Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
4 * Copyright (C) 2019-2020 Intel Corporation
5 */
6#include <linux/netdevice.h>
7#include <linux/types.h>
8#include <linux/skbuff.h>
9#include <linux/debugfs.h>
10#include <linux/random.h>
11#include <linux/moduleparam.h>
12#include <linux/ieee80211.h>
13#include <net/mac80211.h>
14#include "rate.h"
15#include "sta_info.h"
16#include "rc80211_minstrel_ht.h"
17
18#define AVG_AMPDU_SIZE 16
19#define AVG_PKT_SIZE 1200
20
21#define SAMPLE_SWITCH_THR 100
22
23/* Number of bits for an average sized packet */
24#define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3)
25
26/* Number of symbols for a packet with (bps) bits per symbol */
27#define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
28
29/* Transmission time (nanoseconds) for a packet containing (syms) symbols */
30#define MCS_SYMBOL_TIME(sgi, syms) \
31 (sgi ? \
32 ((syms) * 18000 + 4000) / 5 : /* syms * 3.6 us */ \
33 ((syms) * 1000) << 2 /* syms * 4 us */ \
34 )
35
36/* Transmit duration for the raw data part of an average sized packet */
37#define MCS_DURATION(streams, sgi, bps) \
38 (MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE)
39
40#define BW_20 0
41#define BW_40 1
42#define BW_80 2
43
44/*
45 * Define group sort order: HT40 -> SGI -> #streams
46 */
47#define GROUP_IDX(_streams, _sgi, _ht40) \
48 MINSTREL_HT_GROUP_0 + \
49 MINSTREL_MAX_STREAMS * 2 * _ht40 + \
50 MINSTREL_MAX_STREAMS * _sgi + \
51 _streams - 1
52
53#define _MAX(a, b) (((a)>(b))?(a):(b))
54
55#define GROUP_SHIFT(duration) \
56 _MAX(0, 16 - __builtin_clz(duration))
57
58/* MCS rate information for an MCS group */
59#define __MCS_GROUP(_streams, _sgi, _ht40, _s) \
60 [GROUP_IDX(_streams, _sgi, _ht40)] = { \
61 .streams = _streams, \
62 .shift = _s, \
63 .bw = _ht40, \
64 .flags = \
65 IEEE80211_TX_RC_MCS | \
66 (_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) | \
67 (_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0), \
68 .duration = { \
69 MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26) >> _s, \
70 MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52) >> _s, \
71 MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78) >> _s, \
72 MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104) >> _s, \
73 MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156) >> _s, \
74 MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208) >> _s, \
75 MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234) >> _s, \
76 MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260) >> _s \
77 } \
78}
79
80#define MCS_GROUP_SHIFT(_streams, _sgi, _ht40) \
81 GROUP_SHIFT(MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26))
82
83#define MCS_GROUP(_streams, _sgi, _ht40) \
84 __MCS_GROUP(_streams, _sgi, _ht40, \
85 MCS_GROUP_SHIFT(_streams, _sgi, _ht40))
86
87#define VHT_GROUP_IDX(_streams, _sgi, _bw) \
88 (MINSTREL_VHT_GROUP_0 + \
89 MINSTREL_MAX_STREAMS * 2 * (_bw) + \
90 MINSTREL_MAX_STREAMS * (_sgi) + \
91 (_streams) - 1)
92
93#define BW2VBPS(_bw, r3, r2, r1) \
94 (_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)
95
96#define __VHT_GROUP(_streams, _sgi, _bw, _s) \
97 [VHT_GROUP_IDX(_streams, _sgi, _bw)] = { \
98 .streams = _streams, \
99 .shift = _s, \
100 .bw = _bw, \
101 .flags = \
102 IEEE80211_TX_RC_VHT_MCS | \
103 (_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) | \
104 (_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH : \
105 _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0), \
106 .duration = { \
107 MCS_DURATION(_streams, _sgi, \
108 BW2VBPS(_bw, 117, 54, 26)) >> _s, \
109 MCS_DURATION(_streams, _sgi, \
110 BW2VBPS(_bw, 234, 108, 52)) >> _s, \
111 MCS_DURATION(_streams, _sgi, \
112 BW2VBPS(_bw, 351, 162, 78)) >> _s, \
113 MCS_DURATION(_streams, _sgi, \
114 BW2VBPS(_bw, 468, 216, 104)) >> _s, \
115 MCS_DURATION(_streams, _sgi, \
116 BW2VBPS(_bw, 702, 324, 156)) >> _s, \
117 MCS_DURATION(_streams, _sgi, \
118 BW2VBPS(_bw, 936, 432, 208)) >> _s, \
119 MCS_DURATION(_streams, _sgi, \
120 BW2VBPS(_bw, 1053, 486, 234)) >> _s, \
121 MCS_DURATION(_streams, _sgi, \
122 BW2VBPS(_bw, 1170, 540, 260)) >> _s, \
123 MCS_DURATION(_streams, _sgi, \
124 BW2VBPS(_bw, 1404, 648, 312)) >> _s, \
125 MCS_DURATION(_streams, _sgi, \
126 BW2VBPS(_bw, 1560, 720, 346)) >> _s \
127 } \
128}
129
130#define VHT_GROUP_SHIFT(_streams, _sgi, _bw) \
131 GROUP_SHIFT(MCS_DURATION(_streams, _sgi, \
132 BW2VBPS(_bw, 117, 54, 26)))
133
134#define VHT_GROUP(_streams, _sgi, _bw) \
135 __VHT_GROUP(_streams, _sgi, _bw, \
136 VHT_GROUP_SHIFT(_streams, _sgi, _bw))
137
138#define CCK_DURATION(_bitrate, _short) \
139 (1000 * (10 /* SIFS */ + \
140 (_short ? 72 + 24 : 144 + 48) + \
141 (8 * (AVG_PKT_SIZE + 4) * 10) / (_bitrate)))
142
143#define CCK_DURATION_LIST(_short, _s) \
144 CCK_DURATION(10, _short) >> _s, \
145 CCK_DURATION(20, _short) >> _s, \
146 CCK_DURATION(55, _short) >> _s, \
147 CCK_DURATION(110, _short) >> _s
148
149#define __CCK_GROUP(_s) \
150 [MINSTREL_CCK_GROUP] = { \
151 .streams = 1, \
152 .flags = 0, \
153 .shift = _s, \
154 .duration = { \
155 CCK_DURATION_LIST(false, _s), \
156 CCK_DURATION_LIST(true, _s) \
157 } \
158 }
159
160#define CCK_GROUP_SHIFT \
161 GROUP_SHIFT(CCK_DURATION(10, false))
162
163#define CCK_GROUP __CCK_GROUP(CCK_GROUP_SHIFT)
164
165#define OFDM_DURATION(_bitrate) \
166 (1000 * (16 /* SIFS + signal ext */ + \
167 16 /* T_PREAMBLE */ + \
168 4 /* T_SIGNAL */ + \
169 4 * (((16 + 80 * (AVG_PKT_SIZE + 4) + 6) / \
170 ((_bitrate) * 4)))))
171
172#define OFDM_DURATION_LIST(_s) \
173 OFDM_DURATION(60) >> _s, \
174 OFDM_DURATION(90) >> _s, \
175 OFDM_DURATION(120) >> _s, \
176 OFDM_DURATION(180) >> _s, \
177 OFDM_DURATION(240) >> _s, \
178 OFDM_DURATION(360) >> _s, \
179 OFDM_DURATION(480) >> _s, \
180 OFDM_DURATION(540) >> _s
181
182#define __OFDM_GROUP(_s) \
183 [MINSTREL_OFDM_GROUP] = { \
184 .streams = 1, \
185 .flags = 0, \
186 .shift = _s, \
187 .duration = { \
188 OFDM_DURATION_LIST(_s), \
189 } \
190 }
191
192#define OFDM_GROUP_SHIFT \
193 GROUP_SHIFT(OFDM_DURATION(60))
194
195#define OFDM_GROUP __OFDM_GROUP(OFDM_GROUP_SHIFT)
196
197
198static bool minstrel_vht_only = true;
199module_param(minstrel_vht_only, bool, 0644);
200MODULE_PARM_DESC(minstrel_vht_only,
201 "Use only VHT rates when VHT is supported by sta.");
202
203/*
204 * To enable sufficiently targeted rate sampling, MCS rates are divided into
205 * groups, based on the number of streams and flags (HT40, SGI) that they
206 * use.
207 *
208 * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
209 * BW -> SGI -> #streams
210 */
211const struct mcs_group minstrel_mcs_groups[] = {
212 MCS_GROUP(1, 0, BW_20),
213 MCS_GROUP(2, 0, BW_20),
214 MCS_GROUP(3, 0, BW_20),
215 MCS_GROUP(4, 0, BW_20),
216
217 MCS_GROUP(1, 1, BW_20),
218 MCS_GROUP(2, 1, BW_20),
219 MCS_GROUP(3, 1, BW_20),
220 MCS_GROUP(4, 1, BW_20),
221
222 MCS_GROUP(1, 0, BW_40),
223 MCS_GROUP(2, 0, BW_40),
224 MCS_GROUP(3, 0, BW_40),
225 MCS_GROUP(4, 0, BW_40),
226
227 MCS_GROUP(1, 1, BW_40),
228 MCS_GROUP(2, 1, BW_40),
229 MCS_GROUP(3, 1, BW_40),
230 MCS_GROUP(4, 1, BW_40),
231
232 CCK_GROUP,
233 OFDM_GROUP,
234
235 VHT_GROUP(1, 0, BW_20),
236 VHT_GROUP(2, 0, BW_20),
237 VHT_GROUP(3, 0, BW_20),
238 VHT_GROUP(4, 0, BW_20),
239
240 VHT_GROUP(1, 1, BW_20),
241 VHT_GROUP(2, 1, BW_20),
242 VHT_GROUP(3, 1, BW_20),
243 VHT_GROUP(4, 1, BW_20),
244
245 VHT_GROUP(1, 0, BW_40),
246 VHT_GROUP(2, 0, BW_40),
247 VHT_GROUP(3, 0, BW_40),
248 VHT_GROUP(4, 0, BW_40),
249
250 VHT_GROUP(1, 1, BW_40),
251 VHT_GROUP(2, 1, BW_40),
252 VHT_GROUP(3, 1, BW_40),
253 VHT_GROUP(4, 1, BW_40),
254
255 VHT_GROUP(1, 0, BW_80),
256 VHT_GROUP(2, 0, BW_80),
257 VHT_GROUP(3, 0, BW_80),
258 VHT_GROUP(4, 0, BW_80),
259
260 VHT_GROUP(1, 1, BW_80),
261 VHT_GROUP(2, 1, BW_80),
262 VHT_GROUP(3, 1, BW_80),
263 VHT_GROUP(4, 1, BW_80),
264};
265
266const s16 minstrel_cck_bitrates[4] = { 10, 20, 55, 110 };
267const s16 minstrel_ofdm_bitrates[8] = { 60, 90, 120, 180, 240, 360, 480, 540 };
268static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
269static const u8 minstrel_sample_seq[] = {
270 MINSTREL_SAMPLE_TYPE_INC,
271 MINSTREL_SAMPLE_TYPE_JUMP,
272 MINSTREL_SAMPLE_TYPE_INC,
273 MINSTREL_SAMPLE_TYPE_JUMP,
274 MINSTREL_SAMPLE_TYPE_INC,
275 MINSTREL_SAMPLE_TYPE_SLOW,
276};
277
278static void
279minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);
280
281/*
282 * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
283 * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
284 *
285 * Returns the valid mcs map for struct minstrel_mcs_group_data.supported
286 */
287static u16
288minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map)
289{
290 u16 mask = 0;
291
292 if (bw == BW_20) {
293 if (nss != 3 && nss != 6)
294 mask = BIT(9);
295 } else if (bw == BW_80) {
296 if (nss == 3 || nss == 7)
297 mask = BIT(6);
298 else if (nss == 6)
299 mask = BIT(9);
300 } else {
301 WARN_ON(bw != BW_40);
302 }
303
304 switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) {
305 case IEEE80211_VHT_MCS_SUPPORT_0_7:
306 mask |= 0x300;
307 break;
308 case IEEE80211_VHT_MCS_SUPPORT_0_8:
309 mask |= 0x200;
310 break;
311 case IEEE80211_VHT_MCS_SUPPORT_0_9:
312 break;
313 default:
314 mask = 0x3ff;
315 }
316
317 return 0x3ff & ~mask;
318}
319
320static bool
321minstrel_ht_is_legacy_group(int group)
322{
323 return group == MINSTREL_CCK_GROUP ||
324 group == MINSTREL_OFDM_GROUP;
325}
326
327/*
328 * Look up an MCS group index based on mac80211 rate information
329 */
330static int
331minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
332{
333 return GROUP_IDX((rate->idx / 8) + 1,
334 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
335 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
336}
337
338static int
339minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate)
340{
341 return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate),
342 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
343 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) +
344 2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH));
345}
346
347static struct minstrel_rate_stats *
348minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
349 struct ieee80211_tx_rate *rate)
350{
351 int group, idx;
352
353 if (rate->flags & IEEE80211_TX_RC_MCS) {
354 group = minstrel_ht_get_group_idx(rate);
355 idx = rate->idx % 8;
356 goto out;
357 }
358
359 if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
360 group = minstrel_vht_get_group_idx(rate);
361 idx = ieee80211_rate_get_vht_mcs(rate);
362 goto out;
363 }
364
365 group = MINSTREL_CCK_GROUP;
366 for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++) {
367 if (rate->idx != mp->cck_rates[idx])
368 continue;
369
370 /* short preamble */
371 if ((mi->supported[group] & BIT(idx + 4)) &&
372 (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE))
373 idx += 4;
374 goto out;
375 }
376
377 group = MINSTREL_OFDM_GROUP;
378 for (idx = 0; idx < ARRAY_SIZE(mp->ofdm_rates[0]); idx++)
379 if (rate->idx == mp->ofdm_rates[mi->band][idx])
380 goto out;
381
382 idx = 0;
383out:
384 return &mi->groups[group].rates[idx];
385}
386
387static inline struct minstrel_rate_stats *
388minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
389{
390 return &mi->groups[MI_RATE_GROUP(index)].rates[MI_RATE_IDX(index)];
391}
392
393static inline int minstrel_get_duration(int index)
394{
395 const struct mcs_group *group = &minstrel_mcs_groups[MI_RATE_GROUP(index)];
396 unsigned int duration = group->duration[MI_RATE_IDX(index)];
397
398 return duration << group->shift;
399}
400
401static unsigned int
402minstrel_ht_avg_ampdu_len(struct minstrel_ht_sta *mi)
403{
404 int duration;
405
406 if (mi->avg_ampdu_len)
407 return MINSTREL_TRUNC(mi->avg_ampdu_len);
408
409 if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(mi->max_tp_rate[0])))
410 return 1;
411
412 duration = minstrel_get_duration(mi->max_tp_rate[0]);
413
414 if (duration > 400 * 1000)
415 return 2;
416
417 if (duration > 250 * 1000)
418 return 4;
419
420 if (duration > 150 * 1000)
421 return 8;
422
423 return 16;
424}
425
426/*
427 * Return current throughput based on the average A-MPDU length, taking into
428 * account the expected number of retransmissions and their expected length
429 */
430int
431minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate,
432 int prob_avg)
433{
434 unsigned int nsecs = 0, overhead = mi->overhead;
435 unsigned int ampdu_len = 1;
436
437 /* do not account throughput if success prob is below 10% */
438 if (prob_avg < MINSTREL_FRAC(10, 100))
439 return 0;
440
441 if (minstrel_ht_is_legacy_group(group))
442 overhead = mi->overhead_legacy;
443 else
444 ampdu_len = minstrel_ht_avg_ampdu_len(mi);
445
446 nsecs = 1000 * overhead / ampdu_len;
447 nsecs += minstrel_mcs_groups[group].duration[rate] <<
448 minstrel_mcs_groups[group].shift;
449
450 /*
451 * For the throughput calculation, limit the probability value to 90% to
452 * account for collision related packet error rate fluctuation
453 * (prob is scaled - see MINSTREL_FRAC above)
454 */
455 if (prob_avg > MINSTREL_FRAC(90, 100))
456 prob_avg = MINSTREL_FRAC(90, 100);
457
458 return MINSTREL_TRUNC(100 * ((prob_avg * 1000000) / nsecs));
459}
460
461/*
462 * Find & sort topmost throughput rates
463 *
464 * If multiple rates provide equal throughput the sorting is based on their
465 * current success probability. Higher success probability is preferred among
466 * MCS groups, CCK rates do not provide aggregation and are therefore at last.
467 */
468static void
469minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
470 u16 *tp_list)
471{
472 int cur_group, cur_idx, cur_tp_avg, cur_prob;
473 int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
474 int j = MAX_THR_RATES;
475
476 cur_group = MI_RATE_GROUP(index);
477 cur_idx = MI_RATE_IDX(index);
478 cur_prob = mi->groups[cur_group].rates[cur_idx].prob_avg;
479 cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob);
480
481 do {
482 tmp_group = MI_RATE_GROUP(tp_list[j - 1]);
483 tmp_idx = MI_RATE_IDX(tp_list[j - 1]);
484 tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
485 tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx,
486 tmp_prob);
487 if (cur_tp_avg < tmp_tp_avg ||
488 (cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob))
489 break;
490 j--;
491 } while (j > 0);
492
493 if (j < MAX_THR_RATES - 1) {
494 memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
495 (MAX_THR_RATES - (j + 1))));
496 }
497 if (j < MAX_THR_RATES)
498 tp_list[j] = index;
499}
500
501/*
502 * Find and set the topmost probability rate per sta and per group
503 */
504static void
505minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 *dest, u16 index)
506{
507 struct minstrel_mcs_group_data *mg;
508 struct minstrel_rate_stats *mrs;
509 int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
510 int max_tp_group, max_tp_idx, max_tp_prob;
511 int cur_tp_avg, cur_group, cur_idx;
512 int max_gpr_group, max_gpr_idx;
513 int max_gpr_tp_avg, max_gpr_prob;
514
515 cur_group = MI_RATE_GROUP(index);
516 cur_idx = MI_RATE_IDX(index);
517 mg = &mi->groups[cur_group];
518 mrs = &mg->rates[cur_idx];
519
520 tmp_group = MI_RATE_GROUP(*dest);
521 tmp_idx = MI_RATE_IDX(*dest);
522 tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
523 tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
524
525 /* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
526 * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
527 max_tp_group = MI_RATE_GROUP(mi->max_tp_rate[0]);
528 max_tp_idx = MI_RATE_IDX(mi->max_tp_rate[0]);
529 max_tp_prob = mi->groups[max_tp_group].rates[max_tp_idx].prob_avg;
530
531 if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(index)) &&
532 !minstrel_ht_is_legacy_group(max_tp_group))
533 return;
534
535 /* skip rates faster than max tp rate with lower prob */
536 if (minstrel_get_duration(mi->max_tp_rate[0]) > minstrel_get_duration(index) &&
537 mrs->prob_avg < max_tp_prob)
538 return;
539
540 max_gpr_group = MI_RATE_GROUP(mg->max_group_prob_rate);
541 max_gpr_idx = MI_RATE_IDX(mg->max_group_prob_rate);
542 max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_avg;
543
544 if (mrs->prob_avg > MINSTREL_FRAC(75, 100)) {
545 cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx,
546 mrs->prob_avg);
547 if (cur_tp_avg > tmp_tp_avg)
548 *dest = index;
549
550 max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group,
551 max_gpr_idx,
552 max_gpr_prob);
553 if (cur_tp_avg > max_gpr_tp_avg)
554 mg->max_group_prob_rate = index;
555 } else {
556 if (mrs->prob_avg > tmp_prob)
557 *dest = index;
558 if (mrs->prob_avg > max_gpr_prob)
559 mg->max_group_prob_rate = index;
560 }
561}
562
563
564/*
565 * Assign new rate set per sta and use CCK rates only if the fastest
566 * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
567 * rate sets where MCS and CCK rates are mixed, because CCK rates can
568 * not use aggregation.
569 */
570static void
571minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
572 u16 tmp_mcs_tp_rate[MAX_THR_RATES],
573 u16 tmp_legacy_tp_rate[MAX_THR_RATES])
574{
575 unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob;
576 int i;
577
578 tmp_group = MI_RATE_GROUP(tmp_legacy_tp_rate[0]);
579 tmp_idx = MI_RATE_IDX(tmp_legacy_tp_rate[0]);
580 tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
581 tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
582
583 tmp_group = MI_RATE_GROUP(tmp_mcs_tp_rate[0]);
584 tmp_idx = MI_RATE_IDX(tmp_mcs_tp_rate[0]);
585 tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
586 tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
587
588 if (tmp_cck_tp > tmp_mcs_tp) {
589 for(i = 0; i < MAX_THR_RATES; i++) {
590 minstrel_ht_sort_best_tp_rates(mi, tmp_legacy_tp_rate[i],
591 tmp_mcs_tp_rate);
592 }
593 }
594
595}
596
597/*
598 * Try to increase robustness of max_prob rate by decrease number of
599 * streams if possible.
600 */
601static inline void
602minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
603{
604 struct minstrel_mcs_group_data *mg;
605 int tmp_max_streams, group, tmp_idx, tmp_prob;
606 int tmp_tp = 0;
607
608 if (!mi->sta->ht_cap.ht_supported)
609 return;
610
611 group = MI_RATE_GROUP(mi->max_tp_rate[0]);
612 tmp_max_streams = minstrel_mcs_groups[group].streams;
613 for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
614 mg = &mi->groups[group];
615 if (!mi->supported[group] || group == MINSTREL_CCK_GROUP)
616 continue;
617
618 tmp_idx = MI_RATE_IDX(mg->max_group_prob_rate);
619 tmp_prob = mi->groups[group].rates[tmp_idx].prob_avg;
620
621 if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) &&
622 (minstrel_mcs_groups[group].streams < tmp_max_streams)) {
623 mi->max_prob_rate = mg->max_group_prob_rate;
624 tmp_tp = minstrel_ht_get_tp_avg(mi, group,
625 tmp_idx,
626 tmp_prob);
627 }
628 }
629}
630
631static u16
632__minstrel_ht_get_sample_rate(struct minstrel_ht_sta *mi,
633 enum minstrel_sample_type type)
634{
635 u16 *rates = mi->sample[type].sample_rates;
636 u16 cur;
637 int i;
638
639 for (i = 0; i < MINSTREL_SAMPLE_RATES; i++) {
640 if (!rates[i])
641 continue;
642
643 cur = rates[i];
644 rates[i] = 0;
645 return cur;
646 }
647
648 return 0;
649}
650
651static inline int
652minstrel_ewma(int old, int new, int weight)
653{
654 int diff, incr;
655
656 diff = new - old;
657 incr = (EWMA_DIV - weight) * diff / EWMA_DIV;
658
659 return old + incr;
660}
661
662static inline int minstrel_filter_avg_add(u16 *prev_1, u16 *prev_2, s32 in)
663{
664 s32 out_1 = *prev_1;
665 s32 out_2 = *prev_2;
666 s32 val;
667
668 if (!in)
669 in += 1;
670
671 if (!out_1) {
672 val = out_1 = in;
673 goto out;
674 }
675
676 val = MINSTREL_AVG_COEFF1 * in;
677 val += MINSTREL_AVG_COEFF2 * out_1;
678 val += MINSTREL_AVG_COEFF3 * out_2;
679 val >>= MINSTREL_SCALE;
680
681 if (val > 1 << MINSTREL_SCALE)
682 val = 1 << MINSTREL_SCALE;
683 if (val < 0)
684 val = 1;
685
686out:
687 *prev_2 = out_1;
688 *prev_1 = val;
689
690 return val;
691}
692
693/*
694* Recalculate statistics and counters of a given rate
695*/
696static void
697minstrel_ht_calc_rate_stats(struct minstrel_priv *mp,
698 struct minstrel_rate_stats *mrs)
699{
700 unsigned int cur_prob;
701
702 if (unlikely(mrs->attempts > 0)) {
703 cur_prob = MINSTREL_FRAC(mrs->success, mrs->attempts);
704 minstrel_filter_avg_add(&mrs->prob_avg,
705 &mrs->prob_avg_1, cur_prob);
706 mrs->att_hist += mrs->attempts;
707 mrs->succ_hist += mrs->success;
708 }
709
710 mrs->last_success = mrs->success;
711 mrs->last_attempts = mrs->attempts;
712 mrs->success = 0;
713 mrs->attempts = 0;
714}
715
716static bool
717minstrel_ht_find_sample_rate(struct minstrel_ht_sta *mi, int type, int idx)
718{
719 int i;
720
721 for (i = 0; i < MINSTREL_SAMPLE_RATES; i++) {
722 u16 cur = mi->sample[type].sample_rates[i];
723
724 if (cur == idx)
725 return true;
726
727 if (!cur)
728 break;
729 }
730
731 return false;
732}
733
734static int
735minstrel_ht_move_sample_rates(struct minstrel_ht_sta *mi, int type,
736 u32 fast_rate_dur, u32 slow_rate_dur)
737{
738 u16 *rates = mi->sample[type].sample_rates;
739 int i, j;
740
741 for (i = 0, j = 0; i < MINSTREL_SAMPLE_RATES; i++) {
742 u32 duration;
743 bool valid = false;
744 u16 cur;
745
746 cur = rates[i];
747 if (!cur)
748 continue;
749
750 duration = minstrel_get_duration(cur);
751 switch (type) {
752 case MINSTREL_SAMPLE_TYPE_SLOW:
753 valid = duration > fast_rate_dur &&
754 duration < slow_rate_dur;
755 break;
756 case MINSTREL_SAMPLE_TYPE_INC:
757 case MINSTREL_SAMPLE_TYPE_JUMP:
758 valid = duration < fast_rate_dur;
759 break;
760 default:
761 valid = false;
762 break;
763 }
764
765 if (!valid) {
766 rates[i] = 0;
767 continue;
768 }
769
770 if (i == j)
771 continue;
772
773 rates[j++] = cur;
774 rates[i] = 0;
775 }
776
777 return j;
778}
779
780static int
781minstrel_ht_group_min_rate_offset(struct minstrel_ht_sta *mi, int group,
782 u32 max_duration)
783{
784 u16 supported = mi->supported[group];
785 int i;
786
787 for (i = 0; i < MCS_GROUP_RATES && supported; i++, supported >>= 1) {
788 if (!(supported & BIT(0)))
789 continue;
790
791 if (minstrel_get_duration(MI_RATE(group, i)) >= max_duration)
792 continue;
793
794 return i;
795 }
796
797 return -1;
798}
799
800/*
801 * Incremental update rates:
802 * Flip through groups and pick the first group rate that is faster than the
803 * highest currently selected rate
804 */
805static u16
806minstrel_ht_next_inc_rate(struct minstrel_ht_sta *mi, u32 fast_rate_dur)
807{
808 u8 type = MINSTREL_SAMPLE_TYPE_INC;
809 int i, index = 0;
810 u8 group;
811
812 group = mi->sample[type].sample_group;
813 for (i = 0; i < ARRAY_SIZE(minstrel_mcs_groups); i++) {
814 group = (group + 1) % ARRAY_SIZE(minstrel_mcs_groups);
815
816 index = minstrel_ht_group_min_rate_offset(mi, group,
817 fast_rate_dur);
818 if (index < 0)
819 continue;
820
821 index = MI_RATE(group, index & 0xf);
822 if (!minstrel_ht_find_sample_rate(mi, type, index))
823 goto out;
824 }
825 index = 0;
826
827out:
828 mi->sample[type].sample_group = group;
829
830 return index;
831}
832
833static int
834minstrel_ht_next_group_sample_rate(struct minstrel_ht_sta *mi, int group,
835 u16 supported, int offset)
836{
837 struct minstrel_mcs_group_data *mg = &mi->groups[group];
838 u16 idx;
839 int i;
840
841 for (i = 0; i < MCS_GROUP_RATES; i++) {
842 idx = sample_table[mg->column][mg->index];
843 if (++mg->index >= MCS_GROUP_RATES) {
844 mg->index = 0;
845 if (++mg->column >= ARRAY_SIZE(sample_table))
846 mg->column = 0;
847 }
848
849 if (idx < offset)
850 continue;
851
852 if (!(supported & BIT(idx)))
853 continue;
854
855 return MI_RATE(group, idx);
856 }
857
858 return -1;
859}
860
861/*
862 * Jump rates:
863 * Sample random rates, use those that are faster than the highest
864 * currently selected rate. Rates between the fastest and the slowest
865 * get sorted into the slow sample bucket, but only if it has room
866 */
867static u16
868minstrel_ht_next_jump_rate(struct minstrel_ht_sta *mi, u32 fast_rate_dur,
869 u32 slow_rate_dur, int *slow_rate_ofs)
870{
871 struct minstrel_rate_stats *mrs;
872 u32 max_duration = slow_rate_dur;
873 int i, index, offset;
874 u16 *slow_rates;
875 u16 supported;
876 u32 duration;
877 u8 group;
878
879 if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES)
880 max_duration = fast_rate_dur;
881
882 slow_rates = mi->sample[MINSTREL_SAMPLE_TYPE_SLOW].sample_rates;
883 group = mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_group;
884 for (i = 0; i < ARRAY_SIZE(minstrel_mcs_groups); i++) {
885 u8 type;
886
887 group = (group + 1) % ARRAY_SIZE(minstrel_mcs_groups);
888
889 supported = mi->supported[group];
890 if (!supported)
891 continue;
892
893 offset = minstrel_ht_group_min_rate_offset(mi, group,
894 max_duration);
895 if (offset < 0)
896 continue;
897
898 index = minstrel_ht_next_group_sample_rate(mi, group, supported,
899 offset);
900 if (index < 0)
901 continue;
902
903 duration = minstrel_get_duration(index);
904 if (duration < fast_rate_dur)
905 type = MINSTREL_SAMPLE_TYPE_JUMP;
906 else
907 type = MINSTREL_SAMPLE_TYPE_SLOW;
908
909 if (minstrel_ht_find_sample_rate(mi, type, index))
910 continue;
911
912 if (type == MINSTREL_SAMPLE_TYPE_JUMP)
913 goto found;
914
915 if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES)
916 continue;
917
918 if (duration >= slow_rate_dur)
919 continue;
920
921 /* skip slow rates with high success probability */
922 mrs = minstrel_get_ratestats(mi, index);
923 if (mrs->prob_avg > MINSTREL_FRAC(95, 100))
924 continue;
925
926 slow_rates[(*slow_rate_ofs)++] = index;
927 if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES)
928 max_duration = fast_rate_dur;
929 }
930 index = 0;
931
932found:
933 mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_group = group;
934
935 return index;
936}
937
938static void
939minstrel_ht_refill_sample_rates(struct minstrel_ht_sta *mi)
940{
941 u32 prob_dur = minstrel_get_duration(mi->max_prob_rate);
942 u32 tp_dur = minstrel_get_duration(mi->max_tp_rate[0]);
943 u32 tp2_dur = minstrel_get_duration(mi->max_tp_rate[1]);
944 u32 fast_rate_dur = min(min(tp_dur, tp2_dur), prob_dur);
945 u32 slow_rate_dur = max(max(tp_dur, tp2_dur), prob_dur);
946 u16 *rates;
947 int i, j;
948
949 rates = mi->sample[MINSTREL_SAMPLE_TYPE_INC].sample_rates;
950 i = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_INC,
951 fast_rate_dur, slow_rate_dur);
952 while (i < MINSTREL_SAMPLE_RATES) {
953 rates[i] = minstrel_ht_next_inc_rate(mi, tp_dur);
954 if (!rates[i])
955 break;
956
957 i++;
958 }
959
960 rates = mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_rates;
961 i = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_JUMP,
962 fast_rate_dur, slow_rate_dur);
963 j = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_SLOW,
964 fast_rate_dur, slow_rate_dur);
965 while (i < MINSTREL_SAMPLE_RATES) {
966 rates[i] = minstrel_ht_next_jump_rate(mi, fast_rate_dur,
967 slow_rate_dur, &j);
968 if (!rates[i])
969 break;
970
971 i++;
972 }
973
974 for (i = 0; i < ARRAY_SIZE(mi->sample); i++)
975 memcpy(mi->sample[i].cur_sample_rates, mi->sample[i].sample_rates,
976 sizeof(mi->sample[i].cur_sample_rates));
977}
978
979
980/*
981 * Update rate statistics and select new primary rates
982 *
983 * Rules for rate selection:
984 * - max_prob_rate must use only one stream, as a tradeoff between delivery
985 * probability and throughput during strong fluctuations
986 * - as long as the max prob rate has a probability of more than 75%, pick
987 * higher throughput rates, even if the probablity is a bit lower
988 */
989static void
990minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
991{
992 struct minstrel_mcs_group_data *mg;
993 struct minstrel_rate_stats *mrs;
994 int group, i, j, cur_prob;
995 u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
996 u16 tmp_legacy_tp_rate[MAX_THR_RATES], tmp_max_prob_rate;
997 u16 index;
998 bool ht_supported = mi->sta->ht_cap.ht_supported;
999
1000 if (mi->ampdu_packets > 0) {
1001 if (!ieee80211_hw_check(mp->hw, TX_STATUS_NO_AMPDU_LEN))
1002 mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
1003 MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets),
1004 EWMA_LEVEL);
1005 else
1006 mi->avg_ampdu_len = 0;
1007 mi->ampdu_len = 0;
1008 mi->ampdu_packets = 0;
1009 }
1010
1011 if (mi->supported[MINSTREL_CCK_GROUP])
1012 group = MINSTREL_CCK_GROUP;
1013 else if (mi->supported[MINSTREL_OFDM_GROUP])
1014 group = MINSTREL_OFDM_GROUP;
1015 else
1016 group = 0;
1017
1018 index = MI_RATE(group, 0);
1019 for (j = 0; j < ARRAY_SIZE(tmp_legacy_tp_rate); j++)
1020 tmp_legacy_tp_rate[j] = index;
1021
1022 if (mi->supported[MINSTREL_VHT_GROUP_0])
1023 group = MINSTREL_VHT_GROUP_0;
1024 else if (ht_supported)
1025 group = MINSTREL_HT_GROUP_0;
1026 else if (mi->supported[MINSTREL_CCK_GROUP])
1027 group = MINSTREL_CCK_GROUP;
1028 else
1029 group = MINSTREL_OFDM_GROUP;
1030
1031 index = MI_RATE(group, 0);
1032 tmp_max_prob_rate = index;
1033 for (j = 0; j < ARRAY_SIZE(tmp_mcs_tp_rate); j++)
1034 tmp_mcs_tp_rate[j] = index;
1035
1036 /* Find best rate sets within all MCS groups*/
1037 for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
1038 u16 *tp_rate = tmp_mcs_tp_rate;
1039 u16 last_prob = 0;
1040
1041 mg = &mi->groups[group];
1042 if (!mi->supported[group])
1043 continue;
1044
1045 /* (re)Initialize group rate indexes */
1046 for(j = 0; j < MAX_THR_RATES; j++)
1047 tmp_group_tp_rate[j] = MI_RATE(group, 0);
1048
1049 if (group == MINSTREL_CCK_GROUP && ht_supported)
1050 tp_rate = tmp_legacy_tp_rate;
1051
1052 for (i = MCS_GROUP_RATES - 1; i >= 0; i--) {
1053 if (!(mi->supported[group] & BIT(i)))
1054 continue;
1055
1056 index = MI_RATE(group, i);
1057
1058 mrs = &mg->rates[i];
1059 mrs->retry_updated = false;
1060 minstrel_ht_calc_rate_stats(mp, mrs);
1061
1062 if (mrs->att_hist)
1063 last_prob = max(last_prob, mrs->prob_avg);
1064 else
1065 mrs->prob_avg = max(last_prob, mrs->prob_avg);
1066 cur_prob = mrs->prob_avg;
1067
1068 if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0)
1069 continue;
1070
1071 /* Find max throughput rate set */
1072 minstrel_ht_sort_best_tp_rates(mi, index, tp_rate);
1073
1074 /* Find max throughput rate set within a group */
1075 minstrel_ht_sort_best_tp_rates(mi, index,
1076 tmp_group_tp_rate);
1077 }
1078
1079 memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
1080 sizeof(mg->max_group_tp_rate));
1081 }
1082
1083 /* Assign new rate set per sta */
1084 minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate,
1085 tmp_legacy_tp_rate);
1086 memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
1087
1088 for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
1089 if (!mi->supported[group])
1090 continue;
1091
1092 mg = &mi->groups[group];
1093 mg->max_group_prob_rate = MI_RATE(group, 0);
1094
1095 for (i = 0; i < MCS_GROUP_RATES; i++) {
1096 if (!(mi->supported[group] & BIT(i)))
1097 continue;
1098
1099 index = MI_RATE(group, i);
1100
1101 /* Find max probability rate per group and global */
1102 minstrel_ht_set_best_prob_rate(mi, &tmp_max_prob_rate,
1103 index);
1104 }
1105 }
1106
1107 mi->max_prob_rate = tmp_max_prob_rate;
1108
1109 /* Try to increase robustness of max_prob_rate*/
1110 minstrel_ht_prob_rate_reduce_streams(mi);
1111 minstrel_ht_refill_sample_rates(mi);
1112
1113#ifdef CONFIG_MAC80211_DEBUGFS
1114 /* use fixed index if set */
1115 if (mp->fixed_rate_idx != -1) {
1116 for (i = 0; i < 4; i++)
1117 mi->max_tp_rate[i] = mp->fixed_rate_idx;
1118 mi->max_prob_rate = mp->fixed_rate_idx;
1119 }
1120#endif
1121
1122 /* Reset update timer */
1123 mi->last_stats_update = jiffies;
1124 mi->sample_time = jiffies;
1125}
1126
1127static bool
1128minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1129 struct ieee80211_tx_rate *rate)
1130{
1131 int i;
1132
1133 if (rate->idx < 0)
1134 return false;
1135
1136 if (!rate->count)
1137 return false;
1138
1139 if (rate->flags & IEEE80211_TX_RC_MCS ||
1140 rate->flags & IEEE80211_TX_RC_VHT_MCS)
1141 return true;
1142
1143 for (i = 0; i < ARRAY_SIZE(mp->cck_rates); i++)
1144 if (rate->idx == mp->cck_rates[i])
1145 return true;
1146
1147 for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates[0]); i++)
1148 if (rate->idx == mp->ofdm_rates[mi->band][i])
1149 return true;
1150
1151 return false;
1152}
1153
1154static void
1155minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
1156{
1157 int group, orig_group;
1158
1159 orig_group = group = MI_RATE_GROUP(*idx);
1160 while (group > 0) {
1161 group--;
1162
1163 if (!mi->supported[group])
1164 continue;
1165
1166 if (minstrel_mcs_groups[group].streams >
1167 minstrel_mcs_groups[orig_group].streams)
1168 continue;
1169
1170 if (primary)
1171 *idx = mi->groups[group].max_group_tp_rate[0];
1172 else
1173 *idx = mi->groups[group].max_group_tp_rate[1];
1174 break;
1175 }
1176}
1177
1178static void
1179minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
1180 void *priv_sta, struct ieee80211_tx_status *st)
1181{
1182 struct ieee80211_tx_info *info = st->info;
1183 struct minstrel_ht_sta *mi = priv_sta;
1184 struct ieee80211_tx_rate *ar = info->status.rates;
1185 struct minstrel_rate_stats *rate, *rate2;
1186 struct minstrel_priv *mp = priv;
1187 u32 update_interval = mp->update_interval;
1188 bool last, update = false;
1189 int i;
1190
1191 /* Ignore packet that was sent with noAck flag */
1192 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1193 return;
1194
1195 /* This packet was aggregated but doesn't carry status info */
1196 if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
1197 !(info->flags & IEEE80211_TX_STAT_AMPDU))
1198 return;
1199
1200 if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
1201 info->status.ampdu_ack_len =
1202 (info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
1203 info->status.ampdu_len = 1;
1204 }
1205
1206 /* wraparound */
1207 if (mi->total_packets >= ~0 - info->status.ampdu_len) {
1208 mi->total_packets = 0;
1209 mi->sample_packets = 0;
1210 }
1211
1212 mi->total_packets += info->status.ampdu_len;
1213 if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
1214 mi->sample_packets += info->status.ampdu_len;
1215
1216 mi->ampdu_packets++;
1217 mi->ampdu_len += info->status.ampdu_len;
1218
1219 last = !minstrel_ht_txstat_valid(mp, mi, &ar[0]);
1220 for (i = 0; !last; i++) {
1221 last = (i == IEEE80211_TX_MAX_RATES - 1) ||
1222 !minstrel_ht_txstat_valid(mp, mi, &ar[i + 1]);
1223
1224 rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
1225 if (last)
1226 rate->success += info->status.ampdu_ack_len;
1227
1228 rate->attempts += ar[i].count * info->status.ampdu_len;
1229 }
1230
1231 if (mp->hw->max_rates > 1) {
1232 /*
1233 * check for sudden death of spatial multiplexing,
1234 * downgrade to a lower number of streams if necessary.
1235 */
1236 rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
1237 if (rate->attempts > 30 &&
1238 rate->success < rate->attempts / 4) {
1239 minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
1240 update = true;
1241 }
1242
1243 rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
1244 if (rate2->attempts > 30 &&
1245 rate2->success < rate2->attempts / 4) {
1246 minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
1247 update = true;
1248 }
1249 }
1250
1251 if (time_after(jiffies, mi->last_stats_update + update_interval)) {
1252 update = true;
1253 minstrel_ht_update_stats(mp, mi);
1254 }
1255
1256 if (update)
1257 minstrel_ht_update_rates(mp, mi);
1258}
1259
1260static void
1261minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1262 int index)
1263{
1264 struct minstrel_rate_stats *mrs;
1265 unsigned int tx_time, tx_time_rtscts, tx_time_data;
1266 unsigned int cw = mp->cw_min;
1267 unsigned int ctime = 0;
1268 unsigned int t_slot = 9; /* FIXME */
1269 unsigned int ampdu_len = minstrel_ht_avg_ampdu_len(mi);
1270 unsigned int overhead = 0, overhead_rtscts = 0;
1271
1272 mrs = minstrel_get_ratestats(mi, index);
1273 if (mrs->prob_avg < MINSTREL_FRAC(1, 10)) {
1274 mrs->retry_count = 1;
1275 mrs->retry_count_rtscts = 1;
1276 return;
1277 }
1278
1279 mrs->retry_count = 2;
1280 mrs->retry_count_rtscts = 2;
1281 mrs->retry_updated = true;
1282
1283 tx_time_data = minstrel_get_duration(index) * ampdu_len / 1000;
1284
1285 /* Contention time for first 2 tries */
1286 ctime = (t_slot * cw) >> 1;
1287 cw = min((cw << 1) | 1, mp->cw_max);
1288 ctime += (t_slot * cw) >> 1;
1289 cw = min((cw << 1) | 1, mp->cw_max);
1290
1291 if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(index))) {
1292 overhead = mi->overhead_legacy;
1293 overhead_rtscts = mi->overhead_legacy_rtscts;
1294 } else {
1295 overhead = mi->overhead;
1296 overhead_rtscts = mi->overhead_rtscts;
1297 }
1298
1299 /* Total TX time for data and Contention after first 2 tries */
1300 tx_time = ctime + 2 * (overhead + tx_time_data);
1301 tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
1302
1303 /* See how many more tries we can fit inside segment size */
1304 do {
1305 /* Contention time for this try */
1306 ctime = (t_slot * cw) >> 1;
1307 cw = min((cw << 1) | 1, mp->cw_max);
1308
1309 /* Total TX time after this try */
1310 tx_time += ctime + overhead + tx_time_data;
1311 tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
1312
1313 if (tx_time_rtscts < mp->segment_size)
1314 mrs->retry_count_rtscts++;
1315 } while ((tx_time < mp->segment_size) &&
1316 (++mrs->retry_count < mp->max_retry));
1317}
1318
1319
1320static void
1321minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1322 struct ieee80211_sta_rates *ratetbl, int offset, int index)
1323{
1324 int group_idx = MI_RATE_GROUP(index);
1325 const struct mcs_group *group = &minstrel_mcs_groups[group_idx];
1326 struct minstrel_rate_stats *mrs;
1327 u8 idx;
1328 u16 flags = group->flags;
1329
1330 mrs = minstrel_get_ratestats(mi, index);
1331 if (!mrs->retry_updated)
1332 minstrel_calc_retransmit(mp, mi, index);
1333
1334 if (mrs->prob_avg < MINSTREL_FRAC(20, 100) || !mrs->retry_count) {
1335 ratetbl->rate[offset].count = 2;
1336 ratetbl->rate[offset].count_rts = 2;
1337 ratetbl->rate[offset].count_cts = 2;
1338 } else {
1339 ratetbl->rate[offset].count = mrs->retry_count;
1340 ratetbl->rate[offset].count_cts = mrs->retry_count;
1341 ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts;
1342 }
1343
1344 index = MI_RATE_IDX(index);
1345 if (group_idx == MINSTREL_CCK_GROUP)
1346 idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
1347 else if (group_idx == MINSTREL_OFDM_GROUP)
1348 idx = mp->ofdm_rates[mi->band][index %
1349 ARRAY_SIZE(mp->ofdm_rates[0])];
1350 else if (flags & IEEE80211_TX_RC_VHT_MCS)
1351 idx = ((group->streams - 1) << 4) |
1352 (index & 0xF);
1353 else
1354 idx = index + (group->streams - 1) * 8;
1355
1356 /* enable RTS/CTS if needed:
1357 * - if station is in dynamic SMPS (and streams > 1)
1358 * - for fallback rates, to increase chances of getting through
1359 */
1360 if (offset > 0 ||
1361 (mi->sta->smps_mode == IEEE80211_SMPS_DYNAMIC &&
1362 group->streams > 1)) {
1363 ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
1364 flags |= IEEE80211_TX_RC_USE_RTS_CTS;
1365 }
1366
1367 ratetbl->rate[offset].idx = idx;
1368 ratetbl->rate[offset].flags = flags;
1369}
1370
1371static inline int
1372minstrel_ht_get_prob_avg(struct minstrel_ht_sta *mi, int rate)
1373{
1374 int group = MI_RATE_GROUP(rate);
1375 rate = MI_RATE_IDX(rate);
1376 return mi->groups[group].rates[rate].prob_avg;
1377}
1378
1379static int
1380minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta *mi)
1381{
1382 int group = MI_RATE_GROUP(mi->max_prob_rate);
1383 const struct mcs_group *g = &minstrel_mcs_groups[group];
1384 int rate = MI_RATE_IDX(mi->max_prob_rate);
1385 unsigned int duration;
1386
1387 /* Disable A-MSDU if max_prob_rate is bad */
1388 if (mi->groups[group].rates[rate].prob_avg < MINSTREL_FRAC(50, 100))
1389 return 1;
1390
1391 duration = g->duration[rate];
1392 duration <<= g->shift;
1393
1394 /* If the rate is slower than single-stream MCS1, make A-MSDU limit small */
1395 if (duration > MCS_DURATION(1, 0, 52))
1396 return 500;
1397
1398 /*
1399 * If the rate is slower than single-stream MCS4, limit A-MSDU to usual
1400 * data packet size
1401 */
1402 if (duration > MCS_DURATION(1, 0, 104))
1403 return 1600;
1404
1405 /*
1406 * If the rate is slower than single-stream MCS7, or if the max throughput
1407 * rate success probability is less than 75%, limit A-MSDU to twice the usual
1408 * data packet size
1409 */
1410 if (duration > MCS_DURATION(1, 0, 260) ||
1411 (minstrel_ht_get_prob_avg(mi, mi->max_tp_rate[0]) <
1412 MINSTREL_FRAC(75, 100)))
1413 return 3200;
1414
1415 /*
1416 * HT A-MPDU limits maximum MPDU size under BA agreement to 4095 bytes.
1417 * Since aggregation sessions are started/stopped without txq flush, use
1418 * the limit here to avoid the complexity of having to de-aggregate
1419 * packets in the queue.
1420 */
1421 if (!mi->sta->vht_cap.vht_supported)
1422 return IEEE80211_MAX_MPDU_LEN_HT_BA;
1423
1424 /* unlimited */
1425 return 0;
1426}
1427
1428static void
1429minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
1430{
1431 struct ieee80211_sta_rates *rates;
1432 int i = 0;
1433
1434 rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
1435 if (!rates)
1436 return;
1437
1438 /* Start with max_tp_rate[0] */
1439 minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]);
1440
1441 if (mp->hw->max_rates >= 3) {
1442 /* At least 3 tx rates supported, use max_tp_rate[1] next */
1443 minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[1]);
1444 }
1445
1446 if (mp->hw->max_rates >= 2) {
1447 minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
1448 }
1449
1450 mi->sta->max_rc_amsdu_len = minstrel_ht_get_max_amsdu_len(mi);
1451 rates->rate[i].idx = -1;
1452 rate_control_set_rates(mp->hw, mi->sta, rates);
1453}
1454
1455static u16
1456minstrel_ht_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
1457{
1458 u8 seq;
1459
1460 if (mp->hw->max_rates > 1) {
1461 seq = mi->sample_seq;
1462 mi->sample_seq = (seq + 1) % ARRAY_SIZE(minstrel_sample_seq);
1463 seq = minstrel_sample_seq[seq];
1464 } else {
1465 seq = MINSTREL_SAMPLE_TYPE_INC;
1466 }
1467
1468 return __minstrel_ht_get_sample_rate(mi, seq);
1469}
1470
1471static void
1472minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
1473 struct ieee80211_tx_rate_control *txrc)
1474{
1475 const struct mcs_group *sample_group;
1476 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
1477 struct ieee80211_tx_rate *rate = &info->status.rates[0];
1478 struct minstrel_ht_sta *mi = priv_sta;
1479 struct minstrel_priv *mp = priv;
1480 u16 sample_idx;
1481
1482 info->flags |= mi->tx_flags;
1483
1484#ifdef CONFIG_MAC80211_DEBUGFS
1485 if (mp->fixed_rate_idx != -1)
1486 return;
1487#endif
1488
1489 /* Don't use EAPOL frames for sampling on non-mrr hw */
1490 if (mp->hw->max_rates == 1 &&
1491 (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
1492 return;
1493
1494 if (time_is_after_jiffies(mi->sample_time))
1495 return;
1496
1497 mi->sample_time = jiffies + MINSTREL_SAMPLE_INTERVAL;
1498 sample_idx = minstrel_ht_get_sample_rate(mp, mi);
1499 if (!sample_idx)
1500 return;
1501
1502 sample_group = &minstrel_mcs_groups[MI_RATE_GROUP(sample_idx)];
1503 sample_idx = MI_RATE_IDX(sample_idx);
1504
1505 if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP] &&
1506 (sample_idx >= 4) != txrc->short_preamble)
1507 return;
1508
1509 info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1510 rate->count = 1;
1511
1512 if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP]) {
1513 int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
1514 rate->idx = mp->cck_rates[idx];
1515 } else if (sample_group == &minstrel_mcs_groups[MINSTREL_OFDM_GROUP]) {
1516 int idx = sample_idx % ARRAY_SIZE(mp->ofdm_rates[0]);
1517 rate->idx = mp->ofdm_rates[mi->band][idx];
1518 } else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) {
1519 ieee80211_rate_set_vht(rate, MI_RATE_IDX(sample_idx),
1520 sample_group->streams);
1521 } else {
1522 rate->idx = sample_idx + (sample_group->streams - 1) * 8;
1523 }
1524
1525 rate->flags = sample_group->flags;
1526}
1527
1528static void
1529minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1530 struct ieee80211_supported_band *sband,
1531 struct ieee80211_sta *sta)
1532{
1533 int i;
1534
1535 if (sband->band != NL80211_BAND_2GHZ)
1536 return;
1537
1538 if (sta->ht_cap.ht_supported &&
1539 !ieee80211_hw_check(mp->hw, SUPPORTS_HT_CCK_RATES))
1540 return;
1541
1542 for (i = 0; i < 4; i++) {
1543 if (mp->cck_rates[i] == 0xff ||
1544 !rate_supported(sta, sband->band, mp->cck_rates[i]))
1545 continue;
1546
1547 mi->supported[MINSTREL_CCK_GROUP] |= BIT(i);
1548 if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
1549 mi->supported[MINSTREL_CCK_GROUP] |= BIT(i + 4);
1550 }
1551}
1552
1553static void
1554minstrel_ht_update_ofdm(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1555 struct ieee80211_supported_band *sband,
1556 struct ieee80211_sta *sta)
1557{
1558 const u8 *rates;
1559 int i;
1560
1561 if (sta->ht_cap.ht_supported)
1562 return;
1563
1564 rates = mp->ofdm_rates[sband->band];
1565 for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates[0]); i++) {
1566 if (rates[i] == 0xff ||
1567 !rate_supported(sta, sband->band, rates[i]))
1568 continue;
1569
1570 mi->supported[MINSTREL_OFDM_GROUP] |= BIT(i);
1571 }
1572}
1573
1574static void
1575minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
1576 struct cfg80211_chan_def *chandef,
1577 struct ieee80211_sta *sta, void *priv_sta)
1578{
1579 struct minstrel_priv *mp = priv;
1580 struct minstrel_ht_sta *mi = priv_sta;
1581 struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
1582 u16 ht_cap = sta->ht_cap.cap;
1583 struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
1584 const struct ieee80211_rate *ctl_rate;
1585 bool ldpc, erp;
1586 int use_vht;
1587 int n_supported = 0;
1588 int ack_dur;
1589 int stbc;
1590 int i;
1591
1592 BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB);
1593
1594 if (vht_cap->vht_supported)
1595 use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0);
1596 else
1597 use_vht = 0;
1598
1599 memset(mi, 0, sizeof(*mi));
1600
1601 mi->sta = sta;
1602 mi->band = sband->band;
1603 mi->last_stats_update = jiffies;
1604
1605 ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
1606 mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
1607 mi->overhead += ack_dur;
1608 mi->overhead_rtscts = mi->overhead + 2 * ack_dur;
1609
1610 ctl_rate = &sband->bitrates[rate_lowest_index(sband, sta)];
1611 erp = ctl_rate->flags & IEEE80211_RATE_ERP_G;
1612 ack_dur = ieee80211_frame_duration(sband->band, 10,
1613 ctl_rate->bitrate, erp, 1,
1614 ieee80211_chandef_get_shift(chandef));
1615 mi->overhead_legacy = ack_dur;
1616 mi->overhead_legacy_rtscts = mi->overhead_legacy + 2 * ack_dur;
1617
1618 mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);
1619
1620 if (!use_vht) {
1621 stbc = (ht_cap & IEEE80211_HT_CAP_RX_STBC) >>
1622 IEEE80211_HT_CAP_RX_STBC_SHIFT;
1623
1624 ldpc = ht_cap & IEEE80211_HT_CAP_LDPC_CODING;
1625 } else {
1626 stbc = (vht_cap->cap & IEEE80211_VHT_CAP_RXSTBC_MASK) >>
1627 IEEE80211_VHT_CAP_RXSTBC_SHIFT;
1628
1629 ldpc = vht_cap->cap & IEEE80211_VHT_CAP_RXLDPC;
1630 }
1631
1632 mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;
1633 if (ldpc)
1634 mi->tx_flags |= IEEE80211_TX_CTL_LDPC;
1635
1636 for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
1637 u32 gflags = minstrel_mcs_groups[i].flags;
1638 int bw, nss;
1639
1640 mi->supported[i] = 0;
1641 if (minstrel_ht_is_legacy_group(i))
1642 continue;
1643
1644 if (gflags & IEEE80211_TX_RC_SHORT_GI) {
1645 if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1646 if (!(ht_cap & IEEE80211_HT_CAP_SGI_40))
1647 continue;
1648 } else {
1649 if (!(ht_cap & IEEE80211_HT_CAP_SGI_20))
1650 continue;
1651 }
1652 }
1653
1654 if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
1655 sta->bandwidth < IEEE80211_STA_RX_BW_40)
1656 continue;
1657
1658 nss = minstrel_mcs_groups[i].streams;
1659
1660 /* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
1661 if (sta->smps_mode == IEEE80211_SMPS_STATIC && nss > 1)
1662 continue;
1663
1664 /* HT rate */
1665 if (gflags & IEEE80211_TX_RC_MCS) {
1666 if (use_vht && minstrel_vht_only)
1667 continue;
1668
1669 mi->supported[i] = mcs->rx_mask[nss - 1];
1670 if (mi->supported[i])
1671 n_supported++;
1672 continue;
1673 }
1674
1675 /* VHT rate */
1676 if (!vht_cap->vht_supported ||
1677 WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) ||
1678 WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH))
1679 continue;
1680
1681 if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) {
1682 if (sta->bandwidth < IEEE80211_STA_RX_BW_80 ||
1683 ((gflags & IEEE80211_TX_RC_SHORT_GI) &&
1684 !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) {
1685 continue;
1686 }
1687 }
1688
1689 if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1690 bw = BW_40;
1691 else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH)
1692 bw = BW_80;
1693 else
1694 bw = BW_20;
1695
1696 mi->supported[i] = minstrel_get_valid_vht_rates(bw, nss,
1697 vht_cap->vht_mcs.tx_mcs_map);
1698
1699 if (mi->supported[i])
1700 n_supported++;
1701 }
1702
1703 minstrel_ht_update_cck(mp, mi, sband, sta);
1704 minstrel_ht_update_ofdm(mp, mi, sband, sta);
1705
1706 /* create an initial rate table with the lowest supported rates */
1707 minstrel_ht_update_stats(mp, mi);
1708 minstrel_ht_update_rates(mp, mi);
1709}
1710
1711static void
1712minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
1713 struct cfg80211_chan_def *chandef,
1714 struct ieee80211_sta *sta, void *priv_sta)
1715{
1716 minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1717}
1718
1719static void
1720minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
1721 struct cfg80211_chan_def *chandef,
1722 struct ieee80211_sta *sta, void *priv_sta,
1723 u32 changed)
1724{
1725 minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1726}
1727
1728static void *
1729minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1730{
1731 struct ieee80211_supported_band *sband;
1732 struct minstrel_ht_sta *mi;
1733 struct minstrel_priv *mp = priv;
1734 struct ieee80211_hw *hw = mp->hw;
1735 int max_rates = 0;
1736 int i;
1737
1738 for (i = 0; i < NUM_NL80211_BANDS; i++) {
1739 sband = hw->wiphy->bands[i];
1740 if (sband && sband->n_bitrates > max_rates)
1741 max_rates = sband->n_bitrates;
1742 }
1743
1744 return kzalloc(sizeof(*mi), gfp);
1745}
1746
1747static void
1748minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
1749{
1750 kfree(priv_sta);
1751}
1752
1753static void
1754minstrel_ht_fill_rate_array(u8 *dest, struct ieee80211_supported_band *sband,
1755 const s16 *bitrates, int n_rates, u32 rate_flags)
1756{
1757 int i, j;
1758
1759 for (i = 0; i < sband->n_bitrates; i++) {
1760 struct ieee80211_rate *rate = &sband->bitrates[i];
1761
1762 if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
1763 continue;
1764
1765 for (j = 0; j < n_rates; j++) {
1766 if (rate->bitrate != bitrates[j])
1767 continue;
1768
1769 dest[j] = i;
1770 break;
1771 }
1772 }
1773}
1774
1775static void
1776minstrel_ht_init_cck_rates(struct minstrel_priv *mp)
1777{
1778 static const s16 bitrates[4] = { 10, 20, 55, 110 };
1779 struct ieee80211_supported_band *sband;
1780 u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef);
1781
1782 memset(mp->cck_rates, 0xff, sizeof(mp->cck_rates));
1783 sband = mp->hw->wiphy->bands[NL80211_BAND_2GHZ];
1784 if (!sband)
1785 return;
1786
1787 BUILD_BUG_ON(ARRAY_SIZE(mp->cck_rates) != ARRAY_SIZE(bitrates));
1788 minstrel_ht_fill_rate_array(mp->cck_rates, sband,
1789 minstrel_cck_bitrates,
1790 ARRAY_SIZE(minstrel_cck_bitrates),
1791 rate_flags);
1792}
1793
1794static void
1795minstrel_ht_init_ofdm_rates(struct minstrel_priv *mp, enum nl80211_band band)
1796{
1797 static const s16 bitrates[8] = { 60, 90, 120, 180, 240, 360, 480, 540 };
1798 struct ieee80211_supported_band *sband;
1799 u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef);
1800
1801 memset(mp->ofdm_rates[band], 0xff, sizeof(mp->ofdm_rates[band]));
1802 sband = mp->hw->wiphy->bands[band];
1803 if (!sband)
1804 return;
1805
1806 BUILD_BUG_ON(ARRAY_SIZE(mp->ofdm_rates[band]) != ARRAY_SIZE(bitrates));
1807 minstrel_ht_fill_rate_array(mp->ofdm_rates[band], sband,
1808 minstrel_ofdm_bitrates,
1809 ARRAY_SIZE(minstrel_ofdm_bitrates),
1810 rate_flags);
1811}
1812
1813static void *
1814minstrel_ht_alloc(struct ieee80211_hw *hw)
1815{
1816 struct minstrel_priv *mp;
1817 int i;
1818
1819 mp = kzalloc(sizeof(struct minstrel_priv), GFP_ATOMIC);
1820 if (!mp)
1821 return NULL;
1822
1823 /* contention window settings
1824 * Just an approximation. Using the per-queue values would complicate
1825 * the calculations and is probably unnecessary */
1826 mp->cw_min = 15;
1827 mp->cw_max = 1023;
1828
1829 /* maximum time that the hw is allowed to stay in one MRR segment */
1830 mp->segment_size = 6000;
1831
1832 if (hw->max_rate_tries > 0)
1833 mp->max_retry = hw->max_rate_tries;
1834 else
1835 /* safe default, does not necessarily have to match hw properties */
1836 mp->max_retry = 7;
1837
1838 if (hw->max_rates >= 4)
1839 mp->has_mrr = true;
1840
1841 mp->hw = hw;
1842 mp->update_interval = HZ / 20;
1843
1844 minstrel_ht_init_cck_rates(mp);
1845 for (i = 0; i < ARRAY_SIZE(mp->hw->wiphy->bands); i++)
1846 minstrel_ht_init_ofdm_rates(mp, i);
1847
1848 return mp;
1849}
1850
1851#ifdef CONFIG_MAC80211_DEBUGFS
1852static void minstrel_ht_add_debugfs(struct ieee80211_hw *hw, void *priv,
1853 struct dentry *debugfsdir)
1854{
1855 struct minstrel_priv *mp = priv;
1856
1857 mp->fixed_rate_idx = (u32) -1;
1858 debugfs_create_u32("fixed_rate_idx", S_IRUGO | S_IWUGO, debugfsdir,
1859 &mp->fixed_rate_idx);
1860}
1861#endif
1862
1863static void
1864minstrel_ht_free(void *priv)
1865{
1866 kfree(priv);
1867}
1868
1869static u32 minstrel_ht_get_expected_throughput(void *priv_sta)
1870{
1871 struct minstrel_ht_sta *mi = priv_sta;
1872 int i, j, prob, tp_avg;
1873
1874 i = MI_RATE_GROUP(mi->max_tp_rate[0]);
1875 j = MI_RATE_IDX(mi->max_tp_rate[0]);
1876 prob = mi->groups[i].rates[j].prob_avg;
1877
1878 /* convert tp_avg from pkt per second in kbps */
1879 tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10;
1880 tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024;
1881
1882 return tp_avg;
1883}
1884
1885static const struct rate_control_ops mac80211_minstrel_ht = {
1886 .name = "minstrel_ht",
1887 .capa = RATE_CTRL_CAPA_AMPDU_TRIGGER,
1888 .tx_status_ext = minstrel_ht_tx_status,
1889 .get_rate = minstrel_ht_get_rate,
1890 .rate_init = minstrel_ht_rate_init,
1891 .rate_update = minstrel_ht_rate_update,
1892 .alloc_sta = minstrel_ht_alloc_sta,
1893 .free_sta = minstrel_ht_free_sta,
1894 .alloc = minstrel_ht_alloc,
1895 .free = minstrel_ht_free,
1896#ifdef CONFIG_MAC80211_DEBUGFS
1897 .add_debugfs = minstrel_ht_add_debugfs,
1898 .add_sta_debugfs = minstrel_ht_add_sta_debugfs,
1899#endif
1900 .get_expected_throughput = minstrel_ht_get_expected_throughput,
1901};
1902
1903
1904static void __init init_sample_table(void)
1905{
1906 int col, i, new_idx;
1907 u8 rnd[MCS_GROUP_RATES];
1908
1909 memset(sample_table, 0xff, sizeof(sample_table));
1910 for (col = 0; col < SAMPLE_COLUMNS; col++) {
1911 prandom_bytes(rnd, sizeof(rnd));
1912 for (i = 0; i < MCS_GROUP_RATES; i++) {
1913 new_idx = (i + rnd[i]) % MCS_GROUP_RATES;
1914 while (sample_table[col][new_idx] != 0xff)
1915 new_idx = (new_idx + 1) % MCS_GROUP_RATES;
1916
1917 sample_table[col][new_idx] = i;
1918 }
1919 }
1920}
1921
1922int __init
1923rc80211_minstrel_init(void)
1924{
1925 init_sample_table();
1926 return ieee80211_rate_control_register(&mac80211_minstrel_ht);
1927}
1928
1929void
1930rc80211_minstrel_exit(void)
1931{
1932 ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
1933}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
4 */
5#include <linux/netdevice.h>
6#include <linux/types.h>
7#include <linux/skbuff.h>
8#include <linux/debugfs.h>
9#include <linux/random.h>
10#include <linux/moduleparam.h>
11#include <linux/ieee80211.h>
12#include <net/mac80211.h>
13#include "rate.h"
14#include "sta_info.h"
15#include "rc80211_minstrel.h"
16#include "rc80211_minstrel_ht.h"
17
18#define AVG_AMPDU_SIZE 16
19#define AVG_PKT_SIZE 1200
20
21#define SAMPLE_SWITCH_THR 100
22
23/* Number of bits for an average sized packet */
24#define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3)
25
26/* Number of symbols for a packet with (bps) bits per symbol */
27#define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
28
29/* Transmission time (nanoseconds) for a packet containing (syms) symbols */
30#define MCS_SYMBOL_TIME(sgi, syms) \
31 (sgi ? \
32 ((syms) * 18000 + 4000) / 5 : /* syms * 3.6 us */ \
33 ((syms) * 1000) << 2 /* syms * 4 us */ \
34 )
35
36/* Transmit duration for the raw data part of an average sized packet */
37#define MCS_DURATION(streams, sgi, bps) \
38 (MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE)
39
40#define BW_20 0
41#define BW_40 1
42#define BW_80 2
43
44/*
45 * Define group sort order: HT40 -> SGI -> #streams
46 */
47#define GROUP_IDX(_streams, _sgi, _ht40) \
48 MINSTREL_HT_GROUP_0 + \
49 MINSTREL_MAX_STREAMS * 2 * _ht40 + \
50 MINSTREL_MAX_STREAMS * _sgi + \
51 _streams - 1
52
53#define _MAX(a, b) (((a)>(b))?(a):(b))
54
55#define GROUP_SHIFT(duration) \
56 _MAX(0, 16 - __builtin_clz(duration))
57
58/* MCS rate information for an MCS group */
59#define __MCS_GROUP(_streams, _sgi, _ht40, _s) \
60 [GROUP_IDX(_streams, _sgi, _ht40)] = { \
61 .streams = _streams, \
62 .shift = _s, \
63 .bw = _ht40, \
64 .flags = \
65 IEEE80211_TX_RC_MCS | \
66 (_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) | \
67 (_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0), \
68 .duration = { \
69 MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26) >> _s, \
70 MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52) >> _s, \
71 MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78) >> _s, \
72 MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104) >> _s, \
73 MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156) >> _s, \
74 MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208) >> _s, \
75 MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234) >> _s, \
76 MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260) >> _s \
77 } \
78}
79
80#define MCS_GROUP_SHIFT(_streams, _sgi, _ht40) \
81 GROUP_SHIFT(MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26))
82
83#define MCS_GROUP(_streams, _sgi, _ht40) \
84 __MCS_GROUP(_streams, _sgi, _ht40, \
85 MCS_GROUP_SHIFT(_streams, _sgi, _ht40))
86
87#define VHT_GROUP_IDX(_streams, _sgi, _bw) \
88 (MINSTREL_VHT_GROUP_0 + \
89 MINSTREL_MAX_STREAMS * 2 * (_bw) + \
90 MINSTREL_MAX_STREAMS * (_sgi) + \
91 (_streams) - 1)
92
93#define BW2VBPS(_bw, r3, r2, r1) \
94 (_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)
95
96#define __VHT_GROUP(_streams, _sgi, _bw, _s) \
97 [VHT_GROUP_IDX(_streams, _sgi, _bw)] = { \
98 .streams = _streams, \
99 .shift = _s, \
100 .bw = _bw, \
101 .flags = \
102 IEEE80211_TX_RC_VHT_MCS | \
103 (_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) | \
104 (_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH : \
105 _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0), \
106 .duration = { \
107 MCS_DURATION(_streams, _sgi, \
108 BW2VBPS(_bw, 117, 54, 26)) >> _s, \
109 MCS_DURATION(_streams, _sgi, \
110 BW2VBPS(_bw, 234, 108, 52)) >> _s, \
111 MCS_DURATION(_streams, _sgi, \
112 BW2VBPS(_bw, 351, 162, 78)) >> _s, \
113 MCS_DURATION(_streams, _sgi, \
114 BW2VBPS(_bw, 468, 216, 104)) >> _s, \
115 MCS_DURATION(_streams, _sgi, \
116 BW2VBPS(_bw, 702, 324, 156)) >> _s, \
117 MCS_DURATION(_streams, _sgi, \
118 BW2VBPS(_bw, 936, 432, 208)) >> _s, \
119 MCS_DURATION(_streams, _sgi, \
120 BW2VBPS(_bw, 1053, 486, 234)) >> _s, \
121 MCS_DURATION(_streams, _sgi, \
122 BW2VBPS(_bw, 1170, 540, 260)) >> _s, \
123 MCS_DURATION(_streams, _sgi, \
124 BW2VBPS(_bw, 1404, 648, 312)) >> _s, \
125 MCS_DURATION(_streams, _sgi, \
126 BW2VBPS(_bw, 1560, 720, 346)) >> _s \
127 } \
128}
129
130#define VHT_GROUP_SHIFT(_streams, _sgi, _bw) \
131 GROUP_SHIFT(MCS_DURATION(_streams, _sgi, \
132 BW2VBPS(_bw, 117, 54, 26)))
133
134#define VHT_GROUP(_streams, _sgi, _bw) \
135 __VHT_GROUP(_streams, _sgi, _bw, \
136 VHT_GROUP_SHIFT(_streams, _sgi, _bw))
137
138#define CCK_DURATION(_bitrate, _short, _len) \
139 (1000 * (10 /* SIFS */ + \
140 (_short ? 72 + 24 : 144 + 48) + \
141 (8 * (_len + 4) * 10) / (_bitrate)))
142
143#define CCK_ACK_DURATION(_bitrate, _short) \
144 (CCK_DURATION((_bitrate > 10 ? 20 : 10), false, 60) + \
145 CCK_DURATION(_bitrate, _short, AVG_PKT_SIZE))
146
147#define CCK_DURATION_LIST(_short, _s) \
148 CCK_ACK_DURATION(10, _short) >> _s, \
149 CCK_ACK_DURATION(20, _short) >> _s, \
150 CCK_ACK_DURATION(55, _short) >> _s, \
151 CCK_ACK_DURATION(110, _short) >> _s
152
153#define __CCK_GROUP(_s) \
154 [MINSTREL_CCK_GROUP] = { \
155 .streams = 1, \
156 .flags = 0, \
157 .shift = _s, \
158 .duration = { \
159 CCK_DURATION_LIST(false, _s), \
160 CCK_DURATION_LIST(true, _s) \
161 } \
162 }
163
164#define CCK_GROUP_SHIFT \
165 GROUP_SHIFT(CCK_ACK_DURATION(10, false))
166
167#define CCK_GROUP __CCK_GROUP(CCK_GROUP_SHIFT)
168
169
170static bool minstrel_vht_only = true;
171module_param(minstrel_vht_only, bool, 0644);
172MODULE_PARM_DESC(minstrel_vht_only,
173 "Use only VHT rates when VHT is supported by sta.");
174
175/*
176 * To enable sufficiently targeted rate sampling, MCS rates are divided into
177 * groups, based on the number of streams and flags (HT40, SGI) that they
178 * use.
179 *
180 * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
181 * BW -> SGI -> #streams
182 */
183const struct mcs_group minstrel_mcs_groups[] = {
184 MCS_GROUP(1, 0, BW_20),
185 MCS_GROUP(2, 0, BW_20),
186 MCS_GROUP(3, 0, BW_20),
187 MCS_GROUP(4, 0, BW_20),
188
189 MCS_GROUP(1, 1, BW_20),
190 MCS_GROUP(2, 1, BW_20),
191 MCS_GROUP(3, 1, BW_20),
192 MCS_GROUP(4, 1, BW_20),
193
194 MCS_GROUP(1, 0, BW_40),
195 MCS_GROUP(2, 0, BW_40),
196 MCS_GROUP(3, 0, BW_40),
197 MCS_GROUP(4, 0, BW_40),
198
199 MCS_GROUP(1, 1, BW_40),
200 MCS_GROUP(2, 1, BW_40),
201 MCS_GROUP(3, 1, BW_40),
202 MCS_GROUP(4, 1, BW_40),
203
204 CCK_GROUP,
205
206 VHT_GROUP(1, 0, BW_20),
207 VHT_GROUP(2, 0, BW_20),
208 VHT_GROUP(3, 0, BW_20),
209 VHT_GROUP(4, 0, BW_20),
210
211 VHT_GROUP(1, 1, BW_20),
212 VHT_GROUP(2, 1, BW_20),
213 VHT_GROUP(3, 1, BW_20),
214 VHT_GROUP(4, 1, BW_20),
215
216 VHT_GROUP(1, 0, BW_40),
217 VHT_GROUP(2, 0, BW_40),
218 VHT_GROUP(3, 0, BW_40),
219 VHT_GROUP(4, 0, BW_40),
220
221 VHT_GROUP(1, 1, BW_40),
222 VHT_GROUP(2, 1, BW_40),
223 VHT_GROUP(3, 1, BW_40),
224 VHT_GROUP(4, 1, BW_40),
225
226 VHT_GROUP(1, 0, BW_80),
227 VHT_GROUP(2, 0, BW_80),
228 VHT_GROUP(3, 0, BW_80),
229 VHT_GROUP(4, 0, BW_80),
230
231 VHT_GROUP(1, 1, BW_80),
232 VHT_GROUP(2, 1, BW_80),
233 VHT_GROUP(3, 1, BW_80),
234 VHT_GROUP(4, 1, BW_80),
235};
236
237static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
238
239static void
240minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);
241
242/*
243 * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
244 * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
245 *
246 * Returns the valid mcs map for struct minstrel_mcs_group_data.supported
247 */
248static u16
249minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map)
250{
251 u16 mask = 0;
252
253 if (bw == BW_20) {
254 if (nss != 3 && nss != 6)
255 mask = BIT(9);
256 } else if (bw == BW_80) {
257 if (nss == 3 || nss == 7)
258 mask = BIT(6);
259 else if (nss == 6)
260 mask = BIT(9);
261 } else {
262 WARN_ON(bw != BW_40);
263 }
264
265 switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) {
266 case IEEE80211_VHT_MCS_SUPPORT_0_7:
267 mask |= 0x300;
268 break;
269 case IEEE80211_VHT_MCS_SUPPORT_0_8:
270 mask |= 0x200;
271 break;
272 case IEEE80211_VHT_MCS_SUPPORT_0_9:
273 break;
274 default:
275 mask = 0x3ff;
276 }
277
278 return 0x3ff & ~mask;
279}
280
281/*
282 * Look up an MCS group index based on mac80211 rate information
283 */
284static int
285minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
286{
287 return GROUP_IDX((rate->idx / 8) + 1,
288 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
289 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
290}
291
292static int
293minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate)
294{
295 return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate),
296 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
297 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) +
298 2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH));
299}
300
301static struct minstrel_rate_stats *
302minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
303 struct ieee80211_tx_rate *rate)
304{
305 int group, idx;
306
307 if (rate->flags & IEEE80211_TX_RC_MCS) {
308 group = minstrel_ht_get_group_idx(rate);
309 idx = rate->idx % 8;
310 } else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
311 group = minstrel_vht_get_group_idx(rate);
312 idx = ieee80211_rate_get_vht_mcs(rate);
313 } else {
314 group = MINSTREL_CCK_GROUP;
315
316 for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++)
317 if (rate->idx == mp->cck_rates[idx])
318 break;
319
320 /* short preamble */
321 if ((mi->supported[group] & BIT(idx + 4)) &&
322 (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE))
323 idx += 4;
324 }
325 return &mi->groups[group].rates[idx];
326}
327
328static inline struct minstrel_rate_stats *
329minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
330{
331 return &mi->groups[index / MCS_GROUP_RATES].rates[index % MCS_GROUP_RATES];
332}
333
334static unsigned int
335minstrel_ht_avg_ampdu_len(struct minstrel_ht_sta *mi)
336{
337 if (!mi->avg_ampdu_len)
338 return AVG_AMPDU_SIZE;
339
340 return MINSTREL_TRUNC(mi->avg_ampdu_len);
341}
342
343/*
344 * Return current throughput based on the average A-MPDU length, taking into
345 * account the expected number of retransmissions and their expected length
346 */
347int
348minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate,
349 int prob_ewma)
350{
351 unsigned int nsecs = 0;
352
353 /* do not account throughput if sucess prob is below 10% */
354 if (prob_ewma < MINSTREL_FRAC(10, 100))
355 return 0;
356
357 if (group != MINSTREL_CCK_GROUP)
358 nsecs = 1000 * mi->overhead / minstrel_ht_avg_ampdu_len(mi);
359
360 nsecs += minstrel_mcs_groups[group].duration[rate] <<
361 minstrel_mcs_groups[group].shift;
362
363 /*
364 * For the throughput calculation, limit the probability value to 90% to
365 * account for collision related packet error rate fluctuation
366 * (prob is scaled - see MINSTREL_FRAC above)
367 */
368 if (prob_ewma > MINSTREL_FRAC(90, 100))
369 return MINSTREL_TRUNC(100000 * ((MINSTREL_FRAC(90, 100) * 1000)
370 / nsecs));
371 else
372 return MINSTREL_TRUNC(100000 * ((prob_ewma * 1000) / nsecs));
373}
374
375/*
376 * Find & sort topmost throughput rates
377 *
378 * If multiple rates provide equal throughput the sorting is based on their
379 * current success probability. Higher success probability is preferred among
380 * MCS groups, CCK rates do not provide aggregation and are therefore at last.
381 */
382static void
383minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
384 u16 *tp_list)
385{
386 int cur_group, cur_idx, cur_tp_avg, cur_prob;
387 int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
388 int j = MAX_THR_RATES;
389
390 cur_group = index / MCS_GROUP_RATES;
391 cur_idx = index % MCS_GROUP_RATES;
392 cur_prob = mi->groups[cur_group].rates[cur_idx].prob_ewma;
393 cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob);
394
395 do {
396 tmp_group = tp_list[j - 1] / MCS_GROUP_RATES;
397 tmp_idx = tp_list[j - 1] % MCS_GROUP_RATES;
398 tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
399 tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx,
400 tmp_prob);
401 if (cur_tp_avg < tmp_tp_avg ||
402 (cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob))
403 break;
404 j--;
405 } while (j > 0);
406
407 if (j < MAX_THR_RATES - 1) {
408 memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
409 (MAX_THR_RATES - (j + 1))));
410 }
411 if (j < MAX_THR_RATES)
412 tp_list[j] = index;
413}
414
415/*
416 * Find and set the topmost probability rate per sta and per group
417 */
418static void
419minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 index)
420{
421 struct minstrel_mcs_group_data *mg;
422 struct minstrel_rate_stats *mrs;
423 int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
424 int max_tp_group, cur_tp_avg, cur_group, cur_idx;
425 int max_gpr_group, max_gpr_idx;
426 int max_gpr_tp_avg, max_gpr_prob;
427
428 cur_group = index / MCS_GROUP_RATES;
429 cur_idx = index % MCS_GROUP_RATES;
430 mg = &mi->groups[index / MCS_GROUP_RATES];
431 mrs = &mg->rates[index % MCS_GROUP_RATES];
432
433 tmp_group = mi->max_prob_rate / MCS_GROUP_RATES;
434 tmp_idx = mi->max_prob_rate % MCS_GROUP_RATES;
435 tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
436 tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
437
438 /* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
439 * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
440 max_tp_group = mi->max_tp_rate[0] / MCS_GROUP_RATES;
441 if((index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) &&
442 (max_tp_group != MINSTREL_CCK_GROUP))
443 return;
444
445 max_gpr_group = mg->max_group_prob_rate / MCS_GROUP_RATES;
446 max_gpr_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
447 max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_ewma;
448
449 if (mrs->prob_ewma > MINSTREL_FRAC(75, 100)) {
450 cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx,
451 mrs->prob_ewma);
452 if (cur_tp_avg > tmp_tp_avg)
453 mi->max_prob_rate = index;
454
455 max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group,
456 max_gpr_idx,
457 max_gpr_prob);
458 if (cur_tp_avg > max_gpr_tp_avg)
459 mg->max_group_prob_rate = index;
460 } else {
461 if (mrs->prob_ewma > tmp_prob)
462 mi->max_prob_rate = index;
463 if (mrs->prob_ewma > max_gpr_prob)
464 mg->max_group_prob_rate = index;
465 }
466}
467
468
469/*
470 * Assign new rate set per sta and use CCK rates only if the fastest
471 * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
472 * rate sets where MCS and CCK rates are mixed, because CCK rates can
473 * not use aggregation.
474 */
475static void
476minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
477 u16 tmp_mcs_tp_rate[MAX_THR_RATES],
478 u16 tmp_cck_tp_rate[MAX_THR_RATES])
479{
480 unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob;
481 int i;
482
483 tmp_group = tmp_cck_tp_rate[0] / MCS_GROUP_RATES;
484 tmp_idx = tmp_cck_tp_rate[0] % MCS_GROUP_RATES;
485 tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
486 tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
487
488 tmp_group = tmp_mcs_tp_rate[0] / MCS_GROUP_RATES;
489 tmp_idx = tmp_mcs_tp_rate[0] % MCS_GROUP_RATES;
490 tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
491 tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
492
493 if (tmp_cck_tp_rate && tmp_cck_tp > tmp_mcs_tp) {
494 for(i = 0; i < MAX_THR_RATES; i++) {
495 minstrel_ht_sort_best_tp_rates(mi, tmp_cck_tp_rate[i],
496 tmp_mcs_tp_rate);
497 }
498 }
499
500}
501
502/*
503 * Try to increase robustness of max_prob rate by decrease number of
504 * streams if possible.
505 */
506static inline void
507minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
508{
509 struct minstrel_mcs_group_data *mg;
510 int tmp_max_streams, group, tmp_idx, tmp_prob;
511 int tmp_tp = 0;
512
513 tmp_max_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
514 MCS_GROUP_RATES].streams;
515 for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
516 mg = &mi->groups[group];
517 if (!mi->supported[group] || group == MINSTREL_CCK_GROUP)
518 continue;
519
520 tmp_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
521 tmp_prob = mi->groups[group].rates[tmp_idx].prob_ewma;
522
523 if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) &&
524 (minstrel_mcs_groups[group].streams < tmp_max_streams)) {
525 mi->max_prob_rate = mg->max_group_prob_rate;
526 tmp_tp = minstrel_ht_get_tp_avg(mi, group,
527 tmp_idx,
528 tmp_prob);
529 }
530 }
531}
532
533static inline int
534minstrel_get_duration(int index)
535{
536 const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
537 unsigned int duration = group->duration[index % MCS_GROUP_RATES];
538 return duration << group->shift;
539}
540
541static bool
542minstrel_ht_probe_group(struct minstrel_ht_sta *mi, const struct mcs_group *tp_group,
543 int tp_idx, const struct mcs_group *group)
544{
545 if (group->bw < tp_group->bw)
546 return false;
547
548 if (group->streams == tp_group->streams)
549 return true;
550
551 if (tp_idx < 4 && group->streams == tp_group->streams - 1)
552 return true;
553
554 return group->streams == tp_group->streams + 1;
555}
556
557static void
558minstrel_ht_find_probe_rates(struct minstrel_ht_sta *mi, u16 *rates, int *n_rates,
559 bool faster_rate)
560{
561 const struct mcs_group *group, *tp_group;
562 int i, g, max_dur;
563 int tp_idx;
564
565 tp_group = &minstrel_mcs_groups[mi->max_tp_rate[0] / MCS_GROUP_RATES];
566 tp_idx = mi->max_tp_rate[0] % MCS_GROUP_RATES;
567
568 max_dur = minstrel_get_duration(mi->max_tp_rate[0]);
569 if (faster_rate)
570 max_dur -= max_dur / 16;
571
572 for (g = 0; g < MINSTREL_GROUPS_NB; g++) {
573 u16 supported = mi->supported[g];
574
575 if (!supported)
576 continue;
577
578 group = &minstrel_mcs_groups[g];
579 if (!minstrel_ht_probe_group(mi, tp_group, tp_idx, group))
580 continue;
581
582 for (i = 0; supported; supported >>= 1, i++) {
583 int idx;
584
585 if (!(supported & 1))
586 continue;
587
588 if ((group->duration[i] << group->shift) > max_dur)
589 continue;
590
591 idx = g * MCS_GROUP_RATES + i;
592 if (idx == mi->max_tp_rate[0])
593 continue;
594
595 rates[(*n_rates)++] = idx;
596 break;
597 }
598 }
599}
600
601static void
602minstrel_ht_rate_sample_switch(struct minstrel_priv *mp,
603 struct minstrel_ht_sta *mi)
604{
605 struct minstrel_rate_stats *mrs;
606 u16 rates[MINSTREL_GROUPS_NB];
607 int n_rates = 0;
608 int probe_rate = 0;
609 bool faster_rate;
610 int i;
611 u8 random;
612
613 /*
614 * Use rate switching instead of probing packets for devices with
615 * little control over retry fallback behavior
616 */
617 if (mp->hw->max_rates > 1)
618 return;
619
620 /*
621 * If the current EWMA prob is >75%, look for a rate that's 6.25%
622 * faster than the max tp rate.
623 * If that fails, look again for a rate that is at least as fast
624 */
625 mrs = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
626 faster_rate = mrs->prob_ewma > MINSTREL_FRAC(75, 100);
627 minstrel_ht_find_probe_rates(mi, rates, &n_rates, faster_rate);
628 if (!n_rates && faster_rate)
629 minstrel_ht_find_probe_rates(mi, rates, &n_rates, false);
630
631 /* If no suitable rate was found, try to pick the next one in the group */
632 if (!n_rates) {
633 int g_idx = mi->max_tp_rate[0] / MCS_GROUP_RATES;
634 u16 supported = mi->supported[g_idx];
635
636 supported >>= mi->max_tp_rate[0] % MCS_GROUP_RATES;
637 for (i = 0; supported; supported >>= 1, i++) {
638 if (!(supported & 1))
639 continue;
640
641 probe_rate = mi->max_tp_rate[0] + i;
642 goto out;
643 }
644
645 return;
646 }
647
648 i = 0;
649 if (n_rates > 1) {
650 random = prandom_u32();
651 i = random % n_rates;
652 }
653 probe_rate = rates[i];
654
655out:
656 mi->sample_rate = probe_rate;
657 mi->sample_mode = MINSTREL_SAMPLE_ACTIVE;
658}
659
660/*
661 * Update rate statistics and select new primary rates
662 *
663 * Rules for rate selection:
664 * - max_prob_rate must use only one stream, as a tradeoff between delivery
665 * probability and throughput during strong fluctuations
666 * - as long as the max prob rate has a probability of more than 75%, pick
667 * higher throughput rates, even if the probablity is a bit lower
668 */
669static void
670minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
671 bool sample)
672{
673 struct minstrel_mcs_group_data *mg;
674 struct minstrel_rate_stats *mrs;
675 int group, i, j, cur_prob;
676 u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
677 u16 tmp_cck_tp_rate[MAX_THR_RATES], index;
678
679 mi->sample_mode = MINSTREL_SAMPLE_IDLE;
680
681 if (sample) {
682 mi->total_packets_cur = mi->total_packets -
683 mi->total_packets_last;
684 mi->total_packets_last = mi->total_packets;
685 }
686 if (!mp->sample_switch)
687 sample = false;
688 if (mi->total_packets_cur < SAMPLE_SWITCH_THR && mp->sample_switch != 1)
689 sample = false;
690
691 if (mi->ampdu_packets > 0) {
692 if (!ieee80211_hw_check(mp->hw, TX_STATUS_NO_AMPDU_LEN))
693 mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
694 MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets),
695 EWMA_LEVEL);
696 else
697 mi->avg_ampdu_len = 0;
698 mi->ampdu_len = 0;
699 mi->ampdu_packets = 0;
700 }
701
702 mi->sample_slow = 0;
703 mi->sample_count = 0;
704
705 memset(tmp_mcs_tp_rate, 0, sizeof(tmp_mcs_tp_rate));
706 memset(tmp_cck_tp_rate, 0, sizeof(tmp_cck_tp_rate));
707 if (mi->supported[MINSTREL_CCK_GROUP])
708 for (j = 0; j < ARRAY_SIZE(tmp_cck_tp_rate); j++)
709 tmp_cck_tp_rate[j] = MINSTREL_CCK_GROUP * MCS_GROUP_RATES;
710
711 if (mi->supported[MINSTREL_VHT_GROUP_0])
712 index = MINSTREL_VHT_GROUP_0 * MCS_GROUP_RATES;
713 else
714 index = MINSTREL_HT_GROUP_0 * MCS_GROUP_RATES;
715
716 for (j = 0; j < ARRAY_SIZE(tmp_mcs_tp_rate); j++)
717 tmp_mcs_tp_rate[j] = index;
718
719 /* Find best rate sets within all MCS groups*/
720 for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
721
722 mg = &mi->groups[group];
723 if (!mi->supported[group])
724 continue;
725
726 mi->sample_count++;
727
728 /* (re)Initialize group rate indexes */
729 for(j = 0; j < MAX_THR_RATES; j++)
730 tmp_group_tp_rate[j] = MCS_GROUP_RATES * group;
731
732 for (i = 0; i < MCS_GROUP_RATES; i++) {
733 if (!(mi->supported[group] & BIT(i)))
734 continue;
735
736 index = MCS_GROUP_RATES * group + i;
737
738 mrs = &mg->rates[i];
739 mrs->retry_updated = false;
740 minstrel_calc_rate_stats(mrs);
741 cur_prob = mrs->prob_ewma;
742
743 if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0)
744 continue;
745
746 /* Find max throughput rate set */
747 if (group != MINSTREL_CCK_GROUP) {
748 minstrel_ht_sort_best_tp_rates(mi, index,
749 tmp_mcs_tp_rate);
750 } else if (group == MINSTREL_CCK_GROUP) {
751 minstrel_ht_sort_best_tp_rates(mi, index,
752 tmp_cck_tp_rate);
753 }
754
755 /* Find max throughput rate set within a group */
756 minstrel_ht_sort_best_tp_rates(mi, index,
757 tmp_group_tp_rate);
758
759 /* Find max probability rate per group and global */
760 minstrel_ht_set_best_prob_rate(mi, index);
761 }
762
763 memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
764 sizeof(mg->max_group_tp_rate));
765 }
766
767 /* Assign new rate set per sta */
768 minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate, tmp_cck_tp_rate);
769 memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
770
771 /* Try to increase robustness of max_prob_rate*/
772 minstrel_ht_prob_rate_reduce_streams(mi);
773
774 /* try to sample all available rates during each interval */
775 mi->sample_count *= 8;
776
777 if (sample)
778 minstrel_ht_rate_sample_switch(mp, mi);
779
780#ifdef CONFIG_MAC80211_DEBUGFS
781 /* use fixed index if set */
782 if (mp->fixed_rate_idx != -1) {
783 for (i = 0; i < 4; i++)
784 mi->max_tp_rate[i] = mp->fixed_rate_idx;
785 mi->max_prob_rate = mp->fixed_rate_idx;
786 mi->sample_mode = MINSTREL_SAMPLE_IDLE;
787 }
788#endif
789
790 /* Reset update timer */
791 mi->last_stats_update = jiffies;
792}
793
794static bool
795minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct ieee80211_tx_rate *rate)
796{
797 if (rate->idx < 0)
798 return false;
799
800 if (!rate->count)
801 return false;
802
803 if (rate->flags & IEEE80211_TX_RC_MCS ||
804 rate->flags & IEEE80211_TX_RC_VHT_MCS)
805 return true;
806
807 return rate->idx == mp->cck_rates[0] ||
808 rate->idx == mp->cck_rates[1] ||
809 rate->idx == mp->cck_rates[2] ||
810 rate->idx == mp->cck_rates[3];
811}
812
813static void
814minstrel_set_next_sample_idx(struct minstrel_ht_sta *mi)
815{
816 struct minstrel_mcs_group_data *mg;
817
818 for (;;) {
819 mi->sample_group++;
820 mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups);
821 mg = &mi->groups[mi->sample_group];
822
823 if (!mi->supported[mi->sample_group])
824 continue;
825
826 if (++mg->index >= MCS_GROUP_RATES) {
827 mg->index = 0;
828 if (++mg->column >= ARRAY_SIZE(sample_table))
829 mg->column = 0;
830 }
831 break;
832 }
833}
834
835static void
836minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
837{
838 int group, orig_group;
839
840 orig_group = group = *idx / MCS_GROUP_RATES;
841 while (group > 0) {
842 group--;
843
844 if (!mi->supported[group])
845 continue;
846
847 if (minstrel_mcs_groups[group].streams >
848 minstrel_mcs_groups[orig_group].streams)
849 continue;
850
851 if (primary)
852 *idx = mi->groups[group].max_group_tp_rate[0];
853 else
854 *idx = mi->groups[group].max_group_tp_rate[1];
855 break;
856 }
857}
858
859static void
860minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb)
861{
862 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
863 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
864 u16 tid;
865
866 if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
867 return;
868
869 if (unlikely(!ieee80211_is_data_qos(hdr->frame_control)))
870 return;
871
872 if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE)))
873 return;
874
875 tid = ieee80211_get_tid(hdr);
876 if (likely(sta->ampdu_mlme.tid_tx[tid]))
877 return;
878
879 ieee80211_start_tx_ba_session(pubsta, tid, 0);
880}
881
882static void
883minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
884 void *priv_sta, struct ieee80211_tx_status *st)
885{
886 struct ieee80211_tx_info *info = st->info;
887 struct minstrel_ht_sta_priv *msp = priv_sta;
888 struct minstrel_ht_sta *mi = &msp->ht;
889 struct ieee80211_tx_rate *ar = info->status.rates;
890 struct minstrel_rate_stats *rate, *rate2, *rate_sample = NULL;
891 struct minstrel_priv *mp = priv;
892 bool last, update = false;
893 bool sample_status = false;
894 int i;
895
896 if (!msp->is_ht)
897 return mac80211_minstrel.tx_status_ext(priv, sband,
898 &msp->legacy, st);
899
900
901 /* This packet was aggregated but doesn't carry status info */
902 if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
903 !(info->flags & IEEE80211_TX_STAT_AMPDU))
904 return;
905
906 if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
907 info->status.ampdu_ack_len =
908 (info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
909 info->status.ampdu_len = 1;
910 }
911
912 mi->ampdu_packets++;
913 mi->ampdu_len += info->status.ampdu_len;
914
915 if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) {
916 int avg_ampdu_len = minstrel_ht_avg_ampdu_len(mi);
917
918 mi->sample_wait = 16 + 2 * avg_ampdu_len;
919 mi->sample_tries = 1;
920 mi->sample_count--;
921 }
922
923 if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
924 mi->sample_packets += info->status.ampdu_len;
925
926 if (mi->sample_mode != MINSTREL_SAMPLE_IDLE)
927 rate_sample = minstrel_get_ratestats(mi, mi->sample_rate);
928
929 last = !minstrel_ht_txstat_valid(mp, &ar[0]);
930 for (i = 0; !last; i++) {
931 last = (i == IEEE80211_TX_MAX_RATES - 1) ||
932 !minstrel_ht_txstat_valid(mp, &ar[i + 1]);
933
934 rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
935 if (rate == rate_sample)
936 sample_status = true;
937
938 if (last)
939 rate->success += info->status.ampdu_ack_len;
940
941 rate->attempts += ar[i].count * info->status.ampdu_len;
942 }
943
944 switch (mi->sample_mode) {
945 case MINSTREL_SAMPLE_IDLE:
946 break;
947
948 case MINSTREL_SAMPLE_ACTIVE:
949 if (!sample_status)
950 break;
951
952 mi->sample_mode = MINSTREL_SAMPLE_PENDING;
953 update = true;
954 break;
955
956 case MINSTREL_SAMPLE_PENDING:
957 if (sample_status)
958 break;
959
960 update = true;
961 minstrel_ht_update_stats(mp, mi, false);
962 break;
963 }
964
965
966 if (mp->hw->max_rates > 1) {
967 /*
968 * check for sudden death of spatial multiplexing,
969 * downgrade to a lower number of streams if necessary.
970 */
971 rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
972 if (rate->attempts > 30 &&
973 MINSTREL_FRAC(rate->success, rate->attempts) <
974 MINSTREL_FRAC(20, 100)) {
975 minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
976 update = true;
977 }
978
979 rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
980 if (rate2->attempts > 30 &&
981 MINSTREL_FRAC(rate2->success, rate2->attempts) <
982 MINSTREL_FRAC(20, 100)) {
983 minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
984 update = true;
985 }
986 }
987
988 if (time_after(jiffies, mi->last_stats_update +
989 (mp->update_interval / 2 * HZ) / 1000)) {
990 update = true;
991 minstrel_ht_update_stats(mp, mi, true);
992 }
993
994 if (update)
995 minstrel_ht_update_rates(mp, mi);
996}
997
998static void
999minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1000 int index)
1001{
1002 struct minstrel_rate_stats *mrs;
1003 unsigned int tx_time, tx_time_rtscts, tx_time_data;
1004 unsigned int cw = mp->cw_min;
1005 unsigned int ctime = 0;
1006 unsigned int t_slot = 9; /* FIXME */
1007 unsigned int ampdu_len = minstrel_ht_avg_ampdu_len(mi);
1008 unsigned int overhead = 0, overhead_rtscts = 0;
1009
1010 mrs = minstrel_get_ratestats(mi, index);
1011 if (mrs->prob_ewma < MINSTREL_FRAC(1, 10)) {
1012 mrs->retry_count = 1;
1013 mrs->retry_count_rtscts = 1;
1014 return;
1015 }
1016
1017 mrs->retry_count = 2;
1018 mrs->retry_count_rtscts = 2;
1019 mrs->retry_updated = true;
1020
1021 tx_time_data = minstrel_get_duration(index) * ampdu_len / 1000;
1022
1023 /* Contention time for first 2 tries */
1024 ctime = (t_slot * cw) >> 1;
1025 cw = min((cw << 1) | 1, mp->cw_max);
1026 ctime += (t_slot * cw) >> 1;
1027 cw = min((cw << 1) | 1, mp->cw_max);
1028
1029 if (index / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) {
1030 overhead = mi->overhead;
1031 overhead_rtscts = mi->overhead_rtscts;
1032 }
1033
1034 /* Total TX time for data and Contention after first 2 tries */
1035 tx_time = ctime + 2 * (overhead + tx_time_data);
1036 tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
1037
1038 /* See how many more tries we can fit inside segment size */
1039 do {
1040 /* Contention time for this try */
1041 ctime = (t_slot * cw) >> 1;
1042 cw = min((cw << 1) | 1, mp->cw_max);
1043
1044 /* Total TX time after this try */
1045 tx_time += ctime + overhead + tx_time_data;
1046 tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
1047
1048 if (tx_time_rtscts < mp->segment_size)
1049 mrs->retry_count_rtscts++;
1050 } while ((tx_time < mp->segment_size) &&
1051 (++mrs->retry_count < mp->max_retry));
1052}
1053
1054
1055static void
1056minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1057 struct ieee80211_sta_rates *ratetbl, int offset, int index)
1058{
1059 const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
1060 struct minstrel_rate_stats *mrs;
1061 u8 idx;
1062 u16 flags = group->flags;
1063
1064 mrs = minstrel_get_ratestats(mi, index);
1065 if (!mrs->retry_updated)
1066 minstrel_calc_retransmit(mp, mi, index);
1067
1068 if (mrs->prob_ewma < MINSTREL_FRAC(20, 100) || !mrs->retry_count) {
1069 ratetbl->rate[offset].count = 2;
1070 ratetbl->rate[offset].count_rts = 2;
1071 ratetbl->rate[offset].count_cts = 2;
1072 } else {
1073 ratetbl->rate[offset].count = mrs->retry_count;
1074 ratetbl->rate[offset].count_cts = mrs->retry_count;
1075 ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts;
1076 }
1077
1078 if (index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP)
1079 idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
1080 else if (flags & IEEE80211_TX_RC_VHT_MCS)
1081 idx = ((group->streams - 1) << 4) |
1082 ((index % MCS_GROUP_RATES) & 0xF);
1083 else
1084 idx = index % MCS_GROUP_RATES + (group->streams - 1) * 8;
1085
1086 /* enable RTS/CTS if needed:
1087 * - if station is in dynamic SMPS (and streams > 1)
1088 * - for fallback rates, to increase chances of getting through
1089 */
1090 if (offset > 0 ||
1091 (mi->sta->smps_mode == IEEE80211_SMPS_DYNAMIC &&
1092 group->streams > 1)) {
1093 ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
1094 flags |= IEEE80211_TX_RC_USE_RTS_CTS;
1095 }
1096
1097 ratetbl->rate[offset].idx = idx;
1098 ratetbl->rate[offset].flags = flags;
1099}
1100
1101static inline int
1102minstrel_ht_get_prob_ewma(struct minstrel_ht_sta *mi, int rate)
1103{
1104 int group = rate / MCS_GROUP_RATES;
1105 rate %= MCS_GROUP_RATES;
1106 return mi->groups[group].rates[rate].prob_ewma;
1107}
1108
1109static int
1110minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta *mi)
1111{
1112 int group = mi->max_prob_rate / MCS_GROUP_RATES;
1113 const struct mcs_group *g = &minstrel_mcs_groups[group];
1114 int rate = mi->max_prob_rate % MCS_GROUP_RATES;
1115 unsigned int duration;
1116
1117 /* Disable A-MSDU if max_prob_rate is bad */
1118 if (mi->groups[group].rates[rate].prob_ewma < MINSTREL_FRAC(50, 100))
1119 return 1;
1120
1121 duration = g->duration[rate];
1122 duration <<= g->shift;
1123
1124 /* If the rate is slower than single-stream MCS1, make A-MSDU limit small */
1125 if (duration > MCS_DURATION(1, 0, 52))
1126 return 500;
1127
1128 /*
1129 * If the rate is slower than single-stream MCS4, limit A-MSDU to usual
1130 * data packet size
1131 */
1132 if (duration > MCS_DURATION(1, 0, 104))
1133 return 1600;
1134
1135 /*
1136 * If the rate is slower than single-stream MCS7, or if the max throughput
1137 * rate success probability is less than 75%, limit A-MSDU to twice the usual
1138 * data packet size
1139 */
1140 if (duration > MCS_DURATION(1, 0, 260) ||
1141 (minstrel_ht_get_prob_ewma(mi, mi->max_tp_rate[0]) <
1142 MINSTREL_FRAC(75, 100)))
1143 return 3200;
1144
1145 /*
1146 * HT A-MPDU limits maximum MPDU size under BA agreement to 4095 bytes.
1147 * Since aggregation sessions are started/stopped without txq flush, use
1148 * the limit here to avoid the complexity of having to de-aggregate
1149 * packets in the queue.
1150 */
1151 if (!mi->sta->vht_cap.vht_supported)
1152 return IEEE80211_MAX_MPDU_LEN_HT_BA;
1153
1154 /* unlimited */
1155 return 0;
1156}
1157
1158static void
1159minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
1160{
1161 struct ieee80211_sta_rates *rates;
1162 u16 first_rate = mi->max_tp_rate[0];
1163 int i = 0;
1164
1165 if (mi->sample_mode == MINSTREL_SAMPLE_ACTIVE)
1166 first_rate = mi->sample_rate;
1167
1168 rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
1169 if (!rates)
1170 return;
1171
1172 /* Start with max_tp_rate[0] */
1173 minstrel_ht_set_rate(mp, mi, rates, i++, first_rate);
1174
1175 if (mp->hw->max_rates >= 3) {
1176 /* At least 3 tx rates supported, use max_tp_rate[1] next */
1177 minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[1]);
1178 }
1179
1180 if (mp->hw->max_rates >= 2) {
1181 minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
1182 }
1183
1184 mi->sta->max_rc_amsdu_len = minstrel_ht_get_max_amsdu_len(mi);
1185 rates->rate[i].idx = -1;
1186 rate_control_set_rates(mp->hw, mi->sta, rates);
1187}
1188
1189static int
1190minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
1191{
1192 struct minstrel_rate_stats *mrs;
1193 struct minstrel_mcs_group_data *mg;
1194 unsigned int sample_dur, sample_group, cur_max_tp_streams;
1195 int tp_rate1, tp_rate2;
1196 int sample_idx = 0;
1197
1198 if (mp->hw->max_rates == 1 && mp->sample_switch &&
1199 (mi->total_packets_cur >= SAMPLE_SWITCH_THR ||
1200 mp->sample_switch == 1))
1201 return -1;
1202
1203 if (mi->sample_wait > 0) {
1204 mi->sample_wait--;
1205 return -1;
1206 }
1207
1208 if (!mi->sample_tries)
1209 return -1;
1210
1211 sample_group = mi->sample_group;
1212 mg = &mi->groups[sample_group];
1213 sample_idx = sample_table[mg->column][mg->index];
1214 minstrel_set_next_sample_idx(mi);
1215
1216 if (!(mi->supported[sample_group] & BIT(sample_idx)))
1217 return -1;
1218
1219 mrs = &mg->rates[sample_idx];
1220 sample_idx += sample_group * MCS_GROUP_RATES;
1221
1222 /* Set tp_rate1, tp_rate2 to the highest / second highest max_tp_rate */
1223 if (minstrel_get_duration(mi->max_tp_rate[0]) >
1224 minstrel_get_duration(mi->max_tp_rate[1])) {
1225 tp_rate1 = mi->max_tp_rate[1];
1226 tp_rate2 = mi->max_tp_rate[0];
1227 } else {
1228 tp_rate1 = mi->max_tp_rate[0];
1229 tp_rate2 = mi->max_tp_rate[1];
1230 }
1231
1232 /*
1233 * Sampling might add some overhead (RTS, no aggregation)
1234 * to the frame. Hence, don't use sampling for the highest currently
1235 * used highest throughput or probability rate.
1236 */
1237 if (sample_idx == mi->max_tp_rate[0] || sample_idx == mi->max_prob_rate)
1238 return -1;
1239
1240 /*
1241 * Do not sample if the probability is already higher than 95%,
1242 * or if the rate is 3 times slower than the current max probability
1243 * rate, to avoid wasting airtime.
1244 */
1245 sample_dur = minstrel_get_duration(sample_idx);
1246 if (mrs->prob_ewma > MINSTREL_FRAC(95, 100) ||
1247 minstrel_get_duration(mi->max_prob_rate) * 3 < sample_dur)
1248 return -1;
1249
1250
1251 /*
1252 * For devices with no configurable multi-rate retry, skip sampling
1253 * below the per-group max throughput rate, and only use one sampling
1254 * attempt per rate
1255 */
1256 if (mp->hw->max_rates == 1 &&
1257 (minstrel_get_duration(mg->max_group_tp_rate[0]) < sample_dur ||
1258 mrs->attempts))
1259 return -1;
1260
1261 /* Skip already sampled slow rates */
1262 if (sample_dur >= minstrel_get_duration(tp_rate1) && mrs->attempts)
1263 return -1;
1264
1265 /*
1266 * Make sure that lower rates get sampled only occasionally,
1267 * if the link is working perfectly.
1268 */
1269
1270 cur_max_tp_streams = minstrel_mcs_groups[tp_rate1 /
1271 MCS_GROUP_RATES].streams;
1272 if (sample_dur >= minstrel_get_duration(tp_rate2) &&
1273 (cur_max_tp_streams - 1 <
1274 minstrel_mcs_groups[sample_group].streams ||
1275 sample_dur >= minstrel_get_duration(mi->max_prob_rate))) {
1276 if (mrs->sample_skipped < 20)
1277 return -1;
1278
1279 if (mi->sample_slow++ > 2)
1280 return -1;
1281 }
1282 mi->sample_tries--;
1283
1284 return sample_idx;
1285}
1286
1287static void
1288minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
1289 struct ieee80211_tx_rate_control *txrc)
1290{
1291 const struct mcs_group *sample_group;
1292 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
1293 struct ieee80211_tx_rate *rate = &info->status.rates[0];
1294 struct minstrel_ht_sta_priv *msp = priv_sta;
1295 struct minstrel_ht_sta *mi = &msp->ht;
1296 struct minstrel_priv *mp = priv;
1297 int sample_idx;
1298
1299 if (!msp->is_ht)
1300 return mac80211_minstrel.get_rate(priv, sta, &msp->legacy, txrc);
1301
1302 if (!(info->flags & IEEE80211_TX_CTL_AMPDU) &&
1303 mi->max_prob_rate / MCS_GROUP_RATES != MINSTREL_CCK_GROUP)
1304 minstrel_aggr_check(sta, txrc->skb);
1305
1306 info->flags |= mi->tx_flags;
1307
1308#ifdef CONFIG_MAC80211_DEBUGFS
1309 if (mp->fixed_rate_idx != -1)
1310 return;
1311#endif
1312
1313 /* Don't use EAPOL frames for sampling on non-mrr hw */
1314 if (mp->hw->max_rates == 1 &&
1315 (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
1316 sample_idx = -1;
1317 else
1318 sample_idx = minstrel_get_sample_rate(mp, mi);
1319
1320 mi->total_packets++;
1321
1322 /* wraparound */
1323 if (mi->total_packets == ~0) {
1324 mi->total_packets = 0;
1325 mi->sample_packets = 0;
1326 }
1327
1328 if (sample_idx < 0)
1329 return;
1330
1331 sample_group = &minstrel_mcs_groups[sample_idx / MCS_GROUP_RATES];
1332 sample_idx %= MCS_GROUP_RATES;
1333
1334 if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP] &&
1335 (sample_idx >= 4) != txrc->short_preamble)
1336 return;
1337
1338 info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1339 rate->count = 1;
1340
1341 if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP]) {
1342 int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
1343 rate->idx = mp->cck_rates[idx];
1344 } else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) {
1345 ieee80211_rate_set_vht(rate, sample_idx % MCS_GROUP_RATES,
1346 sample_group->streams);
1347 } else {
1348 rate->idx = sample_idx + (sample_group->streams - 1) * 8;
1349 }
1350
1351 rate->flags = sample_group->flags;
1352}
1353
1354static void
1355minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1356 struct ieee80211_supported_band *sband,
1357 struct ieee80211_sta *sta)
1358{
1359 int i;
1360
1361 if (sband->band != NL80211_BAND_2GHZ)
1362 return;
1363
1364 if (!ieee80211_hw_check(mp->hw, SUPPORTS_HT_CCK_RATES))
1365 return;
1366
1367 mi->cck_supported = 0;
1368 mi->cck_supported_short = 0;
1369 for (i = 0; i < 4; i++) {
1370 if (!rate_supported(sta, sband->band, mp->cck_rates[i]))
1371 continue;
1372
1373 mi->cck_supported |= BIT(i);
1374 if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
1375 mi->cck_supported_short |= BIT(i);
1376 }
1377
1378 mi->supported[MINSTREL_CCK_GROUP] = mi->cck_supported;
1379}
1380
1381static void
1382minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
1383 struct cfg80211_chan_def *chandef,
1384 struct ieee80211_sta *sta, void *priv_sta)
1385{
1386 struct minstrel_priv *mp = priv;
1387 struct minstrel_ht_sta_priv *msp = priv_sta;
1388 struct minstrel_ht_sta *mi = &msp->ht;
1389 struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
1390 u16 ht_cap = sta->ht_cap.cap;
1391 struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
1392 int use_vht;
1393 int n_supported = 0;
1394 int ack_dur;
1395 int stbc;
1396 int i;
1397 bool ldpc;
1398
1399 /* fall back to the old minstrel for legacy stations */
1400 if (!sta->ht_cap.ht_supported)
1401 goto use_legacy;
1402
1403 BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB);
1404
1405 if (vht_cap->vht_supported)
1406 use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0);
1407 else
1408 use_vht = 0;
1409
1410 msp->is_ht = true;
1411 memset(mi, 0, sizeof(*mi));
1412
1413 mi->sta = sta;
1414 mi->last_stats_update = jiffies;
1415
1416 ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
1417 mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
1418 mi->overhead += ack_dur;
1419 mi->overhead_rtscts = mi->overhead + 2 * ack_dur;
1420
1421 mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);
1422
1423 /* When using MRR, sample more on the first attempt, without delay */
1424 if (mp->has_mrr) {
1425 mi->sample_count = 16;
1426 mi->sample_wait = 0;
1427 } else {
1428 mi->sample_count = 8;
1429 mi->sample_wait = 8;
1430 }
1431 mi->sample_tries = 4;
1432
1433 if (!use_vht) {
1434 stbc = (ht_cap & IEEE80211_HT_CAP_RX_STBC) >>
1435 IEEE80211_HT_CAP_RX_STBC_SHIFT;
1436
1437 ldpc = ht_cap & IEEE80211_HT_CAP_LDPC_CODING;
1438 } else {
1439 stbc = (vht_cap->cap & IEEE80211_VHT_CAP_RXSTBC_MASK) >>
1440 IEEE80211_VHT_CAP_RXSTBC_SHIFT;
1441
1442 ldpc = vht_cap->cap & IEEE80211_VHT_CAP_RXLDPC;
1443 }
1444
1445 mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;
1446 if (ldpc)
1447 mi->tx_flags |= IEEE80211_TX_CTL_LDPC;
1448
1449 for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
1450 u32 gflags = minstrel_mcs_groups[i].flags;
1451 int bw, nss;
1452
1453 mi->supported[i] = 0;
1454 if (i == MINSTREL_CCK_GROUP) {
1455 minstrel_ht_update_cck(mp, mi, sband, sta);
1456 continue;
1457 }
1458
1459 if (gflags & IEEE80211_TX_RC_SHORT_GI) {
1460 if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1461 if (!(ht_cap & IEEE80211_HT_CAP_SGI_40))
1462 continue;
1463 } else {
1464 if (!(ht_cap & IEEE80211_HT_CAP_SGI_20))
1465 continue;
1466 }
1467 }
1468
1469 if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
1470 sta->bandwidth < IEEE80211_STA_RX_BW_40)
1471 continue;
1472
1473 nss = minstrel_mcs_groups[i].streams;
1474
1475 /* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
1476 if (sta->smps_mode == IEEE80211_SMPS_STATIC && nss > 1)
1477 continue;
1478
1479 /* HT rate */
1480 if (gflags & IEEE80211_TX_RC_MCS) {
1481 if (use_vht && minstrel_vht_only)
1482 continue;
1483
1484 mi->supported[i] = mcs->rx_mask[nss - 1];
1485 if (mi->supported[i])
1486 n_supported++;
1487 continue;
1488 }
1489
1490 /* VHT rate */
1491 if (!vht_cap->vht_supported ||
1492 WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) ||
1493 WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH))
1494 continue;
1495
1496 if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) {
1497 if (sta->bandwidth < IEEE80211_STA_RX_BW_80 ||
1498 ((gflags & IEEE80211_TX_RC_SHORT_GI) &&
1499 !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) {
1500 continue;
1501 }
1502 }
1503
1504 if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1505 bw = BW_40;
1506 else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH)
1507 bw = BW_80;
1508 else
1509 bw = BW_20;
1510
1511 mi->supported[i] = minstrel_get_valid_vht_rates(bw, nss,
1512 vht_cap->vht_mcs.tx_mcs_map);
1513
1514 if (mi->supported[i])
1515 n_supported++;
1516 }
1517
1518 if (!n_supported)
1519 goto use_legacy;
1520
1521 mi->supported[MINSTREL_CCK_GROUP] |= mi->cck_supported_short << 4;
1522
1523 /* create an initial rate table with the lowest supported rates */
1524 minstrel_ht_update_stats(mp, mi, true);
1525 minstrel_ht_update_rates(mp, mi);
1526
1527 return;
1528
1529use_legacy:
1530 msp->is_ht = false;
1531 memset(&msp->legacy, 0, sizeof(msp->legacy));
1532 msp->legacy.r = msp->ratelist;
1533 msp->legacy.sample_table = msp->sample_table;
1534 return mac80211_minstrel.rate_init(priv, sband, chandef, sta,
1535 &msp->legacy);
1536}
1537
1538static void
1539minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
1540 struct cfg80211_chan_def *chandef,
1541 struct ieee80211_sta *sta, void *priv_sta)
1542{
1543 minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1544}
1545
1546static void
1547minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
1548 struct cfg80211_chan_def *chandef,
1549 struct ieee80211_sta *sta, void *priv_sta,
1550 u32 changed)
1551{
1552 minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1553}
1554
1555static void *
1556minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1557{
1558 struct ieee80211_supported_band *sband;
1559 struct minstrel_ht_sta_priv *msp;
1560 struct minstrel_priv *mp = priv;
1561 struct ieee80211_hw *hw = mp->hw;
1562 int max_rates = 0;
1563 int i;
1564
1565 for (i = 0; i < NUM_NL80211_BANDS; i++) {
1566 sband = hw->wiphy->bands[i];
1567 if (sband && sband->n_bitrates > max_rates)
1568 max_rates = sband->n_bitrates;
1569 }
1570
1571 msp = kzalloc(sizeof(*msp), gfp);
1572 if (!msp)
1573 return NULL;
1574
1575 msp->ratelist = kcalloc(max_rates, sizeof(struct minstrel_rate), gfp);
1576 if (!msp->ratelist)
1577 goto error;
1578
1579 msp->sample_table = kmalloc_array(max_rates, SAMPLE_COLUMNS, gfp);
1580 if (!msp->sample_table)
1581 goto error1;
1582
1583 return msp;
1584
1585error1:
1586 kfree(msp->ratelist);
1587error:
1588 kfree(msp);
1589 return NULL;
1590}
1591
1592static void
1593minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
1594{
1595 struct minstrel_ht_sta_priv *msp = priv_sta;
1596
1597 kfree(msp->sample_table);
1598 kfree(msp->ratelist);
1599 kfree(msp);
1600}
1601
1602static void
1603minstrel_ht_init_cck_rates(struct minstrel_priv *mp)
1604{
1605 static const int bitrates[4] = { 10, 20, 55, 110 };
1606 struct ieee80211_supported_band *sband;
1607 u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef);
1608 int i, j;
1609
1610 sband = mp->hw->wiphy->bands[NL80211_BAND_2GHZ];
1611 if (!sband)
1612 return;
1613
1614 for (i = 0; i < sband->n_bitrates; i++) {
1615 struct ieee80211_rate *rate = &sband->bitrates[i];
1616
1617 if (rate->flags & IEEE80211_RATE_ERP_G)
1618 continue;
1619
1620 if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
1621 continue;
1622
1623 for (j = 0; j < ARRAY_SIZE(bitrates); j++) {
1624 if (rate->bitrate != bitrates[j])
1625 continue;
1626
1627 mp->cck_rates[j] = i;
1628 break;
1629 }
1630 }
1631}
1632
1633static void *
1634minstrel_ht_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1635{
1636 struct minstrel_priv *mp;
1637
1638 mp = kzalloc(sizeof(struct minstrel_priv), GFP_ATOMIC);
1639 if (!mp)
1640 return NULL;
1641
1642 mp->sample_switch = -1;
1643
1644 /* contention window settings
1645 * Just an approximation. Using the per-queue values would complicate
1646 * the calculations and is probably unnecessary */
1647 mp->cw_min = 15;
1648 mp->cw_max = 1023;
1649
1650 /* number of packets (in %) to use for sampling other rates
1651 * sample less often for non-mrr packets, because the overhead
1652 * is much higher than with mrr */
1653 mp->lookaround_rate = 5;
1654 mp->lookaround_rate_mrr = 10;
1655
1656 /* maximum time that the hw is allowed to stay in one MRR segment */
1657 mp->segment_size = 6000;
1658
1659 if (hw->max_rate_tries > 0)
1660 mp->max_retry = hw->max_rate_tries;
1661 else
1662 /* safe default, does not necessarily have to match hw properties */
1663 mp->max_retry = 7;
1664
1665 if (hw->max_rates >= 4)
1666 mp->has_mrr = true;
1667
1668 mp->hw = hw;
1669 mp->update_interval = 100;
1670
1671#ifdef CONFIG_MAC80211_DEBUGFS
1672 mp->fixed_rate_idx = (u32) -1;
1673 debugfs_create_u32("fixed_rate_idx", S_IRUGO | S_IWUGO, debugfsdir,
1674 &mp->fixed_rate_idx);
1675 debugfs_create_u32("sample_switch", S_IRUGO | S_IWUSR, debugfsdir,
1676 &mp->sample_switch);
1677#endif
1678
1679 minstrel_ht_init_cck_rates(mp);
1680
1681 return mp;
1682}
1683
1684static void
1685minstrel_ht_free(void *priv)
1686{
1687 kfree(priv);
1688}
1689
1690static u32 minstrel_ht_get_expected_throughput(void *priv_sta)
1691{
1692 struct minstrel_ht_sta_priv *msp = priv_sta;
1693 struct minstrel_ht_sta *mi = &msp->ht;
1694 int i, j, prob, tp_avg;
1695
1696 if (!msp->is_ht)
1697 return mac80211_minstrel.get_expected_throughput(priv_sta);
1698
1699 i = mi->max_tp_rate[0] / MCS_GROUP_RATES;
1700 j = mi->max_tp_rate[0] % MCS_GROUP_RATES;
1701 prob = mi->groups[i].rates[j].prob_ewma;
1702
1703 /* convert tp_avg from pkt per second in kbps */
1704 tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10;
1705 tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024;
1706
1707 return tp_avg;
1708}
1709
1710static const struct rate_control_ops mac80211_minstrel_ht = {
1711 .name = "minstrel_ht",
1712 .tx_status_ext = minstrel_ht_tx_status,
1713 .get_rate = minstrel_ht_get_rate,
1714 .rate_init = minstrel_ht_rate_init,
1715 .rate_update = minstrel_ht_rate_update,
1716 .alloc_sta = minstrel_ht_alloc_sta,
1717 .free_sta = minstrel_ht_free_sta,
1718 .alloc = minstrel_ht_alloc,
1719 .free = minstrel_ht_free,
1720#ifdef CONFIG_MAC80211_DEBUGFS
1721 .add_sta_debugfs = minstrel_ht_add_sta_debugfs,
1722#endif
1723 .get_expected_throughput = minstrel_ht_get_expected_throughput,
1724};
1725
1726
1727static void __init init_sample_table(void)
1728{
1729 int col, i, new_idx;
1730 u8 rnd[MCS_GROUP_RATES];
1731
1732 memset(sample_table, 0xff, sizeof(sample_table));
1733 for (col = 0; col < SAMPLE_COLUMNS; col++) {
1734 prandom_bytes(rnd, sizeof(rnd));
1735 for (i = 0; i < MCS_GROUP_RATES; i++) {
1736 new_idx = (i + rnd[i]) % MCS_GROUP_RATES;
1737 while (sample_table[col][new_idx] != 0xff)
1738 new_idx = (new_idx + 1) % MCS_GROUP_RATES;
1739
1740 sample_table[col][new_idx] = i;
1741 }
1742 }
1743}
1744
1745int __init
1746rc80211_minstrel_init(void)
1747{
1748 init_sample_table();
1749 return ieee80211_rate_control_register(&mac80211_minstrel_ht);
1750}
1751
1752void
1753rc80211_minstrel_exit(void)
1754{
1755 ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
1756}