Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Syncookies implementation for the Linux kernel
  4 *
  5 *  Copyright (C) 1997 Andi Kleen
  6 *  Based on ideas by D.J.Bernstein and Eric Schenk.
  7 */
  8
  9#include <linux/tcp.h>
 10#include <linux/slab.h>
 11#include <linux/random.h>
 12#include <linux/siphash.h>
 13#include <linux/kernel.h>
 14#include <linux/export.h>
 15#include <net/secure_seq.h>
 16#include <net/tcp.h>
 17#include <net/route.h>
 18
 19static siphash_key_t syncookie_secret[2] __read_mostly;
 20
 21#define COOKIEBITS 24	/* Upper bits store count */
 22#define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
 23
 24/* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
 25 * stores TCP options:
 26 *
 27 * MSB                               LSB
 28 * | 31 ...   6 |  5  |  4   | 3 2 1 0 |
 29 * |  Timestamp | ECN | SACK | WScale  |
 30 *
 31 * When we receive a valid cookie-ACK, we look at the echoed tsval (if
 32 * any) to figure out which TCP options we should use for the rebuilt
 33 * connection.
 34 *
 35 * A WScale setting of '0xf' (which is an invalid scaling value)
 36 * means that original syn did not include the TCP window scaling option.
 37 */
 38#define TS_OPT_WSCALE_MASK	0xf
 39#define TS_OPT_SACK		BIT(4)
 40#define TS_OPT_ECN		BIT(5)
 41/* There is no TS_OPT_TIMESTAMP:
 42 * if ACK contains timestamp option, we already know it was
 43 * requested/supported by the syn/synack exchange.
 44 */
 45#define TSBITS	6
 46#define TSMASK	(((__u32)1 << TSBITS) - 1)
 47
 48static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
 49		       u32 count, int c)
 50{
 51	net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
 52	return siphash_4u32((__force u32)saddr, (__force u32)daddr,
 53			    (__force u32)sport << 16 | (__force u32)dport,
 54			    count, &syncookie_secret[c]);
 55}
 56
 57
 58/*
 59 * when syncookies are in effect and tcp timestamps are enabled we encode
 60 * tcp options in the lower bits of the timestamp value that will be
 61 * sent in the syn-ack.
 62 * Since subsequent timestamps use the normal tcp_time_stamp value, we
 63 * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
 64 */
 65u64 cookie_init_timestamp(struct request_sock *req, u64 now)
 66{
 67	struct inet_request_sock *ireq;
 68	u32 ts, ts_now = tcp_ns_to_ts(now);
 69	u32 options = 0;
 70
 71	ireq = inet_rsk(req);
 72
 73	options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
 74	if (ireq->sack_ok)
 75		options |= TS_OPT_SACK;
 76	if (ireq->ecn_ok)
 77		options |= TS_OPT_ECN;
 78
 79	ts = ts_now & ~TSMASK;
 80	ts |= options;
 81	if (ts > ts_now) {
 82		ts >>= TSBITS;
 83		ts--;
 84		ts <<= TSBITS;
 85		ts |= options;
 86	}
 87	return (u64)ts * (NSEC_PER_SEC / TCP_TS_HZ);
 88}
 89
 90
 91static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
 92				   __be16 dport, __u32 sseq, __u32 data)
 93{
 94	/*
 95	 * Compute the secure sequence number.
 96	 * The output should be:
 97	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
 98	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
 99	 * Where sseq is their sequence number and count increases every
100	 * minute by 1.
101	 * As an extra hack, we add a small "data" value that encodes the
102	 * MSS into the second hash value.
103	 */
104	u32 count = tcp_cookie_time();
105	return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
106		sseq + (count << COOKIEBITS) +
107		((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
108		 & COOKIEMASK));
109}
110
111/*
112 * This retrieves the small "data" value from the syncookie.
113 * If the syncookie is bad, the data returned will be out of
114 * range.  This must be checked by the caller.
115 *
116 * The count value used to generate the cookie must be less than
117 * MAX_SYNCOOKIE_AGE minutes in the past.
118 * The return value (__u32)-1 if this test fails.
119 */
120static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
121				  __be16 sport, __be16 dport, __u32 sseq)
122{
123	u32 diff, count = tcp_cookie_time();
124
125	/* Strip away the layers from the cookie */
126	cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
127
128	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
129	diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
130	if (diff >= MAX_SYNCOOKIE_AGE)
131		return (__u32)-1;
132
133	return (cookie -
134		cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
135		& COOKIEMASK;	/* Leaving the data behind */
136}
137
138/*
139 * MSS Values are chosen based on the 2011 paper
140 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
141 * Values ..
142 *  .. lower than 536 are rare (< 0.2%)
143 *  .. between 537 and 1299 account for less than < 1.5% of observed values
144 *  .. in the 1300-1349 range account for about 15 to 20% of observed mss values
145 *  .. exceeding 1460 are very rare (< 0.04%)
146 *
147 *  1460 is the single most frequently announced mss value (30 to 46% depending
148 *  on monitor location).  Table must be sorted.
149 */
150static __u16 const msstab[] = {
151	536,
152	1300,
153	1440,	/* 1440, 1452: PPPoE */
154	1460,
155};
156
157/*
158 * Generate a syncookie.  mssp points to the mss, which is returned
159 * rounded down to the value encoded in the cookie.
160 */
161u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
162			      u16 *mssp)
163{
164	int mssind;
165	const __u16 mss = *mssp;
166
167	for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
168		if (mss >= msstab[mssind])
169			break;
170	*mssp = msstab[mssind];
171
172	return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
173				     th->source, th->dest, ntohl(th->seq),
174				     mssind);
175}
176EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
177
178__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
179{
180	const struct iphdr *iph = ip_hdr(skb);
181	const struct tcphdr *th = tcp_hdr(skb);
182
183	return __cookie_v4_init_sequence(iph, th, mssp);
184}
185
186/*
187 * Check if a ack sequence number is a valid syncookie.
188 * Return the decoded mss if it is, or 0 if not.
189 */
190int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
191		      u32 cookie)
192{
193	__u32 seq = ntohl(th->seq) - 1;
194	__u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
195					    th->source, th->dest, seq);
196
197	return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
198}
199EXPORT_SYMBOL_GPL(__cookie_v4_check);
200
201struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
202				 struct request_sock *req,
203				 struct dst_entry *dst, u32 tsoff)
204{
205	struct inet_connection_sock *icsk = inet_csk(sk);
206	struct sock *child;
207	bool own_req;
208
209	child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
210						 NULL, &own_req);
211	if (child) {
212		refcount_set(&req->rsk_refcnt, 1);
213		tcp_sk(child)->tsoffset = tsoff;
214		sock_rps_save_rxhash(child, skb);
215
216		if (rsk_drop_req(req)) {
217			reqsk_put(req);
218			return child;
219		}
220
221		if (inet_csk_reqsk_queue_add(sk, req, child))
222			return child;
223
224		bh_unlock_sock(child);
225		sock_put(child);
226	}
227	__reqsk_free(req);
228
229	return NULL;
230}
231EXPORT_SYMBOL(tcp_get_cookie_sock);
232
233/*
234 * when syncookies are in effect and tcp timestamps are enabled we stored
235 * additional tcp options in the timestamp.
236 * This extracts these options from the timestamp echo.
237 *
238 * return false if we decode a tcp option that is disabled
239 * on the host.
240 */
241bool cookie_timestamp_decode(const struct net *net,
242			     struct tcp_options_received *tcp_opt)
243{
244	/* echoed timestamp, lowest bits contain options */
245	u32 options = tcp_opt->rcv_tsecr;
246
247	if (!tcp_opt->saw_tstamp)  {
248		tcp_clear_options(tcp_opt);
249		return true;
250	}
251
252	if (!net->ipv4.sysctl_tcp_timestamps)
253		return false;
254
255	tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
256
257	if (tcp_opt->sack_ok && !net->ipv4.sysctl_tcp_sack)
258		return false;
259
260	if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
261		return true; /* no window scaling */
262
263	tcp_opt->wscale_ok = 1;
264	tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
265
266	return net->ipv4.sysctl_tcp_window_scaling != 0;
267}
268EXPORT_SYMBOL(cookie_timestamp_decode);
269
270bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt,
271		   const struct net *net, const struct dst_entry *dst)
272{
273	bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN;
274
275	if (!ecn_ok)
276		return false;
277
278	if (net->ipv4.sysctl_tcp_ecn)
279		return true;
280
281	return dst_feature(dst, RTAX_FEATURE_ECN);
282}
283EXPORT_SYMBOL(cookie_ecn_ok);
284
285struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
286					    struct sock *sk,
287					    struct sk_buff *skb)
288{
289	struct tcp_request_sock *treq;
290	struct request_sock *req;
291
292#ifdef CONFIG_MPTCP
293	if (sk_is_mptcp(sk))
294		ops = &mptcp_subflow_request_sock_ops;
295#endif
296
297	req = inet_reqsk_alloc(ops, sk, false);
298	if (!req)
299		return NULL;
300
301	treq = tcp_rsk(req);
302	treq->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
303#if IS_ENABLED(CONFIG_MPTCP)
304	treq->is_mptcp = sk_is_mptcp(sk);
305	if (treq->is_mptcp) {
306		int err = mptcp_subflow_init_cookie_req(req, sk, skb);
307
308		if (err) {
309			reqsk_free(req);
310			return NULL;
311		}
312	}
313#endif
314
315	return req;
316}
317EXPORT_SYMBOL_GPL(cookie_tcp_reqsk_alloc);
318
319/* On input, sk is a listener.
320 * Output is listener if incoming packet would not create a child
321 *           NULL if memory could not be allocated.
322 */
323struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
324{
325	struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
326	struct tcp_options_received tcp_opt;
327	struct inet_request_sock *ireq;
328	struct tcp_request_sock *treq;
329	struct tcp_sock *tp = tcp_sk(sk);
330	const struct tcphdr *th = tcp_hdr(skb);
331	__u32 cookie = ntohl(th->ack_seq) - 1;
332	struct sock *ret = sk;
333	struct request_sock *req;
334	int full_space, mss;
335	struct rtable *rt;
336	__u8 rcv_wscale;
337	struct flowi4 fl4;
338	u32 tsoff = 0;
339
340	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies || !th->ack || th->rst)
341		goto out;
342
343	if (tcp_synq_no_recent_overflow(sk))
344		goto out;
345
346	mss = __cookie_v4_check(ip_hdr(skb), th, cookie);
347	if (mss == 0) {
348		__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
349		goto out;
350	}
351
352	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
353
354	/* check for timestamp cookie support */
355	memset(&tcp_opt, 0, sizeof(tcp_opt));
356	tcp_parse_options(sock_net(sk), skb, &tcp_opt, 0, NULL);
357
358	if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
359		tsoff = secure_tcp_ts_off(sock_net(sk),
360					  ip_hdr(skb)->daddr,
361					  ip_hdr(skb)->saddr);
362		tcp_opt.rcv_tsecr -= tsoff;
363	}
364
365	if (!cookie_timestamp_decode(sock_net(sk), &tcp_opt))
366		goto out;
367
368	ret = NULL;
369	req = cookie_tcp_reqsk_alloc(&tcp_request_sock_ops, sk, skb);
370	if (!req)
371		goto out;
372
373	ireq = inet_rsk(req);
374	treq = tcp_rsk(req);
375	treq->rcv_isn		= ntohl(th->seq) - 1;
376	treq->snt_isn		= cookie;
377	treq->ts_off		= 0;
378	treq->txhash		= net_tx_rndhash();
379	req->mss		= mss;
380	ireq->ir_num		= ntohs(th->dest);
381	ireq->ir_rmt_port	= th->source;
382	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
383	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
384	ireq->ir_mark		= inet_request_mark(sk, skb);
385	ireq->snd_wscale	= tcp_opt.snd_wscale;
386	ireq->sack_ok		= tcp_opt.sack_ok;
387	ireq->wscale_ok		= tcp_opt.wscale_ok;
388	ireq->tstamp_ok		= tcp_opt.saw_tstamp;
389	req->ts_recent		= tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
390	treq->snt_synack	= 0;
391	treq->tfo_listener	= false;
392
393	if (IS_ENABLED(CONFIG_SMC))
394		ireq->smc_ok = 0;
395
396	ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
397
398	/* We throwed the options of the initial SYN away, so we hope
399	 * the ACK carries the same options again (see RFC1122 4.2.3.8)
400	 */
401	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(sock_net(sk), skb));
402
403	if (security_inet_conn_request(sk, skb, req)) {
404		reqsk_free(req);
405		goto out;
406	}
407
408	req->num_retrans = 0;
409
410	/*
411	 * We need to lookup the route here to get at the correct
412	 * window size. We should better make sure that the window size
413	 * hasn't changed since we received the original syn, but I see
414	 * no easy way to do this.
415	 */
416	flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
417			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP,
418			   inet_sk_flowi_flags(sk),
419			   opt->srr ? opt->faddr : ireq->ir_rmt_addr,
420			   ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid);
421	security_req_classify_flow(req, flowi4_to_flowi_common(&fl4));
422	rt = ip_route_output_key(sock_net(sk), &fl4);
423	if (IS_ERR(rt)) {
424		reqsk_free(req);
425		goto out;
426	}
427
428	/* Try to redo what tcp_v4_send_synack did. */
429	req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
430	/* limit the window selection if the user enforce a smaller rx buffer */
431	full_space = tcp_full_space(sk);
432	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
433	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
434		req->rsk_window_clamp = full_space;
435
436	tcp_select_initial_window(sk, full_space, req->mss,
437				  &req->rsk_rcv_wnd, &req->rsk_window_clamp,
438				  ireq->wscale_ok, &rcv_wscale,
439				  dst_metric(&rt->dst, RTAX_INITRWND));
440
441	ireq->rcv_wscale  = rcv_wscale;
442	ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
443
444	ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst, tsoff);
445	/* ip_queue_xmit() depends on our flow being setup
446	 * Normal sockets get it right from inet_csk_route_child_sock()
447	 */
448	if (ret)
449		inet_sk(ret)->cork.fl.u.ip4 = fl4;
450out:	return ret;
451}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Syncookies implementation for the Linux kernel
  4 *
  5 *  Copyright (C) 1997 Andi Kleen
  6 *  Based on ideas by D.J.Bernstein and Eric Schenk.
  7 */
  8
  9#include <linux/tcp.h>
 10#include <linux/slab.h>
 11#include <linux/random.h>
 12#include <linux/siphash.h>
 13#include <linux/kernel.h>
 14#include <linux/export.h>
 15#include <net/secure_seq.h>
 16#include <net/tcp.h>
 17#include <net/route.h>
 18
 19static siphash_key_t syncookie_secret[2] __read_mostly;
 20
 21#define COOKIEBITS 24	/* Upper bits store count */
 22#define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
 23
 24/* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
 25 * stores TCP options:
 26 *
 27 * MSB                               LSB
 28 * | 31 ...   6 |  5  |  4   | 3 2 1 0 |
 29 * |  Timestamp | ECN | SACK | WScale  |
 30 *
 31 * When we receive a valid cookie-ACK, we look at the echoed tsval (if
 32 * any) to figure out which TCP options we should use for the rebuilt
 33 * connection.
 34 *
 35 * A WScale setting of '0xf' (which is an invalid scaling value)
 36 * means that original syn did not include the TCP window scaling option.
 37 */
 38#define TS_OPT_WSCALE_MASK	0xf
 39#define TS_OPT_SACK		BIT(4)
 40#define TS_OPT_ECN		BIT(5)
 41/* There is no TS_OPT_TIMESTAMP:
 42 * if ACK contains timestamp option, we already know it was
 43 * requested/supported by the syn/synack exchange.
 44 */
 45#define TSBITS	6
 46#define TSMASK	(((__u32)1 << TSBITS) - 1)
 47
 48static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
 49		       u32 count, int c)
 50{
 51	net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
 52	return siphash_4u32((__force u32)saddr, (__force u32)daddr,
 53			    (__force u32)sport << 16 | (__force u32)dport,
 54			    count, &syncookie_secret[c]);
 55}
 56
 57
 58/*
 59 * when syncookies are in effect and tcp timestamps are enabled we encode
 60 * tcp options in the lower bits of the timestamp value that will be
 61 * sent in the syn-ack.
 62 * Since subsequent timestamps use the normal tcp_time_stamp value, we
 63 * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
 64 */
 65u64 cookie_init_timestamp(struct request_sock *req)
 66{
 67	struct inet_request_sock *ireq;
 68	u32 ts, ts_now = tcp_time_stamp_raw();
 69	u32 options = 0;
 70
 71	ireq = inet_rsk(req);
 72
 73	options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
 74	if (ireq->sack_ok)
 75		options |= TS_OPT_SACK;
 76	if (ireq->ecn_ok)
 77		options |= TS_OPT_ECN;
 78
 79	ts = ts_now & ~TSMASK;
 80	ts |= options;
 81	if (ts > ts_now) {
 82		ts >>= TSBITS;
 83		ts--;
 84		ts <<= TSBITS;
 85		ts |= options;
 86	}
 87	return (u64)ts * (NSEC_PER_SEC / TCP_TS_HZ);
 88}
 89
 90
 91static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
 92				   __be16 dport, __u32 sseq, __u32 data)
 93{
 94	/*
 95	 * Compute the secure sequence number.
 96	 * The output should be:
 97	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
 98	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
 99	 * Where sseq is their sequence number and count increases every
100	 * minute by 1.
101	 * As an extra hack, we add a small "data" value that encodes the
102	 * MSS into the second hash value.
103	 */
104	u32 count = tcp_cookie_time();
105	return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
106		sseq + (count << COOKIEBITS) +
107		((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
108		 & COOKIEMASK));
109}
110
111/*
112 * This retrieves the small "data" value from the syncookie.
113 * If the syncookie is bad, the data returned will be out of
114 * range.  This must be checked by the caller.
115 *
116 * The count value used to generate the cookie must be less than
117 * MAX_SYNCOOKIE_AGE minutes in the past.
118 * The return value (__u32)-1 if this test fails.
119 */
120static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
121				  __be16 sport, __be16 dport, __u32 sseq)
122{
123	u32 diff, count = tcp_cookie_time();
124
125	/* Strip away the layers from the cookie */
126	cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
127
128	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
129	diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
130	if (diff >= MAX_SYNCOOKIE_AGE)
131		return (__u32)-1;
132
133	return (cookie -
134		cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
135		& COOKIEMASK;	/* Leaving the data behind */
136}
137
138/*
139 * MSS Values are chosen based on the 2011 paper
140 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
141 * Values ..
142 *  .. lower than 536 are rare (< 0.2%)
143 *  .. between 537 and 1299 account for less than < 1.5% of observed values
144 *  .. in the 1300-1349 range account for about 15 to 20% of observed mss values
145 *  .. exceeding 1460 are very rare (< 0.04%)
146 *
147 *  1460 is the single most frequently announced mss value (30 to 46% depending
148 *  on monitor location).  Table must be sorted.
149 */
150static __u16 const msstab[] = {
151	536,
152	1300,
153	1440,	/* 1440, 1452: PPPoE */
154	1460,
155};
156
157/*
158 * Generate a syncookie.  mssp points to the mss, which is returned
159 * rounded down to the value encoded in the cookie.
160 */
161u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
162			      u16 *mssp)
163{
164	int mssind;
165	const __u16 mss = *mssp;
166
167	for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
168		if (mss >= msstab[mssind])
169			break;
170	*mssp = msstab[mssind];
171
172	return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
173				     th->source, th->dest, ntohl(th->seq),
174				     mssind);
175}
176EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
177
178__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
179{
180	const struct iphdr *iph = ip_hdr(skb);
181	const struct tcphdr *th = tcp_hdr(skb);
182
183	return __cookie_v4_init_sequence(iph, th, mssp);
184}
185
186/*
187 * Check if a ack sequence number is a valid syncookie.
188 * Return the decoded mss if it is, or 0 if not.
189 */
190int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
191		      u32 cookie)
192{
193	__u32 seq = ntohl(th->seq) - 1;
194	__u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
195					    th->source, th->dest, seq);
196
197	return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
198}
199EXPORT_SYMBOL_GPL(__cookie_v4_check);
200
201struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
202				 struct request_sock *req,
203				 struct dst_entry *dst, u32 tsoff)
204{
205	struct inet_connection_sock *icsk = inet_csk(sk);
206	struct sock *child;
207	bool own_req;
208
209	child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
210						 NULL, &own_req);
211	if (child) {
212		refcount_set(&req->rsk_refcnt, 1);
213		tcp_sk(child)->tsoffset = tsoff;
214		sock_rps_save_rxhash(child, skb);
 
 
 
 
 
 
215		if (inet_csk_reqsk_queue_add(sk, req, child))
216			return child;
217
218		bh_unlock_sock(child);
219		sock_put(child);
220	}
221	__reqsk_free(req);
222
223	return NULL;
224}
225EXPORT_SYMBOL(tcp_get_cookie_sock);
226
227/*
228 * when syncookies are in effect and tcp timestamps are enabled we stored
229 * additional tcp options in the timestamp.
230 * This extracts these options from the timestamp echo.
231 *
232 * return false if we decode a tcp option that is disabled
233 * on the host.
234 */
235bool cookie_timestamp_decode(const struct net *net,
236			     struct tcp_options_received *tcp_opt)
237{
238	/* echoed timestamp, lowest bits contain options */
239	u32 options = tcp_opt->rcv_tsecr;
240
241	if (!tcp_opt->saw_tstamp)  {
242		tcp_clear_options(tcp_opt);
243		return true;
244	}
245
246	if (!net->ipv4.sysctl_tcp_timestamps)
247		return false;
248
249	tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
250
251	if (tcp_opt->sack_ok && !net->ipv4.sysctl_tcp_sack)
252		return false;
253
254	if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
255		return true; /* no window scaling */
256
257	tcp_opt->wscale_ok = 1;
258	tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
259
260	return net->ipv4.sysctl_tcp_window_scaling != 0;
261}
262EXPORT_SYMBOL(cookie_timestamp_decode);
263
264bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt,
265		   const struct net *net, const struct dst_entry *dst)
266{
267	bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN;
268
269	if (!ecn_ok)
270		return false;
271
272	if (net->ipv4.sysctl_tcp_ecn)
273		return true;
274
275	return dst_feature(dst, RTAX_FEATURE_ECN);
276}
277EXPORT_SYMBOL(cookie_ecn_ok);
278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
279/* On input, sk is a listener.
280 * Output is listener if incoming packet would not create a child
281 *           NULL if memory could not be allocated.
282 */
283struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
284{
285	struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
286	struct tcp_options_received tcp_opt;
287	struct inet_request_sock *ireq;
288	struct tcp_request_sock *treq;
289	struct tcp_sock *tp = tcp_sk(sk);
290	const struct tcphdr *th = tcp_hdr(skb);
291	__u32 cookie = ntohl(th->ack_seq) - 1;
292	struct sock *ret = sk;
293	struct request_sock *req;
294	int mss;
295	struct rtable *rt;
296	__u8 rcv_wscale;
297	struct flowi4 fl4;
298	u32 tsoff = 0;
299
300	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies || !th->ack || th->rst)
301		goto out;
302
303	if (tcp_synq_no_recent_overflow(sk))
304		goto out;
305
306	mss = __cookie_v4_check(ip_hdr(skb), th, cookie);
307	if (mss == 0) {
308		__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
309		goto out;
310	}
311
312	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
313
314	/* check for timestamp cookie support */
315	memset(&tcp_opt, 0, sizeof(tcp_opt));
316	tcp_parse_options(sock_net(sk), skb, &tcp_opt, 0, NULL);
317
318	if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
319		tsoff = secure_tcp_ts_off(sock_net(sk),
320					  ip_hdr(skb)->daddr,
321					  ip_hdr(skb)->saddr);
322		tcp_opt.rcv_tsecr -= tsoff;
323	}
324
325	if (!cookie_timestamp_decode(sock_net(sk), &tcp_opt))
326		goto out;
327
328	ret = NULL;
329	req = inet_reqsk_alloc(&tcp_request_sock_ops, sk, false); /* for safety */
330	if (!req)
331		goto out;
332
333	ireq = inet_rsk(req);
334	treq = tcp_rsk(req);
335	treq->rcv_isn		= ntohl(th->seq) - 1;
336	treq->snt_isn		= cookie;
337	treq->ts_off		= 0;
338	treq->txhash		= net_tx_rndhash();
339	req->mss		= mss;
340	ireq->ir_num		= ntohs(th->dest);
341	ireq->ir_rmt_port	= th->source;
342	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
343	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
344	ireq->ir_mark		= inet_request_mark(sk, skb);
345	ireq->snd_wscale	= tcp_opt.snd_wscale;
346	ireq->sack_ok		= tcp_opt.sack_ok;
347	ireq->wscale_ok		= tcp_opt.wscale_ok;
348	ireq->tstamp_ok		= tcp_opt.saw_tstamp;
349	req->ts_recent		= tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
350	treq->snt_synack	= 0;
351	treq->tfo_listener	= false;
 
352	if (IS_ENABLED(CONFIG_SMC))
353		ireq->smc_ok = 0;
354
355	ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
356
357	/* We throwed the options of the initial SYN away, so we hope
358	 * the ACK carries the same options again (see RFC1122 4.2.3.8)
359	 */
360	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(sock_net(sk), skb));
361
362	if (security_inet_conn_request(sk, skb, req)) {
363		reqsk_free(req);
364		goto out;
365	}
366
367	req->num_retrans = 0;
368
369	/*
370	 * We need to lookup the route here to get at the correct
371	 * window size. We should better make sure that the window size
372	 * hasn't changed since we received the original syn, but I see
373	 * no easy way to do this.
374	 */
375	flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
376			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP,
377			   inet_sk_flowi_flags(sk),
378			   opt->srr ? opt->faddr : ireq->ir_rmt_addr,
379			   ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid);
380	security_req_classify_flow(req, flowi4_to_flowi(&fl4));
381	rt = ip_route_output_key(sock_net(sk), &fl4);
382	if (IS_ERR(rt)) {
383		reqsk_free(req);
384		goto out;
385	}
386
387	/* Try to redo what tcp_v4_send_synack did. */
388	req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
 
 
 
 
 
389
390	tcp_select_initial_window(sk, tcp_full_space(sk), req->mss,
391				  &req->rsk_rcv_wnd, &req->rsk_window_clamp,
392				  ireq->wscale_ok, &rcv_wscale,
393				  dst_metric(&rt->dst, RTAX_INITRWND));
394
395	ireq->rcv_wscale  = rcv_wscale;
396	ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
397
398	ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst, tsoff);
399	/* ip_queue_xmit() depends on our flow being setup
400	 * Normal sockets get it right from inet_csk_route_child_sock()
401	 */
402	if (ret)
403		inet_sk(ret)->cork.fl.u.ip4 = fl4;
404out:	return ret;
405}