Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_inode_item.h"
  16#include "xfs_bmap.h"
  17#include "xfs_bmap_util.h"
  18#include "xfs_dir2.h"
  19#include "xfs_dir2_priv.h"
  20#include "xfs_ioctl.h"
  21#include "xfs_trace.h"
  22#include "xfs_log.h"
  23#include "xfs_icache.h"
  24#include "xfs_pnfs.h"
  25#include "xfs_iomap.h"
  26#include "xfs_reflink.h"
  27
  28#include <linux/falloc.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mman.h>
  31#include <linux/fadvise.h>
  32#include <linux/mount.h>
  33
  34static const struct vm_operations_struct xfs_file_vm_ops;
  35
  36/*
  37 * Decide if the given file range is aligned to the size of the fundamental
  38 * allocation unit for the file.
  39 */
  40static bool
  41xfs_is_falloc_aligned(
  42	struct xfs_inode	*ip,
  43	loff_t			pos,
  44	long long int		len)
  45{
  46	struct xfs_mount	*mp = ip->i_mount;
  47	uint64_t		mask;
  48
  49	if (XFS_IS_REALTIME_INODE(ip)) {
  50		if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
  51			u64	rextbytes;
  52			u32	mod;
  53
  54			rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
  55			div_u64_rem(pos, rextbytes, &mod);
  56			if (mod)
  57				return false;
  58			div_u64_rem(len, rextbytes, &mod);
  59			return mod == 0;
  60		}
  61		mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
  62	} else {
  63		mask = mp->m_sb.sb_blocksize - 1;
  64	}
  65
  66	return !((pos | len) & mask);
  67}
  68
  69int
  70xfs_update_prealloc_flags(
  71	struct xfs_inode	*ip,
  72	enum xfs_prealloc_flags	flags)
  73{
  74	struct xfs_trans	*tp;
  75	int			error;
  76
  77	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
  78			0, 0, 0, &tp);
  79	if (error)
  80		return error;
  81
  82	xfs_ilock(ip, XFS_ILOCK_EXCL);
  83	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  84
  85	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
  86		VFS_I(ip)->i_mode &= ~S_ISUID;
  87		if (VFS_I(ip)->i_mode & S_IXGRP)
  88			VFS_I(ip)->i_mode &= ~S_ISGID;
  89		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  90	}
  91
  92	if (flags & XFS_PREALLOC_SET)
  93		ip->i_diflags |= XFS_DIFLAG_PREALLOC;
  94	if (flags & XFS_PREALLOC_CLEAR)
  95		ip->i_diflags &= ~XFS_DIFLAG_PREALLOC;
  96
  97	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  98	if (flags & XFS_PREALLOC_SYNC)
  99		xfs_trans_set_sync(tp);
 100	return xfs_trans_commit(tp);
 101}
 102
 103/*
 104 * Fsync operations on directories are much simpler than on regular files,
 105 * as there is no file data to flush, and thus also no need for explicit
 106 * cache flush operations, and there are no non-transaction metadata updates
 107 * on directories either.
 108 */
 109STATIC int
 110xfs_dir_fsync(
 111	struct file		*file,
 112	loff_t			start,
 113	loff_t			end,
 114	int			datasync)
 115{
 116	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 
 
 117
 118	trace_xfs_dir_fsync(ip);
 119	return xfs_log_force_inode(ip);
 120}
 121
 122static xfs_csn_t
 123xfs_fsync_seq(
 124	struct xfs_inode	*ip,
 125	bool			datasync)
 126{
 127	if (!xfs_ipincount(ip))
 128		return 0;
 129	if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 130		return 0;
 131	return ip->i_itemp->ili_commit_seq;
 132}
 133
 134/*
 135 * All metadata updates are logged, which means that we just have to flush the
 136 * log up to the latest LSN that touched the inode.
 137 *
 138 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
 139 * the log force before we clear the ili_fsync_fields field. This ensures that
 140 * we don't get a racing sync operation that does not wait for the metadata to
 141 * hit the journal before returning.  If we race with clearing ili_fsync_fields,
 142 * then all that will happen is the log force will do nothing as the lsn will
 143 * already be on disk.  We can't race with setting ili_fsync_fields because that
 144 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
 145 * shared until after the ili_fsync_fields is cleared.
 146 */
 147static  int
 148xfs_fsync_flush_log(
 149	struct xfs_inode	*ip,
 150	bool			datasync,
 151	int			*log_flushed)
 152{
 153	int			error = 0;
 154	xfs_csn_t		seq;
 155
 156	xfs_ilock(ip, XFS_ILOCK_SHARED);
 157	seq = xfs_fsync_seq(ip, datasync);
 158	if (seq) {
 159		error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
 160					  log_flushed);
 161
 162		spin_lock(&ip->i_itemp->ili_lock);
 163		ip->i_itemp->ili_fsync_fields = 0;
 164		spin_unlock(&ip->i_itemp->ili_lock);
 165	}
 166	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 167	return error;
 
 
 
 168}
 169
 170STATIC int
 171xfs_file_fsync(
 172	struct file		*file,
 173	loff_t			start,
 174	loff_t			end,
 175	int			datasync)
 176{
 177	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 
 178	struct xfs_mount	*mp = ip->i_mount;
 179	int			error = 0;
 180	int			log_flushed = 0;
 
 181
 182	trace_xfs_file_fsync(ip);
 183
 184	error = file_write_and_wait_range(file, start, end);
 185	if (error)
 186		return error;
 187
 188	if (XFS_FORCED_SHUTDOWN(mp))
 189		return -EIO;
 190
 191	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 192
 193	/*
 194	 * If we have an RT and/or log subvolume we need to make sure to flush
 195	 * the write cache the device used for file data first.  This is to
 196	 * ensure newly written file data make it to disk before logging the new
 197	 * inode size in case of an extending write.
 198	 */
 199	if (XFS_IS_REALTIME_INODE(ip))
 200		blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
 201	else if (mp->m_logdev_targp != mp->m_ddev_targp)
 202		blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
 203
 204	/*
 205	 * Any inode that has dirty modifications in the log is pinned.  The
 206	 * racy check here for a pinned inode while not catch modifications
 207	 * that happen concurrently to the fsync call, but fsync semantics
 208	 * only require to sync previously completed I/O.
 
 
 
 
 
 
 
 209	 */
 210	if (xfs_ipincount(ip))
 211		error = xfs_fsync_flush_log(ip, datasync, &log_flushed);
 
 
 
 
 
 
 
 
 
 
 212
 213	/*
 214	 * If we only have a single device, and the log force about was
 215	 * a no-op we might have to flush the data device cache here.
 216	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 217	 * an already allocated file and thus do not have any metadata to
 218	 * commit.
 219	 */
 220	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 221	    mp->m_logdev_targp == mp->m_ddev_targp)
 222		blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
 223
 224	return error;
 225}
 226
 227static int
 228xfs_ilock_iocb(
 229	struct kiocb		*iocb,
 230	unsigned int		lock_mode)
 231{
 232	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 233
 234	if (iocb->ki_flags & IOCB_NOWAIT) {
 235		if (!xfs_ilock_nowait(ip, lock_mode))
 236			return -EAGAIN;
 237	} else {
 238		xfs_ilock(ip, lock_mode);
 239	}
 240
 241	return 0;
 242}
 243
 244STATIC ssize_t
 245xfs_file_dio_read(
 246	struct kiocb		*iocb,
 247	struct iov_iter		*to)
 248{
 249	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 
 250	ssize_t			ret;
 251
 252	trace_xfs_file_direct_read(iocb, to);
 253
 254	if (!iov_iter_count(to))
 255		return 0; /* skip atime */
 256
 257	file_accessed(iocb->ki_filp);
 258
 259	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 260	if (ret)
 261		return ret;
 262	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0);
 263	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 264
 265	return ret;
 266}
 267
 268static noinline ssize_t
 269xfs_file_dax_read(
 270	struct kiocb		*iocb,
 271	struct iov_iter		*to)
 272{
 273	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 
 274	ssize_t			ret = 0;
 275
 276	trace_xfs_file_dax_read(iocb, to);
 277
 278	if (!iov_iter_count(to))
 279		return 0; /* skip atime */
 280
 281	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 282	if (ret)
 283		return ret;
 284	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
 
 
 
 
 285	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 286
 287	file_accessed(iocb->ki_filp);
 288	return ret;
 289}
 290
 291STATIC ssize_t
 292xfs_file_buffered_read(
 293	struct kiocb		*iocb,
 294	struct iov_iter		*to)
 295{
 296	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 297	ssize_t			ret;
 298
 299	trace_xfs_file_buffered_read(iocb, to);
 300
 301	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 302	if (ret)
 303		return ret;
 
 
 
 304	ret = generic_file_read_iter(iocb, to);
 305	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 306
 307	return ret;
 308}
 309
 310STATIC ssize_t
 311xfs_file_read_iter(
 312	struct kiocb		*iocb,
 313	struct iov_iter		*to)
 314{
 315	struct inode		*inode = file_inode(iocb->ki_filp);
 316	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
 317	ssize_t			ret = 0;
 318
 319	XFS_STATS_INC(mp, xs_read_calls);
 320
 321	if (XFS_FORCED_SHUTDOWN(mp))
 322		return -EIO;
 323
 324	if (IS_DAX(inode))
 325		ret = xfs_file_dax_read(iocb, to);
 326	else if (iocb->ki_flags & IOCB_DIRECT)
 327		ret = xfs_file_dio_read(iocb, to);
 328	else
 329		ret = xfs_file_buffered_read(iocb, to);
 330
 331	if (ret > 0)
 332		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 333	return ret;
 334}
 335
 336/*
 337 * Common pre-write limit and setup checks.
 338 *
 339 * Called with the iolocked held either shared and exclusive according to
 340 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 341 * if called for a direct write beyond i_size.
 342 */
 343STATIC ssize_t
 344xfs_file_write_checks(
 345	struct kiocb		*iocb,
 346	struct iov_iter		*from,
 347	int			*iolock)
 348{
 349	struct file		*file = iocb->ki_filp;
 350	struct inode		*inode = file->f_mapping->host;
 351	struct xfs_inode	*ip = XFS_I(inode);
 352	ssize_t			error = 0;
 353	size_t			count = iov_iter_count(from);
 354	bool			drained_dio = false;
 355	loff_t			isize;
 356
 357restart:
 358	error = generic_write_checks(iocb, from);
 359	if (error <= 0)
 360		return error;
 361
 362	if (iocb->ki_flags & IOCB_NOWAIT) {
 363		error = break_layout(inode, false);
 364		if (error == -EWOULDBLOCK)
 365			error = -EAGAIN;
 366	} else {
 367		error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
 368	}
 369
 370	if (error)
 371		return error;
 372
 373	/*
 374	 * For changing security info in file_remove_privs() we need i_rwsem
 375	 * exclusively.
 376	 */
 377	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 378		xfs_iunlock(ip, *iolock);
 379		*iolock = XFS_IOLOCK_EXCL;
 380		error = xfs_ilock_iocb(iocb, *iolock);
 381		if (error) {
 382			*iolock = 0;
 383			return error;
 384		}
 385		goto restart;
 386	}
 387
 388	/*
 389	 * If the offset is beyond the size of the file, we need to zero any
 390	 * blocks that fall between the existing EOF and the start of this
 391	 * write.  If zeroing is needed and we are currently holding the iolock
 392	 * shared, we need to update it to exclusive which implies having to
 393	 * redo all checks before.
 394	 *
 395	 * We need to serialise against EOF updates that occur in IO completions
 396	 * here. We want to make sure that nobody is changing the size while we
 397	 * do this check until we have placed an IO barrier (i.e.  hold the
 398	 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.  The
 399	 * spinlock effectively forms a memory barrier once we have the
 400	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
 401	 * hence be able to correctly determine if we need to run zeroing.
 402	 *
 403	 * We can do an unlocked check here safely as IO completion can only
 404	 * extend EOF. Truncate is locked out at this point, so the EOF can
 405	 * not move backwards, only forwards. Hence we only need to take the
 406	 * slow path and spin locks when we are at or beyond the current EOF.
 
 
 
 407	 */
 408	if (iocb->ki_pos <= i_size_read(inode))
 409		goto out;
 410
 411	spin_lock(&ip->i_flags_lock);
 412	isize = i_size_read(inode);
 413	if (iocb->ki_pos > isize) {
 414		spin_unlock(&ip->i_flags_lock);
 415
 416		if (iocb->ki_flags & IOCB_NOWAIT)
 417			return -EAGAIN;
 418
 419		if (!drained_dio) {
 420			if (*iolock == XFS_IOLOCK_SHARED) {
 421				xfs_iunlock(ip, *iolock);
 422				*iolock = XFS_IOLOCK_EXCL;
 423				xfs_ilock(ip, *iolock);
 424				iov_iter_reexpand(from, count);
 425			}
 426			/*
 427			 * We now have an IO submission barrier in place, but
 428			 * AIO can do EOF updates during IO completion and hence
 429			 * we now need to wait for all of them to drain. Non-AIO
 430			 * DIO will have drained before we are given the
 431			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 432			 * no-op.
 433			 */
 434			inode_dio_wait(inode);
 435			drained_dio = true;
 436			goto restart;
 437		}
 438
 439		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 440		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
 441				NULL, &xfs_buffered_write_iomap_ops);
 442		if (error)
 443			return error;
 444	} else
 445		spin_unlock(&ip->i_flags_lock);
 446
 447out:
 
 
 
 
 
 448	return file_modified(file);
 449}
 450
 451static int
 452xfs_dio_write_end_io(
 453	struct kiocb		*iocb,
 454	ssize_t			size,
 455	int			error,
 456	unsigned		flags)
 457{
 458	struct inode		*inode = file_inode(iocb->ki_filp);
 459	struct xfs_inode	*ip = XFS_I(inode);
 460	loff_t			offset = iocb->ki_pos;
 461	unsigned int		nofs_flag;
 462
 463	trace_xfs_end_io_direct_write(ip, offset, size);
 464
 465	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 466		return -EIO;
 467
 468	if (error)
 469		return error;
 470	if (!size)
 471		return 0;
 472
 473	/*
 474	 * Capture amount written on completion as we can't reliably account
 475	 * for it on submission.
 476	 */
 477	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
 478
 479	/*
 480	 * We can allocate memory here while doing writeback on behalf of
 481	 * memory reclaim.  To avoid memory allocation deadlocks set the
 482	 * task-wide nofs context for the following operations.
 483	 */
 484	nofs_flag = memalloc_nofs_save();
 485
 486	if (flags & IOMAP_DIO_COW) {
 487		error = xfs_reflink_end_cow(ip, offset, size);
 488		if (error)
 489			goto out;
 490	}
 491
 492	/*
 493	 * Unwritten conversion updates the in-core isize after extent
 494	 * conversion but before updating the on-disk size. Updating isize any
 495	 * earlier allows a racing dio read to find unwritten extents before
 496	 * they are converted.
 497	 */
 498	if (flags & IOMAP_DIO_UNWRITTEN) {
 499		error = xfs_iomap_write_unwritten(ip, offset, size, true);
 500		goto out;
 501	}
 502
 503	/*
 504	 * We need to update the in-core inode size here so that we don't end up
 505	 * with the on-disk inode size being outside the in-core inode size. We
 506	 * have no other method of updating EOF for AIO, so always do it here
 507	 * if necessary.
 508	 *
 509	 * We need to lock the test/set EOF update as we can be racing with
 510	 * other IO completions here to update the EOF. Failing to serialise
 511	 * here can result in EOF moving backwards and Bad Things Happen when
 512	 * that occurs.
 513	 *
 514	 * As IO completion only ever extends EOF, we can do an unlocked check
 515	 * here to avoid taking the spinlock. If we land within the current EOF,
 516	 * then we do not need to do an extending update at all, and we don't
 517	 * need to take the lock to check this. If we race with an update moving
 518	 * EOF, then we'll either still be beyond EOF and need to take the lock,
 519	 * or we'll be within EOF and we don't need to take it at all.
 520	 */
 521	if (offset + size <= i_size_read(inode))
 522		goto out;
 523
 524	spin_lock(&ip->i_flags_lock);
 525	if (offset + size > i_size_read(inode)) {
 526		i_size_write(inode, offset + size);
 527		spin_unlock(&ip->i_flags_lock);
 528		error = xfs_setfilesize(ip, offset, size);
 529	} else {
 530		spin_unlock(&ip->i_flags_lock);
 531	}
 532
 533out:
 534	memalloc_nofs_restore(nofs_flag);
 535	return error;
 536}
 537
 538static const struct iomap_dio_ops xfs_dio_write_ops = {
 539	.end_io		= xfs_dio_write_end_io,
 540};
 541
 542/*
 543 * Handle block aligned direct I/O writes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544 */
 545static noinline ssize_t
 546xfs_file_dio_write_aligned(
 547	struct xfs_inode	*ip,
 548	struct kiocb		*iocb,
 549	struct iov_iter		*from)
 550{
 551	int			iolock = XFS_IOLOCK_SHARED;
 552	ssize_t			ret;
 
 
 
 
 
 
 
 
 
 553
 554	ret = xfs_ilock_iocb(iocb, iolock);
 555	if (ret)
 556		return ret;
 557	ret = xfs_file_write_checks(iocb, from, &iolock);
 558	if (ret)
 559		goto out_unlock;
 560
 561	/*
 562	 * We don't need to hold the IOLOCK exclusively across the IO, so demote
 563	 * the iolock back to shared if we had to take the exclusive lock in
 564	 * xfs_file_write_checks() for other reasons.
 565	 */
 566	if (iolock == XFS_IOLOCK_EXCL) {
 567		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568		iolock = XFS_IOLOCK_SHARED;
 569	}
 570	trace_xfs_file_direct_write(iocb, from);
 571	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
 572			   &xfs_dio_write_ops, 0);
 573out_unlock:
 574	if (iolock)
 575		xfs_iunlock(ip, iolock);
 576	return ret;
 577}
 578
 579/*
 580 * Handle block unaligned direct I/O writes
 581 *
 582 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
 583 * them to be done in parallel with reads and other direct I/O writes.  However,
 584 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
 585 * to do sub-block zeroing and that requires serialisation against other direct
 586 * I/O to the same block.  In this case we need to serialise the submission of
 587 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
 588 * In the case where sub-block zeroing is not required, we can do concurrent
 589 * sub-block dios to the same block successfully.
 590 *
 591 * Optimistically submit the I/O using the shared lock first, but use the
 592 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
 593 * if block allocation or partial block zeroing would be required.  In that case
 594 * we try again with the exclusive lock.
 595 */
 596static noinline ssize_t
 597xfs_file_dio_write_unaligned(
 598	struct xfs_inode	*ip,
 599	struct kiocb		*iocb,
 600	struct iov_iter		*from)
 601{
 602	size_t			isize = i_size_read(VFS_I(ip));
 603	size_t			count = iov_iter_count(from);
 604	int			iolock = XFS_IOLOCK_SHARED;
 605	unsigned int		flags = IOMAP_DIO_OVERWRITE_ONLY;
 606	ssize_t			ret;
 607
 608	/*
 609	 * Extending writes need exclusivity because of the sub-block zeroing
 610	 * that the DIO code always does for partial tail blocks beyond EOF, so
 611	 * don't even bother trying the fast path in this case.
 612	 */
 613	if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
 614retry_exclusive:
 615		if (iocb->ki_flags & IOCB_NOWAIT)
 616			return -EAGAIN;
 617		iolock = XFS_IOLOCK_EXCL;
 618		flags = IOMAP_DIO_FORCE_WAIT;
 
 
 619	}
 620
 621	ret = xfs_ilock_iocb(iocb, iolock);
 622	if (ret)
 623		return ret;
 
 624
 625	/*
 626	 * We can't properly handle unaligned direct I/O to reflink files yet,
 627	 * as we can't unshare a partial block.
 628	 */
 629	if (xfs_is_cow_inode(ip)) {
 630		trace_xfs_reflink_bounce_dio_write(iocb, from);
 631		ret = -ENOTBLK;
 632		goto out_unlock;
 
 
 
 
 633	}
 634
 635	ret = xfs_file_write_checks(iocb, from, &iolock);
 636	if (ret)
 637		goto out_unlock;
 638
 639	/*
 640	 * If we are doing exclusive unaligned I/O, this must be the only I/O
 641	 * in-flight.  Otherwise we risk data corruption due to unwritten extent
 642	 * conversions from the AIO end_io handler.  Wait for all other I/O to
 643	 * drain first.
 644	 */
 645	if (flags & IOMAP_DIO_FORCE_WAIT)
 646		inode_dio_wait(VFS_I(ip));
 647
 648	trace_xfs_file_direct_write(iocb, from);
 649	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
 650			   &xfs_dio_write_ops, flags);
 651
 652	/*
 653	 * Retry unaligned I/O with exclusive blocking semantics if the DIO
 654	 * layer rejected it for mapping or locking reasons. If we are doing
 655	 * nonblocking user I/O, propagate the error.
 656	 */
 657	if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
 658		ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
 659		xfs_iunlock(ip, iolock);
 660		goto retry_exclusive;
 661	}
 662
 663out_unlock:
 664	if (iolock)
 665		xfs_iunlock(ip, iolock);
 666	return ret;
 667}
 668
 669static ssize_t
 670xfs_file_dio_write(
 671	struct kiocb		*iocb,
 672	struct iov_iter		*from)
 673{
 674	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 675	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
 676	size_t			count = iov_iter_count(from);
 677
 678	/* direct I/O must be aligned to device logical sector size */
 679	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 680		return -EINVAL;
 681	if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
 682		return xfs_file_dio_write_unaligned(ip, iocb, from);
 683	return xfs_file_dio_write_aligned(ip, iocb, from);
 684}
 685
 686static noinline ssize_t
 687xfs_file_dax_write(
 688	struct kiocb		*iocb,
 689	struct iov_iter		*from)
 690{
 691	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 692	struct xfs_inode	*ip = XFS_I(inode);
 693	int			iolock = XFS_IOLOCK_EXCL;
 694	ssize_t			ret, error = 0;
 
 695	loff_t			pos;
 696
 697	ret = xfs_ilock_iocb(iocb, iolock);
 698	if (ret)
 699		return ret;
 700	ret = xfs_file_write_checks(iocb, from, &iolock);
 
 
 
 
 701	if (ret)
 702		goto out;
 703
 704	pos = iocb->ki_pos;
 
 705
 706	trace_xfs_file_dax_write(iocb, from);
 707	ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
 708	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 709		i_size_write(inode, iocb->ki_pos);
 710		error = xfs_setfilesize(ip, pos, ret);
 711	}
 712out:
 713	if (iolock)
 714		xfs_iunlock(ip, iolock);
 715	if (error)
 716		return error;
 717
 718	if (ret > 0) {
 719		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 720
 721		/* Handle various SYNC-type writes */
 722		ret = generic_write_sync(iocb, ret);
 723	}
 724	return ret;
 725}
 726
 727STATIC ssize_t
 728xfs_file_buffered_write(
 729	struct kiocb		*iocb,
 730	struct iov_iter		*from)
 731{
 732	struct file		*file = iocb->ki_filp;
 733	struct address_space	*mapping = file->f_mapping;
 734	struct inode		*inode = mapping->host;
 735	struct xfs_inode	*ip = XFS_I(inode);
 736	ssize_t			ret;
 737	bool			cleared_space = false;
 738	int			iolock;
 739
 740	if (iocb->ki_flags & IOCB_NOWAIT)
 741		return -EOPNOTSUPP;
 742
 743write_retry:
 744	iolock = XFS_IOLOCK_EXCL;
 745	xfs_ilock(ip, iolock);
 746
 747	ret = xfs_file_write_checks(iocb, from, &iolock);
 748	if (ret)
 749		goto out;
 750
 751	/* We can write back this queue in page reclaim */
 752	current->backing_dev_info = inode_to_bdi(inode);
 753
 754	trace_xfs_file_buffered_write(iocb, from);
 755	ret = iomap_file_buffered_write(iocb, from,
 756			&xfs_buffered_write_iomap_ops);
 757	if (likely(ret >= 0))
 758		iocb->ki_pos += ret;
 759
 760	/*
 761	 * If we hit a space limit, try to free up some lingering preallocated
 762	 * space before returning an error. In the case of ENOSPC, first try to
 763	 * write back all dirty inodes to free up some of the excess reserved
 764	 * metadata space. This reduces the chances that the eofblocks scan
 765	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 766	 * also behaves as a filter to prevent too many eofblocks scans from
 767	 * running at the same time.  Use a synchronous scan to increase the
 768	 * effectiveness of the scan.
 769	 */
 770	if (ret == -EDQUOT && !cleared_space) {
 771		xfs_iunlock(ip, iolock);
 772		xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
 773		cleared_space = true;
 774		goto write_retry;
 775	} else if (ret == -ENOSPC && !cleared_space) {
 776		struct xfs_icwalk	icw = {0};
 
 
 
 
 777
 778		cleared_space = true;
 779		xfs_flush_inodes(ip->i_mount);
 780
 781		xfs_iunlock(ip, iolock);
 782		icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
 783		xfs_blockgc_free_space(ip->i_mount, &icw);
 
 784		goto write_retry;
 785	}
 786
 787	current->backing_dev_info = NULL;
 788out:
 789	if (iolock)
 790		xfs_iunlock(ip, iolock);
 791
 792	if (ret > 0) {
 793		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 794		/* Handle various SYNC-type writes */
 795		ret = generic_write_sync(iocb, ret);
 796	}
 797	return ret;
 798}
 799
 800STATIC ssize_t
 801xfs_file_write_iter(
 802	struct kiocb		*iocb,
 803	struct iov_iter		*from)
 804{
 805	struct file		*file = iocb->ki_filp;
 806	struct address_space	*mapping = file->f_mapping;
 807	struct inode		*inode = mapping->host;
 808	struct xfs_inode	*ip = XFS_I(inode);
 809	ssize_t			ret;
 810	size_t			ocount = iov_iter_count(from);
 811
 812	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 813
 814	if (ocount == 0)
 815		return 0;
 816
 817	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 818		return -EIO;
 819
 820	if (IS_DAX(inode))
 821		return xfs_file_dax_write(iocb, from);
 822
 823	if (iocb->ki_flags & IOCB_DIRECT) {
 824		/*
 825		 * Allow a directio write to fall back to a buffered
 826		 * write *only* in the case that we're doing a reflink
 827		 * CoW.  In all other directio scenarios we do not
 828		 * allow an operation to fall back to buffered mode.
 829		 */
 830		ret = xfs_file_dio_write(iocb, from);
 831		if (ret != -ENOTBLK)
 832			return ret;
 833	}
 834
 835	return xfs_file_buffered_write(iocb, from);
 836}
 837
 838static void
 839xfs_wait_dax_page(
 840	struct inode		*inode)
 841{
 842	struct xfs_inode        *ip = XFS_I(inode);
 843
 844	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
 845	schedule();
 846	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 847}
 848
 849static int
 850xfs_break_dax_layouts(
 851	struct inode		*inode,
 852	bool			*retry)
 853{
 854	struct page		*page;
 855
 856	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
 857
 858	page = dax_layout_busy_page(inode->i_mapping);
 859	if (!page)
 860		return 0;
 861
 862	*retry = true;
 863	return ___wait_var_event(&page->_refcount,
 864			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
 865			0, 0, xfs_wait_dax_page(inode));
 866}
 867
 868int
 869xfs_break_layouts(
 870	struct inode		*inode,
 871	uint			*iolock,
 872	enum layout_break_reason reason)
 873{
 874	bool			retry;
 875	int			error;
 876
 877	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
 878
 879	do {
 880		retry = false;
 881		switch (reason) {
 882		case BREAK_UNMAP:
 883			error = xfs_break_dax_layouts(inode, &retry);
 884			if (error || retry)
 885				break;
 886			fallthrough;
 887		case BREAK_WRITE:
 888			error = xfs_break_leased_layouts(inode, iolock, &retry);
 889			break;
 890		default:
 891			WARN_ON_ONCE(1);
 892			error = -EINVAL;
 893		}
 894	} while (error == 0 && retry);
 895
 896	return error;
 897}
 898
 899#define	XFS_FALLOC_FL_SUPPORTED						\
 900		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
 901		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
 902		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 903
 904STATIC long
 905xfs_file_fallocate(
 906	struct file		*file,
 907	int			mode,
 908	loff_t			offset,
 909	loff_t			len)
 910{
 911	struct inode		*inode = file_inode(file);
 912	struct xfs_inode	*ip = XFS_I(inode);
 913	long			error;
 914	enum xfs_prealloc_flags	flags = 0;
 915	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
 916	loff_t			new_size = 0;
 917	bool			do_file_insert = false;
 918
 919	if (!S_ISREG(inode->i_mode))
 920		return -EINVAL;
 921	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 922		return -EOPNOTSUPP;
 923
 924	xfs_ilock(ip, iolock);
 925	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
 926	if (error)
 927		goto out_unlock;
 928
 929	/*
 930	 * Must wait for all AIO to complete before we continue as AIO can
 931	 * change the file size on completion without holding any locks we
 932	 * currently hold. We must do this first because AIO can update both
 933	 * the on disk and in memory inode sizes, and the operations that follow
 934	 * require the in-memory size to be fully up-to-date.
 935	 */
 936	inode_dio_wait(inode);
 937
 938	/*
 939	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
 940	 * the cached range over the first operation we are about to run.
 941	 *
 942	 * We care about zero and collapse here because they both run a hole
 943	 * punch over the range first. Because that can zero data, and the range
 944	 * of invalidation for the shift operations is much larger, we still do
 945	 * the required flush for collapse in xfs_prepare_shift().
 946	 *
 947	 * Insert has the same range requirements as collapse, and we extend the
 948	 * file first which can zero data. Hence insert has the same
 949	 * flush/invalidate requirements as collapse and so they are both
 950	 * handled at the right time by xfs_prepare_shift().
 951	 */
 952	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
 953		    FALLOC_FL_COLLAPSE_RANGE)) {
 954		error = xfs_flush_unmap_range(ip, offset, len);
 955		if (error)
 956			goto out_unlock;
 957	}
 958
 959	if (mode & FALLOC_FL_PUNCH_HOLE) {
 960		error = xfs_free_file_space(ip, offset, len);
 961		if (error)
 962			goto out_unlock;
 963	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 964		if (!xfs_is_falloc_aligned(ip, offset, len)) {
 
 
 965			error = -EINVAL;
 966			goto out_unlock;
 967		}
 968
 969		/*
 970		 * There is no need to overlap collapse range with EOF,
 971		 * in which case it is effectively a truncate operation
 972		 */
 973		if (offset + len >= i_size_read(inode)) {
 974			error = -EINVAL;
 975			goto out_unlock;
 976		}
 977
 978		new_size = i_size_read(inode) - len;
 979
 980		error = xfs_collapse_file_space(ip, offset, len);
 981		if (error)
 982			goto out_unlock;
 983	} else if (mode & FALLOC_FL_INSERT_RANGE) {
 
 984		loff_t		isize = i_size_read(inode);
 985
 986		if (!xfs_is_falloc_aligned(ip, offset, len)) {
 987			error = -EINVAL;
 988			goto out_unlock;
 989		}
 990
 991		/*
 992		 * New inode size must not exceed ->s_maxbytes, accounting for
 993		 * possible signed overflow.
 994		 */
 995		if (inode->i_sb->s_maxbytes - isize < len) {
 996			error = -EFBIG;
 997			goto out_unlock;
 998		}
 999		new_size = isize + len;
1000
1001		/* Offset should be less than i_size */
1002		if (offset >= isize) {
1003			error = -EINVAL;
1004			goto out_unlock;
1005		}
1006		do_file_insert = true;
1007	} else {
1008		flags |= XFS_PREALLOC_SET;
1009
1010		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1011		    offset + len > i_size_read(inode)) {
1012			new_size = offset + len;
1013			error = inode_newsize_ok(inode, new_size);
1014			if (error)
1015				goto out_unlock;
1016		}
1017
1018		if (mode & FALLOC_FL_ZERO_RANGE) {
1019			/*
1020			 * Punch a hole and prealloc the range.  We use a hole
1021			 * punch rather than unwritten extent conversion for two
1022			 * reasons:
1023			 *
1024			 *   1.) Hole punch handles partial block zeroing for us.
1025			 *   2.) If prealloc returns ENOSPC, the file range is
1026			 *       still zero-valued by virtue of the hole punch.
1027			 */
1028			unsigned int blksize = i_blocksize(inode);
1029
1030			trace_xfs_zero_file_space(ip);
1031
1032			error = xfs_free_file_space(ip, offset, len);
1033			if (error)
1034				goto out_unlock;
1035
1036			len = round_up(offset + len, blksize) -
1037			      round_down(offset, blksize);
1038			offset = round_down(offset, blksize);
1039		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1040			error = xfs_reflink_unshare(ip, offset, len);
1041			if (error)
1042				goto out_unlock;
 
 
 
 
 
1043		} else {
1044			/*
1045			 * If always_cow mode we can't use preallocations and
1046			 * thus should not create them.
1047			 */
1048			if (xfs_is_always_cow_inode(ip)) {
1049				error = -EOPNOTSUPP;
1050				goto out_unlock;
1051			}
1052		}
1053
1054		if (!xfs_is_always_cow_inode(ip)) {
1055			error = xfs_alloc_file_space(ip, offset, len,
1056						     XFS_BMAPI_PREALLOC);
1057			if (error)
1058				goto out_unlock;
1059		}
 
 
1060	}
1061
1062	if (file->f_flags & O_DSYNC)
1063		flags |= XFS_PREALLOC_SYNC;
1064
1065	error = xfs_update_prealloc_flags(ip, flags);
1066	if (error)
1067		goto out_unlock;
1068
1069	/* Change file size if needed */
1070	if (new_size) {
1071		struct iattr iattr;
1072
1073		iattr.ia_valid = ATTR_SIZE;
1074		iattr.ia_size = new_size;
1075		error = xfs_vn_setattr_size(file_mnt_user_ns(file),
1076					    file_dentry(file), &iattr);
1077		if (error)
1078			goto out_unlock;
1079	}
1080
1081	/*
1082	 * Perform hole insertion now that the file size has been
1083	 * updated so that if we crash during the operation we don't
1084	 * leave shifted extents past EOF and hence losing access to
1085	 * the data that is contained within them.
1086	 */
1087	if (do_file_insert)
1088		error = xfs_insert_file_space(ip, offset, len);
1089
1090out_unlock:
1091	xfs_iunlock(ip, iolock);
1092	return error;
1093}
1094
1095STATIC int
1096xfs_file_fadvise(
1097	struct file	*file,
1098	loff_t		start,
1099	loff_t		end,
1100	int		advice)
1101{
1102	struct xfs_inode *ip = XFS_I(file_inode(file));
1103	int ret;
1104	int lockflags = 0;
1105
1106	/*
1107	 * Operations creating pages in page cache need protection from hole
1108	 * punching and similar ops
1109	 */
1110	if (advice == POSIX_FADV_WILLNEED) {
1111		lockflags = XFS_IOLOCK_SHARED;
1112		xfs_ilock(ip, lockflags);
1113	}
1114	ret = generic_fadvise(file, start, end, advice);
1115	if (lockflags)
1116		xfs_iunlock(ip, lockflags);
1117	return ret;
1118}
1119
1120/* Does this file, inode, or mount want synchronous writes? */
1121static inline bool xfs_file_sync_writes(struct file *filp)
1122{
1123	struct xfs_inode	*ip = XFS_I(file_inode(filp));
1124
1125	if (ip->i_mount->m_flags & XFS_MOUNT_WSYNC)
1126		return true;
1127	if (filp->f_flags & (__O_SYNC | O_DSYNC))
1128		return true;
1129	if (IS_SYNC(file_inode(filp)))
1130		return true;
1131
1132	return false;
1133}
1134
1135STATIC loff_t
1136xfs_file_remap_range(
1137	struct file		*file_in,
1138	loff_t			pos_in,
1139	struct file		*file_out,
1140	loff_t			pos_out,
1141	loff_t			len,
1142	unsigned int		remap_flags)
1143{
1144	struct inode		*inode_in = file_inode(file_in);
1145	struct xfs_inode	*src = XFS_I(inode_in);
1146	struct inode		*inode_out = file_inode(file_out);
1147	struct xfs_inode	*dest = XFS_I(inode_out);
1148	struct xfs_mount	*mp = src->i_mount;
1149	loff_t			remapped = 0;
1150	xfs_extlen_t		cowextsize;
1151	int			ret;
1152
1153	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1154		return -EINVAL;
1155
1156	if (!xfs_sb_version_hasreflink(&mp->m_sb))
1157		return -EOPNOTSUPP;
1158
1159	if (XFS_FORCED_SHUTDOWN(mp))
1160		return -EIO;
1161
1162	/* Prepare and then clone file data. */
1163	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1164			&len, remap_flags);
1165	if (ret || len == 0)
1166		return ret;
1167
1168	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1169
1170	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1171			&remapped);
1172	if (ret)
1173		goto out_unlock;
1174
1175	/*
1176	 * Carry the cowextsize hint from src to dest if we're sharing the
1177	 * entire source file to the entire destination file, the source file
1178	 * has a cowextsize hint, and the destination file does not.
1179	 */
1180	cowextsize = 0;
1181	if (pos_in == 0 && len == i_size_read(inode_in) &&
1182	    (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1183	    pos_out == 0 && len >= i_size_read(inode_out) &&
1184	    !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1185		cowextsize = src->i_cowextsize;
1186
1187	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1188			remap_flags);
1189	if (ret)
1190		goto out_unlock;
1191
1192	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1193		xfs_log_force_inode(dest);
1194out_unlock:
1195	xfs_iunlock2_io_mmap(src, dest);
1196	if (ret)
1197		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1198	return remapped > 0 ? remapped : ret;
1199}
1200
1201STATIC int
1202xfs_file_open(
1203	struct inode	*inode,
1204	struct file	*file)
1205{
1206	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1207		return -EFBIG;
1208	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1209		return -EIO;
1210	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1211	return 0;
1212}
1213
1214STATIC int
1215xfs_dir_open(
1216	struct inode	*inode,
1217	struct file	*file)
1218{
1219	struct xfs_inode *ip = XFS_I(inode);
1220	int		mode;
1221	int		error;
1222
1223	error = xfs_file_open(inode, file);
1224	if (error)
1225		return error;
1226
1227	/*
1228	 * If there are any blocks, read-ahead block 0 as we're almost
1229	 * certain to have the next operation be a read there.
1230	 */
1231	mode = xfs_ilock_data_map_shared(ip);
1232	if (ip->i_df.if_nextents > 0)
1233		error = xfs_dir3_data_readahead(ip, 0, 0);
1234	xfs_iunlock(ip, mode);
1235	return error;
1236}
1237
1238STATIC int
1239xfs_file_release(
1240	struct inode	*inode,
1241	struct file	*filp)
1242{
1243	return xfs_release(XFS_I(inode));
1244}
1245
1246STATIC int
1247xfs_file_readdir(
1248	struct file	*file,
1249	struct dir_context *ctx)
1250{
1251	struct inode	*inode = file_inode(file);
1252	xfs_inode_t	*ip = XFS_I(inode);
1253	size_t		bufsize;
1254
1255	/*
1256	 * The Linux API doesn't pass down the total size of the buffer
1257	 * we read into down to the filesystem.  With the filldir concept
1258	 * it's not needed for correct information, but the XFS dir2 leaf
1259	 * code wants an estimate of the buffer size to calculate it's
1260	 * readahead window and size the buffers used for mapping to
1261	 * physical blocks.
1262	 *
1263	 * Try to give it an estimate that's good enough, maybe at some
1264	 * point we can change the ->readdir prototype to include the
1265	 * buffer size.  For now we use the current glibc buffer size.
1266	 */
1267	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1268
1269	return xfs_readdir(NULL, ip, ctx, bufsize);
1270}
1271
1272STATIC loff_t
1273xfs_file_llseek(
1274	struct file	*file,
1275	loff_t		offset,
1276	int		whence)
1277{
1278	struct inode		*inode = file->f_mapping->host;
1279
1280	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1281		return -EIO;
1282
1283	switch (whence) {
1284	default:
1285		return generic_file_llseek(file, offset, whence);
1286	case SEEK_HOLE:
1287		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1288		break;
1289	case SEEK_DATA:
1290		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1291		break;
1292	}
1293
1294	if (offset < 0)
1295		return offset;
1296	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1297}
1298
1299/*
1300 * Locking for serialisation of IO during page faults. This results in a lock
1301 * ordering of:
1302 *
1303 * mmap_lock (MM)
1304 *   sb_start_pagefault(vfs, freeze)
1305 *     i_mmaplock (XFS - truncate serialisation)
1306 *       page_lock (MM)
1307 *         i_lock (XFS - extent map serialisation)
1308 */
1309static vm_fault_t
1310__xfs_filemap_fault(
1311	struct vm_fault		*vmf,
1312	enum page_entry_size	pe_size,
1313	bool			write_fault)
1314{
1315	struct inode		*inode = file_inode(vmf->vma->vm_file);
1316	struct xfs_inode	*ip = XFS_I(inode);
1317	vm_fault_t		ret;
1318
1319	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1320
1321	if (write_fault) {
1322		sb_start_pagefault(inode->i_sb);
1323		file_update_time(vmf->vma->vm_file);
1324	}
1325
1326	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1327	if (IS_DAX(inode)) {
1328		pfn_t pfn;
1329
1330		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1331				(write_fault && !vmf->cow_page) ?
1332				 &xfs_direct_write_iomap_ops :
1333				 &xfs_read_iomap_ops);
1334		if (ret & VM_FAULT_NEEDDSYNC)
1335			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1336	} else {
1337		if (write_fault)
1338			ret = iomap_page_mkwrite(vmf,
1339					&xfs_buffered_write_iomap_ops);
1340		else
1341			ret = filemap_fault(vmf);
1342	}
1343	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1344
1345	if (write_fault)
1346		sb_end_pagefault(inode->i_sb);
1347	return ret;
1348}
1349
1350static inline bool
1351xfs_is_write_fault(
1352	struct vm_fault		*vmf)
1353{
1354	return (vmf->flags & FAULT_FLAG_WRITE) &&
1355	       (vmf->vma->vm_flags & VM_SHARED);
1356}
1357
1358static vm_fault_t
1359xfs_filemap_fault(
1360	struct vm_fault		*vmf)
1361{
1362	/* DAX can shortcut the normal fault path on write faults! */
1363	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1364			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1365			xfs_is_write_fault(vmf));
1366}
1367
1368static vm_fault_t
1369xfs_filemap_huge_fault(
1370	struct vm_fault		*vmf,
1371	enum page_entry_size	pe_size)
1372{
1373	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1374		return VM_FAULT_FALLBACK;
1375
1376	/* DAX can shortcut the normal fault path on write faults! */
1377	return __xfs_filemap_fault(vmf, pe_size,
1378			xfs_is_write_fault(vmf));
1379}
1380
1381static vm_fault_t
1382xfs_filemap_page_mkwrite(
1383	struct vm_fault		*vmf)
1384{
1385	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1386}
1387
1388/*
1389 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1390 * on write faults. In reality, it needs to serialise against truncate and
1391 * prepare memory for writing so handle is as standard write fault.
1392 */
1393static vm_fault_t
1394xfs_filemap_pfn_mkwrite(
1395	struct vm_fault		*vmf)
1396{
1397
1398	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1399}
1400
1401static vm_fault_t
1402xfs_filemap_map_pages(
1403	struct vm_fault		*vmf,
1404	pgoff_t			start_pgoff,
1405	pgoff_t			end_pgoff)
1406{
1407	struct inode		*inode = file_inode(vmf->vma->vm_file);
1408	vm_fault_t ret;
1409
1410	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1411	ret = filemap_map_pages(vmf, start_pgoff, end_pgoff);
1412	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1413	return ret;
1414}
1415
1416static const struct vm_operations_struct xfs_file_vm_ops = {
1417	.fault		= xfs_filemap_fault,
1418	.huge_fault	= xfs_filemap_huge_fault,
1419	.map_pages	= xfs_filemap_map_pages,
1420	.page_mkwrite	= xfs_filemap_page_mkwrite,
1421	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1422};
1423
1424STATIC int
1425xfs_file_mmap(
1426	struct file		*file,
1427	struct vm_area_struct	*vma)
1428{
1429	struct inode		*inode = file_inode(file);
1430	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1431
 
1432	/*
1433	 * We don't support synchronous mappings for non-DAX files and
1434	 * for DAX files if underneath dax_device is not synchronous.
1435	 */
1436	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1437		return -EOPNOTSUPP;
1438
1439	file_accessed(file);
1440	vma->vm_ops = &xfs_file_vm_ops;
1441	if (IS_DAX(inode))
1442		vma->vm_flags |= VM_HUGEPAGE;
1443	return 0;
1444}
1445
1446const struct file_operations xfs_file_operations = {
1447	.llseek		= xfs_file_llseek,
1448	.read_iter	= xfs_file_read_iter,
1449	.write_iter	= xfs_file_write_iter,
1450	.splice_read	= generic_file_splice_read,
1451	.splice_write	= iter_file_splice_write,
1452	.iopoll		= iomap_dio_iopoll,
1453	.unlocked_ioctl	= xfs_file_ioctl,
1454#ifdef CONFIG_COMPAT
1455	.compat_ioctl	= xfs_file_compat_ioctl,
1456#endif
1457	.mmap		= xfs_file_mmap,
1458	.mmap_supported_flags = MAP_SYNC,
1459	.open		= xfs_file_open,
1460	.release	= xfs_file_release,
1461	.fsync		= xfs_file_fsync,
1462	.get_unmapped_area = thp_get_unmapped_area,
1463	.fallocate	= xfs_file_fallocate,
1464	.fadvise	= xfs_file_fadvise,
1465	.remap_file_range = xfs_file_remap_range,
1466};
1467
1468const struct file_operations xfs_dir_file_operations = {
1469	.open		= xfs_dir_open,
1470	.read		= generic_read_dir,
1471	.iterate_shared	= xfs_file_readdir,
1472	.llseek		= generic_file_llseek,
1473	.unlocked_ioctl	= xfs_file_ioctl,
1474#ifdef CONFIG_COMPAT
1475	.compat_ioctl	= xfs_file_compat_ioctl,
1476#endif
1477	.fsync		= xfs_dir_fsync,
1478};
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_inode_item.h"
  16#include "xfs_bmap.h"
  17#include "xfs_bmap_util.h"
  18#include "xfs_dir2.h"
  19#include "xfs_dir2_priv.h"
  20#include "xfs_ioctl.h"
  21#include "xfs_trace.h"
  22#include "xfs_log.h"
  23#include "xfs_icache.h"
  24#include "xfs_pnfs.h"
  25#include "xfs_iomap.h"
  26#include "xfs_reflink.h"
  27
  28#include <linux/falloc.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mman.h>
  31#include <linux/fadvise.h>
 
  32
  33static const struct vm_operations_struct xfs_file_vm_ops;
  34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35int
  36xfs_update_prealloc_flags(
  37	struct xfs_inode	*ip,
  38	enum xfs_prealloc_flags	flags)
  39{
  40	struct xfs_trans	*tp;
  41	int			error;
  42
  43	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
  44			0, 0, 0, &tp);
  45	if (error)
  46		return error;
  47
  48	xfs_ilock(ip, XFS_ILOCK_EXCL);
  49	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  50
  51	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
  52		VFS_I(ip)->i_mode &= ~S_ISUID;
  53		if (VFS_I(ip)->i_mode & S_IXGRP)
  54			VFS_I(ip)->i_mode &= ~S_ISGID;
  55		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  56	}
  57
  58	if (flags & XFS_PREALLOC_SET)
  59		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
  60	if (flags & XFS_PREALLOC_CLEAR)
  61		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
  62
  63	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  64	if (flags & XFS_PREALLOC_SYNC)
  65		xfs_trans_set_sync(tp);
  66	return xfs_trans_commit(tp);
  67}
  68
  69/*
  70 * Fsync operations on directories are much simpler than on regular files,
  71 * as there is no file data to flush, and thus also no need for explicit
  72 * cache flush operations, and there are no non-transaction metadata updates
  73 * on directories either.
  74 */
  75STATIC int
  76xfs_dir_fsync(
  77	struct file		*file,
  78	loff_t			start,
  79	loff_t			end,
  80	int			datasync)
  81{
  82	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
  83	struct xfs_mount	*mp = ip->i_mount;
  84	xfs_lsn_t		lsn = 0;
  85
  86	trace_xfs_dir_fsync(ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87
  88	xfs_ilock(ip, XFS_ILOCK_SHARED);
  89	if (xfs_ipincount(ip))
  90		lsn = ip->i_itemp->ili_last_lsn;
 
 
 
 
 
 
 
  91	xfs_iunlock(ip, XFS_ILOCK_SHARED);
  92
  93	if (!lsn)
  94		return 0;
  95	return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
  96}
  97
  98STATIC int
  99xfs_file_fsync(
 100	struct file		*file,
 101	loff_t			start,
 102	loff_t			end,
 103	int			datasync)
 104{
 105	struct inode		*inode = file->f_mapping->host;
 106	struct xfs_inode	*ip = XFS_I(inode);
 107	struct xfs_mount	*mp = ip->i_mount;
 108	int			error = 0;
 109	int			log_flushed = 0;
 110	xfs_lsn_t		lsn = 0;
 111
 112	trace_xfs_file_fsync(ip);
 113
 114	error = file_write_and_wait_range(file, start, end);
 115	if (error)
 116		return error;
 117
 118	if (XFS_FORCED_SHUTDOWN(mp))
 119		return -EIO;
 120
 121	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 122
 123	/*
 124	 * If we have an RT and/or log subvolume we need to make sure to flush
 125	 * the write cache the device used for file data first.  This is to
 126	 * ensure newly written file data make it to disk before logging the new
 127	 * inode size in case of an extending write.
 128	 */
 129	if (XFS_IS_REALTIME_INODE(ip))
 130		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 131	else if (mp->m_logdev_targp != mp->m_ddev_targp)
 132		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 133
 134	/*
 135	 * All metadata updates are logged, which means that we just have to
 136	 * flush the log up to the latest LSN that touched the inode. If we have
 137	 * concurrent fsync/fdatasync() calls, we need them to all block on the
 138	 * log force before we clear the ili_fsync_fields field. This ensures
 139	 * that we don't get a racing sync operation that does not wait for the
 140	 * metadata to hit the journal before returning. If we race with
 141	 * clearing the ili_fsync_fields, then all that will happen is the log
 142	 * force will do nothing as the lsn will already be on disk. We can't
 143	 * race with setting ili_fsync_fields because that is done under
 144	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
 145	 * until after the ili_fsync_fields is cleared.
 146	 */
 147	xfs_ilock(ip, XFS_ILOCK_SHARED);
 148	if (xfs_ipincount(ip)) {
 149		if (!datasync ||
 150		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 151			lsn = ip->i_itemp->ili_last_lsn;
 152	}
 153
 154	if (lsn) {
 155		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 156		ip->i_itemp->ili_fsync_fields = 0;
 157	}
 158	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 159
 160	/*
 161	 * If we only have a single device, and the log force about was
 162	 * a no-op we might have to flush the data device cache here.
 163	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 164	 * an already allocated file and thus do not have any metadata to
 165	 * commit.
 166	 */
 167	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 168	    mp->m_logdev_targp == mp->m_ddev_targp)
 169		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 170
 171	return error;
 172}
 173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174STATIC ssize_t
 175xfs_file_dio_aio_read(
 176	struct kiocb		*iocb,
 177	struct iov_iter		*to)
 178{
 179	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 180	size_t			count = iov_iter_count(to);
 181	ssize_t			ret;
 182
 183	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
 184
 185	if (!count)
 186		return 0; /* skip atime */
 187
 188	file_accessed(iocb->ki_filp);
 189
 190	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 191	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
 
 
 192	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 193
 194	return ret;
 195}
 196
 197static noinline ssize_t
 198xfs_file_dax_read(
 199	struct kiocb		*iocb,
 200	struct iov_iter		*to)
 201{
 202	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 203	size_t			count = iov_iter_count(to);
 204	ssize_t			ret = 0;
 205
 206	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
 207
 208	if (!count)
 209		return 0; /* skip atime */
 210
 211	if (iocb->ki_flags & IOCB_NOWAIT) {
 212		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 213			return -EAGAIN;
 214	} else {
 215		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 216	}
 217
 218	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
 219	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 220
 221	file_accessed(iocb->ki_filp);
 222	return ret;
 223}
 224
 225STATIC ssize_t
 226xfs_file_buffered_aio_read(
 227	struct kiocb		*iocb,
 228	struct iov_iter		*to)
 229{
 230	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 231	ssize_t			ret;
 232
 233	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
 234
 235	if (iocb->ki_flags & IOCB_NOWAIT) {
 236		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 237			return -EAGAIN;
 238	} else {
 239		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 240	}
 241	ret = generic_file_read_iter(iocb, to);
 242	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 243
 244	return ret;
 245}
 246
 247STATIC ssize_t
 248xfs_file_read_iter(
 249	struct kiocb		*iocb,
 250	struct iov_iter		*to)
 251{
 252	struct inode		*inode = file_inode(iocb->ki_filp);
 253	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
 254	ssize_t			ret = 0;
 255
 256	XFS_STATS_INC(mp, xs_read_calls);
 257
 258	if (XFS_FORCED_SHUTDOWN(mp))
 259		return -EIO;
 260
 261	if (IS_DAX(inode))
 262		ret = xfs_file_dax_read(iocb, to);
 263	else if (iocb->ki_flags & IOCB_DIRECT)
 264		ret = xfs_file_dio_aio_read(iocb, to);
 265	else
 266		ret = xfs_file_buffered_aio_read(iocb, to);
 267
 268	if (ret > 0)
 269		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 270	return ret;
 271}
 272
 273/*
 274 * Common pre-write limit and setup checks.
 275 *
 276 * Called with the iolocked held either shared and exclusive according to
 277 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 278 * if called for a direct write beyond i_size.
 279 */
 280STATIC ssize_t
 281xfs_file_aio_write_checks(
 282	struct kiocb		*iocb,
 283	struct iov_iter		*from,
 284	int			*iolock)
 285{
 286	struct file		*file = iocb->ki_filp;
 287	struct inode		*inode = file->f_mapping->host;
 288	struct xfs_inode	*ip = XFS_I(inode);
 289	ssize_t			error = 0;
 290	size_t			count = iov_iter_count(from);
 291	bool			drained_dio = false;
 292	loff_t			isize;
 293
 294restart:
 295	error = generic_write_checks(iocb, from);
 296	if (error <= 0)
 297		return error;
 298
 299	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
 
 
 
 
 
 
 
 300	if (error)
 301		return error;
 302
 303	/*
 304	 * For changing security info in file_remove_privs() we need i_rwsem
 305	 * exclusively.
 306	 */
 307	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 308		xfs_iunlock(ip, *iolock);
 309		*iolock = XFS_IOLOCK_EXCL;
 310		xfs_ilock(ip, *iolock);
 
 
 
 
 311		goto restart;
 312	}
 
 313	/*
 314	 * If the offset is beyond the size of the file, we need to zero any
 315	 * blocks that fall between the existing EOF and the start of this
 316	 * write.  If zeroing is needed and we are currently holding the
 317	 * iolock shared, we need to update it to exclusive which implies
 318	 * having to redo all checks before.
 
 
 
 
 
 
 
 
 319	 *
 320	 * We need to serialise against EOF updates that occur in IO
 321	 * completions here. We want to make sure that nobody is changing the
 322	 * size while we do this check until we have placed an IO barrier (i.e.
 323	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
 324	 * The spinlock effectively forms a memory barrier once we have the
 325	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
 326	 * and hence be able to correctly determine if we need to run zeroing.
 327	 */
 
 
 
 328	spin_lock(&ip->i_flags_lock);
 329	isize = i_size_read(inode);
 330	if (iocb->ki_pos > isize) {
 331		spin_unlock(&ip->i_flags_lock);
 
 
 
 
 332		if (!drained_dio) {
 333			if (*iolock == XFS_IOLOCK_SHARED) {
 334				xfs_iunlock(ip, *iolock);
 335				*iolock = XFS_IOLOCK_EXCL;
 336				xfs_ilock(ip, *iolock);
 337				iov_iter_reexpand(from, count);
 338			}
 339			/*
 340			 * We now have an IO submission barrier in place, but
 341			 * AIO can do EOF updates during IO completion and hence
 342			 * we now need to wait for all of them to drain. Non-AIO
 343			 * DIO will have drained before we are given the
 344			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 345			 * no-op.
 346			 */
 347			inode_dio_wait(inode);
 348			drained_dio = true;
 349			goto restart;
 350		}
 351	
 352		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 353		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
 354				NULL, &xfs_iomap_ops);
 355		if (error)
 356			return error;
 357	} else
 358		spin_unlock(&ip->i_flags_lock);
 359
 360	/*
 361	 * Updating the timestamps will grab the ilock again from
 362	 * xfs_fs_dirty_inode, so we have to call it after dropping the
 363	 * lock above.  Eventually we should look into a way to avoid
 364	 * the pointless lock roundtrip.
 365	 */
 366	return file_modified(file);
 367}
 368
 369static int
 370xfs_dio_write_end_io(
 371	struct kiocb		*iocb,
 372	ssize_t			size,
 373	int			error,
 374	unsigned		flags)
 375{
 376	struct inode		*inode = file_inode(iocb->ki_filp);
 377	struct xfs_inode	*ip = XFS_I(inode);
 378	loff_t			offset = iocb->ki_pos;
 379	unsigned int		nofs_flag;
 380
 381	trace_xfs_end_io_direct_write(ip, offset, size);
 382
 383	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 384		return -EIO;
 385
 386	if (error)
 387		return error;
 388	if (!size)
 389		return 0;
 390
 391	/*
 392	 * Capture amount written on completion as we can't reliably account
 393	 * for it on submission.
 394	 */
 395	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
 396
 397	/*
 398	 * We can allocate memory here while doing writeback on behalf of
 399	 * memory reclaim.  To avoid memory allocation deadlocks set the
 400	 * task-wide nofs context for the following operations.
 401	 */
 402	nofs_flag = memalloc_nofs_save();
 403
 404	if (flags & IOMAP_DIO_COW) {
 405		error = xfs_reflink_end_cow(ip, offset, size);
 406		if (error)
 407			goto out;
 408	}
 409
 410	/*
 411	 * Unwritten conversion updates the in-core isize after extent
 412	 * conversion but before updating the on-disk size. Updating isize any
 413	 * earlier allows a racing dio read to find unwritten extents before
 414	 * they are converted.
 415	 */
 416	if (flags & IOMAP_DIO_UNWRITTEN) {
 417		error = xfs_iomap_write_unwritten(ip, offset, size, true);
 418		goto out;
 419	}
 420
 421	/*
 422	 * We need to update the in-core inode size here so that we don't end up
 423	 * with the on-disk inode size being outside the in-core inode size. We
 424	 * have no other method of updating EOF for AIO, so always do it here
 425	 * if necessary.
 426	 *
 427	 * We need to lock the test/set EOF update as we can be racing with
 428	 * other IO completions here to update the EOF. Failing to serialise
 429	 * here can result in EOF moving backwards and Bad Things Happen when
 430	 * that occurs.
 
 
 
 
 
 
 
 431	 */
 
 
 
 432	spin_lock(&ip->i_flags_lock);
 433	if (offset + size > i_size_read(inode)) {
 434		i_size_write(inode, offset + size);
 435		spin_unlock(&ip->i_flags_lock);
 436		error = xfs_setfilesize(ip, offset, size);
 437	} else {
 438		spin_unlock(&ip->i_flags_lock);
 439	}
 440
 441out:
 442	memalloc_nofs_restore(nofs_flag);
 443	return error;
 444}
 445
 446static const struct iomap_dio_ops xfs_dio_write_ops = {
 447	.end_io		= xfs_dio_write_end_io,
 448};
 449
 450/*
 451 * xfs_file_dio_aio_write - handle direct IO writes
 452 *
 453 * Lock the inode appropriately to prepare for and issue a direct IO write.
 454 * By separating it from the buffered write path we remove all the tricky to
 455 * follow locking changes and looping.
 456 *
 457 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 458 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 459 * pages are flushed out.
 460 *
 461 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 462 * allowing them to be done in parallel with reads and other direct IO writes.
 463 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 464 * needs to do sub-block zeroing and that requires serialisation against other
 465 * direct IOs to the same block. In this case we need to serialise the
 466 * submission of the unaligned IOs so that we don't get racing block zeroing in
 467 * the dio layer.  To avoid the problem with aio, we also need to wait for
 468 * outstanding IOs to complete so that unwritten extent conversion is completed
 469 * before we try to map the overlapping block. This is currently implemented by
 470 * hitting it with a big hammer (i.e. inode_dio_wait()).
 471 *
 472 * Returns with locks held indicated by @iolock and errors indicated by
 473 * negative return values.
 474 */
 475STATIC ssize_t
 476xfs_file_dio_aio_write(
 
 477	struct kiocb		*iocb,
 478	struct iov_iter		*from)
 479{
 480	struct file		*file = iocb->ki_filp;
 481	struct address_space	*mapping = file->f_mapping;
 482	struct inode		*inode = mapping->host;
 483	struct xfs_inode	*ip = XFS_I(inode);
 484	struct xfs_mount	*mp = ip->i_mount;
 485	ssize_t			ret = 0;
 486	int			unaligned_io = 0;
 487	int			iolock;
 488	size_t			count = iov_iter_count(from);
 489	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
 490					mp->m_rtdev_targp : mp->m_ddev_targp;
 491
 492	/* DIO must be aligned to device logical sector size */
 493	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 494		return -EINVAL;
 
 
 
 495
 496	/*
 497	 * Don't take the exclusive iolock here unless the I/O is unaligned to
 498	 * the file system block size.  We don't need to consider the EOF
 499	 * extension case here because xfs_file_aio_write_checks() will relock
 500	 * the inode as necessary for EOF zeroing cases and fill out the new
 501	 * inode size as appropriate.
 502	 */
 503	if ((iocb->ki_pos & mp->m_blockmask) ||
 504	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
 505		unaligned_io = 1;
 506
 507		/*
 508		 * We can't properly handle unaligned direct I/O to reflink
 509		 * files yet, as we can't unshare a partial block.
 510		 */
 511		if (xfs_is_cow_inode(ip)) {
 512			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
 513			return -EREMCHG;
 514		}
 515		iolock = XFS_IOLOCK_EXCL;
 516	} else {
 517		iolock = XFS_IOLOCK_SHARED;
 518	}
 
 
 
 
 
 
 
 
 519
 520	if (iocb->ki_flags & IOCB_NOWAIT) {
 521		/* unaligned dio always waits, bail */
 522		if (unaligned_io)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523			return -EAGAIN;
 524		if (!xfs_ilock_nowait(ip, iolock))
 525			return -EAGAIN;
 526	} else {
 527		xfs_ilock(ip, iolock);
 528	}
 529
 530	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 531	if (ret)
 532		goto out;
 533	count = iov_iter_count(from);
 534
 535	/*
 536	 * If we are doing unaligned IO, we can't allow any other overlapping IO
 537	 * in-flight at the same time or we risk data corruption. Wait for all
 538	 * other IO to drain before we submit. If the IO is aligned, demote the
 539	 * iolock if we had to take the exclusive lock in
 540	 * xfs_file_aio_write_checks() for other reasons.
 541	 */
 542	if (unaligned_io) {
 543		inode_dio_wait(inode);
 544	} else if (iolock == XFS_IOLOCK_EXCL) {
 545		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 546		iolock = XFS_IOLOCK_SHARED;
 547	}
 548
 549	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
 550	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, &xfs_dio_write_ops);
 
 551
 552	/*
 553	 * If unaligned, this is the only IO in-flight. If it has not yet
 554	 * completed, wait on it before we release the iolock to prevent
 555	 * subsequent overlapping IO.
 
 556	 */
 557	if (ret == -EIOCBQUEUED && unaligned_io)
 558		inode_dio_wait(inode);
 559out:
 560	xfs_iunlock(ip, iolock);
 
 
 561
 562	/*
 563	 * No fallback to buffered IO on errors for XFS, direct IO will either
 564	 * complete fully or fail.
 
 565	 */
 566	ASSERT(ret < 0 || ret == count);
 
 
 
 
 
 
 
 
 567	return ret;
 568}
 569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 570static noinline ssize_t
 571xfs_file_dax_write(
 572	struct kiocb		*iocb,
 573	struct iov_iter		*from)
 574{
 575	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 576	struct xfs_inode	*ip = XFS_I(inode);
 577	int			iolock = XFS_IOLOCK_EXCL;
 578	ssize_t			ret, error = 0;
 579	size_t			count;
 580	loff_t			pos;
 581
 582	if (iocb->ki_flags & IOCB_NOWAIT) {
 583		if (!xfs_ilock_nowait(ip, iolock))
 584			return -EAGAIN;
 585	} else {
 586		xfs_ilock(ip, iolock);
 587	}
 588
 589	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 590	if (ret)
 591		goto out;
 592
 593	pos = iocb->ki_pos;
 594	count = iov_iter_count(from);
 595
 596	trace_xfs_file_dax_write(ip, count, pos);
 597	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
 598	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 599		i_size_write(inode, iocb->ki_pos);
 600		error = xfs_setfilesize(ip, pos, ret);
 601	}
 602out:
 603	xfs_iunlock(ip, iolock);
 
 604	if (error)
 605		return error;
 606
 607	if (ret > 0) {
 608		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 609
 610		/* Handle various SYNC-type writes */
 611		ret = generic_write_sync(iocb, ret);
 612	}
 613	return ret;
 614}
 615
 616STATIC ssize_t
 617xfs_file_buffered_aio_write(
 618	struct kiocb		*iocb,
 619	struct iov_iter		*from)
 620{
 621	struct file		*file = iocb->ki_filp;
 622	struct address_space	*mapping = file->f_mapping;
 623	struct inode		*inode = mapping->host;
 624	struct xfs_inode	*ip = XFS_I(inode);
 625	ssize_t			ret;
 626	int			enospc = 0;
 627	int			iolock;
 628
 629	if (iocb->ki_flags & IOCB_NOWAIT)
 630		return -EOPNOTSUPP;
 631
 632write_retry:
 633	iolock = XFS_IOLOCK_EXCL;
 634	xfs_ilock(ip, iolock);
 635
 636	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 637	if (ret)
 638		goto out;
 639
 640	/* We can write back this queue in page reclaim */
 641	current->backing_dev_info = inode_to_bdi(inode);
 642
 643	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
 644	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
 
 645	if (likely(ret >= 0))
 646		iocb->ki_pos += ret;
 647
 648	/*
 649	 * If we hit a space limit, try to free up some lingering preallocated
 650	 * space before returning an error. In the case of ENOSPC, first try to
 651	 * write back all dirty inodes to free up some of the excess reserved
 652	 * metadata space. This reduces the chances that the eofblocks scan
 653	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 654	 * also behaves as a filter to prevent too many eofblocks scans from
 655	 * running at the same time.
 
 656	 */
 657	if (ret == -EDQUOT && !enospc) {
 658		xfs_iunlock(ip, iolock);
 659		enospc = xfs_inode_free_quota_eofblocks(ip);
 660		if (enospc)
 661			goto write_retry;
 662		enospc = xfs_inode_free_quota_cowblocks(ip);
 663		if (enospc)
 664			goto write_retry;
 665		iolock = 0;
 666	} else if (ret == -ENOSPC && !enospc) {
 667		struct xfs_eofblocks eofb = {0};
 668
 669		enospc = 1;
 670		xfs_flush_inodes(ip->i_mount);
 671
 672		xfs_iunlock(ip, iolock);
 673		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
 674		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
 675		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
 676		goto write_retry;
 677	}
 678
 679	current->backing_dev_info = NULL;
 680out:
 681	if (iolock)
 682		xfs_iunlock(ip, iolock);
 683
 684	if (ret > 0) {
 685		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 686		/* Handle various SYNC-type writes */
 687		ret = generic_write_sync(iocb, ret);
 688	}
 689	return ret;
 690}
 691
 692STATIC ssize_t
 693xfs_file_write_iter(
 694	struct kiocb		*iocb,
 695	struct iov_iter		*from)
 696{
 697	struct file		*file = iocb->ki_filp;
 698	struct address_space	*mapping = file->f_mapping;
 699	struct inode		*inode = mapping->host;
 700	struct xfs_inode	*ip = XFS_I(inode);
 701	ssize_t			ret;
 702	size_t			ocount = iov_iter_count(from);
 703
 704	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 705
 706	if (ocount == 0)
 707		return 0;
 708
 709	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 710		return -EIO;
 711
 712	if (IS_DAX(inode))
 713		return xfs_file_dax_write(iocb, from);
 714
 715	if (iocb->ki_flags & IOCB_DIRECT) {
 716		/*
 717		 * Allow a directio write to fall back to a buffered
 718		 * write *only* in the case that we're doing a reflink
 719		 * CoW.  In all other directio scenarios we do not
 720		 * allow an operation to fall back to buffered mode.
 721		 */
 722		ret = xfs_file_dio_aio_write(iocb, from);
 723		if (ret != -EREMCHG)
 724			return ret;
 725	}
 726
 727	return xfs_file_buffered_aio_write(iocb, from);
 728}
 729
 730static void
 731xfs_wait_dax_page(
 732	struct inode		*inode)
 733{
 734	struct xfs_inode        *ip = XFS_I(inode);
 735
 736	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
 737	schedule();
 738	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 739}
 740
 741static int
 742xfs_break_dax_layouts(
 743	struct inode		*inode,
 744	bool			*retry)
 745{
 746	struct page		*page;
 747
 748	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
 749
 750	page = dax_layout_busy_page(inode->i_mapping);
 751	if (!page)
 752		return 0;
 753
 754	*retry = true;
 755	return ___wait_var_event(&page->_refcount,
 756			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
 757			0, 0, xfs_wait_dax_page(inode));
 758}
 759
 760int
 761xfs_break_layouts(
 762	struct inode		*inode,
 763	uint			*iolock,
 764	enum layout_break_reason reason)
 765{
 766	bool			retry;
 767	int			error;
 768
 769	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
 770
 771	do {
 772		retry = false;
 773		switch (reason) {
 774		case BREAK_UNMAP:
 775			error = xfs_break_dax_layouts(inode, &retry);
 776			if (error || retry)
 777				break;
 778			/* fall through */
 779		case BREAK_WRITE:
 780			error = xfs_break_leased_layouts(inode, iolock, &retry);
 781			break;
 782		default:
 783			WARN_ON_ONCE(1);
 784			error = -EINVAL;
 785		}
 786	} while (error == 0 && retry);
 787
 788	return error;
 789}
 790
 791#define	XFS_FALLOC_FL_SUPPORTED						\
 792		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
 793		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
 794		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 795
 796STATIC long
 797xfs_file_fallocate(
 798	struct file		*file,
 799	int			mode,
 800	loff_t			offset,
 801	loff_t			len)
 802{
 803	struct inode		*inode = file_inode(file);
 804	struct xfs_inode	*ip = XFS_I(inode);
 805	long			error;
 806	enum xfs_prealloc_flags	flags = 0;
 807	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
 808	loff_t			new_size = 0;
 809	bool			do_file_insert = false;
 810
 811	if (!S_ISREG(inode->i_mode))
 812		return -EINVAL;
 813	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 814		return -EOPNOTSUPP;
 815
 816	xfs_ilock(ip, iolock);
 817	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
 818	if (error)
 819		goto out_unlock;
 820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821	if (mode & FALLOC_FL_PUNCH_HOLE) {
 822		error = xfs_free_file_space(ip, offset, len);
 823		if (error)
 824			goto out_unlock;
 825	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 826		unsigned int blksize_mask = i_blocksize(inode) - 1;
 827
 828		if (offset & blksize_mask || len & blksize_mask) {
 829			error = -EINVAL;
 830			goto out_unlock;
 831		}
 832
 833		/*
 834		 * There is no need to overlap collapse range with EOF,
 835		 * in which case it is effectively a truncate operation
 836		 */
 837		if (offset + len >= i_size_read(inode)) {
 838			error = -EINVAL;
 839			goto out_unlock;
 840		}
 841
 842		new_size = i_size_read(inode) - len;
 843
 844		error = xfs_collapse_file_space(ip, offset, len);
 845		if (error)
 846			goto out_unlock;
 847	} else if (mode & FALLOC_FL_INSERT_RANGE) {
 848		unsigned int	blksize_mask = i_blocksize(inode) - 1;
 849		loff_t		isize = i_size_read(inode);
 850
 851		if (offset & blksize_mask || len & blksize_mask) {
 852			error = -EINVAL;
 853			goto out_unlock;
 854		}
 855
 856		/*
 857		 * New inode size must not exceed ->s_maxbytes, accounting for
 858		 * possible signed overflow.
 859		 */
 860		if (inode->i_sb->s_maxbytes - isize < len) {
 861			error = -EFBIG;
 862			goto out_unlock;
 863		}
 864		new_size = isize + len;
 865
 866		/* Offset should be less than i_size */
 867		if (offset >= isize) {
 868			error = -EINVAL;
 869			goto out_unlock;
 870		}
 871		do_file_insert = true;
 872	} else {
 873		flags |= XFS_PREALLOC_SET;
 874
 875		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 876		    offset + len > i_size_read(inode)) {
 877			new_size = offset + len;
 878			error = inode_newsize_ok(inode, new_size);
 879			if (error)
 880				goto out_unlock;
 881		}
 882
 883		if (mode & FALLOC_FL_ZERO_RANGE) {
 884			error = xfs_zero_file_space(ip, offset, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
 886			error = xfs_reflink_unshare(ip, offset, len);
 887			if (error)
 888				goto out_unlock;
 889
 890			if (!xfs_is_always_cow_inode(ip)) {
 891				error = xfs_alloc_file_space(ip, offset, len,
 892						XFS_BMAPI_PREALLOC);
 893			}
 894		} else {
 895			/*
 896			 * If always_cow mode we can't use preallocations and
 897			 * thus should not create them.
 898			 */
 899			if (xfs_is_always_cow_inode(ip)) {
 900				error = -EOPNOTSUPP;
 901				goto out_unlock;
 902			}
 
 903
 
 904			error = xfs_alloc_file_space(ip, offset, len,
 905						     XFS_BMAPI_PREALLOC);
 
 
 906		}
 907		if (error)
 908			goto out_unlock;
 909	}
 910
 911	if (file->f_flags & O_DSYNC)
 912		flags |= XFS_PREALLOC_SYNC;
 913
 914	error = xfs_update_prealloc_flags(ip, flags);
 915	if (error)
 916		goto out_unlock;
 917
 918	/* Change file size if needed */
 919	if (new_size) {
 920		struct iattr iattr;
 921
 922		iattr.ia_valid = ATTR_SIZE;
 923		iattr.ia_size = new_size;
 924		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
 
 925		if (error)
 926			goto out_unlock;
 927	}
 928
 929	/*
 930	 * Perform hole insertion now that the file size has been
 931	 * updated so that if we crash during the operation we don't
 932	 * leave shifted extents past EOF and hence losing access to
 933	 * the data that is contained within them.
 934	 */
 935	if (do_file_insert)
 936		error = xfs_insert_file_space(ip, offset, len);
 937
 938out_unlock:
 939	xfs_iunlock(ip, iolock);
 940	return error;
 941}
 942
 943STATIC int
 944xfs_file_fadvise(
 945	struct file	*file,
 946	loff_t		start,
 947	loff_t		end,
 948	int		advice)
 949{
 950	struct xfs_inode *ip = XFS_I(file_inode(file));
 951	int ret;
 952	int lockflags = 0;
 953
 954	/*
 955	 * Operations creating pages in page cache need protection from hole
 956	 * punching and similar ops
 957	 */
 958	if (advice == POSIX_FADV_WILLNEED) {
 959		lockflags = XFS_IOLOCK_SHARED;
 960		xfs_ilock(ip, lockflags);
 961	}
 962	ret = generic_fadvise(file, start, end, advice);
 963	if (lockflags)
 964		xfs_iunlock(ip, lockflags);
 965	return ret;
 966}
 967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968STATIC loff_t
 969xfs_file_remap_range(
 970	struct file		*file_in,
 971	loff_t			pos_in,
 972	struct file		*file_out,
 973	loff_t			pos_out,
 974	loff_t			len,
 975	unsigned int		remap_flags)
 976{
 977	struct inode		*inode_in = file_inode(file_in);
 978	struct xfs_inode	*src = XFS_I(inode_in);
 979	struct inode		*inode_out = file_inode(file_out);
 980	struct xfs_inode	*dest = XFS_I(inode_out);
 981	struct xfs_mount	*mp = src->i_mount;
 982	loff_t			remapped = 0;
 983	xfs_extlen_t		cowextsize;
 984	int			ret;
 985
 986	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
 987		return -EINVAL;
 988
 989	if (!xfs_sb_version_hasreflink(&mp->m_sb))
 990		return -EOPNOTSUPP;
 991
 992	if (XFS_FORCED_SHUTDOWN(mp))
 993		return -EIO;
 994
 995	/* Prepare and then clone file data. */
 996	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
 997			&len, remap_flags);
 998	if (ret < 0 || len == 0)
 999		return ret;
1000
1001	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1002
1003	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1004			&remapped);
1005	if (ret)
1006		goto out_unlock;
1007
1008	/*
1009	 * Carry the cowextsize hint from src to dest if we're sharing the
1010	 * entire source file to the entire destination file, the source file
1011	 * has a cowextsize hint, and the destination file does not.
1012	 */
1013	cowextsize = 0;
1014	if (pos_in == 0 && len == i_size_read(inode_in) &&
1015	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1016	    pos_out == 0 && len >= i_size_read(inode_out) &&
1017	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1018		cowextsize = src->i_d.di_cowextsize;
1019
1020	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1021			remap_flags);
 
 
1022
 
 
1023out_unlock:
1024	xfs_reflink_remap_unlock(file_in, file_out);
1025	if (ret)
1026		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1027	return remapped > 0 ? remapped : ret;
1028}
1029
1030STATIC int
1031xfs_file_open(
1032	struct inode	*inode,
1033	struct file	*file)
1034{
1035	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1036		return -EFBIG;
1037	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1038		return -EIO;
1039	file->f_mode |= FMODE_NOWAIT;
1040	return 0;
1041}
1042
1043STATIC int
1044xfs_dir_open(
1045	struct inode	*inode,
1046	struct file	*file)
1047{
1048	struct xfs_inode *ip = XFS_I(inode);
1049	int		mode;
1050	int		error;
1051
1052	error = xfs_file_open(inode, file);
1053	if (error)
1054		return error;
1055
1056	/*
1057	 * If there are any blocks, read-ahead block 0 as we're almost
1058	 * certain to have the next operation be a read there.
1059	 */
1060	mode = xfs_ilock_data_map_shared(ip);
1061	if (ip->i_d.di_nextents > 0)
1062		error = xfs_dir3_data_readahead(ip, 0, -1);
1063	xfs_iunlock(ip, mode);
1064	return error;
1065}
1066
1067STATIC int
1068xfs_file_release(
1069	struct inode	*inode,
1070	struct file	*filp)
1071{
1072	return xfs_release(XFS_I(inode));
1073}
1074
1075STATIC int
1076xfs_file_readdir(
1077	struct file	*file,
1078	struct dir_context *ctx)
1079{
1080	struct inode	*inode = file_inode(file);
1081	xfs_inode_t	*ip = XFS_I(inode);
1082	size_t		bufsize;
1083
1084	/*
1085	 * The Linux API doesn't pass down the total size of the buffer
1086	 * we read into down to the filesystem.  With the filldir concept
1087	 * it's not needed for correct information, but the XFS dir2 leaf
1088	 * code wants an estimate of the buffer size to calculate it's
1089	 * readahead window and size the buffers used for mapping to
1090	 * physical blocks.
1091	 *
1092	 * Try to give it an estimate that's good enough, maybe at some
1093	 * point we can change the ->readdir prototype to include the
1094	 * buffer size.  For now we use the current glibc buffer size.
1095	 */
1096	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1097
1098	return xfs_readdir(NULL, ip, ctx, bufsize);
1099}
1100
1101STATIC loff_t
1102xfs_file_llseek(
1103	struct file	*file,
1104	loff_t		offset,
1105	int		whence)
1106{
1107	struct inode		*inode = file->f_mapping->host;
1108
1109	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1110		return -EIO;
1111
1112	switch (whence) {
1113	default:
1114		return generic_file_llseek(file, offset, whence);
1115	case SEEK_HOLE:
1116		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1117		break;
1118	case SEEK_DATA:
1119		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1120		break;
1121	}
1122
1123	if (offset < 0)
1124		return offset;
1125	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1126}
1127
1128/*
1129 * Locking for serialisation of IO during page faults. This results in a lock
1130 * ordering of:
1131 *
1132 * mmap_sem (MM)
1133 *   sb_start_pagefault(vfs, freeze)
1134 *     i_mmaplock (XFS - truncate serialisation)
1135 *       page_lock (MM)
1136 *         i_lock (XFS - extent map serialisation)
1137 */
1138static vm_fault_t
1139__xfs_filemap_fault(
1140	struct vm_fault		*vmf,
1141	enum page_entry_size	pe_size,
1142	bool			write_fault)
1143{
1144	struct inode		*inode = file_inode(vmf->vma->vm_file);
1145	struct xfs_inode	*ip = XFS_I(inode);
1146	vm_fault_t		ret;
1147
1148	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1149
1150	if (write_fault) {
1151		sb_start_pagefault(inode->i_sb);
1152		file_update_time(vmf->vma->vm_file);
1153	}
1154
1155	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1156	if (IS_DAX(inode)) {
1157		pfn_t pfn;
1158
1159		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
 
 
 
1160		if (ret & VM_FAULT_NEEDDSYNC)
1161			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1162	} else {
1163		if (write_fault)
1164			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
 
1165		else
1166			ret = filemap_fault(vmf);
1167	}
1168	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1169
1170	if (write_fault)
1171		sb_end_pagefault(inode->i_sb);
1172	return ret;
1173}
1174
 
 
 
 
 
 
 
 
1175static vm_fault_t
1176xfs_filemap_fault(
1177	struct vm_fault		*vmf)
1178{
1179	/* DAX can shortcut the normal fault path on write faults! */
1180	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1181			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1182			(vmf->flags & FAULT_FLAG_WRITE));
1183}
1184
1185static vm_fault_t
1186xfs_filemap_huge_fault(
1187	struct vm_fault		*vmf,
1188	enum page_entry_size	pe_size)
1189{
1190	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1191		return VM_FAULT_FALLBACK;
1192
1193	/* DAX can shortcut the normal fault path on write faults! */
1194	return __xfs_filemap_fault(vmf, pe_size,
1195			(vmf->flags & FAULT_FLAG_WRITE));
1196}
1197
1198static vm_fault_t
1199xfs_filemap_page_mkwrite(
1200	struct vm_fault		*vmf)
1201{
1202	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1203}
1204
1205/*
1206 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1207 * on write faults. In reality, it needs to serialise against truncate and
1208 * prepare memory for writing so handle is as standard write fault.
1209 */
1210static vm_fault_t
1211xfs_filemap_pfn_mkwrite(
1212	struct vm_fault		*vmf)
1213{
1214
1215	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1216}
1217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1218static const struct vm_operations_struct xfs_file_vm_ops = {
1219	.fault		= xfs_filemap_fault,
1220	.huge_fault	= xfs_filemap_huge_fault,
1221	.map_pages	= filemap_map_pages,
1222	.page_mkwrite	= xfs_filemap_page_mkwrite,
1223	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1224};
1225
1226STATIC int
1227xfs_file_mmap(
1228	struct file	*filp,
1229	struct vm_area_struct *vma)
1230{
1231	struct dax_device 	*dax_dev;
 
1232
1233	dax_dev = xfs_find_daxdev_for_inode(file_inode(filp));
1234	/*
1235	 * We don't support synchronous mappings for non-DAX files and
1236	 * for DAX files if underneath dax_device is not synchronous.
1237	 */
1238	if (!daxdev_mapping_supported(vma, dax_dev))
1239		return -EOPNOTSUPP;
1240
1241	file_accessed(filp);
1242	vma->vm_ops = &xfs_file_vm_ops;
1243	if (IS_DAX(file_inode(filp)))
1244		vma->vm_flags |= VM_HUGEPAGE;
1245	return 0;
1246}
1247
1248const struct file_operations xfs_file_operations = {
1249	.llseek		= xfs_file_llseek,
1250	.read_iter	= xfs_file_read_iter,
1251	.write_iter	= xfs_file_write_iter,
1252	.splice_read	= generic_file_splice_read,
1253	.splice_write	= iter_file_splice_write,
1254	.iopoll		= iomap_dio_iopoll,
1255	.unlocked_ioctl	= xfs_file_ioctl,
1256#ifdef CONFIG_COMPAT
1257	.compat_ioctl	= xfs_file_compat_ioctl,
1258#endif
1259	.mmap		= xfs_file_mmap,
1260	.mmap_supported_flags = MAP_SYNC,
1261	.open		= xfs_file_open,
1262	.release	= xfs_file_release,
1263	.fsync		= xfs_file_fsync,
1264	.get_unmapped_area = thp_get_unmapped_area,
1265	.fallocate	= xfs_file_fallocate,
1266	.fadvise	= xfs_file_fadvise,
1267	.remap_file_range = xfs_file_remap_range,
1268};
1269
1270const struct file_operations xfs_dir_file_operations = {
1271	.open		= xfs_dir_open,
1272	.read		= generic_read_dir,
1273	.iterate_shared	= xfs_file_readdir,
1274	.llseek		= generic_file_llseek,
1275	.unlocked_ioctl	= xfs_file_ioctl,
1276#ifdef CONFIG_COMPAT
1277	.compat_ioctl	= xfs_file_compat_ioctl,
1278#endif
1279	.fsync		= xfs_dir_fsync,
1280};