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1382		return EEH_PE_STATE_UNAVAIL;
1383
1384	result = eeh_ops->get_state(pe, NULL);
1385	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1386	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1387	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1388
1389	if (rst_active)
1390		ret = EEH_PE_STATE_RESET;
1391	else if (dma_en && mmio_en)
1392		ret = EEH_PE_STATE_NORMAL;
1393	else if (!dma_en && !mmio_en)
1394		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1395	else if (!dma_en && mmio_en)
1396		ret = EEH_PE_STATE_STOPPED_DMA;
1397	else
1398		ret = EEH_PE_STATE_UNAVAIL;
1399
1400	return ret;
1401}
1402EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1403
1404static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1405{
1406	struct eeh_dev *edev, *tmp;
1407	struct pci_dev *pdev;
1408	int ret = 0;
1409
1410	eeh_pe_restore_bars(pe);
1411
1412	/*
1413	 * Reenable PCI devices as the devices passed
1414	 * through are always enabled before the reset.
1415	 */
1416	eeh_pe_for_each_dev(pe, edev, tmp) {
1417		pdev = eeh_dev_to_pci_dev(edev);
1418		if (!pdev)
1419			continue;
1420
1421		ret = pci_reenable_device(pdev);
1422		if (ret) {
1423			pr_warn("%s: Failure %d reenabling %s\n",
1424				__func__, ret, pci_name(pdev));
1425			return ret;
1426		}
1427	}
1428
1429	/* The PE is still in frozen state */
1430	if (include_passed || !eeh_pe_passed(pe)) {
1431		ret = eeh_unfreeze_pe(pe);
1432	} else
1433		pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1434			pe->phb->global_number, pe->addr);
1435	if (!ret)
1436		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1437	return ret;
1438}
1439
1440
1441/**
1442 * eeh_pe_reset - Issue PE reset according to specified type
1443 * @pe: EEH PE
1444 * @option: reset type
1445 *
1446 * The routine is called to reset the specified PE with the
1447 * indicated type, either fundamental reset or hot reset.
1448 * PE reset is the most important part for error recovery.
1449 */
1450int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1451{
1452	int ret = 0;
1453
1454	/* Invalid PE ? */
1455	if (!pe)
1456		return -ENODEV;
1457
1458	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1459		return -ENOENT;
1460
1461	switch (option) {
1462	case EEH_RESET_DEACTIVATE:
1463		ret = eeh_ops->reset(pe, option);
1464		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1465		if (ret)
1466			break;
1467
1468		ret = eeh_pe_reenable_devices(pe, include_passed);
1469		break;
1470	case EEH_RESET_HOT:
1471	case EEH_RESET_FUNDAMENTAL:
1472		/*
1473		 * Proactively freeze the PE to drop all MMIO access
1474		 * during reset, which should be banned as it's always
1475		 * cause recursive EEH error.
1476		 */
1477		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1478
1479		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1480		ret = eeh_ops->reset(pe, option);
1481		break;
1482	default:
1483		pr_debug("%s: Unsupported option %d\n",
1484			__func__, option);
1485		ret = -EINVAL;
1486	}
1487
1488	return ret;
1489}
1490EXPORT_SYMBOL_GPL(eeh_pe_reset);
1491
1492/**
1493 * eeh_pe_configure - Configure PCI bridges after PE reset
1494 * @pe: EEH PE
1495 *
1496 * The routine is called to restore the PCI config space for
1497 * those PCI devices, especially PCI bridges affected by PE
1498 * reset issued previously.
1499 */
1500int eeh_pe_configure(struct eeh_pe *pe)
1501{
1502	int ret = 0;
1503
1504	/* Invalid PE ? */
1505	if (!pe)
1506		return -ENODEV;
1507
1508	return ret;
1509}
1510EXPORT_SYMBOL_GPL(eeh_pe_configure);
1511
1512/**
1513 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1514 * @pe: the indicated PE
1515 * @type: error type
1516 * @function: error function
1517 * @addr: address
1518 * @mask: address mask
1519 *
1520 * The routine is called to inject the specified PCI error, which
1521 * is determined by @type and @function, to the indicated PE for
1522 * testing purpose.
1523 */
1524int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1525		      unsigned long addr, unsigned long mask)
1526{
1527	/* Invalid PE ? */
1528	if (!pe)
1529		return -ENODEV;
1530
1531	/* Unsupported operation ? */
1532	if (!eeh_ops || !eeh_ops->err_inject)
1533		return -ENOENT;
1534
1535	/* Check on PCI error type */
1536	if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1537		return -EINVAL;
1538
1539	/* Check on PCI error function */
1540	if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1541		return -EINVAL;
1542
1543	return eeh_ops->err_inject(pe, type, func, addr, mask);
1544}
1545EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1546
1547#ifdef CONFIG_PROC_FS
1548static int proc_eeh_show(struct seq_file *m, void *v)
1549{
1550	if (!eeh_enabled()) {
1551		seq_printf(m, "EEH Subsystem is globally disabled\n");
1552		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1553	} else {
1554		seq_printf(m, "EEH Subsystem is enabled\n");
1555		seq_printf(m,
1556				"no device=%llu\n"
1557				"no device node=%llu\n"
1558				"no config address=%llu\n"
1559				"check not wanted=%llu\n"
1560				"eeh_total_mmio_ffs=%llu\n"
1561				"eeh_false_positives=%llu\n"
1562				"eeh_slot_resets=%llu\n",
1563				eeh_stats.no_device,
1564				eeh_stats.no_dn,
1565				eeh_stats.no_cfg_addr,
1566				eeh_stats.ignored_check,
1567				eeh_stats.total_mmio_ffs,
1568				eeh_stats.false_positives,
1569				eeh_stats.slot_resets);
1570	}
1571
1572	return 0;
1573}
1574#endif /* CONFIG_PROC_FS */
1575
1576#ifdef CONFIG_DEBUG_FS
1577
1578
1579static struct pci_dev *eeh_debug_lookup_pdev(struct file *filp,
1580					     const char __user *user_buf,
1581					     size_t count, loff_t *ppos)
1582{
1583	uint32_t domain, bus, dev, fn;
1584	struct pci_dev *pdev;
1585	char buf[20];
1586	int ret;
1587
1588	memset(buf, 0, sizeof(buf));
1589	ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1590	if (!ret)
1591		return ERR_PTR(-EFAULT);
1592
1593	ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1594	if (ret != 4) {
1595		pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1596		return ERR_PTR(-EINVAL);
1597	}
1598
1599	pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1600	if (!pdev)
1601		return ERR_PTR(-ENODEV);
1602
1603	return pdev;
1604}
1605
1606static int eeh_enable_dbgfs_set(void *data, u64 val)
1607{
1608	if (val)
1609		eeh_clear_flag(EEH_FORCE_DISABLED);
1610	else
1611		eeh_add_flag(EEH_FORCE_DISABLED);
1612
1613	return 0;
1614}
1615
1616static int eeh_enable_dbgfs_get(void *data, u64 *val)
1617{
1618	if (eeh_enabled())
1619		*val = 0x1ul;
1620	else
1621		*val = 0x0ul;
1622	return 0;
1623}
1624
1625DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1626			 eeh_enable_dbgfs_set, "0x%llx\n");
1627
1628static ssize_t eeh_force_recover_write(struct file *filp,
1629				const char __user *user_buf,
1630				size_t count, loff_t *ppos)
1631{
1632	struct pci_controller *hose;
1633	uint32_t phbid, pe_no;
1634	struct eeh_pe *pe;
1635	char buf[20];
1636	int ret;
1637
1638	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1639	if (!ret)
1640		return -EFAULT;
1641
1642	/*
1643	 * When PE is NULL the event is a "special" event. Rather than
1644	 * recovering a specific PE it forces the EEH core to scan for failed
1645	 * PHBs and recovers each. This needs to be done before any device
1646	 * recoveries can occur.
1647	 */
1648	if (!strncmp(buf, "hwcheck", 7)) {
1649		__eeh_send_failure_event(NULL);
1650		return count;
1651	}
1652
1653	ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1654	if (ret != 2)
1655		return -EINVAL;
1656
1657	hose = pci_find_controller_for_domain(phbid);
1658	if (!hose)
1659		return -ENODEV;
1660
1661	/* Retrieve PE */
1662	pe = eeh_pe_get(hose, pe_no);
1663	if (!pe)
1664		return -ENODEV;
1665
1666	/*
1667	 * We don't do any state checking here since the detection
1668	 * process is async to the recovery process. The recovery
1669	 * thread *should* not break even if we schedule a recovery
1670	 * from an odd state (e.g. PE removed, or recovery of a
1671	 * non-isolated PE)
1672	 */
1673	__eeh_send_failure_event(pe);
1674
1675	return ret < 0 ? ret : count;
1676}
1677
1678static const struct file_operations eeh_force_recover_fops = {
1679	.open	= simple_open,
1680	.llseek	= no_llseek,
1681	.write	= eeh_force_recover_write,
1682};
1683
1684static ssize_t eeh_debugfs_dev_usage(struct file *filp,
1685				char __user *user_buf,
1686				size_t count, loff_t *ppos)
1687{
1688	static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1689
1690	return simple_read_from_buffer(user_buf, count, ppos,
1691				       usage, sizeof(usage) - 1);
1692}
1693
1694static ssize_t eeh_dev_check_write(struct file *filp,
1695				const char __user *user_buf,
1696				size_t count, loff_t *ppos)
1697{
 
1698	struct pci_dev *pdev;
1699	struct eeh_dev *edev;
 
1700	int ret;
1701
1702	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1703	if (IS_ERR(pdev))
1704		return PTR_ERR(pdev);
 
 
 
 
 
 
 
 
 
 
 
1705
1706	edev = pci_dev_to_eeh_dev(pdev);
1707	if (!edev) {
1708		pci_err(pdev, "No eeh_dev for this device!\n");
1709		pci_dev_put(pdev);
1710		return -ENODEV;
1711	}
1712
1713	ret = eeh_dev_check_failure(edev);
1714	pci_info(pdev, "eeh_dev_check_failure(%s) = %d\n",
1715			pci_name(pdev), ret);
1716
1717	pci_dev_put(pdev);
1718
1719	return count;
1720}
1721
1722static const struct file_operations eeh_dev_check_fops = {
1723	.open	= simple_open,
1724	.llseek	= no_llseek,
1725	.write	= eeh_dev_check_write,
1726	.read   = eeh_debugfs_dev_usage,
1727};
1728
1729static int eeh_debugfs_break_device(struct pci_dev *pdev)
1730{
1731	struct resource *bar = NULL;
1732	void __iomem *mapped;
1733	u16 old, bit;
1734	int i, pos;
1735
1736	/* Do we have an MMIO BAR to disable? */
1737	for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
1738		struct resource *r = &pdev->resource[i];
1739
1740		if (!r->flags || !r->start)
1741			continue;
1742		if (r->flags & IORESOURCE_IO)
1743			continue;
1744		if (r->flags & IORESOURCE_UNSET)
1745			continue;
1746
1747		bar = r;
1748		break;
1749	}
1750
1751	if (!bar) {
1752		pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
1753		return -ENXIO;
1754	}
1755
1756	pci_err(pdev, "Going to break: %pR\n", bar);
1757
1758	if (pdev->is_virtfn) {
1759#ifndef CONFIG_PCI_IOV
1760		return -ENXIO;
1761#else
1762		/*
1763		 * VFs don't have a per-function COMMAND register, so the best
1764		 * we can do is clear the Memory Space Enable bit in the PF's
1765		 * SRIOV control reg.
1766		 *
1767		 * Unfortunately, this requires that we have a PF (i.e doesn't
1768		 * work for a passed-through VF) and it has the potential side
1769		 * effect of also causing an EEH on every other VF under the
1770		 * PF. Oh well.
1771		 */
1772		pdev = pdev->physfn;
1773		if (!pdev)
1774			return -ENXIO; /* passed through VFs have no PF */
1775
1776		pos  = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1777		pos += PCI_SRIOV_CTRL;
1778		bit  = PCI_SRIOV_CTRL_MSE;
1779#endif /* !CONFIG_PCI_IOV */
1780	} else {
1781		bit = PCI_COMMAND_MEMORY;
1782		pos = PCI_COMMAND;
1783	}
1784
1785	/*
1786	 * Process here is:
1787	 *
1788	 * 1. Disable Memory space.
1789	 *
1790	 * 2. Perform an MMIO to the device. This should result in an error
1791	 *    (CA  / UR) being raised by the device which results in an EEH
1792	 *    PE freeze. Using the in_8() accessor skips the eeh detection hook
1793	 *    so the freeze hook so the EEH Detection machinery won't be
1794	 *    triggered here. This is to match the usual behaviour of EEH
1795	 *    where the HW will asyncronously freeze a PE and it's up to
1796	 *    the kernel to notice and deal with it.
1797	 *
1798	 * 3. Turn Memory space back on. This is more important for VFs
1799	 *    since recovery will probably fail if we don't. For normal
1800	 *    the COMMAND register is reset as a part of re-initialising
1801	 *    the device.
1802	 *
1803	 * Breaking stuff is the point so who cares if it's racy ;)
1804	 */
1805	pci_read_config_word(pdev, pos, &old);
1806
1807	mapped = ioremap(bar->start, PAGE_SIZE);
1808	if (!mapped) {
1809		pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
1810		return -ENXIO;
1811	}
1812
1813	pci_write_config_word(pdev, pos, old & ~bit);
1814	in_8(mapped);
1815	pci_write_config_word(pdev, pos, old);
1816
1817	iounmap(mapped);
1818
1819	return 0;
1820}
1821
1822static ssize_t eeh_dev_break_write(struct file *filp,
1823				const char __user *user_buf,
1824				size_t count, loff_t *ppos)
1825{
 
1826	struct pci_dev *pdev;
 
1827	int ret;
1828
1829	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1830	if (IS_ERR(pdev))
1831		return PTR_ERR(pdev);
 
 
 
 
 
 
 
 
 
 
 
1832
1833	ret = eeh_debugfs_break_device(pdev);
1834	pci_dev_put(pdev);
1835
1836	if (ret < 0)
1837		return ret;
1838
1839	return count;
1840}
1841
1842static const struct file_operations eeh_dev_break_fops = {
1843	.open	= simple_open,
1844	.llseek	= no_llseek,
1845	.write	= eeh_dev_break_write,
1846	.read   = eeh_debugfs_dev_usage,
1847};
1848
1849static ssize_t eeh_dev_can_recover(struct file *filp,
1850				   const char __user *user_buf,
1851				   size_t count, loff_t *ppos)
1852{
1853	struct pci_driver *drv;
1854	struct pci_dev *pdev;
1855	size_t ret;
1856
1857	pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1858	if (IS_ERR(pdev))
1859		return PTR_ERR(pdev);
1860
1861	/*
1862	 * In order for error recovery to work the driver needs to implement
1863	 * .error_detected(), so it can quiesce IO to the device, and
1864	 * .slot_reset() so it can re-initialise the device after a reset.
1865	 *
1866	 * Ideally they'd implement .resume() too, but some drivers which
1867	 * we need to support (notably IPR) don't so I guess we can tolerate
1868	 * that.
1869	 *
1870	 * .mmio_enabled() is mostly there as a work-around for devices which
1871	 * take forever to re-init after a hot reset. Implementing that is
1872	 * strictly optional.
1873	 */
1874	drv = pci_dev_driver(pdev);
1875	if (drv &&
1876	    drv->err_handler &&
1877	    drv->err_handler->error_detected &&
1878	    drv->err_handler->slot_reset) {
1879		ret = count;
1880	} else {
1881		ret = -EOPNOTSUPP;
1882	}
1883
1884	pci_dev_put(pdev);
1885
1886	return ret;
1887}
1888
1889static const struct file_operations eeh_dev_can_recover_fops = {
1890	.open	= simple_open,
1891	.llseek	= no_llseek,
1892	.write	= eeh_dev_can_recover,
1893	.read   = eeh_debugfs_dev_usage,
1894};
1895
1896#endif
1897
1898static int __init eeh_init_proc(void)
1899{
1900	if (machine_is(pseries) || machine_is(powernv)) {
1901		proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1902#ifdef CONFIG_DEBUG_FS
1903		debugfs_create_file_unsafe("eeh_enable", 0600,
1904					   powerpc_debugfs_root, NULL,
1905					   &eeh_enable_dbgfs_ops);
1906		debugfs_create_u32("eeh_max_freezes", 0600,
1907				powerpc_debugfs_root, &eeh_max_freezes);
1908		debugfs_create_bool("eeh_disable_recovery", 0600,
1909				powerpc_debugfs_root,
1910				&eeh_debugfs_no_recover);
1911		debugfs_create_file_unsafe("eeh_dev_check", 0600,
1912				powerpc_debugfs_root, NULL,
1913				&eeh_dev_check_fops);
1914		debugfs_create_file_unsafe("eeh_dev_break", 0600,
1915				powerpc_debugfs_root, NULL,
1916				&eeh_dev_break_fops);
1917		debugfs_create_file_unsafe("eeh_force_recover", 0600,
1918				powerpc_debugfs_root, NULL,
1919				&eeh_force_recover_fops);
1920		debugfs_create_file_unsafe("eeh_dev_can_recover", 0600,
1921				powerpc_debugfs_root, NULL,
1922				&eeh_dev_can_recover_fops);
1923		eeh_cache_debugfs_init();
1924#endif
1925	}
1926
1927	return 0;
1928}
1929__initcall(eeh_init_proc);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright IBM Corporation 2001, 2005, 2006
   4 * Copyright Dave Engebretsen & Todd Inglett 2001
   5 * Copyright Linas Vepstas 2005, 2006
   6 * Copyright 2001-2012 IBM Corporation.
   7 *
   8 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
   9 */
  10
  11#include <linux/delay.h>
  12#include <linux/sched.h>
  13#include <linux/init.h>
  14#include <linux/list.h>
  15#include <linux/pci.h>
  16#include <linux/iommu.h>
  17#include <linux/proc_fs.h>
  18#include <linux/rbtree.h>
  19#include <linux/reboot.h>
  20#include <linux/seq_file.h>
  21#include <linux/spinlock.h>
  22#include <linux/export.h>
  23#include <linux/of.h>
  24
  25#include <linux/atomic.h>
  26#include <asm/debugfs.h>
  27#include <asm/eeh.h>
  28#include <asm/eeh_event.h>
  29#include <asm/io.h>
  30#include <asm/iommu.h>
  31#include <asm/machdep.h>
  32#include <asm/ppc-pci.h>
  33#include <asm/rtas.h>
  34#include <asm/pte-walk.h>
  35
  36
  37/** Overview:
  38 *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
  39 *  dealing with PCI bus errors that can't be dealt with within the
  40 *  usual PCI framework, except by check-stopping the CPU.  Systems
  41 *  that are designed for high-availability/reliability cannot afford
  42 *  to crash due to a "mere" PCI error, thus the need for EEH.
  43 *  An EEH-capable bridge operates by converting a detected error
  44 *  into a "slot freeze", taking the PCI adapter off-line, making
  45 *  the slot behave, from the OS'es point of view, as if the slot
  46 *  were "empty": all reads return 0xff's and all writes are silently
  47 *  ignored.  EEH slot isolation events can be triggered by parity
  48 *  errors on the address or data busses (e.g. during posted writes),
  49 *  which in turn might be caused by low voltage on the bus, dust,
  50 *  vibration, humidity, radioactivity or plain-old failed hardware.
  51 *
  52 *  Note, however, that one of the leading causes of EEH slot
  53 *  freeze events are buggy device drivers, buggy device microcode,
  54 *  or buggy device hardware.  This is because any attempt by the
  55 *  device to bus-master data to a memory address that is not
  56 *  assigned to the device will trigger a slot freeze.   (The idea
  57 *  is to prevent devices-gone-wild from corrupting system memory).
  58 *  Buggy hardware/drivers will have a miserable time co-existing
  59 *  with EEH.
  60 *
  61 *  Ideally, a PCI device driver, when suspecting that an isolation
  62 *  event has occurred (e.g. by reading 0xff's), will then ask EEH
  63 *  whether this is the case, and then take appropriate steps to
  64 *  reset the PCI slot, the PCI device, and then resume operations.
  65 *  However, until that day,  the checking is done here, with the
  66 *  eeh_check_failure() routine embedded in the MMIO macros.  If
  67 *  the slot is found to be isolated, an "EEH Event" is synthesized
  68 *  and sent out for processing.
  69 */
  70
  71/* If a device driver keeps reading an MMIO register in an interrupt
  72 * handler after a slot isolation event, it might be broken.
  73 * This sets the threshold for how many read attempts we allow
  74 * before printing an error message.
  75 */
  76#define EEH_MAX_FAILS	2100000
  77
  78/* Time to wait for a PCI slot to report status, in milliseconds */
  79#define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
  80
  81/*
  82 * EEH probe mode support, which is part of the flags,
  83 * is to support multiple platforms for EEH. Some platforms
  84 * like pSeries do PCI emunation based on device tree.
  85 * However, other platforms like powernv probe PCI devices
  86 * from hardware. The flag is used to distinguish that.
  87 * In addition, struct eeh_ops::probe would be invoked for
  88 * particular OF node or PCI device so that the corresponding
  89 * PE would be created there.
  90 */
  91int eeh_subsystem_flags;
  92EXPORT_SYMBOL(eeh_subsystem_flags);
  93
  94/*
  95 * EEH allowed maximal frozen times. If one particular PE's
  96 * frozen count in last hour exceeds this limit, the PE will
  97 * be forced to be offline permanently.
  98 */
  99u32 eeh_max_freezes = 5;
 100
 101/*
 102 * Controls whether a recovery event should be scheduled when an
 103 * isolated device is discovered. This is only really useful for
 104 * debugging problems with the EEH core.
 105 */
 106bool eeh_debugfs_no_recover;
 107
 108/* Platform dependent EEH operations */
 109struct eeh_ops *eeh_ops = NULL;
 110
 111/* Lock to avoid races due to multiple reports of an error */
 112DEFINE_RAW_SPINLOCK(confirm_error_lock);
 113EXPORT_SYMBOL_GPL(confirm_error_lock);
 114
 115/* Lock to protect passed flags */
 116static DEFINE_MUTEX(eeh_dev_mutex);
 117
 118/* Buffer for reporting pci register dumps. Its here in BSS, and
 119 * not dynamically alloced, so that it ends up in RMO where RTAS
 120 * can access it.
 121 */
 122#define EEH_PCI_REGS_LOG_LEN 8192
 123static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
 124
 125/*
 126 * The struct is used to maintain the EEH global statistic
 127 * information. Besides, the EEH global statistics will be
 128 * exported to user space through procfs
 129 */
 130struct eeh_stats {
 131	u64 no_device;		/* PCI device not found		*/
 132	u64 no_dn;		/* OF node not found		*/
 133	u64 no_cfg_addr;	/* Config address not found	*/
 134	u64 ignored_check;	/* EEH check skipped		*/
 135	u64 total_mmio_ffs;	/* Total EEH checks		*/
 136	u64 false_positives;	/* Unnecessary EEH checks	*/
 137	u64 slot_resets;	/* PE reset			*/
 138};
 139
 140static struct eeh_stats eeh_stats;
 141
 142static int __init eeh_setup(char *str)
 143{
 144	if (!strcmp(str, "off"))
 145		eeh_add_flag(EEH_FORCE_DISABLED);
 146	else if (!strcmp(str, "early_log"))
 147		eeh_add_flag(EEH_EARLY_DUMP_LOG);
 148
 149	return 1;
 150}
 151__setup("eeh=", eeh_setup);
 152
 153void eeh_show_enabled(void)
 154{
 155	if (eeh_has_flag(EEH_FORCE_DISABLED))
 156		pr_info("EEH: Recovery disabled by kernel parameter.\n");
 157	else if (eeh_has_flag(EEH_ENABLED))
 158		pr_info("EEH: Capable adapter found: recovery enabled.\n");
 159	else
 160		pr_info("EEH: No capable adapters found: recovery disabled.\n");
 161}
 162
 163/*
 164 * This routine captures assorted PCI configuration space data
 165 * for the indicated PCI device, and puts them into a buffer
 166 * for RTAS error logging.
 167 */
 168static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
 169{
 170	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 171	u32 cfg;
 172	int cap, i;
 173	int n = 0, l = 0;
 174	char buffer[128];
 175
 176	if (!pdn) {
 177		pr_warn("EEH: Note: No error log for absent device.\n");
 178		return 0;
 179	}
 180
 181	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
 182		       pdn->phb->global_number, pdn->busno,
 183		       PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
 184	pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
 185		pdn->phb->global_number, pdn->busno,
 186		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
 187
 188	eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
 189	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
 190	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
 191
 192	eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
 193	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
 194	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
 195
 196	/* Gather bridge-specific registers */
 197	if (edev->mode & EEH_DEV_BRIDGE) {
 198		eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
 199		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
 200		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
 201
 202		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
 203		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
 204		pr_warn("EEH: Bridge control: %04x\n", cfg);
 205	}
 206
 207	/* Dump out the PCI-X command and status regs */
 208	cap = edev->pcix_cap;
 209	if (cap) {
 210		eeh_ops->read_config(pdn, cap, 4, &cfg);
 211		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
 212		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
 213
 214		eeh_ops->read_config(pdn, cap+4, 4, &cfg);
 215		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
 216		pr_warn("EEH: PCI-X status: %08x\n", cfg);
 217	}
 218
 219	/* If PCI-E capable, dump PCI-E cap 10 */
 220	cap = edev->pcie_cap;
 221	if (cap) {
 222		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
 223		pr_warn("EEH: PCI-E capabilities and status follow:\n");
 224
 225		for (i=0; i<=8; i++) {
 226			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
 227			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
 228
 229			if ((i % 4) == 0) {
 230				if (i != 0)
 231					pr_warn("%s\n", buffer);
 232
 233				l = scnprintf(buffer, sizeof(buffer),
 234					      "EEH: PCI-E %02x: %08x ",
 235					      4*i, cfg);
 236			} else {
 237				l += scnprintf(buffer+l, sizeof(buffer)-l,
 238					       "%08x ", cfg);
 239			}
 240
 241		}
 242
 243		pr_warn("%s\n", buffer);
 244	}
 245
 246	/* If AER capable, dump it */
 247	cap = edev->aer_cap;
 248	if (cap) {
 249		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
 250		pr_warn("EEH: PCI-E AER capability register set follows:\n");
 251
 252		for (i=0; i<=13; i++) {
 253			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
 254			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
 255
 256			if ((i % 4) == 0) {
 257				if (i != 0)
 258					pr_warn("%s\n", buffer);
 259
 260				l = scnprintf(buffer, sizeof(buffer),
 261					      "EEH: PCI-E AER %02x: %08x ",
 262					      4*i, cfg);
 263			} else {
 264				l += scnprintf(buffer+l, sizeof(buffer)-l,
 265					       "%08x ", cfg);
 266			}
 267		}
 268
 269		pr_warn("%s\n", buffer);
 270	}
 271
 272	return n;
 273}
 274
 275static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
 276{
 277	struct eeh_dev *edev, *tmp;
 278	size_t *plen = flag;
 279
 280	eeh_pe_for_each_dev(pe, edev, tmp)
 281		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
 282					  EEH_PCI_REGS_LOG_LEN - *plen);
 283
 284	return NULL;
 285}
 286
 287/**
 288 * eeh_slot_error_detail - Generate combined log including driver log and error log
 289 * @pe: EEH PE
 290 * @severity: temporary or permanent error log
 291 *
 292 * This routine should be called to generate the combined log, which
 293 * is comprised of driver log and error log. The driver log is figured
 294 * out from the config space of the corresponding PCI device, while
 295 * the error log is fetched through platform dependent function call.
 296 */
 297void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
 298{
 299	size_t loglen = 0;
 300
 301	/*
 302	 * When the PHB is fenced or dead, it's pointless to collect
 303	 * the data from PCI config space because it should return
 304	 * 0xFF's. For ER, we still retrieve the data from the PCI
 305	 * config space.
 306	 *
 307	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
 308	 * 0xFF's is always returned from PCI config space.
 309	 *
 310	 * When the @severity is EEH_LOG_PERM, the PE is going to be
 311	 * removed. Prior to that, the drivers for devices included in
 312	 * the PE will be closed. The drivers rely on working IO path
 313	 * to bring the devices to quiet state. Otherwise, PCI traffic
 314	 * from those devices after they are removed is like to cause
 315	 * another unexpected EEH error.
 316	 */
 317	if (!(pe->type & EEH_PE_PHB)) {
 318		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
 319		    severity == EEH_LOG_PERM)
 320			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
 321
 322		/*
 323		 * The config space of some PCI devices can't be accessed
 324		 * when their PEs are in frozen state. Otherwise, fenced
 325		 * PHB might be seen. Those PEs are identified with flag
 326		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
 327		 * is set automatically when the PE is put to EEH_PE_ISOLATED.
 328		 *
 329		 * Restoring BARs possibly triggers PCI config access in
 330		 * (OPAL) firmware and then causes fenced PHB. If the
 331		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
 332		 * pointless to restore BARs and dump config space.
 333		 */
 334		eeh_ops->configure_bridge(pe);
 335		if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
 336			eeh_pe_restore_bars(pe);
 337
 338			pci_regs_buf[0] = 0;
 339			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
 340		}
 341	}
 342
 343	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
 344}
 345
 346/**
 347 * eeh_token_to_phys - Convert EEH address token to phys address
 348 * @token: I/O token, should be address in the form 0xA....
 349 *
 350 * This routine should be called to convert virtual I/O address
 351 * to physical one.
 352 */
 353static inline unsigned long eeh_token_to_phys(unsigned long token)
 354{
 355	pte_t *ptep;
 356	unsigned long pa;
 357	int hugepage_shift;
 358
 359	/*
 360	 * We won't find hugepages here(this is iomem). Hence we are not
 361	 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
 362	 * page table free, because of init_mm.
 363	 */
 364	ptep = find_init_mm_pte(token, &hugepage_shift);
 365	if (!ptep)
 366		return token;
 367
 368	pa = pte_pfn(*ptep);
 369
 370	/* On radix we can do hugepage mappings for io, so handle that */
 371	if (hugepage_shift) {
 372		pa <<= hugepage_shift;
 373		pa |= token & ((1ul << hugepage_shift) - 1);
 374	} else {
 375		pa <<= PAGE_SHIFT;
 376		pa |= token & (PAGE_SIZE - 1);
 377	}
 378
 379	return pa;
 380}
 381
 382/*
 383 * On PowerNV platform, we might already have fenced PHB there.
 384 * For that case, it's meaningless to recover frozen PE. Intead,
 385 * We have to handle fenced PHB firstly.
 386 */
 387static int eeh_phb_check_failure(struct eeh_pe *pe)
 388{
 389	struct eeh_pe *phb_pe;
 390	unsigned long flags;
 391	int ret;
 392
 393	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
 394		return -EPERM;
 395
 396	/* Find the PHB PE */
 397	phb_pe = eeh_phb_pe_get(pe->phb);
 398	if (!phb_pe) {
 399		pr_warn("%s Can't find PE for PHB#%x\n",
 400			__func__, pe->phb->global_number);
 401		return -EEXIST;
 402	}
 403
 404	/* If the PHB has been in problematic state */
 405	eeh_serialize_lock(&flags);
 406	if (phb_pe->state & EEH_PE_ISOLATED) {
 407		ret = 0;
 408		goto out;
 409	}
 410
 411	/* Check PHB state */
 412	ret = eeh_ops->get_state(phb_pe, NULL);
 413	if ((ret < 0) ||
 414	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
 415		ret = 0;
 416		goto out;
 417	}
 418
 419	/* Isolate the PHB and send event */
 420	eeh_pe_mark_isolated(phb_pe);
 421	eeh_serialize_unlock(flags);
 422
 423	pr_debug("EEH: PHB#%x failure detected, location: %s\n",
 424		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
 425	eeh_send_failure_event(phb_pe);
 426	return 1;
 427out:
 428	eeh_serialize_unlock(flags);
 429	return ret;
 430}
 431
 432/**
 433 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
 434 * @edev: eeh device
 435 *
 436 * Check for an EEH failure for the given device node.  Call this
 437 * routine if the result of a read was all 0xff's and you want to
 438 * find out if this is due to an EEH slot freeze.  This routine
 439 * will query firmware for the EEH status.
 440 *
 441 * Returns 0 if there has not been an EEH error; otherwise returns
 442 * a non-zero value and queues up a slot isolation event notification.
 443 *
 444 * It is safe to call this routine in an interrupt context.
 445 */
 446int eeh_dev_check_failure(struct eeh_dev *edev)
 447{
 448	int ret;
 449	unsigned long flags;
 450	struct device_node *dn;
 451	struct pci_dev *dev;
 452	struct eeh_pe *pe, *parent_pe;
 453	int rc = 0;
 454	const char *location = NULL;
 455
 456	eeh_stats.total_mmio_ffs++;
 457
 458	if (!eeh_enabled())
 459		return 0;
 460
 461	if (!edev) {
 462		eeh_stats.no_dn++;
 463		return 0;
 464	}
 465	dev = eeh_dev_to_pci_dev(edev);
 466	pe = eeh_dev_to_pe(edev);
 467
 468	/* Access to IO BARs might get this far and still not want checking. */
 469	if (!pe) {
 470		eeh_stats.ignored_check++;
 471		eeh_edev_dbg(edev, "Ignored check\n");
 472		return 0;
 473	}
 474
 475	if (!pe->addr && !pe->config_addr) {
 476		eeh_stats.no_cfg_addr++;
 477		return 0;
 478	}
 479
 480	/*
 481	 * On PowerNV platform, we might already have fenced PHB
 482	 * there and we need take care of that firstly.
 483	 */
 484	ret = eeh_phb_check_failure(pe);
 485	if (ret > 0)
 486		return ret;
 487
 488	/*
 489	 * If the PE isn't owned by us, we shouldn't check the
 490	 * state. Instead, let the owner handle it if the PE has
 491	 * been frozen.
 492	 */
 493	if (eeh_pe_passed(pe))
 494		return 0;
 495
 496	/* If we already have a pending isolation event for this
 497	 * slot, we know it's bad already, we don't need to check.
 498	 * Do this checking under a lock; as multiple PCI devices
 499	 * in one slot might report errors simultaneously, and we
 500	 * only want one error recovery routine running.
 501	 */
 502	eeh_serialize_lock(&flags);
 503	rc = 1;
 504	if (pe->state & EEH_PE_ISOLATED) {
 505		pe->check_count++;
 506		if (pe->check_count % EEH_MAX_FAILS == 0) {
 507			dn = pci_device_to_OF_node(dev);
 508			if (dn)
 509				location = of_get_property(dn, "ibm,loc-code",
 510						NULL);
 511			eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
 512				pe->check_count,
 513				location ? location : "unknown",
 514				eeh_driver_name(dev));
 515			eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
 516				eeh_driver_name(dev));
 517			dump_stack();
 518		}
 519		goto dn_unlock;
 520	}
 521
 522	/*
 523	 * Now test for an EEH failure.  This is VERY expensive.
 524	 * Note that the eeh_config_addr may be a parent device
 525	 * in the case of a device behind a bridge, or it may be
 526	 * function zero of a multi-function device.
 527	 * In any case they must share a common PHB.
 528	 */
 529	ret = eeh_ops->get_state(pe, NULL);
 530
 531	/* Note that config-io to empty slots may fail;
 532	 * they are empty when they don't have children.
 533	 * We will punt with the following conditions: Failure to get
 534	 * PE's state, EEH not support and Permanently unavailable
 535	 * state, PE is in good state.
 536	 */
 537	if ((ret < 0) ||
 538	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
 539		eeh_stats.false_positives++;
 540		pe->false_positives++;
 541		rc = 0;
 542		goto dn_unlock;
 543	}
 544
 545	/*
 546	 * It should be corner case that the parent PE has been
 547	 * put into frozen state as well. We should take care
 548	 * that at first.
 549	 */
 550	parent_pe = pe->parent;
 551	while (parent_pe) {
 552		/* Hit the ceiling ? */
 553		if (parent_pe->type & EEH_PE_PHB)
 554			break;
 555
 556		/* Frozen parent PE ? */
 557		ret = eeh_ops->get_state(parent_pe, NULL);
 558		if (ret > 0 && !eeh_state_active(ret)) {
 559			pe = parent_pe;
 560			pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
 561			       pe->phb->global_number, pe->addr,
 562			       pe->phb->global_number, parent_pe->addr);
 563		}
 564
 565		/* Next parent level */
 566		parent_pe = parent_pe->parent;
 567	}
 568
 569	eeh_stats.slot_resets++;
 570
 571	/* Avoid repeated reports of this failure, including problems
 572	 * with other functions on this device, and functions under
 573	 * bridges.
 574	 */
 575	eeh_pe_mark_isolated(pe);
 576	eeh_serialize_unlock(flags);
 577
 578	/* Most EEH events are due to device driver bugs.  Having
 579	 * a stack trace will help the device-driver authors figure
 580	 * out what happened.  So print that out.
 581	 */
 582	pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
 583		__func__, pe->phb->global_number, pe->addr);
 584	eeh_send_failure_event(pe);
 585
 586	return 1;
 587
 588dn_unlock:
 589	eeh_serialize_unlock(flags);
 590	return rc;
 591}
 592
 593EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
 594
 595/**
 596 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
 597 * @token: I/O address
 598 *
 599 * Check for an EEH failure at the given I/O address. Call this
 600 * routine if the result of a read was all 0xff's and you want to
 601 * find out if this is due to an EEH slot freeze event. This routine
 602 * will query firmware for the EEH status.
 603 *
 604 * Note this routine is safe to call in an interrupt context.
 605 */
 606int eeh_check_failure(const volatile void __iomem *token)
 607{
 608	unsigned long addr;
 609	struct eeh_dev *edev;
 610
 611	/* Finding the phys addr + pci device; this is pretty quick. */
 612	addr = eeh_token_to_phys((unsigned long __force) token);
 613	edev = eeh_addr_cache_get_dev(addr);
 614	if (!edev) {
 615		eeh_stats.no_device++;
 616		return 0;
 617	}
 618
 619	return eeh_dev_check_failure(edev);
 620}
 621EXPORT_SYMBOL(eeh_check_failure);
 622
 623
 624/**
 625 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
 626 * @pe: EEH PE
 627 *
 628 * This routine should be called to reenable frozen MMIO or DMA
 629 * so that it would work correctly again. It's useful while doing
 630 * recovery or log collection on the indicated device.
 631 */
 632int eeh_pci_enable(struct eeh_pe *pe, int function)
 633{
 634	int active_flag, rc;
 635
 636	/*
 637	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
 638	 * Also, it's pointless to enable them on unfrozen PE. So
 639	 * we have to check before enabling IO or DMA.
 640	 */
 641	switch (function) {
 642	case EEH_OPT_THAW_MMIO:
 643		active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
 644		break;
 645	case EEH_OPT_THAW_DMA:
 646		active_flag = EEH_STATE_DMA_ACTIVE;
 647		break;
 648	case EEH_OPT_DISABLE:
 649	case EEH_OPT_ENABLE:
 650	case EEH_OPT_FREEZE_PE:
 651		active_flag = 0;
 652		break;
 653	default:
 654		pr_warn("%s: Invalid function %d\n",
 655			__func__, function);
 656		return -EINVAL;
 657	}
 658
 659	/*
 660	 * Check if IO or DMA has been enabled before
 661	 * enabling them.
 662	 */
 663	if (active_flag) {
 664		rc = eeh_ops->get_state(pe, NULL);
 665		if (rc < 0)
 666			return rc;
 667
 668		/* Needn't enable it at all */
 669		if (rc == EEH_STATE_NOT_SUPPORT)
 670			return 0;
 671
 672		/* It's already enabled */
 673		if (rc & active_flag)
 674			return 0;
 675	}
 676
 677
 678	/* Issue the request */
 679	rc = eeh_ops->set_option(pe, function);
 680	if (rc)
 681		pr_warn("%s: Unexpected state change %d on "
 682			"PHB#%x-PE#%x, err=%d\n",
 683			__func__, function, pe->phb->global_number,
 684			pe->addr, rc);
 685
 686	/* Check if the request is finished successfully */
 687	if (active_flag) {
 688		rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
 689		if (rc < 0)
 690			return rc;
 691
 692		if (rc & active_flag)
 693			return 0;
 694
 695		return -EIO;
 696	}
 697
 698	return rc;
 699}
 700
 701static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
 702					    void *userdata)
 703{
 704	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
 705	struct pci_dev *dev = userdata;
 706
 707	/*
 708	 * The caller should have disabled and saved the
 709	 * state for the specified device
 710	 */
 711	if (!pdev || pdev == dev)
 712		return;
 713
 714	/* Ensure we have D0 power state */
 715	pci_set_power_state(pdev, PCI_D0);
 716
 717	/* Save device state */
 718	pci_save_state(pdev);
 719
 720	/*
 721	 * Disable device to avoid any DMA traffic and
 722	 * interrupt from the device
 723	 */
 724	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
 725}
 726
 727static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
 728{
 729	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 730	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
 731	struct pci_dev *dev = userdata;
 732
 733	if (!pdev)
 734		return;
 735
 736	/* Apply customization from firmware */
 737	if (pdn && eeh_ops->restore_config)
 738		eeh_ops->restore_config(pdn);
 739
 740	/* The caller should restore state for the specified device */
 741	if (pdev != dev)
 742		pci_restore_state(pdev);
 743}
 744
 745int eeh_restore_vf_config(struct pci_dn *pdn)
 746{
 747	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
 748	u32 devctl, cmd, cap2, aer_capctl;
 749	int old_mps;
 750
 751	if (edev->pcie_cap) {
 752		/* Restore MPS */
 753		old_mps = (ffs(pdn->mps) - 8) << 5;
 754		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
 755				     2, &devctl);
 756		devctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
 757		devctl |= old_mps;
 758		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
 759				      2, devctl);
 760
 761		/* Disable Completion Timeout if possible */
 762		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2,
 763				     4, &cap2);
 764		if (cap2 & PCI_EXP_DEVCAP2_COMP_TMOUT_DIS) {
 765			eeh_ops->read_config(pdn,
 766					     edev->pcie_cap + PCI_EXP_DEVCTL2,
 767					     4, &cap2);
 768			cap2 |= PCI_EXP_DEVCTL2_COMP_TMOUT_DIS;
 769			eeh_ops->write_config(pdn,
 770					      edev->pcie_cap + PCI_EXP_DEVCTL2,
 771					      4, cap2);
 772		}
 773	}
 774
 775	/* Enable SERR and parity checking */
 776	eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd);
 777	cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
 778	eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd);
 779
 780	/* Enable report various errors */
 781	if (edev->pcie_cap) {
 782		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
 783				     2, &devctl);
 784		devctl &= ~PCI_EXP_DEVCTL_CERE;
 785		devctl |= (PCI_EXP_DEVCTL_NFERE |
 786			   PCI_EXP_DEVCTL_FERE |
 787			   PCI_EXP_DEVCTL_URRE);
 788		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
 789				      2, devctl);
 790	}
 791
 792	/* Enable ECRC generation and check */
 793	if (edev->pcie_cap && edev->aer_cap) {
 794		eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP,
 795				     4, &aer_capctl);
 796		aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE);
 797		eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP,
 798				      4, aer_capctl);
 799	}
 800
 801	return 0;
 802}
 803
 804/**
 805 * pcibios_set_pcie_reset_state - Set PCI-E reset state
 806 * @dev: pci device struct
 807 * @state: reset state to enter
 808 *
 809 * Return value:
 810 * 	0 if success
 811 */
 812int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
 813{
 814	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
 815	struct eeh_pe *pe = eeh_dev_to_pe(edev);
 816
 817	if (!pe) {
 818		pr_err("%s: No PE found on PCI device %s\n",
 819			__func__, pci_name(dev));
 820		return -EINVAL;
 821	}
 822
 823	switch (state) {
 824	case pcie_deassert_reset:
 825		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
 826		eeh_unfreeze_pe(pe);
 827		if (!(pe->type & EEH_PE_VF))
 828			eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
 829		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
 830		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
 831		break;
 832	case pcie_hot_reset:
 833		eeh_pe_mark_isolated(pe);
 834		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
 835		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
 836		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
 837		if (!(pe->type & EEH_PE_VF))
 838			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
 839		eeh_ops->reset(pe, EEH_RESET_HOT);
 840		break;
 841	case pcie_warm_reset:
 842		eeh_pe_mark_isolated(pe);
 843		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
 844		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
 845		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
 846		if (!(pe->type & EEH_PE_VF))
 847			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
 848		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
 849		break;
 850	default:
 851		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
 852		return -EINVAL;
 853	};
 854
 855	return 0;
 856}
 857
 858/**
 859 * eeh_set_pe_freset - Check the required reset for the indicated device
 860 * @data: EEH device
 861 * @flag: return value
 862 *
 863 * Each device might have its preferred reset type: fundamental or
 864 * hot reset. The routine is used to collected the information for
 865 * the indicated device and its children so that the bunch of the
 866 * devices could be reset properly.
 867 */
 868static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
 869{
 870	struct pci_dev *dev;
 871	unsigned int *freset = (unsigned int *)flag;
 872
 873	dev = eeh_dev_to_pci_dev(edev);
 874	if (dev)
 875		*freset |= dev->needs_freset;
 876}
 877
 878static void eeh_pe_refreeze_passed(struct eeh_pe *root)
 879{
 880	struct eeh_pe *pe;
 881	int state;
 882
 883	eeh_for_each_pe(root, pe) {
 884		if (eeh_pe_passed(pe)) {
 885			state = eeh_ops->get_state(pe, NULL);
 886			if (state &
 887			   (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
 888				pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
 889					pe->phb->global_number, pe->addr);
 890				eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
 891			}
 892		}
 893	}
 894}
 895
 896/**
 897 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
 898 * @pe: EEH PE
 899 *
 900 * This function executes a full reset procedure on a PE, including setting
 901 * the appropriate flags, performing a fundamental or hot reset, and then
 902 * deactivating the reset status.  It is designed to be used within the EEH
 903 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
 904 * only performs a single operation at a time.
 905 *
 906 * This function will attempt to reset a PE three times before failing.
 907 */
 908int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
 909{
 910	int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
 911	int type = EEH_RESET_HOT;
 912	unsigned int freset = 0;
 913	int i, state = 0, ret;
 914
 915	/*
 916	 * Determine the type of reset to perform - hot or fundamental.
 917	 * Hot reset is the default operation, unless any device under the
 918	 * PE requires a fundamental reset.
 919	 */
 920	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
 921
 922	if (freset)
 923		type = EEH_RESET_FUNDAMENTAL;
 924
 925	/* Mark the PE as in reset state and block config space accesses */
 926	eeh_pe_state_mark(pe, reset_state);
 927
 928	/* Make three attempts at resetting the bus */
 929	for (i = 0; i < 3; i++) {
 930		ret = eeh_pe_reset(pe, type, include_passed);
 931		if (!ret)
 932			ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
 933					   include_passed);
 934		if (ret) {
 935			ret = -EIO;
 936			pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
 937				state, pe->phb->global_number, pe->addr, i + 1);
 938			continue;
 939		}
 940		if (i)
 941			pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
 942				pe->phb->global_number, pe->addr, i + 1);
 943
 944		/* Wait until the PE is in a functioning state */
 945		state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
 946		if (state < 0) {
 947			pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
 948				pe->phb->global_number, pe->addr);
 949			ret = -ENOTRECOVERABLE;
 950			break;
 951		}
 952		if (eeh_state_active(state))
 953			break;
 954		else
 955			pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
 956				pe->phb->global_number, pe->addr, state, i + 1);
 957	}
 958
 959	/* Resetting the PE may have unfrozen child PEs. If those PEs have been
 960	 * (potentially) passed through to a guest, re-freeze them:
 961	 */
 962	if (!include_passed)
 963		eeh_pe_refreeze_passed(pe);
 964
 965	eeh_pe_state_clear(pe, reset_state, true);
 966	return ret;
 967}
 968
 969/**
 970 * eeh_save_bars - Save device bars
 971 * @edev: PCI device associated EEH device
 972 *
 973 * Save the values of the device bars. Unlike the restore
 974 * routine, this routine is *not* recursive. This is because
 975 * PCI devices are added individually; but, for the restore,
 976 * an entire slot is reset at a time.
 977 */
 978void eeh_save_bars(struct eeh_dev *edev)
 979{
 980	struct pci_dn *pdn;
 981	int i;
 982
 983	pdn = eeh_dev_to_pdn(edev);
 984	if (!pdn)
 985		return;
 986
 987	for (i = 0; i < 16; i++)
 988		eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
 989
 990	/*
 991	 * For PCI bridges including root port, we need enable bus
 992	 * master explicitly. Otherwise, it can't fetch IODA table
 993	 * entries correctly. So we cache the bit in advance so that
 994	 * we can restore it after reset, either PHB range or PE range.
 995	 */
 996	if (edev->mode & EEH_DEV_BRIDGE)
 997		edev->config_space[1] |= PCI_COMMAND_MASTER;
 998}
 999
1000/**
1001 * eeh_ops_register - Register platform dependent EEH operations
1002 * @ops: platform dependent EEH operations
1003 *
1004 * Register the platform dependent EEH operation callback
1005 * functions. The platform should call this function before
1006 * any other EEH operations.
1007 */
1008int __init eeh_ops_register(struct eeh_ops *ops)
1009{
1010	if (!ops->name) {
1011		pr_warn("%s: Invalid EEH ops name for %p\n",
1012			__func__, ops);
1013		return -EINVAL;
1014	}
1015
1016	if (eeh_ops && eeh_ops != ops) {
1017		pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
1018			__func__, eeh_ops->name, ops->name);
1019		return -EEXIST;
1020	}
1021
1022	eeh_ops = ops;
1023
1024	return 0;
1025}
1026
1027/**
1028 * eeh_ops_unregister - Unreigster platform dependent EEH operations
1029 * @name: name of EEH platform operations
1030 *
1031 * Unregister the platform dependent EEH operation callback
1032 * functions.
1033 */
1034int __exit eeh_ops_unregister(const char *name)
1035{
1036	if (!name || !strlen(name)) {
1037		pr_warn("%s: Invalid EEH ops name\n",
1038			__func__);
1039		return -EINVAL;
1040	}
1041
1042	if (eeh_ops && !strcmp(eeh_ops->name, name)) {
1043		eeh_ops = NULL;
1044		return 0;
1045	}
1046
1047	return -EEXIST;
1048}
1049
1050static int eeh_reboot_notifier(struct notifier_block *nb,
1051			       unsigned long action, void *unused)
1052{
1053	eeh_clear_flag(EEH_ENABLED);
1054	return NOTIFY_DONE;
1055}
1056
1057static struct notifier_block eeh_reboot_nb = {
1058	.notifier_call = eeh_reboot_notifier,
1059};
1060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1061/**
1062 * eeh_init - EEH initialization
1063 *
1064 * Initialize EEH by trying to enable it for all of the adapters in the system.
1065 * As a side effect we can determine here if eeh is supported at all.
1066 * Note that we leave EEH on so failed config cycles won't cause a machine
1067 * check.  If a user turns off EEH for a particular adapter they are really
1068 * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
1069 * grant access to a slot if EEH isn't enabled, and so we always enable
1070 * EEH for all slots/all devices.
1071 *
1072 * The eeh-force-off option disables EEH checking globally, for all slots.
1073 * Even if force-off is set, the EEH hardware is still enabled, so that
1074 * newer systems can boot.
1075 */
1076static int eeh_init(void)
1077{
1078	struct pci_controller *hose, *tmp;
1079	int ret = 0;
1080
 
 
 
 
 
 
 
1081	/* Register reboot notifier */
1082	ret = register_reboot_notifier(&eeh_reboot_nb);
1083	if (ret) {
1084		pr_warn("%s: Failed to register notifier (%d)\n",
1085			__func__, ret);
1086		return ret;
1087	}
1088
1089	/* call platform initialization function */
1090	if (!eeh_ops) {
1091		pr_warn("%s: Platform EEH operation not found\n",
1092			__func__);
1093		return -EEXIST;
1094	} else if ((ret = eeh_ops->init()))
1095		return ret;
 
1096
1097	/* Initialize PHB PEs */
1098	list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
1099		eeh_dev_phb_init_dynamic(hose);
1100
1101	eeh_addr_cache_init();
1102
1103	/* Initialize EEH event */
1104	return eeh_event_init();
1105}
1106
1107core_initcall_sync(eeh_init);
1108
1109/**
1110 * eeh_add_device_early - Enable EEH for the indicated device node
1111 * @pdn: PCI device node for which to set up EEH
1112 *
1113 * This routine must be used to perform EEH initialization for PCI
1114 * devices that were added after system boot (e.g. hotplug, dlpar).
1115 * This routine must be called before any i/o is performed to the
1116 * adapter (inluding any config-space i/o).
1117 * Whether this actually enables EEH or not for this device depends
1118 * on the CEC architecture, type of the device, on earlier boot
1119 * command-line arguments & etc.
1120 */
1121void eeh_add_device_early(struct pci_dn *pdn)
1122{
1123	struct pci_controller *phb = pdn ? pdn->phb : NULL;
1124	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1125
1126	if (!edev)
1127		return;
1128
1129	if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1130		return;
1131
1132	/* USB Bus children of PCI devices will not have BUID's */
1133	if (NULL == phb ||
1134	    (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1135		return;
1136
1137	eeh_ops->probe(pdn, NULL);
1138}
1139
1140/**
1141 * eeh_add_device_tree_early - Enable EEH for the indicated device
1142 * @pdn: PCI device node
1143 *
1144 * This routine must be used to perform EEH initialization for the
1145 * indicated PCI device that was added after system boot (e.g.
1146 * hotplug, dlpar).
1147 */
1148void eeh_add_device_tree_early(struct pci_dn *pdn)
1149{
1150	struct pci_dn *n;
1151
1152	if (!pdn)
1153		return;
1154
1155	list_for_each_entry(n, &pdn->child_list, list)
1156		eeh_add_device_tree_early(n);
1157	eeh_add_device_early(pdn);
1158}
1159EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1160
1161/**
1162 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1163 * @dev: pci device for which to set up EEH
1164 *
1165 * This routine must be used to complete EEH initialization for PCI
1166 * devices that were added after system boot (e.g. hotplug, dlpar).
1167 */
1168void eeh_add_device_late(struct pci_dev *dev)
1169{
1170	struct pci_dn *pdn;
1171	struct eeh_dev *edev;
1172
1173	if (!dev)
 
 
 
 
 
 
 
1174		return;
 
1175
1176	pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1177	edev = pdn_to_eeh_dev(pdn);
1178	eeh_edev_dbg(edev, "Adding device\n");
1179	if (edev->pdev == dev) {
1180		eeh_edev_dbg(edev, "Device already referenced!\n");
1181		return;
1182	}
1183
1184	/*
1185	 * The EEH cache might not be removed correctly because of
1186	 * unbalanced kref to the device during unplug time, which
1187	 * relies on pcibios_release_device(). So we have to remove
1188	 * that here explicitly.
 
 
 
1189	 */
1190	if (edev->pdev) {
1191		eeh_rmv_from_parent_pe(edev);
1192		eeh_addr_cache_rmv_dev(edev->pdev);
1193		eeh_sysfs_remove_device(edev->pdev);
1194		edev->mode &= ~EEH_DEV_SYSFS;
1195
1196		/*
1197		 * We definitely should have the PCI device removed
1198		 * though it wasn't correctly. So we needn't call
1199		 * into error handler afterwards.
1200		 */
1201		edev->mode |= EEH_DEV_NO_HANDLER;
1202
1203		edev->pdev = NULL;
1204		dev->dev.archdata.edev = NULL;
1205	}
1206
1207	if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1208		eeh_ops->probe(pdn, NULL);
1209
1210	edev->pdev = dev;
1211	dev->dev.archdata.edev = edev;
1212
1213	eeh_addr_cache_insert_dev(dev);
 
1214}
1215
1216/**
1217 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1218 * @bus: PCI bus
1219 *
1220 * This routine must be used to perform EEH initialization for PCI
1221 * devices which are attached to the indicated PCI bus. The PCI bus
1222 * is added after system boot through hotplug or dlpar.
1223 */
1224void eeh_add_device_tree_late(struct pci_bus *bus)
1225{
1226	struct pci_dev *dev;
1227
1228	if (eeh_has_flag(EEH_FORCE_DISABLED))
1229		return;
1230	list_for_each_entry(dev, &bus->devices, bus_list) {
1231		eeh_add_device_late(dev);
1232		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1233			struct pci_bus *subbus = dev->subordinate;
1234			if (subbus)
1235				eeh_add_device_tree_late(subbus);
1236		}
1237	}
1238}
1239EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1240
1241/**
1242 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1243 * @bus: PCI bus
1244 *
1245 * This routine must be used to add EEH sysfs files for PCI
1246 * devices which are attached to the indicated PCI bus. The PCI bus
1247 * is added after system boot through hotplug or dlpar.
1248 */
1249void eeh_add_sysfs_files(struct pci_bus *bus)
1250{
1251	struct pci_dev *dev;
1252
1253	list_for_each_entry(dev, &bus->devices, bus_list) {
1254		eeh_sysfs_add_device(dev);
1255		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1256			struct pci_bus *subbus = dev->subordinate;
1257			if (subbus)
1258				eeh_add_sysfs_files(subbus);
1259		}
1260	}
1261}
1262EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1263
1264/**
1265 * eeh_remove_device - Undo EEH setup for the indicated pci device
1266 * @dev: pci device to be removed
1267 *
1268 * This routine should be called when a device is removed from
1269 * a running system (e.g. by hotplug or dlpar).  It unregisters
1270 * the PCI device from the EEH subsystem.  I/O errors affecting
1271 * this device will no longer be detected after this call; thus,
1272 * i/o errors affecting this slot may leave this device unusable.
1273 */
1274void eeh_remove_device(struct pci_dev *dev)
1275{
1276	struct eeh_dev *edev;
1277
1278	if (!dev || !eeh_enabled())
1279		return;
1280	edev = pci_dev_to_eeh_dev(dev);
1281
1282	/* Unregister the device with the EEH/PCI address search system */
1283	dev_dbg(&dev->dev, "EEH: Removing device\n");
1284
1285	if (!edev || !edev->pdev || !edev->pe) {
1286		dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
1287		return;
1288	}
1289
1290	/*
1291	 * During the hotplug for EEH error recovery, we need the EEH
1292	 * device attached to the parent PE in order for BAR restore
1293	 * a bit later. So we keep it for BAR restore and remove it
1294	 * from the parent PE during the BAR resotre.
1295	 */
1296	edev->pdev = NULL;
1297
1298	/*
1299	 * The flag "in_error" is used to trace EEH devices for VFs
1300	 * in error state or not. It's set in eeh_report_error(). If
1301	 * it's not set, eeh_report_{reset,resume}() won't be called
1302	 * for the VF EEH device.
1303	 */
1304	edev->in_error = false;
1305	dev->dev.archdata.edev = NULL;
1306	if (!(edev->pe->state & EEH_PE_KEEP))
1307		eeh_rmv_from_parent_pe(edev);
1308	else
1309		edev->mode |= EEH_DEV_DISCONNECTED;
1310
1311	/*
1312	 * We're removing from the PCI subsystem, that means
1313	 * the PCI device driver can't support EEH or not
1314	 * well. So we rely on hotplug completely to do recovery
1315	 * for the specific PCI device.
1316	 */
1317	edev->mode |= EEH_DEV_NO_HANDLER;
1318
1319	eeh_addr_cache_rmv_dev(dev);
1320	eeh_sysfs_remove_device(dev);
1321	edev->mode &= ~EEH_DEV_SYSFS;
 
 
 
 
 
 
 
 
 
 
 
1322}
1323
1324int eeh_unfreeze_pe(struct eeh_pe *pe)
1325{
1326	int ret;
1327
1328	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1329	if (ret) {
1330		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1331			__func__, ret, pe->phb->global_number, pe->addr);
1332		return ret;
1333	}
1334
1335	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1336	if (ret) {
1337		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1338			__func__, ret, pe->phb->global_number, pe->addr);
1339		return ret;
1340	}
1341
1342	return ret;
1343}
1344
1345
1346static struct pci_device_id eeh_reset_ids[] = {
1347	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1348	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1349	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1350	{ 0 }
1351};
1352
1353static int eeh_pe_change_owner(struct eeh_pe *pe)
1354{
1355	struct eeh_dev *edev, *tmp;
1356	struct pci_dev *pdev;
1357	struct pci_device_id *id;
1358	int ret;
1359
1360	/* Check PE state */
1361	ret = eeh_ops->get_state(pe, NULL);
1362	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1363		return 0;
1364
1365	/* Unfrozen PE, nothing to do */
1366	if (eeh_state_active(ret))
1367		return 0;
1368
1369	/* Frozen PE, check if it needs PE level reset */
1370	eeh_pe_for_each_dev(pe, edev, tmp) {
1371		pdev = eeh_dev_to_pci_dev(edev);
1372		if (!pdev)
1373			continue;
1374
1375		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1376			if (id->vendor != PCI_ANY_ID &&
1377			    id->vendor != pdev->vendor)
1378				continue;
1379			if (id->device != PCI_ANY_ID &&
1380			    id->device != pdev->device)
1381				continue;
1382			if (id->subvendor != PCI_ANY_ID &&
1383			    id->subvendor != pdev->subsystem_vendor)
1384				continue;
1385			if (id->subdevice != PCI_ANY_ID &&
1386			    id->subdevice != pdev->subsystem_device)
1387				continue;
1388
1389			return eeh_pe_reset_and_recover(pe);
1390		}
1391	}
1392
1393	ret = eeh_unfreeze_pe(pe);
1394	if (!ret)
1395		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1396	return ret;
1397}
1398
1399/**
1400 * eeh_dev_open - Increase count of pass through devices for PE
1401 * @pdev: PCI device
1402 *
1403 * Increase count of passed through devices for the indicated
1404 * PE. In the result, the EEH errors detected on the PE won't be
1405 * reported. The PE owner will be responsible for detection
1406 * and recovery.
1407 */
1408int eeh_dev_open(struct pci_dev *pdev)
1409{
1410	struct eeh_dev *edev;
1411	int ret = -ENODEV;
1412
1413	mutex_lock(&eeh_dev_mutex);
1414
1415	/* No PCI device ? */
1416	if (!pdev)
1417		goto out;
1418
1419	/* No EEH device or PE ? */
1420	edev = pci_dev_to_eeh_dev(pdev);
1421	if (!edev || !edev->pe)
1422		goto out;
1423
1424	/*
1425	 * The PE might have been put into frozen state, but we
1426	 * didn't detect that yet. The passed through PCI devices
1427	 * in frozen PE won't work properly. Clear the frozen state
1428	 * in advance.
1429	 */
1430	ret = eeh_pe_change_owner(edev->pe);
1431	if (ret)
1432		goto out;
1433
1434	/* Increase PE's pass through count */
1435	atomic_inc(&edev->pe->pass_dev_cnt);
1436	mutex_unlock(&eeh_dev_mutex);
1437
1438	return 0;
1439out:
1440	mutex_unlock(&eeh_dev_mutex);
1441	return ret;
1442}
1443EXPORT_SYMBOL_GPL(eeh_dev_open);
1444
1445/**
1446 * eeh_dev_release - Decrease count of pass through devices for PE
1447 * @pdev: PCI device
1448 *
1449 * Decrease count of pass through devices for the indicated PE. If
1450 * there is no passed through device in PE, the EEH errors detected
1451 * on the PE will be reported and handled as usual.
1452 */
1453void eeh_dev_release(struct pci_dev *pdev)
1454{
1455	struct eeh_dev *edev;
1456
1457	mutex_lock(&eeh_dev_mutex);
1458
1459	/* No PCI device ? */
1460	if (!pdev)
1461		goto out;
1462
1463	/* No EEH device ? */
1464	edev = pci_dev_to_eeh_dev(pdev);
1465	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1466		goto out;
1467
1468	/* Decrease PE's pass through count */
1469	WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1470	eeh_pe_change_owner(edev->pe);
1471out:
1472	mutex_unlock(&eeh_dev_mutex);
1473}
1474EXPORT_SYMBOL(eeh_dev_release);
1475
1476#ifdef CONFIG_IOMMU_API
1477
1478static int dev_has_iommu_table(struct device *dev, void *data)
1479{
1480	struct pci_dev *pdev = to_pci_dev(dev);
1481	struct pci_dev **ppdev = data;
1482
1483	if (!dev)
1484		return 0;
1485
1486	if (device_iommu_mapped(dev)) {
1487		*ppdev = pdev;
1488		return 1;
1489	}
1490
1491	return 0;
1492}
1493
1494/**
1495 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1496 * @group: IOMMU group
1497 *
1498 * The routine is called to convert IOMMU group to EEH PE.
1499 */
1500struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1501{
1502	struct pci_dev *pdev = NULL;
1503	struct eeh_dev *edev;
1504	int ret;
1505
1506	/* No IOMMU group ? */
1507	if (!group)
1508		return NULL;
1509
1510	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1511	if (!ret || !pdev)
1512		return NULL;
1513
1514	/* No EEH device or PE ? */
1515	edev = pci_dev_to_eeh_dev(pdev);
1516	if (!edev || !edev->pe)
1517		return NULL;
1518
1519	return edev->pe;
1520}
1521EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1522
1523#endif /* CONFIG_IOMMU_API */
1524
1525/**
1526 * eeh_pe_set_option - Set options for the indicated PE
1527 * @pe: EEH PE
1528 * @option: requested option
1529 *
1530 * The routine is called to enable or disable EEH functionality
1531 * on the indicated PE, to enable IO or DMA for the frozen PE.
1532 */
1533int eeh_pe_set_option(struct eeh_pe *pe, int option)
1534{
1535	int ret = 0;
1536
1537	/* Invalid PE ? */
1538	if (!pe)
1539		return -ENODEV;
1540
1541	/*
1542	 * EEH functionality could possibly be disabled, just
1543	 * return error for the case. And the EEH functinality
1544	 * isn't expected to be disabled on one specific PE.
1545	 */
1546	switch (option) {
1547	case EEH_OPT_ENABLE:
1548		if (eeh_enabled()) {
1549			ret = eeh_pe_change_owner(pe);
1550			break;
1551		}
1552		ret = -EIO;
1553		break;
1554	case EEH_OPT_DISABLE:
1555		break;
1556	case EEH_OPT_THAW_MMIO:
1557	case EEH_OPT_THAW_DMA:
1558	case EEH_OPT_FREEZE_PE:
1559		if (!eeh_ops || !eeh_ops->set_option) {
1560			ret = -ENOENT;
1561			break;
1562		}
1563
1564		ret = eeh_pci_enable(pe, option);
1565		break;
1566	default:
1567		pr_debug("%s: Option %d out of range (%d, %d)\n",
1568			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1569		ret = -EINVAL;
1570	}
1571
1572	return ret;
1573}
1574EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1575
1576/**
1577 * eeh_pe_get_state - Retrieve PE's state
1578 * @pe: EEH PE
1579 *
1580 * Retrieve the PE's state, which includes 3 aspects: enabled
1581 * DMA, enabled IO and asserted reset.
1582 */
1583int eeh_pe_get_state(struct eeh_pe *pe)
1584{
1585	int result, ret = 0;
1586	bool rst_active, dma_en, mmio_en;
1587
1588	/* Existing PE ? */
1589	if (!pe)
1590		return -ENODEV;
1591
1592	if (!eeh_ops || !eeh_ops->get_state)
1593		return -ENOENT;
1594
1595	/*
1596	 * If the parent PE is owned by the host kernel and is undergoing
1597	 * error recovery, we should return the PE state as temporarily
1598	 * unavailable so that the error recovery on the guest is suspended
1599	 * until the recovery completes on the host.
1600	 */
1601	if (pe->parent &&
1602	    !(pe->state & EEH_PE_REMOVED) &&
1603	    (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1604		return EEH_PE_STATE_UNAVAIL;
1605
1606	result = eeh_ops->get_state(pe, NULL);
1607	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1608	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1609	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1610
1611	if (rst_active)
1612		ret = EEH_PE_STATE_RESET;
1613	else if (dma_en && mmio_en)
1614		ret = EEH_PE_STATE_NORMAL;
1615	else if (!dma_en && !mmio_en)
1616		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1617	else if (!dma_en && mmio_en)
1618		ret = EEH_PE_STATE_STOPPED_DMA;
1619	else
1620		ret = EEH_PE_STATE_UNAVAIL;
1621
1622	return ret;
1623}
1624EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1625
1626static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1627{
1628	struct eeh_dev *edev, *tmp;
1629	struct pci_dev *pdev;
1630	int ret = 0;
1631
1632	eeh_pe_restore_bars(pe);
1633
1634	/*
1635	 * Reenable PCI devices as the devices passed
1636	 * through are always enabled before the reset.
1637	 */
1638	eeh_pe_for_each_dev(pe, edev, tmp) {
1639		pdev = eeh_dev_to_pci_dev(edev);
1640		if (!pdev)
1641			continue;
1642
1643		ret = pci_reenable_device(pdev);
1644		if (ret) {
1645			pr_warn("%s: Failure %d reenabling %s\n",
1646				__func__, ret, pci_name(pdev));
1647			return ret;
1648		}
1649	}
1650
1651	/* The PE is still in frozen state */
1652	if (include_passed || !eeh_pe_passed(pe)) {
1653		ret = eeh_unfreeze_pe(pe);
1654	} else
1655		pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1656			pe->phb->global_number, pe->addr);
1657	if (!ret)
1658		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1659	return ret;
1660}
1661
1662
1663/**
1664 * eeh_pe_reset - Issue PE reset according to specified type
1665 * @pe: EEH PE
1666 * @option: reset type
1667 *
1668 * The routine is called to reset the specified PE with the
1669 * indicated type, either fundamental reset or hot reset.
1670 * PE reset is the most important part for error recovery.
1671 */
1672int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1673{
1674	int ret = 0;
1675
1676	/* Invalid PE ? */
1677	if (!pe)
1678		return -ENODEV;
1679
1680	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1681		return -ENOENT;
1682
1683	switch (option) {
1684	case EEH_RESET_DEACTIVATE:
1685		ret = eeh_ops->reset(pe, option);
1686		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1687		if (ret)
1688			break;
1689
1690		ret = eeh_pe_reenable_devices(pe, include_passed);
1691		break;
1692	case EEH_RESET_HOT:
1693	case EEH_RESET_FUNDAMENTAL:
1694		/*
1695		 * Proactively freeze the PE to drop all MMIO access
1696		 * during reset, which should be banned as it's always
1697		 * cause recursive EEH error.
1698		 */
1699		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1700
1701		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1702		ret = eeh_ops->reset(pe, option);
1703		break;
1704	default:
1705		pr_debug("%s: Unsupported option %d\n",
1706			__func__, option);
1707		ret = -EINVAL;
1708	}
1709
1710	return ret;
1711}
1712EXPORT_SYMBOL_GPL(eeh_pe_reset);
1713
1714/**
1715 * eeh_pe_configure - Configure PCI bridges after PE reset
1716 * @pe: EEH PE
1717 *
1718 * The routine is called to restore the PCI config space for
1719 * those PCI devices, especially PCI bridges affected by PE
1720 * reset issued previously.
1721 */
1722int eeh_pe_configure(struct eeh_pe *pe)
1723{
1724	int ret = 0;
1725
1726	/* Invalid PE ? */
1727	if (!pe)
1728		return -ENODEV;
1729
1730	return ret;
1731}
1732EXPORT_SYMBOL_GPL(eeh_pe_configure);
1733
1734/**
1735 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1736 * @pe: the indicated PE
1737 * @type: error type
1738 * @function: error function
1739 * @addr: address
1740 * @mask: address mask
1741 *
1742 * The routine is called to inject the specified PCI error, which
1743 * is determined by @type and @function, to the indicated PE for
1744 * testing purpose.
1745 */
1746int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1747		      unsigned long addr, unsigned long mask)
1748{
1749	/* Invalid PE ? */
1750	if (!pe)
1751		return -ENODEV;
1752
1753	/* Unsupported operation ? */
1754	if (!eeh_ops || !eeh_ops->err_inject)
1755		return -ENOENT;
1756
1757	/* Check on PCI error type */
1758	if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1759		return -EINVAL;
1760
1761	/* Check on PCI error function */
1762	if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1763		return -EINVAL;
1764
1765	return eeh_ops->err_inject(pe, type, func, addr, mask);
1766}
1767EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1768
 
1769static int proc_eeh_show(struct seq_file *m, void *v)
1770{
1771	if (!eeh_enabled()) {
1772		seq_printf(m, "EEH Subsystem is globally disabled\n");
1773		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1774	} else {
1775		seq_printf(m, "EEH Subsystem is enabled\n");
1776		seq_printf(m,
1777				"no device=%llu\n"
1778				"no device node=%llu\n"
1779				"no config address=%llu\n"
1780				"check not wanted=%llu\n"
1781				"eeh_total_mmio_ffs=%llu\n"
1782				"eeh_false_positives=%llu\n"
1783				"eeh_slot_resets=%llu\n",
1784				eeh_stats.no_device,
1785				eeh_stats.no_dn,
1786				eeh_stats.no_cfg_addr,
1787				eeh_stats.ignored_check,
1788				eeh_stats.total_mmio_ffs,
1789				eeh_stats.false_positives,
1790				eeh_stats.slot_resets);
1791	}
1792
1793	return 0;
1794}
 
1795
1796#ifdef CONFIG_DEBUG_FS
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1797static int eeh_enable_dbgfs_set(void *data, u64 val)
1798{
1799	if (val)
1800		eeh_clear_flag(EEH_FORCE_DISABLED);
1801	else
1802		eeh_add_flag(EEH_FORCE_DISABLED);
1803
1804	return 0;
1805}
1806
1807static int eeh_enable_dbgfs_get(void *data, u64 *val)
1808{
1809	if (eeh_enabled())
1810		*val = 0x1ul;
1811	else
1812		*val = 0x0ul;
1813	return 0;
1814}
1815
1816DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1817			 eeh_enable_dbgfs_set, "0x%llx\n");
1818
1819static ssize_t eeh_force_recover_write(struct file *filp,
1820				const char __user *user_buf,
1821				size_t count, loff_t *ppos)
1822{
1823	struct pci_controller *hose;
1824	uint32_t phbid, pe_no;
1825	struct eeh_pe *pe;
1826	char buf[20];
1827	int ret;
1828
1829	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1830	if (!ret)
1831		return -EFAULT;
1832
1833	/*
1834	 * When PE is NULL the event is a "special" event. Rather than
1835	 * recovering a specific PE it forces the EEH core to scan for failed
1836	 * PHBs and recovers each. This needs to be done before any device
1837	 * recoveries can occur.
1838	 */
1839	if (!strncmp(buf, "hwcheck", 7)) {
1840		__eeh_send_failure_event(NULL);
1841		return count;
1842	}
1843
1844	ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1845	if (ret != 2)
1846		return -EINVAL;
1847
1848	hose = pci_find_controller_for_domain(phbid);
1849	if (!hose)
1850		return -ENODEV;
1851
1852	/* Retrieve PE */
1853	pe = eeh_pe_get(hose, pe_no, 0);
1854	if (!pe)
1855		return -ENODEV;
1856
1857	/*
1858	 * We don't do any state checking here since the detection
1859	 * process is async to the recovery process. The recovery
1860	 * thread *should* not break even if we schedule a recovery
1861	 * from an odd state (e.g. PE removed, or recovery of a
1862	 * non-isolated PE)
1863	 */
1864	__eeh_send_failure_event(pe);
1865
1866	return ret < 0 ? ret : count;
1867}
1868
1869static const struct file_operations eeh_force_recover_fops = {
1870	.open	= simple_open,
1871	.llseek	= no_llseek,
1872	.write	= eeh_force_recover_write,
1873};
1874
1875static ssize_t eeh_debugfs_dev_usage(struct file *filp,
1876				char __user *user_buf,
1877				size_t count, loff_t *ppos)
1878{
1879	static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1880
1881	return simple_read_from_buffer(user_buf, count, ppos,
1882				       usage, sizeof(usage) - 1);
1883}
1884
1885static ssize_t eeh_dev_check_write(struct file *filp,
1886				const char __user *user_buf,
1887				size_t count, loff_t *ppos)
1888{
1889	uint32_t domain, bus, dev, fn;
1890	struct pci_dev *pdev;
1891	struct eeh_dev *edev;
1892	char buf[20];
1893	int ret;
1894
1895	memset(buf, 0, sizeof(buf));
1896	ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1897	if (!ret)
1898		return -EFAULT;
1899
1900	ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1901	if (ret != 4) {
1902		pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1903		return -EINVAL;
1904	}
1905
1906	pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1907	if (!pdev)
1908		return -ENODEV;
1909
1910	edev = pci_dev_to_eeh_dev(pdev);
1911	if (!edev) {
1912		pci_err(pdev, "No eeh_dev for this device!\n");
1913		pci_dev_put(pdev);
1914		return -ENODEV;
1915	}
1916
1917	ret = eeh_dev_check_failure(edev);
1918	pci_info(pdev, "eeh_dev_check_failure(%04x:%02x:%02x.%01x) = %d\n",
1919			domain, bus, dev, fn, ret);
1920
1921	pci_dev_put(pdev);
1922
1923	return count;
1924}
1925
1926static const struct file_operations eeh_dev_check_fops = {
1927	.open	= simple_open,
1928	.llseek	= no_llseek,
1929	.write	= eeh_dev_check_write,
1930	.read   = eeh_debugfs_dev_usage,
1931};
1932
1933static int eeh_debugfs_break_device(struct pci_dev *pdev)
1934{
1935	struct resource *bar = NULL;
1936	void __iomem *mapped;
1937	u16 old, bit;
1938	int i, pos;
1939
1940	/* Do we have an MMIO BAR to disable? */
1941	for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
1942		struct resource *r = &pdev->resource[i];
1943
1944		if (!r->flags || !r->start)
1945			continue;
1946		if (r->flags & IORESOURCE_IO)
1947			continue;
1948		if (r->flags & IORESOURCE_UNSET)
1949			continue;
1950
1951		bar = r;
1952		break;
1953	}
1954
1955	if (!bar) {
1956		pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
1957		return -ENXIO;
1958	}
1959
1960	pci_err(pdev, "Going to break: %pR\n", bar);
1961
1962	if (pdev->is_virtfn) {
1963#ifndef CONFIG_PCI_IOV
1964		return -ENXIO;
1965#else
1966		/*
1967		 * VFs don't have a per-function COMMAND register, so the best
1968		 * we can do is clear the Memory Space Enable bit in the PF's
1969		 * SRIOV control reg.
1970		 *
1971		 * Unfortunately, this requires that we have a PF (i.e doesn't
1972		 * work for a passed-through VF) and it has the potential side
1973		 * effect of also causing an EEH on every other VF under the
1974		 * PF. Oh well.
1975		 */
1976		pdev = pdev->physfn;
1977		if (!pdev)
1978			return -ENXIO; /* passed through VFs have no PF */
1979
1980		pos  = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1981		pos += PCI_SRIOV_CTRL;
1982		bit  = PCI_SRIOV_CTRL_MSE;
1983#endif /* !CONFIG_PCI_IOV */
1984	} else {
1985		bit = PCI_COMMAND_MEMORY;
1986		pos = PCI_COMMAND;
1987	}
1988
1989	/*
1990	 * Process here is:
1991	 *
1992	 * 1. Disable Memory space.
1993	 *
1994	 * 2. Perform an MMIO to the device. This should result in an error
1995	 *    (CA  / UR) being raised by the device which results in an EEH
1996	 *    PE freeze. Using the in_8() accessor skips the eeh detection hook
1997	 *    so the freeze hook so the EEH Detection machinery won't be
1998	 *    triggered here. This is to match the usual behaviour of EEH
1999	 *    where the HW will asyncronously freeze a PE and it's up to
2000	 *    the kernel to notice and deal with it.
2001	 *
2002	 * 3. Turn Memory space back on. This is more important for VFs
2003	 *    since recovery will probably fail if we don't. For normal
2004	 *    the COMMAND register is reset as a part of re-initialising
2005	 *    the device.
2006	 *
2007	 * Breaking stuff is the point so who cares if it's racy ;)
2008	 */
2009	pci_read_config_word(pdev, pos, &old);
2010
2011	mapped = ioremap(bar->start, PAGE_SIZE);
2012	if (!mapped) {
2013		pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
2014		return -ENXIO;
2015	}
2016
2017	pci_write_config_word(pdev, pos, old & ~bit);
2018	in_8(mapped);
2019	pci_write_config_word(pdev, pos, old);
2020
2021	iounmap(mapped);
2022
2023	return 0;
2024}
2025
2026static ssize_t eeh_dev_break_write(struct file *filp,
2027				const char __user *user_buf,
2028				size_t count, loff_t *ppos)
2029{
2030	uint32_t domain, bus, dev, fn;
2031	struct pci_dev *pdev;
2032	char buf[20];
2033	int ret;
2034
2035	memset(buf, 0, sizeof(buf));
2036	ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
2037	if (!ret)
2038		return -EFAULT;
2039
2040	ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
2041	if (ret != 4) {
2042		pr_err("%s: expected 4 args, got %d\n", __func__, ret);
2043		return -EINVAL;
2044	}
2045
2046	pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
2047	if (!pdev)
2048		return -ENODEV;
2049
2050	ret = eeh_debugfs_break_device(pdev);
2051	pci_dev_put(pdev);
2052
2053	if (ret < 0)
2054		return ret;
2055
2056	return count;
2057}
2058
2059static const struct file_operations eeh_dev_break_fops = {
2060	.open	= simple_open,
2061	.llseek	= no_llseek,
2062	.write	= eeh_dev_break_write,
2063	.read   = eeh_debugfs_dev_usage,
2064};
2065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2066#endif
2067
2068static int __init eeh_init_proc(void)
2069{
2070	if (machine_is(pseries) || machine_is(powernv)) {
2071		proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
2072#ifdef CONFIG_DEBUG_FS
2073		debugfs_create_file_unsafe("eeh_enable", 0600,
2074					   powerpc_debugfs_root, NULL,
2075					   &eeh_enable_dbgfs_ops);
2076		debugfs_create_u32("eeh_max_freezes", 0600,
2077				powerpc_debugfs_root, &eeh_max_freezes);
2078		debugfs_create_bool("eeh_disable_recovery", 0600,
2079				powerpc_debugfs_root,
2080				&eeh_debugfs_no_recover);
2081		debugfs_create_file_unsafe("eeh_dev_check", 0600,
2082				powerpc_debugfs_root, NULL,
2083				&eeh_dev_check_fops);
2084		debugfs_create_file_unsafe("eeh_dev_break", 0600,
2085				powerpc_debugfs_root, NULL,
2086				&eeh_dev_break_fops);
2087		debugfs_create_file_unsafe("eeh_force_recover", 0600,
2088				powerpc_debugfs_root, NULL,
2089				&eeh_force_recover_fops);
 
 
 
2090		eeh_cache_debugfs_init();
2091#endif
2092	}
2093
2094	return 0;
2095}
2096__initcall(eeh_init_proc);