Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/**
3 * inode.c - NTFS kernel inode handling.
4 *
5 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
6 */
7
8#include <linux/buffer_head.h>
9#include <linux/fs.h>
10#include <linux/mm.h>
11#include <linux/mount.h>
12#include <linux/mutex.h>
13#include <linux/pagemap.h>
14#include <linux/quotaops.h>
15#include <linux/slab.h>
16#include <linux/log2.h>
17
18#include "aops.h"
19#include "attrib.h"
20#include "bitmap.h"
21#include "dir.h"
22#include "debug.h"
23#include "inode.h"
24#include "lcnalloc.h"
25#include "malloc.h"
26#include "mft.h"
27#include "time.h"
28#include "ntfs.h"
29
30/**
31 * ntfs_test_inode - compare two (possibly fake) inodes for equality
32 * @vi: vfs inode which to test
33 * @data: data which is being tested with
34 *
35 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
36 * inode @vi for equality with the ntfs attribute @data.
37 *
38 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
39 * @na->name and @na->name_len are then ignored.
40 *
41 * Return 1 if the attributes match and 0 if not.
42 *
43 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
44 * allowed to sleep.
45 */
46int ntfs_test_inode(struct inode *vi, void *data)
47{
48 ntfs_attr *na = (ntfs_attr *)data;
49 ntfs_inode *ni;
50
51 if (vi->i_ino != na->mft_no)
52 return 0;
53 ni = NTFS_I(vi);
54 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
55 if (likely(!NInoAttr(ni))) {
56 /* If not looking for a normal inode this is a mismatch. */
57 if (unlikely(na->type != AT_UNUSED))
58 return 0;
59 } else {
60 /* A fake inode describing an attribute. */
61 if (ni->type != na->type)
62 return 0;
63 if (ni->name_len != na->name_len)
64 return 0;
65 if (na->name_len && memcmp(ni->name, na->name,
66 na->name_len * sizeof(ntfschar)))
67 return 0;
68 }
69 /* Match! */
70 return 1;
71}
72
73/**
74 * ntfs_init_locked_inode - initialize an inode
75 * @vi: vfs inode to initialize
76 * @data: data which to initialize @vi to
77 *
78 * Initialize the vfs inode @vi with the values from the ntfs attribute @data in
79 * order to enable ntfs_test_inode() to do its work.
80 *
81 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
82 * In that case, @na->name and @na->name_len should be set to NULL and 0,
83 * respectively. Although that is not strictly necessary as
84 * ntfs_read_locked_inode() will fill them in later.
85 *
86 * Return 0 on success and -errno on error.
87 *
88 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
89 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
90 */
91static int ntfs_init_locked_inode(struct inode *vi, void *data)
92{
93 ntfs_attr *na = (ntfs_attr *)data;
94 ntfs_inode *ni = NTFS_I(vi);
95
96 vi->i_ino = na->mft_no;
97
98 ni->type = na->type;
99 if (na->type == AT_INDEX_ALLOCATION)
100 NInoSetMstProtected(ni);
101
102 ni->name = na->name;
103 ni->name_len = na->name_len;
104
105 /* If initializing a normal inode, we are done. */
106 if (likely(na->type == AT_UNUSED)) {
107 BUG_ON(na->name);
108 BUG_ON(na->name_len);
109 return 0;
110 }
111
112 /* It is a fake inode. */
113 NInoSetAttr(ni);
114
115 /*
116 * We have I30 global constant as an optimization as it is the name
117 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
118 * allocation but that is ok. And most attributes are unnamed anyway,
119 * thus the fraction of named attributes with name != I30 is actually
120 * absolutely tiny.
121 */
122 if (na->name_len && na->name != I30) {
123 unsigned int i;
124
125 BUG_ON(!na->name);
126 i = na->name_len * sizeof(ntfschar);
127 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
128 if (!ni->name)
129 return -ENOMEM;
130 memcpy(ni->name, na->name, i);
131 ni->name[na->name_len] = 0;
132 }
133 return 0;
134}
135
136static int ntfs_read_locked_inode(struct inode *vi);
137static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
138static int ntfs_read_locked_index_inode(struct inode *base_vi,
139 struct inode *vi);
140
141/**
142 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
143 * @sb: super block of mounted volume
144 * @mft_no: mft record number / inode number to obtain
145 *
146 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
147 * file or directory).
148 *
149 * If the inode is in the cache, it is just returned with an increased
150 * reference count. Otherwise, a new struct inode is allocated and initialized,
151 * and finally ntfs_read_locked_inode() is called to read in the inode and
152 * fill in the remainder of the inode structure.
153 *
154 * Return the struct inode on success. Check the return value with IS_ERR() and
155 * if true, the function failed and the error code is obtained from PTR_ERR().
156 */
157struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
158{
159 struct inode *vi;
160 int err;
161 ntfs_attr na;
162
163 na.mft_no = mft_no;
164 na.type = AT_UNUSED;
165 na.name = NULL;
166 na.name_len = 0;
167
168 vi = iget5_locked(sb, mft_no, ntfs_test_inode,
169 ntfs_init_locked_inode, &na);
170 if (unlikely(!vi))
171 return ERR_PTR(-ENOMEM);
172
173 err = 0;
174
175 /* If this is a freshly allocated inode, need to read it now. */
176 if (vi->i_state & I_NEW) {
177 err = ntfs_read_locked_inode(vi);
178 unlock_new_inode(vi);
179 }
180 /*
181 * There is no point in keeping bad inodes around if the failure was
182 * due to ENOMEM. We want to be able to retry again later.
183 */
184 if (unlikely(err == -ENOMEM)) {
185 iput(vi);
186 vi = ERR_PTR(err);
187 }
188 return vi;
189}
190
191/**
192 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
193 * @base_vi: vfs base inode containing the attribute
194 * @type: attribute type
195 * @name: Unicode name of the attribute (NULL if unnamed)
196 * @name_len: length of @name in Unicode characters (0 if unnamed)
197 *
198 * Obtain the (fake) struct inode corresponding to the attribute specified by
199 * @type, @name, and @name_len, which is present in the base mft record
200 * specified by the vfs inode @base_vi.
201 *
202 * If the attribute inode is in the cache, it is just returned with an
203 * increased reference count. Otherwise, a new struct inode is allocated and
204 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
205 * attribute and fill in the inode structure.
206 *
207 * Note, for index allocation attributes, you need to use ntfs_index_iget()
208 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
209 *
210 * Return the struct inode of the attribute inode on success. Check the return
211 * value with IS_ERR() and if true, the function failed and the error code is
212 * obtained from PTR_ERR().
213 */
214struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
215 ntfschar *name, u32 name_len)
216{
217 struct inode *vi;
218 int err;
219 ntfs_attr na;
220
221 /* Make sure no one calls ntfs_attr_iget() for indices. */
222 BUG_ON(type == AT_INDEX_ALLOCATION);
223
224 na.mft_no = base_vi->i_ino;
225 na.type = type;
226 na.name = name;
227 na.name_len = name_len;
228
229 vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode,
230 ntfs_init_locked_inode, &na);
231 if (unlikely(!vi))
232 return ERR_PTR(-ENOMEM);
233
234 err = 0;
235
236 /* If this is a freshly allocated inode, need to read it now. */
237 if (vi->i_state & I_NEW) {
238 err = ntfs_read_locked_attr_inode(base_vi, vi);
239 unlock_new_inode(vi);
240 }
241 /*
242 * There is no point in keeping bad attribute inodes around. This also
243 * simplifies things in that we never need to check for bad attribute
244 * inodes elsewhere.
245 */
246 if (unlikely(err)) {
247 iput(vi);
248 vi = ERR_PTR(err);
249 }
250 return vi;
251}
252
253/**
254 * ntfs_index_iget - obtain a struct inode corresponding to an index
255 * @base_vi: vfs base inode containing the index related attributes
256 * @name: Unicode name of the index
257 * @name_len: length of @name in Unicode characters
258 *
259 * Obtain the (fake) struct inode corresponding to the index specified by @name
260 * and @name_len, which is present in the base mft record specified by the vfs
261 * inode @base_vi.
262 *
263 * If the index inode is in the cache, it is just returned with an increased
264 * reference count. Otherwise, a new struct inode is allocated and
265 * initialized, and finally ntfs_read_locked_index_inode() is called to read
266 * the index related attributes and fill in the inode structure.
267 *
268 * Return the struct inode of the index inode on success. Check the return
269 * value with IS_ERR() and if true, the function failed and the error code is
270 * obtained from PTR_ERR().
271 */
272struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
273 u32 name_len)
274{
275 struct inode *vi;
276 int err;
277 ntfs_attr na;
278
279 na.mft_no = base_vi->i_ino;
280 na.type = AT_INDEX_ALLOCATION;
281 na.name = name;
282 na.name_len = name_len;
283
284 vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode,
285 ntfs_init_locked_inode, &na);
286 if (unlikely(!vi))
287 return ERR_PTR(-ENOMEM);
288
289 err = 0;
290
291 /* If this is a freshly allocated inode, need to read it now. */
292 if (vi->i_state & I_NEW) {
293 err = ntfs_read_locked_index_inode(base_vi, vi);
294 unlock_new_inode(vi);
295 }
296 /*
297 * There is no point in keeping bad index inodes around. This also
298 * simplifies things in that we never need to check for bad index
299 * inodes elsewhere.
300 */
301 if (unlikely(err)) {
302 iput(vi);
303 vi = ERR_PTR(err);
304 }
305 return vi;
306}
307
308struct inode *ntfs_alloc_big_inode(struct super_block *sb)
309{
310 ntfs_inode *ni;
311
312 ntfs_debug("Entering.");
313 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
314 if (likely(ni != NULL)) {
315 ni->state = 0;
316 return VFS_I(ni);
317 }
318 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
319 return NULL;
320}
321
322void ntfs_free_big_inode(struct inode *inode)
323{
324 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
325}
326
327static inline ntfs_inode *ntfs_alloc_extent_inode(void)
328{
329 ntfs_inode *ni;
330
331 ntfs_debug("Entering.");
332 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
333 if (likely(ni != NULL)) {
334 ni->state = 0;
335 return ni;
336 }
337 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
338 return NULL;
339}
340
341static void ntfs_destroy_extent_inode(ntfs_inode *ni)
342{
343 ntfs_debug("Entering.");
344 BUG_ON(ni->page);
345 if (!atomic_dec_and_test(&ni->count))
346 BUG();
347 kmem_cache_free(ntfs_inode_cache, ni);
348}
349
350/*
351 * The attribute runlist lock has separate locking rules from the
352 * normal runlist lock, so split the two lock-classes:
353 */
354static struct lock_class_key attr_list_rl_lock_class;
355
356/**
357 * __ntfs_init_inode - initialize ntfs specific part of an inode
358 * @sb: super block of mounted volume
359 * @ni: freshly allocated ntfs inode which to initialize
360 *
361 * Initialize an ntfs inode to defaults.
362 *
363 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
364 * untouched. Make sure to initialize them elsewhere.
365 *
366 * Return zero on success and -ENOMEM on error.
367 */
368void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
369{
370 ntfs_debug("Entering.");
371 rwlock_init(&ni->size_lock);
372 ni->initialized_size = ni->allocated_size = 0;
373 ni->seq_no = 0;
374 atomic_set(&ni->count, 1);
375 ni->vol = NTFS_SB(sb);
376 ntfs_init_runlist(&ni->runlist);
377 mutex_init(&ni->mrec_lock);
378 ni->page = NULL;
379 ni->page_ofs = 0;
380 ni->attr_list_size = 0;
381 ni->attr_list = NULL;
382 ntfs_init_runlist(&ni->attr_list_rl);
383 lockdep_set_class(&ni->attr_list_rl.lock,
384 &attr_list_rl_lock_class);
385 ni->itype.index.block_size = 0;
386 ni->itype.index.vcn_size = 0;
387 ni->itype.index.collation_rule = 0;
388 ni->itype.index.block_size_bits = 0;
389 ni->itype.index.vcn_size_bits = 0;
390 mutex_init(&ni->extent_lock);
391 ni->nr_extents = 0;
392 ni->ext.base_ntfs_ino = NULL;
393}
394
395/*
396 * Extent inodes get MFT-mapped in a nested way, while the base inode
397 * is still mapped. Teach this nesting to the lock validator by creating
398 * a separate class for nested inode's mrec_lock's:
399 */
400static struct lock_class_key extent_inode_mrec_lock_key;
401
402inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
403 unsigned long mft_no)
404{
405 ntfs_inode *ni = ntfs_alloc_extent_inode();
406
407 ntfs_debug("Entering.");
408 if (likely(ni != NULL)) {
409 __ntfs_init_inode(sb, ni);
410 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
411 ni->mft_no = mft_no;
412 ni->type = AT_UNUSED;
413 ni->name = NULL;
414 ni->name_len = 0;
415 }
416 return ni;
417}
418
419/**
420 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
421 * @ctx: initialized attribute search context
422 *
423 * Search all file name attributes in the inode described by the attribute
424 * search context @ctx and check if any of the names are in the $Extend system
425 * directory.
426 *
427 * Return values:
428 * 1: file is in $Extend directory
429 * 0: file is not in $Extend directory
430 * -errno: failed to determine if the file is in the $Extend directory
431 */
432static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
433{
434 int nr_links, err;
435
436 /* Restart search. */
437 ntfs_attr_reinit_search_ctx(ctx);
438
439 /* Get number of hard links. */
440 nr_links = le16_to_cpu(ctx->mrec->link_count);
441
442 /* Loop through all hard links. */
443 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
444 ctx))) {
445 FILE_NAME_ATTR *file_name_attr;
446 ATTR_RECORD *attr = ctx->attr;
447 u8 *p, *p2;
448
449 nr_links--;
450 /*
451 * Maximum sanity checking as we are called on an inode that
452 * we suspect might be corrupt.
453 */
454 p = (u8*)attr + le32_to_cpu(attr->length);
455 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
456 le32_to_cpu(ctx->mrec->bytes_in_use)) {
457err_corrupt_attr:
458 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
459 "attribute. You should run chkdsk.");
460 return -EIO;
461 }
462 if (attr->non_resident) {
463 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
464 "name. You should run chkdsk.");
465 return -EIO;
466 }
467 if (attr->flags) {
468 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
469 "invalid flags. You should run "
470 "chkdsk.");
471 return -EIO;
472 }
473 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
474 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
475 "name. You should run chkdsk.");
476 return -EIO;
477 }
478 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
479 le16_to_cpu(attr->data.resident.value_offset));
480 p2 = (u8 *)file_name_attr + le32_to_cpu(attr->data.resident.value_length);
481 if (p2 < (u8*)attr || p2 > p)
482 goto err_corrupt_attr;
483 /* This attribute is ok, but is it in the $Extend directory? */
484 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
485 return 1; /* YES, it's an extended system file. */
486 }
487 if (unlikely(err != -ENOENT))
488 return err;
489 if (unlikely(nr_links)) {
490 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
491 "doesn't match number of name attributes. You "
492 "should run chkdsk.");
493 return -EIO;
494 }
495 return 0; /* NO, it is not an extended system file. */
496}
497
498/**
499 * ntfs_read_locked_inode - read an inode from its device
500 * @vi: inode to read
501 *
502 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
503 * described by @vi into memory from the device.
504 *
505 * The only fields in @vi that we need to/can look at when the function is
506 * called are i_sb, pointing to the mounted device's super block, and i_ino,
507 * the number of the inode to load.
508 *
509 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
510 * for reading and sets up the necessary @vi fields as well as initializing
511 * the ntfs inode.
512 *
513 * Q: What locks are held when the function is called?
514 * A: i_state has I_NEW set, hence the inode is locked, also
515 * i_count is set to 1, so it is not going to go away
516 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
517 * is allowed to write to them. We should of course be honouring them but
518 * we need to do that using the IS_* macros defined in include/linux/fs.h.
519 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
520 *
521 * Return 0 on success and -errno on error. In the error case, the inode will
522 * have had make_bad_inode() executed on it.
523 */
524static int ntfs_read_locked_inode(struct inode *vi)
525{
526 ntfs_volume *vol = NTFS_SB(vi->i_sb);
527 ntfs_inode *ni;
528 struct inode *bvi;
529 MFT_RECORD *m;
530 ATTR_RECORD *a;
531 STANDARD_INFORMATION *si;
532 ntfs_attr_search_ctx *ctx;
533 int err = 0;
534
535 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
536
537 /* Setup the generic vfs inode parts now. */
538 vi->i_uid = vol->uid;
539 vi->i_gid = vol->gid;
540 vi->i_mode = 0;
541
542 /*
543 * Initialize the ntfs specific part of @vi special casing
544 * FILE_MFT which we need to do at mount time.
545 */
546 if (vi->i_ino != FILE_MFT)
547 ntfs_init_big_inode(vi);
548 ni = NTFS_I(vi);
549
550 m = map_mft_record(ni);
551 if (IS_ERR(m)) {
552 err = PTR_ERR(m);
553 goto err_out;
554 }
555 ctx = ntfs_attr_get_search_ctx(ni, m);
556 if (!ctx) {
557 err = -ENOMEM;
558 goto unm_err_out;
559 }
560
561 if (!(m->flags & MFT_RECORD_IN_USE)) {
562 ntfs_error(vi->i_sb, "Inode is not in use!");
563 goto unm_err_out;
564 }
565 if (m->base_mft_record) {
566 ntfs_error(vi->i_sb, "Inode is an extent inode!");
567 goto unm_err_out;
568 }
569
570 /* Transfer information from mft record into vfs and ntfs inodes. */
571 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
572
573 /*
574 * FIXME: Keep in mind that link_count is two for files which have both
575 * a long file name and a short file name as separate entries, so if
576 * we are hiding short file names this will be too high. Either we need
577 * to account for the short file names by subtracting them or we need
578 * to make sure we delete files even though i_nlink is not zero which
579 * might be tricky due to vfs interactions. Need to think about this
580 * some more when implementing the unlink command.
581 */
582 set_nlink(vi, le16_to_cpu(m->link_count));
583 /*
584 * FIXME: Reparse points can have the directory bit set even though
585 * they would be S_IFLNK. Need to deal with this further below when we
586 * implement reparse points / symbolic links but it will do for now.
587 * Also if not a directory, it could be something else, rather than
588 * a regular file. But again, will do for now.
589 */
590 /* Everyone gets all permissions. */
591 vi->i_mode |= S_IRWXUGO;
592 /* If read-only, no one gets write permissions. */
593 if (IS_RDONLY(vi))
594 vi->i_mode &= ~S_IWUGO;
595 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
596 vi->i_mode |= S_IFDIR;
597 /*
598 * Apply the directory permissions mask set in the mount
599 * options.
600 */
601 vi->i_mode &= ~vol->dmask;
602 /* Things break without this kludge! */
603 if (vi->i_nlink > 1)
604 set_nlink(vi, 1);
605 } else {
606 vi->i_mode |= S_IFREG;
607 /* Apply the file permissions mask set in the mount options. */
608 vi->i_mode &= ~vol->fmask;
609 }
610 /*
611 * Find the standard information attribute in the mft record. At this
612 * stage we haven't setup the attribute list stuff yet, so this could
613 * in fact fail if the standard information is in an extent record, but
614 * I don't think this actually ever happens.
615 */
616 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
617 ctx);
618 if (unlikely(err)) {
619 if (err == -ENOENT) {
620 /*
621 * TODO: We should be performing a hot fix here (if the
622 * recover mount option is set) by creating a new
623 * attribute.
624 */
625 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
626 "is missing.");
627 }
628 goto unm_err_out;
629 }
630 a = ctx->attr;
631 /* Get the standard information attribute value. */
632 if ((u8 *)a + le16_to_cpu(a->data.resident.value_offset)
633 + le32_to_cpu(a->data.resident.value_length) >
634 (u8 *)ctx->mrec + vol->mft_record_size) {
635 ntfs_error(vi->i_sb, "Corrupt standard information attribute in inode.");
636 goto unm_err_out;
637 }
638 si = (STANDARD_INFORMATION*)((u8*)a +
639 le16_to_cpu(a->data.resident.value_offset));
640
641 /* Transfer information from the standard information into vi. */
642 /*
643 * Note: The i_?times do not quite map perfectly onto the NTFS times,
644 * but they are close enough, and in the end it doesn't really matter
645 * that much...
646 */
647 /*
648 * mtime is the last change of the data within the file. Not changed
649 * when only metadata is changed, e.g. a rename doesn't affect mtime.
650 */
651 vi->i_mtime = ntfs2utc(si->last_data_change_time);
652 /*
653 * ctime is the last change of the metadata of the file. This obviously
654 * always changes, when mtime is changed. ctime can be changed on its
655 * own, mtime is then not changed, e.g. when a file is renamed.
656 */
657 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
658 /*
659 * Last access to the data within the file. Not changed during a rename
660 * for example but changed whenever the file is written to.
661 */
662 vi->i_atime = ntfs2utc(si->last_access_time);
663
664 /* Find the attribute list attribute if present. */
665 ntfs_attr_reinit_search_ctx(ctx);
666 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
667 if (err) {
668 if (unlikely(err != -ENOENT)) {
669 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
670 "attribute.");
671 goto unm_err_out;
672 }
673 } else /* if (!err) */ {
674 if (vi->i_ino == FILE_MFT)
675 goto skip_attr_list_load;
676 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
677 NInoSetAttrList(ni);
678 a = ctx->attr;
679 if (a->flags & ATTR_COMPRESSION_MASK) {
680 ntfs_error(vi->i_sb, "Attribute list attribute is "
681 "compressed.");
682 goto unm_err_out;
683 }
684 if (a->flags & ATTR_IS_ENCRYPTED ||
685 a->flags & ATTR_IS_SPARSE) {
686 if (a->non_resident) {
687 ntfs_error(vi->i_sb, "Non-resident attribute "
688 "list attribute is encrypted/"
689 "sparse.");
690 goto unm_err_out;
691 }
692 ntfs_warning(vi->i_sb, "Resident attribute list "
693 "attribute in inode 0x%lx is marked "
694 "encrypted/sparse which is not true. "
695 "However, Windows allows this and "
696 "chkdsk does not detect or correct it "
697 "so we will just ignore the invalid "
698 "flags and pretend they are not set.",
699 vi->i_ino);
700 }
701 /* Now allocate memory for the attribute list. */
702 ni->attr_list_size = (u32)ntfs_attr_size(a);
703 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
704 if (!ni->attr_list) {
705 ntfs_error(vi->i_sb, "Not enough memory to allocate "
706 "buffer for attribute list.");
707 err = -ENOMEM;
708 goto unm_err_out;
709 }
710 if (a->non_resident) {
711 NInoSetAttrListNonResident(ni);
712 if (a->data.non_resident.lowest_vcn) {
713 ntfs_error(vi->i_sb, "Attribute list has non "
714 "zero lowest_vcn.");
715 goto unm_err_out;
716 }
717 /*
718 * Setup the runlist. No need for locking as we have
719 * exclusive access to the inode at this time.
720 */
721 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
722 a, NULL);
723 if (IS_ERR(ni->attr_list_rl.rl)) {
724 err = PTR_ERR(ni->attr_list_rl.rl);
725 ni->attr_list_rl.rl = NULL;
726 ntfs_error(vi->i_sb, "Mapping pairs "
727 "decompression failed.");
728 goto unm_err_out;
729 }
730 /* Now load the attribute list. */
731 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
732 ni->attr_list, ni->attr_list_size,
733 sle64_to_cpu(a->data.non_resident.
734 initialized_size)))) {
735 ntfs_error(vi->i_sb, "Failed to load "
736 "attribute list attribute.");
737 goto unm_err_out;
738 }
739 } else /* if (!a->non_resident) */ {
740 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
741 + le32_to_cpu(
742 a->data.resident.value_length) >
743 (u8*)ctx->mrec + vol->mft_record_size) {
744 ntfs_error(vi->i_sb, "Corrupt attribute list "
745 "in inode.");
746 goto unm_err_out;
747 }
748 /* Now copy the attribute list. */
749 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
750 a->data.resident.value_offset),
751 le32_to_cpu(
752 a->data.resident.value_length));
753 }
754 }
755skip_attr_list_load:
756 /*
757 * If an attribute list is present we now have the attribute list value
758 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
759 */
760 if (S_ISDIR(vi->i_mode)) {
761 loff_t bvi_size;
762 ntfs_inode *bni;
763 INDEX_ROOT *ir;
764 u8 *ir_end, *index_end;
765
766 /* It is a directory, find index root attribute. */
767 ntfs_attr_reinit_search_ctx(ctx);
768 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
769 0, NULL, 0, ctx);
770 if (unlikely(err)) {
771 if (err == -ENOENT) {
772 // FIXME: File is corrupt! Hot-fix with empty
773 // index root attribute if recovery option is
774 // set.
775 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
776 "is missing.");
777 }
778 goto unm_err_out;
779 }
780 a = ctx->attr;
781 /* Set up the state. */
782 if (unlikely(a->non_resident)) {
783 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
784 "resident.");
785 goto unm_err_out;
786 }
787 /* Ensure the attribute name is placed before the value. */
788 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
789 le16_to_cpu(a->data.resident.value_offset)))) {
790 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
791 "placed after the attribute value.");
792 goto unm_err_out;
793 }
794 /*
795 * Compressed/encrypted index root just means that the newly
796 * created files in that directory should be created compressed/
797 * encrypted. However index root cannot be both compressed and
798 * encrypted.
799 */
800 if (a->flags & ATTR_COMPRESSION_MASK)
801 NInoSetCompressed(ni);
802 if (a->flags & ATTR_IS_ENCRYPTED) {
803 if (a->flags & ATTR_COMPRESSION_MASK) {
804 ntfs_error(vi->i_sb, "Found encrypted and "
805 "compressed attribute.");
806 goto unm_err_out;
807 }
808 NInoSetEncrypted(ni);
809 }
810 if (a->flags & ATTR_IS_SPARSE)
811 NInoSetSparse(ni);
812 ir = (INDEX_ROOT*)((u8*)a +
813 le16_to_cpu(a->data.resident.value_offset));
814 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
815 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
816 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
817 "corrupt.");
818 goto unm_err_out;
819 }
820 index_end = (u8*)&ir->index +
821 le32_to_cpu(ir->index.index_length);
822 if (index_end > ir_end) {
823 ntfs_error(vi->i_sb, "Directory index is corrupt.");
824 goto unm_err_out;
825 }
826 if (ir->type != AT_FILE_NAME) {
827 ntfs_error(vi->i_sb, "Indexed attribute is not "
828 "$FILE_NAME.");
829 goto unm_err_out;
830 }
831 if (ir->collation_rule != COLLATION_FILE_NAME) {
832 ntfs_error(vi->i_sb, "Index collation rule is not "
833 "COLLATION_FILE_NAME.");
834 goto unm_err_out;
835 }
836 ni->itype.index.collation_rule = ir->collation_rule;
837 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
838 if (ni->itype.index.block_size &
839 (ni->itype.index.block_size - 1)) {
840 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
841 "power of two.",
842 ni->itype.index.block_size);
843 goto unm_err_out;
844 }
845 if (ni->itype.index.block_size > PAGE_SIZE) {
846 ntfs_error(vi->i_sb, "Index block size (%u) > "
847 "PAGE_SIZE (%ld) is not "
848 "supported. Sorry.",
849 ni->itype.index.block_size,
850 PAGE_SIZE);
851 err = -EOPNOTSUPP;
852 goto unm_err_out;
853 }
854 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
855 ntfs_error(vi->i_sb, "Index block size (%u) < "
856 "NTFS_BLOCK_SIZE (%i) is not "
857 "supported. Sorry.",
858 ni->itype.index.block_size,
859 NTFS_BLOCK_SIZE);
860 err = -EOPNOTSUPP;
861 goto unm_err_out;
862 }
863 ni->itype.index.block_size_bits =
864 ffs(ni->itype.index.block_size) - 1;
865 /* Determine the size of a vcn in the directory index. */
866 if (vol->cluster_size <= ni->itype.index.block_size) {
867 ni->itype.index.vcn_size = vol->cluster_size;
868 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
869 } else {
870 ni->itype.index.vcn_size = vol->sector_size;
871 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
872 }
873
874 /* Setup the index allocation attribute, even if not present. */
875 NInoSetMstProtected(ni);
876 ni->type = AT_INDEX_ALLOCATION;
877 ni->name = I30;
878 ni->name_len = 4;
879
880 if (!(ir->index.flags & LARGE_INDEX)) {
881 /* No index allocation. */
882 vi->i_size = ni->initialized_size =
883 ni->allocated_size = 0;
884 /* We are done with the mft record, so we release it. */
885 ntfs_attr_put_search_ctx(ctx);
886 unmap_mft_record(ni);
887 m = NULL;
888 ctx = NULL;
889 goto skip_large_dir_stuff;
890 } /* LARGE_INDEX: Index allocation present. Setup state. */
891 NInoSetIndexAllocPresent(ni);
892 /* Find index allocation attribute. */
893 ntfs_attr_reinit_search_ctx(ctx);
894 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
895 CASE_SENSITIVE, 0, NULL, 0, ctx);
896 if (unlikely(err)) {
897 if (err == -ENOENT)
898 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
899 "attribute is not present but "
900 "$INDEX_ROOT indicated it is.");
901 else
902 ntfs_error(vi->i_sb, "Failed to lookup "
903 "$INDEX_ALLOCATION "
904 "attribute.");
905 goto unm_err_out;
906 }
907 a = ctx->attr;
908 if (!a->non_resident) {
909 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
910 "is resident.");
911 goto unm_err_out;
912 }
913 /*
914 * Ensure the attribute name is placed before the mapping pairs
915 * array.
916 */
917 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
918 le16_to_cpu(
919 a->data.non_resident.mapping_pairs_offset)))) {
920 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
921 "is placed after the mapping pairs "
922 "array.");
923 goto unm_err_out;
924 }
925 if (a->flags & ATTR_IS_ENCRYPTED) {
926 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
927 "is encrypted.");
928 goto unm_err_out;
929 }
930 if (a->flags & ATTR_IS_SPARSE) {
931 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
932 "is sparse.");
933 goto unm_err_out;
934 }
935 if (a->flags & ATTR_COMPRESSION_MASK) {
936 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
937 "is compressed.");
938 goto unm_err_out;
939 }
940 if (a->data.non_resident.lowest_vcn) {
941 ntfs_error(vi->i_sb, "First extent of "
942 "$INDEX_ALLOCATION attribute has non "
943 "zero lowest_vcn.");
944 goto unm_err_out;
945 }
946 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
947 ni->initialized_size = sle64_to_cpu(
948 a->data.non_resident.initialized_size);
949 ni->allocated_size = sle64_to_cpu(
950 a->data.non_resident.allocated_size);
951 /*
952 * We are done with the mft record, so we release it. Otherwise
953 * we would deadlock in ntfs_attr_iget().
954 */
955 ntfs_attr_put_search_ctx(ctx);
956 unmap_mft_record(ni);
957 m = NULL;
958 ctx = NULL;
959 /* Get the index bitmap attribute inode. */
960 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
961 if (IS_ERR(bvi)) {
962 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
963 err = PTR_ERR(bvi);
964 goto unm_err_out;
965 }
966 bni = NTFS_I(bvi);
967 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
968 NInoSparse(bni)) {
969 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
970 "and/or encrypted and/or sparse.");
971 goto iput_unm_err_out;
972 }
973 /* Consistency check bitmap size vs. index allocation size. */
974 bvi_size = i_size_read(bvi);
975 if ((bvi_size << 3) < (vi->i_size >>
976 ni->itype.index.block_size_bits)) {
977 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
978 "for index allocation (0x%llx).",
979 bvi_size << 3, vi->i_size);
980 goto iput_unm_err_out;
981 }
982 /* No longer need the bitmap attribute inode. */
983 iput(bvi);
984skip_large_dir_stuff:
985 /* Setup the operations for this inode. */
986 vi->i_op = &ntfs_dir_inode_ops;
987 vi->i_fop = &ntfs_dir_ops;
988 vi->i_mapping->a_ops = &ntfs_mst_aops;
989 } else {
990 /* It is a file. */
991 ntfs_attr_reinit_search_ctx(ctx);
992
993 /* Setup the data attribute, even if not present. */
994 ni->type = AT_DATA;
995 ni->name = NULL;
996 ni->name_len = 0;
997
998 /* Find first extent of the unnamed data attribute. */
999 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1000 if (unlikely(err)) {
1001 vi->i_size = ni->initialized_size =
1002 ni->allocated_size = 0;
1003 if (err != -ENOENT) {
1004 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1005 "attribute.");
1006 goto unm_err_out;
1007 }
1008 /*
1009 * FILE_Secure does not have an unnamed $DATA
1010 * attribute, so we special case it here.
1011 */
1012 if (vi->i_ino == FILE_Secure)
1013 goto no_data_attr_special_case;
1014 /*
1015 * Most if not all the system files in the $Extend
1016 * system directory do not have unnamed data
1017 * attributes so we need to check if the parent
1018 * directory of the file is FILE_Extend and if it is
1019 * ignore this error. To do this we need to get the
1020 * name of this inode from the mft record as the name
1021 * contains the back reference to the parent directory.
1022 */
1023 if (ntfs_is_extended_system_file(ctx) > 0)
1024 goto no_data_attr_special_case;
1025 // FIXME: File is corrupt! Hot-fix with empty data
1026 // attribute if recovery option is set.
1027 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1028 goto unm_err_out;
1029 }
1030 a = ctx->attr;
1031 /* Setup the state. */
1032 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1033 if (a->flags & ATTR_COMPRESSION_MASK) {
1034 NInoSetCompressed(ni);
1035 if (vol->cluster_size > 4096) {
1036 ntfs_error(vi->i_sb, "Found "
1037 "compressed data but "
1038 "compression is "
1039 "disabled due to "
1040 "cluster size (%i) > "
1041 "4kiB.",
1042 vol->cluster_size);
1043 goto unm_err_out;
1044 }
1045 if ((a->flags & ATTR_COMPRESSION_MASK)
1046 != ATTR_IS_COMPRESSED) {
1047 ntfs_error(vi->i_sb, "Found unknown "
1048 "compression method "
1049 "or corrupt file.");
1050 goto unm_err_out;
1051 }
1052 }
1053 if (a->flags & ATTR_IS_SPARSE)
1054 NInoSetSparse(ni);
1055 }
1056 if (a->flags & ATTR_IS_ENCRYPTED) {
1057 if (NInoCompressed(ni)) {
1058 ntfs_error(vi->i_sb, "Found encrypted and "
1059 "compressed data.");
1060 goto unm_err_out;
1061 }
1062 NInoSetEncrypted(ni);
1063 }
1064 if (a->non_resident) {
1065 NInoSetNonResident(ni);
1066 if (NInoCompressed(ni) || NInoSparse(ni)) {
1067 if (NInoCompressed(ni) && a->data.non_resident.
1068 compression_unit != 4) {
1069 ntfs_error(vi->i_sb, "Found "
1070 "non-standard "
1071 "compression unit (%u "
1072 "instead of 4). "
1073 "Cannot handle this.",
1074 a->data.non_resident.
1075 compression_unit);
1076 err = -EOPNOTSUPP;
1077 goto unm_err_out;
1078 }
1079 if (a->data.non_resident.compression_unit) {
1080 ni->itype.compressed.block_size = 1U <<
1081 (a->data.non_resident.
1082 compression_unit +
1083 vol->cluster_size_bits);
1084 ni->itype.compressed.block_size_bits =
1085 ffs(ni->itype.
1086 compressed.
1087 block_size) - 1;
1088 ni->itype.compressed.block_clusters =
1089 1U << a->data.
1090 non_resident.
1091 compression_unit;
1092 } else {
1093 ni->itype.compressed.block_size = 0;
1094 ni->itype.compressed.block_size_bits =
1095 0;
1096 ni->itype.compressed.block_clusters =
1097 0;
1098 }
1099 ni->itype.compressed.size = sle64_to_cpu(
1100 a->data.non_resident.
1101 compressed_size);
1102 }
1103 if (a->data.non_resident.lowest_vcn) {
1104 ntfs_error(vi->i_sb, "First extent of $DATA "
1105 "attribute has non zero "
1106 "lowest_vcn.");
1107 goto unm_err_out;
1108 }
1109 vi->i_size = sle64_to_cpu(
1110 a->data.non_resident.data_size);
1111 ni->initialized_size = sle64_to_cpu(
1112 a->data.non_resident.initialized_size);
1113 ni->allocated_size = sle64_to_cpu(
1114 a->data.non_resident.allocated_size);
1115 } else { /* Resident attribute. */
1116 vi->i_size = ni->initialized_size = le32_to_cpu(
1117 a->data.resident.value_length);
1118 ni->allocated_size = le32_to_cpu(a->length) -
1119 le16_to_cpu(
1120 a->data.resident.value_offset);
1121 if (vi->i_size > ni->allocated_size) {
1122 ntfs_error(vi->i_sb, "Resident data attribute "
1123 "is corrupt (size exceeds "
1124 "allocation).");
1125 goto unm_err_out;
1126 }
1127 }
1128no_data_attr_special_case:
1129 /* We are done with the mft record, so we release it. */
1130 ntfs_attr_put_search_ctx(ctx);
1131 unmap_mft_record(ni);
1132 m = NULL;
1133 ctx = NULL;
1134 /* Setup the operations for this inode. */
1135 vi->i_op = &ntfs_file_inode_ops;
1136 vi->i_fop = &ntfs_file_ops;
1137 vi->i_mapping->a_ops = &ntfs_normal_aops;
1138 if (NInoMstProtected(ni))
1139 vi->i_mapping->a_ops = &ntfs_mst_aops;
1140 else if (NInoCompressed(ni))
1141 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1142 }
1143 /*
1144 * The number of 512-byte blocks used on disk (for stat). This is in so
1145 * far inaccurate as it doesn't account for any named streams or other
1146 * special non-resident attributes, but that is how Windows works, too,
1147 * so we are at least consistent with Windows, if not entirely
1148 * consistent with the Linux Way. Doing it the Linux Way would cause a
1149 * significant slowdown as it would involve iterating over all
1150 * attributes in the mft record and adding the allocated/compressed
1151 * sizes of all non-resident attributes present to give us the Linux
1152 * correct size that should go into i_blocks (after division by 512).
1153 */
1154 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1155 vi->i_blocks = ni->itype.compressed.size >> 9;
1156 else
1157 vi->i_blocks = ni->allocated_size >> 9;
1158 ntfs_debug("Done.");
1159 return 0;
1160iput_unm_err_out:
1161 iput(bvi);
1162unm_err_out:
1163 if (!err)
1164 err = -EIO;
1165 if (ctx)
1166 ntfs_attr_put_search_ctx(ctx);
1167 if (m)
1168 unmap_mft_record(ni);
1169err_out:
1170 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1171 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1172 make_bad_inode(vi);
1173 if (err != -EOPNOTSUPP && err != -ENOMEM)
1174 NVolSetErrors(vol);
1175 return err;
1176}
1177
1178/**
1179 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1180 * @base_vi: base inode
1181 * @vi: attribute inode to read
1182 *
1183 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1184 * attribute inode described by @vi into memory from the base mft record
1185 * described by @base_ni.
1186 *
1187 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1188 * reading and looks up the attribute described by @vi before setting up the
1189 * necessary fields in @vi as well as initializing the ntfs inode.
1190 *
1191 * Q: What locks are held when the function is called?
1192 * A: i_state has I_NEW set, hence the inode is locked, also
1193 * i_count is set to 1, so it is not going to go away
1194 *
1195 * Return 0 on success and -errno on error. In the error case, the inode will
1196 * have had make_bad_inode() executed on it.
1197 *
1198 * Note this cannot be called for AT_INDEX_ALLOCATION.
1199 */
1200static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1201{
1202 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1203 ntfs_inode *ni, *base_ni;
1204 MFT_RECORD *m;
1205 ATTR_RECORD *a;
1206 ntfs_attr_search_ctx *ctx;
1207 int err = 0;
1208
1209 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1210
1211 ntfs_init_big_inode(vi);
1212
1213 ni = NTFS_I(vi);
1214 base_ni = NTFS_I(base_vi);
1215
1216 /* Just mirror the values from the base inode. */
1217 vi->i_uid = base_vi->i_uid;
1218 vi->i_gid = base_vi->i_gid;
1219 set_nlink(vi, base_vi->i_nlink);
1220 vi->i_mtime = base_vi->i_mtime;
1221 vi->i_ctime = base_vi->i_ctime;
1222 vi->i_atime = base_vi->i_atime;
1223 vi->i_generation = ni->seq_no = base_ni->seq_no;
1224
1225 /* Set inode type to zero but preserve permissions. */
1226 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1227
1228 m = map_mft_record(base_ni);
1229 if (IS_ERR(m)) {
1230 err = PTR_ERR(m);
1231 goto err_out;
1232 }
1233 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1234 if (!ctx) {
1235 err = -ENOMEM;
1236 goto unm_err_out;
1237 }
1238 /* Find the attribute. */
1239 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1240 CASE_SENSITIVE, 0, NULL, 0, ctx);
1241 if (unlikely(err))
1242 goto unm_err_out;
1243 a = ctx->attr;
1244 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1245 if (a->flags & ATTR_COMPRESSION_MASK) {
1246 NInoSetCompressed(ni);
1247 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1248 ni->name_len)) {
1249 ntfs_error(vi->i_sb, "Found compressed "
1250 "non-data or named data "
1251 "attribute. Please report "
1252 "you saw this message to "
1253 "linux-ntfs-dev@lists."
1254 "sourceforge.net");
1255 goto unm_err_out;
1256 }
1257 if (vol->cluster_size > 4096) {
1258 ntfs_error(vi->i_sb, "Found compressed "
1259 "attribute but compression is "
1260 "disabled due to cluster size "
1261 "(%i) > 4kiB.",
1262 vol->cluster_size);
1263 goto unm_err_out;
1264 }
1265 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1266 ATTR_IS_COMPRESSED) {
1267 ntfs_error(vi->i_sb, "Found unknown "
1268 "compression method.");
1269 goto unm_err_out;
1270 }
1271 }
1272 /*
1273 * The compressed/sparse flag set in an index root just means
1274 * to compress all files.
1275 */
1276 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1277 ntfs_error(vi->i_sb, "Found mst protected attribute "
1278 "but the attribute is %s. Please "
1279 "report you saw this message to "
1280 "linux-ntfs-dev@lists.sourceforge.net",
1281 NInoCompressed(ni) ? "compressed" :
1282 "sparse");
1283 goto unm_err_out;
1284 }
1285 if (a->flags & ATTR_IS_SPARSE)
1286 NInoSetSparse(ni);
1287 }
1288 if (a->flags & ATTR_IS_ENCRYPTED) {
1289 if (NInoCompressed(ni)) {
1290 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1291 "data.");
1292 goto unm_err_out;
1293 }
1294 /*
1295 * The encryption flag set in an index root just means to
1296 * encrypt all files.
1297 */
1298 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1299 ntfs_error(vi->i_sb, "Found mst protected attribute "
1300 "but the attribute is encrypted. "
1301 "Please report you saw this message "
1302 "to linux-ntfs-dev@lists.sourceforge."
1303 "net");
1304 goto unm_err_out;
1305 }
1306 if (ni->type != AT_DATA) {
1307 ntfs_error(vi->i_sb, "Found encrypted non-data "
1308 "attribute.");
1309 goto unm_err_out;
1310 }
1311 NInoSetEncrypted(ni);
1312 }
1313 if (!a->non_resident) {
1314 /* Ensure the attribute name is placed before the value. */
1315 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1316 le16_to_cpu(a->data.resident.value_offset)))) {
1317 ntfs_error(vol->sb, "Attribute name is placed after "
1318 "the attribute value.");
1319 goto unm_err_out;
1320 }
1321 if (NInoMstProtected(ni)) {
1322 ntfs_error(vi->i_sb, "Found mst protected attribute "
1323 "but the attribute is resident. "
1324 "Please report you saw this message to "
1325 "linux-ntfs-dev@lists.sourceforge.net");
1326 goto unm_err_out;
1327 }
1328 vi->i_size = ni->initialized_size = le32_to_cpu(
1329 a->data.resident.value_length);
1330 ni->allocated_size = le32_to_cpu(a->length) -
1331 le16_to_cpu(a->data.resident.value_offset);
1332 if (vi->i_size > ni->allocated_size) {
1333 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1334 "(size exceeds allocation).");
1335 goto unm_err_out;
1336 }
1337 } else {
1338 NInoSetNonResident(ni);
1339 /*
1340 * Ensure the attribute name is placed before the mapping pairs
1341 * array.
1342 */
1343 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1344 le16_to_cpu(
1345 a->data.non_resident.mapping_pairs_offset)))) {
1346 ntfs_error(vol->sb, "Attribute name is placed after "
1347 "the mapping pairs array.");
1348 goto unm_err_out;
1349 }
1350 if (NInoCompressed(ni) || NInoSparse(ni)) {
1351 if (NInoCompressed(ni) && a->data.non_resident.
1352 compression_unit != 4) {
1353 ntfs_error(vi->i_sb, "Found non-standard "
1354 "compression unit (%u instead "
1355 "of 4). Cannot handle this.",
1356 a->data.non_resident.
1357 compression_unit);
1358 err = -EOPNOTSUPP;
1359 goto unm_err_out;
1360 }
1361 if (a->data.non_resident.compression_unit) {
1362 ni->itype.compressed.block_size = 1U <<
1363 (a->data.non_resident.
1364 compression_unit +
1365 vol->cluster_size_bits);
1366 ni->itype.compressed.block_size_bits =
1367 ffs(ni->itype.compressed.
1368 block_size) - 1;
1369 ni->itype.compressed.block_clusters = 1U <<
1370 a->data.non_resident.
1371 compression_unit;
1372 } else {
1373 ni->itype.compressed.block_size = 0;
1374 ni->itype.compressed.block_size_bits = 0;
1375 ni->itype.compressed.block_clusters = 0;
1376 }
1377 ni->itype.compressed.size = sle64_to_cpu(
1378 a->data.non_resident.compressed_size);
1379 }
1380 if (a->data.non_resident.lowest_vcn) {
1381 ntfs_error(vi->i_sb, "First extent of attribute has "
1382 "non-zero lowest_vcn.");
1383 goto unm_err_out;
1384 }
1385 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1386 ni->initialized_size = sle64_to_cpu(
1387 a->data.non_resident.initialized_size);
1388 ni->allocated_size = sle64_to_cpu(
1389 a->data.non_resident.allocated_size);
1390 }
1391 vi->i_mapping->a_ops = &ntfs_normal_aops;
1392 if (NInoMstProtected(ni))
1393 vi->i_mapping->a_ops = &ntfs_mst_aops;
1394 else if (NInoCompressed(ni))
1395 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1396 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1397 vi->i_blocks = ni->itype.compressed.size >> 9;
1398 else
1399 vi->i_blocks = ni->allocated_size >> 9;
1400 /*
1401 * Make sure the base inode does not go away and attach it to the
1402 * attribute inode.
1403 */
1404 igrab(base_vi);
1405 ni->ext.base_ntfs_ino = base_ni;
1406 ni->nr_extents = -1;
1407
1408 ntfs_attr_put_search_ctx(ctx);
1409 unmap_mft_record(base_ni);
1410
1411 ntfs_debug("Done.");
1412 return 0;
1413
1414unm_err_out:
1415 if (!err)
1416 err = -EIO;
1417 if (ctx)
1418 ntfs_attr_put_search_ctx(ctx);
1419 unmap_mft_record(base_ni);
1420err_out:
1421 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1422 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1423 "Marking corrupt inode and base inode 0x%lx as bad. "
1424 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1425 base_vi->i_ino);
1426 make_bad_inode(vi);
1427 if (err != -ENOMEM)
1428 NVolSetErrors(vol);
1429 return err;
1430}
1431
1432/**
1433 * ntfs_read_locked_index_inode - read an index inode from its base inode
1434 * @base_vi: base inode
1435 * @vi: index inode to read
1436 *
1437 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1438 * index inode described by @vi into memory from the base mft record described
1439 * by @base_ni.
1440 *
1441 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1442 * reading and looks up the attributes relating to the index described by @vi
1443 * before setting up the necessary fields in @vi as well as initializing the
1444 * ntfs inode.
1445 *
1446 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1447 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1448 * are setup like directory inodes since directories are a special case of
1449 * indices ao they need to be treated in much the same way. Most importantly,
1450 * for small indices the index allocation attribute might not actually exist.
1451 * However, the index root attribute always exists but this does not need to
1452 * have an inode associated with it and this is why we define a new inode type
1453 * index. Also, like for directories, we need to have an attribute inode for
1454 * the bitmap attribute corresponding to the index allocation attribute and we
1455 * can store this in the appropriate field of the inode, just like we do for
1456 * normal directory inodes.
1457 *
1458 * Q: What locks are held when the function is called?
1459 * A: i_state has I_NEW set, hence the inode is locked, also
1460 * i_count is set to 1, so it is not going to go away
1461 *
1462 * Return 0 on success and -errno on error. In the error case, the inode will
1463 * have had make_bad_inode() executed on it.
1464 */
1465static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1466{
1467 loff_t bvi_size;
1468 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1469 ntfs_inode *ni, *base_ni, *bni;
1470 struct inode *bvi;
1471 MFT_RECORD *m;
1472 ATTR_RECORD *a;
1473 ntfs_attr_search_ctx *ctx;
1474 INDEX_ROOT *ir;
1475 u8 *ir_end, *index_end;
1476 int err = 0;
1477
1478 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1479 ntfs_init_big_inode(vi);
1480 ni = NTFS_I(vi);
1481 base_ni = NTFS_I(base_vi);
1482 /* Just mirror the values from the base inode. */
1483 vi->i_uid = base_vi->i_uid;
1484 vi->i_gid = base_vi->i_gid;
1485 set_nlink(vi, base_vi->i_nlink);
1486 vi->i_mtime = base_vi->i_mtime;
1487 vi->i_ctime = base_vi->i_ctime;
1488 vi->i_atime = base_vi->i_atime;
1489 vi->i_generation = ni->seq_no = base_ni->seq_no;
1490 /* Set inode type to zero but preserve permissions. */
1491 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1492 /* Map the mft record for the base inode. */
1493 m = map_mft_record(base_ni);
1494 if (IS_ERR(m)) {
1495 err = PTR_ERR(m);
1496 goto err_out;
1497 }
1498 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1499 if (!ctx) {
1500 err = -ENOMEM;
1501 goto unm_err_out;
1502 }
1503 /* Find the index root attribute. */
1504 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1505 CASE_SENSITIVE, 0, NULL, 0, ctx);
1506 if (unlikely(err)) {
1507 if (err == -ENOENT)
1508 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1509 "missing.");
1510 goto unm_err_out;
1511 }
1512 a = ctx->attr;
1513 /* Set up the state. */
1514 if (unlikely(a->non_resident)) {
1515 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1516 goto unm_err_out;
1517 }
1518 /* Ensure the attribute name is placed before the value. */
1519 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1520 le16_to_cpu(a->data.resident.value_offset)))) {
1521 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1522 "after the attribute value.");
1523 goto unm_err_out;
1524 }
1525 /*
1526 * Compressed/encrypted/sparse index root is not allowed, except for
1527 * directories of course but those are not dealt with here.
1528 */
1529 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1530 ATTR_IS_SPARSE)) {
1531 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1532 "root attribute.");
1533 goto unm_err_out;
1534 }
1535 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1536 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1537 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1538 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1539 goto unm_err_out;
1540 }
1541 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1542 if (index_end > ir_end) {
1543 ntfs_error(vi->i_sb, "Index is corrupt.");
1544 goto unm_err_out;
1545 }
1546 if (ir->type) {
1547 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1548 le32_to_cpu(ir->type));
1549 goto unm_err_out;
1550 }
1551 ni->itype.index.collation_rule = ir->collation_rule;
1552 ntfs_debug("Index collation rule is 0x%x.",
1553 le32_to_cpu(ir->collation_rule));
1554 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1555 if (!is_power_of_2(ni->itype.index.block_size)) {
1556 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1557 "two.", ni->itype.index.block_size);
1558 goto unm_err_out;
1559 }
1560 if (ni->itype.index.block_size > PAGE_SIZE) {
1561 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1562 "(%ld) is not supported. Sorry.",
1563 ni->itype.index.block_size, PAGE_SIZE);
1564 err = -EOPNOTSUPP;
1565 goto unm_err_out;
1566 }
1567 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1568 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1569 "(%i) is not supported. Sorry.",
1570 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1571 err = -EOPNOTSUPP;
1572 goto unm_err_out;
1573 }
1574 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1575 /* Determine the size of a vcn in the index. */
1576 if (vol->cluster_size <= ni->itype.index.block_size) {
1577 ni->itype.index.vcn_size = vol->cluster_size;
1578 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1579 } else {
1580 ni->itype.index.vcn_size = vol->sector_size;
1581 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1582 }
1583 /* Check for presence of index allocation attribute. */
1584 if (!(ir->index.flags & LARGE_INDEX)) {
1585 /* No index allocation. */
1586 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1587 /* We are done with the mft record, so we release it. */
1588 ntfs_attr_put_search_ctx(ctx);
1589 unmap_mft_record(base_ni);
1590 m = NULL;
1591 ctx = NULL;
1592 goto skip_large_index_stuff;
1593 } /* LARGE_INDEX: Index allocation present. Setup state. */
1594 NInoSetIndexAllocPresent(ni);
1595 /* Find index allocation attribute. */
1596 ntfs_attr_reinit_search_ctx(ctx);
1597 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1598 CASE_SENSITIVE, 0, NULL, 0, ctx);
1599 if (unlikely(err)) {
1600 if (err == -ENOENT)
1601 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1602 "not present but $INDEX_ROOT "
1603 "indicated it is.");
1604 else
1605 ntfs_error(vi->i_sb, "Failed to lookup "
1606 "$INDEX_ALLOCATION attribute.");
1607 goto unm_err_out;
1608 }
1609 a = ctx->attr;
1610 if (!a->non_resident) {
1611 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1612 "resident.");
1613 goto unm_err_out;
1614 }
1615 /*
1616 * Ensure the attribute name is placed before the mapping pairs array.
1617 */
1618 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1619 le16_to_cpu(
1620 a->data.non_resident.mapping_pairs_offset)))) {
1621 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1622 "placed after the mapping pairs array.");
1623 goto unm_err_out;
1624 }
1625 if (a->flags & ATTR_IS_ENCRYPTED) {
1626 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1627 "encrypted.");
1628 goto unm_err_out;
1629 }
1630 if (a->flags & ATTR_IS_SPARSE) {
1631 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1632 goto unm_err_out;
1633 }
1634 if (a->flags & ATTR_COMPRESSION_MASK) {
1635 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1636 "compressed.");
1637 goto unm_err_out;
1638 }
1639 if (a->data.non_resident.lowest_vcn) {
1640 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1641 "attribute has non zero lowest_vcn.");
1642 goto unm_err_out;
1643 }
1644 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1645 ni->initialized_size = sle64_to_cpu(
1646 a->data.non_resident.initialized_size);
1647 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1648 /*
1649 * We are done with the mft record, so we release it. Otherwise
1650 * we would deadlock in ntfs_attr_iget().
1651 */
1652 ntfs_attr_put_search_ctx(ctx);
1653 unmap_mft_record(base_ni);
1654 m = NULL;
1655 ctx = NULL;
1656 /* Get the index bitmap attribute inode. */
1657 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1658 if (IS_ERR(bvi)) {
1659 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1660 err = PTR_ERR(bvi);
1661 goto unm_err_out;
1662 }
1663 bni = NTFS_I(bvi);
1664 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1665 NInoSparse(bni)) {
1666 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1667 "encrypted and/or sparse.");
1668 goto iput_unm_err_out;
1669 }
1670 /* Consistency check bitmap size vs. index allocation size. */
1671 bvi_size = i_size_read(bvi);
1672 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1673 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1674 "index allocation (0x%llx).", bvi_size << 3,
1675 vi->i_size);
1676 goto iput_unm_err_out;
1677 }
1678 iput(bvi);
1679skip_large_index_stuff:
1680 /* Setup the operations for this index inode. */
1681 vi->i_mapping->a_ops = &ntfs_mst_aops;
1682 vi->i_blocks = ni->allocated_size >> 9;
1683 /*
1684 * Make sure the base inode doesn't go away and attach it to the
1685 * index inode.
1686 */
1687 igrab(base_vi);
1688 ni->ext.base_ntfs_ino = base_ni;
1689 ni->nr_extents = -1;
1690
1691 ntfs_debug("Done.");
1692 return 0;
1693iput_unm_err_out:
1694 iput(bvi);
1695unm_err_out:
1696 if (!err)
1697 err = -EIO;
1698 if (ctx)
1699 ntfs_attr_put_search_ctx(ctx);
1700 if (m)
1701 unmap_mft_record(base_ni);
1702err_out:
1703 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1704 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1705 ni->name_len);
1706 make_bad_inode(vi);
1707 if (err != -EOPNOTSUPP && err != -ENOMEM)
1708 NVolSetErrors(vol);
1709 return err;
1710}
1711
1712/*
1713 * The MFT inode has special locking, so teach the lock validator
1714 * about this by splitting off the locking rules of the MFT from
1715 * the locking rules of other inodes. The MFT inode can never be
1716 * accessed from the VFS side (or even internally), only by the
1717 * map_mft functions.
1718 */
1719static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1720
1721/**
1722 * ntfs_read_inode_mount - special read_inode for mount time use only
1723 * @vi: inode to read
1724 *
1725 * Read inode FILE_MFT at mount time, only called with super_block lock
1726 * held from within the read_super() code path.
1727 *
1728 * This function exists because when it is called the page cache for $MFT/$DATA
1729 * is not initialized and hence we cannot get at the contents of mft records
1730 * by calling map_mft_record*().
1731 *
1732 * Further it needs to cope with the circular references problem, i.e. cannot
1733 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1734 * we do not know where the other extent mft records are yet and again, because
1735 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1736 * attribute list is actually present in $MFT inode.
1737 *
1738 * We solve these problems by starting with the $DATA attribute before anything
1739 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1740 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1741 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1742 * sufficient information for the next step to complete.
1743 *
1744 * This should work but there are two possible pit falls (see inline comments
1745 * below), but only time will tell if they are real pits or just smoke...
1746 */
1747int ntfs_read_inode_mount(struct inode *vi)
1748{
1749 VCN next_vcn, last_vcn, highest_vcn;
1750 s64 block;
1751 struct super_block *sb = vi->i_sb;
1752 ntfs_volume *vol = NTFS_SB(sb);
1753 struct buffer_head *bh;
1754 ntfs_inode *ni;
1755 MFT_RECORD *m = NULL;
1756 ATTR_RECORD *a;
1757 ntfs_attr_search_ctx *ctx;
1758 unsigned int i, nr_blocks;
1759 int err;
1760
1761 ntfs_debug("Entering.");
1762
1763 /* Initialize the ntfs specific part of @vi. */
1764 ntfs_init_big_inode(vi);
1765
1766 ni = NTFS_I(vi);
1767
1768 /* Setup the data attribute. It is special as it is mst protected. */
1769 NInoSetNonResident(ni);
1770 NInoSetMstProtected(ni);
1771 NInoSetSparseDisabled(ni);
1772 ni->type = AT_DATA;
1773 ni->name = NULL;
1774 ni->name_len = 0;
1775 /*
1776 * This sets up our little cheat allowing us to reuse the async read io
1777 * completion handler for directories.
1778 */
1779 ni->itype.index.block_size = vol->mft_record_size;
1780 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1781
1782 /* Very important! Needed to be able to call map_mft_record*(). */
1783 vol->mft_ino = vi;
1784
1785 /* Allocate enough memory to read the first mft record. */
1786 if (vol->mft_record_size > 64 * 1024) {
1787 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1788 vol->mft_record_size);
1789 goto err_out;
1790 }
1791 i = vol->mft_record_size;
1792 if (i < sb->s_blocksize)
1793 i = sb->s_blocksize;
1794 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1795 if (!m) {
1796 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1797 goto err_out;
1798 }
1799
1800 /* Determine the first block of the $MFT/$DATA attribute. */
1801 block = vol->mft_lcn << vol->cluster_size_bits >>
1802 sb->s_blocksize_bits;
1803 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1804 if (!nr_blocks)
1805 nr_blocks = 1;
1806
1807 /* Load $MFT/$DATA's first mft record. */
1808 for (i = 0; i < nr_blocks; i++) {
1809 bh = sb_bread(sb, block++);
1810 if (!bh) {
1811 ntfs_error(sb, "Device read failed.");
1812 goto err_out;
1813 }
1814 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1815 sb->s_blocksize);
1816 brelse(bh);
1817 }
1818
1819 if (le32_to_cpu(m->bytes_allocated) != vol->mft_record_size) {
1820 ntfs_error(sb, "Incorrect mft record size %u in superblock, should be %u.",
1821 le32_to_cpu(m->bytes_allocated), vol->mft_record_size);
1822 goto err_out;
1823 }
1824
1825 /* Apply the mst fixups. */
1826 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1827 /* FIXME: Try to use the $MFTMirr now. */
1828 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1829 goto err_out;
1830 }
1831
1832 /* Need this to sanity check attribute list references to $MFT. */
1833 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1834
1835 /* Provides readpage() for map_mft_record(). */
1836 vi->i_mapping->a_ops = &ntfs_mst_aops;
1837
1838 ctx = ntfs_attr_get_search_ctx(ni, m);
1839 if (!ctx) {
1840 err = -ENOMEM;
1841 goto err_out;
1842 }
1843
1844 /* Find the attribute list attribute if present. */
1845 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1846 if (err) {
1847 if (unlikely(err != -ENOENT)) {
1848 ntfs_error(sb, "Failed to lookup attribute list "
1849 "attribute. You should run chkdsk.");
1850 goto put_err_out;
1851 }
1852 } else /* if (!err) */ {
1853 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1854 u8 *al_end;
1855 static const char *es = " Not allowed. $MFT is corrupt. "
1856 "You should run chkdsk.";
1857
1858 ntfs_debug("Attribute list attribute found in $MFT.");
1859 NInoSetAttrList(ni);
1860 a = ctx->attr;
1861 if (a->flags & ATTR_COMPRESSION_MASK) {
1862 ntfs_error(sb, "Attribute list attribute is "
1863 "compressed.%s", es);
1864 goto put_err_out;
1865 }
1866 if (a->flags & ATTR_IS_ENCRYPTED ||
1867 a->flags & ATTR_IS_SPARSE) {
1868 if (a->non_resident) {
1869 ntfs_error(sb, "Non-resident attribute list "
1870 "attribute is encrypted/"
1871 "sparse.%s", es);
1872 goto put_err_out;
1873 }
1874 ntfs_warning(sb, "Resident attribute list attribute "
1875 "in $MFT system file is marked "
1876 "encrypted/sparse which is not true. "
1877 "However, Windows allows this and "
1878 "chkdsk does not detect or correct it "
1879 "so we will just ignore the invalid "
1880 "flags and pretend they are not set.");
1881 }
1882 /* Now allocate memory for the attribute list. */
1883 ni->attr_list_size = (u32)ntfs_attr_size(a);
1884 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1885 if (!ni->attr_list) {
1886 ntfs_error(sb, "Not enough memory to allocate buffer "
1887 "for attribute list.");
1888 goto put_err_out;
1889 }
1890 if (a->non_resident) {
1891 NInoSetAttrListNonResident(ni);
1892 if (a->data.non_resident.lowest_vcn) {
1893 ntfs_error(sb, "Attribute list has non zero "
1894 "lowest_vcn. $MFT is corrupt. "
1895 "You should run chkdsk.");
1896 goto put_err_out;
1897 }
1898 /* Setup the runlist. */
1899 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1900 a, NULL);
1901 if (IS_ERR(ni->attr_list_rl.rl)) {
1902 err = PTR_ERR(ni->attr_list_rl.rl);
1903 ni->attr_list_rl.rl = NULL;
1904 ntfs_error(sb, "Mapping pairs decompression "
1905 "failed with error code %i.",
1906 -err);
1907 goto put_err_out;
1908 }
1909 /* Now load the attribute list. */
1910 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1911 ni->attr_list, ni->attr_list_size,
1912 sle64_to_cpu(a->data.
1913 non_resident.initialized_size)))) {
1914 ntfs_error(sb, "Failed to load attribute list "
1915 "attribute with error code %i.",
1916 -err);
1917 goto put_err_out;
1918 }
1919 } else /* if (!ctx.attr->non_resident) */ {
1920 if ((u8*)a + le16_to_cpu(
1921 a->data.resident.value_offset) +
1922 le32_to_cpu(
1923 a->data.resident.value_length) >
1924 (u8*)ctx->mrec + vol->mft_record_size) {
1925 ntfs_error(sb, "Corrupt attribute list "
1926 "attribute.");
1927 goto put_err_out;
1928 }
1929 /* Now copy the attribute list. */
1930 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1931 a->data.resident.value_offset),
1932 le32_to_cpu(
1933 a->data.resident.value_length));
1934 }
1935 /* The attribute list is now setup in memory. */
1936 /*
1937 * FIXME: I don't know if this case is actually possible.
1938 * According to logic it is not possible but I have seen too
1939 * many weird things in MS software to rely on logic... Thus we
1940 * perform a manual search and make sure the first $MFT/$DATA
1941 * extent is in the base inode. If it is not we abort with an
1942 * error and if we ever see a report of this error we will need
1943 * to do some magic in order to have the necessary mft record
1944 * loaded and in the right place in the page cache. But
1945 * hopefully logic will prevail and this never happens...
1946 */
1947 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1948 al_end = (u8*)al_entry + ni->attr_list_size;
1949 for (;; al_entry = next_al_entry) {
1950 /* Out of bounds check. */
1951 if ((u8*)al_entry < ni->attr_list ||
1952 (u8*)al_entry > al_end)
1953 goto em_put_err_out;
1954 /* Catch the end of the attribute list. */
1955 if ((u8*)al_entry == al_end)
1956 goto em_put_err_out;
1957 if (!al_entry->length)
1958 goto em_put_err_out;
1959 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1960 le16_to_cpu(al_entry->length) > al_end)
1961 goto em_put_err_out;
1962 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1963 le16_to_cpu(al_entry->length));
1964 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1965 goto em_put_err_out;
1966 if (AT_DATA != al_entry->type)
1967 continue;
1968 /* We want an unnamed attribute. */
1969 if (al_entry->name_length)
1970 goto em_put_err_out;
1971 /* Want the first entry, i.e. lowest_vcn == 0. */
1972 if (al_entry->lowest_vcn)
1973 goto em_put_err_out;
1974 /* First entry has to be in the base mft record. */
1975 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1976 /* MFT references do not match, logic fails. */
1977 ntfs_error(sb, "BUG: The first $DATA extent "
1978 "of $MFT is not in the base "
1979 "mft record. Please report "
1980 "you saw this message to "
1981 "linux-ntfs-dev@lists."
1982 "sourceforge.net");
1983 goto put_err_out;
1984 } else {
1985 /* Sequence numbers must match. */
1986 if (MSEQNO_LE(al_entry->mft_reference) !=
1987 ni->seq_no)
1988 goto em_put_err_out;
1989 /* Got it. All is ok. We can stop now. */
1990 break;
1991 }
1992 }
1993 }
1994
1995 ntfs_attr_reinit_search_ctx(ctx);
1996
1997 /* Now load all attribute extents. */
1998 a = NULL;
1999 next_vcn = last_vcn = highest_vcn = 0;
2000 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2001 ctx))) {
2002 runlist_element *nrl;
2003
2004 /* Cache the current attribute. */
2005 a = ctx->attr;
2006 /* $MFT must be non-resident. */
2007 if (!a->non_resident) {
2008 ntfs_error(sb, "$MFT must be non-resident but a "
2009 "resident extent was found. $MFT is "
2010 "corrupt. Run chkdsk.");
2011 goto put_err_out;
2012 }
2013 /* $MFT must be uncompressed and unencrypted. */
2014 if (a->flags & ATTR_COMPRESSION_MASK ||
2015 a->flags & ATTR_IS_ENCRYPTED ||
2016 a->flags & ATTR_IS_SPARSE) {
2017 ntfs_error(sb, "$MFT must be uncompressed, "
2018 "non-sparse, and unencrypted but a "
2019 "compressed/sparse/encrypted extent "
2020 "was found. $MFT is corrupt. Run "
2021 "chkdsk.");
2022 goto put_err_out;
2023 }
2024 /*
2025 * Decompress the mapping pairs array of this extent and merge
2026 * the result into the existing runlist. No need for locking
2027 * as we have exclusive access to the inode at this time and we
2028 * are a mount in progress task, too.
2029 */
2030 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2031 if (IS_ERR(nrl)) {
2032 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2033 "failed with error code %ld. $MFT is "
2034 "corrupt.", PTR_ERR(nrl));
2035 goto put_err_out;
2036 }
2037 ni->runlist.rl = nrl;
2038
2039 /* Are we in the first extent? */
2040 if (!next_vcn) {
2041 if (a->data.non_resident.lowest_vcn) {
2042 ntfs_error(sb, "First extent of $DATA "
2043 "attribute has non zero "
2044 "lowest_vcn. $MFT is corrupt. "
2045 "You should run chkdsk.");
2046 goto put_err_out;
2047 }
2048 /* Get the last vcn in the $DATA attribute. */
2049 last_vcn = sle64_to_cpu(
2050 a->data.non_resident.allocated_size)
2051 >> vol->cluster_size_bits;
2052 /* Fill in the inode size. */
2053 vi->i_size = sle64_to_cpu(
2054 a->data.non_resident.data_size);
2055 ni->initialized_size = sle64_to_cpu(
2056 a->data.non_resident.initialized_size);
2057 ni->allocated_size = sle64_to_cpu(
2058 a->data.non_resident.allocated_size);
2059 /*
2060 * Verify the number of mft records does not exceed
2061 * 2^32 - 1.
2062 */
2063 if ((vi->i_size >> vol->mft_record_size_bits) >=
2064 (1ULL << 32)) {
2065 ntfs_error(sb, "$MFT is too big! Aborting.");
2066 goto put_err_out;
2067 }
2068 /*
2069 * We have got the first extent of the runlist for
2070 * $MFT which means it is now relatively safe to call
2071 * the normal ntfs_read_inode() function.
2072 * Complete reading the inode, this will actually
2073 * re-read the mft record for $MFT, this time entering
2074 * it into the page cache with which we complete the
2075 * kick start of the volume. It should be safe to do
2076 * this now as the first extent of $MFT/$DATA is
2077 * already known and we would hope that we don't need
2078 * further extents in order to find the other
2079 * attributes belonging to $MFT. Only time will tell if
2080 * this is really the case. If not we will have to play
2081 * magic at this point, possibly duplicating a lot of
2082 * ntfs_read_inode() at this point. We will need to
2083 * ensure we do enough of its work to be able to call
2084 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2085 * hope this never happens...
2086 */
2087 ntfs_read_locked_inode(vi);
2088 if (is_bad_inode(vi)) {
2089 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2090 "failed. BUG or corrupt $MFT. "
2091 "Run chkdsk and if no errors "
2092 "are found, please report you "
2093 "saw this message to "
2094 "linux-ntfs-dev@lists."
2095 "sourceforge.net");
2096 ntfs_attr_put_search_ctx(ctx);
2097 /* Revert to the safe super operations. */
2098 ntfs_free(m);
2099 return -1;
2100 }
2101 /*
2102 * Re-initialize some specifics about $MFT's inode as
2103 * ntfs_read_inode() will have set up the default ones.
2104 */
2105 /* Set uid and gid to root. */
2106 vi->i_uid = GLOBAL_ROOT_UID;
2107 vi->i_gid = GLOBAL_ROOT_GID;
2108 /* Regular file. No access for anyone. */
2109 vi->i_mode = S_IFREG;
2110 /* No VFS initiated operations allowed for $MFT. */
2111 vi->i_op = &ntfs_empty_inode_ops;
2112 vi->i_fop = &ntfs_empty_file_ops;
2113 }
2114
2115 /* Get the lowest vcn for the next extent. */
2116 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2117 next_vcn = highest_vcn + 1;
2118
2119 /* Only one extent or error, which we catch below. */
2120 if (next_vcn <= 0)
2121 break;
2122
2123 /* Avoid endless loops due to corruption. */
2124 if (next_vcn < sle64_to_cpu(
2125 a->data.non_resident.lowest_vcn)) {
2126 ntfs_error(sb, "$MFT has corrupt attribute list "
2127 "attribute. Run chkdsk.");
2128 goto put_err_out;
2129 }
2130 }
2131 if (err != -ENOENT) {
2132 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2133 "$MFT is corrupt. Run chkdsk.");
2134 goto put_err_out;
2135 }
2136 if (!a) {
2137 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2138 "corrupt. Run chkdsk.");
2139 goto put_err_out;
2140 }
2141 if (highest_vcn && highest_vcn != last_vcn - 1) {
2142 ntfs_error(sb, "Failed to load the complete runlist for "
2143 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2144 "Run chkdsk.");
2145 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2146 (unsigned long long)highest_vcn,
2147 (unsigned long long)last_vcn - 1);
2148 goto put_err_out;
2149 }
2150 ntfs_attr_put_search_ctx(ctx);
2151 ntfs_debug("Done.");
2152 ntfs_free(m);
2153
2154 /*
2155 * Split the locking rules of the MFT inode from the
2156 * locking rules of other inodes:
2157 */
2158 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2159 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2160
2161 return 0;
2162
2163em_put_err_out:
2164 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2165 "attribute list. $MFT is corrupt. Run chkdsk.");
2166put_err_out:
2167 ntfs_attr_put_search_ctx(ctx);
2168err_out:
2169 ntfs_error(sb, "Failed. Marking inode as bad.");
2170 make_bad_inode(vi);
2171 ntfs_free(m);
2172 return -1;
2173}
2174
2175static void __ntfs_clear_inode(ntfs_inode *ni)
2176{
2177 /* Free all alocated memory. */
2178 down_write(&ni->runlist.lock);
2179 if (ni->runlist.rl) {
2180 ntfs_free(ni->runlist.rl);
2181 ni->runlist.rl = NULL;
2182 }
2183 up_write(&ni->runlist.lock);
2184
2185 if (ni->attr_list) {
2186 ntfs_free(ni->attr_list);
2187 ni->attr_list = NULL;
2188 }
2189
2190 down_write(&ni->attr_list_rl.lock);
2191 if (ni->attr_list_rl.rl) {
2192 ntfs_free(ni->attr_list_rl.rl);
2193 ni->attr_list_rl.rl = NULL;
2194 }
2195 up_write(&ni->attr_list_rl.lock);
2196
2197 if (ni->name_len && ni->name != I30) {
2198 /* Catch bugs... */
2199 BUG_ON(!ni->name);
2200 kfree(ni->name);
2201 }
2202}
2203
2204void ntfs_clear_extent_inode(ntfs_inode *ni)
2205{
2206 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2207
2208 BUG_ON(NInoAttr(ni));
2209 BUG_ON(ni->nr_extents != -1);
2210
2211#ifdef NTFS_RW
2212 if (NInoDirty(ni)) {
2213 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2214 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2215 "Losing data! This is a BUG!!!");
2216 // FIXME: Do something!!!
2217 }
2218#endif /* NTFS_RW */
2219
2220 __ntfs_clear_inode(ni);
2221
2222 /* Bye, bye... */
2223 ntfs_destroy_extent_inode(ni);
2224}
2225
2226/**
2227 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2228 * @vi: vfs inode pending annihilation
2229 *
2230 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2231 * is called, which deallocates all memory belonging to the NTFS specific part
2232 * of the inode and returns.
2233 *
2234 * If the MFT record is dirty, we commit it before doing anything else.
2235 */
2236void ntfs_evict_big_inode(struct inode *vi)
2237{
2238 ntfs_inode *ni = NTFS_I(vi);
2239
2240 truncate_inode_pages_final(&vi->i_data);
2241 clear_inode(vi);
2242
2243#ifdef NTFS_RW
2244 if (NInoDirty(ni)) {
2245 bool was_bad = (is_bad_inode(vi));
2246
2247 /* Committing the inode also commits all extent inodes. */
2248 ntfs_commit_inode(vi);
2249
2250 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2251 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2252 "0x%lx. Losing data!", vi->i_ino);
2253 // FIXME: Do something!!!
2254 }
2255 }
2256#endif /* NTFS_RW */
2257
2258 /* No need to lock at this stage as no one else has a reference. */
2259 if (ni->nr_extents > 0) {
2260 int i;
2261
2262 for (i = 0; i < ni->nr_extents; i++)
2263 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2264 kfree(ni->ext.extent_ntfs_inos);
2265 }
2266
2267 __ntfs_clear_inode(ni);
2268
2269 if (NInoAttr(ni)) {
2270 /* Release the base inode if we are holding it. */
2271 if (ni->nr_extents == -1) {
2272 iput(VFS_I(ni->ext.base_ntfs_ino));
2273 ni->nr_extents = 0;
2274 ni->ext.base_ntfs_ino = NULL;
2275 }
2276 }
2277 BUG_ON(ni->page);
2278 if (!atomic_dec_and_test(&ni->count))
2279 BUG();
2280 return;
2281}
2282
2283/**
2284 * ntfs_show_options - show mount options in /proc/mounts
2285 * @sf: seq_file in which to write our mount options
2286 * @root: root of the mounted tree whose mount options to display
2287 *
2288 * Called by the VFS once for each mounted ntfs volume when someone reads
2289 * /proc/mounts in order to display the NTFS specific mount options of each
2290 * mount. The mount options of fs specified by @root are written to the seq file
2291 * @sf and success is returned.
2292 */
2293int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2294{
2295 ntfs_volume *vol = NTFS_SB(root->d_sb);
2296 int i;
2297
2298 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2299 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2300 if (vol->fmask == vol->dmask)
2301 seq_printf(sf, ",umask=0%o", vol->fmask);
2302 else {
2303 seq_printf(sf, ",fmask=0%o", vol->fmask);
2304 seq_printf(sf, ",dmask=0%o", vol->dmask);
2305 }
2306 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2307 if (NVolCaseSensitive(vol))
2308 seq_printf(sf, ",case_sensitive");
2309 if (NVolShowSystemFiles(vol))
2310 seq_printf(sf, ",show_sys_files");
2311 if (!NVolSparseEnabled(vol))
2312 seq_printf(sf, ",disable_sparse");
2313 for (i = 0; on_errors_arr[i].val; i++) {
2314 if (on_errors_arr[i].val & vol->on_errors)
2315 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2316 }
2317 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2318 return 0;
2319}
2320
2321#ifdef NTFS_RW
2322
2323static const char *es = " Leaving inconsistent metadata. Unmount and run "
2324 "chkdsk.";
2325
2326/**
2327 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2328 * @vi: inode for which the i_size was changed
2329 *
2330 * We only support i_size changes for normal files at present, i.e. not
2331 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2332 * below.
2333 *
2334 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2335 * that the change is allowed.
2336 *
2337 * This implies for us that @vi is a file inode rather than a directory, index,
2338 * or attribute inode as well as that @vi is a base inode.
2339 *
2340 * Returns 0 on success or -errno on error.
2341 *
2342 * Called with ->i_mutex held.
2343 */
2344int ntfs_truncate(struct inode *vi)
2345{
2346 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2347 VCN highest_vcn;
2348 unsigned long flags;
2349 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2350 ntfs_volume *vol = ni->vol;
2351 ntfs_attr_search_ctx *ctx;
2352 MFT_RECORD *m;
2353 ATTR_RECORD *a;
2354 const char *te = " Leaving file length out of sync with i_size.";
2355 int err, mp_size, size_change, alloc_change;
2356
2357 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2358 BUG_ON(NInoAttr(ni));
2359 BUG_ON(S_ISDIR(vi->i_mode));
2360 BUG_ON(NInoMstProtected(ni));
2361 BUG_ON(ni->nr_extents < 0);
2362retry_truncate:
2363 /*
2364 * Lock the runlist for writing and map the mft record to ensure it is
2365 * safe to mess with the attribute runlist and sizes.
2366 */
2367 down_write(&ni->runlist.lock);
2368 if (!NInoAttr(ni))
2369 base_ni = ni;
2370 else
2371 base_ni = ni->ext.base_ntfs_ino;
2372 m = map_mft_record(base_ni);
2373 if (IS_ERR(m)) {
2374 err = PTR_ERR(m);
2375 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2376 "(error code %d).%s", vi->i_ino, err, te);
2377 ctx = NULL;
2378 m = NULL;
2379 goto old_bad_out;
2380 }
2381 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2382 if (unlikely(!ctx)) {
2383 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2384 "inode 0x%lx (not enough memory).%s",
2385 vi->i_ino, te);
2386 err = -ENOMEM;
2387 goto old_bad_out;
2388 }
2389 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2390 CASE_SENSITIVE, 0, NULL, 0, ctx);
2391 if (unlikely(err)) {
2392 if (err == -ENOENT) {
2393 ntfs_error(vi->i_sb, "Open attribute is missing from "
2394 "mft record. Inode 0x%lx is corrupt. "
2395 "Run chkdsk.%s", vi->i_ino, te);
2396 err = -EIO;
2397 } else
2398 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2399 "inode 0x%lx (error code %d).%s",
2400 vi->i_ino, err, te);
2401 goto old_bad_out;
2402 }
2403 m = ctx->mrec;
2404 a = ctx->attr;
2405 /*
2406 * The i_size of the vfs inode is the new size for the attribute value.
2407 */
2408 new_size = i_size_read(vi);
2409 /* The current size of the attribute value is the old size. */
2410 old_size = ntfs_attr_size(a);
2411 /* Calculate the new allocated size. */
2412 if (NInoNonResident(ni))
2413 new_alloc_size = (new_size + vol->cluster_size - 1) &
2414 ~(s64)vol->cluster_size_mask;
2415 else
2416 new_alloc_size = (new_size + 7) & ~7;
2417 /* The current allocated size is the old allocated size. */
2418 read_lock_irqsave(&ni->size_lock, flags);
2419 old_alloc_size = ni->allocated_size;
2420 read_unlock_irqrestore(&ni->size_lock, flags);
2421 /*
2422 * The change in the file size. This will be 0 if no change, >0 if the
2423 * size is growing, and <0 if the size is shrinking.
2424 */
2425 size_change = -1;
2426 if (new_size - old_size >= 0) {
2427 size_change = 1;
2428 if (new_size == old_size)
2429 size_change = 0;
2430 }
2431 /* As above for the allocated size. */
2432 alloc_change = -1;
2433 if (new_alloc_size - old_alloc_size >= 0) {
2434 alloc_change = 1;
2435 if (new_alloc_size == old_alloc_size)
2436 alloc_change = 0;
2437 }
2438 /*
2439 * If neither the size nor the allocation are being changed there is
2440 * nothing to do.
2441 */
2442 if (!size_change && !alloc_change)
2443 goto unm_done;
2444 /* If the size is changing, check if new size is allowed in $AttrDef. */
2445 if (size_change) {
2446 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2447 if (unlikely(err)) {
2448 if (err == -ERANGE) {
2449 ntfs_error(vol->sb, "Truncate would cause the "
2450 "inode 0x%lx to %simum size "
2451 "for its attribute type "
2452 "(0x%x). Aborting truncate.",
2453 vi->i_ino,
2454 new_size > old_size ? "exceed "
2455 "the max" : "go under the min",
2456 le32_to_cpu(ni->type));
2457 err = -EFBIG;
2458 } else {
2459 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2460 "attribute type 0x%x. "
2461 "Aborting truncate.",
2462 vi->i_ino,
2463 le32_to_cpu(ni->type));
2464 err = -EIO;
2465 }
2466 /* Reset the vfs inode size to the old size. */
2467 i_size_write(vi, old_size);
2468 goto err_out;
2469 }
2470 }
2471 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2472 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2473 "supported yet for %s files, ignoring.",
2474 NInoCompressed(ni) ? "compressed" :
2475 "encrypted");
2476 err = -EOPNOTSUPP;
2477 goto bad_out;
2478 }
2479 if (a->non_resident)
2480 goto do_non_resident_truncate;
2481 BUG_ON(NInoNonResident(ni));
2482 /* Resize the attribute record to best fit the new attribute size. */
2483 if (new_size < vol->mft_record_size &&
2484 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2485 /* The resize succeeded! */
2486 flush_dcache_mft_record_page(ctx->ntfs_ino);
2487 mark_mft_record_dirty(ctx->ntfs_ino);
2488 write_lock_irqsave(&ni->size_lock, flags);
2489 /* Update the sizes in the ntfs inode and all is done. */
2490 ni->allocated_size = le32_to_cpu(a->length) -
2491 le16_to_cpu(a->data.resident.value_offset);
2492 /*
2493 * Note ntfs_resident_attr_value_resize() has already done any
2494 * necessary data clearing in the attribute record. When the
2495 * file is being shrunk vmtruncate() will already have cleared
2496 * the top part of the last partial page, i.e. since this is
2497 * the resident case this is the page with index 0. However,
2498 * when the file is being expanded, the page cache page data
2499 * between the old data_size, i.e. old_size, and the new_size
2500 * has not been zeroed. Fortunately, we do not need to zero it
2501 * either since on one hand it will either already be zero due
2502 * to both readpage and writepage clearing partial page data
2503 * beyond i_size in which case there is nothing to do or in the
2504 * case of the file being mmap()ped at the same time, POSIX
2505 * specifies that the behaviour is unspecified thus we do not
2506 * have to do anything. This means that in our implementation
2507 * in the rare case that the file is mmap()ped and a write
2508 * occurred into the mmap()ped region just beyond the file size
2509 * and writepage has not yet been called to write out the page
2510 * (which would clear the area beyond the file size) and we now
2511 * extend the file size to incorporate this dirty region
2512 * outside the file size, a write of the page would result in
2513 * this data being written to disk instead of being cleared.
2514 * Given both POSIX and the Linux mmap(2) man page specify that
2515 * this corner case is undefined, we choose to leave it like
2516 * that as this is much simpler for us as we cannot lock the
2517 * relevant page now since we are holding too many ntfs locks
2518 * which would result in a lock reversal deadlock.
2519 */
2520 ni->initialized_size = new_size;
2521 write_unlock_irqrestore(&ni->size_lock, flags);
2522 goto unm_done;
2523 }
2524 /* If the above resize failed, this must be an attribute extension. */
2525 BUG_ON(size_change < 0);
2526 /*
2527 * We have to drop all the locks so we can call
2528 * ntfs_attr_make_non_resident(). This could be optimised by try-
2529 * locking the first page cache page and only if that fails dropping
2530 * the locks, locking the page, and redoing all the locking and
2531 * lookups. While this would be a huge optimisation, it is not worth
2532 * it as this is definitely a slow code path as it only ever can happen
2533 * once for any given file.
2534 */
2535 ntfs_attr_put_search_ctx(ctx);
2536 unmap_mft_record(base_ni);
2537 up_write(&ni->runlist.lock);
2538 /*
2539 * Not enough space in the mft record, try to make the attribute
2540 * non-resident and if successful restart the truncation process.
2541 */
2542 err = ntfs_attr_make_non_resident(ni, old_size);
2543 if (likely(!err))
2544 goto retry_truncate;
2545 /*
2546 * Could not make non-resident. If this is due to this not being
2547 * permitted for this attribute type or there not being enough space,
2548 * try to make other attributes non-resident. Otherwise fail.
2549 */
2550 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2551 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2552 "type 0x%x, because the conversion from "
2553 "resident to non-resident attribute failed "
2554 "with error code %i.", vi->i_ino,
2555 (unsigned)le32_to_cpu(ni->type), err);
2556 if (err != -ENOMEM)
2557 err = -EIO;
2558 goto conv_err_out;
2559 }
2560 /* TODO: Not implemented from here, abort. */
2561 if (err == -ENOSPC)
2562 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2563 "disk for the non-resident attribute value. "
2564 "This case is not implemented yet.");
2565 else /* if (err == -EPERM) */
2566 ntfs_error(vol->sb, "This attribute type may not be "
2567 "non-resident. This case is not implemented "
2568 "yet.");
2569 err = -EOPNOTSUPP;
2570 goto conv_err_out;
2571#if 0
2572 // TODO: Attempt to make other attributes non-resident.
2573 if (!err)
2574 goto do_resident_extend;
2575 /*
2576 * Both the attribute list attribute and the standard information
2577 * attribute must remain in the base inode. Thus, if this is one of
2578 * these attributes, we have to try to move other attributes out into
2579 * extent mft records instead.
2580 */
2581 if (ni->type == AT_ATTRIBUTE_LIST ||
2582 ni->type == AT_STANDARD_INFORMATION) {
2583 // TODO: Attempt to move other attributes into extent mft
2584 // records.
2585 err = -EOPNOTSUPP;
2586 if (!err)
2587 goto do_resident_extend;
2588 goto err_out;
2589 }
2590 // TODO: Attempt to move this attribute to an extent mft record, but
2591 // only if it is not already the only attribute in an mft record in
2592 // which case there would be nothing to gain.
2593 err = -EOPNOTSUPP;
2594 if (!err)
2595 goto do_resident_extend;
2596 /* There is nothing we can do to make enough space. )-: */
2597 goto err_out;
2598#endif
2599do_non_resident_truncate:
2600 BUG_ON(!NInoNonResident(ni));
2601 if (alloc_change < 0) {
2602 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2603 if (highest_vcn > 0 &&
2604 old_alloc_size >> vol->cluster_size_bits >
2605 highest_vcn + 1) {
2606 /*
2607 * This attribute has multiple extents. Not yet
2608 * supported.
2609 */
2610 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2611 "attribute type 0x%x, because the "
2612 "attribute is highly fragmented (it "
2613 "consists of multiple extents) and "
2614 "this case is not implemented yet.",
2615 vi->i_ino,
2616 (unsigned)le32_to_cpu(ni->type));
2617 err = -EOPNOTSUPP;
2618 goto bad_out;
2619 }
2620 }
2621 /*
2622 * If the size is shrinking, need to reduce the initialized_size and
2623 * the data_size before reducing the allocation.
2624 */
2625 if (size_change < 0) {
2626 /*
2627 * Make the valid size smaller (i_size is already up-to-date).
2628 */
2629 write_lock_irqsave(&ni->size_lock, flags);
2630 if (new_size < ni->initialized_size) {
2631 ni->initialized_size = new_size;
2632 a->data.non_resident.initialized_size =
2633 cpu_to_sle64(new_size);
2634 }
2635 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2636 write_unlock_irqrestore(&ni->size_lock, flags);
2637 flush_dcache_mft_record_page(ctx->ntfs_ino);
2638 mark_mft_record_dirty(ctx->ntfs_ino);
2639 /* If the allocated size is not changing, we are done. */
2640 if (!alloc_change)
2641 goto unm_done;
2642 /*
2643 * If the size is shrinking it makes no sense for the
2644 * allocation to be growing.
2645 */
2646 BUG_ON(alloc_change > 0);
2647 } else /* if (size_change >= 0) */ {
2648 /*
2649 * The file size is growing or staying the same but the
2650 * allocation can be shrinking, growing or staying the same.
2651 */
2652 if (alloc_change > 0) {
2653 /*
2654 * We need to extend the allocation and possibly update
2655 * the data size. If we are updating the data size,
2656 * since we are not touching the initialized_size we do
2657 * not need to worry about the actual data on disk.
2658 * And as far as the page cache is concerned, there
2659 * will be no pages beyond the old data size and any
2660 * partial region in the last page between the old and
2661 * new data size (or the end of the page if the new
2662 * data size is outside the page) does not need to be
2663 * modified as explained above for the resident
2664 * attribute truncate case. To do this, we simply drop
2665 * the locks we hold and leave all the work to our
2666 * friendly helper ntfs_attr_extend_allocation().
2667 */
2668 ntfs_attr_put_search_ctx(ctx);
2669 unmap_mft_record(base_ni);
2670 up_write(&ni->runlist.lock);
2671 err = ntfs_attr_extend_allocation(ni, new_size,
2672 size_change > 0 ? new_size : -1, -1);
2673 /*
2674 * ntfs_attr_extend_allocation() will have done error
2675 * output already.
2676 */
2677 goto done;
2678 }
2679 if (!alloc_change)
2680 goto alloc_done;
2681 }
2682 /* alloc_change < 0 */
2683 /* Free the clusters. */
2684 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2685 vol->cluster_size_bits, -1, ctx);
2686 m = ctx->mrec;
2687 a = ctx->attr;
2688 if (unlikely(nr_freed < 0)) {
2689 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2690 "%lli). Unmount and run chkdsk to recover "
2691 "the lost cluster(s).", (long long)nr_freed);
2692 NVolSetErrors(vol);
2693 nr_freed = 0;
2694 }
2695 /* Truncate the runlist. */
2696 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2697 new_alloc_size >> vol->cluster_size_bits);
2698 /*
2699 * If the runlist truncation failed and/or the search context is no
2700 * longer valid, we cannot resize the attribute record or build the
2701 * mapping pairs array thus we mark the inode bad so that no access to
2702 * the freed clusters can happen.
2703 */
2704 if (unlikely(err || IS_ERR(m))) {
2705 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2706 IS_ERR(m) ?
2707 "restore attribute search context" :
2708 "truncate attribute runlist",
2709 IS_ERR(m) ? PTR_ERR(m) : err, es);
2710 err = -EIO;
2711 goto bad_out;
2712 }
2713 /* Get the size for the shrunk mapping pairs array for the runlist. */
2714 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2715 if (unlikely(mp_size <= 0)) {
2716 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2717 "attribute type 0x%x, because determining the "
2718 "size for the mapping pairs failed with error "
2719 "code %i.%s", vi->i_ino,
2720 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2721 err = -EIO;
2722 goto bad_out;
2723 }
2724 /*
2725 * Shrink the attribute record for the new mapping pairs array. Note,
2726 * this cannot fail since we are making the attribute smaller thus by
2727 * definition there is enough space to do so.
2728 */
2729 err = ntfs_attr_record_resize(m, a, mp_size +
2730 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2731 BUG_ON(err);
2732 /*
2733 * Generate the mapping pairs array directly into the attribute record.
2734 */
2735 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2736 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2737 mp_size, ni->runlist.rl, 0, -1, NULL);
2738 if (unlikely(err)) {
2739 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2740 "attribute type 0x%x, because building the "
2741 "mapping pairs failed with error code %i.%s",
2742 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2743 err, es);
2744 err = -EIO;
2745 goto bad_out;
2746 }
2747 /* Update the allocated/compressed size as well as the highest vcn. */
2748 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2749 vol->cluster_size_bits) - 1);
2750 write_lock_irqsave(&ni->size_lock, flags);
2751 ni->allocated_size = new_alloc_size;
2752 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2753 if (NInoSparse(ni) || NInoCompressed(ni)) {
2754 if (nr_freed) {
2755 ni->itype.compressed.size -= nr_freed <<
2756 vol->cluster_size_bits;
2757 BUG_ON(ni->itype.compressed.size < 0);
2758 a->data.non_resident.compressed_size = cpu_to_sle64(
2759 ni->itype.compressed.size);
2760 vi->i_blocks = ni->itype.compressed.size >> 9;
2761 }
2762 } else
2763 vi->i_blocks = new_alloc_size >> 9;
2764 write_unlock_irqrestore(&ni->size_lock, flags);
2765 /*
2766 * We have shrunk the allocation. If this is a shrinking truncate we
2767 * have already dealt with the initialized_size and the data_size above
2768 * and we are done. If the truncate is only changing the allocation
2769 * and not the data_size, we are also done. If this is an extending
2770 * truncate, need to extend the data_size now which is ensured by the
2771 * fact that @size_change is positive.
2772 */
2773alloc_done:
2774 /*
2775 * If the size is growing, need to update it now. If it is shrinking,
2776 * we have already updated it above (before the allocation change).
2777 */
2778 if (size_change > 0)
2779 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2780 /* Ensure the modified mft record is written out. */
2781 flush_dcache_mft_record_page(ctx->ntfs_ino);
2782 mark_mft_record_dirty(ctx->ntfs_ino);
2783unm_done:
2784 ntfs_attr_put_search_ctx(ctx);
2785 unmap_mft_record(base_ni);
2786 up_write(&ni->runlist.lock);
2787done:
2788 /* Update the mtime and ctime on the base inode. */
2789 /* normally ->truncate shouldn't update ctime or mtime,
2790 * but ntfs did before so it got a copy & paste version
2791 * of file_update_time. one day someone should fix this
2792 * for real.
2793 */
2794 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2795 struct timespec64 now = current_time(VFS_I(base_ni));
2796 int sync_it = 0;
2797
2798 if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2799 !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now))
2800 sync_it = 1;
2801 VFS_I(base_ni)->i_mtime = now;
2802 VFS_I(base_ni)->i_ctime = now;
2803
2804 if (sync_it)
2805 mark_inode_dirty_sync(VFS_I(base_ni));
2806 }
2807
2808 if (likely(!err)) {
2809 NInoClearTruncateFailed(ni);
2810 ntfs_debug("Done.");
2811 }
2812 return err;
2813old_bad_out:
2814 old_size = -1;
2815bad_out:
2816 if (err != -ENOMEM && err != -EOPNOTSUPP)
2817 NVolSetErrors(vol);
2818 if (err != -EOPNOTSUPP)
2819 NInoSetTruncateFailed(ni);
2820 else if (old_size >= 0)
2821 i_size_write(vi, old_size);
2822err_out:
2823 if (ctx)
2824 ntfs_attr_put_search_ctx(ctx);
2825 if (m)
2826 unmap_mft_record(base_ni);
2827 up_write(&ni->runlist.lock);
2828out:
2829 ntfs_debug("Failed. Returning error code %i.", err);
2830 return err;
2831conv_err_out:
2832 if (err != -ENOMEM && err != -EOPNOTSUPP)
2833 NVolSetErrors(vol);
2834 if (err != -EOPNOTSUPP)
2835 NInoSetTruncateFailed(ni);
2836 else
2837 i_size_write(vi, old_size);
2838 goto out;
2839}
2840
2841/**
2842 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2843 * @vi: inode for which the i_size was changed
2844 *
2845 * Wrapper for ntfs_truncate() that has no return value.
2846 *
2847 * See ntfs_truncate() description above for details.
2848 */
2849#ifdef NTFS_RW
2850void ntfs_truncate_vfs(struct inode *vi) {
2851 ntfs_truncate(vi);
2852}
2853#endif
2854
2855/**
2856 * ntfs_setattr - called from notify_change() when an attribute is being changed
2857 * @mnt_userns: user namespace of the mount the inode was found from
2858 * @dentry: dentry whose attributes to change
2859 * @attr: structure describing the attributes and the changes
2860 *
2861 * We have to trap VFS attempts to truncate the file described by @dentry as
2862 * soon as possible, because we do not implement changes in i_size yet. So we
2863 * abort all i_size changes here.
2864 *
2865 * We also abort all changes of user, group, and mode as we do not implement
2866 * the NTFS ACLs yet.
2867 *
2868 * Called with ->i_mutex held.
2869 */
2870int ntfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
2871 struct iattr *attr)
2872{
2873 struct inode *vi = d_inode(dentry);
2874 int err;
2875 unsigned int ia_valid = attr->ia_valid;
2876
2877 err = setattr_prepare(&init_user_ns, dentry, attr);
2878 if (err)
2879 goto out;
2880 /* We do not support NTFS ACLs yet. */
2881 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2882 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2883 "supported yet, ignoring.");
2884 err = -EOPNOTSUPP;
2885 goto out;
2886 }
2887 if (ia_valid & ATTR_SIZE) {
2888 if (attr->ia_size != i_size_read(vi)) {
2889 ntfs_inode *ni = NTFS_I(vi);
2890 /*
2891 * FIXME: For now we do not support resizing of
2892 * compressed or encrypted files yet.
2893 */
2894 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2895 ntfs_warning(vi->i_sb, "Changes in inode size "
2896 "are not supported yet for "
2897 "%s files, ignoring.",
2898 NInoCompressed(ni) ?
2899 "compressed" : "encrypted");
2900 err = -EOPNOTSUPP;
2901 } else {
2902 truncate_setsize(vi, attr->ia_size);
2903 ntfs_truncate_vfs(vi);
2904 }
2905 if (err || ia_valid == ATTR_SIZE)
2906 goto out;
2907 } else {
2908 /*
2909 * We skipped the truncate but must still update
2910 * timestamps.
2911 */
2912 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2913 }
2914 }
2915 if (ia_valid & ATTR_ATIME)
2916 vi->i_atime = attr->ia_atime;
2917 if (ia_valid & ATTR_MTIME)
2918 vi->i_mtime = attr->ia_mtime;
2919 if (ia_valid & ATTR_CTIME)
2920 vi->i_ctime = attr->ia_ctime;
2921 mark_inode_dirty(vi);
2922out:
2923 return err;
2924}
2925
2926/**
2927 * ntfs_write_inode - write out a dirty inode
2928 * @vi: inode to write out
2929 * @sync: if true, write out synchronously
2930 *
2931 * Write out a dirty inode to disk including any extent inodes if present.
2932 *
2933 * If @sync is true, commit the inode to disk and wait for io completion. This
2934 * is done using write_mft_record().
2935 *
2936 * If @sync is false, just schedule the write to happen but do not wait for i/o
2937 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2938 * marking the page (and in this case mft record) dirty but we do not implement
2939 * this yet as write_mft_record() largely ignores the @sync parameter and
2940 * always performs synchronous writes.
2941 *
2942 * Return 0 on success and -errno on error.
2943 */
2944int __ntfs_write_inode(struct inode *vi, int sync)
2945{
2946 sle64 nt;
2947 ntfs_inode *ni = NTFS_I(vi);
2948 ntfs_attr_search_ctx *ctx;
2949 MFT_RECORD *m;
2950 STANDARD_INFORMATION *si;
2951 int err = 0;
2952 bool modified = false;
2953
2954 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2955 vi->i_ino);
2956 /*
2957 * Dirty attribute inodes are written via their real inodes so just
2958 * clean them here. Access time updates are taken care off when the
2959 * real inode is written.
2960 */
2961 if (NInoAttr(ni)) {
2962 NInoClearDirty(ni);
2963 ntfs_debug("Done.");
2964 return 0;
2965 }
2966 /* Map, pin, and lock the mft record belonging to the inode. */
2967 m = map_mft_record(ni);
2968 if (IS_ERR(m)) {
2969 err = PTR_ERR(m);
2970 goto err_out;
2971 }
2972 /* Update the access times in the standard information attribute. */
2973 ctx = ntfs_attr_get_search_ctx(ni, m);
2974 if (unlikely(!ctx)) {
2975 err = -ENOMEM;
2976 goto unm_err_out;
2977 }
2978 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2979 CASE_SENSITIVE, 0, NULL, 0, ctx);
2980 if (unlikely(err)) {
2981 ntfs_attr_put_search_ctx(ctx);
2982 goto unm_err_out;
2983 }
2984 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
2985 le16_to_cpu(ctx->attr->data.resident.value_offset));
2986 /* Update the access times if they have changed. */
2987 nt = utc2ntfs(vi->i_mtime);
2988 if (si->last_data_change_time != nt) {
2989 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
2990 "new = 0x%llx", vi->i_ino, (long long)
2991 sle64_to_cpu(si->last_data_change_time),
2992 (long long)sle64_to_cpu(nt));
2993 si->last_data_change_time = nt;
2994 modified = true;
2995 }
2996 nt = utc2ntfs(vi->i_ctime);
2997 if (si->last_mft_change_time != nt) {
2998 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
2999 "new = 0x%llx", vi->i_ino, (long long)
3000 sle64_to_cpu(si->last_mft_change_time),
3001 (long long)sle64_to_cpu(nt));
3002 si->last_mft_change_time = nt;
3003 modified = true;
3004 }
3005 nt = utc2ntfs(vi->i_atime);
3006 if (si->last_access_time != nt) {
3007 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3008 "new = 0x%llx", vi->i_ino,
3009 (long long)sle64_to_cpu(si->last_access_time),
3010 (long long)sle64_to_cpu(nt));
3011 si->last_access_time = nt;
3012 modified = true;
3013 }
3014 /*
3015 * If we just modified the standard information attribute we need to
3016 * mark the mft record it is in dirty. We do this manually so that
3017 * mark_inode_dirty() is not called which would redirty the inode and
3018 * hence result in an infinite loop of trying to write the inode.
3019 * There is no need to mark the base inode nor the base mft record
3020 * dirty, since we are going to write this mft record below in any case
3021 * and the base mft record may actually not have been modified so it
3022 * might not need to be written out.
3023 * NOTE: It is not a problem when the inode for $MFT itself is being
3024 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3025 * on the $MFT inode and hence ntfs_write_inode() will not be
3026 * re-invoked because of it which in turn is ok since the dirtied mft
3027 * record will be cleaned and written out to disk below, i.e. before
3028 * this function returns.
3029 */
3030 if (modified) {
3031 flush_dcache_mft_record_page(ctx->ntfs_ino);
3032 if (!NInoTestSetDirty(ctx->ntfs_ino))
3033 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3034 ctx->ntfs_ino->page_ofs);
3035 }
3036 ntfs_attr_put_search_ctx(ctx);
3037 /* Now the access times are updated, write the base mft record. */
3038 if (NInoDirty(ni))
3039 err = write_mft_record(ni, m, sync);
3040 /* Write all attached extent mft records. */
3041 mutex_lock(&ni->extent_lock);
3042 if (ni->nr_extents > 0) {
3043 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3044 int i;
3045
3046 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3047 for (i = 0; i < ni->nr_extents; i++) {
3048 ntfs_inode *tni = extent_nis[i];
3049
3050 if (NInoDirty(tni)) {
3051 MFT_RECORD *tm = map_mft_record(tni);
3052 int ret;
3053
3054 if (IS_ERR(tm)) {
3055 if (!err || err == -ENOMEM)
3056 err = PTR_ERR(tm);
3057 continue;
3058 }
3059 ret = write_mft_record(tni, tm, sync);
3060 unmap_mft_record(tni);
3061 if (unlikely(ret)) {
3062 if (!err || err == -ENOMEM)
3063 err = ret;
3064 }
3065 }
3066 }
3067 }
3068 mutex_unlock(&ni->extent_lock);
3069 unmap_mft_record(ni);
3070 if (unlikely(err))
3071 goto err_out;
3072 ntfs_debug("Done.");
3073 return 0;
3074unm_err_out:
3075 unmap_mft_record(ni);
3076err_out:
3077 if (err == -ENOMEM) {
3078 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3079 "Marking the inode dirty again, so the VFS "
3080 "retries later.");
3081 mark_inode_dirty(vi);
3082 } else {
3083 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
3084 NVolSetErrors(ni->vol);
3085 }
3086 return err;
3087}
3088
3089#endif /* NTFS_RW */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/**
3 * inode.c - NTFS kernel inode handling.
4 *
5 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
6 */
7
8#include <linux/buffer_head.h>
9#include <linux/fs.h>
10#include <linux/mm.h>
11#include <linux/mount.h>
12#include <linux/mutex.h>
13#include <linux/pagemap.h>
14#include <linux/quotaops.h>
15#include <linux/slab.h>
16#include <linux/log2.h>
17
18#include "aops.h"
19#include "attrib.h"
20#include "bitmap.h"
21#include "dir.h"
22#include "debug.h"
23#include "inode.h"
24#include "lcnalloc.h"
25#include "malloc.h"
26#include "mft.h"
27#include "time.h"
28#include "ntfs.h"
29
30/**
31 * ntfs_test_inode - compare two (possibly fake) inodes for equality
32 * @vi: vfs inode which to test
33 * @na: ntfs attribute which is being tested with
34 *
35 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
36 * inode @vi for equality with the ntfs attribute @na.
37 *
38 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
39 * @na->name and @na->name_len are then ignored.
40 *
41 * Return 1 if the attributes match and 0 if not.
42 *
43 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
44 * allowed to sleep.
45 */
46int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
47{
48 ntfs_inode *ni;
49
50 if (vi->i_ino != na->mft_no)
51 return 0;
52 ni = NTFS_I(vi);
53 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
54 if (likely(!NInoAttr(ni))) {
55 /* If not looking for a normal inode this is a mismatch. */
56 if (unlikely(na->type != AT_UNUSED))
57 return 0;
58 } else {
59 /* A fake inode describing an attribute. */
60 if (ni->type != na->type)
61 return 0;
62 if (ni->name_len != na->name_len)
63 return 0;
64 if (na->name_len && memcmp(ni->name, na->name,
65 na->name_len * sizeof(ntfschar)))
66 return 0;
67 }
68 /* Match! */
69 return 1;
70}
71
72/**
73 * ntfs_init_locked_inode - initialize an inode
74 * @vi: vfs inode to initialize
75 * @na: ntfs attribute which to initialize @vi to
76 *
77 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
78 * order to enable ntfs_test_inode() to do its work.
79 *
80 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
81 * In that case, @na->name and @na->name_len should be set to NULL and 0,
82 * respectively. Although that is not strictly necessary as
83 * ntfs_read_locked_inode() will fill them in later.
84 *
85 * Return 0 on success and -errno on error.
86 *
87 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
88 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
89 */
90static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
91{
92 ntfs_inode *ni = NTFS_I(vi);
93
94 vi->i_ino = na->mft_no;
95
96 ni->type = na->type;
97 if (na->type == AT_INDEX_ALLOCATION)
98 NInoSetMstProtected(ni);
99
100 ni->name = na->name;
101 ni->name_len = na->name_len;
102
103 /* If initializing a normal inode, we are done. */
104 if (likely(na->type == AT_UNUSED)) {
105 BUG_ON(na->name);
106 BUG_ON(na->name_len);
107 return 0;
108 }
109
110 /* It is a fake inode. */
111 NInoSetAttr(ni);
112
113 /*
114 * We have I30 global constant as an optimization as it is the name
115 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
116 * allocation but that is ok. And most attributes are unnamed anyway,
117 * thus the fraction of named attributes with name != I30 is actually
118 * absolutely tiny.
119 */
120 if (na->name_len && na->name != I30) {
121 unsigned int i;
122
123 BUG_ON(!na->name);
124 i = na->name_len * sizeof(ntfschar);
125 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
126 if (!ni->name)
127 return -ENOMEM;
128 memcpy(ni->name, na->name, i);
129 ni->name[na->name_len] = 0;
130 }
131 return 0;
132}
133
134typedef int (*set_t)(struct inode *, void *);
135static int ntfs_read_locked_inode(struct inode *vi);
136static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
137static int ntfs_read_locked_index_inode(struct inode *base_vi,
138 struct inode *vi);
139
140/**
141 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
142 * @sb: super block of mounted volume
143 * @mft_no: mft record number / inode number to obtain
144 *
145 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
146 * file or directory).
147 *
148 * If the inode is in the cache, it is just returned with an increased
149 * reference count. Otherwise, a new struct inode is allocated and initialized,
150 * and finally ntfs_read_locked_inode() is called to read in the inode and
151 * fill in the remainder of the inode structure.
152 *
153 * Return the struct inode on success. Check the return value with IS_ERR() and
154 * if true, the function failed and the error code is obtained from PTR_ERR().
155 */
156struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
157{
158 struct inode *vi;
159 int err;
160 ntfs_attr na;
161
162 na.mft_no = mft_no;
163 na.type = AT_UNUSED;
164 na.name = NULL;
165 na.name_len = 0;
166
167 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
168 (set_t)ntfs_init_locked_inode, &na);
169 if (unlikely(!vi))
170 return ERR_PTR(-ENOMEM);
171
172 err = 0;
173
174 /* If this is a freshly allocated inode, need to read it now. */
175 if (vi->i_state & I_NEW) {
176 err = ntfs_read_locked_inode(vi);
177 unlock_new_inode(vi);
178 }
179 /*
180 * There is no point in keeping bad inodes around if the failure was
181 * due to ENOMEM. We want to be able to retry again later.
182 */
183 if (unlikely(err == -ENOMEM)) {
184 iput(vi);
185 vi = ERR_PTR(err);
186 }
187 return vi;
188}
189
190/**
191 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
192 * @base_vi: vfs base inode containing the attribute
193 * @type: attribute type
194 * @name: Unicode name of the attribute (NULL if unnamed)
195 * @name_len: length of @name in Unicode characters (0 if unnamed)
196 *
197 * Obtain the (fake) struct inode corresponding to the attribute specified by
198 * @type, @name, and @name_len, which is present in the base mft record
199 * specified by the vfs inode @base_vi.
200 *
201 * If the attribute inode is in the cache, it is just returned with an
202 * increased reference count. Otherwise, a new struct inode is allocated and
203 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
204 * attribute and fill in the inode structure.
205 *
206 * Note, for index allocation attributes, you need to use ntfs_index_iget()
207 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
208 *
209 * Return the struct inode of the attribute inode on success. Check the return
210 * value with IS_ERR() and if true, the function failed and the error code is
211 * obtained from PTR_ERR().
212 */
213struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
214 ntfschar *name, u32 name_len)
215{
216 struct inode *vi;
217 int err;
218 ntfs_attr na;
219
220 /* Make sure no one calls ntfs_attr_iget() for indices. */
221 BUG_ON(type == AT_INDEX_ALLOCATION);
222
223 na.mft_no = base_vi->i_ino;
224 na.type = type;
225 na.name = name;
226 na.name_len = name_len;
227
228 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
229 (set_t)ntfs_init_locked_inode, &na);
230 if (unlikely(!vi))
231 return ERR_PTR(-ENOMEM);
232
233 err = 0;
234
235 /* If this is a freshly allocated inode, need to read it now. */
236 if (vi->i_state & I_NEW) {
237 err = ntfs_read_locked_attr_inode(base_vi, vi);
238 unlock_new_inode(vi);
239 }
240 /*
241 * There is no point in keeping bad attribute inodes around. This also
242 * simplifies things in that we never need to check for bad attribute
243 * inodes elsewhere.
244 */
245 if (unlikely(err)) {
246 iput(vi);
247 vi = ERR_PTR(err);
248 }
249 return vi;
250}
251
252/**
253 * ntfs_index_iget - obtain a struct inode corresponding to an index
254 * @base_vi: vfs base inode containing the index related attributes
255 * @name: Unicode name of the index
256 * @name_len: length of @name in Unicode characters
257 *
258 * Obtain the (fake) struct inode corresponding to the index specified by @name
259 * and @name_len, which is present in the base mft record specified by the vfs
260 * inode @base_vi.
261 *
262 * If the index inode is in the cache, it is just returned with an increased
263 * reference count. Otherwise, a new struct inode is allocated and
264 * initialized, and finally ntfs_read_locked_index_inode() is called to read
265 * the index related attributes and fill in the inode structure.
266 *
267 * Return the struct inode of the index inode on success. Check the return
268 * value with IS_ERR() and if true, the function failed and the error code is
269 * obtained from PTR_ERR().
270 */
271struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
272 u32 name_len)
273{
274 struct inode *vi;
275 int err;
276 ntfs_attr na;
277
278 na.mft_no = base_vi->i_ino;
279 na.type = AT_INDEX_ALLOCATION;
280 na.name = name;
281 na.name_len = name_len;
282
283 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
284 (set_t)ntfs_init_locked_inode, &na);
285 if (unlikely(!vi))
286 return ERR_PTR(-ENOMEM);
287
288 err = 0;
289
290 /* If this is a freshly allocated inode, need to read it now. */
291 if (vi->i_state & I_NEW) {
292 err = ntfs_read_locked_index_inode(base_vi, vi);
293 unlock_new_inode(vi);
294 }
295 /*
296 * There is no point in keeping bad index inodes around. This also
297 * simplifies things in that we never need to check for bad index
298 * inodes elsewhere.
299 */
300 if (unlikely(err)) {
301 iput(vi);
302 vi = ERR_PTR(err);
303 }
304 return vi;
305}
306
307struct inode *ntfs_alloc_big_inode(struct super_block *sb)
308{
309 ntfs_inode *ni;
310
311 ntfs_debug("Entering.");
312 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
313 if (likely(ni != NULL)) {
314 ni->state = 0;
315 return VFS_I(ni);
316 }
317 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
318 return NULL;
319}
320
321void ntfs_free_big_inode(struct inode *inode)
322{
323 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
324}
325
326static inline ntfs_inode *ntfs_alloc_extent_inode(void)
327{
328 ntfs_inode *ni;
329
330 ntfs_debug("Entering.");
331 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
332 if (likely(ni != NULL)) {
333 ni->state = 0;
334 return ni;
335 }
336 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
337 return NULL;
338}
339
340static void ntfs_destroy_extent_inode(ntfs_inode *ni)
341{
342 ntfs_debug("Entering.");
343 BUG_ON(ni->page);
344 if (!atomic_dec_and_test(&ni->count))
345 BUG();
346 kmem_cache_free(ntfs_inode_cache, ni);
347}
348
349/*
350 * The attribute runlist lock has separate locking rules from the
351 * normal runlist lock, so split the two lock-classes:
352 */
353static struct lock_class_key attr_list_rl_lock_class;
354
355/**
356 * __ntfs_init_inode - initialize ntfs specific part of an inode
357 * @sb: super block of mounted volume
358 * @ni: freshly allocated ntfs inode which to initialize
359 *
360 * Initialize an ntfs inode to defaults.
361 *
362 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
363 * untouched. Make sure to initialize them elsewhere.
364 *
365 * Return zero on success and -ENOMEM on error.
366 */
367void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
368{
369 ntfs_debug("Entering.");
370 rwlock_init(&ni->size_lock);
371 ni->initialized_size = ni->allocated_size = 0;
372 ni->seq_no = 0;
373 atomic_set(&ni->count, 1);
374 ni->vol = NTFS_SB(sb);
375 ntfs_init_runlist(&ni->runlist);
376 mutex_init(&ni->mrec_lock);
377 ni->page = NULL;
378 ni->page_ofs = 0;
379 ni->attr_list_size = 0;
380 ni->attr_list = NULL;
381 ntfs_init_runlist(&ni->attr_list_rl);
382 lockdep_set_class(&ni->attr_list_rl.lock,
383 &attr_list_rl_lock_class);
384 ni->itype.index.block_size = 0;
385 ni->itype.index.vcn_size = 0;
386 ni->itype.index.collation_rule = 0;
387 ni->itype.index.block_size_bits = 0;
388 ni->itype.index.vcn_size_bits = 0;
389 mutex_init(&ni->extent_lock);
390 ni->nr_extents = 0;
391 ni->ext.base_ntfs_ino = NULL;
392}
393
394/*
395 * Extent inodes get MFT-mapped in a nested way, while the base inode
396 * is still mapped. Teach this nesting to the lock validator by creating
397 * a separate class for nested inode's mrec_lock's:
398 */
399static struct lock_class_key extent_inode_mrec_lock_key;
400
401inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
402 unsigned long mft_no)
403{
404 ntfs_inode *ni = ntfs_alloc_extent_inode();
405
406 ntfs_debug("Entering.");
407 if (likely(ni != NULL)) {
408 __ntfs_init_inode(sb, ni);
409 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
410 ni->mft_no = mft_no;
411 ni->type = AT_UNUSED;
412 ni->name = NULL;
413 ni->name_len = 0;
414 }
415 return ni;
416}
417
418/**
419 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
420 * @ctx: initialized attribute search context
421 *
422 * Search all file name attributes in the inode described by the attribute
423 * search context @ctx and check if any of the names are in the $Extend system
424 * directory.
425 *
426 * Return values:
427 * 1: file is in $Extend directory
428 * 0: file is not in $Extend directory
429 * -errno: failed to determine if the file is in the $Extend directory
430 */
431static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
432{
433 int nr_links, err;
434
435 /* Restart search. */
436 ntfs_attr_reinit_search_ctx(ctx);
437
438 /* Get number of hard links. */
439 nr_links = le16_to_cpu(ctx->mrec->link_count);
440
441 /* Loop through all hard links. */
442 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
443 ctx))) {
444 FILE_NAME_ATTR *file_name_attr;
445 ATTR_RECORD *attr = ctx->attr;
446 u8 *p, *p2;
447
448 nr_links--;
449 /*
450 * Maximum sanity checking as we are called on an inode that
451 * we suspect might be corrupt.
452 */
453 p = (u8*)attr + le32_to_cpu(attr->length);
454 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
455 le32_to_cpu(ctx->mrec->bytes_in_use)) {
456err_corrupt_attr:
457 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
458 "attribute. You should run chkdsk.");
459 return -EIO;
460 }
461 if (attr->non_resident) {
462 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
463 "name. You should run chkdsk.");
464 return -EIO;
465 }
466 if (attr->flags) {
467 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
468 "invalid flags. You should run "
469 "chkdsk.");
470 return -EIO;
471 }
472 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
473 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
474 "name. You should run chkdsk.");
475 return -EIO;
476 }
477 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
478 le16_to_cpu(attr->data.resident.value_offset));
479 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
480 if (p2 < (u8*)attr || p2 > p)
481 goto err_corrupt_attr;
482 /* This attribute is ok, but is it in the $Extend directory? */
483 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
484 return 1; /* YES, it's an extended system file. */
485 }
486 if (unlikely(err != -ENOENT))
487 return err;
488 if (unlikely(nr_links)) {
489 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
490 "doesn't match number of name attributes. You "
491 "should run chkdsk.");
492 return -EIO;
493 }
494 return 0; /* NO, it is not an extended system file. */
495}
496
497/**
498 * ntfs_read_locked_inode - read an inode from its device
499 * @vi: inode to read
500 *
501 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
502 * described by @vi into memory from the device.
503 *
504 * The only fields in @vi that we need to/can look at when the function is
505 * called are i_sb, pointing to the mounted device's super block, and i_ino,
506 * the number of the inode to load.
507 *
508 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
509 * for reading and sets up the necessary @vi fields as well as initializing
510 * the ntfs inode.
511 *
512 * Q: What locks are held when the function is called?
513 * A: i_state has I_NEW set, hence the inode is locked, also
514 * i_count is set to 1, so it is not going to go away
515 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
516 * is allowed to write to them. We should of course be honouring them but
517 * we need to do that using the IS_* macros defined in include/linux/fs.h.
518 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
519 *
520 * Return 0 on success and -errno on error. In the error case, the inode will
521 * have had make_bad_inode() executed on it.
522 */
523static int ntfs_read_locked_inode(struct inode *vi)
524{
525 ntfs_volume *vol = NTFS_SB(vi->i_sb);
526 ntfs_inode *ni;
527 struct inode *bvi;
528 MFT_RECORD *m;
529 ATTR_RECORD *a;
530 STANDARD_INFORMATION *si;
531 ntfs_attr_search_ctx *ctx;
532 int err = 0;
533
534 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
535
536 /* Setup the generic vfs inode parts now. */
537 vi->i_uid = vol->uid;
538 vi->i_gid = vol->gid;
539 vi->i_mode = 0;
540
541 /*
542 * Initialize the ntfs specific part of @vi special casing
543 * FILE_MFT which we need to do at mount time.
544 */
545 if (vi->i_ino != FILE_MFT)
546 ntfs_init_big_inode(vi);
547 ni = NTFS_I(vi);
548
549 m = map_mft_record(ni);
550 if (IS_ERR(m)) {
551 err = PTR_ERR(m);
552 goto err_out;
553 }
554 ctx = ntfs_attr_get_search_ctx(ni, m);
555 if (!ctx) {
556 err = -ENOMEM;
557 goto unm_err_out;
558 }
559
560 if (!(m->flags & MFT_RECORD_IN_USE)) {
561 ntfs_error(vi->i_sb, "Inode is not in use!");
562 goto unm_err_out;
563 }
564 if (m->base_mft_record) {
565 ntfs_error(vi->i_sb, "Inode is an extent inode!");
566 goto unm_err_out;
567 }
568
569 /* Transfer information from mft record into vfs and ntfs inodes. */
570 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
571
572 /*
573 * FIXME: Keep in mind that link_count is two for files which have both
574 * a long file name and a short file name as separate entries, so if
575 * we are hiding short file names this will be too high. Either we need
576 * to account for the short file names by subtracting them or we need
577 * to make sure we delete files even though i_nlink is not zero which
578 * might be tricky due to vfs interactions. Need to think about this
579 * some more when implementing the unlink command.
580 */
581 set_nlink(vi, le16_to_cpu(m->link_count));
582 /*
583 * FIXME: Reparse points can have the directory bit set even though
584 * they would be S_IFLNK. Need to deal with this further below when we
585 * implement reparse points / symbolic links but it will do for now.
586 * Also if not a directory, it could be something else, rather than
587 * a regular file. But again, will do for now.
588 */
589 /* Everyone gets all permissions. */
590 vi->i_mode |= S_IRWXUGO;
591 /* If read-only, no one gets write permissions. */
592 if (IS_RDONLY(vi))
593 vi->i_mode &= ~S_IWUGO;
594 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
595 vi->i_mode |= S_IFDIR;
596 /*
597 * Apply the directory permissions mask set in the mount
598 * options.
599 */
600 vi->i_mode &= ~vol->dmask;
601 /* Things break without this kludge! */
602 if (vi->i_nlink > 1)
603 set_nlink(vi, 1);
604 } else {
605 vi->i_mode |= S_IFREG;
606 /* Apply the file permissions mask set in the mount options. */
607 vi->i_mode &= ~vol->fmask;
608 }
609 /*
610 * Find the standard information attribute in the mft record. At this
611 * stage we haven't setup the attribute list stuff yet, so this could
612 * in fact fail if the standard information is in an extent record, but
613 * I don't think this actually ever happens.
614 */
615 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
616 ctx);
617 if (unlikely(err)) {
618 if (err == -ENOENT) {
619 /*
620 * TODO: We should be performing a hot fix here (if the
621 * recover mount option is set) by creating a new
622 * attribute.
623 */
624 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
625 "is missing.");
626 }
627 goto unm_err_out;
628 }
629 a = ctx->attr;
630 /* Get the standard information attribute value. */
631 si = (STANDARD_INFORMATION*)((u8*)a +
632 le16_to_cpu(a->data.resident.value_offset));
633
634 /* Transfer information from the standard information into vi. */
635 /*
636 * Note: The i_?times do not quite map perfectly onto the NTFS times,
637 * but they are close enough, and in the end it doesn't really matter
638 * that much...
639 */
640 /*
641 * mtime is the last change of the data within the file. Not changed
642 * when only metadata is changed, e.g. a rename doesn't affect mtime.
643 */
644 vi->i_mtime = ntfs2utc(si->last_data_change_time);
645 /*
646 * ctime is the last change of the metadata of the file. This obviously
647 * always changes, when mtime is changed. ctime can be changed on its
648 * own, mtime is then not changed, e.g. when a file is renamed.
649 */
650 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
651 /*
652 * Last access to the data within the file. Not changed during a rename
653 * for example but changed whenever the file is written to.
654 */
655 vi->i_atime = ntfs2utc(si->last_access_time);
656
657 /* Find the attribute list attribute if present. */
658 ntfs_attr_reinit_search_ctx(ctx);
659 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
660 if (err) {
661 if (unlikely(err != -ENOENT)) {
662 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
663 "attribute.");
664 goto unm_err_out;
665 }
666 } else /* if (!err) */ {
667 if (vi->i_ino == FILE_MFT)
668 goto skip_attr_list_load;
669 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
670 NInoSetAttrList(ni);
671 a = ctx->attr;
672 if (a->flags & ATTR_COMPRESSION_MASK) {
673 ntfs_error(vi->i_sb, "Attribute list attribute is "
674 "compressed.");
675 goto unm_err_out;
676 }
677 if (a->flags & ATTR_IS_ENCRYPTED ||
678 a->flags & ATTR_IS_SPARSE) {
679 if (a->non_resident) {
680 ntfs_error(vi->i_sb, "Non-resident attribute "
681 "list attribute is encrypted/"
682 "sparse.");
683 goto unm_err_out;
684 }
685 ntfs_warning(vi->i_sb, "Resident attribute list "
686 "attribute in inode 0x%lx is marked "
687 "encrypted/sparse which is not true. "
688 "However, Windows allows this and "
689 "chkdsk does not detect or correct it "
690 "so we will just ignore the invalid "
691 "flags and pretend they are not set.",
692 vi->i_ino);
693 }
694 /* Now allocate memory for the attribute list. */
695 ni->attr_list_size = (u32)ntfs_attr_size(a);
696 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
697 if (!ni->attr_list) {
698 ntfs_error(vi->i_sb, "Not enough memory to allocate "
699 "buffer for attribute list.");
700 err = -ENOMEM;
701 goto unm_err_out;
702 }
703 if (a->non_resident) {
704 NInoSetAttrListNonResident(ni);
705 if (a->data.non_resident.lowest_vcn) {
706 ntfs_error(vi->i_sb, "Attribute list has non "
707 "zero lowest_vcn.");
708 goto unm_err_out;
709 }
710 /*
711 * Setup the runlist. No need for locking as we have
712 * exclusive access to the inode at this time.
713 */
714 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
715 a, NULL);
716 if (IS_ERR(ni->attr_list_rl.rl)) {
717 err = PTR_ERR(ni->attr_list_rl.rl);
718 ni->attr_list_rl.rl = NULL;
719 ntfs_error(vi->i_sb, "Mapping pairs "
720 "decompression failed.");
721 goto unm_err_out;
722 }
723 /* Now load the attribute list. */
724 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
725 ni->attr_list, ni->attr_list_size,
726 sle64_to_cpu(a->data.non_resident.
727 initialized_size)))) {
728 ntfs_error(vi->i_sb, "Failed to load "
729 "attribute list attribute.");
730 goto unm_err_out;
731 }
732 } else /* if (!a->non_resident) */ {
733 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
734 + le32_to_cpu(
735 a->data.resident.value_length) >
736 (u8*)ctx->mrec + vol->mft_record_size) {
737 ntfs_error(vi->i_sb, "Corrupt attribute list "
738 "in inode.");
739 goto unm_err_out;
740 }
741 /* Now copy the attribute list. */
742 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
743 a->data.resident.value_offset),
744 le32_to_cpu(
745 a->data.resident.value_length));
746 }
747 }
748skip_attr_list_load:
749 /*
750 * If an attribute list is present we now have the attribute list value
751 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
752 */
753 if (S_ISDIR(vi->i_mode)) {
754 loff_t bvi_size;
755 ntfs_inode *bni;
756 INDEX_ROOT *ir;
757 u8 *ir_end, *index_end;
758
759 /* It is a directory, find index root attribute. */
760 ntfs_attr_reinit_search_ctx(ctx);
761 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
762 0, NULL, 0, ctx);
763 if (unlikely(err)) {
764 if (err == -ENOENT) {
765 // FIXME: File is corrupt! Hot-fix with empty
766 // index root attribute if recovery option is
767 // set.
768 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
769 "is missing.");
770 }
771 goto unm_err_out;
772 }
773 a = ctx->attr;
774 /* Set up the state. */
775 if (unlikely(a->non_resident)) {
776 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
777 "resident.");
778 goto unm_err_out;
779 }
780 /* Ensure the attribute name is placed before the value. */
781 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
782 le16_to_cpu(a->data.resident.value_offset)))) {
783 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
784 "placed after the attribute value.");
785 goto unm_err_out;
786 }
787 /*
788 * Compressed/encrypted index root just means that the newly
789 * created files in that directory should be created compressed/
790 * encrypted. However index root cannot be both compressed and
791 * encrypted.
792 */
793 if (a->flags & ATTR_COMPRESSION_MASK)
794 NInoSetCompressed(ni);
795 if (a->flags & ATTR_IS_ENCRYPTED) {
796 if (a->flags & ATTR_COMPRESSION_MASK) {
797 ntfs_error(vi->i_sb, "Found encrypted and "
798 "compressed attribute.");
799 goto unm_err_out;
800 }
801 NInoSetEncrypted(ni);
802 }
803 if (a->flags & ATTR_IS_SPARSE)
804 NInoSetSparse(ni);
805 ir = (INDEX_ROOT*)((u8*)a +
806 le16_to_cpu(a->data.resident.value_offset));
807 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
808 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
809 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
810 "corrupt.");
811 goto unm_err_out;
812 }
813 index_end = (u8*)&ir->index +
814 le32_to_cpu(ir->index.index_length);
815 if (index_end > ir_end) {
816 ntfs_error(vi->i_sb, "Directory index is corrupt.");
817 goto unm_err_out;
818 }
819 if (ir->type != AT_FILE_NAME) {
820 ntfs_error(vi->i_sb, "Indexed attribute is not "
821 "$FILE_NAME.");
822 goto unm_err_out;
823 }
824 if (ir->collation_rule != COLLATION_FILE_NAME) {
825 ntfs_error(vi->i_sb, "Index collation rule is not "
826 "COLLATION_FILE_NAME.");
827 goto unm_err_out;
828 }
829 ni->itype.index.collation_rule = ir->collation_rule;
830 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
831 if (ni->itype.index.block_size &
832 (ni->itype.index.block_size - 1)) {
833 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
834 "power of two.",
835 ni->itype.index.block_size);
836 goto unm_err_out;
837 }
838 if (ni->itype.index.block_size > PAGE_SIZE) {
839 ntfs_error(vi->i_sb, "Index block size (%u) > "
840 "PAGE_SIZE (%ld) is not "
841 "supported. Sorry.",
842 ni->itype.index.block_size,
843 PAGE_SIZE);
844 err = -EOPNOTSUPP;
845 goto unm_err_out;
846 }
847 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
848 ntfs_error(vi->i_sb, "Index block size (%u) < "
849 "NTFS_BLOCK_SIZE (%i) is not "
850 "supported. Sorry.",
851 ni->itype.index.block_size,
852 NTFS_BLOCK_SIZE);
853 err = -EOPNOTSUPP;
854 goto unm_err_out;
855 }
856 ni->itype.index.block_size_bits =
857 ffs(ni->itype.index.block_size) - 1;
858 /* Determine the size of a vcn in the directory index. */
859 if (vol->cluster_size <= ni->itype.index.block_size) {
860 ni->itype.index.vcn_size = vol->cluster_size;
861 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
862 } else {
863 ni->itype.index.vcn_size = vol->sector_size;
864 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
865 }
866
867 /* Setup the index allocation attribute, even if not present. */
868 NInoSetMstProtected(ni);
869 ni->type = AT_INDEX_ALLOCATION;
870 ni->name = I30;
871 ni->name_len = 4;
872
873 if (!(ir->index.flags & LARGE_INDEX)) {
874 /* No index allocation. */
875 vi->i_size = ni->initialized_size =
876 ni->allocated_size = 0;
877 /* We are done with the mft record, so we release it. */
878 ntfs_attr_put_search_ctx(ctx);
879 unmap_mft_record(ni);
880 m = NULL;
881 ctx = NULL;
882 goto skip_large_dir_stuff;
883 } /* LARGE_INDEX: Index allocation present. Setup state. */
884 NInoSetIndexAllocPresent(ni);
885 /* Find index allocation attribute. */
886 ntfs_attr_reinit_search_ctx(ctx);
887 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
888 CASE_SENSITIVE, 0, NULL, 0, ctx);
889 if (unlikely(err)) {
890 if (err == -ENOENT)
891 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
892 "attribute is not present but "
893 "$INDEX_ROOT indicated it is.");
894 else
895 ntfs_error(vi->i_sb, "Failed to lookup "
896 "$INDEX_ALLOCATION "
897 "attribute.");
898 goto unm_err_out;
899 }
900 a = ctx->attr;
901 if (!a->non_resident) {
902 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
903 "is resident.");
904 goto unm_err_out;
905 }
906 /*
907 * Ensure the attribute name is placed before the mapping pairs
908 * array.
909 */
910 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
911 le16_to_cpu(
912 a->data.non_resident.mapping_pairs_offset)))) {
913 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
914 "is placed after the mapping pairs "
915 "array.");
916 goto unm_err_out;
917 }
918 if (a->flags & ATTR_IS_ENCRYPTED) {
919 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
920 "is encrypted.");
921 goto unm_err_out;
922 }
923 if (a->flags & ATTR_IS_SPARSE) {
924 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
925 "is sparse.");
926 goto unm_err_out;
927 }
928 if (a->flags & ATTR_COMPRESSION_MASK) {
929 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
930 "is compressed.");
931 goto unm_err_out;
932 }
933 if (a->data.non_resident.lowest_vcn) {
934 ntfs_error(vi->i_sb, "First extent of "
935 "$INDEX_ALLOCATION attribute has non "
936 "zero lowest_vcn.");
937 goto unm_err_out;
938 }
939 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
940 ni->initialized_size = sle64_to_cpu(
941 a->data.non_resident.initialized_size);
942 ni->allocated_size = sle64_to_cpu(
943 a->data.non_resident.allocated_size);
944 /*
945 * We are done with the mft record, so we release it. Otherwise
946 * we would deadlock in ntfs_attr_iget().
947 */
948 ntfs_attr_put_search_ctx(ctx);
949 unmap_mft_record(ni);
950 m = NULL;
951 ctx = NULL;
952 /* Get the index bitmap attribute inode. */
953 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
954 if (IS_ERR(bvi)) {
955 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
956 err = PTR_ERR(bvi);
957 goto unm_err_out;
958 }
959 bni = NTFS_I(bvi);
960 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
961 NInoSparse(bni)) {
962 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
963 "and/or encrypted and/or sparse.");
964 goto iput_unm_err_out;
965 }
966 /* Consistency check bitmap size vs. index allocation size. */
967 bvi_size = i_size_read(bvi);
968 if ((bvi_size << 3) < (vi->i_size >>
969 ni->itype.index.block_size_bits)) {
970 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
971 "for index allocation (0x%llx).",
972 bvi_size << 3, vi->i_size);
973 goto iput_unm_err_out;
974 }
975 /* No longer need the bitmap attribute inode. */
976 iput(bvi);
977skip_large_dir_stuff:
978 /* Setup the operations for this inode. */
979 vi->i_op = &ntfs_dir_inode_ops;
980 vi->i_fop = &ntfs_dir_ops;
981 vi->i_mapping->a_ops = &ntfs_mst_aops;
982 } else {
983 /* It is a file. */
984 ntfs_attr_reinit_search_ctx(ctx);
985
986 /* Setup the data attribute, even if not present. */
987 ni->type = AT_DATA;
988 ni->name = NULL;
989 ni->name_len = 0;
990
991 /* Find first extent of the unnamed data attribute. */
992 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
993 if (unlikely(err)) {
994 vi->i_size = ni->initialized_size =
995 ni->allocated_size = 0;
996 if (err != -ENOENT) {
997 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
998 "attribute.");
999 goto unm_err_out;
1000 }
1001 /*
1002 * FILE_Secure does not have an unnamed $DATA
1003 * attribute, so we special case it here.
1004 */
1005 if (vi->i_ino == FILE_Secure)
1006 goto no_data_attr_special_case;
1007 /*
1008 * Most if not all the system files in the $Extend
1009 * system directory do not have unnamed data
1010 * attributes so we need to check if the parent
1011 * directory of the file is FILE_Extend and if it is
1012 * ignore this error. To do this we need to get the
1013 * name of this inode from the mft record as the name
1014 * contains the back reference to the parent directory.
1015 */
1016 if (ntfs_is_extended_system_file(ctx) > 0)
1017 goto no_data_attr_special_case;
1018 // FIXME: File is corrupt! Hot-fix with empty data
1019 // attribute if recovery option is set.
1020 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1021 goto unm_err_out;
1022 }
1023 a = ctx->attr;
1024 /* Setup the state. */
1025 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1026 if (a->flags & ATTR_COMPRESSION_MASK) {
1027 NInoSetCompressed(ni);
1028 if (vol->cluster_size > 4096) {
1029 ntfs_error(vi->i_sb, "Found "
1030 "compressed data but "
1031 "compression is "
1032 "disabled due to "
1033 "cluster size (%i) > "
1034 "4kiB.",
1035 vol->cluster_size);
1036 goto unm_err_out;
1037 }
1038 if ((a->flags & ATTR_COMPRESSION_MASK)
1039 != ATTR_IS_COMPRESSED) {
1040 ntfs_error(vi->i_sb, "Found unknown "
1041 "compression method "
1042 "or corrupt file.");
1043 goto unm_err_out;
1044 }
1045 }
1046 if (a->flags & ATTR_IS_SPARSE)
1047 NInoSetSparse(ni);
1048 }
1049 if (a->flags & ATTR_IS_ENCRYPTED) {
1050 if (NInoCompressed(ni)) {
1051 ntfs_error(vi->i_sb, "Found encrypted and "
1052 "compressed data.");
1053 goto unm_err_out;
1054 }
1055 NInoSetEncrypted(ni);
1056 }
1057 if (a->non_resident) {
1058 NInoSetNonResident(ni);
1059 if (NInoCompressed(ni) || NInoSparse(ni)) {
1060 if (NInoCompressed(ni) && a->data.non_resident.
1061 compression_unit != 4) {
1062 ntfs_error(vi->i_sb, "Found "
1063 "non-standard "
1064 "compression unit (%u "
1065 "instead of 4). "
1066 "Cannot handle this.",
1067 a->data.non_resident.
1068 compression_unit);
1069 err = -EOPNOTSUPP;
1070 goto unm_err_out;
1071 }
1072 if (a->data.non_resident.compression_unit) {
1073 ni->itype.compressed.block_size = 1U <<
1074 (a->data.non_resident.
1075 compression_unit +
1076 vol->cluster_size_bits);
1077 ni->itype.compressed.block_size_bits =
1078 ffs(ni->itype.
1079 compressed.
1080 block_size) - 1;
1081 ni->itype.compressed.block_clusters =
1082 1U << a->data.
1083 non_resident.
1084 compression_unit;
1085 } else {
1086 ni->itype.compressed.block_size = 0;
1087 ni->itype.compressed.block_size_bits =
1088 0;
1089 ni->itype.compressed.block_clusters =
1090 0;
1091 }
1092 ni->itype.compressed.size = sle64_to_cpu(
1093 a->data.non_resident.
1094 compressed_size);
1095 }
1096 if (a->data.non_resident.lowest_vcn) {
1097 ntfs_error(vi->i_sb, "First extent of $DATA "
1098 "attribute has non zero "
1099 "lowest_vcn.");
1100 goto unm_err_out;
1101 }
1102 vi->i_size = sle64_to_cpu(
1103 a->data.non_resident.data_size);
1104 ni->initialized_size = sle64_to_cpu(
1105 a->data.non_resident.initialized_size);
1106 ni->allocated_size = sle64_to_cpu(
1107 a->data.non_resident.allocated_size);
1108 } else { /* Resident attribute. */
1109 vi->i_size = ni->initialized_size = le32_to_cpu(
1110 a->data.resident.value_length);
1111 ni->allocated_size = le32_to_cpu(a->length) -
1112 le16_to_cpu(
1113 a->data.resident.value_offset);
1114 if (vi->i_size > ni->allocated_size) {
1115 ntfs_error(vi->i_sb, "Resident data attribute "
1116 "is corrupt (size exceeds "
1117 "allocation).");
1118 goto unm_err_out;
1119 }
1120 }
1121no_data_attr_special_case:
1122 /* We are done with the mft record, so we release it. */
1123 ntfs_attr_put_search_ctx(ctx);
1124 unmap_mft_record(ni);
1125 m = NULL;
1126 ctx = NULL;
1127 /* Setup the operations for this inode. */
1128 vi->i_op = &ntfs_file_inode_ops;
1129 vi->i_fop = &ntfs_file_ops;
1130 vi->i_mapping->a_ops = &ntfs_normal_aops;
1131 if (NInoMstProtected(ni))
1132 vi->i_mapping->a_ops = &ntfs_mst_aops;
1133 else if (NInoCompressed(ni))
1134 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1135 }
1136 /*
1137 * The number of 512-byte blocks used on disk (for stat). This is in so
1138 * far inaccurate as it doesn't account for any named streams or other
1139 * special non-resident attributes, but that is how Windows works, too,
1140 * so we are at least consistent with Windows, if not entirely
1141 * consistent with the Linux Way. Doing it the Linux Way would cause a
1142 * significant slowdown as it would involve iterating over all
1143 * attributes in the mft record and adding the allocated/compressed
1144 * sizes of all non-resident attributes present to give us the Linux
1145 * correct size that should go into i_blocks (after division by 512).
1146 */
1147 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1148 vi->i_blocks = ni->itype.compressed.size >> 9;
1149 else
1150 vi->i_blocks = ni->allocated_size >> 9;
1151 ntfs_debug("Done.");
1152 return 0;
1153iput_unm_err_out:
1154 iput(bvi);
1155unm_err_out:
1156 if (!err)
1157 err = -EIO;
1158 if (ctx)
1159 ntfs_attr_put_search_ctx(ctx);
1160 if (m)
1161 unmap_mft_record(ni);
1162err_out:
1163 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1164 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1165 make_bad_inode(vi);
1166 if (err != -EOPNOTSUPP && err != -ENOMEM)
1167 NVolSetErrors(vol);
1168 return err;
1169}
1170
1171/**
1172 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1173 * @base_vi: base inode
1174 * @vi: attribute inode to read
1175 *
1176 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1177 * attribute inode described by @vi into memory from the base mft record
1178 * described by @base_ni.
1179 *
1180 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1181 * reading and looks up the attribute described by @vi before setting up the
1182 * necessary fields in @vi as well as initializing the ntfs inode.
1183 *
1184 * Q: What locks are held when the function is called?
1185 * A: i_state has I_NEW set, hence the inode is locked, also
1186 * i_count is set to 1, so it is not going to go away
1187 *
1188 * Return 0 on success and -errno on error. In the error case, the inode will
1189 * have had make_bad_inode() executed on it.
1190 *
1191 * Note this cannot be called for AT_INDEX_ALLOCATION.
1192 */
1193static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1194{
1195 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1196 ntfs_inode *ni, *base_ni;
1197 MFT_RECORD *m;
1198 ATTR_RECORD *a;
1199 ntfs_attr_search_ctx *ctx;
1200 int err = 0;
1201
1202 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1203
1204 ntfs_init_big_inode(vi);
1205
1206 ni = NTFS_I(vi);
1207 base_ni = NTFS_I(base_vi);
1208
1209 /* Just mirror the values from the base inode. */
1210 vi->i_uid = base_vi->i_uid;
1211 vi->i_gid = base_vi->i_gid;
1212 set_nlink(vi, base_vi->i_nlink);
1213 vi->i_mtime = base_vi->i_mtime;
1214 vi->i_ctime = base_vi->i_ctime;
1215 vi->i_atime = base_vi->i_atime;
1216 vi->i_generation = ni->seq_no = base_ni->seq_no;
1217
1218 /* Set inode type to zero but preserve permissions. */
1219 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1220
1221 m = map_mft_record(base_ni);
1222 if (IS_ERR(m)) {
1223 err = PTR_ERR(m);
1224 goto err_out;
1225 }
1226 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1227 if (!ctx) {
1228 err = -ENOMEM;
1229 goto unm_err_out;
1230 }
1231 /* Find the attribute. */
1232 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1233 CASE_SENSITIVE, 0, NULL, 0, ctx);
1234 if (unlikely(err))
1235 goto unm_err_out;
1236 a = ctx->attr;
1237 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1238 if (a->flags & ATTR_COMPRESSION_MASK) {
1239 NInoSetCompressed(ni);
1240 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1241 ni->name_len)) {
1242 ntfs_error(vi->i_sb, "Found compressed "
1243 "non-data or named data "
1244 "attribute. Please report "
1245 "you saw this message to "
1246 "linux-ntfs-dev@lists."
1247 "sourceforge.net");
1248 goto unm_err_out;
1249 }
1250 if (vol->cluster_size > 4096) {
1251 ntfs_error(vi->i_sb, "Found compressed "
1252 "attribute but compression is "
1253 "disabled due to cluster size "
1254 "(%i) > 4kiB.",
1255 vol->cluster_size);
1256 goto unm_err_out;
1257 }
1258 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1259 ATTR_IS_COMPRESSED) {
1260 ntfs_error(vi->i_sb, "Found unknown "
1261 "compression method.");
1262 goto unm_err_out;
1263 }
1264 }
1265 /*
1266 * The compressed/sparse flag set in an index root just means
1267 * to compress all files.
1268 */
1269 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1270 ntfs_error(vi->i_sb, "Found mst protected attribute "
1271 "but the attribute is %s. Please "
1272 "report you saw this message to "
1273 "linux-ntfs-dev@lists.sourceforge.net",
1274 NInoCompressed(ni) ? "compressed" :
1275 "sparse");
1276 goto unm_err_out;
1277 }
1278 if (a->flags & ATTR_IS_SPARSE)
1279 NInoSetSparse(ni);
1280 }
1281 if (a->flags & ATTR_IS_ENCRYPTED) {
1282 if (NInoCompressed(ni)) {
1283 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1284 "data.");
1285 goto unm_err_out;
1286 }
1287 /*
1288 * The encryption flag set in an index root just means to
1289 * encrypt all files.
1290 */
1291 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1292 ntfs_error(vi->i_sb, "Found mst protected attribute "
1293 "but the attribute is encrypted. "
1294 "Please report you saw this message "
1295 "to linux-ntfs-dev@lists.sourceforge."
1296 "net");
1297 goto unm_err_out;
1298 }
1299 if (ni->type != AT_DATA) {
1300 ntfs_error(vi->i_sb, "Found encrypted non-data "
1301 "attribute.");
1302 goto unm_err_out;
1303 }
1304 NInoSetEncrypted(ni);
1305 }
1306 if (!a->non_resident) {
1307 /* Ensure the attribute name is placed before the value. */
1308 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1309 le16_to_cpu(a->data.resident.value_offset)))) {
1310 ntfs_error(vol->sb, "Attribute name is placed after "
1311 "the attribute value.");
1312 goto unm_err_out;
1313 }
1314 if (NInoMstProtected(ni)) {
1315 ntfs_error(vi->i_sb, "Found mst protected attribute "
1316 "but the attribute is resident. "
1317 "Please report you saw this message to "
1318 "linux-ntfs-dev@lists.sourceforge.net");
1319 goto unm_err_out;
1320 }
1321 vi->i_size = ni->initialized_size = le32_to_cpu(
1322 a->data.resident.value_length);
1323 ni->allocated_size = le32_to_cpu(a->length) -
1324 le16_to_cpu(a->data.resident.value_offset);
1325 if (vi->i_size > ni->allocated_size) {
1326 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1327 "(size exceeds allocation).");
1328 goto unm_err_out;
1329 }
1330 } else {
1331 NInoSetNonResident(ni);
1332 /*
1333 * Ensure the attribute name is placed before the mapping pairs
1334 * array.
1335 */
1336 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1337 le16_to_cpu(
1338 a->data.non_resident.mapping_pairs_offset)))) {
1339 ntfs_error(vol->sb, "Attribute name is placed after "
1340 "the mapping pairs array.");
1341 goto unm_err_out;
1342 }
1343 if (NInoCompressed(ni) || NInoSparse(ni)) {
1344 if (NInoCompressed(ni) && a->data.non_resident.
1345 compression_unit != 4) {
1346 ntfs_error(vi->i_sb, "Found non-standard "
1347 "compression unit (%u instead "
1348 "of 4). Cannot handle this.",
1349 a->data.non_resident.
1350 compression_unit);
1351 err = -EOPNOTSUPP;
1352 goto unm_err_out;
1353 }
1354 if (a->data.non_resident.compression_unit) {
1355 ni->itype.compressed.block_size = 1U <<
1356 (a->data.non_resident.
1357 compression_unit +
1358 vol->cluster_size_bits);
1359 ni->itype.compressed.block_size_bits =
1360 ffs(ni->itype.compressed.
1361 block_size) - 1;
1362 ni->itype.compressed.block_clusters = 1U <<
1363 a->data.non_resident.
1364 compression_unit;
1365 } else {
1366 ni->itype.compressed.block_size = 0;
1367 ni->itype.compressed.block_size_bits = 0;
1368 ni->itype.compressed.block_clusters = 0;
1369 }
1370 ni->itype.compressed.size = sle64_to_cpu(
1371 a->data.non_resident.compressed_size);
1372 }
1373 if (a->data.non_resident.lowest_vcn) {
1374 ntfs_error(vi->i_sb, "First extent of attribute has "
1375 "non-zero lowest_vcn.");
1376 goto unm_err_out;
1377 }
1378 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1379 ni->initialized_size = sle64_to_cpu(
1380 a->data.non_resident.initialized_size);
1381 ni->allocated_size = sle64_to_cpu(
1382 a->data.non_resident.allocated_size);
1383 }
1384 vi->i_mapping->a_ops = &ntfs_normal_aops;
1385 if (NInoMstProtected(ni))
1386 vi->i_mapping->a_ops = &ntfs_mst_aops;
1387 else if (NInoCompressed(ni))
1388 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1389 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1390 vi->i_blocks = ni->itype.compressed.size >> 9;
1391 else
1392 vi->i_blocks = ni->allocated_size >> 9;
1393 /*
1394 * Make sure the base inode does not go away and attach it to the
1395 * attribute inode.
1396 */
1397 igrab(base_vi);
1398 ni->ext.base_ntfs_ino = base_ni;
1399 ni->nr_extents = -1;
1400
1401 ntfs_attr_put_search_ctx(ctx);
1402 unmap_mft_record(base_ni);
1403
1404 ntfs_debug("Done.");
1405 return 0;
1406
1407unm_err_out:
1408 if (!err)
1409 err = -EIO;
1410 if (ctx)
1411 ntfs_attr_put_search_ctx(ctx);
1412 unmap_mft_record(base_ni);
1413err_out:
1414 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1415 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1416 "Marking corrupt inode and base inode 0x%lx as bad. "
1417 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1418 base_vi->i_ino);
1419 make_bad_inode(vi);
1420 if (err != -ENOMEM)
1421 NVolSetErrors(vol);
1422 return err;
1423}
1424
1425/**
1426 * ntfs_read_locked_index_inode - read an index inode from its base inode
1427 * @base_vi: base inode
1428 * @vi: index inode to read
1429 *
1430 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1431 * index inode described by @vi into memory from the base mft record described
1432 * by @base_ni.
1433 *
1434 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1435 * reading and looks up the attributes relating to the index described by @vi
1436 * before setting up the necessary fields in @vi as well as initializing the
1437 * ntfs inode.
1438 *
1439 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1440 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1441 * are setup like directory inodes since directories are a special case of
1442 * indices ao they need to be treated in much the same way. Most importantly,
1443 * for small indices the index allocation attribute might not actually exist.
1444 * However, the index root attribute always exists but this does not need to
1445 * have an inode associated with it and this is why we define a new inode type
1446 * index. Also, like for directories, we need to have an attribute inode for
1447 * the bitmap attribute corresponding to the index allocation attribute and we
1448 * can store this in the appropriate field of the inode, just like we do for
1449 * normal directory inodes.
1450 *
1451 * Q: What locks are held when the function is called?
1452 * A: i_state has I_NEW set, hence the inode is locked, also
1453 * i_count is set to 1, so it is not going to go away
1454 *
1455 * Return 0 on success and -errno on error. In the error case, the inode will
1456 * have had make_bad_inode() executed on it.
1457 */
1458static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1459{
1460 loff_t bvi_size;
1461 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1462 ntfs_inode *ni, *base_ni, *bni;
1463 struct inode *bvi;
1464 MFT_RECORD *m;
1465 ATTR_RECORD *a;
1466 ntfs_attr_search_ctx *ctx;
1467 INDEX_ROOT *ir;
1468 u8 *ir_end, *index_end;
1469 int err = 0;
1470
1471 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1472 ntfs_init_big_inode(vi);
1473 ni = NTFS_I(vi);
1474 base_ni = NTFS_I(base_vi);
1475 /* Just mirror the values from the base inode. */
1476 vi->i_uid = base_vi->i_uid;
1477 vi->i_gid = base_vi->i_gid;
1478 set_nlink(vi, base_vi->i_nlink);
1479 vi->i_mtime = base_vi->i_mtime;
1480 vi->i_ctime = base_vi->i_ctime;
1481 vi->i_atime = base_vi->i_atime;
1482 vi->i_generation = ni->seq_no = base_ni->seq_no;
1483 /* Set inode type to zero but preserve permissions. */
1484 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1485 /* Map the mft record for the base inode. */
1486 m = map_mft_record(base_ni);
1487 if (IS_ERR(m)) {
1488 err = PTR_ERR(m);
1489 goto err_out;
1490 }
1491 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1492 if (!ctx) {
1493 err = -ENOMEM;
1494 goto unm_err_out;
1495 }
1496 /* Find the index root attribute. */
1497 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1498 CASE_SENSITIVE, 0, NULL, 0, ctx);
1499 if (unlikely(err)) {
1500 if (err == -ENOENT)
1501 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1502 "missing.");
1503 goto unm_err_out;
1504 }
1505 a = ctx->attr;
1506 /* Set up the state. */
1507 if (unlikely(a->non_resident)) {
1508 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1509 goto unm_err_out;
1510 }
1511 /* Ensure the attribute name is placed before the value. */
1512 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1513 le16_to_cpu(a->data.resident.value_offset)))) {
1514 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1515 "after the attribute value.");
1516 goto unm_err_out;
1517 }
1518 /*
1519 * Compressed/encrypted/sparse index root is not allowed, except for
1520 * directories of course but those are not dealt with here.
1521 */
1522 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1523 ATTR_IS_SPARSE)) {
1524 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1525 "root attribute.");
1526 goto unm_err_out;
1527 }
1528 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1529 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1530 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1531 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1532 goto unm_err_out;
1533 }
1534 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1535 if (index_end > ir_end) {
1536 ntfs_error(vi->i_sb, "Index is corrupt.");
1537 goto unm_err_out;
1538 }
1539 if (ir->type) {
1540 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1541 le32_to_cpu(ir->type));
1542 goto unm_err_out;
1543 }
1544 ni->itype.index.collation_rule = ir->collation_rule;
1545 ntfs_debug("Index collation rule is 0x%x.",
1546 le32_to_cpu(ir->collation_rule));
1547 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1548 if (!is_power_of_2(ni->itype.index.block_size)) {
1549 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1550 "two.", ni->itype.index.block_size);
1551 goto unm_err_out;
1552 }
1553 if (ni->itype.index.block_size > PAGE_SIZE) {
1554 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1555 "(%ld) is not supported. Sorry.",
1556 ni->itype.index.block_size, PAGE_SIZE);
1557 err = -EOPNOTSUPP;
1558 goto unm_err_out;
1559 }
1560 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1561 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1562 "(%i) is not supported. Sorry.",
1563 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1564 err = -EOPNOTSUPP;
1565 goto unm_err_out;
1566 }
1567 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1568 /* Determine the size of a vcn in the index. */
1569 if (vol->cluster_size <= ni->itype.index.block_size) {
1570 ni->itype.index.vcn_size = vol->cluster_size;
1571 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1572 } else {
1573 ni->itype.index.vcn_size = vol->sector_size;
1574 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1575 }
1576 /* Check for presence of index allocation attribute. */
1577 if (!(ir->index.flags & LARGE_INDEX)) {
1578 /* No index allocation. */
1579 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1580 /* We are done with the mft record, so we release it. */
1581 ntfs_attr_put_search_ctx(ctx);
1582 unmap_mft_record(base_ni);
1583 m = NULL;
1584 ctx = NULL;
1585 goto skip_large_index_stuff;
1586 } /* LARGE_INDEX: Index allocation present. Setup state. */
1587 NInoSetIndexAllocPresent(ni);
1588 /* Find index allocation attribute. */
1589 ntfs_attr_reinit_search_ctx(ctx);
1590 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1591 CASE_SENSITIVE, 0, NULL, 0, ctx);
1592 if (unlikely(err)) {
1593 if (err == -ENOENT)
1594 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1595 "not present but $INDEX_ROOT "
1596 "indicated it is.");
1597 else
1598 ntfs_error(vi->i_sb, "Failed to lookup "
1599 "$INDEX_ALLOCATION attribute.");
1600 goto unm_err_out;
1601 }
1602 a = ctx->attr;
1603 if (!a->non_resident) {
1604 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1605 "resident.");
1606 goto unm_err_out;
1607 }
1608 /*
1609 * Ensure the attribute name is placed before the mapping pairs array.
1610 */
1611 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1612 le16_to_cpu(
1613 a->data.non_resident.mapping_pairs_offset)))) {
1614 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1615 "placed after the mapping pairs array.");
1616 goto unm_err_out;
1617 }
1618 if (a->flags & ATTR_IS_ENCRYPTED) {
1619 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1620 "encrypted.");
1621 goto unm_err_out;
1622 }
1623 if (a->flags & ATTR_IS_SPARSE) {
1624 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1625 goto unm_err_out;
1626 }
1627 if (a->flags & ATTR_COMPRESSION_MASK) {
1628 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1629 "compressed.");
1630 goto unm_err_out;
1631 }
1632 if (a->data.non_resident.lowest_vcn) {
1633 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1634 "attribute has non zero lowest_vcn.");
1635 goto unm_err_out;
1636 }
1637 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1638 ni->initialized_size = sle64_to_cpu(
1639 a->data.non_resident.initialized_size);
1640 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1641 /*
1642 * We are done with the mft record, so we release it. Otherwise
1643 * we would deadlock in ntfs_attr_iget().
1644 */
1645 ntfs_attr_put_search_ctx(ctx);
1646 unmap_mft_record(base_ni);
1647 m = NULL;
1648 ctx = NULL;
1649 /* Get the index bitmap attribute inode. */
1650 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1651 if (IS_ERR(bvi)) {
1652 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1653 err = PTR_ERR(bvi);
1654 goto unm_err_out;
1655 }
1656 bni = NTFS_I(bvi);
1657 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1658 NInoSparse(bni)) {
1659 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1660 "encrypted and/or sparse.");
1661 goto iput_unm_err_out;
1662 }
1663 /* Consistency check bitmap size vs. index allocation size. */
1664 bvi_size = i_size_read(bvi);
1665 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1666 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1667 "index allocation (0x%llx).", bvi_size << 3,
1668 vi->i_size);
1669 goto iput_unm_err_out;
1670 }
1671 iput(bvi);
1672skip_large_index_stuff:
1673 /* Setup the operations for this index inode. */
1674 vi->i_mapping->a_ops = &ntfs_mst_aops;
1675 vi->i_blocks = ni->allocated_size >> 9;
1676 /*
1677 * Make sure the base inode doesn't go away and attach it to the
1678 * index inode.
1679 */
1680 igrab(base_vi);
1681 ni->ext.base_ntfs_ino = base_ni;
1682 ni->nr_extents = -1;
1683
1684 ntfs_debug("Done.");
1685 return 0;
1686iput_unm_err_out:
1687 iput(bvi);
1688unm_err_out:
1689 if (!err)
1690 err = -EIO;
1691 if (ctx)
1692 ntfs_attr_put_search_ctx(ctx);
1693 if (m)
1694 unmap_mft_record(base_ni);
1695err_out:
1696 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1697 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1698 ni->name_len);
1699 make_bad_inode(vi);
1700 if (err != -EOPNOTSUPP && err != -ENOMEM)
1701 NVolSetErrors(vol);
1702 return err;
1703}
1704
1705/*
1706 * The MFT inode has special locking, so teach the lock validator
1707 * about this by splitting off the locking rules of the MFT from
1708 * the locking rules of other inodes. The MFT inode can never be
1709 * accessed from the VFS side (or even internally), only by the
1710 * map_mft functions.
1711 */
1712static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1713
1714/**
1715 * ntfs_read_inode_mount - special read_inode for mount time use only
1716 * @vi: inode to read
1717 *
1718 * Read inode FILE_MFT at mount time, only called with super_block lock
1719 * held from within the read_super() code path.
1720 *
1721 * This function exists because when it is called the page cache for $MFT/$DATA
1722 * is not initialized and hence we cannot get at the contents of mft records
1723 * by calling map_mft_record*().
1724 *
1725 * Further it needs to cope with the circular references problem, i.e. cannot
1726 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1727 * we do not know where the other extent mft records are yet and again, because
1728 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1729 * attribute list is actually present in $MFT inode.
1730 *
1731 * We solve these problems by starting with the $DATA attribute before anything
1732 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1733 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1734 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1735 * sufficient information for the next step to complete.
1736 *
1737 * This should work but there are two possible pit falls (see inline comments
1738 * below), but only time will tell if they are real pits or just smoke...
1739 */
1740int ntfs_read_inode_mount(struct inode *vi)
1741{
1742 VCN next_vcn, last_vcn, highest_vcn;
1743 s64 block;
1744 struct super_block *sb = vi->i_sb;
1745 ntfs_volume *vol = NTFS_SB(sb);
1746 struct buffer_head *bh;
1747 ntfs_inode *ni;
1748 MFT_RECORD *m = NULL;
1749 ATTR_RECORD *a;
1750 ntfs_attr_search_ctx *ctx;
1751 unsigned int i, nr_blocks;
1752 int err;
1753
1754 ntfs_debug("Entering.");
1755
1756 /* Initialize the ntfs specific part of @vi. */
1757 ntfs_init_big_inode(vi);
1758
1759 ni = NTFS_I(vi);
1760
1761 /* Setup the data attribute. It is special as it is mst protected. */
1762 NInoSetNonResident(ni);
1763 NInoSetMstProtected(ni);
1764 NInoSetSparseDisabled(ni);
1765 ni->type = AT_DATA;
1766 ni->name = NULL;
1767 ni->name_len = 0;
1768 /*
1769 * This sets up our little cheat allowing us to reuse the async read io
1770 * completion handler for directories.
1771 */
1772 ni->itype.index.block_size = vol->mft_record_size;
1773 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1774
1775 /* Very important! Needed to be able to call map_mft_record*(). */
1776 vol->mft_ino = vi;
1777
1778 /* Allocate enough memory to read the first mft record. */
1779 if (vol->mft_record_size > 64 * 1024) {
1780 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1781 vol->mft_record_size);
1782 goto err_out;
1783 }
1784 i = vol->mft_record_size;
1785 if (i < sb->s_blocksize)
1786 i = sb->s_blocksize;
1787 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1788 if (!m) {
1789 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1790 goto err_out;
1791 }
1792
1793 /* Determine the first block of the $MFT/$DATA attribute. */
1794 block = vol->mft_lcn << vol->cluster_size_bits >>
1795 sb->s_blocksize_bits;
1796 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1797 if (!nr_blocks)
1798 nr_blocks = 1;
1799
1800 /* Load $MFT/$DATA's first mft record. */
1801 for (i = 0; i < nr_blocks; i++) {
1802 bh = sb_bread(sb, block++);
1803 if (!bh) {
1804 ntfs_error(sb, "Device read failed.");
1805 goto err_out;
1806 }
1807 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1808 sb->s_blocksize);
1809 brelse(bh);
1810 }
1811
1812 /* Apply the mst fixups. */
1813 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1814 /* FIXME: Try to use the $MFTMirr now. */
1815 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1816 goto err_out;
1817 }
1818
1819 /* Need this to sanity check attribute list references to $MFT. */
1820 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1821
1822 /* Provides readpage() for map_mft_record(). */
1823 vi->i_mapping->a_ops = &ntfs_mst_aops;
1824
1825 ctx = ntfs_attr_get_search_ctx(ni, m);
1826 if (!ctx) {
1827 err = -ENOMEM;
1828 goto err_out;
1829 }
1830
1831 /* Find the attribute list attribute if present. */
1832 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1833 if (err) {
1834 if (unlikely(err != -ENOENT)) {
1835 ntfs_error(sb, "Failed to lookup attribute list "
1836 "attribute. You should run chkdsk.");
1837 goto put_err_out;
1838 }
1839 } else /* if (!err) */ {
1840 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1841 u8 *al_end;
1842 static const char *es = " Not allowed. $MFT is corrupt. "
1843 "You should run chkdsk.";
1844
1845 ntfs_debug("Attribute list attribute found in $MFT.");
1846 NInoSetAttrList(ni);
1847 a = ctx->attr;
1848 if (a->flags & ATTR_COMPRESSION_MASK) {
1849 ntfs_error(sb, "Attribute list attribute is "
1850 "compressed.%s", es);
1851 goto put_err_out;
1852 }
1853 if (a->flags & ATTR_IS_ENCRYPTED ||
1854 a->flags & ATTR_IS_SPARSE) {
1855 if (a->non_resident) {
1856 ntfs_error(sb, "Non-resident attribute list "
1857 "attribute is encrypted/"
1858 "sparse.%s", es);
1859 goto put_err_out;
1860 }
1861 ntfs_warning(sb, "Resident attribute list attribute "
1862 "in $MFT system file is marked "
1863 "encrypted/sparse which is not true. "
1864 "However, Windows allows this and "
1865 "chkdsk does not detect or correct it "
1866 "so we will just ignore the invalid "
1867 "flags and pretend they are not set.");
1868 }
1869 /* Now allocate memory for the attribute list. */
1870 ni->attr_list_size = (u32)ntfs_attr_size(a);
1871 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1872 if (!ni->attr_list) {
1873 ntfs_error(sb, "Not enough memory to allocate buffer "
1874 "for attribute list.");
1875 goto put_err_out;
1876 }
1877 if (a->non_resident) {
1878 NInoSetAttrListNonResident(ni);
1879 if (a->data.non_resident.lowest_vcn) {
1880 ntfs_error(sb, "Attribute list has non zero "
1881 "lowest_vcn. $MFT is corrupt. "
1882 "You should run chkdsk.");
1883 goto put_err_out;
1884 }
1885 /* Setup the runlist. */
1886 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1887 a, NULL);
1888 if (IS_ERR(ni->attr_list_rl.rl)) {
1889 err = PTR_ERR(ni->attr_list_rl.rl);
1890 ni->attr_list_rl.rl = NULL;
1891 ntfs_error(sb, "Mapping pairs decompression "
1892 "failed with error code %i.",
1893 -err);
1894 goto put_err_out;
1895 }
1896 /* Now load the attribute list. */
1897 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1898 ni->attr_list, ni->attr_list_size,
1899 sle64_to_cpu(a->data.
1900 non_resident.initialized_size)))) {
1901 ntfs_error(sb, "Failed to load attribute list "
1902 "attribute with error code %i.",
1903 -err);
1904 goto put_err_out;
1905 }
1906 } else /* if (!ctx.attr->non_resident) */ {
1907 if ((u8*)a + le16_to_cpu(
1908 a->data.resident.value_offset) +
1909 le32_to_cpu(
1910 a->data.resident.value_length) >
1911 (u8*)ctx->mrec + vol->mft_record_size) {
1912 ntfs_error(sb, "Corrupt attribute list "
1913 "attribute.");
1914 goto put_err_out;
1915 }
1916 /* Now copy the attribute list. */
1917 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1918 a->data.resident.value_offset),
1919 le32_to_cpu(
1920 a->data.resident.value_length));
1921 }
1922 /* The attribute list is now setup in memory. */
1923 /*
1924 * FIXME: I don't know if this case is actually possible.
1925 * According to logic it is not possible but I have seen too
1926 * many weird things in MS software to rely on logic... Thus we
1927 * perform a manual search and make sure the first $MFT/$DATA
1928 * extent is in the base inode. If it is not we abort with an
1929 * error and if we ever see a report of this error we will need
1930 * to do some magic in order to have the necessary mft record
1931 * loaded and in the right place in the page cache. But
1932 * hopefully logic will prevail and this never happens...
1933 */
1934 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1935 al_end = (u8*)al_entry + ni->attr_list_size;
1936 for (;; al_entry = next_al_entry) {
1937 /* Out of bounds check. */
1938 if ((u8*)al_entry < ni->attr_list ||
1939 (u8*)al_entry > al_end)
1940 goto em_put_err_out;
1941 /* Catch the end of the attribute list. */
1942 if ((u8*)al_entry == al_end)
1943 goto em_put_err_out;
1944 if (!al_entry->length)
1945 goto em_put_err_out;
1946 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1947 le16_to_cpu(al_entry->length) > al_end)
1948 goto em_put_err_out;
1949 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1950 le16_to_cpu(al_entry->length));
1951 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1952 goto em_put_err_out;
1953 if (AT_DATA != al_entry->type)
1954 continue;
1955 /* We want an unnamed attribute. */
1956 if (al_entry->name_length)
1957 goto em_put_err_out;
1958 /* Want the first entry, i.e. lowest_vcn == 0. */
1959 if (al_entry->lowest_vcn)
1960 goto em_put_err_out;
1961 /* First entry has to be in the base mft record. */
1962 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1963 /* MFT references do not match, logic fails. */
1964 ntfs_error(sb, "BUG: The first $DATA extent "
1965 "of $MFT is not in the base "
1966 "mft record. Please report "
1967 "you saw this message to "
1968 "linux-ntfs-dev@lists."
1969 "sourceforge.net");
1970 goto put_err_out;
1971 } else {
1972 /* Sequence numbers must match. */
1973 if (MSEQNO_LE(al_entry->mft_reference) !=
1974 ni->seq_no)
1975 goto em_put_err_out;
1976 /* Got it. All is ok. We can stop now. */
1977 break;
1978 }
1979 }
1980 }
1981
1982 ntfs_attr_reinit_search_ctx(ctx);
1983
1984 /* Now load all attribute extents. */
1985 a = NULL;
1986 next_vcn = last_vcn = highest_vcn = 0;
1987 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
1988 ctx))) {
1989 runlist_element *nrl;
1990
1991 /* Cache the current attribute. */
1992 a = ctx->attr;
1993 /* $MFT must be non-resident. */
1994 if (!a->non_resident) {
1995 ntfs_error(sb, "$MFT must be non-resident but a "
1996 "resident extent was found. $MFT is "
1997 "corrupt. Run chkdsk.");
1998 goto put_err_out;
1999 }
2000 /* $MFT must be uncompressed and unencrypted. */
2001 if (a->flags & ATTR_COMPRESSION_MASK ||
2002 a->flags & ATTR_IS_ENCRYPTED ||
2003 a->flags & ATTR_IS_SPARSE) {
2004 ntfs_error(sb, "$MFT must be uncompressed, "
2005 "non-sparse, and unencrypted but a "
2006 "compressed/sparse/encrypted extent "
2007 "was found. $MFT is corrupt. Run "
2008 "chkdsk.");
2009 goto put_err_out;
2010 }
2011 /*
2012 * Decompress the mapping pairs array of this extent and merge
2013 * the result into the existing runlist. No need for locking
2014 * as we have exclusive access to the inode at this time and we
2015 * are a mount in progress task, too.
2016 */
2017 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2018 if (IS_ERR(nrl)) {
2019 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2020 "failed with error code %ld. $MFT is "
2021 "corrupt.", PTR_ERR(nrl));
2022 goto put_err_out;
2023 }
2024 ni->runlist.rl = nrl;
2025
2026 /* Are we in the first extent? */
2027 if (!next_vcn) {
2028 if (a->data.non_resident.lowest_vcn) {
2029 ntfs_error(sb, "First extent of $DATA "
2030 "attribute has non zero "
2031 "lowest_vcn. $MFT is corrupt. "
2032 "You should run chkdsk.");
2033 goto put_err_out;
2034 }
2035 /* Get the last vcn in the $DATA attribute. */
2036 last_vcn = sle64_to_cpu(
2037 a->data.non_resident.allocated_size)
2038 >> vol->cluster_size_bits;
2039 /* Fill in the inode size. */
2040 vi->i_size = sle64_to_cpu(
2041 a->data.non_resident.data_size);
2042 ni->initialized_size = sle64_to_cpu(
2043 a->data.non_resident.initialized_size);
2044 ni->allocated_size = sle64_to_cpu(
2045 a->data.non_resident.allocated_size);
2046 /*
2047 * Verify the number of mft records does not exceed
2048 * 2^32 - 1.
2049 */
2050 if ((vi->i_size >> vol->mft_record_size_bits) >=
2051 (1ULL << 32)) {
2052 ntfs_error(sb, "$MFT is too big! Aborting.");
2053 goto put_err_out;
2054 }
2055 /*
2056 * We have got the first extent of the runlist for
2057 * $MFT which means it is now relatively safe to call
2058 * the normal ntfs_read_inode() function.
2059 * Complete reading the inode, this will actually
2060 * re-read the mft record for $MFT, this time entering
2061 * it into the page cache with which we complete the
2062 * kick start of the volume. It should be safe to do
2063 * this now as the first extent of $MFT/$DATA is
2064 * already known and we would hope that we don't need
2065 * further extents in order to find the other
2066 * attributes belonging to $MFT. Only time will tell if
2067 * this is really the case. If not we will have to play
2068 * magic at this point, possibly duplicating a lot of
2069 * ntfs_read_inode() at this point. We will need to
2070 * ensure we do enough of its work to be able to call
2071 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2072 * hope this never happens...
2073 */
2074 ntfs_read_locked_inode(vi);
2075 if (is_bad_inode(vi)) {
2076 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2077 "failed. BUG or corrupt $MFT. "
2078 "Run chkdsk and if no errors "
2079 "are found, please report you "
2080 "saw this message to "
2081 "linux-ntfs-dev@lists."
2082 "sourceforge.net");
2083 ntfs_attr_put_search_ctx(ctx);
2084 /* Revert to the safe super operations. */
2085 ntfs_free(m);
2086 return -1;
2087 }
2088 /*
2089 * Re-initialize some specifics about $MFT's inode as
2090 * ntfs_read_inode() will have set up the default ones.
2091 */
2092 /* Set uid and gid to root. */
2093 vi->i_uid = GLOBAL_ROOT_UID;
2094 vi->i_gid = GLOBAL_ROOT_GID;
2095 /* Regular file. No access for anyone. */
2096 vi->i_mode = S_IFREG;
2097 /* No VFS initiated operations allowed for $MFT. */
2098 vi->i_op = &ntfs_empty_inode_ops;
2099 vi->i_fop = &ntfs_empty_file_ops;
2100 }
2101
2102 /* Get the lowest vcn for the next extent. */
2103 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2104 next_vcn = highest_vcn + 1;
2105
2106 /* Only one extent or error, which we catch below. */
2107 if (next_vcn <= 0)
2108 break;
2109
2110 /* Avoid endless loops due to corruption. */
2111 if (next_vcn < sle64_to_cpu(
2112 a->data.non_resident.lowest_vcn)) {
2113 ntfs_error(sb, "$MFT has corrupt attribute list "
2114 "attribute. Run chkdsk.");
2115 goto put_err_out;
2116 }
2117 }
2118 if (err != -ENOENT) {
2119 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2120 "$MFT is corrupt. Run chkdsk.");
2121 goto put_err_out;
2122 }
2123 if (!a) {
2124 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2125 "corrupt. Run chkdsk.");
2126 goto put_err_out;
2127 }
2128 if (highest_vcn && highest_vcn != last_vcn - 1) {
2129 ntfs_error(sb, "Failed to load the complete runlist for "
2130 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2131 "Run chkdsk.");
2132 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2133 (unsigned long long)highest_vcn,
2134 (unsigned long long)last_vcn - 1);
2135 goto put_err_out;
2136 }
2137 ntfs_attr_put_search_ctx(ctx);
2138 ntfs_debug("Done.");
2139 ntfs_free(m);
2140
2141 /*
2142 * Split the locking rules of the MFT inode from the
2143 * locking rules of other inodes:
2144 */
2145 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2146 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2147
2148 return 0;
2149
2150em_put_err_out:
2151 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2152 "attribute list. $MFT is corrupt. Run chkdsk.");
2153put_err_out:
2154 ntfs_attr_put_search_ctx(ctx);
2155err_out:
2156 ntfs_error(sb, "Failed. Marking inode as bad.");
2157 make_bad_inode(vi);
2158 ntfs_free(m);
2159 return -1;
2160}
2161
2162static void __ntfs_clear_inode(ntfs_inode *ni)
2163{
2164 /* Free all alocated memory. */
2165 down_write(&ni->runlist.lock);
2166 if (ni->runlist.rl) {
2167 ntfs_free(ni->runlist.rl);
2168 ni->runlist.rl = NULL;
2169 }
2170 up_write(&ni->runlist.lock);
2171
2172 if (ni->attr_list) {
2173 ntfs_free(ni->attr_list);
2174 ni->attr_list = NULL;
2175 }
2176
2177 down_write(&ni->attr_list_rl.lock);
2178 if (ni->attr_list_rl.rl) {
2179 ntfs_free(ni->attr_list_rl.rl);
2180 ni->attr_list_rl.rl = NULL;
2181 }
2182 up_write(&ni->attr_list_rl.lock);
2183
2184 if (ni->name_len && ni->name != I30) {
2185 /* Catch bugs... */
2186 BUG_ON(!ni->name);
2187 kfree(ni->name);
2188 }
2189}
2190
2191void ntfs_clear_extent_inode(ntfs_inode *ni)
2192{
2193 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2194
2195 BUG_ON(NInoAttr(ni));
2196 BUG_ON(ni->nr_extents != -1);
2197
2198#ifdef NTFS_RW
2199 if (NInoDirty(ni)) {
2200 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2201 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2202 "Losing data! This is a BUG!!!");
2203 // FIXME: Do something!!!
2204 }
2205#endif /* NTFS_RW */
2206
2207 __ntfs_clear_inode(ni);
2208
2209 /* Bye, bye... */
2210 ntfs_destroy_extent_inode(ni);
2211}
2212
2213/**
2214 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2215 * @vi: vfs inode pending annihilation
2216 *
2217 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2218 * is called, which deallocates all memory belonging to the NTFS specific part
2219 * of the inode and returns.
2220 *
2221 * If the MFT record is dirty, we commit it before doing anything else.
2222 */
2223void ntfs_evict_big_inode(struct inode *vi)
2224{
2225 ntfs_inode *ni = NTFS_I(vi);
2226
2227 truncate_inode_pages_final(&vi->i_data);
2228 clear_inode(vi);
2229
2230#ifdef NTFS_RW
2231 if (NInoDirty(ni)) {
2232 bool was_bad = (is_bad_inode(vi));
2233
2234 /* Committing the inode also commits all extent inodes. */
2235 ntfs_commit_inode(vi);
2236
2237 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2238 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2239 "0x%lx. Losing data!", vi->i_ino);
2240 // FIXME: Do something!!!
2241 }
2242 }
2243#endif /* NTFS_RW */
2244
2245 /* No need to lock at this stage as no one else has a reference. */
2246 if (ni->nr_extents > 0) {
2247 int i;
2248
2249 for (i = 0; i < ni->nr_extents; i++)
2250 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2251 kfree(ni->ext.extent_ntfs_inos);
2252 }
2253
2254 __ntfs_clear_inode(ni);
2255
2256 if (NInoAttr(ni)) {
2257 /* Release the base inode if we are holding it. */
2258 if (ni->nr_extents == -1) {
2259 iput(VFS_I(ni->ext.base_ntfs_ino));
2260 ni->nr_extents = 0;
2261 ni->ext.base_ntfs_ino = NULL;
2262 }
2263 }
2264 BUG_ON(ni->page);
2265 if (!atomic_dec_and_test(&ni->count))
2266 BUG();
2267 return;
2268}
2269
2270/**
2271 * ntfs_show_options - show mount options in /proc/mounts
2272 * @sf: seq_file in which to write our mount options
2273 * @root: root of the mounted tree whose mount options to display
2274 *
2275 * Called by the VFS once for each mounted ntfs volume when someone reads
2276 * /proc/mounts in order to display the NTFS specific mount options of each
2277 * mount. The mount options of fs specified by @root are written to the seq file
2278 * @sf and success is returned.
2279 */
2280int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2281{
2282 ntfs_volume *vol = NTFS_SB(root->d_sb);
2283 int i;
2284
2285 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2286 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2287 if (vol->fmask == vol->dmask)
2288 seq_printf(sf, ",umask=0%o", vol->fmask);
2289 else {
2290 seq_printf(sf, ",fmask=0%o", vol->fmask);
2291 seq_printf(sf, ",dmask=0%o", vol->dmask);
2292 }
2293 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2294 if (NVolCaseSensitive(vol))
2295 seq_printf(sf, ",case_sensitive");
2296 if (NVolShowSystemFiles(vol))
2297 seq_printf(sf, ",show_sys_files");
2298 if (!NVolSparseEnabled(vol))
2299 seq_printf(sf, ",disable_sparse");
2300 for (i = 0; on_errors_arr[i].val; i++) {
2301 if (on_errors_arr[i].val & vol->on_errors)
2302 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2303 }
2304 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2305 return 0;
2306}
2307
2308#ifdef NTFS_RW
2309
2310static const char *es = " Leaving inconsistent metadata. Unmount and run "
2311 "chkdsk.";
2312
2313/**
2314 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2315 * @vi: inode for which the i_size was changed
2316 *
2317 * We only support i_size changes for normal files at present, i.e. not
2318 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2319 * below.
2320 *
2321 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2322 * that the change is allowed.
2323 *
2324 * This implies for us that @vi is a file inode rather than a directory, index,
2325 * or attribute inode as well as that @vi is a base inode.
2326 *
2327 * Returns 0 on success or -errno on error.
2328 *
2329 * Called with ->i_mutex held.
2330 */
2331int ntfs_truncate(struct inode *vi)
2332{
2333 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2334 VCN highest_vcn;
2335 unsigned long flags;
2336 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2337 ntfs_volume *vol = ni->vol;
2338 ntfs_attr_search_ctx *ctx;
2339 MFT_RECORD *m;
2340 ATTR_RECORD *a;
2341 const char *te = " Leaving file length out of sync with i_size.";
2342 int err, mp_size, size_change, alloc_change;
2343 u32 attr_len;
2344
2345 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2346 BUG_ON(NInoAttr(ni));
2347 BUG_ON(S_ISDIR(vi->i_mode));
2348 BUG_ON(NInoMstProtected(ni));
2349 BUG_ON(ni->nr_extents < 0);
2350retry_truncate:
2351 /*
2352 * Lock the runlist for writing and map the mft record to ensure it is
2353 * safe to mess with the attribute runlist and sizes.
2354 */
2355 down_write(&ni->runlist.lock);
2356 if (!NInoAttr(ni))
2357 base_ni = ni;
2358 else
2359 base_ni = ni->ext.base_ntfs_ino;
2360 m = map_mft_record(base_ni);
2361 if (IS_ERR(m)) {
2362 err = PTR_ERR(m);
2363 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2364 "(error code %d).%s", vi->i_ino, err, te);
2365 ctx = NULL;
2366 m = NULL;
2367 goto old_bad_out;
2368 }
2369 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2370 if (unlikely(!ctx)) {
2371 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2372 "inode 0x%lx (not enough memory).%s",
2373 vi->i_ino, te);
2374 err = -ENOMEM;
2375 goto old_bad_out;
2376 }
2377 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2378 CASE_SENSITIVE, 0, NULL, 0, ctx);
2379 if (unlikely(err)) {
2380 if (err == -ENOENT) {
2381 ntfs_error(vi->i_sb, "Open attribute is missing from "
2382 "mft record. Inode 0x%lx is corrupt. "
2383 "Run chkdsk.%s", vi->i_ino, te);
2384 err = -EIO;
2385 } else
2386 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2387 "inode 0x%lx (error code %d).%s",
2388 vi->i_ino, err, te);
2389 goto old_bad_out;
2390 }
2391 m = ctx->mrec;
2392 a = ctx->attr;
2393 /*
2394 * The i_size of the vfs inode is the new size for the attribute value.
2395 */
2396 new_size = i_size_read(vi);
2397 /* The current size of the attribute value is the old size. */
2398 old_size = ntfs_attr_size(a);
2399 /* Calculate the new allocated size. */
2400 if (NInoNonResident(ni))
2401 new_alloc_size = (new_size + vol->cluster_size - 1) &
2402 ~(s64)vol->cluster_size_mask;
2403 else
2404 new_alloc_size = (new_size + 7) & ~7;
2405 /* The current allocated size is the old allocated size. */
2406 read_lock_irqsave(&ni->size_lock, flags);
2407 old_alloc_size = ni->allocated_size;
2408 read_unlock_irqrestore(&ni->size_lock, flags);
2409 /*
2410 * The change in the file size. This will be 0 if no change, >0 if the
2411 * size is growing, and <0 if the size is shrinking.
2412 */
2413 size_change = -1;
2414 if (new_size - old_size >= 0) {
2415 size_change = 1;
2416 if (new_size == old_size)
2417 size_change = 0;
2418 }
2419 /* As above for the allocated size. */
2420 alloc_change = -1;
2421 if (new_alloc_size - old_alloc_size >= 0) {
2422 alloc_change = 1;
2423 if (new_alloc_size == old_alloc_size)
2424 alloc_change = 0;
2425 }
2426 /*
2427 * If neither the size nor the allocation are being changed there is
2428 * nothing to do.
2429 */
2430 if (!size_change && !alloc_change)
2431 goto unm_done;
2432 /* If the size is changing, check if new size is allowed in $AttrDef. */
2433 if (size_change) {
2434 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2435 if (unlikely(err)) {
2436 if (err == -ERANGE) {
2437 ntfs_error(vol->sb, "Truncate would cause the "
2438 "inode 0x%lx to %simum size "
2439 "for its attribute type "
2440 "(0x%x). Aborting truncate.",
2441 vi->i_ino,
2442 new_size > old_size ? "exceed "
2443 "the max" : "go under the min",
2444 le32_to_cpu(ni->type));
2445 err = -EFBIG;
2446 } else {
2447 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2448 "attribute type 0x%x. "
2449 "Aborting truncate.",
2450 vi->i_ino,
2451 le32_to_cpu(ni->type));
2452 err = -EIO;
2453 }
2454 /* Reset the vfs inode size to the old size. */
2455 i_size_write(vi, old_size);
2456 goto err_out;
2457 }
2458 }
2459 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2460 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2461 "supported yet for %s files, ignoring.",
2462 NInoCompressed(ni) ? "compressed" :
2463 "encrypted");
2464 err = -EOPNOTSUPP;
2465 goto bad_out;
2466 }
2467 if (a->non_resident)
2468 goto do_non_resident_truncate;
2469 BUG_ON(NInoNonResident(ni));
2470 /* Resize the attribute record to best fit the new attribute size. */
2471 if (new_size < vol->mft_record_size &&
2472 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2473 /* The resize succeeded! */
2474 flush_dcache_mft_record_page(ctx->ntfs_ino);
2475 mark_mft_record_dirty(ctx->ntfs_ino);
2476 write_lock_irqsave(&ni->size_lock, flags);
2477 /* Update the sizes in the ntfs inode and all is done. */
2478 ni->allocated_size = le32_to_cpu(a->length) -
2479 le16_to_cpu(a->data.resident.value_offset);
2480 /*
2481 * Note ntfs_resident_attr_value_resize() has already done any
2482 * necessary data clearing in the attribute record. When the
2483 * file is being shrunk vmtruncate() will already have cleared
2484 * the top part of the last partial page, i.e. since this is
2485 * the resident case this is the page with index 0. However,
2486 * when the file is being expanded, the page cache page data
2487 * between the old data_size, i.e. old_size, and the new_size
2488 * has not been zeroed. Fortunately, we do not need to zero it
2489 * either since on one hand it will either already be zero due
2490 * to both readpage and writepage clearing partial page data
2491 * beyond i_size in which case there is nothing to do or in the
2492 * case of the file being mmap()ped at the same time, POSIX
2493 * specifies that the behaviour is unspecified thus we do not
2494 * have to do anything. This means that in our implementation
2495 * in the rare case that the file is mmap()ped and a write
2496 * occurred into the mmap()ped region just beyond the file size
2497 * and writepage has not yet been called to write out the page
2498 * (which would clear the area beyond the file size) and we now
2499 * extend the file size to incorporate this dirty region
2500 * outside the file size, a write of the page would result in
2501 * this data being written to disk instead of being cleared.
2502 * Given both POSIX and the Linux mmap(2) man page specify that
2503 * this corner case is undefined, we choose to leave it like
2504 * that as this is much simpler for us as we cannot lock the
2505 * relevant page now since we are holding too many ntfs locks
2506 * which would result in a lock reversal deadlock.
2507 */
2508 ni->initialized_size = new_size;
2509 write_unlock_irqrestore(&ni->size_lock, flags);
2510 goto unm_done;
2511 }
2512 /* If the above resize failed, this must be an attribute extension. */
2513 BUG_ON(size_change < 0);
2514 /*
2515 * We have to drop all the locks so we can call
2516 * ntfs_attr_make_non_resident(). This could be optimised by try-
2517 * locking the first page cache page and only if that fails dropping
2518 * the locks, locking the page, and redoing all the locking and
2519 * lookups. While this would be a huge optimisation, it is not worth
2520 * it as this is definitely a slow code path as it only ever can happen
2521 * once for any given file.
2522 */
2523 ntfs_attr_put_search_ctx(ctx);
2524 unmap_mft_record(base_ni);
2525 up_write(&ni->runlist.lock);
2526 /*
2527 * Not enough space in the mft record, try to make the attribute
2528 * non-resident and if successful restart the truncation process.
2529 */
2530 err = ntfs_attr_make_non_resident(ni, old_size);
2531 if (likely(!err))
2532 goto retry_truncate;
2533 /*
2534 * Could not make non-resident. If this is due to this not being
2535 * permitted for this attribute type or there not being enough space,
2536 * try to make other attributes non-resident. Otherwise fail.
2537 */
2538 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2539 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2540 "type 0x%x, because the conversion from "
2541 "resident to non-resident attribute failed "
2542 "with error code %i.", vi->i_ino,
2543 (unsigned)le32_to_cpu(ni->type), err);
2544 if (err != -ENOMEM)
2545 err = -EIO;
2546 goto conv_err_out;
2547 }
2548 /* TODO: Not implemented from here, abort. */
2549 if (err == -ENOSPC)
2550 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2551 "disk for the non-resident attribute value. "
2552 "This case is not implemented yet.");
2553 else /* if (err == -EPERM) */
2554 ntfs_error(vol->sb, "This attribute type may not be "
2555 "non-resident. This case is not implemented "
2556 "yet.");
2557 err = -EOPNOTSUPP;
2558 goto conv_err_out;
2559#if 0
2560 // TODO: Attempt to make other attributes non-resident.
2561 if (!err)
2562 goto do_resident_extend;
2563 /*
2564 * Both the attribute list attribute and the standard information
2565 * attribute must remain in the base inode. Thus, if this is one of
2566 * these attributes, we have to try to move other attributes out into
2567 * extent mft records instead.
2568 */
2569 if (ni->type == AT_ATTRIBUTE_LIST ||
2570 ni->type == AT_STANDARD_INFORMATION) {
2571 // TODO: Attempt to move other attributes into extent mft
2572 // records.
2573 err = -EOPNOTSUPP;
2574 if (!err)
2575 goto do_resident_extend;
2576 goto err_out;
2577 }
2578 // TODO: Attempt to move this attribute to an extent mft record, but
2579 // only if it is not already the only attribute in an mft record in
2580 // which case there would be nothing to gain.
2581 err = -EOPNOTSUPP;
2582 if (!err)
2583 goto do_resident_extend;
2584 /* There is nothing we can do to make enough space. )-: */
2585 goto err_out;
2586#endif
2587do_non_resident_truncate:
2588 BUG_ON(!NInoNonResident(ni));
2589 if (alloc_change < 0) {
2590 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2591 if (highest_vcn > 0 &&
2592 old_alloc_size >> vol->cluster_size_bits >
2593 highest_vcn + 1) {
2594 /*
2595 * This attribute has multiple extents. Not yet
2596 * supported.
2597 */
2598 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2599 "attribute type 0x%x, because the "
2600 "attribute is highly fragmented (it "
2601 "consists of multiple extents) and "
2602 "this case is not implemented yet.",
2603 vi->i_ino,
2604 (unsigned)le32_to_cpu(ni->type));
2605 err = -EOPNOTSUPP;
2606 goto bad_out;
2607 }
2608 }
2609 /*
2610 * If the size is shrinking, need to reduce the initialized_size and
2611 * the data_size before reducing the allocation.
2612 */
2613 if (size_change < 0) {
2614 /*
2615 * Make the valid size smaller (i_size is already up-to-date).
2616 */
2617 write_lock_irqsave(&ni->size_lock, flags);
2618 if (new_size < ni->initialized_size) {
2619 ni->initialized_size = new_size;
2620 a->data.non_resident.initialized_size =
2621 cpu_to_sle64(new_size);
2622 }
2623 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2624 write_unlock_irqrestore(&ni->size_lock, flags);
2625 flush_dcache_mft_record_page(ctx->ntfs_ino);
2626 mark_mft_record_dirty(ctx->ntfs_ino);
2627 /* If the allocated size is not changing, we are done. */
2628 if (!alloc_change)
2629 goto unm_done;
2630 /*
2631 * If the size is shrinking it makes no sense for the
2632 * allocation to be growing.
2633 */
2634 BUG_ON(alloc_change > 0);
2635 } else /* if (size_change >= 0) */ {
2636 /*
2637 * The file size is growing or staying the same but the
2638 * allocation can be shrinking, growing or staying the same.
2639 */
2640 if (alloc_change > 0) {
2641 /*
2642 * We need to extend the allocation and possibly update
2643 * the data size. If we are updating the data size,
2644 * since we are not touching the initialized_size we do
2645 * not need to worry about the actual data on disk.
2646 * And as far as the page cache is concerned, there
2647 * will be no pages beyond the old data size and any
2648 * partial region in the last page between the old and
2649 * new data size (or the end of the page if the new
2650 * data size is outside the page) does not need to be
2651 * modified as explained above for the resident
2652 * attribute truncate case. To do this, we simply drop
2653 * the locks we hold and leave all the work to our
2654 * friendly helper ntfs_attr_extend_allocation().
2655 */
2656 ntfs_attr_put_search_ctx(ctx);
2657 unmap_mft_record(base_ni);
2658 up_write(&ni->runlist.lock);
2659 err = ntfs_attr_extend_allocation(ni, new_size,
2660 size_change > 0 ? new_size : -1, -1);
2661 /*
2662 * ntfs_attr_extend_allocation() will have done error
2663 * output already.
2664 */
2665 goto done;
2666 }
2667 if (!alloc_change)
2668 goto alloc_done;
2669 }
2670 /* alloc_change < 0 */
2671 /* Free the clusters. */
2672 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2673 vol->cluster_size_bits, -1, ctx);
2674 m = ctx->mrec;
2675 a = ctx->attr;
2676 if (unlikely(nr_freed < 0)) {
2677 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2678 "%lli). Unmount and run chkdsk to recover "
2679 "the lost cluster(s).", (long long)nr_freed);
2680 NVolSetErrors(vol);
2681 nr_freed = 0;
2682 }
2683 /* Truncate the runlist. */
2684 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2685 new_alloc_size >> vol->cluster_size_bits);
2686 /*
2687 * If the runlist truncation failed and/or the search context is no
2688 * longer valid, we cannot resize the attribute record or build the
2689 * mapping pairs array thus we mark the inode bad so that no access to
2690 * the freed clusters can happen.
2691 */
2692 if (unlikely(err || IS_ERR(m))) {
2693 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2694 IS_ERR(m) ?
2695 "restore attribute search context" :
2696 "truncate attribute runlist",
2697 IS_ERR(m) ? PTR_ERR(m) : err, es);
2698 err = -EIO;
2699 goto bad_out;
2700 }
2701 /* Get the size for the shrunk mapping pairs array for the runlist. */
2702 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2703 if (unlikely(mp_size <= 0)) {
2704 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2705 "attribute type 0x%x, because determining the "
2706 "size for the mapping pairs failed with error "
2707 "code %i.%s", vi->i_ino,
2708 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2709 err = -EIO;
2710 goto bad_out;
2711 }
2712 /*
2713 * Shrink the attribute record for the new mapping pairs array. Note,
2714 * this cannot fail since we are making the attribute smaller thus by
2715 * definition there is enough space to do so.
2716 */
2717 attr_len = le32_to_cpu(a->length);
2718 err = ntfs_attr_record_resize(m, a, mp_size +
2719 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2720 BUG_ON(err);
2721 /*
2722 * Generate the mapping pairs array directly into the attribute record.
2723 */
2724 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2725 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2726 mp_size, ni->runlist.rl, 0, -1, NULL);
2727 if (unlikely(err)) {
2728 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2729 "attribute type 0x%x, because building the "
2730 "mapping pairs failed with error code %i.%s",
2731 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2732 err, es);
2733 err = -EIO;
2734 goto bad_out;
2735 }
2736 /* Update the allocated/compressed size as well as the highest vcn. */
2737 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2738 vol->cluster_size_bits) - 1);
2739 write_lock_irqsave(&ni->size_lock, flags);
2740 ni->allocated_size = new_alloc_size;
2741 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2742 if (NInoSparse(ni) || NInoCompressed(ni)) {
2743 if (nr_freed) {
2744 ni->itype.compressed.size -= nr_freed <<
2745 vol->cluster_size_bits;
2746 BUG_ON(ni->itype.compressed.size < 0);
2747 a->data.non_resident.compressed_size = cpu_to_sle64(
2748 ni->itype.compressed.size);
2749 vi->i_blocks = ni->itype.compressed.size >> 9;
2750 }
2751 } else
2752 vi->i_blocks = new_alloc_size >> 9;
2753 write_unlock_irqrestore(&ni->size_lock, flags);
2754 /*
2755 * We have shrunk the allocation. If this is a shrinking truncate we
2756 * have already dealt with the initialized_size and the data_size above
2757 * and we are done. If the truncate is only changing the allocation
2758 * and not the data_size, we are also done. If this is an extending
2759 * truncate, need to extend the data_size now which is ensured by the
2760 * fact that @size_change is positive.
2761 */
2762alloc_done:
2763 /*
2764 * If the size is growing, need to update it now. If it is shrinking,
2765 * we have already updated it above (before the allocation change).
2766 */
2767 if (size_change > 0)
2768 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2769 /* Ensure the modified mft record is written out. */
2770 flush_dcache_mft_record_page(ctx->ntfs_ino);
2771 mark_mft_record_dirty(ctx->ntfs_ino);
2772unm_done:
2773 ntfs_attr_put_search_ctx(ctx);
2774 unmap_mft_record(base_ni);
2775 up_write(&ni->runlist.lock);
2776done:
2777 /* Update the mtime and ctime on the base inode. */
2778 /* normally ->truncate shouldn't update ctime or mtime,
2779 * but ntfs did before so it got a copy & paste version
2780 * of file_update_time. one day someone should fix this
2781 * for real.
2782 */
2783 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2784 struct timespec64 now = current_time(VFS_I(base_ni));
2785 int sync_it = 0;
2786
2787 if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2788 !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now))
2789 sync_it = 1;
2790 VFS_I(base_ni)->i_mtime = now;
2791 VFS_I(base_ni)->i_ctime = now;
2792
2793 if (sync_it)
2794 mark_inode_dirty_sync(VFS_I(base_ni));
2795 }
2796
2797 if (likely(!err)) {
2798 NInoClearTruncateFailed(ni);
2799 ntfs_debug("Done.");
2800 }
2801 return err;
2802old_bad_out:
2803 old_size = -1;
2804bad_out:
2805 if (err != -ENOMEM && err != -EOPNOTSUPP)
2806 NVolSetErrors(vol);
2807 if (err != -EOPNOTSUPP)
2808 NInoSetTruncateFailed(ni);
2809 else if (old_size >= 0)
2810 i_size_write(vi, old_size);
2811err_out:
2812 if (ctx)
2813 ntfs_attr_put_search_ctx(ctx);
2814 if (m)
2815 unmap_mft_record(base_ni);
2816 up_write(&ni->runlist.lock);
2817out:
2818 ntfs_debug("Failed. Returning error code %i.", err);
2819 return err;
2820conv_err_out:
2821 if (err != -ENOMEM && err != -EOPNOTSUPP)
2822 NVolSetErrors(vol);
2823 if (err != -EOPNOTSUPP)
2824 NInoSetTruncateFailed(ni);
2825 else
2826 i_size_write(vi, old_size);
2827 goto out;
2828}
2829
2830/**
2831 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2832 * @vi: inode for which the i_size was changed
2833 *
2834 * Wrapper for ntfs_truncate() that has no return value.
2835 *
2836 * See ntfs_truncate() description above for details.
2837 */
2838#ifdef NTFS_RW
2839void ntfs_truncate_vfs(struct inode *vi) {
2840 ntfs_truncate(vi);
2841}
2842#endif
2843
2844/**
2845 * ntfs_setattr - called from notify_change() when an attribute is being changed
2846 * @dentry: dentry whose attributes to change
2847 * @attr: structure describing the attributes and the changes
2848 *
2849 * We have to trap VFS attempts to truncate the file described by @dentry as
2850 * soon as possible, because we do not implement changes in i_size yet. So we
2851 * abort all i_size changes here.
2852 *
2853 * We also abort all changes of user, group, and mode as we do not implement
2854 * the NTFS ACLs yet.
2855 *
2856 * Called with ->i_mutex held.
2857 */
2858int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2859{
2860 struct inode *vi = d_inode(dentry);
2861 int err;
2862 unsigned int ia_valid = attr->ia_valid;
2863
2864 err = setattr_prepare(dentry, attr);
2865 if (err)
2866 goto out;
2867 /* We do not support NTFS ACLs yet. */
2868 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2869 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2870 "supported yet, ignoring.");
2871 err = -EOPNOTSUPP;
2872 goto out;
2873 }
2874 if (ia_valid & ATTR_SIZE) {
2875 if (attr->ia_size != i_size_read(vi)) {
2876 ntfs_inode *ni = NTFS_I(vi);
2877 /*
2878 * FIXME: For now we do not support resizing of
2879 * compressed or encrypted files yet.
2880 */
2881 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2882 ntfs_warning(vi->i_sb, "Changes in inode size "
2883 "are not supported yet for "
2884 "%s files, ignoring.",
2885 NInoCompressed(ni) ?
2886 "compressed" : "encrypted");
2887 err = -EOPNOTSUPP;
2888 } else {
2889 truncate_setsize(vi, attr->ia_size);
2890 ntfs_truncate_vfs(vi);
2891 }
2892 if (err || ia_valid == ATTR_SIZE)
2893 goto out;
2894 } else {
2895 /*
2896 * We skipped the truncate but must still update
2897 * timestamps.
2898 */
2899 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2900 }
2901 }
2902 if (ia_valid & ATTR_ATIME) {
2903 vi->i_atime = timestamp_truncate(attr->ia_atime,
2904 vi);
2905 }
2906 if (ia_valid & ATTR_MTIME) {
2907 vi->i_mtime = timestamp_truncate(attr->ia_mtime,
2908 vi);
2909 }
2910 if (ia_valid & ATTR_CTIME) {
2911 vi->i_ctime = timestamp_truncate(attr->ia_ctime,
2912 vi);
2913 }
2914 mark_inode_dirty(vi);
2915out:
2916 return err;
2917}
2918
2919/**
2920 * ntfs_write_inode - write out a dirty inode
2921 * @vi: inode to write out
2922 * @sync: if true, write out synchronously
2923 *
2924 * Write out a dirty inode to disk including any extent inodes if present.
2925 *
2926 * If @sync is true, commit the inode to disk and wait for io completion. This
2927 * is done using write_mft_record().
2928 *
2929 * If @sync is false, just schedule the write to happen but do not wait for i/o
2930 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2931 * marking the page (and in this case mft record) dirty but we do not implement
2932 * this yet as write_mft_record() largely ignores the @sync parameter and
2933 * always performs synchronous writes.
2934 *
2935 * Return 0 on success and -errno on error.
2936 */
2937int __ntfs_write_inode(struct inode *vi, int sync)
2938{
2939 sle64 nt;
2940 ntfs_inode *ni = NTFS_I(vi);
2941 ntfs_attr_search_ctx *ctx;
2942 MFT_RECORD *m;
2943 STANDARD_INFORMATION *si;
2944 int err = 0;
2945 bool modified = false;
2946
2947 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2948 vi->i_ino);
2949 /*
2950 * Dirty attribute inodes are written via their real inodes so just
2951 * clean them here. Access time updates are taken care off when the
2952 * real inode is written.
2953 */
2954 if (NInoAttr(ni)) {
2955 NInoClearDirty(ni);
2956 ntfs_debug("Done.");
2957 return 0;
2958 }
2959 /* Map, pin, and lock the mft record belonging to the inode. */
2960 m = map_mft_record(ni);
2961 if (IS_ERR(m)) {
2962 err = PTR_ERR(m);
2963 goto err_out;
2964 }
2965 /* Update the access times in the standard information attribute. */
2966 ctx = ntfs_attr_get_search_ctx(ni, m);
2967 if (unlikely(!ctx)) {
2968 err = -ENOMEM;
2969 goto unm_err_out;
2970 }
2971 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2972 CASE_SENSITIVE, 0, NULL, 0, ctx);
2973 if (unlikely(err)) {
2974 ntfs_attr_put_search_ctx(ctx);
2975 goto unm_err_out;
2976 }
2977 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
2978 le16_to_cpu(ctx->attr->data.resident.value_offset));
2979 /* Update the access times if they have changed. */
2980 nt = utc2ntfs(vi->i_mtime);
2981 if (si->last_data_change_time != nt) {
2982 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
2983 "new = 0x%llx", vi->i_ino, (long long)
2984 sle64_to_cpu(si->last_data_change_time),
2985 (long long)sle64_to_cpu(nt));
2986 si->last_data_change_time = nt;
2987 modified = true;
2988 }
2989 nt = utc2ntfs(vi->i_ctime);
2990 if (si->last_mft_change_time != nt) {
2991 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
2992 "new = 0x%llx", vi->i_ino, (long long)
2993 sle64_to_cpu(si->last_mft_change_time),
2994 (long long)sle64_to_cpu(nt));
2995 si->last_mft_change_time = nt;
2996 modified = true;
2997 }
2998 nt = utc2ntfs(vi->i_atime);
2999 if (si->last_access_time != nt) {
3000 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3001 "new = 0x%llx", vi->i_ino,
3002 (long long)sle64_to_cpu(si->last_access_time),
3003 (long long)sle64_to_cpu(nt));
3004 si->last_access_time = nt;
3005 modified = true;
3006 }
3007 /*
3008 * If we just modified the standard information attribute we need to
3009 * mark the mft record it is in dirty. We do this manually so that
3010 * mark_inode_dirty() is not called which would redirty the inode and
3011 * hence result in an infinite loop of trying to write the inode.
3012 * There is no need to mark the base inode nor the base mft record
3013 * dirty, since we are going to write this mft record below in any case
3014 * and the base mft record may actually not have been modified so it
3015 * might not need to be written out.
3016 * NOTE: It is not a problem when the inode for $MFT itself is being
3017 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3018 * on the $MFT inode and hence ntfs_write_inode() will not be
3019 * re-invoked because of it which in turn is ok since the dirtied mft
3020 * record will be cleaned and written out to disk below, i.e. before
3021 * this function returns.
3022 */
3023 if (modified) {
3024 flush_dcache_mft_record_page(ctx->ntfs_ino);
3025 if (!NInoTestSetDirty(ctx->ntfs_ino))
3026 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3027 ctx->ntfs_ino->page_ofs);
3028 }
3029 ntfs_attr_put_search_ctx(ctx);
3030 /* Now the access times are updated, write the base mft record. */
3031 if (NInoDirty(ni))
3032 err = write_mft_record(ni, m, sync);
3033 /* Write all attached extent mft records. */
3034 mutex_lock(&ni->extent_lock);
3035 if (ni->nr_extents > 0) {
3036 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3037 int i;
3038
3039 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3040 for (i = 0; i < ni->nr_extents; i++) {
3041 ntfs_inode *tni = extent_nis[i];
3042
3043 if (NInoDirty(tni)) {
3044 MFT_RECORD *tm = map_mft_record(tni);
3045 int ret;
3046
3047 if (IS_ERR(tm)) {
3048 if (!err || err == -ENOMEM)
3049 err = PTR_ERR(tm);
3050 continue;
3051 }
3052 ret = write_mft_record(tni, tm, sync);
3053 unmap_mft_record(tni);
3054 if (unlikely(ret)) {
3055 if (!err || err == -ENOMEM)
3056 err = ret;
3057 }
3058 }
3059 }
3060 }
3061 mutex_unlock(&ni->extent_lock);
3062 unmap_mft_record(ni);
3063 if (unlikely(err))
3064 goto err_out;
3065 ntfs_debug("Done.");
3066 return 0;
3067unm_err_out:
3068 unmap_mft_record(ni);
3069err_out:
3070 if (err == -ENOMEM) {
3071 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3072 "Marking the inode dirty again, so the VFS "
3073 "retries later.");
3074 mark_inode_dirty(vi);
3075 } else {
3076 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
3077 NVolSetErrors(ni->vol);
3078 }
3079 return err;
3080}
3081
3082#endif /* NTFS_RW */