Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_trans.h"
 14#include "xfs_buf_item.h"
 15#include "xfs_trans_priv.h"
 16#include "xfs_trace.h"
 17
 18/*
 19 * Check to see if a buffer matching the given parameters is already
 20 * a part of the given transaction.
 21 */
 22STATIC struct xfs_buf *
 23xfs_trans_buf_item_match(
 24	struct xfs_trans	*tp,
 25	struct xfs_buftarg	*target,
 26	struct xfs_buf_map	*map,
 27	int			nmaps)
 28{
 29	struct xfs_log_item	*lip;
 30	struct xfs_buf_log_item	*blip;
 31	int			len = 0;
 32	int			i;
 33
 34	for (i = 0; i < nmaps; i++)
 35		len += map[i].bm_len;
 36
 37	list_for_each_entry(lip, &tp->t_items, li_trans) {
 38		blip = (struct xfs_buf_log_item *)lip;
 39		if (blip->bli_item.li_type == XFS_LI_BUF &&
 40		    blip->bli_buf->b_target == target &&
 41		    XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
 42		    blip->bli_buf->b_length == len) {
 43			ASSERT(blip->bli_buf->b_map_count == nmaps);
 44			return blip->bli_buf;
 45		}
 46	}
 47
 48	return NULL;
 49}
 50
 51/*
 52 * Add the locked buffer to the transaction.
 53 *
 54 * The buffer must be locked, and it cannot be associated with any
 55 * transaction.
 56 *
 57 * If the buffer does not yet have a buf log item associated with it,
 58 * then allocate one for it.  Then add the buf item to the transaction.
 59 */
 60STATIC void
 61_xfs_trans_bjoin(
 62	struct xfs_trans	*tp,
 63	struct xfs_buf		*bp,
 64	int			reset_recur)
 65{
 66	struct xfs_buf_log_item	*bip;
 67
 68	ASSERT(bp->b_transp == NULL);
 69
 70	/*
 71	 * The xfs_buf_log_item pointer is stored in b_log_item.  If
 72	 * it doesn't have one yet, then allocate one and initialize it.
 73	 * The checks to see if one is there are in xfs_buf_item_init().
 74	 */
 75	xfs_buf_item_init(bp, tp->t_mountp);
 76	bip = bp->b_log_item;
 77	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 78	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
 79	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
 80	if (reset_recur)
 81		bip->bli_recur = 0;
 82
 83	/*
 84	 * Take a reference for this transaction on the buf item.
 85	 */
 86	atomic_inc(&bip->bli_refcount);
 87
 88	/*
 89	 * Attach the item to the transaction so we can find it in
 90	 * xfs_trans_get_buf() and friends.
 91	 */
 92	xfs_trans_add_item(tp, &bip->bli_item);
 93	bp->b_transp = tp;
 94
 95}
 96
 97void
 98xfs_trans_bjoin(
 99	struct xfs_trans	*tp,
100	struct xfs_buf		*bp)
101{
102	_xfs_trans_bjoin(tp, bp, 0);
103	trace_xfs_trans_bjoin(bp->b_log_item);
104}
105
106/*
107 * Get and lock the buffer for the caller if it is not already
108 * locked within the given transaction.  If it is already locked
109 * within the transaction, just increment its lock recursion count
110 * and return a pointer to it.
111 *
112 * If the transaction pointer is NULL, make this just a normal
113 * get_buf() call.
114 */
115int
116xfs_trans_get_buf_map(
117	struct xfs_trans	*tp,
118	struct xfs_buftarg	*target,
119	struct xfs_buf_map	*map,
120	int			nmaps,
121	xfs_buf_flags_t		flags,
122	struct xfs_buf		**bpp)
123{
124	struct xfs_buf		*bp;
125	struct xfs_buf_log_item	*bip;
126	int			error;
127
128	*bpp = NULL;
129	if (!tp)
130		return xfs_buf_get_map(target, map, nmaps, flags, bpp);
131
132	/*
133	 * If we find the buffer in the cache with this transaction
134	 * pointer in its b_fsprivate2 field, then we know we already
135	 * have it locked.  In this case we just increment the lock
136	 * recursion count and return the buffer to the caller.
137	 */
138	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
139	if (bp != NULL) {
140		ASSERT(xfs_buf_islocked(bp));
141		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
142			xfs_buf_stale(bp);
143			bp->b_flags |= XBF_DONE;
144		}
145
146		ASSERT(bp->b_transp == tp);
147		bip = bp->b_log_item;
148		ASSERT(bip != NULL);
149		ASSERT(atomic_read(&bip->bli_refcount) > 0);
150		bip->bli_recur++;
151		trace_xfs_trans_get_buf_recur(bip);
152		*bpp = bp;
153		return 0;
154	}
155
156	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
157	if (error)
158		return error;
 
159
160	ASSERT(!bp->b_error);
161
162	_xfs_trans_bjoin(tp, bp, 1);
163	trace_xfs_trans_get_buf(bp->b_log_item);
164	*bpp = bp;
165	return 0;
166}
167
168/*
169 * Get and lock the superblock buffer for the given transaction.
 
 
 
 
 
170 */
171struct xfs_buf *
172xfs_trans_getsb(
173	struct xfs_trans	*tp)
 
174{
175	struct xfs_buf		*bp = tp->t_mountp->m_sb_bp;
 
176
177	/*
178	 * Just increment the lock recursion count if the buffer is already
179	 * attached to this transaction.
180	 */
181	if (bp->b_transp == tp) {
182		struct xfs_buf_log_item	*bip = bp->b_log_item;
183
 
 
 
 
 
 
 
 
 
184		ASSERT(bip != NULL);
185		ASSERT(atomic_read(&bip->bli_refcount) > 0);
186		bip->bli_recur++;
187
188		trace_xfs_trans_getsb_recur(bip);
189	} else {
190		xfs_buf_lock(bp);
191		xfs_buf_hold(bp);
192		_xfs_trans_bjoin(tp, bp, 1);
193
194		trace_xfs_trans_getsb(bp->b_log_item);
195	}
196
 
 
 
 
 
 
197	return bp;
198}
199
200/*
201 * Get and lock the buffer for the caller if it is not already
202 * locked within the given transaction.  If it has not yet been
203 * read in, read it from disk. If it is already locked
204 * within the transaction and already read in, just increment its
205 * lock recursion count and return a pointer to it.
206 *
207 * If the transaction pointer is NULL, make this just a normal
208 * read_buf() call.
209 */
210int
211xfs_trans_read_buf_map(
212	struct xfs_mount	*mp,
213	struct xfs_trans	*tp,
214	struct xfs_buftarg	*target,
215	struct xfs_buf_map	*map,
216	int			nmaps,
217	xfs_buf_flags_t		flags,
218	struct xfs_buf		**bpp,
219	const struct xfs_buf_ops *ops)
220{
221	struct xfs_buf		*bp = NULL;
222	struct xfs_buf_log_item	*bip;
223	int			error;
224
225	*bpp = NULL;
226	/*
227	 * If we find the buffer in the cache with this transaction
228	 * pointer in its b_fsprivate2 field, then we know we already
229	 * have it locked.  If it is already read in we just increment
230	 * the lock recursion count and return the buffer to the caller.
231	 * If the buffer is not yet read in, then we read it in, increment
232	 * the lock recursion count, and return it to the caller.
233	 */
234	if (tp)
235		bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
236	if (bp) {
237		ASSERT(xfs_buf_islocked(bp));
238		ASSERT(bp->b_transp == tp);
239		ASSERT(bp->b_log_item != NULL);
240		ASSERT(!bp->b_error);
241		ASSERT(bp->b_flags & XBF_DONE);
242
243		/*
244		 * We never locked this buf ourselves, so we shouldn't
245		 * brelse it either. Just get out.
246		 */
247		if (XFS_FORCED_SHUTDOWN(mp)) {
248			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
249			return -EIO;
250		}
251
252		/*
253		 * Check if the caller is trying to read a buffer that is
254		 * already attached to the transaction yet has no buffer ops
255		 * assigned.  Ops are usually attached when the buffer is
256		 * attached to the transaction, or by the read caller if
257		 * special circumstances.  That didn't happen, which is not
258		 * how this is supposed to go.
259		 *
260		 * If the buffer passes verification we'll let this go, but if
261		 * not we have to shut down.  Let the transaction cleanup code
262		 * release this buffer when it kills the tranaction.
263		 */
264		ASSERT(bp->b_ops != NULL);
265		error = xfs_buf_reverify(bp, ops);
266		if (error) {
267			xfs_buf_ioerror_alert(bp, __return_address);
268
269			if (tp->t_flags & XFS_TRANS_DIRTY)
270				xfs_force_shutdown(tp->t_mountp,
271						SHUTDOWN_META_IO_ERROR);
272
273			/* bad CRC means corrupted metadata */
274			if (error == -EFSBADCRC)
275				error = -EFSCORRUPTED;
276			return error;
277		}
278
279		bip = bp->b_log_item;
280		bip->bli_recur++;
281
282		ASSERT(atomic_read(&bip->bli_refcount) > 0);
283		trace_xfs_trans_read_buf_recur(bip);
284		ASSERT(bp->b_ops != NULL || ops == NULL);
285		*bpp = bp;
286		return 0;
287	}
288
289	error = xfs_buf_read_map(target, map, nmaps, flags, &bp, ops,
290			__return_address);
291	switch (error) {
292	case 0:
293		break;
294	default:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295		if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
296			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
297		fallthrough;
298	case -ENOMEM:
299	case -EAGAIN:
 
 
300		return error;
301	}
302
303	if (XFS_FORCED_SHUTDOWN(mp)) {
304		xfs_buf_relse(bp);
305		trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
306		return -EIO;
307	}
308
309	if (tp) {
310		_xfs_trans_bjoin(tp, bp, 1);
311		trace_xfs_trans_read_buf(bp->b_log_item);
312	}
313	ASSERT(bp->b_ops != NULL || ops == NULL);
314	*bpp = bp;
315	return 0;
316
317}
318
319/* Has this buffer been dirtied by anyone? */
320bool
321xfs_trans_buf_is_dirty(
322	struct xfs_buf		*bp)
323{
324	struct xfs_buf_log_item	*bip = bp->b_log_item;
325
326	if (!bip)
327		return false;
328	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
329	return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
330}
331
332/*
333 * Release a buffer previously joined to the transaction. If the buffer is
334 * modified within this transaction, decrement the recursion count but do not
335 * release the buffer even if the count goes to 0. If the buffer is not modified
336 * within the transaction, decrement the recursion count and release the buffer
337 * if the recursion count goes to 0.
338 *
339 * If the buffer is to be released and it was not already dirty before this
340 * transaction began, then also free the buf_log_item associated with it.
341 *
342 * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
343 */
344void
345xfs_trans_brelse(
346	struct xfs_trans	*tp,
347	struct xfs_buf		*bp)
348{
349	struct xfs_buf_log_item	*bip = bp->b_log_item;
350
351	ASSERT(bp->b_transp == tp);
352
353	if (!tp) {
354		xfs_buf_relse(bp);
355		return;
356	}
357
358	trace_xfs_trans_brelse(bip);
359	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
360	ASSERT(atomic_read(&bip->bli_refcount) > 0);
361
362	/*
363	 * If the release is for a recursive lookup, then decrement the count
364	 * and return.
365	 */
366	if (bip->bli_recur > 0) {
367		bip->bli_recur--;
368		return;
369	}
370
371	/*
372	 * If the buffer is invalidated or dirty in this transaction, we can't
373	 * release it until we commit.
374	 */
375	if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
376		return;
377	if (bip->bli_flags & XFS_BLI_STALE)
378		return;
379
380	/*
381	 * Unlink the log item from the transaction and clear the hold flag, if
382	 * set. We wouldn't want the next user of the buffer to get confused.
383	 */
384	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
385	xfs_trans_del_item(&bip->bli_item);
386	bip->bli_flags &= ~XFS_BLI_HOLD;
387
388	/* drop the reference to the bli */
389	xfs_buf_item_put(bip);
390
391	bp->b_transp = NULL;
392	xfs_buf_relse(bp);
393}
394
395/*
396 * Mark the buffer as not needing to be unlocked when the buf item's
397 * iop_committing() routine is called.  The buffer must already be locked
398 * and associated with the given transaction.
399 */
400/* ARGSUSED */
401void
402xfs_trans_bhold(
403	xfs_trans_t		*tp,
404	struct xfs_buf		*bp)
405{
406	struct xfs_buf_log_item	*bip = bp->b_log_item;
407
408	ASSERT(bp->b_transp == tp);
409	ASSERT(bip != NULL);
410	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
411	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
412	ASSERT(atomic_read(&bip->bli_refcount) > 0);
413
414	bip->bli_flags |= XFS_BLI_HOLD;
415	trace_xfs_trans_bhold(bip);
416}
417
418/*
419 * Cancel the previous buffer hold request made on this buffer
420 * for this transaction.
421 */
422void
423xfs_trans_bhold_release(
424	xfs_trans_t		*tp,
425	struct xfs_buf		*bp)
426{
427	struct xfs_buf_log_item	*bip = bp->b_log_item;
428
429	ASSERT(bp->b_transp == tp);
430	ASSERT(bip != NULL);
431	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
432	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
433	ASSERT(atomic_read(&bip->bli_refcount) > 0);
434	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
435
436	bip->bli_flags &= ~XFS_BLI_HOLD;
437	trace_xfs_trans_bhold_release(bip);
438}
439
440/*
441 * Mark a buffer dirty in the transaction.
442 */
443void
444xfs_trans_dirty_buf(
445	struct xfs_trans	*tp,
446	struct xfs_buf		*bp)
447{
448	struct xfs_buf_log_item	*bip = bp->b_log_item;
449
450	ASSERT(bp->b_transp == tp);
451	ASSERT(bip != NULL);
 
 
452
453	/*
454	 * Mark the buffer as needing to be written out eventually,
455	 * and set its iodone function to remove the buffer's buf log
456	 * item from the AIL and free it when the buffer is flushed
457	 * to disk.
 
 
 
 
458	 */
459	bp->b_flags |= XBF_DONE;
460
461	ASSERT(atomic_read(&bip->bli_refcount) > 0);
 
 
462
463	/*
464	 * If we invalidated the buffer within this transaction, then
465	 * cancel the invalidation now that we're dirtying the buffer
466	 * again.  There are no races with the code in xfs_buf_item_unpin(),
467	 * because we have a reference to the buffer this entire time.
468	 */
469	if (bip->bli_flags & XFS_BLI_STALE) {
470		bip->bli_flags &= ~XFS_BLI_STALE;
471		ASSERT(bp->b_flags & XBF_STALE);
472		bp->b_flags &= ~XBF_STALE;
473		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
474	}
475	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
476
477	tp->t_flags |= XFS_TRANS_DIRTY;
478	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
479}
480
481/*
482 * This is called to mark bytes first through last inclusive of the given
483 * buffer as needing to be logged when the transaction is committed.
484 * The buffer must already be associated with the given transaction.
485 *
486 * First and last are numbers relative to the beginning of this buffer,
487 * so the first byte in the buffer is numbered 0 regardless of the
488 * value of b_blkno.
489 */
490void
491xfs_trans_log_buf(
492	struct xfs_trans	*tp,
493	struct xfs_buf		*bp,
494	uint			first,
495	uint			last)
496{
497	struct xfs_buf_log_item	*bip = bp->b_log_item;
498
499	ASSERT(first <= last && last < BBTOB(bp->b_length));
500	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
501
502	xfs_trans_dirty_buf(tp, bp);
503
504	trace_xfs_trans_log_buf(bip);
505	xfs_buf_item_log(bip, first, last);
506}
507
508
509/*
510 * Invalidate a buffer that is being used within a transaction.
511 *
512 * Typically this is because the blocks in the buffer are being freed, so we
513 * need to prevent it from being written out when we're done.  Allowing it
514 * to be written again might overwrite data in the free blocks if they are
515 * reallocated to a file.
516 *
517 * We prevent the buffer from being written out by marking it stale.  We can't
518 * get rid of the buf log item at this point because the buffer may still be
519 * pinned by another transaction.  If that is the case, then we'll wait until
520 * the buffer is committed to disk for the last time (we can tell by the ref
521 * count) and free it in xfs_buf_item_unpin().  Until that happens we will
522 * keep the buffer locked so that the buffer and buf log item are not reused.
523 *
524 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
525 * the buf item.  This will be used at recovery time to determine that copies
526 * of the buffer in the log before this should not be replayed.
527 *
528 * We mark the item descriptor and the transaction dirty so that we'll hold
529 * the buffer until after the commit.
530 *
531 * Since we're invalidating the buffer, we also clear the state about which
532 * parts of the buffer have been logged.  We also clear the flag indicating
533 * that this is an inode buffer since the data in the buffer will no longer
534 * be valid.
535 *
536 * We set the stale bit in the buffer as well since we're getting rid of it.
537 */
538void
539xfs_trans_binval(
540	xfs_trans_t		*tp,
541	struct xfs_buf		*bp)
542{
543	struct xfs_buf_log_item	*bip = bp->b_log_item;
544	int			i;
545
546	ASSERT(bp->b_transp == tp);
547	ASSERT(bip != NULL);
548	ASSERT(atomic_read(&bip->bli_refcount) > 0);
549
550	trace_xfs_trans_binval(bip);
551
552	if (bip->bli_flags & XFS_BLI_STALE) {
553		/*
554		 * If the buffer is already invalidated, then
555		 * just return.
556		 */
557		ASSERT(bp->b_flags & XBF_STALE);
558		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
559		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
560		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
561		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
562		ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
563		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
564		return;
565	}
566
567	xfs_buf_stale(bp);
568
569	bip->bli_flags |= XFS_BLI_STALE;
570	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
571	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
572	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
573	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
574	for (i = 0; i < bip->bli_format_count; i++) {
575		memset(bip->bli_formats[i].blf_data_map, 0,
576		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
577	}
578	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
579	tp->t_flags |= XFS_TRANS_DIRTY;
580}
581
582/*
583 * This call is used to indicate that the buffer contains on-disk inodes which
584 * must be handled specially during recovery.  They require special handling
585 * because only the di_next_unlinked from the inodes in the buffer should be
586 * recovered.  The rest of the data in the buffer is logged via the inodes
587 * themselves.
588 *
589 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
590 * transferred to the buffer's log format structure so that we'll know what to
591 * do at recovery time.
592 */
593void
594xfs_trans_inode_buf(
595	xfs_trans_t		*tp,
596	struct xfs_buf		*bp)
597{
598	struct xfs_buf_log_item	*bip = bp->b_log_item;
599
600	ASSERT(bp->b_transp == tp);
601	ASSERT(bip != NULL);
602	ASSERT(atomic_read(&bip->bli_refcount) > 0);
603
604	bip->bli_flags |= XFS_BLI_INODE_BUF;
605	bp->b_flags |= _XBF_INODES;
606	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
607}
608
609/*
610 * This call is used to indicate that the buffer is going to
611 * be staled and was an inode buffer. This means it gets
612 * special processing during unpin - where any inodes
613 * associated with the buffer should be removed from ail.
614 * There is also special processing during recovery,
615 * any replay of the inodes in the buffer needs to be
616 * prevented as the buffer may have been reused.
617 */
618void
619xfs_trans_stale_inode_buf(
620	xfs_trans_t		*tp,
621	struct xfs_buf		*bp)
622{
623	struct xfs_buf_log_item	*bip = bp->b_log_item;
624
625	ASSERT(bp->b_transp == tp);
626	ASSERT(bip != NULL);
627	ASSERT(atomic_read(&bip->bli_refcount) > 0);
628
629	bip->bli_flags |= XFS_BLI_STALE_INODE;
630	bp->b_flags |= _XBF_INODES;
631	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
632}
633
634/*
635 * Mark the buffer as being one which contains newly allocated
636 * inodes.  We need to make sure that even if this buffer is
637 * relogged as an 'inode buf' we still recover all of the inode
638 * images in the face of a crash.  This works in coordination with
639 * xfs_buf_item_committed() to ensure that the buffer remains in the
640 * AIL at its original location even after it has been relogged.
641 */
642/* ARGSUSED */
643void
644xfs_trans_inode_alloc_buf(
645	xfs_trans_t		*tp,
646	struct xfs_buf		*bp)
647{
648	struct xfs_buf_log_item	*bip = bp->b_log_item;
649
650	ASSERT(bp->b_transp == tp);
651	ASSERT(bip != NULL);
652	ASSERT(atomic_read(&bip->bli_refcount) > 0);
653
654	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
655	bp->b_flags |= _XBF_INODES;
656	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
657}
658
659/*
660 * Mark the buffer as ordered for this transaction. This means that the contents
661 * of the buffer are not recorded in the transaction but it is tracked in the
662 * AIL as though it was. This allows us to record logical changes in
663 * transactions rather than the physical changes we make to the buffer without
664 * changing writeback ordering constraints of metadata buffers.
665 */
666bool
667xfs_trans_ordered_buf(
668	struct xfs_trans	*tp,
669	struct xfs_buf		*bp)
670{
671	struct xfs_buf_log_item	*bip = bp->b_log_item;
672
673	ASSERT(bp->b_transp == tp);
674	ASSERT(bip != NULL);
675	ASSERT(atomic_read(&bip->bli_refcount) > 0);
676
677	if (xfs_buf_item_dirty_format(bip))
678		return false;
679
680	bip->bli_flags |= XFS_BLI_ORDERED;
681	trace_xfs_buf_item_ordered(bip);
682
683	/*
684	 * We don't log a dirty range of an ordered buffer but it still needs
685	 * to be marked dirty and that it has been logged.
686	 */
687	xfs_trans_dirty_buf(tp, bp);
688	return true;
689}
690
691/*
692 * Set the type of the buffer for log recovery so that it can correctly identify
693 * and hence attach the correct buffer ops to the buffer after replay.
694 */
695void
696xfs_trans_buf_set_type(
697	struct xfs_trans	*tp,
698	struct xfs_buf		*bp,
699	enum xfs_blft		type)
700{
701	struct xfs_buf_log_item	*bip = bp->b_log_item;
702
703	if (!tp)
704		return;
705
706	ASSERT(bp->b_transp == tp);
707	ASSERT(bip != NULL);
708	ASSERT(atomic_read(&bip->bli_refcount) > 0);
709
710	xfs_blft_to_flags(&bip->__bli_format, type);
711}
712
713void
714xfs_trans_buf_copy_type(
715	struct xfs_buf		*dst_bp,
716	struct xfs_buf		*src_bp)
717{
718	struct xfs_buf_log_item	*sbip = src_bp->b_log_item;
719	struct xfs_buf_log_item	*dbip = dst_bp->b_log_item;
720	enum xfs_blft		type;
721
722	type = xfs_blft_from_flags(&sbip->__bli_format);
723	xfs_blft_to_flags(&dbip->__bli_format, type);
724}
725
726/*
727 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
728 * dquots. However, unlike in inode buffer recovery, dquot buffers get
729 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
730 * The only thing that makes dquot buffers different from regular
731 * buffers is that we must not replay dquot bufs when recovering
732 * if a _corresponding_ quotaoff has happened. We also have to distinguish
733 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
734 * can be turned off independently.
735 */
736/* ARGSUSED */
737void
738xfs_trans_dquot_buf(
739	xfs_trans_t		*tp,
740	struct xfs_buf		*bp,
741	uint			type)
742{
743	struct xfs_buf_log_item	*bip = bp->b_log_item;
744
745	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
746	       type == XFS_BLF_PDQUOT_BUF ||
747	       type == XFS_BLF_GDQUOT_BUF);
748
749	bip->__bli_format.blf_flags |= type;
750
751	switch (type) {
752	case XFS_BLF_UDQUOT_BUF:
753		type = XFS_BLFT_UDQUOT_BUF;
754		break;
755	case XFS_BLF_PDQUOT_BUF:
756		type = XFS_BLFT_PDQUOT_BUF;
757		break;
758	case XFS_BLF_GDQUOT_BUF:
759		type = XFS_BLFT_GDQUOT_BUF;
760		break;
761	default:
762		type = XFS_BLFT_UNKNOWN_BUF;
763		break;
764	}
765
766	bp->b_flags |= _XBF_DQUOTS;
767	xfs_trans_buf_set_type(tp, bp, type);
768}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_trans.h"
 14#include "xfs_buf_item.h"
 15#include "xfs_trans_priv.h"
 16#include "xfs_trace.h"
 17
 18/*
 19 * Check to see if a buffer matching the given parameters is already
 20 * a part of the given transaction.
 21 */
 22STATIC struct xfs_buf *
 23xfs_trans_buf_item_match(
 24	struct xfs_trans	*tp,
 25	struct xfs_buftarg	*target,
 26	struct xfs_buf_map	*map,
 27	int			nmaps)
 28{
 29	struct xfs_log_item	*lip;
 30	struct xfs_buf_log_item	*blip;
 31	int			len = 0;
 32	int			i;
 33
 34	for (i = 0; i < nmaps; i++)
 35		len += map[i].bm_len;
 36
 37	list_for_each_entry(lip, &tp->t_items, li_trans) {
 38		blip = (struct xfs_buf_log_item *)lip;
 39		if (blip->bli_item.li_type == XFS_LI_BUF &&
 40		    blip->bli_buf->b_target == target &&
 41		    XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
 42		    blip->bli_buf->b_length == len) {
 43			ASSERT(blip->bli_buf->b_map_count == nmaps);
 44			return blip->bli_buf;
 45		}
 46	}
 47
 48	return NULL;
 49}
 50
 51/*
 52 * Add the locked buffer to the transaction.
 53 *
 54 * The buffer must be locked, and it cannot be associated with any
 55 * transaction.
 56 *
 57 * If the buffer does not yet have a buf log item associated with it,
 58 * then allocate one for it.  Then add the buf item to the transaction.
 59 */
 60STATIC void
 61_xfs_trans_bjoin(
 62	struct xfs_trans	*tp,
 63	struct xfs_buf		*bp,
 64	int			reset_recur)
 65{
 66	struct xfs_buf_log_item	*bip;
 67
 68	ASSERT(bp->b_transp == NULL);
 69
 70	/*
 71	 * The xfs_buf_log_item pointer is stored in b_log_item.  If
 72	 * it doesn't have one yet, then allocate one and initialize it.
 73	 * The checks to see if one is there are in xfs_buf_item_init().
 74	 */
 75	xfs_buf_item_init(bp, tp->t_mountp);
 76	bip = bp->b_log_item;
 77	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 78	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
 79	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
 80	if (reset_recur)
 81		bip->bli_recur = 0;
 82
 83	/*
 84	 * Take a reference for this transaction on the buf item.
 85	 */
 86	atomic_inc(&bip->bli_refcount);
 87
 88	/*
 89	 * Attach the item to the transaction so we can find it in
 90	 * xfs_trans_get_buf() and friends.
 91	 */
 92	xfs_trans_add_item(tp, &bip->bli_item);
 93	bp->b_transp = tp;
 94
 95}
 96
 97void
 98xfs_trans_bjoin(
 99	struct xfs_trans	*tp,
100	struct xfs_buf		*bp)
101{
102	_xfs_trans_bjoin(tp, bp, 0);
103	trace_xfs_trans_bjoin(bp->b_log_item);
104}
105
106/*
107 * Get and lock the buffer for the caller if it is not already
108 * locked within the given transaction.  If it is already locked
109 * within the transaction, just increment its lock recursion count
110 * and return a pointer to it.
111 *
112 * If the transaction pointer is NULL, make this just a normal
113 * get_buf() call.
114 */
115struct xfs_buf *
116xfs_trans_get_buf_map(
117	struct xfs_trans	*tp,
118	struct xfs_buftarg	*target,
119	struct xfs_buf_map	*map,
120	int			nmaps,
121	xfs_buf_flags_t		flags)
 
122{
123	xfs_buf_t		*bp;
124	struct xfs_buf_log_item	*bip;
 
125
 
126	if (!tp)
127		return xfs_buf_get_map(target, map, nmaps, flags);
128
129	/*
130	 * If we find the buffer in the cache with this transaction
131	 * pointer in its b_fsprivate2 field, then we know we already
132	 * have it locked.  In this case we just increment the lock
133	 * recursion count and return the buffer to the caller.
134	 */
135	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
136	if (bp != NULL) {
137		ASSERT(xfs_buf_islocked(bp));
138		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
139			xfs_buf_stale(bp);
140			bp->b_flags |= XBF_DONE;
141		}
142
143		ASSERT(bp->b_transp == tp);
144		bip = bp->b_log_item;
145		ASSERT(bip != NULL);
146		ASSERT(atomic_read(&bip->bli_refcount) > 0);
147		bip->bli_recur++;
148		trace_xfs_trans_get_buf_recur(bip);
149		return bp;
 
150	}
151
152	bp = xfs_buf_get_map(target, map, nmaps, flags);
153	if (bp == NULL) {
154		return NULL;
155	}
156
157	ASSERT(!bp->b_error);
158
159	_xfs_trans_bjoin(tp, bp, 1);
160	trace_xfs_trans_get_buf(bp->b_log_item);
161	return bp;
 
162}
163
164/*
165 * Get and lock the superblock buffer of this file system for the
166 * given transaction.
167 *
168 * We don't need to use incore_match() here, because the superblock
169 * buffer is a private buffer which we keep a pointer to in the
170 * mount structure.
171 */
172xfs_buf_t *
173xfs_trans_getsb(
174	xfs_trans_t		*tp,
175	struct xfs_mount	*mp)
176{
177	xfs_buf_t		*bp;
178	struct xfs_buf_log_item	*bip;
179
180	/*
181	 * Default to just trying to lock the superblock buffer
182	 * if tp is NULL.
183	 */
184	if (tp == NULL)
185		return xfs_getsb(mp);
186
187	/*
188	 * If the superblock buffer already has this transaction
189	 * pointer in its b_fsprivate2 field, then we know we already
190	 * have it locked.  In this case we just increment the lock
191	 * recursion count and return the buffer to the caller.
192	 */
193	bp = mp->m_sb_bp;
194	if (bp->b_transp == tp) {
195		bip = bp->b_log_item;
196		ASSERT(bip != NULL);
197		ASSERT(atomic_read(&bip->bli_refcount) > 0);
198		bip->bli_recur++;
 
199		trace_xfs_trans_getsb_recur(bip);
200		return bp;
 
 
 
 
 
201	}
202
203	bp = xfs_getsb(mp);
204	if (bp == NULL)
205		return NULL;
206
207	_xfs_trans_bjoin(tp, bp, 1);
208	trace_xfs_trans_getsb(bp->b_log_item);
209	return bp;
210}
211
212/*
213 * Get and lock the buffer for the caller if it is not already
214 * locked within the given transaction.  If it has not yet been
215 * read in, read it from disk. If it is already locked
216 * within the transaction and already read in, just increment its
217 * lock recursion count and return a pointer to it.
218 *
219 * If the transaction pointer is NULL, make this just a normal
220 * read_buf() call.
221 */
222int
223xfs_trans_read_buf_map(
224	struct xfs_mount	*mp,
225	struct xfs_trans	*tp,
226	struct xfs_buftarg	*target,
227	struct xfs_buf_map	*map,
228	int			nmaps,
229	xfs_buf_flags_t		flags,
230	struct xfs_buf		**bpp,
231	const struct xfs_buf_ops *ops)
232{
233	struct xfs_buf		*bp = NULL;
234	struct xfs_buf_log_item	*bip;
235	int			error;
236
237	*bpp = NULL;
238	/*
239	 * If we find the buffer in the cache with this transaction
240	 * pointer in its b_fsprivate2 field, then we know we already
241	 * have it locked.  If it is already read in we just increment
242	 * the lock recursion count and return the buffer to the caller.
243	 * If the buffer is not yet read in, then we read it in, increment
244	 * the lock recursion count, and return it to the caller.
245	 */
246	if (tp)
247		bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
248	if (bp) {
249		ASSERT(xfs_buf_islocked(bp));
250		ASSERT(bp->b_transp == tp);
251		ASSERT(bp->b_log_item != NULL);
252		ASSERT(!bp->b_error);
253		ASSERT(bp->b_flags & XBF_DONE);
254
255		/*
256		 * We never locked this buf ourselves, so we shouldn't
257		 * brelse it either. Just get out.
258		 */
259		if (XFS_FORCED_SHUTDOWN(mp)) {
260			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
261			return -EIO;
262		}
263
264		/*
265		 * Check if the caller is trying to read a buffer that is
266		 * already attached to the transaction yet has no buffer ops
267		 * assigned.  Ops are usually attached when the buffer is
268		 * attached to the transaction, or by the read caller if
269		 * special circumstances.  That didn't happen, which is not
270		 * how this is supposed to go.
271		 *
272		 * If the buffer passes verification we'll let this go, but if
273		 * not we have to shut down.  Let the transaction cleanup code
274		 * release this buffer when it kills the tranaction.
275		 */
276		ASSERT(bp->b_ops != NULL);
277		error = xfs_buf_reverify(bp, ops);
278		if (error) {
279			xfs_buf_ioerror_alert(bp, __func__);
280
281			if (tp->t_flags & XFS_TRANS_DIRTY)
282				xfs_force_shutdown(tp->t_mountp,
283						SHUTDOWN_META_IO_ERROR);
284
285			/* bad CRC means corrupted metadata */
286			if (error == -EFSBADCRC)
287				error = -EFSCORRUPTED;
288			return error;
289		}
290
291		bip = bp->b_log_item;
292		bip->bli_recur++;
293
294		ASSERT(atomic_read(&bip->bli_refcount) > 0);
295		trace_xfs_trans_read_buf_recur(bip);
296		ASSERT(bp->b_ops != NULL || ops == NULL);
297		*bpp = bp;
298		return 0;
299	}
300
301	bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
302	if (!bp) {
303		if (!(flags & XBF_TRYLOCK))
304			return -ENOMEM;
305		return tp ? 0 : -EAGAIN;
306	}
307
308	/*
309	 * If we've had a read error, then the contents of the buffer are
310	 * invalid and should not be used. To ensure that a followup read tries
311	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
312	 * mark the buffer stale. This ensures that anyone who has a current
313	 * reference to the buffer will interpret it's contents correctly and
314	 * future cache lookups will also treat it as an empty, uninitialised
315	 * buffer.
316	 */
317	if (bp->b_error) {
318		error = bp->b_error;
319		if (!XFS_FORCED_SHUTDOWN(mp))
320			xfs_buf_ioerror_alert(bp, __func__);
321		bp->b_flags &= ~XBF_DONE;
322		xfs_buf_stale(bp);
323
324		if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
325			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
326		xfs_buf_relse(bp);
327
328		/* bad CRC means corrupted metadata */
329		if (error == -EFSBADCRC)
330			error = -EFSCORRUPTED;
331		return error;
332	}
333
334	if (XFS_FORCED_SHUTDOWN(mp)) {
335		xfs_buf_relse(bp);
336		trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
337		return -EIO;
338	}
339
340	if (tp) {
341		_xfs_trans_bjoin(tp, bp, 1);
342		trace_xfs_trans_read_buf(bp->b_log_item);
343	}
344	ASSERT(bp->b_ops != NULL || ops == NULL);
345	*bpp = bp;
346	return 0;
347
348}
349
350/* Has this buffer been dirtied by anyone? */
351bool
352xfs_trans_buf_is_dirty(
353	struct xfs_buf		*bp)
354{
355	struct xfs_buf_log_item	*bip = bp->b_log_item;
356
357	if (!bip)
358		return false;
359	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
360	return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
361}
362
363/*
364 * Release a buffer previously joined to the transaction. If the buffer is
365 * modified within this transaction, decrement the recursion count but do not
366 * release the buffer even if the count goes to 0. If the buffer is not modified
367 * within the transaction, decrement the recursion count and release the buffer
368 * if the recursion count goes to 0.
369 *
370 * If the buffer is to be released and it was not already dirty before this
371 * transaction began, then also free the buf_log_item associated with it.
372 *
373 * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
374 */
375void
376xfs_trans_brelse(
377	struct xfs_trans	*tp,
378	struct xfs_buf		*bp)
379{
380	struct xfs_buf_log_item	*bip = bp->b_log_item;
381
382	ASSERT(bp->b_transp == tp);
383
384	if (!tp) {
385		xfs_buf_relse(bp);
386		return;
387	}
388
389	trace_xfs_trans_brelse(bip);
390	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
391	ASSERT(atomic_read(&bip->bli_refcount) > 0);
392
393	/*
394	 * If the release is for a recursive lookup, then decrement the count
395	 * and return.
396	 */
397	if (bip->bli_recur > 0) {
398		bip->bli_recur--;
399		return;
400	}
401
402	/*
403	 * If the buffer is invalidated or dirty in this transaction, we can't
404	 * release it until we commit.
405	 */
406	if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
407		return;
408	if (bip->bli_flags & XFS_BLI_STALE)
409		return;
410
411	/*
412	 * Unlink the log item from the transaction and clear the hold flag, if
413	 * set. We wouldn't want the next user of the buffer to get confused.
414	 */
415	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
416	xfs_trans_del_item(&bip->bli_item);
417	bip->bli_flags &= ~XFS_BLI_HOLD;
418
419	/* drop the reference to the bli */
420	xfs_buf_item_put(bip);
421
422	bp->b_transp = NULL;
423	xfs_buf_relse(bp);
424}
425
426/*
427 * Mark the buffer as not needing to be unlocked when the buf item's
428 * iop_committing() routine is called.  The buffer must already be locked
429 * and associated with the given transaction.
430 */
431/* ARGSUSED */
432void
433xfs_trans_bhold(
434	xfs_trans_t		*tp,
435	xfs_buf_t		*bp)
436{
437	struct xfs_buf_log_item	*bip = bp->b_log_item;
438
439	ASSERT(bp->b_transp == tp);
440	ASSERT(bip != NULL);
441	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
442	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
443	ASSERT(atomic_read(&bip->bli_refcount) > 0);
444
445	bip->bli_flags |= XFS_BLI_HOLD;
446	trace_xfs_trans_bhold(bip);
447}
448
449/*
450 * Cancel the previous buffer hold request made on this buffer
451 * for this transaction.
452 */
453void
454xfs_trans_bhold_release(
455	xfs_trans_t		*tp,
456	xfs_buf_t		*bp)
457{
458	struct xfs_buf_log_item	*bip = bp->b_log_item;
459
460	ASSERT(bp->b_transp == tp);
461	ASSERT(bip != NULL);
462	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
463	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
464	ASSERT(atomic_read(&bip->bli_refcount) > 0);
465	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
466
467	bip->bli_flags &= ~XFS_BLI_HOLD;
468	trace_xfs_trans_bhold_release(bip);
469}
470
471/*
472 * Mark a buffer dirty in the transaction.
473 */
474void
475xfs_trans_dirty_buf(
476	struct xfs_trans	*tp,
477	struct xfs_buf		*bp)
478{
479	struct xfs_buf_log_item	*bip = bp->b_log_item;
480
481	ASSERT(bp->b_transp == tp);
482	ASSERT(bip != NULL);
483	ASSERT(bp->b_iodone == NULL ||
484	       bp->b_iodone == xfs_buf_iodone_callbacks);
485
486	/*
487	 * Mark the buffer as needing to be written out eventually,
488	 * and set its iodone function to remove the buffer's buf log
489	 * item from the AIL and free it when the buffer is flushed
490	 * to disk.  See xfs_buf_attach_iodone() for more details
491	 * on li_cb and xfs_buf_iodone_callbacks().
492	 * If we end up aborting this transaction, we trap this buffer
493	 * inside the b_bdstrat callback so that this won't get written to
494	 * disk.
495	 */
496	bp->b_flags |= XBF_DONE;
497
498	ASSERT(atomic_read(&bip->bli_refcount) > 0);
499	bp->b_iodone = xfs_buf_iodone_callbacks;
500	bip->bli_item.li_cb = xfs_buf_iodone;
501
502	/*
503	 * If we invalidated the buffer within this transaction, then
504	 * cancel the invalidation now that we're dirtying the buffer
505	 * again.  There are no races with the code in xfs_buf_item_unpin(),
506	 * because we have a reference to the buffer this entire time.
507	 */
508	if (bip->bli_flags & XFS_BLI_STALE) {
509		bip->bli_flags &= ~XFS_BLI_STALE;
510		ASSERT(bp->b_flags & XBF_STALE);
511		bp->b_flags &= ~XBF_STALE;
512		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
513	}
514	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
515
516	tp->t_flags |= XFS_TRANS_DIRTY;
517	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
518}
519
520/*
521 * This is called to mark bytes first through last inclusive of the given
522 * buffer as needing to be logged when the transaction is committed.
523 * The buffer must already be associated with the given transaction.
524 *
525 * First and last are numbers relative to the beginning of this buffer,
526 * so the first byte in the buffer is numbered 0 regardless of the
527 * value of b_blkno.
528 */
529void
530xfs_trans_log_buf(
531	struct xfs_trans	*tp,
532	struct xfs_buf		*bp,
533	uint			first,
534	uint			last)
535{
536	struct xfs_buf_log_item	*bip = bp->b_log_item;
537
538	ASSERT(first <= last && last < BBTOB(bp->b_length));
539	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
540
541	xfs_trans_dirty_buf(tp, bp);
542
543	trace_xfs_trans_log_buf(bip);
544	xfs_buf_item_log(bip, first, last);
545}
546
547
548/*
549 * Invalidate a buffer that is being used within a transaction.
550 *
551 * Typically this is because the blocks in the buffer are being freed, so we
552 * need to prevent it from being written out when we're done.  Allowing it
553 * to be written again might overwrite data in the free blocks if they are
554 * reallocated to a file.
555 *
556 * We prevent the buffer from being written out by marking it stale.  We can't
557 * get rid of the buf log item at this point because the buffer may still be
558 * pinned by another transaction.  If that is the case, then we'll wait until
559 * the buffer is committed to disk for the last time (we can tell by the ref
560 * count) and free it in xfs_buf_item_unpin().  Until that happens we will
561 * keep the buffer locked so that the buffer and buf log item are not reused.
562 *
563 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
564 * the buf item.  This will be used at recovery time to determine that copies
565 * of the buffer in the log before this should not be replayed.
566 *
567 * We mark the item descriptor and the transaction dirty so that we'll hold
568 * the buffer until after the commit.
569 *
570 * Since we're invalidating the buffer, we also clear the state about which
571 * parts of the buffer have been logged.  We also clear the flag indicating
572 * that this is an inode buffer since the data in the buffer will no longer
573 * be valid.
574 *
575 * We set the stale bit in the buffer as well since we're getting rid of it.
576 */
577void
578xfs_trans_binval(
579	xfs_trans_t		*tp,
580	xfs_buf_t		*bp)
581{
582	struct xfs_buf_log_item	*bip = bp->b_log_item;
583	int			i;
584
585	ASSERT(bp->b_transp == tp);
586	ASSERT(bip != NULL);
587	ASSERT(atomic_read(&bip->bli_refcount) > 0);
588
589	trace_xfs_trans_binval(bip);
590
591	if (bip->bli_flags & XFS_BLI_STALE) {
592		/*
593		 * If the buffer is already invalidated, then
594		 * just return.
595		 */
596		ASSERT(bp->b_flags & XBF_STALE);
597		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
598		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
599		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
600		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
601		ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
602		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
603		return;
604	}
605
606	xfs_buf_stale(bp);
607
608	bip->bli_flags |= XFS_BLI_STALE;
609	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
610	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
611	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
612	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
613	for (i = 0; i < bip->bli_format_count; i++) {
614		memset(bip->bli_formats[i].blf_data_map, 0,
615		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
616	}
617	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
618	tp->t_flags |= XFS_TRANS_DIRTY;
619}
620
621/*
622 * This call is used to indicate that the buffer contains on-disk inodes which
623 * must be handled specially during recovery.  They require special handling
624 * because only the di_next_unlinked from the inodes in the buffer should be
625 * recovered.  The rest of the data in the buffer is logged via the inodes
626 * themselves.
627 *
628 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
629 * transferred to the buffer's log format structure so that we'll know what to
630 * do at recovery time.
631 */
632void
633xfs_trans_inode_buf(
634	xfs_trans_t		*tp,
635	xfs_buf_t		*bp)
636{
637	struct xfs_buf_log_item	*bip = bp->b_log_item;
638
639	ASSERT(bp->b_transp == tp);
640	ASSERT(bip != NULL);
641	ASSERT(atomic_read(&bip->bli_refcount) > 0);
642
643	bip->bli_flags |= XFS_BLI_INODE_BUF;
 
644	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
645}
646
647/*
648 * This call is used to indicate that the buffer is going to
649 * be staled and was an inode buffer. This means it gets
650 * special processing during unpin - where any inodes
651 * associated with the buffer should be removed from ail.
652 * There is also special processing during recovery,
653 * any replay of the inodes in the buffer needs to be
654 * prevented as the buffer may have been reused.
655 */
656void
657xfs_trans_stale_inode_buf(
658	xfs_trans_t		*tp,
659	xfs_buf_t		*bp)
660{
661	struct xfs_buf_log_item	*bip = bp->b_log_item;
662
663	ASSERT(bp->b_transp == tp);
664	ASSERT(bip != NULL);
665	ASSERT(atomic_read(&bip->bli_refcount) > 0);
666
667	bip->bli_flags |= XFS_BLI_STALE_INODE;
668	bip->bli_item.li_cb = xfs_buf_iodone;
669	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
670}
671
672/*
673 * Mark the buffer as being one which contains newly allocated
674 * inodes.  We need to make sure that even if this buffer is
675 * relogged as an 'inode buf' we still recover all of the inode
676 * images in the face of a crash.  This works in coordination with
677 * xfs_buf_item_committed() to ensure that the buffer remains in the
678 * AIL at its original location even after it has been relogged.
679 */
680/* ARGSUSED */
681void
682xfs_trans_inode_alloc_buf(
683	xfs_trans_t		*tp,
684	xfs_buf_t		*bp)
685{
686	struct xfs_buf_log_item	*bip = bp->b_log_item;
687
688	ASSERT(bp->b_transp == tp);
689	ASSERT(bip != NULL);
690	ASSERT(atomic_read(&bip->bli_refcount) > 0);
691
692	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
 
693	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
694}
695
696/*
697 * Mark the buffer as ordered for this transaction. This means that the contents
698 * of the buffer are not recorded in the transaction but it is tracked in the
699 * AIL as though it was. This allows us to record logical changes in
700 * transactions rather than the physical changes we make to the buffer without
701 * changing writeback ordering constraints of metadata buffers.
702 */
703bool
704xfs_trans_ordered_buf(
705	struct xfs_trans	*tp,
706	struct xfs_buf		*bp)
707{
708	struct xfs_buf_log_item	*bip = bp->b_log_item;
709
710	ASSERT(bp->b_transp == tp);
711	ASSERT(bip != NULL);
712	ASSERT(atomic_read(&bip->bli_refcount) > 0);
713
714	if (xfs_buf_item_dirty_format(bip))
715		return false;
716
717	bip->bli_flags |= XFS_BLI_ORDERED;
718	trace_xfs_buf_item_ordered(bip);
719
720	/*
721	 * We don't log a dirty range of an ordered buffer but it still needs
722	 * to be marked dirty and that it has been logged.
723	 */
724	xfs_trans_dirty_buf(tp, bp);
725	return true;
726}
727
728/*
729 * Set the type of the buffer for log recovery so that it can correctly identify
730 * and hence attach the correct buffer ops to the buffer after replay.
731 */
732void
733xfs_trans_buf_set_type(
734	struct xfs_trans	*tp,
735	struct xfs_buf		*bp,
736	enum xfs_blft		type)
737{
738	struct xfs_buf_log_item	*bip = bp->b_log_item;
739
740	if (!tp)
741		return;
742
743	ASSERT(bp->b_transp == tp);
744	ASSERT(bip != NULL);
745	ASSERT(atomic_read(&bip->bli_refcount) > 0);
746
747	xfs_blft_to_flags(&bip->__bli_format, type);
748}
749
750void
751xfs_trans_buf_copy_type(
752	struct xfs_buf		*dst_bp,
753	struct xfs_buf		*src_bp)
754{
755	struct xfs_buf_log_item	*sbip = src_bp->b_log_item;
756	struct xfs_buf_log_item	*dbip = dst_bp->b_log_item;
757	enum xfs_blft		type;
758
759	type = xfs_blft_from_flags(&sbip->__bli_format);
760	xfs_blft_to_flags(&dbip->__bli_format, type);
761}
762
763/*
764 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
765 * dquots. However, unlike in inode buffer recovery, dquot buffers get
766 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
767 * The only thing that makes dquot buffers different from regular
768 * buffers is that we must not replay dquot bufs when recovering
769 * if a _corresponding_ quotaoff has happened. We also have to distinguish
770 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
771 * can be turned off independently.
772 */
773/* ARGSUSED */
774void
775xfs_trans_dquot_buf(
776	xfs_trans_t		*tp,
777	xfs_buf_t		*bp,
778	uint			type)
779{
780	struct xfs_buf_log_item	*bip = bp->b_log_item;
781
782	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
783	       type == XFS_BLF_PDQUOT_BUF ||
784	       type == XFS_BLF_GDQUOT_BUF);
785
786	bip->__bli_format.blf_flags |= type;
787
788	switch (type) {
789	case XFS_BLF_UDQUOT_BUF:
790		type = XFS_BLFT_UDQUOT_BUF;
791		break;
792	case XFS_BLF_PDQUOT_BUF:
793		type = XFS_BLFT_PDQUOT_BUF;
794		break;
795	case XFS_BLF_GDQUOT_BUF:
796		type = XFS_BLFT_GDQUOT_BUF;
797		break;
798	default:
799		type = XFS_BLFT_UNKNOWN_BUF;
800		break;
801	}
802
 
803	xfs_trans_buf_set_type(tp, bp, type);
804}