Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *
   4 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
   5 * Author: Andrey Ryabinin <a.ryabinin@samsung.com>
   6 */
   7
 
 
   8#include <linux/bitops.h>
   9#include <linux/delay.h>
  10#include <linux/kasan.h>
  11#include <linux/kernel.h>
  12#include <linux/mm.h>
  13#include <linux/mman.h>
  14#include <linux/module.h>
  15#include <linux/printk.h>
  16#include <linux/random.h>
  17#include <linux/slab.h>
  18#include <linux/string.h>
  19#include <linux/uaccess.h>
  20#include <linux/io.h>
  21#include <linux/vmalloc.h>
  22
  23#include <asm/page.h>
  24
  25#include <kunit/test.h>
  26
  27#include "../mm/kasan/kasan.h"
  28
  29#define OOB_TAG_OFF (IS_ENABLED(CONFIG_KASAN_GENERIC) ? 0 : KASAN_GRANULE_SIZE)
  30
  31/*
  32 * Some tests use these global variables to store return values from function
  33 * calls that could otherwise be eliminated by the compiler as dead code.
  34 */
  35void *kasan_ptr_result;
  36int kasan_int_result;
  37
  38static struct kunit_resource resource;
  39static struct kunit_kasan_expectation fail_data;
  40static bool multishot;
  41
  42/*
  43 * Temporarily enable multi-shot mode. Otherwise, KASAN would only report the
  44 * first detected bug and panic the kernel if panic_on_warn is enabled. For
  45 * hardware tag-based KASAN also allow tag checking to be reenabled for each
  46 * test, see the comment for KUNIT_EXPECT_KASAN_FAIL().
  47 */
  48static int kasan_test_init(struct kunit *test)
  49{
  50	if (!kasan_enabled()) {
  51		kunit_err(test, "can't run KASAN tests with KASAN disabled");
  52		return -1;
  53	}
  54
  55	multishot = kasan_save_enable_multi_shot();
  56	kasan_set_tagging_report_once(false);
  57	fail_data.report_found = false;
  58	kunit_add_named_resource(test, NULL, NULL, &resource,
  59					"kasan_data", &fail_data);
  60	return 0;
  61}
  62
  63static void kasan_test_exit(struct kunit *test)
  64{
  65	kasan_set_tagging_report_once(true);
  66	kasan_restore_multi_shot(multishot);
  67	KUNIT_EXPECT_FALSE(test, fail_data.report_found);
  68}
  69
  70/**
  71 * KUNIT_EXPECT_KASAN_FAIL() - check that the executed expression produces a
  72 * KASAN report; causes a test failure otherwise. This relies on a KUnit
  73 * resource named "kasan_data". Do not use this name for KUnit resources
  74 * outside of KASAN tests.
  75 *
  76 * For hardware tag-based KASAN in sync mode, when a tag fault happens, tag
  77 * checking is auto-disabled. When this happens, this test handler reenables
  78 * tag checking. As tag checking can be only disabled or enabled per CPU,
  79 * this handler disables migration (preemption).
  80 *
  81 * Since the compiler doesn't see that the expression can change the fail_data
  82 * fields, it can reorder or optimize away the accesses to those fields.
  83 * Use READ/WRITE_ONCE() for the accesses and compiler barriers around the
  84 * expression to prevent that.
  85 *
  86 * In between KUNIT_EXPECT_KASAN_FAIL checks, fail_data.report_found is kept as
  87 * false. This allows detecting KASAN reports that happen outside of the checks
  88 * by asserting !fail_data.report_found at the start of KUNIT_EXPECT_KASAN_FAIL
  89 * and in kasan_test_exit.
  90 */
  91#define KUNIT_EXPECT_KASAN_FAIL(test, expression) do {			\
  92	if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) &&				\
  93	    !kasan_async_mode_enabled())				\
  94		migrate_disable();					\
  95	KUNIT_EXPECT_FALSE(test, READ_ONCE(fail_data.report_found));	\
  96	barrier();							\
  97	expression;							\
  98	barrier();							\
  99	if (!READ_ONCE(fail_data.report_found)) {			\
 100		KUNIT_FAIL(test, KUNIT_SUBTEST_INDENT "KASAN failure "	\
 101				"expected in \"" #expression		\
 102				 "\", but none occurred");		\
 103	}								\
 104	if (IS_ENABLED(CONFIG_KASAN_HW_TAGS)) {				\
 105		if (READ_ONCE(fail_data.report_found))			\
 106			kasan_enable_tagging_sync();			\
 107		migrate_enable();					\
 108	}								\
 109	WRITE_ONCE(fail_data.report_found, false);			\
 110} while (0)
 111
 112#define KASAN_TEST_NEEDS_CONFIG_ON(test, config) do {			\
 113	if (!IS_ENABLED(config))					\
 114		kunit_skip((test), "Test requires " #config "=y");	\
 115} while (0)
 116
 117#define KASAN_TEST_NEEDS_CONFIG_OFF(test, config) do {			\
 118	if (IS_ENABLED(config))						\
 119		kunit_skip((test), "Test requires " #config "=n");	\
 120} while (0)
 121
 122static void kmalloc_oob_right(struct kunit *test)
 123{
 124	char *ptr;
 125	size_t size = 123;
 126
 
 127	ptr = kmalloc(size, GFP_KERNEL);
 128	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 
 
 
 129
 130	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 'x');
 131	kfree(ptr);
 132}
 133
 134static void kmalloc_oob_left(struct kunit *test)
 135{
 136	char *ptr;
 137	size_t size = 15;
 138
 
 139	ptr = kmalloc(size, GFP_KERNEL);
 140	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 
 
 
 141
 142	KUNIT_EXPECT_KASAN_FAIL(test, *ptr = *(ptr - 1));
 143	kfree(ptr);
 144}
 145
 146static void kmalloc_node_oob_right(struct kunit *test)
 147{
 148	char *ptr;
 149	size_t size = 4096;
 150
 
 151	ptr = kmalloc_node(size, GFP_KERNEL, 0);
 152	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 
 
 
 153
 154	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0);
 155	kfree(ptr);
 156}
 157
 158/*
 159 * These kmalloc_pagealloc_* tests try allocating a memory chunk that doesn't
 160 * fit into a slab cache and therefore is allocated via the page allocator
 161 * fallback. Since this kind of fallback is only implemented for SLUB, these
 162 * tests are limited to that allocator.
 163 */
 164static void kmalloc_pagealloc_oob_right(struct kunit *test)
 165{
 166	char *ptr;
 167	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
 168
 169	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
 170
 
 
 171	ptr = kmalloc(size, GFP_KERNEL);
 172	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 173
 174	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 0);
 
 175
 
 176	kfree(ptr);
 177}
 178
 179static void kmalloc_pagealloc_uaf(struct kunit *test)
 180{
 181	char *ptr;
 182	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
 183
 184	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
 185
 186	ptr = kmalloc(size, GFP_KERNEL);
 187	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 188	kfree(ptr);
 
 
 189
 190	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = 0);
 
 191}
 192
 193static void kmalloc_pagealloc_invalid_free(struct kunit *test)
 194{
 195	char *ptr;
 196	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
 197
 198	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
 199
 200	ptr = kmalloc(size, GFP_KERNEL);
 201	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 202
 203	KUNIT_EXPECT_KASAN_FAIL(test, kfree(ptr + 1));
 204}
 205
 206static void pagealloc_oob_right(struct kunit *test)
 207{
 208	char *ptr;
 209	struct page *pages;
 210	size_t order = 4;
 211	size_t size = (1UL << (PAGE_SHIFT + order));
 212
 213	/*
 214	 * With generic KASAN page allocations have no redzones, thus
 215	 * out-of-bounds detection is not guaranteed.
 216	 * See https://bugzilla.kernel.org/show_bug.cgi?id=210503.
 217	 */
 218	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
 219
 220	pages = alloc_pages(GFP_KERNEL, order);
 221	ptr = page_address(pages);
 222	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 223
 224	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0);
 225	free_pages((unsigned long)ptr, order);
 226}
 227
 228static void pagealloc_uaf(struct kunit *test)
 229{
 230	char *ptr;
 231	struct page *pages;
 232	size_t order = 4;
 233
 234	pages = alloc_pages(GFP_KERNEL, order);
 235	ptr = page_address(pages);
 236	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 237	free_pages((unsigned long)ptr, order);
 238
 239	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = 0);
 240}
 
 241
 242static void kmalloc_large_oob_right(struct kunit *test)
 243{
 244	char *ptr;
 245	size_t size = KMALLOC_MAX_CACHE_SIZE - 256;
 246
 247	/*
 248	 * Allocate a chunk that is large enough, but still fits into a slab
 249	 * and does not trigger the page allocator fallback in SLUB.
 250	 */
 
 251	ptr = kmalloc(size, GFP_KERNEL);
 252	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 
 
 
 253
 254	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0);
 255	kfree(ptr);
 256}
 257
 258static void krealloc_more_oob_helper(struct kunit *test,
 259					size_t size1, size_t size2)
 260{
 261	char *ptr1, *ptr2;
 262	size_t middle;
 263
 264	KUNIT_ASSERT_LT(test, size1, size2);
 265	middle = size1 + (size2 - size1) / 2;
 266
 
 267	ptr1 = kmalloc(size1, GFP_KERNEL);
 268	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
 269
 270	ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
 271	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
 272
 273	/* All offsets up to size2 must be accessible. */
 274	ptr2[size1 - 1] = 'x';
 275	ptr2[size1] = 'x';
 276	ptr2[middle] = 'x';
 277	ptr2[size2 - 1] = 'x';
 278
 279	/* Generic mode is precise, so unaligned size2 must be inaccessible. */
 280	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
 281		KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');
 282
 283	/* For all modes first aligned offset after size2 must be inaccessible. */
 284	KUNIT_EXPECT_KASAN_FAIL(test,
 285		ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');
 286
 
 287	kfree(ptr2);
 288}
 289
 290static void krealloc_less_oob_helper(struct kunit *test,
 291					size_t size1, size_t size2)
 292{
 293	char *ptr1, *ptr2;
 294	size_t middle;
 295
 296	KUNIT_ASSERT_LT(test, size2, size1);
 297	middle = size2 + (size1 - size2) / 2;
 298
 
 299	ptr1 = kmalloc(size1, GFP_KERNEL);
 300	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
 301
 302	ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
 303	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
 304
 305	/* Must be accessible for all modes. */
 306	ptr2[size2 - 1] = 'x';
 307
 308	/* Generic mode is precise, so unaligned size2 must be inaccessible. */
 309	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
 310		KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');
 311
 312	/* For all modes first aligned offset after size2 must be inaccessible. */
 313	KUNIT_EXPECT_KASAN_FAIL(test,
 314		ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');
 315
 316	/*
 317	 * For all modes all size2, middle, and size1 should land in separate
 318	 * granules and thus the latter two offsets should be inaccessible.
 319	 */
 320	KUNIT_EXPECT_LE(test, round_up(size2, KASAN_GRANULE_SIZE),
 321				round_down(middle, KASAN_GRANULE_SIZE));
 322	KUNIT_EXPECT_LE(test, round_up(middle, KASAN_GRANULE_SIZE),
 323				round_down(size1, KASAN_GRANULE_SIZE));
 324	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[middle] = 'x');
 325	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1 - 1] = 'x');
 326	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1] = 'x');
 327
 328	kfree(ptr2);
 329}
 330
 331static void krealloc_more_oob(struct kunit *test)
 332{
 333	krealloc_more_oob_helper(test, 201, 235);
 334}
 335
 336static void krealloc_less_oob(struct kunit *test)
 337{
 338	krealloc_less_oob_helper(test, 235, 201);
 339}
 340
 341static void krealloc_pagealloc_more_oob(struct kunit *test)
 342{
 343	/* page_alloc fallback in only implemented for SLUB. */
 344	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
 345
 346	krealloc_more_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 201,
 347					KMALLOC_MAX_CACHE_SIZE + 235);
 348}
 349
 350static void krealloc_pagealloc_less_oob(struct kunit *test)
 351{
 352	/* page_alloc fallback in only implemented for SLUB. */
 353	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
 354
 355	krealloc_less_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 235,
 356					KMALLOC_MAX_CACHE_SIZE + 201);
 357}
 358
 359/*
 360 * Check that krealloc() detects a use-after-free, returns NULL,
 361 * and doesn't unpoison the freed object.
 362 */
 363static void krealloc_uaf(struct kunit *test)
 364{
 365	char *ptr1, *ptr2;
 366	int size1 = 201;
 367	int size2 = 235;
 368
 369	ptr1 = kmalloc(size1, GFP_KERNEL);
 370	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
 371	kfree(ptr1);
 372
 373	KUNIT_EXPECT_KASAN_FAIL(test, ptr2 = krealloc(ptr1, size2, GFP_KERNEL));
 374	KUNIT_ASSERT_PTR_EQ(test, (void *)ptr2, NULL);
 375	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)ptr1);
 376}
 377
 378static void kmalloc_oob_16(struct kunit *test)
 379{
 380	struct {
 381		u64 words[2];
 382	} *ptr1, *ptr2;
 383
 384	/* This test is specifically crafted for the generic mode. */
 385	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
 386
 387	ptr1 = kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL);
 388	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
 389
 390	ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
 391	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
 392
 393	KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
 
 
 
 
 394	kfree(ptr1);
 395	kfree(ptr2);
 396}
 397
 398static void kmalloc_uaf_16(struct kunit *test)
 399{
 400	struct {
 401		u64 words[2];
 402	} *ptr1, *ptr2;
 403
 404	ptr1 = kmalloc(sizeof(*ptr1), GFP_KERNEL);
 405	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
 406
 407	ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
 408	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
 409	kfree(ptr2);
 410
 411	KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
 412	kfree(ptr1);
 413}
 414
 415static void kmalloc_oob_memset_2(struct kunit *test)
 416{
 417	char *ptr;
 418	size_t size = 8;
 419
 
 420	ptr = kmalloc(size, GFP_KERNEL);
 421	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 
 
 
 422
 423	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + 7 + OOB_TAG_OFF, 0, 2));
 424	kfree(ptr);
 425}
 426
 427static void kmalloc_oob_memset_4(struct kunit *test)
 428{
 429	char *ptr;
 430	size_t size = 8;
 431
 
 432	ptr = kmalloc(size, GFP_KERNEL);
 433	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 
 
 
 434
 435	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + 5 + OOB_TAG_OFF, 0, 4));
 436	kfree(ptr);
 437}
 438
 439
 440static void kmalloc_oob_memset_8(struct kunit *test)
 441{
 442	char *ptr;
 443	size_t size = 8;
 444
 
 445	ptr = kmalloc(size, GFP_KERNEL);
 446	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 
 
 
 447
 448	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + 1 + OOB_TAG_OFF, 0, 8));
 449	kfree(ptr);
 450}
 451
 452static void kmalloc_oob_memset_16(struct kunit *test)
 453{
 454	char *ptr;
 455	size_t size = 16;
 456
 
 457	ptr = kmalloc(size, GFP_KERNEL);
 458	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 
 
 
 459
 460	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + 1 + OOB_TAG_OFF, 0, 16));
 461	kfree(ptr);
 462}
 463
 464static void kmalloc_oob_in_memset(struct kunit *test)
 465{
 466	char *ptr;
 467	size_t size = 666;
 468
 
 469	ptr = kmalloc(size, GFP_KERNEL);
 470	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 471
 472	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size + 5 + OOB_TAG_OFF));
 473	kfree(ptr);
 474}
 475
 476static void kmalloc_memmove_invalid_size(struct kunit *test)
 477{
 478	char *ptr;
 479	size_t size = 64;
 480	volatile size_t invalid_size = -2;
 481
 482	ptr = kmalloc(size, GFP_KERNEL);
 483	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 484
 485	memset((char *)ptr, 0, 64);
 486
 487	KUNIT_EXPECT_KASAN_FAIL(test,
 488		memmove((char *)ptr, (char *)ptr + 4, invalid_size));
 489	kfree(ptr);
 490}
 491
 492static void kmalloc_uaf(struct kunit *test)
 493{
 494	char *ptr;
 495	size_t size = 10;
 496
 
 497	ptr = kmalloc(size, GFP_KERNEL);
 498	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 
 
 
 499
 500	kfree(ptr);
 501	KUNIT_EXPECT_KASAN_FAIL(test, *(ptr + 8) = 'x');
 502}
 503
 504static void kmalloc_uaf_memset(struct kunit *test)
 505{
 506	char *ptr;
 507	size_t size = 33;
 508
 
 509	ptr = kmalloc(size, GFP_KERNEL);
 510	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 
 
 
 511
 512	kfree(ptr);
 513	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size));
 514}
 515
 516static void kmalloc_uaf2(struct kunit *test)
 517{
 518	char *ptr1, *ptr2;
 519	size_t size = 43;
 520	int counter = 0;
 521
 522again:
 523	ptr1 = kmalloc(size, GFP_KERNEL);
 524	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
 
 
 
 525
 526	kfree(ptr1);
 527
 528	ptr2 = kmalloc(size, GFP_KERNEL);
 529	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
 530
 531	/*
 532	 * For tag-based KASAN ptr1 and ptr2 tags might happen to be the same.
 533	 * Allow up to 16 attempts at generating different tags.
 534	 */
 535	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && ptr1 == ptr2 && counter++ < 16) {
 536		kfree(ptr2);
 537		goto again;
 538	}
 539
 540	KUNIT_EXPECT_KASAN_FAIL(test, ptr1[40] = 'x');
 541	KUNIT_EXPECT_PTR_NE(test, ptr1, ptr2);
 542
 543	kfree(ptr2);
 544}
 545
 546static void kfree_via_page(struct kunit *test)
 547{
 548	char *ptr;
 549	size_t size = 8;
 550	struct page *page;
 551	unsigned long offset;
 552
 
 553	ptr = kmalloc(size, GFP_KERNEL);
 554	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 
 
 
 555
 556	page = virt_to_page(ptr);
 557	offset = offset_in_page(ptr);
 558	kfree(page_address(page) + offset);
 559}
 560
 561static void kfree_via_phys(struct kunit *test)
 562{
 563	char *ptr;
 564	size_t size = 8;
 565	phys_addr_t phys;
 566
 
 567	ptr = kmalloc(size, GFP_KERNEL);
 568	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 
 
 
 569
 570	phys = virt_to_phys(ptr);
 571	kfree(phys_to_virt(phys));
 572}
 573
 574static void kmem_cache_oob(struct kunit *test)
 575{
 576	char *p;
 577	size_t size = 200;
 578	struct kmem_cache *cache;
 579
 580	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
 581	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
 582
 
 
 
 583	p = kmem_cache_alloc(cache, GFP_KERNEL);
 584	if (!p) {
 585		kunit_err(test, "Allocation failed: %s\n", __func__);
 586		kmem_cache_destroy(cache);
 587		return;
 588	}
 589
 590	KUNIT_EXPECT_KASAN_FAIL(test, *p = p[size + OOB_TAG_OFF]);
 591
 592	kmem_cache_free(cache, p);
 593	kmem_cache_destroy(cache);
 594}
 595
 596static void kmem_cache_accounted(struct kunit *test)
 597{
 598	int i;
 599	char *p;
 600	size_t size = 200;
 601	struct kmem_cache *cache;
 602
 603	cache = kmem_cache_create("test_cache", size, 0, SLAB_ACCOUNT, NULL);
 604	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
 
 
 
 605
 
 606	/*
 607	 * Several allocations with a delay to allow for lazy per memcg kmem
 608	 * cache creation.
 609	 */
 610	for (i = 0; i < 5; i++) {
 611		p = kmem_cache_alloc(cache, GFP_KERNEL);
 612		if (!p)
 613			goto free_cache;
 614
 615		kmem_cache_free(cache, p);
 616		msleep(100);
 617	}
 618
 619free_cache:
 620	kmem_cache_destroy(cache);
 621}
 622
 623static void kmem_cache_bulk(struct kunit *test)
 624{
 625	struct kmem_cache *cache;
 626	size_t size = 200;
 627	char *p[10];
 628	bool ret;
 629	int i;
 630
 631	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
 632	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
 633
 634	ret = kmem_cache_alloc_bulk(cache, GFP_KERNEL, ARRAY_SIZE(p), (void **)&p);
 635	if (!ret) {
 636		kunit_err(test, "Allocation failed: %s\n", __func__);
 637		kmem_cache_destroy(cache);
 638		return;
 639	}
 640
 641	for (i = 0; i < ARRAY_SIZE(p); i++)
 642		p[i][0] = p[i][size - 1] = 42;
 
 
 643
 644	kmem_cache_free_bulk(cache, ARRAY_SIZE(p), (void **)&p);
 645	kmem_cache_destroy(cache);
 646}
 647
 648static char global_array[10];
 649
 650static void kasan_global_oob(struct kunit *test)
 651{
 652	/*
 653	 * Deliberate out-of-bounds access. To prevent CONFIG_UBSAN_LOCAL_BOUNDS
 654	 * from failing here and panicking the kernel, access the array via a
 655	 * volatile pointer, which will prevent the compiler from being able to
 656	 * determine the array bounds.
 657	 *
 658	 * This access uses a volatile pointer to char (char *volatile) rather
 659	 * than the more conventional pointer to volatile char (volatile char *)
 660	 * because we want to prevent the compiler from making inferences about
 661	 * the pointer itself (i.e. its array bounds), not the data that it
 662	 * refers to.
 663	 */
 664	char *volatile array = global_array;
 665	char *p = &array[ARRAY_SIZE(global_array) + 3];
 666
 667	/* Only generic mode instruments globals. */
 668	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
 669
 670	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
 
 671}
 672
 673/* Check that ksize() makes the whole object accessible. */
 674static void ksize_unpoisons_memory(struct kunit *test)
 675{
 676	char *ptr;
 677	size_t size = 123, real_size;
 678
 
 679	ptr = kmalloc(size, GFP_KERNEL);
 680	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 
 
 
 681	real_size = ksize(ptr);
 682
 683	/* This access shouldn't trigger a KASAN report. */
 684	ptr[size] = 'x';
 685
 686	/* This one must. */
 687	KUNIT_EXPECT_KASAN_FAIL(test, ptr[real_size] = 'y');
 688
 689	kfree(ptr);
 690}
 691
 692/*
 693 * Check that a use-after-free is detected by ksize() and via normal accesses
 694 * after it.
 695 */
 696static void ksize_uaf(struct kunit *test)
 697{
 698	char *ptr;
 699	int size = 128 - KASAN_GRANULE_SIZE;
 
 
 700
 701	ptr = kmalloc(size, GFP_KERNEL);
 702	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 703	kfree(ptr);
 704
 705	KUNIT_EXPECT_KASAN_FAIL(test, ksize(ptr));
 706	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = *ptr);
 707	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = *(ptr + size));
 708}
 
 
 
 
 709
 710static void kasan_stack_oob(struct kunit *test)
 711{
 712	char stack_array[10];
 713	/* See comment in kasan_global_oob. */
 714	char *volatile array = stack_array;
 715	char *p = &array[ARRAY_SIZE(stack_array) + OOB_TAG_OFF];
 
 
 
 
 
 
 
 
 716
 717	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
 
 718
 719	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
 
 
 
 
 720}
 721
 722static void kasan_alloca_oob_left(struct kunit *test)
 723{
 724	volatile int i = 10;
 725	char alloca_array[i];
 726	/* See comment in kasan_global_oob. */
 727	char *volatile array = alloca_array;
 728	char *p = array - 1;
 729
 730	/* Only generic mode instruments dynamic allocas. */
 731	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
 732	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
 733
 734	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
 
 735}
 736
 737static void kasan_alloca_oob_right(struct kunit *test)
 738{
 739	volatile int i = 10;
 740	char alloca_array[i];
 741	/* See comment in kasan_global_oob. */
 742	char *volatile array = alloca_array;
 743	char *p = array + i;
 744
 745	/* Only generic mode instruments dynamic allocas. */
 746	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
 747	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
 748
 749	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
 
 750}
 751
 752static void kmem_cache_double_free(struct kunit *test)
 753{
 754	char *p;
 755	size_t size = 200;
 756	struct kmem_cache *cache;
 757
 758	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
 759	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
 760
 
 
 
 761	p = kmem_cache_alloc(cache, GFP_KERNEL);
 762	if (!p) {
 763		kunit_err(test, "Allocation failed: %s\n", __func__);
 764		kmem_cache_destroy(cache);
 765		return;
 766	}
 767
 768	kmem_cache_free(cache, p);
 769	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p));
 770	kmem_cache_destroy(cache);
 771}
 772
 773static void kmem_cache_invalid_free(struct kunit *test)
 774{
 775	char *p;
 776	size_t size = 200;
 777	struct kmem_cache *cache;
 778
 779	cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU,
 780				  NULL);
 781	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
 782
 
 
 
 783	p = kmem_cache_alloc(cache, GFP_KERNEL);
 784	if (!p) {
 785		kunit_err(test, "Allocation failed: %s\n", __func__);
 786		kmem_cache_destroy(cache);
 787		return;
 788	}
 789
 790	/* Trigger invalid free, the object doesn't get freed. */
 791	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p + 1));
 792
 793	/*
 794	 * Properly free the object to prevent the "Objects remaining in
 795	 * test_cache on __kmem_cache_shutdown" BUG failure.
 796	 */
 797	kmem_cache_free(cache, p);
 798
 799	kmem_cache_destroy(cache);
 800}
 801
 802static void kasan_memchr(struct kunit *test)
 803{
 804	char *ptr;
 805	size_t size = 24;
 806
 807	/*
 808	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
 809	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
 810	 */
 811	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
 812
 813	if (OOB_TAG_OFF)
 814		size = round_up(size, OOB_TAG_OFF);
 815
 816	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
 817	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 818
 819	KUNIT_EXPECT_KASAN_FAIL(test,
 820		kasan_ptr_result = memchr(ptr, '1', size + 1));
 821
 
 822	kfree(ptr);
 823}
 824
 825static void kasan_memcmp(struct kunit *test)
 826{
 827	char *ptr;
 828	size_t size = 24;
 829	int arr[9];
 830
 831	/*
 832	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
 833	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
 834	 */
 835	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
 836
 837	if (OOB_TAG_OFF)
 838		size = round_up(size, OOB_TAG_OFF);
 839
 840	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
 841	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 842	memset(arr, 0, sizeof(arr));
 843
 844	KUNIT_EXPECT_KASAN_FAIL(test,
 845		kasan_int_result = memcmp(ptr, arr, size+1));
 846	kfree(ptr);
 847}
 848
 849static void kasan_strings(struct kunit *test)
 850{
 851	char *ptr;
 852	size_t size = 24;
 853
 854	/*
 855	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
 856	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
 857	 */
 858	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
 859
 860	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
 861	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 
 862
 863	kfree(ptr);
 864
 865	/*
 866	 * Try to cause only 1 invalid access (less spam in dmesg).
 867	 * For that we need ptr to point to zeroed byte.
 868	 * Skip metadata that could be stored in freed object so ptr
 869	 * will likely point to zeroed byte.
 870	 */
 871	ptr += 16;
 872	KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strchr(ptr, '1'));
 873
 874	KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strrchr(ptr, '1'));
 
 875
 876	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strcmp(ptr, "2"));
 
 877
 878	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strncmp(ptr, "2", 1));
 
 879
 880	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strlen(ptr));
 
 881
 882	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strnlen(ptr, 1));
 
 883}
 884
 885static void kasan_bitops_modify(struct kunit *test, int nr, void *addr)
 886{
 887	KUNIT_EXPECT_KASAN_FAIL(test, set_bit(nr, addr));
 888	KUNIT_EXPECT_KASAN_FAIL(test, __set_bit(nr, addr));
 889	KUNIT_EXPECT_KASAN_FAIL(test, clear_bit(nr, addr));
 890	KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit(nr, addr));
 891	KUNIT_EXPECT_KASAN_FAIL(test, clear_bit_unlock(nr, addr));
 892	KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit_unlock(nr, addr));
 893	KUNIT_EXPECT_KASAN_FAIL(test, change_bit(nr, addr));
 894	KUNIT_EXPECT_KASAN_FAIL(test, __change_bit(nr, addr));
 895}
 896
 897static void kasan_bitops_test_and_modify(struct kunit *test, int nr, void *addr)
 898{
 899	KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit(nr, addr));
 900	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_set_bit(nr, addr));
 901	KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit_lock(nr, addr));
 902	KUNIT_EXPECT_KASAN_FAIL(test, test_and_clear_bit(nr, addr));
 903	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_clear_bit(nr, addr));
 904	KUNIT_EXPECT_KASAN_FAIL(test, test_and_change_bit(nr, addr));
 905	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_change_bit(nr, addr));
 906	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = test_bit(nr, addr));
 907
 908#if defined(clear_bit_unlock_is_negative_byte)
 909	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result =
 910				clear_bit_unlock_is_negative_byte(nr, addr));
 911#endif
 912}
 913
 914static void kasan_bitops_generic(struct kunit *test)
 915{
 916	long *bits;
 917
 918	/* This test is specifically crafted for the generic mode. */
 919	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
 920
 921	/*
 922	 * Allocate 1 more byte, which causes kzalloc to round up to 16 bytes;
 923	 * this way we do not actually corrupt other memory.
 924	 */
 925	bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL);
 926	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
 
 927
 928	/*
 929	 * Below calls try to access bit within allocated memory; however, the
 930	 * below accesses are still out-of-bounds, since bitops are defined to
 931	 * operate on the whole long the bit is in.
 932	 */
 933	kasan_bitops_modify(test, BITS_PER_LONG, bits);
 934
 935	/*
 936	 * Below calls try to access bit beyond allocated memory.
 937	 */
 938	kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, bits);
 939
 940	kfree(bits);
 941}
 942
 943static void kasan_bitops_tags(struct kunit *test)
 944{
 945	long *bits;
 946
 947	/* This test is specifically crafted for tag-based modes. */
 948	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
 949
 950	/* kmalloc-64 cache will be used and the last 16 bytes will be the redzone. */
 951	bits = kzalloc(48, GFP_KERNEL);
 952	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
 953
 954	/* Do the accesses past the 48 allocated bytes, but within the redone. */
 955	kasan_bitops_modify(test, BITS_PER_LONG, (void *)bits + 48);
 956	kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, (void *)bits + 48);
 957
 958	kfree(bits);
 959}
 960
 961static void kmalloc_double_kzfree(struct kunit *test)
 962{
 963	char *ptr;
 964	size_t size = 16;
 965
 966	ptr = kmalloc(size, GFP_KERNEL);
 967	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
 968
 969	kfree_sensitive(ptr);
 970	KUNIT_EXPECT_KASAN_FAIL(test, kfree_sensitive(ptr));
 971}
 972
 973static void vmalloc_oob(struct kunit *test)
 974{
 975	void *area;
 976
 977	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
 978
 979	/*
 980	 * We have to be careful not to hit the guard page.
 981	 * The MMU will catch that and crash us.
 982	 */
 983	area = vmalloc(3000);
 984	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, area);
 985
 986	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)area)[3100]);
 987	vfree(area);
 988}
 989
 990/*
 991 * Check that the assigned pointer tag falls within the [KASAN_TAG_MIN,
 992 * KASAN_TAG_KERNEL) range (note: excluding the match-all tag) for tag-based
 993 * modes.
 994 */
 995static void match_all_not_assigned(struct kunit *test)
 996{
 997	char *ptr;
 998	struct page *pages;
 999	int i, size, order;
1000
1001	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
 
1002
1003	for (i = 0; i < 256; i++) {
1004		size = (get_random_int() % 1024) + 1;
1005		ptr = kmalloc(size, GFP_KERNEL);
1006		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1007		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1008		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1009		kfree(ptr);
1010	}
1011
1012	for (i = 0; i < 256; i++) {
1013		order = (get_random_int() % 4) + 1;
1014		pages = alloc_pages(GFP_KERNEL, order);
1015		ptr = page_address(pages);
1016		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1017		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1018		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1019		free_pages((unsigned long)ptr, order);
1020	}
1021}
1022
1023/* Check that 0xff works as a match-all pointer tag for tag-based modes. */
1024static void match_all_ptr_tag(struct kunit *test)
1025{
1026	char *ptr;
1027	u8 tag;
1028
1029	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
 
1030
1031	ptr = kmalloc(128, GFP_KERNEL);
1032	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1033
1034	/* Backup the assigned tag. */
1035	tag = get_tag(ptr);
1036	KUNIT_EXPECT_NE(test, tag, (u8)KASAN_TAG_KERNEL);
1037
1038	/* Reset the tag to 0xff.*/
1039	ptr = set_tag(ptr, KASAN_TAG_KERNEL);
1040
1041	/* This access shouldn't trigger a KASAN report. */
1042	*ptr = 0;
1043
1044	/* Recover the pointer tag and free. */
1045	ptr = set_tag(ptr, tag);
1046	kfree(ptr);
 
 
1047}
1048
1049/* Check that there are no match-all memory tags for tag-based modes. */
1050static void match_all_mem_tag(struct kunit *test)
1051{
1052	char *ptr;
1053	int tag;
1054
1055	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
 
 
 
 
 
1056
1057	ptr = kmalloc(128, GFP_KERNEL);
1058	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1059	KUNIT_EXPECT_NE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1060
1061	/* For each possible tag value not matching the pointer tag. */
1062	for (tag = KASAN_TAG_MIN; tag <= KASAN_TAG_KERNEL; tag++) {
1063		if (tag == get_tag(ptr))
1064			continue;
 
 
 
1065
1066		/* Mark the first memory granule with the chosen memory tag. */
1067		kasan_poison(ptr, KASAN_GRANULE_SIZE, (u8)tag, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1068
1069		/* This access must cause a KASAN report. */
1070		KUNIT_EXPECT_KASAN_FAIL(test, *ptr = 0);
1071	}
1072
1073	/* Recover the memory tag and free. */
1074	kasan_poison(ptr, KASAN_GRANULE_SIZE, get_tag(ptr), false);
1075	kfree(ptr);
1076}
1077
1078static struct kunit_case kasan_kunit_test_cases[] = {
1079	KUNIT_CASE(kmalloc_oob_right),
1080	KUNIT_CASE(kmalloc_oob_left),
1081	KUNIT_CASE(kmalloc_node_oob_right),
1082	KUNIT_CASE(kmalloc_pagealloc_oob_right),
1083	KUNIT_CASE(kmalloc_pagealloc_uaf),
1084	KUNIT_CASE(kmalloc_pagealloc_invalid_free),
1085	KUNIT_CASE(pagealloc_oob_right),
1086	KUNIT_CASE(pagealloc_uaf),
1087	KUNIT_CASE(kmalloc_large_oob_right),
1088	KUNIT_CASE(krealloc_more_oob),
1089	KUNIT_CASE(krealloc_less_oob),
1090	KUNIT_CASE(krealloc_pagealloc_more_oob),
1091	KUNIT_CASE(krealloc_pagealloc_less_oob),
1092	KUNIT_CASE(krealloc_uaf),
1093	KUNIT_CASE(kmalloc_oob_16),
1094	KUNIT_CASE(kmalloc_uaf_16),
1095	KUNIT_CASE(kmalloc_oob_in_memset),
1096	KUNIT_CASE(kmalloc_oob_memset_2),
1097	KUNIT_CASE(kmalloc_oob_memset_4),
1098	KUNIT_CASE(kmalloc_oob_memset_8),
1099	KUNIT_CASE(kmalloc_oob_memset_16),
1100	KUNIT_CASE(kmalloc_memmove_invalid_size),
1101	KUNIT_CASE(kmalloc_uaf),
1102	KUNIT_CASE(kmalloc_uaf_memset),
1103	KUNIT_CASE(kmalloc_uaf2),
1104	KUNIT_CASE(kfree_via_page),
1105	KUNIT_CASE(kfree_via_phys),
1106	KUNIT_CASE(kmem_cache_oob),
1107	KUNIT_CASE(kmem_cache_accounted),
1108	KUNIT_CASE(kmem_cache_bulk),
1109	KUNIT_CASE(kasan_global_oob),
1110	KUNIT_CASE(kasan_stack_oob),
1111	KUNIT_CASE(kasan_alloca_oob_left),
1112	KUNIT_CASE(kasan_alloca_oob_right),
1113	KUNIT_CASE(ksize_unpoisons_memory),
1114	KUNIT_CASE(ksize_uaf),
1115	KUNIT_CASE(kmem_cache_double_free),
1116	KUNIT_CASE(kmem_cache_invalid_free),
1117	KUNIT_CASE(kasan_memchr),
1118	KUNIT_CASE(kasan_memcmp),
1119	KUNIT_CASE(kasan_strings),
1120	KUNIT_CASE(kasan_bitops_generic),
1121	KUNIT_CASE(kasan_bitops_tags),
1122	KUNIT_CASE(kmalloc_double_kzfree),
1123	KUNIT_CASE(vmalloc_oob),
1124	KUNIT_CASE(match_all_not_assigned),
1125	KUNIT_CASE(match_all_ptr_tag),
1126	KUNIT_CASE(match_all_mem_tag),
1127	{}
1128};
1129
1130static struct kunit_suite kasan_kunit_test_suite = {
1131	.name = "kasan",
1132	.init = kasan_test_init,
1133	.test_cases = kasan_kunit_test_cases,
1134	.exit = kasan_test_exit,
1135};
1136
1137kunit_test_suite(kasan_kunit_test_suite);
1138
1139MODULE_LICENSE("GPL");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *
  4 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
  5 * Author: Andrey Ryabinin <a.ryabinin@samsung.com>
  6 */
  7
  8#define pr_fmt(fmt) "kasan test: %s " fmt, __func__
  9
 10#include <linux/bitops.h>
 11#include <linux/delay.h>
 12#include <linux/kasan.h>
 13#include <linux/kernel.h>
 14#include <linux/mm.h>
 15#include <linux/mman.h>
 16#include <linux/module.h>
 17#include <linux/printk.h>
 
 18#include <linux/slab.h>
 19#include <linux/string.h>
 20#include <linux/uaccess.h>
 21#include <linux/io.h>
 
 22
 23#include <asm/page.h>
 24
 
 
 
 
 
 
 25/*
 26 * Note: test functions are marked noinline so that their names appear in
 27 * reports.
 28 */
 
 
 
 
 
 
 29
 30static noinline void __init kmalloc_oob_right(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 31{
 32	char *ptr;
 33	size_t size = 123;
 34
 35	pr_info("out-of-bounds to right\n");
 36	ptr = kmalloc(size, GFP_KERNEL);
 37	if (!ptr) {
 38		pr_err("Allocation failed\n");
 39		return;
 40	}
 41
 42	ptr[size] = 'x';
 43	kfree(ptr);
 44}
 45
 46static noinline void __init kmalloc_oob_left(void)
 47{
 48	char *ptr;
 49	size_t size = 15;
 50
 51	pr_info("out-of-bounds to left\n");
 52	ptr = kmalloc(size, GFP_KERNEL);
 53	if (!ptr) {
 54		pr_err("Allocation failed\n");
 55		return;
 56	}
 57
 58	*ptr = *(ptr - 1);
 59	kfree(ptr);
 60}
 61
 62static noinline void __init kmalloc_node_oob_right(void)
 63{
 64	char *ptr;
 65	size_t size = 4096;
 66
 67	pr_info("kmalloc_node(): out-of-bounds to right\n");
 68	ptr = kmalloc_node(size, GFP_KERNEL, 0);
 69	if (!ptr) {
 70		pr_err("Allocation failed\n");
 71		return;
 72	}
 73
 74	ptr[size] = 0;
 75	kfree(ptr);
 76}
 77
 78#ifdef CONFIG_SLUB
 79static noinline void __init kmalloc_pagealloc_oob_right(void)
 
 
 
 
 
 80{
 81	char *ptr;
 82	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
 83
 84	/* Allocate a chunk that does not fit into a SLUB cache to trigger
 85	 * the page allocator fallback.
 86	 */
 87	pr_info("kmalloc pagealloc allocation: out-of-bounds to right\n");
 88	ptr = kmalloc(size, GFP_KERNEL);
 89	if (!ptr) {
 90		pr_err("Allocation failed\n");
 91		return;
 92	}
 93
 94	ptr[size] = 0;
 95	kfree(ptr);
 96}
 97
 98static noinline void __init kmalloc_pagealloc_uaf(void)
 99{
100	char *ptr;
101	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
102
103	pr_info("kmalloc pagealloc allocation: use-after-free\n");
 
104	ptr = kmalloc(size, GFP_KERNEL);
105	if (!ptr) {
106		pr_err("Allocation failed\n");
107		return;
108	}
109
110	kfree(ptr);
111	ptr[0] = 0;
112}
113
114static noinline void __init kmalloc_pagealloc_invalid_free(void)
115{
116	char *ptr;
117	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
118
119	pr_info("kmalloc pagealloc allocation: invalid-free\n");
 
120	ptr = kmalloc(size, GFP_KERNEL);
121	if (!ptr) {
122		pr_err("Allocation failed\n");
123		return;
124	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
126	kfree(ptr + 1);
127}
128#endif
129
130static noinline void __init kmalloc_large_oob_right(void)
131{
132	char *ptr;
133	size_t size = KMALLOC_MAX_CACHE_SIZE - 256;
134	/* Allocate a chunk that is large enough, but still fits into a slab
 
 
135	 * and does not trigger the page allocator fallback in SLUB.
136	 */
137	pr_info("kmalloc large allocation: out-of-bounds to right\n");
138	ptr = kmalloc(size, GFP_KERNEL);
139	if (!ptr) {
140		pr_err("Allocation failed\n");
141		return;
142	}
143
144	ptr[size] = 0;
145	kfree(ptr);
146}
147
148static noinline void __init kmalloc_oob_krealloc_more(void)
 
149{
150	char *ptr1, *ptr2;
151	size_t size1 = 17;
152	size_t size2 = 19;
 
 
153
154	pr_info("out-of-bounds after krealloc more\n");
155	ptr1 = kmalloc(size1, GFP_KERNEL);
 
 
156	ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
157	if (!ptr1 || !ptr2) {
158		pr_err("Allocation failed\n");
159		kfree(ptr1);
160		return;
161	}
 
 
 
 
 
 
 
 
 
 
162
163	ptr2[size2] = 'x';
164	kfree(ptr2);
165}
166
167static noinline void __init kmalloc_oob_krealloc_less(void)
 
168{
169	char *ptr1, *ptr2;
170	size_t size1 = 17;
171	size_t size2 = 15;
 
 
172
173	pr_info("out-of-bounds after krealloc less\n");
174	ptr1 = kmalloc(size1, GFP_KERNEL);
 
 
175	ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
176	if (!ptr1 || !ptr2) {
177		pr_err("Allocation failed\n");
178		kfree(ptr1);
179		return;
180	}
181	ptr2[size2] = 'x';
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182	kfree(ptr2);
183}
184
185static noinline void __init kmalloc_oob_16(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186{
187	struct {
188		u64 words[2];
189	} *ptr1, *ptr2;
190
191	pr_info("kmalloc out-of-bounds for 16-bytes access\n");
 
 
192	ptr1 = kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL);
 
 
193	ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
194	if (!ptr1 || !ptr2) {
195		pr_err("Allocation failed\n");
196		kfree(ptr1);
197		kfree(ptr2);
198		return;
199	}
200	*ptr1 = *ptr2;
201	kfree(ptr1);
202	kfree(ptr2);
203}
204
205static noinline void __init kmalloc_oob_memset_2(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206{
207	char *ptr;
208	size_t size = 8;
209
210	pr_info("out-of-bounds in memset2\n");
211	ptr = kmalloc(size, GFP_KERNEL);
212	if (!ptr) {
213		pr_err("Allocation failed\n");
214		return;
215	}
216
217	memset(ptr+7, 0, 2);
218	kfree(ptr);
219}
220
221static noinline void __init kmalloc_oob_memset_4(void)
222{
223	char *ptr;
224	size_t size = 8;
225
226	pr_info("out-of-bounds in memset4\n");
227	ptr = kmalloc(size, GFP_KERNEL);
228	if (!ptr) {
229		pr_err("Allocation failed\n");
230		return;
231	}
232
233	memset(ptr+5, 0, 4);
234	kfree(ptr);
235}
236
237
238static noinline void __init kmalloc_oob_memset_8(void)
239{
240	char *ptr;
241	size_t size = 8;
242
243	pr_info("out-of-bounds in memset8\n");
244	ptr = kmalloc(size, GFP_KERNEL);
245	if (!ptr) {
246		pr_err("Allocation failed\n");
247		return;
248	}
249
250	memset(ptr+1, 0, 8);
251	kfree(ptr);
252}
253
254static noinline void __init kmalloc_oob_memset_16(void)
255{
256	char *ptr;
257	size_t size = 16;
258
259	pr_info("out-of-bounds in memset16\n");
260	ptr = kmalloc(size, GFP_KERNEL);
261	if (!ptr) {
262		pr_err("Allocation failed\n");
263		return;
264	}
265
266	memset(ptr+1, 0, 16);
267	kfree(ptr);
268}
269
270static noinline void __init kmalloc_oob_in_memset(void)
271{
272	char *ptr;
273	size_t size = 666;
274
275	pr_info("out-of-bounds in memset\n");
276	ptr = kmalloc(size, GFP_KERNEL);
277	if (!ptr) {
278		pr_err("Allocation failed\n");
279		return;
280	}
 
 
 
 
 
 
 
 
 
 
 
 
281
282	memset(ptr, 0, size+5);
 
283	kfree(ptr);
284}
285
286static noinline void __init kmalloc_uaf(void)
287{
288	char *ptr;
289	size_t size = 10;
290
291	pr_info("use-after-free\n");
292	ptr = kmalloc(size, GFP_KERNEL);
293	if (!ptr) {
294		pr_err("Allocation failed\n");
295		return;
296	}
297
298	kfree(ptr);
299	*(ptr + 8) = 'x';
300}
301
302static noinline void __init kmalloc_uaf_memset(void)
303{
304	char *ptr;
305	size_t size = 33;
306
307	pr_info("use-after-free in memset\n");
308	ptr = kmalloc(size, GFP_KERNEL);
309	if (!ptr) {
310		pr_err("Allocation failed\n");
311		return;
312	}
313
314	kfree(ptr);
315	memset(ptr, 0, size);
316}
317
318static noinline void __init kmalloc_uaf2(void)
319{
320	char *ptr1, *ptr2;
321	size_t size = 43;
 
322
323	pr_info("use-after-free after another kmalloc\n");
324	ptr1 = kmalloc(size, GFP_KERNEL);
325	if (!ptr1) {
326		pr_err("Allocation failed\n");
327		return;
328	}
329
330	kfree(ptr1);
 
331	ptr2 = kmalloc(size, GFP_KERNEL);
332	if (!ptr2) {
333		pr_err("Allocation failed\n");
334		return;
 
 
 
 
 
 
335	}
336
337	ptr1[40] = 'x';
338	if (ptr1 == ptr2)
339		pr_err("Could not detect use-after-free: ptr1 == ptr2\n");
340	kfree(ptr2);
341}
342
343static noinline void __init kfree_via_page(void)
344{
345	char *ptr;
346	size_t size = 8;
347	struct page *page;
348	unsigned long offset;
349
350	pr_info("invalid-free false positive (via page)\n");
351	ptr = kmalloc(size, GFP_KERNEL);
352	if (!ptr) {
353		pr_err("Allocation failed\n");
354		return;
355	}
356
357	page = virt_to_page(ptr);
358	offset = offset_in_page(ptr);
359	kfree(page_address(page) + offset);
360}
361
362static noinline void __init kfree_via_phys(void)
363{
364	char *ptr;
365	size_t size = 8;
366	phys_addr_t phys;
367
368	pr_info("invalid-free false positive (via phys)\n");
369	ptr = kmalloc(size, GFP_KERNEL);
370	if (!ptr) {
371		pr_err("Allocation failed\n");
372		return;
373	}
374
375	phys = virt_to_phys(ptr);
376	kfree(phys_to_virt(phys));
377}
378
379static noinline void __init kmem_cache_oob(void)
380{
381	char *p;
382	size_t size = 200;
383	struct kmem_cache *cache = kmem_cache_create("test_cache",
384						size, 0,
385						0, NULL);
386	if (!cache) {
387		pr_err("Cache allocation failed\n");
388		return;
389	}
390	pr_info("out-of-bounds in kmem_cache_alloc\n");
391	p = kmem_cache_alloc(cache, GFP_KERNEL);
392	if (!p) {
393		pr_err("Allocation failed\n");
394		kmem_cache_destroy(cache);
395		return;
396	}
397
398	*p = p[size];
 
399	kmem_cache_free(cache, p);
400	kmem_cache_destroy(cache);
401}
402
403static noinline void __init memcg_accounted_kmem_cache(void)
404{
405	int i;
406	char *p;
407	size_t size = 200;
408	struct kmem_cache *cache;
409
410	cache = kmem_cache_create("test_cache", size, 0, SLAB_ACCOUNT, NULL);
411	if (!cache) {
412		pr_err("Cache allocation failed\n");
413		return;
414	}
415
416	pr_info("allocate memcg accounted object\n");
417	/*
418	 * Several allocations with a delay to allow for lazy per memcg kmem
419	 * cache creation.
420	 */
421	for (i = 0; i < 5; i++) {
422		p = kmem_cache_alloc(cache, GFP_KERNEL);
423		if (!p)
424			goto free_cache;
425
426		kmem_cache_free(cache, p);
427		msleep(100);
428	}
429
430free_cache:
431	kmem_cache_destroy(cache);
432}
433
434static char global_array[10];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435
436static noinline void __init kasan_global_oob(void)
437{
438	volatile int i = 3;
439	char *p = &global_array[ARRAY_SIZE(global_array) + i];
440
441	pr_info("out-of-bounds global variable\n");
442	*(volatile char *)p;
443}
444
445static noinline void __init kasan_stack_oob(void)
 
 
446{
447	char stack_array[10];
448	volatile int i = 0;
449	char *p = &stack_array[ARRAY_SIZE(stack_array) + i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
450
451	pr_info("out-of-bounds on stack\n");
452	*(volatile char *)p;
453}
454
455static noinline void __init ksize_unpoisons_memory(void)
 
456{
457	char *ptr;
458	size_t size = 123, real_size;
459
460	pr_info("ksize() unpoisons the whole allocated chunk\n");
461	ptr = kmalloc(size, GFP_KERNEL);
462	if (!ptr) {
463		pr_err("Allocation failed\n");
464		return;
465	}
466	real_size = ksize(ptr);
467	/* This access doesn't trigger an error. */
 
468	ptr[size] = 'x';
469	/* This one does. */
470	ptr[real_size] = 'y';
 
 
471	kfree(ptr);
472}
473
474static noinline void __init copy_user_test(void)
 
 
 
 
475{
476	char *kmem;
477	char __user *usermem;
478	size_t size = 10;
479	int unused;
480
481	kmem = kmalloc(size, GFP_KERNEL);
482	if (!kmem)
483		return;
484
485	usermem = (char __user *)vm_mmap(NULL, 0, PAGE_SIZE,
486			    PROT_READ | PROT_WRITE | PROT_EXEC,
487			    MAP_ANONYMOUS | MAP_PRIVATE, 0);
488	if (IS_ERR(usermem)) {
489		pr_err("Failed to allocate user memory\n");
490		kfree(kmem);
491		return;
492	}
493
494	pr_info("out-of-bounds in copy_from_user()\n");
495	unused = copy_from_user(kmem, usermem, size + 1);
496
497	pr_info("out-of-bounds in copy_to_user()\n");
498	unused = copy_to_user(usermem, kmem, size + 1);
499
500	pr_info("out-of-bounds in __copy_from_user()\n");
501	unused = __copy_from_user(kmem, usermem, size + 1);
502
503	pr_info("out-of-bounds in __copy_to_user()\n");
504	unused = __copy_to_user(usermem, kmem, size + 1);
505
506	pr_info("out-of-bounds in __copy_from_user_inatomic()\n");
507	unused = __copy_from_user_inatomic(kmem, usermem, size + 1);
508
509	pr_info("out-of-bounds in __copy_to_user_inatomic()\n");
510	unused = __copy_to_user_inatomic(usermem, kmem, size + 1);
511
512	pr_info("out-of-bounds in strncpy_from_user()\n");
513	unused = strncpy_from_user(kmem, usermem, size + 1);
514
515	vm_munmap((unsigned long)usermem, PAGE_SIZE);
516	kfree(kmem);
517}
518
519static noinline void __init kasan_alloca_oob_left(void)
520{
521	volatile int i = 10;
522	char alloca_array[i];
523	char *p = alloca_array - 1;
 
 
 
 
 
 
524
525	pr_info("out-of-bounds to left on alloca\n");
526	*(volatile char *)p;
527}
528
529static noinline void __init kasan_alloca_oob_right(void)
530{
531	volatile int i = 10;
532	char alloca_array[i];
533	char *p = alloca_array + i;
 
 
 
 
 
 
534
535	pr_info("out-of-bounds to right on alloca\n");
536	*(volatile char *)p;
537}
538
539static noinline void __init kmem_cache_double_free(void)
540{
541	char *p;
542	size_t size = 200;
543	struct kmem_cache *cache;
544
545	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
546	if (!cache) {
547		pr_err("Cache allocation failed\n");
548		return;
549	}
550	pr_info("double-free on heap object\n");
551	p = kmem_cache_alloc(cache, GFP_KERNEL);
552	if (!p) {
553		pr_err("Allocation failed\n");
554		kmem_cache_destroy(cache);
555		return;
556	}
557
558	kmem_cache_free(cache, p);
559	kmem_cache_free(cache, p);
560	kmem_cache_destroy(cache);
561}
562
563static noinline void __init kmem_cache_invalid_free(void)
564{
565	char *p;
566	size_t size = 200;
567	struct kmem_cache *cache;
568
569	cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU,
570				  NULL);
571	if (!cache) {
572		pr_err("Cache allocation failed\n");
573		return;
574	}
575	pr_info("invalid-free of heap object\n");
576	p = kmem_cache_alloc(cache, GFP_KERNEL);
577	if (!p) {
578		pr_err("Allocation failed\n");
579		kmem_cache_destroy(cache);
580		return;
581	}
582
583	/* Trigger invalid free, the object doesn't get freed */
584	kmem_cache_free(cache, p + 1);
585
586	/*
587	 * Properly free the object to prevent the "Objects remaining in
588	 * test_cache on __kmem_cache_shutdown" BUG failure.
589	 */
590	kmem_cache_free(cache, p);
591
592	kmem_cache_destroy(cache);
593}
594
595static noinline void __init kasan_memchr(void)
596{
597	char *ptr;
598	size_t size = 24;
599
600	pr_info("out-of-bounds in memchr\n");
 
 
 
 
 
 
 
 
601	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
602	if (!ptr)
603		return;
 
 
604
605	memchr(ptr, '1', size + 1);
606	kfree(ptr);
607}
608
609static noinline void __init kasan_memcmp(void)
610{
611	char *ptr;
612	size_t size = 24;
613	int arr[9];
614
615	pr_info("out-of-bounds in memcmp\n");
 
 
 
 
 
 
 
 
616	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
617	if (!ptr)
618		return;
619
620	memset(arr, 0, sizeof(arr));
621	memcmp(ptr, arr, size+1);
622	kfree(ptr);
623}
624
625static noinline void __init kasan_strings(void)
626{
627	char *ptr;
628	size_t size = 24;
629
630	pr_info("use-after-free in strchr\n");
 
 
 
 
 
631	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
632	if (!ptr)
633		return;
634
635	kfree(ptr);
636
637	/*
638	 * Try to cause only 1 invalid access (less spam in dmesg).
639	 * For that we need ptr to point to zeroed byte.
640	 * Skip metadata that could be stored in freed object so ptr
641	 * will likely point to zeroed byte.
642	 */
643	ptr += 16;
644	strchr(ptr, '1');
645
646	pr_info("use-after-free in strrchr\n");
647	strrchr(ptr, '1');
648
649	pr_info("use-after-free in strcmp\n");
650	strcmp(ptr, "2");
651
652	pr_info("use-after-free in strncmp\n");
653	strncmp(ptr, "2", 1);
654
655	pr_info("use-after-free in strlen\n");
656	strlen(ptr);
657
658	pr_info("use-after-free in strnlen\n");
659	strnlen(ptr, 1);
660}
661
662static noinline void __init kasan_bitops(void)
663{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
664	/*
665	 * Allocate 1 more byte, which causes kzalloc to round up to 16-bytes;
666	 * this way we do not actually corrupt other memory.
667	 */
668	long *bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL);
669	if (!bits)
670		return;
671
672	/*
673	 * Below calls try to access bit within allocated memory; however, the
674	 * below accesses are still out-of-bounds, since bitops are defined to
675	 * operate on the whole long the bit is in.
676	 */
677	pr_info("out-of-bounds in set_bit\n");
678	set_bit(BITS_PER_LONG, bits);
 
 
 
 
 
 
 
679
680	pr_info("out-of-bounds in __set_bit\n");
681	__set_bit(BITS_PER_LONG, bits);
 
682
683	pr_info("out-of-bounds in clear_bit\n");
684	clear_bit(BITS_PER_LONG, bits);
685
686	pr_info("out-of-bounds in __clear_bit\n");
687	__clear_bit(BITS_PER_LONG, bits);
 
688
689	pr_info("out-of-bounds in clear_bit_unlock\n");
690	clear_bit_unlock(BITS_PER_LONG, bits);
 
691
692	pr_info("out-of-bounds in __clear_bit_unlock\n");
693	__clear_bit_unlock(BITS_PER_LONG, bits);
694
695	pr_info("out-of-bounds in change_bit\n");
696	change_bit(BITS_PER_LONG, bits);
 
 
 
 
 
697
698	pr_info("out-of-bounds in __change_bit\n");
699	__change_bit(BITS_PER_LONG, bits);
 
 
 
 
 
 
 
700
701	/*
702	 * Below calls try to access bit beyond allocated memory.
 
703	 */
704	pr_info("out-of-bounds in test_and_set_bit\n");
705	test_and_set_bit(BITS_PER_LONG + BITS_PER_BYTE, bits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
706
707	pr_info("out-of-bounds in __test_and_set_bit\n");
708	__test_and_set_bit(BITS_PER_LONG + BITS_PER_BYTE, bits);
709
710	pr_info("out-of-bounds in test_and_set_bit_lock\n");
711	test_and_set_bit_lock(BITS_PER_LONG + BITS_PER_BYTE, bits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
712
713	pr_info("out-of-bounds in test_and_clear_bit\n");
714	test_and_clear_bit(BITS_PER_LONG + BITS_PER_BYTE, bits);
715
716	pr_info("out-of-bounds in __test_and_clear_bit\n");
717	__test_and_clear_bit(BITS_PER_LONG + BITS_PER_BYTE, bits);
718
719	pr_info("out-of-bounds in test_and_change_bit\n");
720	test_and_change_bit(BITS_PER_LONG + BITS_PER_BYTE, bits);
 
721
722	pr_info("out-of-bounds in __test_and_change_bit\n");
723	__test_and_change_bit(BITS_PER_LONG + BITS_PER_BYTE, bits);
724
725	pr_info("out-of-bounds in test_bit\n");
726	(void)test_bit(BITS_PER_LONG + BITS_PER_BYTE, bits);
727
728#if defined(clear_bit_unlock_is_negative_byte)
729	pr_info("out-of-bounds in clear_bit_unlock_is_negative_byte\n");
730	clear_bit_unlock_is_negative_byte(BITS_PER_LONG + BITS_PER_BYTE, bits);
731#endif
732	kfree(bits);
733}
734
735static noinline void __init kmalloc_double_kzfree(void)
 
736{
737	char *ptr;
738	size_t size = 16;
739
740	pr_info("double-free (kzfree)\n");
741	ptr = kmalloc(size, GFP_KERNEL);
742	if (!ptr) {
743		pr_err("Allocation failed\n");
744		return;
745	}
746
747	kzfree(ptr);
748	kzfree(ptr);
749}
750
751static int __init kmalloc_tests_init(void)
752{
753	/*
754	 * Temporarily enable multi-shot mode. Otherwise, we'd only get a
755	 * report for the first case.
756	 */
757	bool multishot = kasan_save_enable_multi_shot();
758
759	kmalloc_oob_right();
760	kmalloc_oob_left();
761	kmalloc_node_oob_right();
762#ifdef CONFIG_SLUB
763	kmalloc_pagealloc_oob_right();
764	kmalloc_pagealloc_uaf();
765	kmalloc_pagealloc_invalid_free();
766#endif
767	kmalloc_large_oob_right();
768	kmalloc_oob_krealloc_more();
769	kmalloc_oob_krealloc_less();
770	kmalloc_oob_16();
771	kmalloc_oob_in_memset();
772	kmalloc_oob_memset_2();
773	kmalloc_oob_memset_4();
774	kmalloc_oob_memset_8();
775	kmalloc_oob_memset_16();
776	kmalloc_uaf();
777	kmalloc_uaf_memset();
778	kmalloc_uaf2();
779	kfree_via_page();
780	kfree_via_phys();
781	kmem_cache_oob();
782	memcg_accounted_kmem_cache();
783	kasan_stack_oob();
784	kasan_global_oob();
785	kasan_alloca_oob_left();
786	kasan_alloca_oob_right();
787	ksize_unpoisons_memory();
788	copy_user_test();
789	kmem_cache_double_free();
790	kmem_cache_invalid_free();
791	kasan_memchr();
792	kasan_memcmp();
793	kasan_strings();
794	kasan_bitops();
795	kmalloc_double_kzfree();
796
797	kasan_restore_multi_shot(multishot);
 
 
798
799	return -EAGAIN;
 
 
800}
801
802module_init(kmalloc_tests_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
803MODULE_LICENSE("GPL");