Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018 Intel Corporation */
3
4#include <linux/module.h>
5#include <linux/types.h>
6#include <linux/if_vlan.h>
7#include <linux/aer.h>
8#include <linux/tcp.h>
9#include <linux/udp.h>
10#include <linux/ip.h>
11#include <linux/pm_runtime.h>
12#include <net/pkt_sched.h>
13#include <linux/bpf_trace.h>
14#include <net/xdp_sock_drv.h>
15#include <net/ipv6.h>
16
17#include "igc.h"
18#include "igc_hw.h"
19#include "igc_tsn.h"
20#include "igc_xdp.h"
21
22#define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
23
24#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
25
26#define IGC_XDP_PASS 0
27#define IGC_XDP_CONSUMED BIT(0)
28#define IGC_XDP_TX BIT(1)
29#define IGC_XDP_REDIRECT BIT(2)
30
31static int debug = -1;
32
33MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
34MODULE_DESCRIPTION(DRV_SUMMARY);
35MODULE_LICENSE("GPL v2");
36module_param(debug, int, 0);
37MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
38
39char igc_driver_name[] = "igc";
40static const char igc_driver_string[] = DRV_SUMMARY;
41static const char igc_copyright[] =
42 "Copyright(c) 2018 Intel Corporation.";
43
44static const struct igc_info *igc_info_tbl[] = {
45 [board_base] = &igc_base_info,
46};
47
48static const struct pci_device_id igc_pci_tbl[] = {
49 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
64 /* required last entry */
65 {0, }
66};
67
68MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
69
70enum latency_range {
71 lowest_latency = 0,
72 low_latency = 1,
73 bulk_latency = 2,
74 latency_invalid = 255
75};
76
77void igc_reset(struct igc_adapter *adapter)
78{
79 struct net_device *dev = adapter->netdev;
80 struct igc_hw *hw = &adapter->hw;
81 struct igc_fc_info *fc = &hw->fc;
82 u32 pba, hwm;
83
84 /* Repartition PBA for greater than 9k MTU if required */
85 pba = IGC_PBA_34K;
86
87 /* flow control settings
88 * The high water mark must be low enough to fit one full frame
89 * after transmitting the pause frame. As such we must have enough
90 * space to allow for us to complete our current transmit and then
91 * receive the frame that is in progress from the link partner.
92 * Set it to:
93 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
94 */
95 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
96
97 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
98 fc->low_water = fc->high_water - 16;
99 fc->pause_time = 0xFFFF;
100 fc->send_xon = 1;
101 fc->current_mode = fc->requested_mode;
102
103 hw->mac.ops.reset_hw(hw);
104
105 if (hw->mac.ops.init_hw(hw))
106 netdev_err(dev, "Error on hardware initialization\n");
107
108 /* Re-establish EEE setting */
109 igc_set_eee_i225(hw, true, true, true);
110
111 if (!netif_running(adapter->netdev))
112 igc_power_down_phy_copper_base(&adapter->hw);
113
114 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
115 wr32(IGC_VET, ETH_P_8021Q);
116
117 /* Re-enable PTP, where applicable. */
118 igc_ptp_reset(adapter);
119
120 /* Re-enable TSN offloading, where applicable. */
121 igc_tsn_offload_apply(adapter);
122
123 igc_get_phy_info(hw);
124}
125
126/**
127 * igc_power_up_link - Power up the phy link
128 * @adapter: address of board private structure
129 */
130static void igc_power_up_link(struct igc_adapter *adapter)
131{
132 igc_reset_phy(&adapter->hw);
133
134 igc_power_up_phy_copper(&adapter->hw);
135
136 igc_setup_link(&adapter->hw);
137}
138
139/**
140 * igc_release_hw_control - release control of the h/w to f/w
141 * @adapter: address of board private structure
142 *
143 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
144 * For ASF and Pass Through versions of f/w this means that the
145 * driver is no longer loaded.
146 */
147static void igc_release_hw_control(struct igc_adapter *adapter)
148{
149 struct igc_hw *hw = &adapter->hw;
150 u32 ctrl_ext;
151
152 if (!pci_device_is_present(adapter->pdev))
153 return;
154
155 /* Let firmware take over control of h/w */
156 ctrl_ext = rd32(IGC_CTRL_EXT);
157 wr32(IGC_CTRL_EXT,
158 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
159}
160
161/**
162 * igc_get_hw_control - get control of the h/w from f/w
163 * @adapter: address of board private structure
164 *
165 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
166 * For ASF and Pass Through versions of f/w this means that
167 * the driver is loaded.
168 */
169static void igc_get_hw_control(struct igc_adapter *adapter)
170{
171 struct igc_hw *hw = &adapter->hw;
172 u32 ctrl_ext;
173
174 /* Let firmware know the driver has taken over */
175 ctrl_ext = rd32(IGC_CTRL_EXT);
176 wr32(IGC_CTRL_EXT,
177 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
178}
179
180static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
181{
182 dma_unmap_single(dev, dma_unmap_addr(buf, dma),
183 dma_unmap_len(buf, len), DMA_TO_DEVICE);
184
185 dma_unmap_len_set(buf, len, 0);
186}
187
188/**
189 * igc_clean_tx_ring - Free Tx Buffers
190 * @tx_ring: ring to be cleaned
191 */
192static void igc_clean_tx_ring(struct igc_ring *tx_ring)
193{
194 u16 i = tx_ring->next_to_clean;
195 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
196 u32 xsk_frames = 0;
197
198 while (i != tx_ring->next_to_use) {
199 union igc_adv_tx_desc *eop_desc, *tx_desc;
200
201 switch (tx_buffer->type) {
202 case IGC_TX_BUFFER_TYPE_XSK:
203 xsk_frames++;
204 break;
205 case IGC_TX_BUFFER_TYPE_XDP:
206 xdp_return_frame(tx_buffer->xdpf);
207 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
208 break;
209 case IGC_TX_BUFFER_TYPE_SKB:
210 dev_kfree_skb_any(tx_buffer->skb);
211 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
212 break;
213 default:
214 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
215 break;
216 }
217
218 /* check for eop_desc to determine the end of the packet */
219 eop_desc = tx_buffer->next_to_watch;
220 tx_desc = IGC_TX_DESC(tx_ring, i);
221
222 /* unmap remaining buffers */
223 while (tx_desc != eop_desc) {
224 tx_buffer++;
225 tx_desc++;
226 i++;
227 if (unlikely(i == tx_ring->count)) {
228 i = 0;
229 tx_buffer = tx_ring->tx_buffer_info;
230 tx_desc = IGC_TX_DESC(tx_ring, 0);
231 }
232
233 /* unmap any remaining paged data */
234 if (dma_unmap_len(tx_buffer, len))
235 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
236 }
237
238 tx_buffer->next_to_watch = NULL;
239
240 /* move us one more past the eop_desc for start of next pkt */
241 tx_buffer++;
242 i++;
243 if (unlikely(i == tx_ring->count)) {
244 i = 0;
245 tx_buffer = tx_ring->tx_buffer_info;
246 }
247 }
248
249 if (tx_ring->xsk_pool && xsk_frames)
250 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
251
252 /* reset BQL for queue */
253 netdev_tx_reset_queue(txring_txq(tx_ring));
254
255 /* reset next_to_use and next_to_clean */
256 tx_ring->next_to_use = 0;
257 tx_ring->next_to_clean = 0;
258}
259
260/**
261 * igc_free_tx_resources - Free Tx Resources per Queue
262 * @tx_ring: Tx descriptor ring for a specific queue
263 *
264 * Free all transmit software resources
265 */
266void igc_free_tx_resources(struct igc_ring *tx_ring)
267{
268 igc_clean_tx_ring(tx_ring);
269
270 vfree(tx_ring->tx_buffer_info);
271 tx_ring->tx_buffer_info = NULL;
272
273 /* if not set, then don't free */
274 if (!tx_ring->desc)
275 return;
276
277 dma_free_coherent(tx_ring->dev, tx_ring->size,
278 tx_ring->desc, tx_ring->dma);
279
280 tx_ring->desc = NULL;
281}
282
283/**
284 * igc_free_all_tx_resources - Free Tx Resources for All Queues
285 * @adapter: board private structure
286 *
287 * Free all transmit software resources
288 */
289static void igc_free_all_tx_resources(struct igc_adapter *adapter)
290{
291 int i;
292
293 for (i = 0; i < adapter->num_tx_queues; i++)
294 igc_free_tx_resources(adapter->tx_ring[i]);
295}
296
297/**
298 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
299 * @adapter: board private structure
300 */
301static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
302{
303 int i;
304
305 for (i = 0; i < adapter->num_tx_queues; i++)
306 if (adapter->tx_ring[i])
307 igc_clean_tx_ring(adapter->tx_ring[i]);
308}
309
310/**
311 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
312 * @tx_ring: tx descriptor ring (for a specific queue) to setup
313 *
314 * Return 0 on success, negative on failure
315 */
316int igc_setup_tx_resources(struct igc_ring *tx_ring)
317{
318 struct net_device *ndev = tx_ring->netdev;
319 struct device *dev = tx_ring->dev;
320 int size = 0;
321
322 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
323 tx_ring->tx_buffer_info = vzalloc(size);
324 if (!tx_ring->tx_buffer_info)
325 goto err;
326
327 /* round up to nearest 4K */
328 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
329 tx_ring->size = ALIGN(tx_ring->size, 4096);
330
331 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
332 &tx_ring->dma, GFP_KERNEL);
333
334 if (!tx_ring->desc)
335 goto err;
336
337 tx_ring->next_to_use = 0;
338 tx_ring->next_to_clean = 0;
339
340 return 0;
341
342err:
343 vfree(tx_ring->tx_buffer_info);
344 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
345 return -ENOMEM;
346}
347
348/**
349 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
350 * @adapter: board private structure
351 *
352 * Return 0 on success, negative on failure
353 */
354static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
355{
356 struct net_device *dev = adapter->netdev;
357 int i, err = 0;
358
359 for (i = 0; i < adapter->num_tx_queues; i++) {
360 err = igc_setup_tx_resources(adapter->tx_ring[i]);
361 if (err) {
362 netdev_err(dev, "Error on Tx queue %u setup\n", i);
363 for (i--; i >= 0; i--)
364 igc_free_tx_resources(adapter->tx_ring[i]);
365 break;
366 }
367 }
368
369 return err;
370}
371
372static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
373{
374 u16 i = rx_ring->next_to_clean;
375
376 dev_kfree_skb(rx_ring->skb);
377 rx_ring->skb = NULL;
378
379 /* Free all the Rx ring sk_buffs */
380 while (i != rx_ring->next_to_alloc) {
381 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
382
383 /* Invalidate cache lines that may have been written to by
384 * device so that we avoid corrupting memory.
385 */
386 dma_sync_single_range_for_cpu(rx_ring->dev,
387 buffer_info->dma,
388 buffer_info->page_offset,
389 igc_rx_bufsz(rx_ring),
390 DMA_FROM_DEVICE);
391
392 /* free resources associated with mapping */
393 dma_unmap_page_attrs(rx_ring->dev,
394 buffer_info->dma,
395 igc_rx_pg_size(rx_ring),
396 DMA_FROM_DEVICE,
397 IGC_RX_DMA_ATTR);
398 __page_frag_cache_drain(buffer_info->page,
399 buffer_info->pagecnt_bias);
400
401 i++;
402 if (i == rx_ring->count)
403 i = 0;
404 }
405}
406
407static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
408{
409 struct igc_rx_buffer *bi;
410 u16 i;
411
412 for (i = 0; i < ring->count; i++) {
413 bi = &ring->rx_buffer_info[i];
414 if (!bi->xdp)
415 continue;
416
417 xsk_buff_free(bi->xdp);
418 bi->xdp = NULL;
419 }
420}
421
422/**
423 * igc_clean_rx_ring - Free Rx Buffers per Queue
424 * @ring: ring to free buffers from
425 */
426static void igc_clean_rx_ring(struct igc_ring *ring)
427{
428 if (ring->xsk_pool)
429 igc_clean_rx_ring_xsk_pool(ring);
430 else
431 igc_clean_rx_ring_page_shared(ring);
432
433 clear_ring_uses_large_buffer(ring);
434
435 ring->next_to_alloc = 0;
436 ring->next_to_clean = 0;
437 ring->next_to_use = 0;
438}
439
440/**
441 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
442 * @adapter: board private structure
443 */
444static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
445{
446 int i;
447
448 for (i = 0; i < adapter->num_rx_queues; i++)
449 if (adapter->rx_ring[i])
450 igc_clean_rx_ring(adapter->rx_ring[i]);
451}
452
453/**
454 * igc_free_rx_resources - Free Rx Resources
455 * @rx_ring: ring to clean the resources from
456 *
457 * Free all receive software resources
458 */
459void igc_free_rx_resources(struct igc_ring *rx_ring)
460{
461 igc_clean_rx_ring(rx_ring);
462
463 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
464
465 vfree(rx_ring->rx_buffer_info);
466 rx_ring->rx_buffer_info = NULL;
467
468 /* if not set, then don't free */
469 if (!rx_ring->desc)
470 return;
471
472 dma_free_coherent(rx_ring->dev, rx_ring->size,
473 rx_ring->desc, rx_ring->dma);
474
475 rx_ring->desc = NULL;
476}
477
478/**
479 * igc_free_all_rx_resources - Free Rx Resources for All Queues
480 * @adapter: board private structure
481 *
482 * Free all receive software resources
483 */
484static void igc_free_all_rx_resources(struct igc_adapter *adapter)
485{
486 int i;
487
488 for (i = 0; i < adapter->num_rx_queues; i++)
489 igc_free_rx_resources(adapter->rx_ring[i]);
490}
491
492/**
493 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
494 * @rx_ring: rx descriptor ring (for a specific queue) to setup
495 *
496 * Returns 0 on success, negative on failure
497 */
498int igc_setup_rx_resources(struct igc_ring *rx_ring)
499{
500 struct net_device *ndev = rx_ring->netdev;
501 struct device *dev = rx_ring->dev;
502 u8 index = rx_ring->queue_index;
503 int size, desc_len, res;
504
505 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
506 rx_ring->q_vector->napi.napi_id);
507 if (res < 0) {
508 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
509 index);
510 return res;
511 }
512
513 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
514 rx_ring->rx_buffer_info = vzalloc(size);
515 if (!rx_ring->rx_buffer_info)
516 goto err;
517
518 desc_len = sizeof(union igc_adv_rx_desc);
519
520 /* Round up to nearest 4K */
521 rx_ring->size = rx_ring->count * desc_len;
522 rx_ring->size = ALIGN(rx_ring->size, 4096);
523
524 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
525 &rx_ring->dma, GFP_KERNEL);
526
527 if (!rx_ring->desc)
528 goto err;
529
530 rx_ring->next_to_alloc = 0;
531 rx_ring->next_to_clean = 0;
532 rx_ring->next_to_use = 0;
533
534 return 0;
535
536err:
537 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
538 vfree(rx_ring->rx_buffer_info);
539 rx_ring->rx_buffer_info = NULL;
540 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
541 return -ENOMEM;
542}
543
544/**
545 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
546 * (Descriptors) for all queues
547 * @adapter: board private structure
548 *
549 * Return 0 on success, negative on failure
550 */
551static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
552{
553 struct net_device *dev = adapter->netdev;
554 int i, err = 0;
555
556 for (i = 0; i < adapter->num_rx_queues; i++) {
557 err = igc_setup_rx_resources(adapter->rx_ring[i]);
558 if (err) {
559 netdev_err(dev, "Error on Rx queue %u setup\n", i);
560 for (i--; i >= 0; i--)
561 igc_free_rx_resources(adapter->rx_ring[i]);
562 break;
563 }
564 }
565
566 return err;
567}
568
569static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
570 struct igc_ring *ring)
571{
572 if (!igc_xdp_is_enabled(adapter) ||
573 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
574 return NULL;
575
576 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
577}
578
579/**
580 * igc_configure_rx_ring - Configure a receive ring after Reset
581 * @adapter: board private structure
582 * @ring: receive ring to be configured
583 *
584 * Configure the Rx unit of the MAC after a reset.
585 */
586static void igc_configure_rx_ring(struct igc_adapter *adapter,
587 struct igc_ring *ring)
588{
589 struct igc_hw *hw = &adapter->hw;
590 union igc_adv_rx_desc *rx_desc;
591 int reg_idx = ring->reg_idx;
592 u32 srrctl = 0, rxdctl = 0;
593 u64 rdba = ring->dma;
594 u32 buf_size;
595
596 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
597 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
598 if (ring->xsk_pool) {
599 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
600 MEM_TYPE_XSK_BUFF_POOL,
601 NULL));
602 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
603 } else {
604 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
605 MEM_TYPE_PAGE_SHARED,
606 NULL));
607 }
608
609 if (igc_xdp_is_enabled(adapter))
610 set_ring_uses_large_buffer(ring);
611
612 /* disable the queue */
613 wr32(IGC_RXDCTL(reg_idx), 0);
614
615 /* Set DMA base address registers */
616 wr32(IGC_RDBAL(reg_idx),
617 rdba & 0x00000000ffffffffULL);
618 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
619 wr32(IGC_RDLEN(reg_idx),
620 ring->count * sizeof(union igc_adv_rx_desc));
621
622 /* initialize head and tail */
623 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
624 wr32(IGC_RDH(reg_idx), 0);
625 writel(0, ring->tail);
626
627 /* reset next-to- use/clean to place SW in sync with hardware */
628 ring->next_to_clean = 0;
629 ring->next_to_use = 0;
630
631 if (ring->xsk_pool)
632 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
633 else if (ring_uses_large_buffer(ring))
634 buf_size = IGC_RXBUFFER_3072;
635 else
636 buf_size = IGC_RXBUFFER_2048;
637
638 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
639 srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT;
640 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
641
642 wr32(IGC_SRRCTL(reg_idx), srrctl);
643
644 rxdctl |= IGC_RX_PTHRESH;
645 rxdctl |= IGC_RX_HTHRESH << 8;
646 rxdctl |= IGC_RX_WTHRESH << 16;
647
648 /* initialize rx_buffer_info */
649 memset(ring->rx_buffer_info, 0,
650 sizeof(struct igc_rx_buffer) * ring->count);
651
652 /* initialize Rx descriptor 0 */
653 rx_desc = IGC_RX_DESC(ring, 0);
654 rx_desc->wb.upper.length = 0;
655
656 /* enable receive descriptor fetching */
657 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
658
659 wr32(IGC_RXDCTL(reg_idx), rxdctl);
660}
661
662/**
663 * igc_configure_rx - Configure receive Unit after Reset
664 * @adapter: board private structure
665 *
666 * Configure the Rx unit of the MAC after a reset.
667 */
668static void igc_configure_rx(struct igc_adapter *adapter)
669{
670 int i;
671
672 /* Setup the HW Rx Head and Tail Descriptor Pointers and
673 * the Base and Length of the Rx Descriptor Ring
674 */
675 for (i = 0; i < adapter->num_rx_queues; i++)
676 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
677}
678
679/**
680 * igc_configure_tx_ring - Configure transmit ring after Reset
681 * @adapter: board private structure
682 * @ring: tx ring to configure
683 *
684 * Configure a transmit ring after a reset.
685 */
686static void igc_configure_tx_ring(struct igc_adapter *adapter,
687 struct igc_ring *ring)
688{
689 struct igc_hw *hw = &adapter->hw;
690 int reg_idx = ring->reg_idx;
691 u64 tdba = ring->dma;
692 u32 txdctl = 0;
693
694 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
695
696 /* disable the queue */
697 wr32(IGC_TXDCTL(reg_idx), 0);
698 wrfl();
699 mdelay(10);
700
701 wr32(IGC_TDLEN(reg_idx),
702 ring->count * sizeof(union igc_adv_tx_desc));
703 wr32(IGC_TDBAL(reg_idx),
704 tdba & 0x00000000ffffffffULL);
705 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
706
707 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
708 wr32(IGC_TDH(reg_idx), 0);
709 writel(0, ring->tail);
710
711 txdctl |= IGC_TX_PTHRESH;
712 txdctl |= IGC_TX_HTHRESH << 8;
713 txdctl |= IGC_TX_WTHRESH << 16;
714
715 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
716 wr32(IGC_TXDCTL(reg_idx), txdctl);
717}
718
719/**
720 * igc_configure_tx - Configure transmit Unit after Reset
721 * @adapter: board private structure
722 *
723 * Configure the Tx unit of the MAC after a reset.
724 */
725static void igc_configure_tx(struct igc_adapter *adapter)
726{
727 int i;
728
729 for (i = 0; i < adapter->num_tx_queues; i++)
730 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
731}
732
733/**
734 * igc_setup_mrqc - configure the multiple receive queue control registers
735 * @adapter: Board private structure
736 */
737static void igc_setup_mrqc(struct igc_adapter *adapter)
738{
739 struct igc_hw *hw = &adapter->hw;
740 u32 j, num_rx_queues;
741 u32 mrqc, rxcsum;
742 u32 rss_key[10];
743
744 netdev_rss_key_fill(rss_key, sizeof(rss_key));
745 for (j = 0; j < 10; j++)
746 wr32(IGC_RSSRK(j), rss_key[j]);
747
748 num_rx_queues = adapter->rss_queues;
749
750 if (adapter->rss_indir_tbl_init != num_rx_queues) {
751 for (j = 0; j < IGC_RETA_SIZE; j++)
752 adapter->rss_indir_tbl[j] =
753 (j * num_rx_queues) / IGC_RETA_SIZE;
754 adapter->rss_indir_tbl_init = num_rx_queues;
755 }
756 igc_write_rss_indir_tbl(adapter);
757
758 /* Disable raw packet checksumming so that RSS hash is placed in
759 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
760 * offloads as they are enabled by default
761 */
762 rxcsum = rd32(IGC_RXCSUM);
763 rxcsum |= IGC_RXCSUM_PCSD;
764
765 /* Enable Receive Checksum Offload for SCTP */
766 rxcsum |= IGC_RXCSUM_CRCOFL;
767
768 /* Don't need to set TUOFL or IPOFL, they default to 1 */
769 wr32(IGC_RXCSUM, rxcsum);
770
771 /* Generate RSS hash based on packet types, TCP/UDP
772 * port numbers and/or IPv4/v6 src and dst addresses
773 */
774 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
775 IGC_MRQC_RSS_FIELD_IPV4_TCP |
776 IGC_MRQC_RSS_FIELD_IPV6 |
777 IGC_MRQC_RSS_FIELD_IPV6_TCP |
778 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
779
780 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
781 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
782 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
783 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
784
785 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
786
787 wr32(IGC_MRQC, mrqc);
788}
789
790/**
791 * igc_setup_rctl - configure the receive control registers
792 * @adapter: Board private structure
793 */
794static void igc_setup_rctl(struct igc_adapter *adapter)
795{
796 struct igc_hw *hw = &adapter->hw;
797 u32 rctl;
798
799 rctl = rd32(IGC_RCTL);
800
801 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
802 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
803
804 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
805 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
806
807 /* enable stripping of CRC. Newer features require
808 * that the HW strips the CRC.
809 */
810 rctl |= IGC_RCTL_SECRC;
811
812 /* disable store bad packets and clear size bits. */
813 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
814
815 /* enable LPE to allow for reception of jumbo frames */
816 rctl |= IGC_RCTL_LPE;
817
818 /* disable queue 0 to prevent tail write w/o re-config */
819 wr32(IGC_RXDCTL(0), 0);
820
821 /* This is useful for sniffing bad packets. */
822 if (adapter->netdev->features & NETIF_F_RXALL) {
823 /* UPE and MPE will be handled by normal PROMISC logic
824 * in set_rx_mode
825 */
826 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
827 IGC_RCTL_BAM | /* RX All Bcast Pkts */
828 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
829
830 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
831 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
832 }
833
834 wr32(IGC_RCTL, rctl);
835}
836
837/**
838 * igc_setup_tctl - configure the transmit control registers
839 * @adapter: Board private structure
840 */
841static void igc_setup_tctl(struct igc_adapter *adapter)
842{
843 struct igc_hw *hw = &adapter->hw;
844 u32 tctl;
845
846 /* disable queue 0 which icould be enabled by default */
847 wr32(IGC_TXDCTL(0), 0);
848
849 /* Program the Transmit Control Register */
850 tctl = rd32(IGC_TCTL);
851 tctl &= ~IGC_TCTL_CT;
852 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
853 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
854
855 /* Enable transmits */
856 tctl |= IGC_TCTL_EN;
857
858 wr32(IGC_TCTL, tctl);
859}
860
861/**
862 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
863 * @adapter: Pointer to adapter where the filter should be set
864 * @index: Filter index
865 * @type: MAC address filter type (source or destination)
866 * @addr: MAC address
867 * @queue: If non-negative, queue assignment feature is enabled and frames
868 * matching the filter are enqueued onto 'queue'. Otherwise, queue
869 * assignment is disabled.
870 */
871static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
872 enum igc_mac_filter_type type,
873 const u8 *addr, int queue)
874{
875 struct net_device *dev = adapter->netdev;
876 struct igc_hw *hw = &adapter->hw;
877 u32 ral, rah;
878
879 if (WARN_ON(index >= hw->mac.rar_entry_count))
880 return;
881
882 ral = le32_to_cpup((__le32 *)(addr));
883 rah = le16_to_cpup((__le16 *)(addr + 4));
884
885 if (type == IGC_MAC_FILTER_TYPE_SRC) {
886 rah &= ~IGC_RAH_ASEL_MASK;
887 rah |= IGC_RAH_ASEL_SRC_ADDR;
888 }
889
890 if (queue >= 0) {
891 rah &= ~IGC_RAH_QSEL_MASK;
892 rah |= (queue << IGC_RAH_QSEL_SHIFT);
893 rah |= IGC_RAH_QSEL_ENABLE;
894 }
895
896 rah |= IGC_RAH_AV;
897
898 wr32(IGC_RAL(index), ral);
899 wr32(IGC_RAH(index), rah);
900
901 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
902}
903
904/**
905 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
906 * @adapter: Pointer to adapter where the filter should be cleared
907 * @index: Filter index
908 */
909static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
910{
911 struct net_device *dev = adapter->netdev;
912 struct igc_hw *hw = &adapter->hw;
913
914 if (WARN_ON(index >= hw->mac.rar_entry_count))
915 return;
916
917 wr32(IGC_RAL(index), 0);
918 wr32(IGC_RAH(index), 0);
919
920 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
921}
922
923/* Set default MAC address for the PF in the first RAR entry */
924static void igc_set_default_mac_filter(struct igc_adapter *adapter)
925{
926 struct net_device *dev = adapter->netdev;
927 u8 *addr = adapter->hw.mac.addr;
928
929 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
930
931 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
932}
933
934/**
935 * igc_set_mac - Change the Ethernet Address of the NIC
936 * @netdev: network interface device structure
937 * @p: pointer to an address structure
938 *
939 * Returns 0 on success, negative on failure
940 */
941static int igc_set_mac(struct net_device *netdev, void *p)
942{
943 struct igc_adapter *adapter = netdev_priv(netdev);
944 struct igc_hw *hw = &adapter->hw;
945 struct sockaddr *addr = p;
946
947 if (!is_valid_ether_addr(addr->sa_data))
948 return -EADDRNOTAVAIL;
949
950 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
951 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
952
953 /* set the correct pool for the new PF MAC address in entry 0 */
954 igc_set_default_mac_filter(adapter);
955
956 return 0;
957}
958
959/**
960 * igc_write_mc_addr_list - write multicast addresses to MTA
961 * @netdev: network interface device structure
962 *
963 * Writes multicast address list to the MTA hash table.
964 * Returns: -ENOMEM on failure
965 * 0 on no addresses written
966 * X on writing X addresses to MTA
967 **/
968static int igc_write_mc_addr_list(struct net_device *netdev)
969{
970 struct igc_adapter *adapter = netdev_priv(netdev);
971 struct igc_hw *hw = &adapter->hw;
972 struct netdev_hw_addr *ha;
973 u8 *mta_list;
974 int i;
975
976 if (netdev_mc_empty(netdev)) {
977 /* nothing to program, so clear mc list */
978 igc_update_mc_addr_list(hw, NULL, 0);
979 return 0;
980 }
981
982 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
983 if (!mta_list)
984 return -ENOMEM;
985
986 /* The shared function expects a packed array of only addresses. */
987 i = 0;
988 netdev_for_each_mc_addr(ha, netdev)
989 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
990
991 igc_update_mc_addr_list(hw, mta_list, i);
992 kfree(mta_list);
993
994 return netdev_mc_count(netdev);
995}
996
997static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
998{
999 ktime_t cycle_time = adapter->cycle_time;
1000 ktime_t base_time = adapter->base_time;
1001 u32 launchtime;
1002
1003 /* FIXME: when using ETF together with taprio, we may have a
1004 * case where 'delta' is larger than the cycle_time, this may
1005 * cause problems if we don't read the current value of
1006 * IGC_BASET, as the value writen into the launchtime
1007 * descriptor field may be misinterpreted.
1008 */
1009 div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
1010
1011 return cpu_to_le32(launchtime);
1012}
1013
1014static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1015 struct igc_tx_buffer *first,
1016 u32 vlan_macip_lens, u32 type_tucmd,
1017 u32 mss_l4len_idx)
1018{
1019 struct igc_adv_tx_context_desc *context_desc;
1020 u16 i = tx_ring->next_to_use;
1021
1022 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1023
1024 i++;
1025 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1026
1027 /* set bits to identify this as an advanced context descriptor */
1028 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1029
1030 /* For i225, context index must be unique per ring. */
1031 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1032 mss_l4len_idx |= tx_ring->reg_idx << 4;
1033
1034 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1035 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1036 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1037
1038 /* We assume there is always a valid Tx time available. Invalid times
1039 * should have been handled by the upper layers.
1040 */
1041 if (tx_ring->launchtime_enable) {
1042 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1043 ktime_t txtime = first->skb->tstamp;
1044
1045 skb_txtime_consumed(first->skb);
1046 context_desc->launch_time = igc_tx_launchtime(adapter,
1047 txtime);
1048 } else {
1049 context_desc->launch_time = 0;
1050 }
1051}
1052
1053static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
1054{
1055 struct sk_buff *skb = first->skb;
1056 u32 vlan_macip_lens = 0;
1057 u32 type_tucmd = 0;
1058
1059 if (skb->ip_summed != CHECKSUM_PARTIAL) {
1060csum_failed:
1061 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1062 !tx_ring->launchtime_enable)
1063 return;
1064 goto no_csum;
1065 }
1066
1067 switch (skb->csum_offset) {
1068 case offsetof(struct tcphdr, check):
1069 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1070 fallthrough;
1071 case offsetof(struct udphdr, check):
1072 break;
1073 case offsetof(struct sctphdr, checksum):
1074 /* validate that this is actually an SCTP request */
1075 if (skb_csum_is_sctp(skb)) {
1076 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1077 break;
1078 }
1079 fallthrough;
1080 default:
1081 skb_checksum_help(skb);
1082 goto csum_failed;
1083 }
1084
1085 /* update TX checksum flag */
1086 first->tx_flags |= IGC_TX_FLAGS_CSUM;
1087 vlan_macip_lens = skb_checksum_start_offset(skb) -
1088 skb_network_offset(skb);
1089no_csum:
1090 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1091 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1092
1093 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1094}
1095
1096static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1097{
1098 struct net_device *netdev = tx_ring->netdev;
1099
1100 netif_stop_subqueue(netdev, tx_ring->queue_index);
1101
1102 /* memory barriier comment */
1103 smp_mb();
1104
1105 /* We need to check again in a case another CPU has just
1106 * made room available.
1107 */
1108 if (igc_desc_unused(tx_ring) < size)
1109 return -EBUSY;
1110
1111 /* A reprieve! */
1112 netif_wake_subqueue(netdev, tx_ring->queue_index);
1113
1114 u64_stats_update_begin(&tx_ring->tx_syncp2);
1115 tx_ring->tx_stats.restart_queue2++;
1116 u64_stats_update_end(&tx_ring->tx_syncp2);
1117
1118 return 0;
1119}
1120
1121static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1122{
1123 if (igc_desc_unused(tx_ring) >= size)
1124 return 0;
1125 return __igc_maybe_stop_tx(tx_ring, size);
1126}
1127
1128#define IGC_SET_FLAG(_input, _flag, _result) \
1129 (((_flag) <= (_result)) ? \
1130 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1131 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1132
1133static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1134{
1135 /* set type for advanced descriptor with frame checksum insertion */
1136 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1137 IGC_ADVTXD_DCMD_DEXT |
1138 IGC_ADVTXD_DCMD_IFCS;
1139
1140 /* set HW vlan bit if vlan is present */
1141 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1142 IGC_ADVTXD_DCMD_VLE);
1143
1144 /* set segmentation bits for TSO */
1145 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1146 (IGC_ADVTXD_DCMD_TSE));
1147
1148 /* set timestamp bit if present */
1149 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1150 (IGC_ADVTXD_MAC_TSTAMP));
1151
1152 /* insert frame checksum */
1153 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1154
1155 return cmd_type;
1156}
1157
1158static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1159 union igc_adv_tx_desc *tx_desc,
1160 u32 tx_flags, unsigned int paylen)
1161{
1162 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1163
1164 /* insert L4 checksum */
1165 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1166 ((IGC_TXD_POPTS_TXSM << 8) /
1167 IGC_TX_FLAGS_CSUM);
1168
1169 /* insert IPv4 checksum */
1170 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1171 (((IGC_TXD_POPTS_IXSM << 8)) /
1172 IGC_TX_FLAGS_IPV4);
1173
1174 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1175}
1176
1177static int igc_tx_map(struct igc_ring *tx_ring,
1178 struct igc_tx_buffer *first,
1179 const u8 hdr_len)
1180{
1181 struct sk_buff *skb = first->skb;
1182 struct igc_tx_buffer *tx_buffer;
1183 union igc_adv_tx_desc *tx_desc;
1184 u32 tx_flags = first->tx_flags;
1185 skb_frag_t *frag;
1186 u16 i = tx_ring->next_to_use;
1187 unsigned int data_len, size;
1188 dma_addr_t dma;
1189 u32 cmd_type;
1190
1191 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1192 tx_desc = IGC_TX_DESC(tx_ring, i);
1193
1194 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1195
1196 size = skb_headlen(skb);
1197 data_len = skb->data_len;
1198
1199 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1200
1201 tx_buffer = first;
1202
1203 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1204 if (dma_mapping_error(tx_ring->dev, dma))
1205 goto dma_error;
1206
1207 /* record length, and DMA address */
1208 dma_unmap_len_set(tx_buffer, len, size);
1209 dma_unmap_addr_set(tx_buffer, dma, dma);
1210
1211 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1212
1213 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1214 tx_desc->read.cmd_type_len =
1215 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1216
1217 i++;
1218 tx_desc++;
1219 if (i == tx_ring->count) {
1220 tx_desc = IGC_TX_DESC(tx_ring, 0);
1221 i = 0;
1222 }
1223 tx_desc->read.olinfo_status = 0;
1224
1225 dma += IGC_MAX_DATA_PER_TXD;
1226 size -= IGC_MAX_DATA_PER_TXD;
1227
1228 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1229 }
1230
1231 if (likely(!data_len))
1232 break;
1233
1234 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1235
1236 i++;
1237 tx_desc++;
1238 if (i == tx_ring->count) {
1239 tx_desc = IGC_TX_DESC(tx_ring, 0);
1240 i = 0;
1241 }
1242 tx_desc->read.olinfo_status = 0;
1243
1244 size = skb_frag_size(frag);
1245 data_len -= size;
1246
1247 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1248 size, DMA_TO_DEVICE);
1249
1250 tx_buffer = &tx_ring->tx_buffer_info[i];
1251 }
1252
1253 /* write last descriptor with RS and EOP bits */
1254 cmd_type |= size | IGC_TXD_DCMD;
1255 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1256
1257 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1258
1259 /* set the timestamp */
1260 first->time_stamp = jiffies;
1261
1262 skb_tx_timestamp(skb);
1263
1264 /* Force memory writes to complete before letting h/w know there
1265 * are new descriptors to fetch. (Only applicable for weak-ordered
1266 * memory model archs, such as IA-64).
1267 *
1268 * We also need this memory barrier to make certain all of the
1269 * status bits have been updated before next_to_watch is written.
1270 */
1271 wmb();
1272
1273 /* set next_to_watch value indicating a packet is present */
1274 first->next_to_watch = tx_desc;
1275
1276 i++;
1277 if (i == tx_ring->count)
1278 i = 0;
1279
1280 tx_ring->next_to_use = i;
1281
1282 /* Make sure there is space in the ring for the next send. */
1283 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1284
1285 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1286 writel(i, tx_ring->tail);
1287 }
1288
1289 return 0;
1290dma_error:
1291 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1292 tx_buffer = &tx_ring->tx_buffer_info[i];
1293
1294 /* clear dma mappings for failed tx_buffer_info map */
1295 while (tx_buffer != first) {
1296 if (dma_unmap_len(tx_buffer, len))
1297 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1298
1299 if (i-- == 0)
1300 i += tx_ring->count;
1301 tx_buffer = &tx_ring->tx_buffer_info[i];
1302 }
1303
1304 if (dma_unmap_len(tx_buffer, len))
1305 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1306
1307 dev_kfree_skb_any(tx_buffer->skb);
1308 tx_buffer->skb = NULL;
1309
1310 tx_ring->next_to_use = i;
1311
1312 return -1;
1313}
1314
1315static int igc_tso(struct igc_ring *tx_ring,
1316 struct igc_tx_buffer *first,
1317 u8 *hdr_len)
1318{
1319 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1320 struct sk_buff *skb = first->skb;
1321 union {
1322 struct iphdr *v4;
1323 struct ipv6hdr *v6;
1324 unsigned char *hdr;
1325 } ip;
1326 union {
1327 struct tcphdr *tcp;
1328 struct udphdr *udp;
1329 unsigned char *hdr;
1330 } l4;
1331 u32 paylen, l4_offset;
1332 int err;
1333
1334 if (skb->ip_summed != CHECKSUM_PARTIAL)
1335 return 0;
1336
1337 if (!skb_is_gso(skb))
1338 return 0;
1339
1340 err = skb_cow_head(skb, 0);
1341 if (err < 0)
1342 return err;
1343
1344 ip.hdr = skb_network_header(skb);
1345 l4.hdr = skb_checksum_start(skb);
1346
1347 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1348 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1349
1350 /* initialize outer IP header fields */
1351 if (ip.v4->version == 4) {
1352 unsigned char *csum_start = skb_checksum_start(skb);
1353 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1354
1355 /* IP header will have to cancel out any data that
1356 * is not a part of the outer IP header
1357 */
1358 ip.v4->check = csum_fold(csum_partial(trans_start,
1359 csum_start - trans_start,
1360 0));
1361 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1362
1363 ip.v4->tot_len = 0;
1364 first->tx_flags |= IGC_TX_FLAGS_TSO |
1365 IGC_TX_FLAGS_CSUM |
1366 IGC_TX_FLAGS_IPV4;
1367 } else {
1368 ip.v6->payload_len = 0;
1369 first->tx_flags |= IGC_TX_FLAGS_TSO |
1370 IGC_TX_FLAGS_CSUM;
1371 }
1372
1373 /* determine offset of inner transport header */
1374 l4_offset = l4.hdr - skb->data;
1375
1376 /* remove payload length from inner checksum */
1377 paylen = skb->len - l4_offset;
1378 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1379 /* compute length of segmentation header */
1380 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1381 csum_replace_by_diff(&l4.tcp->check,
1382 (__force __wsum)htonl(paylen));
1383 } else {
1384 /* compute length of segmentation header */
1385 *hdr_len = sizeof(*l4.udp) + l4_offset;
1386 csum_replace_by_diff(&l4.udp->check,
1387 (__force __wsum)htonl(paylen));
1388 }
1389
1390 /* update gso size and bytecount with header size */
1391 first->gso_segs = skb_shinfo(skb)->gso_segs;
1392 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1393
1394 /* MSS L4LEN IDX */
1395 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1396 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1397
1398 /* VLAN MACLEN IPLEN */
1399 vlan_macip_lens = l4.hdr - ip.hdr;
1400 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1401 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1402
1403 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1404 type_tucmd, mss_l4len_idx);
1405
1406 return 1;
1407}
1408
1409static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1410 struct igc_ring *tx_ring)
1411{
1412 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1413 __be16 protocol = vlan_get_protocol(skb);
1414 struct igc_tx_buffer *first;
1415 u32 tx_flags = 0;
1416 unsigned short f;
1417 u8 hdr_len = 0;
1418 int tso = 0;
1419
1420 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1421 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1422 * + 2 desc gap to keep tail from touching head,
1423 * + 1 desc for context descriptor,
1424 * otherwise try next time
1425 */
1426 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1427 count += TXD_USE_COUNT(skb_frag_size(
1428 &skb_shinfo(skb)->frags[f]));
1429
1430 if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1431 /* this is a hard error */
1432 return NETDEV_TX_BUSY;
1433 }
1434
1435 /* record the location of the first descriptor for this packet */
1436 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1437 first->type = IGC_TX_BUFFER_TYPE_SKB;
1438 first->skb = skb;
1439 first->bytecount = skb->len;
1440 first->gso_segs = 1;
1441
1442 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1443 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1444
1445 /* FIXME: add support for retrieving timestamps from
1446 * the other timer registers before skipping the
1447 * timestamping request.
1448 */
1449 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1450 !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1451 &adapter->state)) {
1452 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1453 tx_flags |= IGC_TX_FLAGS_TSTAMP;
1454
1455 adapter->ptp_tx_skb = skb_get(skb);
1456 adapter->ptp_tx_start = jiffies;
1457 } else {
1458 adapter->tx_hwtstamp_skipped++;
1459 }
1460 }
1461
1462 if (skb_vlan_tag_present(skb)) {
1463 tx_flags |= IGC_TX_FLAGS_VLAN;
1464 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1465 }
1466
1467 /* record initial flags and protocol */
1468 first->tx_flags = tx_flags;
1469 first->protocol = protocol;
1470
1471 tso = igc_tso(tx_ring, first, &hdr_len);
1472 if (tso < 0)
1473 goto out_drop;
1474 else if (!tso)
1475 igc_tx_csum(tx_ring, first);
1476
1477 igc_tx_map(tx_ring, first, hdr_len);
1478
1479 return NETDEV_TX_OK;
1480
1481out_drop:
1482 dev_kfree_skb_any(first->skb);
1483 first->skb = NULL;
1484
1485 return NETDEV_TX_OK;
1486}
1487
1488static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1489 struct sk_buff *skb)
1490{
1491 unsigned int r_idx = skb->queue_mapping;
1492
1493 if (r_idx >= adapter->num_tx_queues)
1494 r_idx = r_idx % adapter->num_tx_queues;
1495
1496 return adapter->tx_ring[r_idx];
1497}
1498
1499static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1500 struct net_device *netdev)
1501{
1502 struct igc_adapter *adapter = netdev_priv(netdev);
1503
1504 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1505 * in order to meet this minimum size requirement.
1506 */
1507 if (skb->len < 17) {
1508 if (skb_padto(skb, 17))
1509 return NETDEV_TX_OK;
1510 skb->len = 17;
1511 }
1512
1513 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1514}
1515
1516static void igc_rx_checksum(struct igc_ring *ring,
1517 union igc_adv_rx_desc *rx_desc,
1518 struct sk_buff *skb)
1519{
1520 skb_checksum_none_assert(skb);
1521
1522 /* Ignore Checksum bit is set */
1523 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1524 return;
1525
1526 /* Rx checksum disabled via ethtool */
1527 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1528 return;
1529
1530 /* TCP/UDP checksum error bit is set */
1531 if (igc_test_staterr(rx_desc,
1532 IGC_RXDEXT_STATERR_L4E |
1533 IGC_RXDEXT_STATERR_IPE)) {
1534 /* work around errata with sctp packets where the TCPE aka
1535 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1536 * packets (aka let the stack check the crc32c)
1537 */
1538 if (!(skb->len == 60 &&
1539 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1540 u64_stats_update_begin(&ring->rx_syncp);
1541 ring->rx_stats.csum_err++;
1542 u64_stats_update_end(&ring->rx_syncp);
1543 }
1544 /* let the stack verify checksum errors */
1545 return;
1546 }
1547 /* It must be a TCP or UDP packet with a valid checksum */
1548 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1549 IGC_RXD_STAT_UDPCS))
1550 skb->ip_summed = CHECKSUM_UNNECESSARY;
1551
1552 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1553 le32_to_cpu(rx_desc->wb.upper.status_error));
1554}
1555
1556static inline void igc_rx_hash(struct igc_ring *ring,
1557 union igc_adv_rx_desc *rx_desc,
1558 struct sk_buff *skb)
1559{
1560 if (ring->netdev->features & NETIF_F_RXHASH)
1561 skb_set_hash(skb,
1562 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1563 PKT_HASH_TYPE_L3);
1564}
1565
1566static void igc_rx_vlan(struct igc_ring *rx_ring,
1567 union igc_adv_rx_desc *rx_desc,
1568 struct sk_buff *skb)
1569{
1570 struct net_device *dev = rx_ring->netdev;
1571 u16 vid;
1572
1573 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1574 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1575 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1576 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1577 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1578 else
1579 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1580
1581 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1582 }
1583}
1584
1585/**
1586 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1587 * @rx_ring: rx descriptor ring packet is being transacted on
1588 * @rx_desc: pointer to the EOP Rx descriptor
1589 * @skb: pointer to current skb being populated
1590 *
1591 * This function checks the ring, descriptor, and packet information in order
1592 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1593 * skb.
1594 */
1595static void igc_process_skb_fields(struct igc_ring *rx_ring,
1596 union igc_adv_rx_desc *rx_desc,
1597 struct sk_buff *skb)
1598{
1599 igc_rx_hash(rx_ring, rx_desc, skb);
1600
1601 igc_rx_checksum(rx_ring, rx_desc, skb);
1602
1603 igc_rx_vlan(rx_ring, rx_desc, skb);
1604
1605 skb_record_rx_queue(skb, rx_ring->queue_index);
1606
1607 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1608}
1609
1610static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1611{
1612 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1613 struct igc_adapter *adapter = netdev_priv(netdev);
1614 struct igc_hw *hw = &adapter->hw;
1615 u32 ctrl;
1616
1617 ctrl = rd32(IGC_CTRL);
1618
1619 if (enable) {
1620 /* enable VLAN tag insert/strip */
1621 ctrl |= IGC_CTRL_VME;
1622 } else {
1623 /* disable VLAN tag insert/strip */
1624 ctrl &= ~IGC_CTRL_VME;
1625 }
1626 wr32(IGC_CTRL, ctrl);
1627}
1628
1629static void igc_restore_vlan(struct igc_adapter *adapter)
1630{
1631 igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1632}
1633
1634static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1635 const unsigned int size,
1636 int *rx_buffer_pgcnt)
1637{
1638 struct igc_rx_buffer *rx_buffer;
1639
1640 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1641 *rx_buffer_pgcnt =
1642#if (PAGE_SIZE < 8192)
1643 page_count(rx_buffer->page);
1644#else
1645 0;
1646#endif
1647 prefetchw(rx_buffer->page);
1648
1649 /* we are reusing so sync this buffer for CPU use */
1650 dma_sync_single_range_for_cpu(rx_ring->dev,
1651 rx_buffer->dma,
1652 rx_buffer->page_offset,
1653 size,
1654 DMA_FROM_DEVICE);
1655
1656 rx_buffer->pagecnt_bias--;
1657
1658 return rx_buffer;
1659}
1660
1661static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1662 unsigned int truesize)
1663{
1664#if (PAGE_SIZE < 8192)
1665 buffer->page_offset ^= truesize;
1666#else
1667 buffer->page_offset += truesize;
1668#endif
1669}
1670
1671static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1672 unsigned int size)
1673{
1674 unsigned int truesize;
1675
1676#if (PAGE_SIZE < 8192)
1677 truesize = igc_rx_pg_size(ring) / 2;
1678#else
1679 truesize = ring_uses_build_skb(ring) ?
1680 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1681 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1682 SKB_DATA_ALIGN(size);
1683#endif
1684 return truesize;
1685}
1686
1687/**
1688 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1689 * @rx_ring: rx descriptor ring to transact packets on
1690 * @rx_buffer: buffer containing page to add
1691 * @skb: sk_buff to place the data into
1692 * @size: size of buffer to be added
1693 *
1694 * This function will add the data contained in rx_buffer->page to the skb.
1695 */
1696static void igc_add_rx_frag(struct igc_ring *rx_ring,
1697 struct igc_rx_buffer *rx_buffer,
1698 struct sk_buff *skb,
1699 unsigned int size)
1700{
1701 unsigned int truesize;
1702
1703#if (PAGE_SIZE < 8192)
1704 truesize = igc_rx_pg_size(rx_ring) / 2;
1705#else
1706 truesize = ring_uses_build_skb(rx_ring) ?
1707 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1708 SKB_DATA_ALIGN(size);
1709#endif
1710 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1711 rx_buffer->page_offset, size, truesize);
1712
1713 igc_rx_buffer_flip(rx_buffer, truesize);
1714}
1715
1716static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1717 struct igc_rx_buffer *rx_buffer,
1718 union igc_adv_rx_desc *rx_desc,
1719 unsigned int size)
1720{
1721 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1722 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1723 struct sk_buff *skb;
1724
1725 /* prefetch first cache line of first page */
1726 net_prefetch(va);
1727
1728 /* build an skb around the page buffer */
1729 skb = build_skb(va - IGC_SKB_PAD, truesize);
1730 if (unlikely(!skb))
1731 return NULL;
1732
1733 /* update pointers within the skb to store the data */
1734 skb_reserve(skb, IGC_SKB_PAD);
1735 __skb_put(skb, size);
1736
1737 igc_rx_buffer_flip(rx_buffer, truesize);
1738 return skb;
1739}
1740
1741static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1742 struct igc_rx_buffer *rx_buffer,
1743 struct xdp_buff *xdp,
1744 ktime_t timestamp)
1745{
1746 unsigned int size = xdp->data_end - xdp->data;
1747 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1748 void *va = xdp->data;
1749 unsigned int headlen;
1750 struct sk_buff *skb;
1751
1752 /* prefetch first cache line of first page */
1753 net_prefetch(va);
1754
1755 /* allocate a skb to store the frags */
1756 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1757 if (unlikely(!skb))
1758 return NULL;
1759
1760 if (timestamp)
1761 skb_hwtstamps(skb)->hwtstamp = timestamp;
1762
1763 /* Determine available headroom for copy */
1764 headlen = size;
1765 if (headlen > IGC_RX_HDR_LEN)
1766 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1767
1768 /* align pull length to size of long to optimize memcpy performance */
1769 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1770
1771 /* update all of the pointers */
1772 size -= headlen;
1773 if (size) {
1774 skb_add_rx_frag(skb, 0, rx_buffer->page,
1775 (va + headlen) - page_address(rx_buffer->page),
1776 size, truesize);
1777 igc_rx_buffer_flip(rx_buffer, truesize);
1778 } else {
1779 rx_buffer->pagecnt_bias++;
1780 }
1781
1782 return skb;
1783}
1784
1785/**
1786 * igc_reuse_rx_page - page flip buffer and store it back on the ring
1787 * @rx_ring: rx descriptor ring to store buffers on
1788 * @old_buff: donor buffer to have page reused
1789 *
1790 * Synchronizes page for reuse by the adapter
1791 */
1792static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1793 struct igc_rx_buffer *old_buff)
1794{
1795 u16 nta = rx_ring->next_to_alloc;
1796 struct igc_rx_buffer *new_buff;
1797
1798 new_buff = &rx_ring->rx_buffer_info[nta];
1799
1800 /* update, and store next to alloc */
1801 nta++;
1802 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1803
1804 /* Transfer page from old buffer to new buffer.
1805 * Move each member individually to avoid possible store
1806 * forwarding stalls.
1807 */
1808 new_buff->dma = old_buff->dma;
1809 new_buff->page = old_buff->page;
1810 new_buff->page_offset = old_buff->page_offset;
1811 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1812}
1813
1814static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1815 int rx_buffer_pgcnt)
1816{
1817 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1818 struct page *page = rx_buffer->page;
1819
1820 /* avoid re-using remote and pfmemalloc pages */
1821 if (!dev_page_is_reusable(page))
1822 return false;
1823
1824#if (PAGE_SIZE < 8192)
1825 /* if we are only owner of page we can reuse it */
1826 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1827 return false;
1828#else
1829#define IGC_LAST_OFFSET \
1830 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1831
1832 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1833 return false;
1834#endif
1835
1836 /* If we have drained the page fragment pool we need to update
1837 * the pagecnt_bias and page count so that we fully restock the
1838 * number of references the driver holds.
1839 */
1840 if (unlikely(pagecnt_bias == 1)) {
1841 page_ref_add(page, USHRT_MAX - 1);
1842 rx_buffer->pagecnt_bias = USHRT_MAX;
1843 }
1844
1845 return true;
1846}
1847
1848/**
1849 * igc_is_non_eop - process handling of non-EOP buffers
1850 * @rx_ring: Rx ring being processed
1851 * @rx_desc: Rx descriptor for current buffer
1852 *
1853 * This function updates next to clean. If the buffer is an EOP buffer
1854 * this function exits returning false, otherwise it will place the
1855 * sk_buff in the next buffer to be chained and return true indicating
1856 * that this is in fact a non-EOP buffer.
1857 */
1858static bool igc_is_non_eop(struct igc_ring *rx_ring,
1859 union igc_adv_rx_desc *rx_desc)
1860{
1861 u32 ntc = rx_ring->next_to_clean + 1;
1862
1863 /* fetch, update, and store next to clean */
1864 ntc = (ntc < rx_ring->count) ? ntc : 0;
1865 rx_ring->next_to_clean = ntc;
1866
1867 prefetch(IGC_RX_DESC(rx_ring, ntc));
1868
1869 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1870 return false;
1871
1872 return true;
1873}
1874
1875/**
1876 * igc_cleanup_headers - Correct corrupted or empty headers
1877 * @rx_ring: rx descriptor ring packet is being transacted on
1878 * @rx_desc: pointer to the EOP Rx descriptor
1879 * @skb: pointer to current skb being fixed
1880 *
1881 * Address the case where we are pulling data in on pages only
1882 * and as such no data is present in the skb header.
1883 *
1884 * In addition if skb is not at least 60 bytes we need to pad it so that
1885 * it is large enough to qualify as a valid Ethernet frame.
1886 *
1887 * Returns true if an error was encountered and skb was freed.
1888 */
1889static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1890 union igc_adv_rx_desc *rx_desc,
1891 struct sk_buff *skb)
1892{
1893 /* XDP packets use error pointer so abort at this point */
1894 if (IS_ERR(skb))
1895 return true;
1896
1897 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1898 struct net_device *netdev = rx_ring->netdev;
1899
1900 if (!(netdev->features & NETIF_F_RXALL)) {
1901 dev_kfree_skb_any(skb);
1902 return true;
1903 }
1904 }
1905
1906 /* if eth_skb_pad returns an error the skb was freed */
1907 if (eth_skb_pad(skb))
1908 return true;
1909
1910 return false;
1911}
1912
1913static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1914 struct igc_rx_buffer *rx_buffer,
1915 int rx_buffer_pgcnt)
1916{
1917 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
1918 /* hand second half of page back to the ring */
1919 igc_reuse_rx_page(rx_ring, rx_buffer);
1920 } else {
1921 /* We are not reusing the buffer so unmap it and free
1922 * any references we are holding to it
1923 */
1924 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1925 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1926 IGC_RX_DMA_ATTR);
1927 __page_frag_cache_drain(rx_buffer->page,
1928 rx_buffer->pagecnt_bias);
1929 }
1930
1931 /* clear contents of rx_buffer */
1932 rx_buffer->page = NULL;
1933}
1934
1935static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1936{
1937 struct igc_adapter *adapter = rx_ring->q_vector->adapter;
1938
1939 if (ring_uses_build_skb(rx_ring))
1940 return IGC_SKB_PAD;
1941 if (igc_xdp_is_enabled(adapter))
1942 return XDP_PACKET_HEADROOM;
1943
1944 return 0;
1945}
1946
1947static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1948 struct igc_rx_buffer *bi)
1949{
1950 struct page *page = bi->page;
1951 dma_addr_t dma;
1952
1953 /* since we are recycling buffers we should seldom need to alloc */
1954 if (likely(page))
1955 return true;
1956
1957 /* alloc new page for storage */
1958 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1959 if (unlikely(!page)) {
1960 rx_ring->rx_stats.alloc_failed++;
1961 return false;
1962 }
1963
1964 /* map page for use */
1965 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1966 igc_rx_pg_size(rx_ring),
1967 DMA_FROM_DEVICE,
1968 IGC_RX_DMA_ATTR);
1969
1970 /* if mapping failed free memory back to system since
1971 * there isn't much point in holding memory we can't use
1972 */
1973 if (dma_mapping_error(rx_ring->dev, dma)) {
1974 __free_page(page);
1975
1976 rx_ring->rx_stats.alloc_failed++;
1977 return false;
1978 }
1979
1980 bi->dma = dma;
1981 bi->page = page;
1982 bi->page_offset = igc_rx_offset(rx_ring);
1983 page_ref_add(page, USHRT_MAX - 1);
1984 bi->pagecnt_bias = USHRT_MAX;
1985
1986 return true;
1987}
1988
1989/**
1990 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1991 * @rx_ring: rx descriptor ring
1992 * @cleaned_count: number of buffers to clean
1993 */
1994static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1995{
1996 union igc_adv_rx_desc *rx_desc;
1997 u16 i = rx_ring->next_to_use;
1998 struct igc_rx_buffer *bi;
1999 u16 bufsz;
2000
2001 /* nothing to do */
2002 if (!cleaned_count)
2003 return;
2004
2005 rx_desc = IGC_RX_DESC(rx_ring, i);
2006 bi = &rx_ring->rx_buffer_info[i];
2007 i -= rx_ring->count;
2008
2009 bufsz = igc_rx_bufsz(rx_ring);
2010
2011 do {
2012 if (!igc_alloc_mapped_page(rx_ring, bi))
2013 break;
2014
2015 /* sync the buffer for use by the device */
2016 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2017 bi->page_offset, bufsz,
2018 DMA_FROM_DEVICE);
2019
2020 /* Refresh the desc even if buffer_addrs didn't change
2021 * because each write-back erases this info.
2022 */
2023 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2024
2025 rx_desc++;
2026 bi++;
2027 i++;
2028 if (unlikely(!i)) {
2029 rx_desc = IGC_RX_DESC(rx_ring, 0);
2030 bi = rx_ring->rx_buffer_info;
2031 i -= rx_ring->count;
2032 }
2033
2034 /* clear the length for the next_to_use descriptor */
2035 rx_desc->wb.upper.length = 0;
2036
2037 cleaned_count--;
2038 } while (cleaned_count);
2039
2040 i += rx_ring->count;
2041
2042 if (rx_ring->next_to_use != i) {
2043 /* record the next descriptor to use */
2044 rx_ring->next_to_use = i;
2045
2046 /* update next to alloc since we have filled the ring */
2047 rx_ring->next_to_alloc = i;
2048
2049 /* Force memory writes to complete before letting h/w
2050 * know there are new descriptors to fetch. (Only
2051 * applicable for weak-ordered memory model archs,
2052 * such as IA-64).
2053 */
2054 wmb();
2055 writel(i, rx_ring->tail);
2056 }
2057}
2058
2059static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2060{
2061 union igc_adv_rx_desc *desc;
2062 u16 i = ring->next_to_use;
2063 struct igc_rx_buffer *bi;
2064 dma_addr_t dma;
2065 bool ok = true;
2066
2067 if (!count)
2068 return ok;
2069
2070 desc = IGC_RX_DESC(ring, i);
2071 bi = &ring->rx_buffer_info[i];
2072 i -= ring->count;
2073
2074 do {
2075 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2076 if (!bi->xdp) {
2077 ok = false;
2078 break;
2079 }
2080
2081 dma = xsk_buff_xdp_get_dma(bi->xdp);
2082 desc->read.pkt_addr = cpu_to_le64(dma);
2083
2084 desc++;
2085 bi++;
2086 i++;
2087 if (unlikely(!i)) {
2088 desc = IGC_RX_DESC(ring, 0);
2089 bi = ring->rx_buffer_info;
2090 i -= ring->count;
2091 }
2092
2093 /* Clear the length for the next_to_use descriptor. */
2094 desc->wb.upper.length = 0;
2095
2096 count--;
2097 } while (count);
2098
2099 i += ring->count;
2100
2101 if (ring->next_to_use != i) {
2102 ring->next_to_use = i;
2103
2104 /* Force memory writes to complete before letting h/w
2105 * know there are new descriptors to fetch. (Only
2106 * applicable for weak-ordered memory model archs,
2107 * such as IA-64).
2108 */
2109 wmb();
2110 writel(i, ring->tail);
2111 }
2112
2113 return ok;
2114}
2115
2116static int igc_xdp_init_tx_buffer(struct igc_tx_buffer *buffer,
2117 struct xdp_frame *xdpf,
2118 struct igc_ring *ring)
2119{
2120 dma_addr_t dma;
2121
2122 dma = dma_map_single(ring->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE);
2123 if (dma_mapping_error(ring->dev, dma)) {
2124 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
2125 return -ENOMEM;
2126 }
2127
2128 buffer->type = IGC_TX_BUFFER_TYPE_XDP;
2129 buffer->xdpf = xdpf;
2130 buffer->protocol = 0;
2131 buffer->bytecount = xdpf->len;
2132 buffer->gso_segs = 1;
2133 buffer->time_stamp = jiffies;
2134 dma_unmap_len_set(buffer, len, xdpf->len);
2135 dma_unmap_addr_set(buffer, dma, dma);
2136 return 0;
2137}
2138
2139/* This function requires __netif_tx_lock is held by the caller. */
2140static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2141 struct xdp_frame *xdpf)
2142{
2143 struct igc_tx_buffer *buffer;
2144 union igc_adv_tx_desc *desc;
2145 u32 cmd_type, olinfo_status;
2146 int err;
2147
2148 if (!igc_desc_unused(ring))
2149 return -EBUSY;
2150
2151 buffer = &ring->tx_buffer_info[ring->next_to_use];
2152 err = igc_xdp_init_tx_buffer(buffer, xdpf, ring);
2153 if (err)
2154 return err;
2155
2156 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2157 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2158 buffer->bytecount;
2159 olinfo_status = buffer->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2160
2161 desc = IGC_TX_DESC(ring, ring->next_to_use);
2162 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2163 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2164 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(buffer, dma));
2165
2166 netdev_tx_sent_queue(txring_txq(ring), buffer->bytecount);
2167
2168 buffer->next_to_watch = desc;
2169
2170 ring->next_to_use++;
2171 if (ring->next_to_use == ring->count)
2172 ring->next_to_use = 0;
2173
2174 return 0;
2175}
2176
2177static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2178 int cpu)
2179{
2180 int index = cpu;
2181
2182 if (unlikely(index < 0))
2183 index = 0;
2184
2185 while (index >= adapter->num_tx_queues)
2186 index -= adapter->num_tx_queues;
2187
2188 return adapter->tx_ring[index];
2189}
2190
2191static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2192{
2193 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2194 int cpu = smp_processor_id();
2195 struct netdev_queue *nq;
2196 struct igc_ring *ring;
2197 int res;
2198
2199 if (unlikely(!xdpf))
2200 return -EFAULT;
2201
2202 ring = igc_xdp_get_tx_ring(adapter, cpu);
2203 nq = txring_txq(ring);
2204
2205 __netif_tx_lock(nq, cpu);
2206 res = igc_xdp_init_tx_descriptor(ring, xdpf);
2207 __netif_tx_unlock(nq);
2208 return res;
2209}
2210
2211/* This function assumes rcu_read_lock() is held by the caller. */
2212static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2213 struct bpf_prog *prog,
2214 struct xdp_buff *xdp)
2215{
2216 u32 act = bpf_prog_run_xdp(prog, xdp);
2217
2218 switch (act) {
2219 case XDP_PASS:
2220 return IGC_XDP_PASS;
2221 case XDP_TX:
2222 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2223 goto out_failure;
2224 return IGC_XDP_TX;
2225 case XDP_REDIRECT:
2226 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2227 goto out_failure;
2228 return IGC_XDP_REDIRECT;
2229 break;
2230 default:
2231 bpf_warn_invalid_xdp_action(act);
2232 fallthrough;
2233 case XDP_ABORTED:
2234out_failure:
2235 trace_xdp_exception(adapter->netdev, prog, act);
2236 fallthrough;
2237 case XDP_DROP:
2238 return IGC_XDP_CONSUMED;
2239 }
2240}
2241
2242static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2243 struct xdp_buff *xdp)
2244{
2245 struct bpf_prog *prog;
2246 int res;
2247
2248 prog = READ_ONCE(adapter->xdp_prog);
2249 if (!prog) {
2250 res = IGC_XDP_PASS;
2251 goto out;
2252 }
2253
2254 res = __igc_xdp_run_prog(adapter, prog, xdp);
2255
2256out:
2257 return ERR_PTR(-res);
2258}
2259
2260/* This function assumes __netif_tx_lock is held by the caller. */
2261static void igc_flush_tx_descriptors(struct igc_ring *ring)
2262{
2263 /* Once tail pointer is updated, hardware can fetch the descriptors
2264 * any time so we issue a write membar here to ensure all memory
2265 * writes are complete before the tail pointer is updated.
2266 */
2267 wmb();
2268 writel(ring->next_to_use, ring->tail);
2269}
2270
2271static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2272{
2273 int cpu = smp_processor_id();
2274 struct netdev_queue *nq;
2275 struct igc_ring *ring;
2276
2277 if (status & IGC_XDP_TX) {
2278 ring = igc_xdp_get_tx_ring(adapter, cpu);
2279 nq = txring_txq(ring);
2280
2281 __netif_tx_lock(nq, cpu);
2282 igc_flush_tx_descriptors(ring);
2283 __netif_tx_unlock(nq);
2284 }
2285
2286 if (status & IGC_XDP_REDIRECT)
2287 xdp_do_flush();
2288}
2289
2290static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2291 unsigned int packets, unsigned int bytes)
2292{
2293 struct igc_ring *ring = q_vector->rx.ring;
2294
2295 u64_stats_update_begin(&ring->rx_syncp);
2296 ring->rx_stats.packets += packets;
2297 ring->rx_stats.bytes += bytes;
2298 u64_stats_update_end(&ring->rx_syncp);
2299
2300 q_vector->rx.total_packets += packets;
2301 q_vector->rx.total_bytes += bytes;
2302}
2303
2304static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2305{
2306 unsigned int total_bytes = 0, total_packets = 0;
2307 struct igc_adapter *adapter = q_vector->adapter;
2308 struct igc_ring *rx_ring = q_vector->rx.ring;
2309 struct sk_buff *skb = rx_ring->skb;
2310 u16 cleaned_count = igc_desc_unused(rx_ring);
2311 int xdp_status = 0, rx_buffer_pgcnt;
2312
2313 while (likely(total_packets < budget)) {
2314 union igc_adv_rx_desc *rx_desc;
2315 struct igc_rx_buffer *rx_buffer;
2316 unsigned int size, truesize;
2317 ktime_t timestamp = 0;
2318 struct xdp_buff xdp;
2319 int pkt_offset = 0;
2320 void *pktbuf;
2321
2322 /* return some buffers to hardware, one at a time is too slow */
2323 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2324 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2325 cleaned_count = 0;
2326 }
2327
2328 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2329 size = le16_to_cpu(rx_desc->wb.upper.length);
2330 if (!size)
2331 break;
2332
2333 /* This memory barrier is needed to keep us from reading
2334 * any other fields out of the rx_desc until we know the
2335 * descriptor has been written back
2336 */
2337 dma_rmb();
2338
2339 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2340 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2341
2342 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2343
2344 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2345 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2346 pktbuf);
2347 pkt_offset = IGC_TS_HDR_LEN;
2348 size -= IGC_TS_HDR_LEN;
2349 }
2350
2351 if (!skb) {
2352 xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq);
2353 xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring),
2354 igc_rx_offset(rx_ring) + pkt_offset, size, false);
2355
2356 skb = igc_xdp_run_prog(adapter, &xdp);
2357 }
2358
2359 if (IS_ERR(skb)) {
2360 unsigned int xdp_res = -PTR_ERR(skb);
2361
2362 switch (xdp_res) {
2363 case IGC_XDP_CONSUMED:
2364 rx_buffer->pagecnt_bias++;
2365 break;
2366 case IGC_XDP_TX:
2367 case IGC_XDP_REDIRECT:
2368 igc_rx_buffer_flip(rx_buffer, truesize);
2369 xdp_status |= xdp_res;
2370 break;
2371 }
2372
2373 total_packets++;
2374 total_bytes += size;
2375 } else if (skb)
2376 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2377 else if (ring_uses_build_skb(rx_ring))
2378 skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
2379 else
2380 skb = igc_construct_skb(rx_ring, rx_buffer, &xdp,
2381 timestamp);
2382
2383 /* exit if we failed to retrieve a buffer */
2384 if (!skb) {
2385 rx_ring->rx_stats.alloc_failed++;
2386 rx_buffer->pagecnt_bias++;
2387 break;
2388 }
2389
2390 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2391 cleaned_count++;
2392
2393 /* fetch next buffer in frame if non-eop */
2394 if (igc_is_non_eop(rx_ring, rx_desc))
2395 continue;
2396
2397 /* verify the packet layout is correct */
2398 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2399 skb = NULL;
2400 continue;
2401 }
2402
2403 /* probably a little skewed due to removing CRC */
2404 total_bytes += skb->len;
2405
2406 /* populate checksum, VLAN, and protocol */
2407 igc_process_skb_fields(rx_ring, rx_desc, skb);
2408
2409 napi_gro_receive(&q_vector->napi, skb);
2410
2411 /* reset skb pointer */
2412 skb = NULL;
2413
2414 /* update budget accounting */
2415 total_packets++;
2416 }
2417
2418 if (xdp_status)
2419 igc_finalize_xdp(adapter, xdp_status);
2420
2421 /* place incomplete frames back on ring for completion */
2422 rx_ring->skb = skb;
2423
2424 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2425
2426 if (cleaned_count)
2427 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2428
2429 return total_packets;
2430}
2431
2432static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2433 struct xdp_buff *xdp)
2434{
2435 unsigned int metasize = xdp->data - xdp->data_meta;
2436 unsigned int datasize = xdp->data_end - xdp->data;
2437 unsigned int totalsize = metasize + datasize;
2438 struct sk_buff *skb;
2439
2440 skb = __napi_alloc_skb(&ring->q_vector->napi,
2441 xdp->data_end - xdp->data_hard_start,
2442 GFP_ATOMIC | __GFP_NOWARN);
2443 if (unlikely(!skb))
2444 return NULL;
2445
2446 skb_reserve(skb, xdp->data_meta - xdp->data_hard_start);
2447 memcpy(__skb_put(skb, totalsize), xdp->data_meta, totalsize);
2448 if (metasize)
2449 skb_metadata_set(skb, metasize);
2450
2451 return skb;
2452}
2453
2454static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2455 union igc_adv_rx_desc *desc,
2456 struct xdp_buff *xdp,
2457 ktime_t timestamp)
2458{
2459 struct igc_ring *ring = q_vector->rx.ring;
2460 struct sk_buff *skb;
2461
2462 skb = igc_construct_skb_zc(ring, xdp);
2463 if (!skb) {
2464 ring->rx_stats.alloc_failed++;
2465 return;
2466 }
2467
2468 if (timestamp)
2469 skb_hwtstamps(skb)->hwtstamp = timestamp;
2470
2471 if (igc_cleanup_headers(ring, desc, skb))
2472 return;
2473
2474 igc_process_skb_fields(ring, desc, skb);
2475 napi_gro_receive(&q_vector->napi, skb);
2476}
2477
2478static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2479{
2480 struct igc_adapter *adapter = q_vector->adapter;
2481 struct igc_ring *ring = q_vector->rx.ring;
2482 u16 cleaned_count = igc_desc_unused(ring);
2483 int total_bytes = 0, total_packets = 0;
2484 u16 ntc = ring->next_to_clean;
2485 struct bpf_prog *prog;
2486 bool failure = false;
2487 int xdp_status = 0;
2488
2489 rcu_read_lock();
2490
2491 prog = READ_ONCE(adapter->xdp_prog);
2492
2493 while (likely(total_packets < budget)) {
2494 union igc_adv_rx_desc *desc;
2495 struct igc_rx_buffer *bi;
2496 ktime_t timestamp = 0;
2497 unsigned int size;
2498 int res;
2499
2500 desc = IGC_RX_DESC(ring, ntc);
2501 size = le16_to_cpu(desc->wb.upper.length);
2502 if (!size)
2503 break;
2504
2505 /* This memory barrier is needed to keep us from reading
2506 * any other fields out of the rx_desc until we know the
2507 * descriptor has been written back
2508 */
2509 dma_rmb();
2510
2511 bi = &ring->rx_buffer_info[ntc];
2512
2513 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2514 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2515 bi->xdp->data);
2516
2517 bi->xdp->data += IGC_TS_HDR_LEN;
2518
2519 /* HW timestamp has been copied into local variable. Metadata
2520 * length when XDP program is called should be 0.
2521 */
2522 bi->xdp->data_meta += IGC_TS_HDR_LEN;
2523 size -= IGC_TS_HDR_LEN;
2524 }
2525
2526 bi->xdp->data_end = bi->xdp->data + size;
2527 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2528
2529 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2530 switch (res) {
2531 case IGC_XDP_PASS:
2532 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2533 fallthrough;
2534 case IGC_XDP_CONSUMED:
2535 xsk_buff_free(bi->xdp);
2536 break;
2537 case IGC_XDP_TX:
2538 case IGC_XDP_REDIRECT:
2539 xdp_status |= res;
2540 break;
2541 }
2542
2543 bi->xdp = NULL;
2544 total_bytes += size;
2545 total_packets++;
2546 cleaned_count++;
2547 ntc++;
2548 if (ntc == ring->count)
2549 ntc = 0;
2550 }
2551
2552 ring->next_to_clean = ntc;
2553 rcu_read_unlock();
2554
2555 if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2556 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2557
2558 if (xdp_status)
2559 igc_finalize_xdp(adapter, xdp_status);
2560
2561 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2562
2563 if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2564 if (failure || ring->next_to_clean == ring->next_to_use)
2565 xsk_set_rx_need_wakeup(ring->xsk_pool);
2566 else
2567 xsk_clear_rx_need_wakeup(ring->xsk_pool);
2568 return total_packets;
2569 }
2570
2571 return failure ? budget : total_packets;
2572}
2573
2574static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2575 unsigned int packets, unsigned int bytes)
2576{
2577 struct igc_ring *ring = q_vector->tx.ring;
2578
2579 u64_stats_update_begin(&ring->tx_syncp);
2580 ring->tx_stats.bytes += bytes;
2581 ring->tx_stats.packets += packets;
2582 u64_stats_update_end(&ring->tx_syncp);
2583
2584 q_vector->tx.total_bytes += bytes;
2585 q_vector->tx.total_packets += packets;
2586}
2587
2588static void igc_xdp_xmit_zc(struct igc_ring *ring)
2589{
2590 struct xsk_buff_pool *pool = ring->xsk_pool;
2591 struct netdev_queue *nq = txring_txq(ring);
2592 union igc_adv_tx_desc *tx_desc = NULL;
2593 int cpu = smp_processor_id();
2594 u16 ntu = ring->next_to_use;
2595 struct xdp_desc xdp_desc;
2596 u16 budget;
2597
2598 if (!netif_carrier_ok(ring->netdev))
2599 return;
2600
2601 __netif_tx_lock(nq, cpu);
2602
2603 budget = igc_desc_unused(ring);
2604
2605 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2606 u32 cmd_type, olinfo_status;
2607 struct igc_tx_buffer *bi;
2608 dma_addr_t dma;
2609
2610 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2611 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2612 xdp_desc.len;
2613 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2614
2615 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2616 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2617
2618 tx_desc = IGC_TX_DESC(ring, ntu);
2619 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2620 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2621 tx_desc->read.buffer_addr = cpu_to_le64(dma);
2622
2623 bi = &ring->tx_buffer_info[ntu];
2624 bi->type = IGC_TX_BUFFER_TYPE_XSK;
2625 bi->protocol = 0;
2626 bi->bytecount = xdp_desc.len;
2627 bi->gso_segs = 1;
2628 bi->time_stamp = jiffies;
2629 bi->next_to_watch = tx_desc;
2630
2631 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2632
2633 ntu++;
2634 if (ntu == ring->count)
2635 ntu = 0;
2636 }
2637
2638 ring->next_to_use = ntu;
2639 if (tx_desc) {
2640 igc_flush_tx_descriptors(ring);
2641 xsk_tx_release(pool);
2642 }
2643
2644 __netif_tx_unlock(nq);
2645}
2646
2647/**
2648 * igc_clean_tx_irq - Reclaim resources after transmit completes
2649 * @q_vector: pointer to q_vector containing needed info
2650 * @napi_budget: Used to determine if we are in netpoll
2651 *
2652 * returns true if ring is completely cleaned
2653 */
2654static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2655{
2656 struct igc_adapter *adapter = q_vector->adapter;
2657 unsigned int total_bytes = 0, total_packets = 0;
2658 unsigned int budget = q_vector->tx.work_limit;
2659 struct igc_ring *tx_ring = q_vector->tx.ring;
2660 unsigned int i = tx_ring->next_to_clean;
2661 struct igc_tx_buffer *tx_buffer;
2662 union igc_adv_tx_desc *tx_desc;
2663 u32 xsk_frames = 0;
2664
2665 if (test_bit(__IGC_DOWN, &adapter->state))
2666 return true;
2667
2668 tx_buffer = &tx_ring->tx_buffer_info[i];
2669 tx_desc = IGC_TX_DESC(tx_ring, i);
2670 i -= tx_ring->count;
2671
2672 do {
2673 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2674
2675 /* if next_to_watch is not set then there is no work pending */
2676 if (!eop_desc)
2677 break;
2678
2679 /* prevent any other reads prior to eop_desc */
2680 smp_rmb();
2681
2682 /* if DD is not set pending work has not been completed */
2683 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2684 break;
2685
2686 /* clear next_to_watch to prevent false hangs */
2687 tx_buffer->next_to_watch = NULL;
2688
2689 /* update the statistics for this packet */
2690 total_bytes += tx_buffer->bytecount;
2691 total_packets += tx_buffer->gso_segs;
2692
2693 switch (tx_buffer->type) {
2694 case IGC_TX_BUFFER_TYPE_XSK:
2695 xsk_frames++;
2696 break;
2697 case IGC_TX_BUFFER_TYPE_XDP:
2698 xdp_return_frame(tx_buffer->xdpf);
2699 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2700 break;
2701 case IGC_TX_BUFFER_TYPE_SKB:
2702 napi_consume_skb(tx_buffer->skb, napi_budget);
2703 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2704 break;
2705 default:
2706 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2707 break;
2708 }
2709
2710 /* clear last DMA location and unmap remaining buffers */
2711 while (tx_desc != eop_desc) {
2712 tx_buffer++;
2713 tx_desc++;
2714 i++;
2715 if (unlikely(!i)) {
2716 i -= tx_ring->count;
2717 tx_buffer = tx_ring->tx_buffer_info;
2718 tx_desc = IGC_TX_DESC(tx_ring, 0);
2719 }
2720
2721 /* unmap any remaining paged data */
2722 if (dma_unmap_len(tx_buffer, len))
2723 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2724 }
2725
2726 /* move us one more past the eop_desc for start of next pkt */
2727 tx_buffer++;
2728 tx_desc++;
2729 i++;
2730 if (unlikely(!i)) {
2731 i -= tx_ring->count;
2732 tx_buffer = tx_ring->tx_buffer_info;
2733 tx_desc = IGC_TX_DESC(tx_ring, 0);
2734 }
2735
2736 /* issue prefetch for next Tx descriptor */
2737 prefetch(tx_desc);
2738
2739 /* update budget accounting */
2740 budget--;
2741 } while (likely(budget));
2742
2743 netdev_tx_completed_queue(txring_txq(tx_ring),
2744 total_packets, total_bytes);
2745
2746 i += tx_ring->count;
2747 tx_ring->next_to_clean = i;
2748
2749 igc_update_tx_stats(q_vector, total_packets, total_bytes);
2750
2751 if (tx_ring->xsk_pool) {
2752 if (xsk_frames)
2753 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
2754 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
2755 xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
2756 igc_xdp_xmit_zc(tx_ring);
2757 }
2758
2759 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2760 struct igc_hw *hw = &adapter->hw;
2761
2762 /* Detect a transmit hang in hardware, this serializes the
2763 * check with the clearing of time_stamp and movement of i
2764 */
2765 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2766 if (tx_buffer->next_to_watch &&
2767 time_after(jiffies, tx_buffer->time_stamp +
2768 (adapter->tx_timeout_factor * HZ)) &&
2769 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2770 /* detected Tx unit hang */
2771 netdev_err(tx_ring->netdev,
2772 "Detected Tx Unit Hang\n"
2773 " Tx Queue <%d>\n"
2774 " TDH <%x>\n"
2775 " TDT <%x>\n"
2776 " next_to_use <%x>\n"
2777 " next_to_clean <%x>\n"
2778 "buffer_info[next_to_clean]\n"
2779 " time_stamp <%lx>\n"
2780 " next_to_watch <%p>\n"
2781 " jiffies <%lx>\n"
2782 " desc.status <%x>\n",
2783 tx_ring->queue_index,
2784 rd32(IGC_TDH(tx_ring->reg_idx)),
2785 readl(tx_ring->tail),
2786 tx_ring->next_to_use,
2787 tx_ring->next_to_clean,
2788 tx_buffer->time_stamp,
2789 tx_buffer->next_to_watch,
2790 jiffies,
2791 tx_buffer->next_to_watch->wb.status);
2792 netif_stop_subqueue(tx_ring->netdev,
2793 tx_ring->queue_index);
2794
2795 /* we are about to reset, no point in enabling stuff */
2796 return true;
2797 }
2798 }
2799
2800#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2801 if (unlikely(total_packets &&
2802 netif_carrier_ok(tx_ring->netdev) &&
2803 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2804 /* Make sure that anybody stopping the queue after this
2805 * sees the new next_to_clean.
2806 */
2807 smp_mb();
2808 if (__netif_subqueue_stopped(tx_ring->netdev,
2809 tx_ring->queue_index) &&
2810 !(test_bit(__IGC_DOWN, &adapter->state))) {
2811 netif_wake_subqueue(tx_ring->netdev,
2812 tx_ring->queue_index);
2813
2814 u64_stats_update_begin(&tx_ring->tx_syncp);
2815 tx_ring->tx_stats.restart_queue++;
2816 u64_stats_update_end(&tx_ring->tx_syncp);
2817 }
2818 }
2819
2820 return !!budget;
2821}
2822
2823static int igc_find_mac_filter(struct igc_adapter *adapter,
2824 enum igc_mac_filter_type type, const u8 *addr)
2825{
2826 struct igc_hw *hw = &adapter->hw;
2827 int max_entries = hw->mac.rar_entry_count;
2828 u32 ral, rah;
2829 int i;
2830
2831 for (i = 0; i < max_entries; i++) {
2832 ral = rd32(IGC_RAL(i));
2833 rah = rd32(IGC_RAH(i));
2834
2835 if (!(rah & IGC_RAH_AV))
2836 continue;
2837 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2838 continue;
2839 if ((rah & IGC_RAH_RAH_MASK) !=
2840 le16_to_cpup((__le16 *)(addr + 4)))
2841 continue;
2842 if (ral != le32_to_cpup((__le32 *)(addr)))
2843 continue;
2844
2845 return i;
2846 }
2847
2848 return -1;
2849}
2850
2851static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2852{
2853 struct igc_hw *hw = &adapter->hw;
2854 int max_entries = hw->mac.rar_entry_count;
2855 u32 rah;
2856 int i;
2857
2858 for (i = 0; i < max_entries; i++) {
2859 rah = rd32(IGC_RAH(i));
2860
2861 if (!(rah & IGC_RAH_AV))
2862 return i;
2863 }
2864
2865 return -1;
2866}
2867
2868/**
2869 * igc_add_mac_filter() - Add MAC address filter
2870 * @adapter: Pointer to adapter where the filter should be added
2871 * @type: MAC address filter type (source or destination)
2872 * @addr: MAC address
2873 * @queue: If non-negative, queue assignment feature is enabled and frames
2874 * matching the filter are enqueued onto 'queue'. Otherwise, queue
2875 * assignment is disabled.
2876 *
2877 * Return: 0 in case of success, negative errno code otherwise.
2878 */
2879static int igc_add_mac_filter(struct igc_adapter *adapter,
2880 enum igc_mac_filter_type type, const u8 *addr,
2881 int queue)
2882{
2883 struct net_device *dev = adapter->netdev;
2884 int index;
2885
2886 index = igc_find_mac_filter(adapter, type, addr);
2887 if (index >= 0)
2888 goto update_filter;
2889
2890 index = igc_get_avail_mac_filter_slot(adapter);
2891 if (index < 0)
2892 return -ENOSPC;
2893
2894 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2895 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2896 addr, queue);
2897
2898update_filter:
2899 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2900 return 0;
2901}
2902
2903/**
2904 * igc_del_mac_filter() - Delete MAC address filter
2905 * @adapter: Pointer to adapter where the filter should be deleted from
2906 * @type: MAC address filter type (source or destination)
2907 * @addr: MAC address
2908 */
2909static void igc_del_mac_filter(struct igc_adapter *adapter,
2910 enum igc_mac_filter_type type, const u8 *addr)
2911{
2912 struct net_device *dev = adapter->netdev;
2913 int index;
2914
2915 index = igc_find_mac_filter(adapter, type, addr);
2916 if (index < 0)
2917 return;
2918
2919 if (index == 0) {
2920 /* If this is the default filter, we don't actually delete it.
2921 * We just reset to its default value i.e. disable queue
2922 * assignment.
2923 */
2924 netdev_dbg(dev, "Disable default MAC filter queue assignment");
2925
2926 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2927 } else {
2928 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2929 index,
2930 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2931 addr);
2932
2933 igc_clear_mac_filter_hw(adapter, index);
2934 }
2935}
2936
2937/**
2938 * igc_add_vlan_prio_filter() - Add VLAN priority filter
2939 * @adapter: Pointer to adapter where the filter should be added
2940 * @prio: VLAN priority value
2941 * @queue: Queue number which matching frames are assigned to
2942 *
2943 * Return: 0 in case of success, negative errno code otherwise.
2944 */
2945static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2946 int queue)
2947{
2948 struct net_device *dev = adapter->netdev;
2949 struct igc_hw *hw = &adapter->hw;
2950 u32 vlanpqf;
2951
2952 vlanpqf = rd32(IGC_VLANPQF);
2953
2954 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2955 netdev_dbg(dev, "VLAN priority filter already in use\n");
2956 return -EEXIST;
2957 }
2958
2959 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2960 vlanpqf |= IGC_VLANPQF_VALID(prio);
2961
2962 wr32(IGC_VLANPQF, vlanpqf);
2963
2964 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2965 prio, queue);
2966 return 0;
2967}
2968
2969/**
2970 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2971 * @adapter: Pointer to adapter where the filter should be deleted from
2972 * @prio: VLAN priority value
2973 */
2974static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2975{
2976 struct igc_hw *hw = &adapter->hw;
2977 u32 vlanpqf;
2978
2979 vlanpqf = rd32(IGC_VLANPQF);
2980
2981 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2982 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2983
2984 wr32(IGC_VLANPQF, vlanpqf);
2985
2986 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2987 prio);
2988}
2989
2990static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2991{
2992 struct igc_hw *hw = &adapter->hw;
2993 int i;
2994
2995 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2996 u32 etqf = rd32(IGC_ETQF(i));
2997
2998 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2999 return i;
3000 }
3001
3002 return -1;
3003}
3004
3005/**
3006 * igc_add_etype_filter() - Add ethertype filter
3007 * @adapter: Pointer to adapter where the filter should be added
3008 * @etype: Ethertype value
3009 * @queue: If non-negative, queue assignment feature is enabled and frames
3010 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3011 * assignment is disabled.
3012 *
3013 * Return: 0 in case of success, negative errno code otherwise.
3014 */
3015static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3016 int queue)
3017{
3018 struct igc_hw *hw = &adapter->hw;
3019 int index;
3020 u32 etqf;
3021
3022 index = igc_get_avail_etype_filter_slot(adapter);
3023 if (index < 0)
3024 return -ENOSPC;
3025
3026 etqf = rd32(IGC_ETQF(index));
3027
3028 etqf &= ~IGC_ETQF_ETYPE_MASK;
3029 etqf |= etype;
3030
3031 if (queue >= 0) {
3032 etqf &= ~IGC_ETQF_QUEUE_MASK;
3033 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3034 etqf |= IGC_ETQF_QUEUE_ENABLE;
3035 }
3036
3037 etqf |= IGC_ETQF_FILTER_ENABLE;
3038
3039 wr32(IGC_ETQF(index), etqf);
3040
3041 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3042 etype, queue);
3043 return 0;
3044}
3045
3046static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3047{
3048 struct igc_hw *hw = &adapter->hw;
3049 int i;
3050
3051 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3052 u32 etqf = rd32(IGC_ETQF(i));
3053
3054 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3055 return i;
3056 }
3057
3058 return -1;
3059}
3060
3061/**
3062 * igc_del_etype_filter() - Delete ethertype filter
3063 * @adapter: Pointer to adapter where the filter should be deleted from
3064 * @etype: Ethertype value
3065 */
3066static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3067{
3068 struct igc_hw *hw = &adapter->hw;
3069 int index;
3070
3071 index = igc_find_etype_filter(adapter, etype);
3072 if (index < 0)
3073 return;
3074
3075 wr32(IGC_ETQF(index), 0);
3076
3077 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3078 etype);
3079}
3080
3081static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3082 const struct igc_nfc_rule *rule)
3083{
3084 int err;
3085
3086 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3087 err = igc_add_etype_filter(adapter, rule->filter.etype,
3088 rule->action);
3089 if (err)
3090 return err;
3091 }
3092
3093 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3094 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3095 rule->filter.src_addr, rule->action);
3096 if (err)
3097 return err;
3098 }
3099
3100 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3101 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3102 rule->filter.dst_addr, rule->action);
3103 if (err)
3104 return err;
3105 }
3106
3107 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3108 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3109 VLAN_PRIO_SHIFT;
3110
3111 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3112 if (err)
3113 return err;
3114 }
3115
3116 return 0;
3117}
3118
3119static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3120 const struct igc_nfc_rule *rule)
3121{
3122 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3123 igc_del_etype_filter(adapter, rule->filter.etype);
3124
3125 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3126 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3127 VLAN_PRIO_SHIFT;
3128
3129 igc_del_vlan_prio_filter(adapter, prio);
3130 }
3131
3132 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3133 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3134 rule->filter.src_addr);
3135
3136 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3137 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3138 rule->filter.dst_addr);
3139}
3140
3141/**
3142 * igc_get_nfc_rule() - Get NFC rule
3143 * @adapter: Pointer to adapter
3144 * @location: Rule location
3145 *
3146 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3147 *
3148 * Return: Pointer to NFC rule at @location. If not found, NULL.
3149 */
3150struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3151 u32 location)
3152{
3153 struct igc_nfc_rule *rule;
3154
3155 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3156 if (rule->location == location)
3157 return rule;
3158 if (rule->location > location)
3159 break;
3160 }
3161
3162 return NULL;
3163}
3164
3165/**
3166 * igc_del_nfc_rule() - Delete NFC rule
3167 * @adapter: Pointer to adapter
3168 * @rule: Pointer to rule to be deleted
3169 *
3170 * Disable NFC rule in hardware and delete it from adapter.
3171 *
3172 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3173 */
3174void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3175{
3176 igc_disable_nfc_rule(adapter, rule);
3177
3178 list_del(&rule->list);
3179 adapter->nfc_rule_count--;
3180
3181 kfree(rule);
3182}
3183
3184static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3185{
3186 struct igc_nfc_rule *rule, *tmp;
3187
3188 mutex_lock(&adapter->nfc_rule_lock);
3189
3190 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3191 igc_del_nfc_rule(adapter, rule);
3192
3193 mutex_unlock(&adapter->nfc_rule_lock);
3194}
3195
3196/**
3197 * igc_add_nfc_rule() - Add NFC rule
3198 * @adapter: Pointer to adapter
3199 * @rule: Pointer to rule to be added
3200 *
3201 * Enable NFC rule in hardware and add it to adapter.
3202 *
3203 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3204 *
3205 * Return: 0 on success, negative errno on failure.
3206 */
3207int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3208{
3209 struct igc_nfc_rule *pred, *cur;
3210 int err;
3211
3212 err = igc_enable_nfc_rule(adapter, rule);
3213 if (err)
3214 return err;
3215
3216 pred = NULL;
3217 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3218 if (cur->location >= rule->location)
3219 break;
3220 pred = cur;
3221 }
3222
3223 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3224 adapter->nfc_rule_count++;
3225 return 0;
3226}
3227
3228static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3229{
3230 struct igc_nfc_rule *rule;
3231
3232 mutex_lock(&adapter->nfc_rule_lock);
3233
3234 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3235 igc_enable_nfc_rule(adapter, rule);
3236
3237 mutex_unlock(&adapter->nfc_rule_lock);
3238}
3239
3240static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3241{
3242 struct igc_adapter *adapter = netdev_priv(netdev);
3243
3244 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3245}
3246
3247static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3248{
3249 struct igc_adapter *adapter = netdev_priv(netdev);
3250
3251 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3252 return 0;
3253}
3254
3255/**
3256 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3257 * @netdev: network interface device structure
3258 *
3259 * The set_rx_mode entry point is called whenever the unicast or multicast
3260 * address lists or the network interface flags are updated. This routine is
3261 * responsible for configuring the hardware for proper unicast, multicast,
3262 * promiscuous mode, and all-multi behavior.
3263 */
3264static void igc_set_rx_mode(struct net_device *netdev)
3265{
3266 struct igc_adapter *adapter = netdev_priv(netdev);
3267 struct igc_hw *hw = &adapter->hw;
3268 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3269 int count;
3270
3271 /* Check for Promiscuous and All Multicast modes */
3272 if (netdev->flags & IFF_PROMISC) {
3273 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3274 } else {
3275 if (netdev->flags & IFF_ALLMULTI) {
3276 rctl |= IGC_RCTL_MPE;
3277 } else {
3278 /* Write addresses to the MTA, if the attempt fails
3279 * then we should just turn on promiscuous mode so
3280 * that we can at least receive multicast traffic
3281 */
3282 count = igc_write_mc_addr_list(netdev);
3283 if (count < 0)
3284 rctl |= IGC_RCTL_MPE;
3285 }
3286 }
3287
3288 /* Write addresses to available RAR registers, if there is not
3289 * sufficient space to store all the addresses then enable
3290 * unicast promiscuous mode
3291 */
3292 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3293 rctl |= IGC_RCTL_UPE;
3294
3295 /* update state of unicast and multicast */
3296 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3297 wr32(IGC_RCTL, rctl);
3298
3299#if (PAGE_SIZE < 8192)
3300 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3301 rlpml = IGC_MAX_FRAME_BUILD_SKB;
3302#endif
3303 wr32(IGC_RLPML, rlpml);
3304}
3305
3306/**
3307 * igc_configure - configure the hardware for RX and TX
3308 * @adapter: private board structure
3309 */
3310static void igc_configure(struct igc_adapter *adapter)
3311{
3312 struct net_device *netdev = adapter->netdev;
3313 int i = 0;
3314
3315 igc_get_hw_control(adapter);
3316 igc_set_rx_mode(netdev);
3317
3318 igc_restore_vlan(adapter);
3319
3320 igc_setup_tctl(adapter);
3321 igc_setup_mrqc(adapter);
3322 igc_setup_rctl(adapter);
3323
3324 igc_set_default_mac_filter(adapter);
3325 igc_restore_nfc_rules(adapter);
3326
3327 igc_configure_tx(adapter);
3328 igc_configure_rx(adapter);
3329
3330 igc_rx_fifo_flush_base(&adapter->hw);
3331
3332 /* call igc_desc_unused which always leaves
3333 * at least 1 descriptor unused to make sure
3334 * next_to_use != next_to_clean
3335 */
3336 for (i = 0; i < adapter->num_rx_queues; i++) {
3337 struct igc_ring *ring = adapter->rx_ring[i];
3338
3339 if (ring->xsk_pool)
3340 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3341 else
3342 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3343 }
3344}
3345
3346/**
3347 * igc_write_ivar - configure ivar for given MSI-X vector
3348 * @hw: pointer to the HW structure
3349 * @msix_vector: vector number we are allocating to a given ring
3350 * @index: row index of IVAR register to write within IVAR table
3351 * @offset: column offset of in IVAR, should be multiple of 8
3352 *
3353 * The IVAR table consists of 2 columns,
3354 * each containing an cause allocation for an Rx and Tx ring, and a
3355 * variable number of rows depending on the number of queues supported.
3356 */
3357static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3358 int index, int offset)
3359{
3360 u32 ivar = array_rd32(IGC_IVAR0, index);
3361
3362 /* clear any bits that are currently set */
3363 ivar &= ~((u32)0xFF << offset);
3364
3365 /* write vector and valid bit */
3366 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3367
3368 array_wr32(IGC_IVAR0, index, ivar);
3369}
3370
3371static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3372{
3373 struct igc_adapter *adapter = q_vector->adapter;
3374 struct igc_hw *hw = &adapter->hw;
3375 int rx_queue = IGC_N0_QUEUE;
3376 int tx_queue = IGC_N0_QUEUE;
3377
3378 if (q_vector->rx.ring)
3379 rx_queue = q_vector->rx.ring->reg_idx;
3380 if (q_vector->tx.ring)
3381 tx_queue = q_vector->tx.ring->reg_idx;
3382
3383 switch (hw->mac.type) {
3384 case igc_i225:
3385 if (rx_queue > IGC_N0_QUEUE)
3386 igc_write_ivar(hw, msix_vector,
3387 rx_queue >> 1,
3388 (rx_queue & 0x1) << 4);
3389 if (tx_queue > IGC_N0_QUEUE)
3390 igc_write_ivar(hw, msix_vector,
3391 tx_queue >> 1,
3392 ((tx_queue & 0x1) << 4) + 8);
3393 q_vector->eims_value = BIT(msix_vector);
3394 break;
3395 default:
3396 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3397 break;
3398 }
3399
3400 /* add q_vector eims value to global eims_enable_mask */
3401 adapter->eims_enable_mask |= q_vector->eims_value;
3402
3403 /* configure q_vector to set itr on first interrupt */
3404 q_vector->set_itr = 1;
3405}
3406
3407/**
3408 * igc_configure_msix - Configure MSI-X hardware
3409 * @adapter: Pointer to adapter structure
3410 *
3411 * igc_configure_msix sets up the hardware to properly
3412 * generate MSI-X interrupts.
3413 */
3414static void igc_configure_msix(struct igc_adapter *adapter)
3415{
3416 struct igc_hw *hw = &adapter->hw;
3417 int i, vector = 0;
3418 u32 tmp;
3419
3420 adapter->eims_enable_mask = 0;
3421
3422 /* set vector for other causes, i.e. link changes */
3423 switch (hw->mac.type) {
3424 case igc_i225:
3425 /* Turn on MSI-X capability first, or our settings
3426 * won't stick. And it will take days to debug.
3427 */
3428 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3429 IGC_GPIE_PBA | IGC_GPIE_EIAME |
3430 IGC_GPIE_NSICR);
3431
3432 /* enable msix_other interrupt */
3433 adapter->eims_other = BIT(vector);
3434 tmp = (vector++ | IGC_IVAR_VALID) << 8;
3435
3436 wr32(IGC_IVAR_MISC, tmp);
3437 break;
3438 default:
3439 /* do nothing, since nothing else supports MSI-X */
3440 break;
3441 } /* switch (hw->mac.type) */
3442
3443 adapter->eims_enable_mask |= adapter->eims_other;
3444
3445 for (i = 0; i < adapter->num_q_vectors; i++)
3446 igc_assign_vector(adapter->q_vector[i], vector++);
3447
3448 wrfl();
3449}
3450
3451/**
3452 * igc_irq_enable - Enable default interrupt generation settings
3453 * @adapter: board private structure
3454 */
3455static void igc_irq_enable(struct igc_adapter *adapter)
3456{
3457 struct igc_hw *hw = &adapter->hw;
3458
3459 if (adapter->msix_entries) {
3460 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3461 u32 regval = rd32(IGC_EIAC);
3462
3463 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3464 regval = rd32(IGC_EIAM);
3465 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3466 wr32(IGC_EIMS, adapter->eims_enable_mask);
3467 wr32(IGC_IMS, ims);
3468 } else {
3469 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3470 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3471 }
3472}
3473
3474/**
3475 * igc_irq_disable - Mask off interrupt generation on the NIC
3476 * @adapter: board private structure
3477 */
3478static void igc_irq_disable(struct igc_adapter *adapter)
3479{
3480 struct igc_hw *hw = &adapter->hw;
3481
3482 if (adapter->msix_entries) {
3483 u32 regval = rd32(IGC_EIAM);
3484
3485 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3486 wr32(IGC_EIMC, adapter->eims_enable_mask);
3487 regval = rd32(IGC_EIAC);
3488 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3489 }
3490
3491 wr32(IGC_IAM, 0);
3492 wr32(IGC_IMC, ~0);
3493 wrfl();
3494
3495 if (adapter->msix_entries) {
3496 int vector = 0, i;
3497
3498 synchronize_irq(adapter->msix_entries[vector++].vector);
3499
3500 for (i = 0; i < adapter->num_q_vectors; i++)
3501 synchronize_irq(adapter->msix_entries[vector++].vector);
3502 } else {
3503 synchronize_irq(adapter->pdev->irq);
3504 }
3505}
3506
3507void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
3508 const u32 max_rss_queues)
3509{
3510 /* Determine if we need to pair queues. */
3511 /* If rss_queues > half of max_rss_queues, pair the queues in
3512 * order to conserve interrupts due to limited supply.
3513 */
3514 if (adapter->rss_queues > (max_rss_queues / 2))
3515 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3516 else
3517 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
3518}
3519
3520unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
3521{
3522 return IGC_MAX_RX_QUEUES;
3523}
3524
3525static void igc_init_queue_configuration(struct igc_adapter *adapter)
3526{
3527 u32 max_rss_queues;
3528
3529 max_rss_queues = igc_get_max_rss_queues(adapter);
3530 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3531
3532 igc_set_flag_queue_pairs(adapter, max_rss_queues);
3533}
3534
3535/**
3536 * igc_reset_q_vector - Reset config for interrupt vector
3537 * @adapter: board private structure to initialize
3538 * @v_idx: Index of vector to be reset
3539 *
3540 * If NAPI is enabled it will delete any references to the
3541 * NAPI struct. This is preparation for igc_free_q_vector.
3542 */
3543static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
3544{
3545 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3546
3547 /* if we're coming from igc_set_interrupt_capability, the vectors are
3548 * not yet allocated
3549 */
3550 if (!q_vector)
3551 return;
3552
3553 if (q_vector->tx.ring)
3554 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
3555
3556 if (q_vector->rx.ring)
3557 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
3558
3559 netif_napi_del(&q_vector->napi);
3560}
3561
3562/**
3563 * igc_free_q_vector - Free memory allocated for specific interrupt vector
3564 * @adapter: board private structure to initialize
3565 * @v_idx: Index of vector to be freed
3566 *
3567 * This function frees the memory allocated to the q_vector.
3568 */
3569static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
3570{
3571 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3572
3573 adapter->q_vector[v_idx] = NULL;
3574
3575 /* igc_get_stats64() might access the rings on this vector,
3576 * we must wait a grace period before freeing it.
3577 */
3578 if (q_vector)
3579 kfree_rcu(q_vector, rcu);
3580}
3581
3582/**
3583 * igc_free_q_vectors - Free memory allocated for interrupt vectors
3584 * @adapter: board private structure to initialize
3585 *
3586 * This function frees the memory allocated to the q_vectors. In addition if
3587 * NAPI is enabled it will delete any references to the NAPI struct prior
3588 * to freeing the q_vector.
3589 */
3590static void igc_free_q_vectors(struct igc_adapter *adapter)
3591{
3592 int v_idx = adapter->num_q_vectors;
3593
3594 adapter->num_tx_queues = 0;
3595 adapter->num_rx_queues = 0;
3596 adapter->num_q_vectors = 0;
3597
3598 while (v_idx--) {
3599 igc_reset_q_vector(adapter, v_idx);
3600 igc_free_q_vector(adapter, v_idx);
3601 }
3602}
3603
3604/**
3605 * igc_update_itr - update the dynamic ITR value based on statistics
3606 * @q_vector: pointer to q_vector
3607 * @ring_container: ring info to update the itr for
3608 *
3609 * Stores a new ITR value based on packets and byte
3610 * counts during the last interrupt. The advantage of per interrupt
3611 * computation is faster updates and more accurate ITR for the current
3612 * traffic pattern. Constants in this function were computed
3613 * based on theoretical maximum wire speed and thresholds were set based
3614 * on testing data as well as attempting to minimize response time
3615 * while increasing bulk throughput.
3616 * NOTE: These calculations are only valid when operating in a single-
3617 * queue environment.
3618 */
3619static void igc_update_itr(struct igc_q_vector *q_vector,
3620 struct igc_ring_container *ring_container)
3621{
3622 unsigned int packets = ring_container->total_packets;
3623 unsigned int bytes = ring_container->total_bytes;
3624 u8 itrval = ring_container->itr;
3625
3626 /* no packets, exit with status unchanged */
3627 if (packets == 0)
3628 return;
3629
3630 switch (itrval) {
3631 case lowest_latency:
3632 /* handle TSO and jumbo frames */
3633 if (bytes / packets > 8000)
3634 itrval = bulk_latency;
3635 else if ((packets < 5) && (bytes > 512))
3636 itrval = low_latency;
3637 break;
3638 case low_latency: /* 50 usec aka 20000 ints/s */
3639 if (bytes > 10000) {
3640 /* this if handles the TSO accounting */
3641 if (bytes / packets > 8000)
3642 itrval = bulk_latency;
3643 else if ((packets < 10) || ((bytes / packets) > 1200))
3644 itrval = bulk_latency;
3645 else if ((packets > 35))
3646 itrval = lowest_latency;
3647 } else if (bytes / packets > 2000) {
3648 itrval = bulk_latency;
3649 } else if (packets <= 2 && bytes < 512) {
3650 itrval = lowest_latency;
3651 }
3652 break;
3653 case bulk_latency: /* 250 usec aka 4000 ints/s */
3654 if (bytes > 25000) {
3655 if (packets > 35)
3656 itrval = low_latency;
3657 } else if (bytes < 1500) {
3658 itrval = low_latency;
3659 }
3660 break;
3661 }
3662
3663 /* clear work counters since we have the values we need */
3664 ring_container->total_bytes = 0;
3665 ring_container->total_packets = 0;
3666
3667 /* write updated itr to ring container */
3668 ring_container->itr = itrval;
3669}
3670
3671static void igc_set_itr(struct igc_q_vector *q_vector)
3672{
3673 struct igc_adapter *adapter = q_vector->adapter;
3674 u32 new_itr = q_vector->itr_val;
3675 u8 current_itr = 0;
3676
3677 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3678 switch (adapter->link_speed) {
3679 case SPEED_10:
3680 case SPEED_100:
3681 current_itr = 0;
3682 new_itr = IGC_4K_ITR;
3683 goto set_itr_now;
3684 default:
3685 break;
3686 }
3687
3688 igc_update_itr(q_vector, &q_vector->tx);
3689 igc_update_itr(q_vector, &q_vector->rx);
3690
3691 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3692
3693 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3694 if (current_itr == lowest_latency &&
3695 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3696 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3697 current_itr = low_latency;
3698
3699 switch (current_itr) {
3700 /* counts and packets in update_itr are dependent on these numbers */
3701 case lowest_latency:
3702 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3703 break;
3704 case low_latency:
3705 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3706 break;
3707 case bulk_latency:
3708 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
3709 break;
3710 default:
3711 break;
3712 }
3713
3714set_itr_now:
3715 if (new_itr != q_vector->itr_val) {
3716 /* this attempts to bias the interrupt rate towards Bulk
3717 * by adding intermediate steps when interrupt rate is
3718 * increasing
3719 */
3720 new_itr = new_itr > q_vector->itr_val ?
3721 max((new_itr * q_vector->itr_val) /
3722 (new_itr + (q_vector->itr_val >> 2)),
3723 new_itr) : new_itr;
3724 /* Don't write the value here; it resets the adapter's
3725 * internal timer, and causes us to delay far longer than
3726 * we should between interrupts. Instead, we write the ITR
3727 * value at the beginning of the next interrupt so the timing
3728 * ends up being correct.
3729 */
3730 q_vector->itr_val = new_itr;
3731 q_vector->set_itr = 1;
3732 }
3733}
3734
3735static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3736{
3737 int v_idx = adapter->num_q_vectors;
3738
3739 if (adapter->msix_entries) {
3740 pci_disable_msix(adapter->pdev);
3741 kfree(adapter->msix_entries);
3742 adapter->msix_entries = NULL;
3743 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3744 pci_disable_msi(adapter->pdev);
3745 }
3746
3747 while (v_idx--)
3748 igc_reset_q_vector(adapter, v_idx);
3749}
3750
3751/**
3752 * igc_set_interrupt_capability - set MSI or MSI-X if supported
3753 * @adapter: Pointer to adapter structure
3754 * @msix: boolean value for MSI-X capability
3755 *
3756 * Attempt to configure interrupts using the best available
3757 * capabilities of the hardware and kernel.
3758 */
3759static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3760 bool msix)
3761{
3762 int numvecs, i;
3763 int err;
3764
3765 if (!msix)
3766 goto msi_only;
3767 adapter->flags |= IGC_FLAG_HAS_MSIX;
3768
3769 /* Number of supported queues. */
3770 adapter->num_rx_queues = adapter->rss_queues;
3771
3772 adapter->num_tx_queues = adapter->rss_queues;
3773
3774 /* start with one vector for every Rx queue */
3775 numvecs = adapter->num_rx_queues;
3776
3777 /* if Tx handler is separate add 1 for every Tx queue */
3778 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3779 numvecs += adapter->num_tx_queues;
3780
3781 /* store the number of vectors reserved for queues */
3782 adapter->num_q_vectors = numvecs;
3783
3784 /* add 1 vector for link status interrupts */
3785 numvecs++;
3786
3787 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3788 GFP_KERNEL);
3789
3790 if (!adapter->msix_entries)
3791 return;
3792
3793 /* populate entry values */
3794 for (i = 0; i < numvecs; i++)
3795 adapter->msix_entries[i].entry = i;
3796
3797 err = pci_enable_msix_range(adapter->pdev,
3798 adapter->msix_entries,
3799 numvecs,
3800 numvecs);
3801 if (err > 0)
3802 return;
3803
3804 kfree(adapter->msix_entries);
3805 adapter->msix_entries = NULL;
3806
3807 igc_reset_interrupt_capability(adapter);
3808
3809msi_only:
3810 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3811
3812 adapter->rss_queues = 1;
3813 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3814 adapter->num_rx_queues = 1;
3815 adapter->num_tx_queues = 1;
3816 adapter->num_q_vectors = 1;
3817 if (!pci_enable_msi(adapter->pdev))
3818 adapter->flags |= IGC_FLAG_HAS_MSI;
3819}
3820
3821/**
3822 * igc_update_ring_itr - update the dynamic ITR value based on packet size
3823 * @q_vector: pointer to q_vector
3824 *
3825 * Stores a new ITR value based on strictly on packet size. This
3826 * algorithm is less sophisticated than that used in igc_update_itr,
3827 * due to the difficulty of synchronizing statistics across multiple
3828 * receive rings. The divisors and thresholds used by this function
3829 * were determined based on theoretical maximum wire speed and testing
3830 * data, in order to minimize response time while increasing bulk
3831 * throughput.
3832 * NOTE: This function is called only when operating in a multiqueue
3833 * receive environment.
3834 */
3835static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3836{
3837 struct igc_adapter *adapter = q_vector->adapter;
3838 int new_val = q_vector->itr_val;
3839 int avg_wire_size = 0;
3840 unsigned int packets;
3841
3842 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3843 * ints/sec - ITR timer value of 120 ticks.
3844 */
3845 switch (adapter->link_speed) {
3846 case SPEED_10:
3847 case SPEED_100:
3848 new_val = IGC_4K_ITR;
3849 goto set_itr_val;
3850 default:
3851 break;
3852 }
3853
3854 packets = q_vector->rx.total_packets;
3855 if (packets)
3856 avg_wire_size = q_vector->rx.total_bytes / packets;
3857
3858 packets = q_vector->tx.total_packets;
3859 if (packets)
3860 avg_wire_size = max_t(u32, avg_wire_size,
3861 q_vector->tx.total_bytes / packets);
3862
3863 /* if avg_wire_size isn't set no work was done */
3864 if (!avg_wire_size)
3865 goto clear_counts;
3866
3867 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3868 avg_wire_size += 24;
3869
3870 /* Don't starve jumbo frames */
3871 avg_wire_size = min(avg_wire_size, 3000);
3872
3873 /* Give a little boost to mid-size frames */
3874 if (avg_wire_size > 300 && avg_wire_size < 1200)
3875 new_val = avg_wire_size / 3;
3876 else
3877 new_val = avg_wire_size / 2;
3878
3879 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3880 if (new_val < IGC_20K_ITR &&
3881 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3882 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3883 new_val = IGC_20K_ITR;
3884
3885set_itr_val:
3886 if (new_val != q_vector->itr_val) {
3887 q_vector->itr_val = new_val;
3888 q_vector->set_itr = 1;
3889 }
3890clear_counts:
3891 q_vector->rx.total_bytes = 0;
3892 q_vector->rx.total_packets = 0;
3893 q_vector->tx.total_bytes = 0;
3894 q_vector->tx.total_packets = 0;
3895}
3896
3897static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3898{
3899 struct igc_adapter *adapter = q_vector->adapter;
3900 struct igc_hw *hw = &adapter->hw;
3901
3902 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3903 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3904 if (adapter->num_q_vectors == 1)
3905 igc_set_itr(q_vector);
3906 else
3907 igc_update_ring_itr(q_vector);
3908 }
3909
3910 if (!test_bit(__IGC_DOWN, &adapter->state)) {
3911 if (adapter->msix_entries)
3912 wr32(IGC_EIMS, q_vector->eims_value);
3913 else
3914 igc_irq_enable(adapter);
3915 }
3916}
3917
3918static void igc_add_ring(struct igc_ring *ring,
3919 struct igc_ring_container *head)
3920{
3921 head->ring = ring;
3922 head->count++;
3923}
3924
3925/**
3926 * igc_cache_ring_register - Descriptor ring to register mapping
3927 * @adapter: board private structure to initialize
3928 *
3929 * Once we know the feature-set enabled for the device, we'll cache
3930 * the register offset the descriptor ring is assigned to.
3931 */
3932static void igc_cache_ring_register(struct igc_adapter *adapter)
3933{
3934 int i = 0, j = 0;
3935
3936 switch (adapter->hw.mac.type) {
3937 case igc_i225:
3938 default:
3939 for (; i < adapter->num_rx_queues; i++)
3940 adapter->rx_ring[i]->reg_idx = i;
3941 for (; j < adapter->num_tx_queues; j++)
3942 adapter->tx_ring[j]->reg_idx = j;
3943 break;
3944 }
3945}
3946
3947/**
3948 * igc_poll - NAPI Rx polling callback
3949 * @napi: napi polling structure
3950 * @budget: count of how many packets we should handle
3951 */
3952static int igc_poll(struct napi_struct *napi, int budget)
3953{
3954 struct igc_q_vector *q_vector = container_of(napi,
3955 struct igc_q_vector,
3956 napi);
3957 struct igc_ring *rx_ring = q_vector->rx.ring;
3958 bool clean_complete = true;
3959 int work_done = 0;
3960
3961 if (q_vector->tx.ring)
3962 clean_complete = igc_clean_tx_irq(q_vector, budget);
3963
3964 if (rx_ring) {
3965 int cleaned = rx_ring->xsk_pool ?
3966 igc_clean_rx_irq_zc(q_vector, budget) :
3967 igc_clean_rx_irq(q_vector, budget);
3968
3969 work_done += cleaned;
3970 if (cleaned >= budget)
3971 clean_complete = false;
3972 }
3973
3974 /* If all work not completed, return budget and keep polling */
3975 if (!clean_complete)
3976 return budget;
3977
3978 /* Exit the polling mode, but don't re-enable interrupts if stack might
3979 * poll us due to busy-polling
3980 */
3981 if (likely(napi_complete_done(napi, work_done)))
3982 igc_ring_irq_enable(q_vector);
3983
3984 return min(work_done, budget - 1);
3985}
3986
3987/**
3988 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3989 * @adapter: board private structure to initialize
3990 * @v_count: q_vectors allocated on adapter, used for ring interleaving
3991 * @v_idx: index of vector in adapter struct
3992 * @txr_count: total number of Tx rings to allocate
3993 * @txr_idx: index of first Tx ring to allocate
3994 * @rxr_count: total number of Rx rings to allocate
3995 * @rxr_idx: index of first Rx ring to allocate
3996 *
3997 * We allocate one q_vector. If allocation fails we return -ENOMEM.
3998 */
3999static int igc_alloc_q_vector(struct igc_adapter *adapter,
4000 unsigned int v_count, unsigned int v_idx,
4001 unsigned int txr_count, unsigned int txr_idx,
4002 unsigned int rxr_count, unsigned int rxr_idx)
4003{
4004 struct igc_q_vector *q_vector;
4005 struct igc_ring *ring;
4006 int ring_count;
4007
4008 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4009 if (txr_count > 1 || rxr_count > 1)
4010 return -ENOMEM;
4011
4012 ring_count = txr_count + rxr_count;
4013
4014 /* allocate q_vector and rings */
4015 q_vector = adapter->q_vector[v_idx];
4016 if (!q_vector)
4017 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4018 GFP_KERNEL);
4019 else
4020 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4021 if (!q_vector)
4022 return -ENOMEM;
4023
4024 /* initialize NAPI */
4025 netif_napi_add(adapter->netdev, &q_vector->napi,
4026 igc_poll, 64);
4027
4028 /* tie q_vector and adapter together */
4029 adapter->q_vector[v_idx] = q_vector;
4030 q_vector->adapter = adapter;
4031
4032 /* initialize work limits */
4033 q_vector->tx.work_limit = adapter->tx_work_limit;
4034
4035 /* initialize ITR configuration */
4036 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4037 q_vector->itr_val = IGC_START_ITR;
4038
4039 /* initialize pointer to rings */
4040 ring = q_vector->ring;
4041
4042 /* initialize ITR */
4043 if (rxr_count) {
4044 /* rx or rx/tx vector */
4045 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4046 q_vector->itr_val = adapter->rx_itr_setting;
4047 } else {
4048 /* tx only vector */
4049 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4050 q_vector->itr_val = adapter->tx_itr_setting;
4051 }
4052
4053 if (txr_count) {
4054 /* assign generic ring traits */
4055 ring->dev = &adapter->pdev->dev;
4056 ring->netdev = adapter->netdev;
4057
4058 /* configure backlink on ring */
4059 ring->q_vector = q_vector;
4060
4061 /* update q_vector Tx values */
4062 igc_add_ring(ring, &q_vector->tx);
4063
4064 /* apply Tx specific ring traits */
4065 ring->count = adapter->tx_ring_count;
4066 ring->queue_index = txr_idx;
4067
4068 /* assign ring to adapter */
4069 adapter->tx_ring[txr_idx] = ring;
4070
4071 /* push pointer to next ring */
4072 ring++;
4073 }
4074
4075 if (rxr_count) {
4076 /* assign generic ring traits */
4077 ring->dev = &adapter->pdev->dev;
4078 ring->netdev = adapter->netdev;
4079
4080 /* configure backlink on ring */
4081 ring->q_vector = q_vector;
4082
4083 /* update q_vector Rx values */
4084 igc_add_ring(ring, &q_vector->rx);
4085
4086 /* apply Rx specific ring traits */
4087 ring->count = adapter->rx_ring_count;
4088 ring->queue_index = rxr_idx;
4089
4090 /* assign ring to adapter */
4091 adapter->rx_ring[rxr_idx] = ring;
4092 }
4093
4094 return 0;
4095}
4096
4097/**
4098 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4099 * @adapter: board private structure to initialize
4100 *
4101 * We allocate one q_vector per queue interrupt. If allocation fails we
4102 * return -ENOMEM.
4103 */
4104static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4105{
4106 int rxr_remaining = adapter->num_rx_queues;
4107 int txr_remaining = adapter->num_tx_queues;
4108 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4109 int q_vectors = adapter->num_q_vectors;
4110 int err;
4111
4112 if (q_vectors >= (rxr_remaining + txr_remaining)) {
4113 for (; rxr_remaining; v_idx++) {
4114 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4115 0, 0, 1, rxr_idx);
4116
4117 if (err)
4118 goto err_out;
4119
4120 /* update counts and index */
4121 rxr_remaining--;
4122 rxr_idx++;
4123 }
4124 }
4125
4126 for (; v_idx < q_vectors; v_idx++) {
4127 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4128 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4129
4130 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4131 tqpv, txr_idx, rqpv, rxr_idx);
4132
4133 if (err)
4134 goto err_out;
4135
4136 /* update counts and index */
4137 rxr_remaining -= rqpv;
4138 txr_remaining -= tqpv;
4139 rxr_idx++;
4140 txr_idx++;
4141 }
4142
4143 return 0;
4144
4145err_out:
4146 adapter->num_tx_queues = 0;
4147 adapter->num_rx_queues = 0;
4148 adapter->num_q_vectors = 0;
4149
4150 while (v_idx--)
4151 igc_free_q_vector(adapter, v_idx);
4152
4153 return -ENOMEM;
4154}
4155
4156/**
4157 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4158 * @adapter: Pointer to adapter structure
4159 * @msix: boolean for MSI-X capability
4160 *
4161 * This function initializes the interrupts and allocates all of the queues.
4162 */
4163static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4164{
4165 struct net_device *dev = adapter->netdev;
4166 int err = 0;
4167
4168 igc_set_interrupt_capability(adapter, msix);
4169
4170 err = igc_alloc_q_vectors(adapter);
4171 if (err) {
4172 netdev_err(dev, "Unable to allocate memory for vectors\n");
4173 goto err_alloc_q_vectors;
4174 }
4175
4176 igc_cache_ring_register(adapter);
4177
4178 return 0;
4179
4180err_alloc_q_vectors:
4181 igc_reset_interrupt_capability(adapter);
4182 return err;
4183}
4184
4185/**
4186 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4187 * @adapter: board private structure to initialize
4188 *
4189 * igc_sw_init initializes the Adapter private data structure.
4190 * Fields are initialized based on PCI device information and
4191 * OS network device settings (MTU size).
4192 */
4193static int igc_sw_init(struct igc_adapter *adapter)
4194{
4195 struct net_device *netdev = adapter->netdev;
4196 struct pci_dev *pdev = adapter->pdev;
4197 struct igc_hw *hw = &adapter->hw;
4198
4199 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4200
4201 /* set default ring sizes */
4202 adapter->tx_ring_count = IGC_DEFAULT_TXD;
4203 adapter->rx_ring_count = IGC_DEFAULT_RXD;
4204
4205 /* set default ITR values */
4206 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4207 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4208
4209 /* set default work limits */
4210 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4211
4212 /* adjust max frame to be at least the size of a standard frame */
4213 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4214 VLAN_HLEN;
4215 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4216
4217 mutex_init(&adapter->nfc_rule_lock);
4218 INIT_LIST_HEAD(&adapter->nfc_rule_list);
4219 adapter->nfc_rule_count = 0;
4220
4221 spin_lock_init(&adapter->stats64_lock);
4222 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4223 adapter->flags |= IGC_FLAG_HAS_MSIX;
4224
4225 igc_init_queue_configuration(adapter);
4226
4227 /* This call may decrease the number of queues */
4228 if (igc_init_interrupt_scheme(adapter, true)) {
4229 netdev_err(netdev, "Unable to allocate memory for queues\n");
4230 return -ENOMEM;
4231 }
4232
4233 /* Explicitly disable IRQ since the NIC can be in any state. */
4234 igc_irq_disable(adapter);
4235
4236 set_bit(__IGC_DOWN, &adapter->state);
4237
4238 return 0;
4239}
4240
4241/**
4242 * igc_up - Open the interface and prepare it to handle traffic
4243 * @adapter: board private structure
4244 */
4245void igc_up(struct igc_adapter *adapter)
4246{
4247 struct igc_hw *hw = &adapter->hw;
4248 int i = 0;
4249
4250 /* hardware has been reset, we need to reload some things */
4251 igc_configure(adapter);
4252
4253 clear_bit(__IGC_DOWN, &adapter->state);
4254
4255 for (i = 0; i < adapter->num_q_vectors; i++)
4256 napi_enable(&adapter->q_vector[i]->napi);
4257
4258 if (adapter->msix_entries)
4259 igc_configure_msix(adapter);
4260 else
4261 igc_assign_vector(adapter->q_vector[0], 0);
4262
4263 /* Clear any pending interrupts. */
4264 rd32(IGC_ICR);
4265 igc_irq_enable(adapter);
4266
4267 netif_tx_start_all_queues(adapter->netdev);
4268
4269 /* start the watchdog. */
4270 hw->mac.get_link_status = true;
4271 schedule_work(&adapter->watchdog_task);
4272}
4273
4274/**
4275 * igc_update_stats - Update the board statistics counters
4276 * @adapter: board private structure
4277 */
4278void igc_update_stats(struct igc_adapter *adapter)
4279{
4280 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4281 struct pci_dev *pdev = adapter->pdev;
4282 struct igc_hw *hw = &adapter->hw;
4283 u64 _bytes, _packets;
4284 u64 bytes, packets;
4285 unsigned int start;
4286 u32 mpc;
4287 int i;
4288
4289 /* Prevent stats update while adapter is being reset, or if the pci
4290 * connection is down.
4291 */
4292 if (adapter->link_speed == 0)
4293 return;
4294 if (pci_channel_offline(pdev))
4295 return;
4296
4297 packets = 0;
4298 bytes = 0;
4299
4300 rcu_read_lock();
4301 for (i = 0; i < adapter->num_rx_queues; i++) {
4302 struct igc_ring *ring = adapter->rx_ring[i];
4303 u32 rqdpc = rd32(IGC_RQDPC(i));
4304
4305 if (hw->mac.type >= igc_i225)
4306 wr32(IGC_RQDPC(i), 0);
4307
4308 if (rqdpc) {
4309 ring->rx_stats.drops += rqdpc;
4310 net_stats->rx_fifo_errors += rqdpc;
4311 }
4312
4313 do {
4314 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
4315 _bytes = ring->rx_stats.bytes;
4316 _packets = ring->rx_stats.packets;
4317 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
4318 bytes += _bytes;
4319 packets += _packets;
4320 }
4321
4322 net_stats->rx_bytes = bytes;
4323 net_stats->rx_packets = packets;
4324
4325 packets = 0;
4326 bytes = 0;
4327 for (i = 0; i < adapter->num_tx_queues; i++) {
4328 struct igc_ring *ring = adapter->tx_ring[i];
4329
4330 do {
4331 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
4332 _bytes = ring->tx_stats.bytes;
4333 _packets = ring->tx_stats.packets;
4334 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
4335 bytes += _bytes;
4336 packets += _packets;
4337 }
4338 net_stats->tx_bytes = bytes;
4339 net_stats->tx_packets = packets;
4340 rcu_read_unlock();
4341
4342 /* read stats registers */
4343 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4344 adapter->stats.gprc += rd32(IGC_GPRC);
4345 adapter->stats.gorc += rd32(IGC_GORCL);
4346 rd32(IGC_GORCH); /* clear GORCL */
4347 adapter->stats.bprc += rd32(IGC_BPRC);
4348 adapter->stats.mprc += rd32(IGC_MPRC);
4349 adapter->stats.roc += rd32(IGC_ROC);
4350
4351 adapter->stats.prc64 += rd32(IGC_PRC64);
4352 adapter->stats.prc127 += rd32(IGC_PRC127);
4353 adapter->stats.prc255 += rd32(IGC_PRC255);
4354 adapter->stats.prc511 += rd32(IGC_PRC511);
4355 adapter->stats.prc1023 += rd32(IGC_PRC1023);
4356 adapter->stats.prc1522 += rd32(IGC_PRC1522);
4357 adapter->stats.tlpic += rd32(IGC_TLPIC);
4358 adapter->stats.rlpic += rd32(IGC_RLPIC);
4359 adapter->stats.hgptc += rd32(IGC_HGPTC);
4360
4361 mpc = rd32(IGC_MPC);
4362 adapter->stats.mpc += mpc;
4363 net_stats->rx_fifo_errors += mpc;
4364 adapter->stats.scc += rd32(IGC_SCC);
4365 adapter->stats.ecol += rd32(IGC_ECOL);
4366 adapter->stats.mcc += rd32(IGC_MCC);
4367 adapter->stats.latecol += rd32(IGC_LATECOL);
4368 adapter->stats.dc += rd32(IGC_DC);
4369 adapter->stats.rlec += rd32(IGC_RLEC);
4370 adapter->stats.xonrxc += rd32(IGC_XONRXC);
4371 adapter->stats.xontxc += rd32(IGC_XONTXC);
4372 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4373 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4374 adapter->stats.fcruc += rd32(IGC_FCRUC);
4375 adapter->stats.gptc += rd32(IGC_GPTC);
4376 adapter->stats.gotc += rd32(IGC_GOTCL);
4377 rd32(IGC_GOTCH); /* clear GOTCL */
4378 adapter->stats.rnbc += rd32(IGC_RNBC);
4379 adapter->stats.ruc += rd32(IGC_RUC);
4380 adapter->stats.rfc += rd32(IGC_RFC);
4381 adapter->stats.rjc += rd32(IGC_RJC);
4382 adapter->stats.tor += rd32(IGC_TORH);
4383 adapter->stats.tot += rd32(IGC_TOTH);
4384 adapter->stats.tpr += rd32(IGC_TPR);
4385
4386 adapter->stats.ptc64 += rd32(IGC_PTC64);
4387 adapter->stats.ptc127 += rd32(IGC_PTC127);
4388 adapter->stats.ptc255 += rd32(IGC_PTC255);
4389 adapter->stats.ptc511 += rd32(IGC_PTC511);
4390 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4391 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4392
4393 adapter->stats.mptc += rd32(IGC_MPTC);
4394 adapter->stats.bptc += rd32(IGC_BPTC);
4395
4396 adapter->stats.tpt += rd32(IGC_TPT);
4397 adapter->stats.colc += rd32(IGC_COLC);
4398 adapter->stats.colc += rd32(IGC_RERC);
4399
4400 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4401
4402 adapter->stats.tsctc += rd32(IGC_TSCTC);
4403
4404 adapter->stats.iac += rd32(IGC_IAC);
4405
4406 /* Fill out the OS statistics structure */
4407 net_stats->multicast = adapter->stats.mprc;
4408 net_stats->collisions = adapter->stats.colc;
4409
4410 /* Rx Errors */
4411
4412 /* RLEC on some newer hardware can be incorrect so build
4413 * our own version based on RUC and ROC
4414 */
4415 net_stats->rx_errors = adapter->stats.rxerrc +
4416 adapter->stats.crcerrs + adapter->stats.algnerrc +
4417 adapter->stats.ruc + adapter->stats.roc +
4418 adapter->stats.cexterr;
4419 net_stats->rx_length_errors = adapter->stats.ruc +
4420 adapter->stats.roc;
4421 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4422 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4423 net_stats->rx_missed_errors = adapter->stats.mpc;
4424
4425 /* Tx Errors */
4426 net_stats->tx_errors = adapter->stats.ecol +
4427 adapter->stats.latecol;
4428 net_stats->tx_aborted_errors = adapter->stats.ecol;
4429 net_stats->tx_window_errors = adapter->stats.latecol;
4430 net_stats->tx_carrier_errors = adapter->stats.tncrs;
4431
4432 /* Tx Dropped needs to be maintained elsewhere */
4433
4434 /* Management Stats */
4435 adapter->stats.mgptc += rd32(IGC_MGTPTC);
4436 adapter->stats.mgprc += rd32(IGC_MGTPRC);
4437 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4438}
4439
4440/**
4441 * igc_down - Close the interface
4442 * @adapter: board private structure
4443 */
4444void igc_down(struct igc_adapter *adapter)
4445{
4446 struct net_device *netdev = adapter->netdev;
4447 struct igc_hw *hw = &adapter->hw;
4448 u32 tctl, rctl;
4449 int i = 0;
4450
4451 set_bit(__IGC_DOWN, &adapter->state);
4452
4453 igc_ptp_suspend(adapter);
4454
4455 if (pci_device_is_present(adapter->pdev)) {
4456 /* disable receives in the hardware */
4457 rctl = rd32(IGC_RCTL);
4458 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
4459 /* flush and sleep below */
4460 }
4461 /* set trans_start so we don't get spurious watchdogs during reset */
4462 netif_trans_update(netdev);
4463
4464 netif_carrier_off(netdev);
4465 netif_tx_stop_all_queues(netdev);
4466
4467 if (pci_device_is_present(adapter->pdev)) {
4468 /* disable transmits in the hardware */
4469 tctl = rd32(IGC_TCTL);
4470 tctl &= ~IGC_TCTL_EN;
4471 wr32(IGC_TCTL, tctl);
4472 /* flush both disables and wait for them to finish */
4473 wrfl();
4474 usleep_range(10000, 20000);
4475
4476 igc_irq_disable(adapter);
4477 }
4478
4479 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4480
4481 for (i = 0; i < adapter->num_q_vectors; i++) {
4482 if (adapter->q_vector[i]) {
4483 napi_synchronize(&adapter->q_vector[i]->napi);
4484 napi_disable(&adapter->q_vector[i]->napi);
4485 }
4486 }
4487
4488 del_timer_sync(&adapter->watchdog_timer);
4489 del_timer_sync(&adapter->phy_info_timer);
4490
4491 /* record the stats before reset*/
4492 spin_lock(&adapter->stats64_lock);
4493 igc_update_stats(adapter);
4494 spin_unlock(&adapter->stats64_lock);
4495
4496 adapter->link_speed = 0;
4497 adapter->link_duplex = 0;
4498
4499 if (!pci_channel_offline(adapter->pdev))
4500 igc_reset(adapter);
4501
4502 /* clear VLAN promisc flag so VFTA will be updated if necessary */
4503 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
4504
4505 igc_clean_all_tx_rings(adapter);
4506 igc_clean_all_rx_rings(adapter);
4507}
4508
4509void igc_reinit_locked(struct igc_adapter *adapter)
4510{
4511 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4512 usleep_range(1000, 2000);
4513 igc_down(adapter);
4514 igc_up(adapter);
4515 clear_bit(__IGC_RESETTING, &adapter->state);
4516}
4517
4518static void igc_reset_task(struct work_struct *work)
4519{
4520 struct igc_adapter *adapter;
4521
4522 adapter = container_of(work, struct igc_adapter, reset_task);
4523
4524 rtnl_lock();
4525 /* If we're already down or resetting, just bail */
4526 if (test_bit(__IGC_DOWN, &adapter->state) ||
4527 test_bit(__IGC_RESETTING, &adapter->state)) {
4528 rtnl_unlock();
4529 return;
4530 }
4531
4532 igc_rings_dump(adapter);
4533 igc_regs_dump(adapter);
4534 netdev_err(adapter->netdev, "Reset adapter\n");
4535 igc_reinit_locked(adapter);
4536 rtnl_unlock();
4537}
4538
4539/**
4540 * igc_change_mtu - Change the Maximum Transfer Unit
4541 * @netdev: network interface device structure
4542 * @new_mtu: new value for maximum frame size
4543 *
4544 * Returns 0 on success, negative on failure
4545 */
4546static int igc_change_mtu(struct net_device *netdev, int new_mtu)
4547{
4548 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4549 struct igc_adapter *adapter = netdev_priv(netdev);
4550
4551 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
4552 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
4553 return -EINVAL;
4554 }
4555
4556 /* adjust max frame to be at least the size of a standard frame */
4557 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4558 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4559
4560 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4561 usleep_range(1000, 2000);
4562
4563 /* igc_down has a dependency on max_frame_size */
4564 adapter->max_frame_size = max_frame;
4565
4566 if (netif_running(netdev))
4567 igc_down(adapter);
4568
4569 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4570 netdev->mtu = new_mtu;
4571
4572 if (netif_running(netdev))
4573 igc_up(adapter);
4574 else
4575 igc_reset(adapter);
4576
4577 clear_bit(__IGC_RESETTING, &adapter->state);
4578
4579 return 0;
4580}
4581
4582/**
4583 * igc_get_stats64 - Get System Network Statistics
4584 * @netdev: network interface device structure
4585 * @stats: rtnl_link_stats64 pointer
4586 *
4587 * Returns the address of the device statistics structure.
4588 * The statistics are updated here and also from the timer callback.
4589 */
4590static void igc_get_stats64(struct net_device *netdev,
4591 struct rtnl_link_stats64 *stats)
4592{
4593 struct igc_adapter *adapter = netdev_priv(netdev);
4594
4595 spin_lock(&adapter->stats64_lock);
4596 if (!test_bit(__IGC_RESETTING, &adapter->state))
4597 igc_update_stats(adapter);
4598 memcpy(stats, &adapter->stats64, sizeof(*stats));
4599 spin_unlock(&adapter->stats64_lock);
4600}
4601
4602static netdev_features_t igc_fix_features(struct net_device *netdev,
4603 netdev_features_t features)
4604{
4605 /* Since there is no support for separate Rx/Tx vlan accel
4606 * enable/disable make sure Tx flag is always in same state as Rx.
4607 */
4608 if (features & NETIF_F_HW_VLAN_CTAG_RX)
4609 features |= NETIF_F_HW_VLAN_CTAG_TX;
4610 else
4611 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4612
4613 return features;
4614}
4615
4616static int igc_set_features(struct net_device *netdev,
4617 netdev_features_t features)
4618{
4619 netdev_features_t changed = netdev->features ^ features;
4620 struct igc_adapter *adapter = netdev_priv(netdev);
4621
4622 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
4623 igc_vlan_mode(netdev, features);
4624
4625 /* Add VLAN support */
4626 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
4627 return 0;
4628
4629 if (!(features & NETIF_F_NTUPLE))
4630 igc_flush_nfc_rules(adapter);
4631
4632 netdev->features = features;
4633
4634 if (netif_running(netdev))
4635 igc_reinit_locked(adapter);
4636 else
4637 igc_reset(adapter);
4638
4639 return 1;
4640}
4641
4642static netdev_features_t
4643igc_features_check(struct sk_buff *skb, struct net_device *dev,
4644 netdev_features_t features)
4645{
4646 unsigned int network_hdr_len, mac_hdr_len;
4647
4648 /* Make certain the headers can be described by a context descriptor */
4649 mac_hdr_len = skb_network_header(skb) - skb->data;
4650 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
4651 return features & ~(NETIF_F_HW_CSUM |
4652 NETIF_F_SCTP_CRC |
4653 NETIF_F_HW_VLAN_CTAG_TX |
4654 NETIF_F_TSO |
4655 NETIF_F_TSO6);
4656
4657 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4658 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
4659 return features & ~(NETIF_F_HW_CSUM |
4660 NETIF_F_SCTP_CRC |
4661 NETIF_F_TSO |
4662 NETIF_F_TSO6);
4663
4664 /* We can only support IPv4 TSO in tunnels if we can mangle the
4665 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4666 */
4667 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4668 features &= ~NETIF_F_TSO;
4669
4670 return features;
4671}
4672
4673static void igc_tsync_interrupt(struct igc_adapter *adapter)
4674{
4675 u32 ack, tsauxc, sec, nsec, tsicr;
4676 struct igc_hw *hw = &adapter->hw;
4677 struct ptp_clock_event event;
4678 struct timespec64 ts;
4679
4680 tsicr = rd32(IGC_TSICR);
4681 ack = 0;
4682
4683 if (tsicr & IGC_TSICR_SYS_WRAP) {
4684 event.type = PTP_CLOCK_PPS;
4685 if (adapter->ptp_caps.pps)
4686 ptp_clock_event(adapter->ptp_clock, &event);
4687 ack |= IGC_TSICR_SYS_WRAP;
4688 }
4689
4690 if (tsicr & IGC_TSICR_TXTS) {
4691 /* retrieve hardware timestamp */
4692 schedule_work(&adapter->ptp_tx_work);
4693 ack |= IGC_TSICR_TXTS;
4694 }
4695
4696 if (tsicr & IGC_TSICR_TT0) {
4697 spin_lock(&adapter->tmreg_lock);
4698 ts = timespec64_add(adapter->perout[0].start,
4699 adapter->perout[0].period);
4700 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
4701 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
4702 tsauxc = rd32(IGC_TSAUXC);
4703 tsauxc |= IGC_TSAUXC_EN_TT0;
4704 wr32(IGC_TSAUXC, tsauxc);
4705 adapter->perout[0].start = ts;
4706 spin_unlock(&adapter->tmreg_lock);
4707 ack |= IGC_TSICR_TT0;
4708 }
4709
4710 if (tsicr & IGC_TSICR_TT1) {
4711 spin_lock(&adapter->tmreg_lock);
4712 ts = timespec64_add(adapter->perout[1].start,
4713 adapter->perout[1].period);
4714 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
4715 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
4716 tsauxc = rd32(IGC_TSAUXC);
4717 tsauxc |= IGC_TSAUXC_EN_TT1;
4718 wr32(IGC_TSAUXC, tsauxc);
4719 adapter->perout[1].start = ts;
4720 spin_unlock(&adapter->tmreg_lock);
4721 ack |= IGC_TSICR_TT1;
4722 }
4723
4724 if (tsicr & IGC_TSICR_AUTT0) {
4725 nsec = rd32(IGC_AUXSTMPL0);
4726 sec = rd32(IGC_AUXSTMPH0);
4727 event.type = PTP_CLOCK_EXTTS;
4728 event.index = 0;
4729 event.timestamp = sec * NSEC_PER_SEC + nsec;
4730 ptp_clock_event(adapter->ptp_clock, &event);
4731 ack |= IGC_TSICR_AUTT0;
4732 }
4733
4734 if (tsicr & IGC_TSICR_AUTT1) {
4735 nsec = rd32(IGC_AUXSTMPL1);
4736 sec = rd32(IGC_AUXSTMPH1);
4737 event.type = PTP_CLOCK_EXTTS;
4738 event.index = 1;
4739 event.timestamp = sec * NSEC_PER_SEC + nsec;
4740 ptp_clock_event(adapter->ptp_clock, &event);
4741 ack |= IGC_TSICR_AUTT1;
4742 }
4743
4744 /* acknowledge the interrupts */
4745 wr32(IGC_TSICR, ack);
4746}
4747
4748/**
4749 * igc_msix_other - msix other interrupt handler
4750 * @irq: interrupt number
4751 * @data: pointer to a q_vector
4752 */
4753static irqreturn_t igc_msix_other(int irq, void *data)
4754{
4755 struct igc_adapter *adapter = data;
4756 struct igc_hw *hw = &adapter->hw;
4757 u32 icr = rd32(IGC_ICR);
4758
4759 /* reading ICR causes bit 31 of EICR to be cleared */
4760 if (icr & IGC_ICR_DRSTA)
4761 schedule_work(&adapter->reset_task);
4762
4763 if (icr & IGC_ICR_DOUTSYNC) {
4764 /* HW is reporting DMA is out of sync */
4765 adapter->stats.doosync++;
4766 }
4767
4768 if (icr & IGC_ICR_LSC) {
4769 hw->mac.get_link_status = true;
4770 /* guard against interrupt when we're going down */
4771 if (!test_bit(__IGC_DOWN, &adapter->state))
4772 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4773 }
4774
4775 if (icr & IGC_ICR_TS)
4776 igc_tsync_interrupt(adapter);
4777
4778 wr32(IGC_EIMS, adapter->eims_other);
4779
4780 return IRQ_HANDLED;
4781}
4782
4783static void igc_write_itr(struct igc_q_vector *q_vector)
4784{
4785 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4786
4787 if (!q_vector->set_itr)
4788 return;
4789
4790 if (!itr_val)
4791 itr_val = IGC_ITR_VAL_MASK;
4792
4793 itr_val |= IGC_EITR_CNT_IGNR;
4794
4795 writel(itr_val, q_vector->itr_register);
4796 q_vector->set_itr = 0;
4797}
4798
4799static irqreturn_t igc_msix_ring(int irq, void *data)
4800{
4801 struct igc_q_vector *q_vector = data;
4802
4803 /* Write the ITR value calculated from the previous interrupt. */
4804 igc_write_itr(q_vector);
4805
4806 napi_schedule(&q_vector->napi);
4807
4808 return IRQ_HANDLED;
4809}
4810
4811/**
4812 * igc_request_msix - Initialize MSI-X interrupts
4813 * @adapter: Pointer to adapter structure
4814 *
4815 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4816 * kernel.
4817 */
4818static int igc_request_msix(struct igc_adapter *adapter)
4819{
4820 unsigned int num_q_vectors = adapter->num_q_vectors;
4821 int i = 0, err = 0, vector = 0, free_vector = 0;
4822 struct net_device *netdev = adapter->netdev;
4823
4824 err = request_irq(adapter->msix_entries[vector].vector,
4825 &igc_msix_other, 0, netdev->name, adapter);
4826 if (err)
4827 goto err_out;
4828
4829 if (num_q_vectors > MAX_Q_VECTORS) {
4830 num_q_vectors = MAX_Q_VECTORS;
4831 dev_warn(&adapter->pdev->dev,
4832 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
4833 adapter->num_q_vectors, MAX_Q_VECTORS);
4834 }
4835 for (i = 0; i < num_q_vectors; i++) {
4836 struct igc_q_vector *q_vector = adapter->q_vector[i];
4837
4838 vector++;
4839
4840 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4841
4842 if (q_vector->rx.ring && q_vector->tx.ring)
4843 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4844 q_vector->rx.ring->queue_index);
4845 else if (q_vector->tx.ring)
4846 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4847 q_vector->tx.ring->queue_index);
4848 else if (q_vector->rx.ring)
4849 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4850 q_vector->rx.ring->queue_index);
4851 else
4852 sprintf(q_vector->name, "%s-unused", netdev->name);
4853
4854 err = request_irq(adapter->msix_entries[vector].vector,
4855 igc_msix_ring, 0, q_vector->name,
4856 q_vector);
4857 if (err)
4858 goto err_free;
4859 }
4860
4861 igc_configure_msix(adapter);
4862 return 0;
4863
4864err_free:
4865 /* free already assigned IRQs */
4866 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4867
4868 vector--;
4869 for (i = 0; i < vector; i++) {
4870 free_irq(adapter->msix_entries[free_vector++].vector,
4871 adapter->q_vector[i]);
4872 }
4873err_out:
4874 return err;
4875}
4876
4877/**
4878 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4879 * @adapter: Pointer to adapter structure
4880 *
4881 * This function resets the device so that it has 0 rx queues, tx queues, and
4882 * MSI-X interrupts allocated.
4883 */
4884static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4885{
4886 igc_free_q_vectors(adapter);
4887 igc_reset_interrupt_capability(adapter);
4888}
4889
4890/* Need to wait a few seconds after link up to get diagnostic information from
4891 * the phy
4892 */
4893static void igc_update_phy_info(struct timer_list *t)
4894{
4895 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4896
4897 igc_get_phy_info(&adapter->hw);
4898}
4899
4900/**
4901 * igc_has_link - check shared code for link and determine up/down
4902 * @adapter: pointer to driver private info
4903 */
4904bool igc_has_link(struct igc_adapter *adapter)
4905{
4906 struct igc_hw *hw = &adapter->hw;
4907 bool link_active = false;
4908
4909 /* get_link_status is set on LSC (link status) interrupt or
4910 * rx sequence error interrupt. get_link_status will stay
4911 * false until the igc_check_for_link establishes link
4912 * for copper adapters ONLY
4913 */
4914 switch (hw->phy.media_type) {
4915 case igc_media_type_copper:
4916 if (!hw->mac.get_link_status)
4917 return true;
4918 hw->mac.ops.check_for_link(hw);
4919 link_active = !hw->mac.get_link_status;
4920 break;
4921 default:
4922 case igc_media_type_unknown:
4923 break;
4924 }
4925
4926 if (hw->mac.type == igc_i225 &&
4927 hw->phy.id == I225_I_PHY_ID) {
4928 if (!netif_carrier_ok(adapter->netdev)) {
4929 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4930 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4931 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4932 adapter->link_check_timeout = jiffies;
4933 }
4934 }
4935
4936 return link_active;
4937}
4938
4939/**
4940 * igc_watchdog - Timer Call-back
4941 * @t: timer for the watchdog
4942 */
4943static void igc_watchdog(struct timer_list *t)
4944{
4945 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4946 /* Do the rest outside of interrupt context */
4947 schedule_work(&adapter->watchdog_task);
4948}
4949
4950static void igc_watchdog_task(struct work_struct *work)
4951{
4952 struct igc_adapter *adapter = container_of(work,
4953 struct igc_adapter,
4954 watchdog_task);
4955 struct net_device *netdev = adapter->netdev;
4956 struct igc_hw *hw = &adapter->hw;
4957 struct igc_phy_info *phy = &hw->phy;
4958 u16 phy_data, retry_count = 20;
4959 u32 link;
4960 int i;
4961
4962 link = igc_has_link(adapter);
4963
4964 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4965 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4966 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4967 else
4968 link = false;
4969 }
4970
4971 if (link) {
4972 /* Cancel scheduled suspend requests. */
4973 pm_runtime_resume(netdev->dev.parent);
4974
4975 if (!netif_carrier_ok(netdev)) {
4976 u32 ctrl;
4977
4978 hw->mac.ops.get_speed_and_duplex(hw,
4979 &adapter->link_speed,
4980 &adapter->link_duplex);
4981
4982 ctrl = rd32(IGC_CTRL);
4983 /* Link status message must follow this format */
4984 netdev_info(netdev,
4985 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4986 adapter->link_speed,
4987 adapter->link_duplex == FULL_DUPLEX ?
4988 "Full" : "Half",
4989 (ctrl & IGC_CTRL_TFCE) &&
4990 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4991 (ctrl & IGC_CTRL_RFCE) ? "RX" :
4992 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
4993
4994 /* disable EEE if enabled */
4995 if ((adapter->flags & IGC_FLAG_EEE) &&
4996 adapter->link_duplex == HALF_DUPLEX) {
4997 netdev_info(netdev,
4998 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4999 adapter->hw.dev_spec._base.eee_enable = false;
5000 adapter->flags &= ~IGC_FLAG_EEE;
5001 }
5002
5003 /* check if SmartSpeed worked */
5004 igc_check_downshift(hw);
5005 if (phy->speed_downgraded)
5006 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5007
5008 /* adjust timeout factor according to speed/duplex */
5009 adapter->tx_timeout_factor = 1;
5010 switch (adapter->link_speed) {
5011 case SPEED_10:
5012 adapter->tx_timeout_factor = 14;
5013 break;
5014 case SPEED_100:
5015 /* maybe add some timeout factor ? */
5016 break;
5017 }
5018
5019 if (adapter->link_speed != SPEED_1000)
5020 goto no_wait;
5021
5022 /* wait for Remote receiver status OK */
5023retry_read_status:
5024 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5025 &phy_data)) {
5026 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5027 retry_count) {
5028 msleep(100);
5029 retry_count--;
5030 goto retry_read_status;
5031 } else if (!retry_count) {
5032 netdev_err(netdev, "exceed max 2 second\n");
5033 }
5034 } else {
5035 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5036 }
5037no_wait:
5038 netif_carrier_on(netdev);
5039
5040 /* link state has changed, schedule phy info update */
5041 if (!test_bit(__IGC_DOWN, &adapter->state))
5042 mod_timer(&adapter->phy_info_timer,
5043 round_jiffies(jiffies + 2 * HZ));
5044 }
5045 } else {
5046 if (netif_carrier_ok(netdev)) {
5047 adapter->link_speed = 0;
5048 adapter->link_duplex = 0;
5049
5050 /* Links status message must follow this format */
5051 netdev_info(netdev, "NIC Link is Down\n");
5052 netif_carrier_off(netdev);
5053
5054 /* link state has changed, schedule phy info update */
5055 if (!test_bit(__IGC_DOWN, &adapter->state))
5056 mod_timer(&adapter->phy_info_timer,
5057 round_jiffies(jiffies + 2 * HZ));
5058
5059 /* link is down, time to check for alternate media */
5060 if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
5061 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5062 schedule_work(&adapter->reset_task);
5063 /* return immediately */
5064 return;
5065 }
5066 }
5067 pm_schedule_suspend(netdev->dev.parent,
5068 MSEC_PER_SEC * 5);
5069
5070 /* also check for alternate media here */
5071 } else if (!netif_carrier_ok(netdev) &&
5072 (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
5073 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5074 schedule_work(&adapter->reset_task);
5075 /* return immediately */
5076 return;
5077 }
5078 }
5079 }
5080
5081 spin_lock(&adapter->stats64_lock);
5082 igc_update_stats(adapter);
5083 spin_unlock(&adapter->stats64_lock);
5084
5085 for (i = 0; i < adapter->num_tx_queues; i++) {
5086 struct igc_ring *tx_ring = adapter->tx_ring[i];
5087
5088 if (!netif_carrier_ok(netdev)) {
5089 /* We've lost link, so the controller stops DMA,
5090 * but we've got queued Tx work that's never going
5091 * to get done, so reset controller to flush Tx.
5092 * (Do the reset outside of interrupt context).
5093 */
5094 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5095 adapter->tx_timeout_count++;
5096 schedule_work(&adapter->reset_task);
5097 /* return immediately since reset is imminent */
5098 return;
5099 }
5100 }
5101
5102 /* Force detection of hung controller every watchdog period */
5103 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5104 }
5105
5106 /* Cause software interrupt to ensure Rx ring is cleaned */
5107 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5108 u32 eics = 0;
5109
5110 for (i = 0; i < adapter->num_q_vectors; i++)
5111 eics |= adapter->q_vector[i]->eims_value;
5112 wr32(IGC_EICS, eics);
5113 } else {
5114 wr32(IGC_ICS, IGC_ICS_RXDMT0);
5115 }
5116
5117 igc_ptp_tx_hang(adapter);
5118
5119 /* Reset the timer */
5120 if (!test_bit(__IGC_DOWN, &adapter->state)) {
5121 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5122 mod_timer(&adapter->watchdog_timer,
5123 round_jiffies(jiffies + HZ));
5124 else
5125 mod_timer(&adapter->watchdog_timer,
5126 round_jiffies(jiffies + 2 * HZ));
5127 }
5128}
5129
5130/**
5131 * igc_intr_msi - Interrupt Handler
5132 * @irq: interrupt number
5133 * @data: pointer to a network interface device structure
5134 */
5135static irqreturn_t igc_intr_msi(int irq, void *data)
5136{
5137 struct igc_adapter *adapter = data;
5138 struct igc_q_vector *q_vector = adapter->q_vector[0];
5139 struct igc_hw *hw = &adapter->hw;
5140 /* read ICR disables interrupts using IAM */
5141 u32 icr = rd32(IGC_ICR);
5142
5143 igc_write_itr(q_vector);
5144
5145 if (icr & IGC_ICR_DRSTA)
5146 schedule_work(&adapter->reset_task);
5147
5148 if (icr & IGC_ICR_DOUTSYNC) {
5149 /* HW is reporting DMA is out of sync */
5150 adapter->stats.doosync++;
5151 }
5152
5153 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5154 hw->mac.get_link_status = true;
5155 if (!test_bit(__IGC_DOWN, &adapter->state))
5156 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5157 }
5158
5159 napi_schedule(&q_vector->napi);
5160
5161 return IRQ_HANDLED;
5162}
5163
5164/**
5165 * igc_intr - Legacy Interrupt Handler
5166 * @irq: interrupt number
5167 * @data: pointer to a network interface device structure
5168 */
5169static irqreturn_t igc_intr(int irq, void *data)
5170{
5171 struct igc_adapter *adapter = data;
5172 struct igc_q_vector *q_vector = adapter->q_vector[0];
5173 struct igc_hw *hw = &adapter->hw;
5174 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5175 * need for the IMC write
5176 */
5177 u32 icr = rd32(IGC_ICR);
5178
5179 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5180 * not set, then the adapter didn't send an interrupt
5181 */
5182 if (!(icr & IGC_ICR_INT_ASSERTED))
5183 return IRQ_NONE;
5184
5185 igc_write_itr(q_vector);
5186
5187 if (icr & IGC_ICR_DRSTA)
5188 schedule_work(&adapter->reset_task);
5189
5190 if (icr & IGC_ICR_DOUTSYNC) {
5191 /* HW is reporting DMA is out of sync */
5192 adapter->stats.doosync++;
5193 }
5194
5195 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5196 hw->mac.get_link_status = true;
5197 /* guard against interrupt when we're going down */
5198 if (!test_bit(__IGC_DOWN, &adapter->state))
5199 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5200 }
5201
5202 napi_schedule(&q_vector->napi);
5203
5204 return IRQ_HANDLED;
5205}
5206
5207static void igc_free_irq(struct igc_adapter *adapter)
5208{
5209 if (adapter->msix_entries) {
5210 int vector = 0, i;
5211
5212 free_irq(adapter->msix_entries[vector++].vector, adapter);
5213
5214 for (i = 0; i < adapter->num_q_vectors; i++)
5215 free_irq(adapter->msix_entries[vector++].vector,
5216 adapter->q_vector[i]);
5217 } else {
5218 free_irq(adapter->pdev->irq, adapter);
5219 }
5220}
5221
5222/**
5223 * igc_request_irq - initialize interrupts
5224 * @adapter: Pointer to adapter structure
5225 *
5226 * Attempts to configure interrupts using the best available
5227 * capabilities of the hardware and kernel.
5228 */
5229static int igc_request_irq(struct igc_adapter *adapter)
5230{
5231 struct net_device *netdev = adapter->netdev;
5232 struct pci_dev *pdev = adapter->pdev;
5233 int err = 0;
5234
5235 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5236 err = igc_request_msix(adapter);
5237 if (!err)
5238 goto request_done;
5239 /* fall back to MSI */
5240 igc_free_all_tx_resources(adapter);
5241 igc_free_all_rx_resources(adapter);
5242
5243 igc_clear_interrupt_scheme(adapter);
5244 err = igc_init_interrupt_scheme(adapter, false);
5245 if (err)
5246 goto request_done;
5247 igc_setup_all_tx_resources(adapter);
5248 igc_setup_all_rx_resources(adapter);
5249 igc_configure(adapter);
5250 }
5251
5252 igc_assign_vector(adapter->q_vector[0], 0);
5253
5254 if (adapter->flags & IGC_FLAG_HAS_MSI) {
5255 err = request_irq(pdev->irq, &igc_intr_msi, 0,
5256 netdev->name, adapter);
5257 if (!err)
5258 goto request_done;
5259
5260 /* fall back to legacy interrupts */
5261 igc_reset_interrupt_capability(adapter);
5262 adapter->flags &= ~IGC_FLAG_HAS_MSI;
5263 }
5264
5265 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5266 netdev->name, adapter);
5267
5268 if (err)
5269 netdev_err(netdev, "Error %d getting interrupt\n", err);
5270
5271request_done:
5272 return err;
5273}
5274
5275/**
5276 * __igc_open - Called when a network interface is made active
5277 * @netdev: network interface device structure
5278 * @resuming: boolean indicating if the device is resuming
5279 *
5280 * Returns 0 on success, negative value on failure
5281 *
5282 * The open entry point is called when a network interface is made
5283 * active by the system (IFF_UP). At this point all resources needed
5284 * for transmit and receive operations are allocated, the interrupt
5285 * handler is registered with the OS, the watchdog timer is started,
5286 * and the stack is notified that the interface is ready.
5287 */
5288static int __igc_open(struct net_device *netdev, bool resuming)
5289{
5290 struct igc_adapter *adapter = netdev_priv(netdev);
5291 struct pci_dev *pdev = adapter->pdev;
5292 struct igc_hw *hw = &adapter->hw;
5293 int err = 0;
5294 int i = 0;
5295
5296 /* disallow open during test */
5297
5298 if (test_bit(__IGC_TESTING, &adapter->state)) {
5299 WARN_ON(resuming);
5300 return -EBUSY;
5301 }
5302
5303 if (!resuming)
5304 pm_runtime_get_sync(&pdev->dev);
5305
5306 netif_carrier_off(netdev);
5307
5308 /* allocate transmit descriptors */
5309 err = igc_setup_all_tx_resources(adapter);
5310 if (err)
5311 goto err_setup_tx;
5312
5313 /* allocate receive descriptors */
5314 err = igc_setup_all_rx_resources(adapter);
5315 if (err)
5316 goto err_setup_rx;
5317
5318 igc_power_up_link(adapter);
5319
5320 igc_configure(adapter);
5321
5322 err = igc_request_irq(adapter);
5323 if (err)
5324 goto err_req_irq;
5325
5326 /* Notify the stack of the actual queue counts. */
5327 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5328 if (err)
5329 goto err_set_queues;
5330
5331 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5332 if (err)
5333 goto err_set_queues;
5334
5335 clear_bit(__IGC_DOWN, &adapter->state);
5336
5337 for (i = 0; i < adapter->num_q_vectors; i++)
5338 napi_enable(&adapter->q_vector[i]->napi);
5339
5340 /* Clear any pending interrupts. */
5341 rd32(IGC_ICR);
5342 igc_irq_enable(adapter);
5343
5344 if (!resuming)
5345 pm_runtime_put(&pdev->dev);
5346
5347 netif_tx_start_all_queues(netdev);
5348
5349 /* start the watchdog. */
5350 hw->mac.get_link_status = true;
5351 schedule_work(&adapter->watchdog_task);
5352
5353 return IGC_SUCCESS;
5354
5355err_set_queues:
5356 igc_free_irq(adapter);
5357err_req_irq:
5358 igc_release_hw_control(adapter);
5359 igc_power_down_phy_copper_base(&adapter->hw);
5360 igc_free_all_rx_resources(adapter);
5361err_setup_rx:
5362 igc_free_all_tx_resources(adapter);
5363err_setup_tx:
5364 igc_reset(adapter);
5365 if (!resuming)
5366 pm_runtime_put(&pdev->dev);
5367
5368 return err;
5369}
5370
5371int igc_open(struct net_device *netdev)
5372{
5373 return __igc_open(netdev, false);
5374}
5375
5376/**
5377 * __igc_close - Disables a network interface
5378 * @netdev: network interface device structure
5379 * @suspending: boolean indicating the device is suspending
5380 *
5381 * Returns 0, this is not allowed to fail
5382 *
5383 * The close entry point is called when an interface is de-activated
5384 * by the OS. The hardware is still under the driver's control, but
5385 * needs to be disabled. A global MAC reset is issued to stop the
5386 * hardware, and all transmit and receive resources are freed.
5387 */
5388static int __igc_close(struct net_device *netdev, bool suspending)
5389{
5390 struct igc_adapter *adapter = netdev_priv(netdev);
5391 struct pci_dev *pdev = adapter->pdev;
5392
5393 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5394
5395 if (!suspending)
5396 pm_runtime_get_sync(&pdev->dev);
5397
5398 igc_down(adapter);
5399
5400 igc_release_hw_control(adapter);
5401
5402 igc_free_irq(adapter);
5403
5404 igc_free_all_tx_resources(adapter);
5405 igc_free_all_rx_resources(adapter);
5406
5407 if (!suspending)
5408 pm_runtime_put_sync(&pdev->dev);
5409
5410 return 0;
5411}
5412
5413int igc_close(struct net_device *netdev)
5414{
5415 if (netif_device_present(netdev) || netdev->dismantle)
5416 return __igc_close(netdev, false);
5417 return 0;
5418}
5419
5420/**
5421 * igc_ioctl - Access the hwtstamp interface
5422 * @netdev: network interface device structure
5423 * @ifr: interface request data
5424 * @cmd: ioctl command
5425 **/
5426static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5427{
5428 switch (cmd) {
5429 case SIOCGHWTSTAMP:
5430 return igc_ptp_get_ts_config(netdev, ifr);
5431 case SIOCSHWTSTAMP:
5432 return igc_ptp_set_ts_config(netdev, ifr);
5433 default:
5434 return -EOPNOTSUPP;
5435 }
5436}
5437
5438static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
5439 bool enable)
5440{
5441 struct igc_ring *ring;
5442 int i;
5443
5444 if (queue < 0 || queue >= adapter->num_tx_queues)
5445 return -EINVAL;
5446
5447 ring = adapter->tx_ring[queue];
5448 ring->launchtime_enable = enable;
5449
5450 if (adapter->base_time)
5451 return 0;
5452
5453 adapter->cycle_time = NSEC_PER_SEC;
5454
5455 for (i = 0; i < adapter->num_tx_queues; i++) {
5456 ring = adapter->tx_ring[i];
5457 ring->start_time = 0;
5458 ring->end_time = NSEC_PER_SEC;
5459 }
5460
5461 return 0;
5462}
5463
5464static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
5465{
5466 struct timespec64 b;
5467
5468 b = ktime_to_timespec64(base_time);
5469
5470 return timespec64_compare(now, &b) > 0;
5471}
5472
5473static bool validate_schedule(struct igc_adapter *adapter,
5474 const struct tc_taprio_qopt_offload *qopt)
5475{
5476 int queue_uses[IGC_MAX_TX_QUEUES] = { };
5477 struct timespec64 now;
5478 size_t n;
5479
5480 if (qopt->cycle_time_extension)
5481 return false;
5482
5483 igc_ptp_read(adapter, &now);
5484
5485 /* If we program the controller's BASET registers with a time
5486 * in the future, it will hold all the packets until that
5487 * time, causing a lot of TX Hangs, so to avoid that, we
5488 * reject schedules that would start in the future.
5489 */
5490 if (!is_base_time_past(qopt->base_time, &now))
5491 return false;
5492
5493 for (n = 0; n < qopt->num_entries; n++) {
5494 const struct tc_taprio_sched_entry *e;
5495 int i;
5496
5497 e = &qopt->entries[n];
5498
5499 /* i225 only supports "global" frame preemption
5500 * settings.
5501 */
5502 if (e->command != TC_TAPRIO_CMD_SET_GATES)
5503 return false;
5504
5505 for (i = 0; i < adapter->num_tx_queues; i++) {
5506 if (e->gate_mask & BIT(i))
5507 queue_uses[i]++;
5508
5509 if (queue_uses[i] > 1)
5510 return false;
5511 }
5512 }
5513
5514 return true;
5515}
5516
5517static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
5518 struct tc_etf_qopt_offload *qopt)
5519{
5520 struct igc_hw *hw = &adapter->hw;
5521 int err;
5522
5523 if (hw->mac.type != igc_i225)
5524 return -EOPNOTSUPP;
5525
5526 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
5527 if (err)
5528 return err;
5529
5530 return igc_tsn_offload_apply(adapter);
5531}
5532
5533static int igc_save_qbv_schedule(struct igc_adapter *adapter,
5534 struct tc_taprio_qopt_offload *qopt)
5535{
5536 u32 start_time = 0, end_time = 0;
5537 size_t n;
5538
5539 if (!qopt->enable) {
5540 adapter->base_time = 0;
5541 return 0;
5542 }
5543
5544 if (adapter->base_time)
5545 return -EALREADY;
5546
5547 if (!validate_schedule(adapter, qopt))
5548 return -EINVAL;
5549
5550 adapter->cycle_time = qopt->cycle_time;
5551 adapter->base_time = qopt->base_time;
5552
5553 /* FIXME: be a little smarter about cases when the gate for a
5554 * queue stays open for more than one entry.
5555 */
5556 for (n = 0; n < qopt->num_entries; n++) {
5557 struct tc_taprio_sched_entry *e = &qopt->entries[n];
5558 int i;
5559
5560 end_time += e->interval;
5561
5562 for (i = 0; i < adapter->num_tx_queues; i++) {
5563 struct igc_ring *ring = adapter->tx_ring[i];
5564
5565 if (!(e->gate_mask & BIT(i)))
5566 continue;
5567
5568 ring->start_time = start_time;
5569 ring->end_time = end_time;
5570 }
5571
5572 start_time += e->interval;
5573 }
5574
5575 return 0;
5576}
5577
5578static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
5579 struct tc_taprio_qopt_offload *qopt)
5580{
5581 struct igc_hw *hw = &adapter->hw;
5582 int err;
5583
5584 if (hw->mac.type != igc_i225)
5585 return -EOPNOTSUPP;
5586
5587 err = igc_save_qbv_schedule(adapter, qopt);
5588 if (err)
5589 return err;
5590
5591 return igc_tsn_offload_apply(adapter);
5592}
5593
5594static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
5595 void *type_data)
5596{
5597 struct igc_adapter *adapter = netdev_priv(dev);
5598
5599 switch (type) {
5600 case TC_SETUP_QDISC_TAPRIO:
5601 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
5602
5603 case TC_SETUP_QDISC_ETF:
5604 return igc_tsn_enable_launchtime(adapter, type_data);
5605
5606 default:
5607 return -EOPNOTSUPP;
5608 }
5609}
5610
5611static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
5612{
5613 struct igc_adapter *adapter = netdev_priv(dev);
5614
5615 switch (bpf->command) {
5616 case XDP_SETUP_PROG:
5617 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
5618 case XDP_SETUP_XSK_POOL:
5619 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
5620 bpf->xsk.queue_id);
5621 default:
5622 return -EOPNOTSUPP;
5623 }
5624}
5625
5626static int igc_xdp_xmit(struct net_device *dev, int num_frames,
5627 struct xdp_frame **frames, u32 flags)
5628{
5629 struct igc_adapter *adapter = netdev_priv(dev);
5630 int cpu = smp_processor_id();
5631 struct netdev_queue *nq;
5632 struct igc_ring *ring;
5633 int i, drops;
5634
5635 if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
5636 return -ENETDOWN;
5637
5638 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
5639 return -EINVAL;
5640
5641 ring = igc_xdp_get_tx_ring(adapter, cpu);
5642 nq = txring_txq(ring);
5643
5644 __netif_tx_lock(nq, cpu);
5645
5646 drops = 0;
5647 for (i = 0; i < num_frames; i++) {
5648 int err;
5649 struct xdp_frame *xdpf = frames[i];
5650
5651 err = igc_xdp_init_tx_descriptor(ring, xdpf);
5652 if (err) {
5653 xdp_return_frame_rx_napi(xdpf);
5654 drops++;
5655 }
5656 }
5657
5658 if (flags & XDP_XMIT_FLUSH)
5659 igc_flush_tx_descriptors(ring);
5660
5661 __netif_tx_unlock(nq);
5662
5663 return num_frames - drops;
5664}
5665
5666static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
5667 struct igc_q_vector *q_vector)
5668{
5669 struct igc_hw *hw = &adapter->hw;
5670 u32 eics = 0;
5671
5672 eics |= q_vector->eims_value;
5673 wr32(IGC_EICS, eics);
5674}
5675
5676int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
5677{
5678 struct igc_adapter *adapter = netdev_priv(dev);
5679 struct igc_q_vector *q_vector;
5680 struct igc_ring *ring;
5681
5682 if (test_bit(__IGC_DOWN, &adapter->state))
5683 return -ENETDOWN;
5684
5685 if (!igc_xdp_is_enabled(adapter))
5686 return -ENXIO;
5687
5688 if (queue_id >= adapter->num_rx_queues)
5689 return -EINVAL;
5690
5691 ring = adapter->rx_ring[queue_id];
5692
5693 if (!ring->xsk_pool)
5694 return -ENXIO;
5695
5696 q_vector = adapter->q_vector[queue_id];
5697 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
5698 igc_trigger_rxtxq_interrupt(adapter, q_vector);
5699
5700 return 0;
5701}
5702
5703static const struct net_device_ops igc_netdev_ops = {
5704 .ndo_open = igc_open,
5705 .ndo_stop = igc_close,
5706 .ndo_start_xmit = igc_xmit_frame,
5707 .ndo_set_rx_mode = igc_set_rx_mode,
5708 .ndo_set_mac_address = igc_set_mac,
5709 .ndo_change_mtu = igc_change_mtu,
5710 .ndo_get_stats64 = igc_get_stats64,
5711 .ndo_fix_features = igc_fix_features,
5712 .ndo_set_features = igc_set_features,
5713 .ndo_features_check = igc_features_check,
5714 .ndo_do_ioctl = igc_ioctl,
5715 .ndo_setup_tc = igc_setup_tc,
5716 .ndo_bpf = igc_bpf,
5717 .ndo_xdp_xmit = igc_xdp_xmit,
5718 .ndo_xsk_wakeup = igc_xsk_wakeup,
5719};
5720
5721/* PCIe configuration access */
5722void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5723{
5724 struct igc_adapter *adapter = hw->back;
5725
5726 pci_read_config_word(adapter->pdev, reg, value);
5727}
5728
5729void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5730{
5731 struct igc_adapter *adapter = hw->back;
5732
5733 pci_write_config_word(adapter->pdev, reg, *value);
5734}
5735
5736s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5737{
5738 struct igc_adapter *adapter = hw->back;
5739
5740 if (!pci_is_pcie(adapter->pdev))
5741 return -IGC_ERR_CONFIG;
5742
5743 pcie_capability_read_word(adapter->pdev, reg, value);
5744
5745 return IGC_SUCCESS;
5746}
5747
5748s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5749{
5750 struct igc_adapter *adapter = hw->back;
5751
5752 if (!pci_is_pcie(adapter->pdev))
5753 return -IGC_ERR_CONFIG;
5754
5755 pcie_capability_write_word(adapter->pdev, reg, *value);
5756
5757 return IGC_SUCCESS;
5758}
5759
5760u32 igc_rd32(struct igc_hw *hw, u32 reg)
5761{
5762 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
5763 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
5764 u32 value = 0;
5765
5766 value = readl(&hw_addr[reg]);
5767
5768 /* reads should not return all F's */
5769 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
5770 struct net_device *netdev = igc->netdev;
5771
5772 hw->hw_addr = NULL;
5773 netif_device_detach(netdev);
5774 netdev_err(netdev, "PCIe link lost, device now detached\n");
5775 WARN(pci_device_is_present(igc->pdev),
5776 "igc: Failed to read reg 0x%x!\n", reg);
5777 }
5778
5779 return value;
5780}
5781
5782int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
5783{
5784 struct igc_mac_info *mac = &adapter->hw.mac;
5785
5786 mac->autoneg = false;
5787
5788 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5789 * for the switch() below to work
5790 */
5791 if ((spd & 1) || (dplx & ~1))
5792 goto err_inval;
5793
5794 switch (spd + dplx) {
5795 case SPEED_10 + DUPLEX_HALF:
5796 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5797 break;
5798 case SPEED_10 + DUPLEX_FULL:
5799 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5800 break;
5801 case SPEED_100 + DUPLEX_HALF:
5802 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5803 break;
5804 case SPEED_100 + DUPLEX_FULL:
5805 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5806 break;
5807 case SPEED_1000 + DUPLEX_FULL:
5808 mac->autoneg = true;
5809 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5810 break;
5811 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5812 goto err_inval;
5813 case SPEED_2500 + DUPLEX_FULL:
5814 mac->autoneg = true;
5815 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
5816 break;
5817 case SPEED_2500 + DUPLEX_HALF: /* not supported */
5818 default:
5819 goto err_inval;
5820 }
5821
5822 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5823 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5824
5825 return 0;
5826
5827err_inval:
5828 netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
5829 return -EINVAL;
5830}
5831
5832/**
5833 * igc_probe - Device Initialization Routine
5834 * @pdev: PCI device information struct
5835 * @ent: entry in igc_pci_tbl
5836 *
5837 * Returns 0 on success, negative on failure
5838 *
5839 * igc_probe initializes an adapter identified by a pci_dev structure.
5840 * The OS initialization, configuring the adapter private structure,
5841 * and a hardware reset occur.
5842 */
5843static int igc_probe(struct pci_dev *pdev,
5844 const struct pci_device_id *ent)
5845{
5846 struct igc_adapter *adapter;
5847 struct net_device *netdev;
5848 struct igc_hw *hw;
5849 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
5850 int err, pci_using_dac;
5851
5852 err = pci_enable_device_mem(pdev);
5853 if (err)
5854 return err;
5855
5856 pci_using_dac = 0;
5857 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5858 if (!err) {
5859 pci_using_dac = 1;
5860 } else {
5861 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
5862 if (err) {
5863 dev_err(&pdev->dev,
5864 "No usable DMA configuration, aborting\n");
5865 goto err_dma;
5866 }
5867 }
5868
5869 err = pci_request_mem_regions(pdev, igc_driver_name);
5870 if (err)
5871 goto err_pci_reg;
5872
5873 pci_enable_pcie_error_reporting(pdev);
5874
5875 pci_set_master(pdev);
5876
5877 err = -ENOMEM;
5878 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5879 IGC_MAX_TX_QUEUES);
5880
5881 if (!netdev)
5882 goto err_alloc_etherdev;
5883
5884 SET_NETDEV_DEV(netdev, &pdev->dev);
5885
5886 pci_set_drvdata(pdev, netdev);
5887 adapter = netdev_priv(netdev);
5888 adapter->netdev = netdev;
5889 adapter->pdev = pdev;
5890 hw = &adapter->hw;
5891 hw->back = adapter;
5892 adapter->port_num = hw->bus.func;
5893 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5894
5895 err = pci_save_state(pdev);
5896 if (err)
5897 goto err_ioremap;
5898
5899 err = -EIO;
5900 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5901 pci_resource_len(pdev, 0));
5902 if (!adapter->io_addr)
5903 goto err_ioremap;
5904
5905 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5906 hw->hw_addr = adapter->io_addr;
5907
5908 netdev->netdev_ops = &igc_netdev_ops;
5909 igc_ethtool_set_ops(netdev);
5910 netdev->watchdog_timeo = 5 * HZ;
5911
5912 netdev->mem_start = pci_resource_start(pdev, 0);
5913 netdev->mem_end = pci_resource_end(pdev, 0);
5914
5915 /* PCI config space info */
5916 hw->vendor_id = pdev->vendor;
5917 hw->device_id = pdev->device;
5918 hw->revision_id = pdev->revision;
5919 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5920 hw->subsystem_device_id = pdev->subsystem_device;
5921
5922 /* Copy the default MAC and PHY function pointers */
5923 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5924 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5925
5926 /* Initialize skew-specific constants */
5927 err = ei->get_invariants(hw);
5928 if (err)
5929 goto err_sw_init;
5930
5931 /* Add supported features to the features list*/
5932 netdev->features |= NETIF_F_SG;
5933 netdev->features |= NETIF_F_TSO;
5934 netdev->features |= NETIF_F_TSO6;
5935 netdev->features |= NETIF_F_TSO_ECN;
5936 netdev->features |= NETIF_F_RXCSUM;
5937 netdev->features |= NETIF_F_HW_CSUM;
5938 netdev->features |= NETIF_F_SCTP_CRC;
5939 netdev->features |= NETIF_F_HW_TC;
5940
5941#define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5942 NETIF_F_GSO_GRE_CSUM | \
5943 NETIF_F_GSO_IPXIP4 | \
5944 NETIF_F_GSO_IPXIP6 | \
5945 NETIF_F_GSO_UDP_TUNNEL | \
5946 NETIF_F_GSO_UDP_TUNNEL_CSUM)
5947
5948 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5949 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5950
5951 /* setup the private structure */
5952 err = igc_sw_init(adapter);
5953 if (err)
5954 goto err_sw_init;
5955
5956 /* copy netdev features into list of user selectable features */
5957 netdev->hw_features |= NETIF_F_NTUPLE;
5958 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
5959 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
5960 netdev->hw_features |= netdev->features;
5961
5962 if (pci_using_dac)
5963 netdev->features |= NETIF_F_HIGHDMA;
5964
5965 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
5966 netdev->mpls_features |= NETIF_F_HW_CSUM;
5967 netdev->hw_enc_features |= netdev->vlan_features;
5968
5969 /* MTU range: 68 - 9216 */
5970 netdev->min_mtu = ETH_MIN_MTU;
5971 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5972
5973 /* before reading the NVM, reset the controller to put the device in a
5974 * known good starting state
5975 */
5976 hw->mac.ops.reset_hw(hw);
5977
5978 if (igc_get_flash_presence_i225(hw)) {
5979 if (hw->nvm.ops.validate(hw) < 0) {
5980 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5981 err = -EIO;
5982 goto err_eeprom;
5983 }
5984 }
5985
5986 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5987 /* copy the MAC address out of the NVM */
5988 if (hw->mac.ops.read_mac_addr(hw))
5989 dev_err(&pdev->dev, "NVM Read Error\n");
5990 }
5991
5992 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5993
5994 if (!is_valid_ether_addr(netdev->dev_addr)) {
5995 dev_err(&pdev->dev, "Invalid MAC Address\n");
5996 err = -EIO;
5997 goto err_eeprom;
5998 }
5999
6000 /* configure RXPBSIZE and TXPBSIZE */
6001 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6002 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6003
6004 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6005 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6006
6007 INIT_WORK(&adapter->reset_task, igc_reset_task);
6008 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6009
6010 /* Initialize link properties that are user-changeable */
6011 adapter->fc_autoneg = true;
6012 hw->mac.autoneg = true;
6013 hw->phy.autoneg_advertised = 0xaf;
6014
6015 hw->fc.requested_mode = igc_fc_default;
6016 hw->fc.current_mode = igc_fc_default;
6017
6018 /* By default, support wake on port A */
6019 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6020
6021 /* initialize the wol settings based on the eeprom settings */
6022 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6023 adapter->wol |= IGC_WUFC_MAG;
6024
6025 device_set_wakeup_enable(&adapter->pdev->dev,
6026 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6027
6028 igc_ptp_init(adapter);
6029
6030 /* reset the hardware with the new settings */
6031 igc_reset(adapter);
6032
6033 /* let the f/w know that the h/w is now under the control of the
6034 * driver.
6035 */
6036 igc_get_hw_control(adapter);
6037
6038 strncpy(netdev->name, "eth%d", IFNAMSIZ);
6039 err = register_netdev(netdev);
6040 if (err)
6041 goto err_register;
6042
6043 /* carrier off reporting is important to ethtool even BEFORE open */
6044 netif_carrier_off(netdev);
6045
6046 /* Check if Media Autosense is enabled */
6047 adapter->ei = *ei;
6048
6049 /* print pcie link status and MAC address */
6050 pcie_print_link_status(pdev);
6051 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6052
6053 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6054 /* Disable EEE for internal PHY devices */
6055 hw->dev_spec._base.eee_enable = false;
6056 adapter->flags &= ~IGC_FLAG_EEE;
6057 igc_set_eee_i225(hw, false, false, false);
6058
6059 pm_runtime_put_noidle(&pdev->dev);
6060
6061 return 0;
6062
6063err_register:
6064 igc_release_hw_control(adapter);
6065err_eeprom:
6066 if (!igc_check_reset_block(hw))
6067 igc_reset_phy(hw);
6068err_sw_init:
6069 igc_clear_interrupt_scheme(adapter);
6070 iounmap(adapter->io_addr);
6071err_ioremap:
6072 free_netdev(netdev);
6073err_alloc_etherdev:
6074 pci_disable_pcie_error_reporting(pdev);
6075 pci_release_mem_regions(pdev);
6076err_pci_reg:
6077err_dma:
6078 pci_disable_device(pdev);
6079 return err;
6080}
6081
6082/**
6083 * igc_remove - Device Removal Routine
6084 * @pdev: PCI device information struct
6085 *
6086 * igc_remove is called by the PCI subsystem to alert the driver
6087 * that it should release a PCI device. This could be caused by a
6088 * Hot-Plug event, or because the driver is going to be removed from
6089 * memory.
6090 */
6091static void igc_remove(struct pci_dev *pdev)
6092{
6093 struct net_device *netdev = pci_get_drvdata(pdev);
6094 struct igc_adapter *adapter = netdev_priv(netdev);
6095
6096 pm_runtime_get_noresume(&pdev->dev);
6097
6098 igc_flush_nfc_rules(adapter);
6099
6100 igc_ptp_stop(adapter);
6101
6102 set_bit(__IGC_DOWN, &adapter->state);
6103
6104 del_timer_sync(&adapter->watchdog_timer);
6105 del_timer_sync(&adapter->phy_info_timer);
6106
6107 cancel_work_sync(&adapter->reset_task);
6108 cancel_work_sync(&adapter->watchdog_task);
6109
6110 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6111 * would have already happened in close and is redundant.
6112 */
6113 igc_release_hw_control(adapter);
6114 unregister_netdev(netdev);
6115
6116 igc_clear_interrupt_scheme(adapter);
6117 pci_iounmap(pdev, adapter->io_addr);
6118 pci_release_mem_regions(pdev);
6119
6120 free_netdev(netdev);
6121
6122 pci_disable_pcie_error_reporting(pdev);
6123
6124 pci_disable_device(pdev);
6125}
6126
6127static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
6128 bool runtime)
6129{
6130 struct net_device *netdev = pci_get_drvdata(pdev);
6131 struct igc_adapter *adapter = netdev_priv(netdev);
6132 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
6133 struct igc_hw *hw = &adapter->hw;
6134 u32 ctrl, rctl, status;
6135 bool wake;
6136
6137 rtnl_lock();
6138 netif_device_detach(netdev);
6139
6140 if (netif_running(netdev))
6141 __igc_close(netdev, true);
6142
6143 igc_ptp_suspend(adapter);
6144
6145 igc_clear_interrupt_scheme(adapter);
6146 rtnl_unlock();
6147
6148 status = rd32(IGC_STATUS);
6149 if (status & IGC_STATUS_LU)
6150 wufc &= ~IGC_WUFC_LNKC;
6151
6152 if (wufc) {
6153 igc_setup_rctl(adapter);
6154 igc_set_rx_mode(netdev);
6155
6156 /* turn on all-multi mode if wake on multicast is enabled */
6157 if (wufc & IGC_WUFC_MC) {
6158 rctl = rd32(IGC_RCTL);
6159 rctl |= IGC_RCTL_MPE;
6160 wr32(IGC_RCTL, rctl);
6161 }
6162
6163 ctrl = rd32(IGC_CTRL);
6164 ctrl |= IGC_CTRL_ADVD3WUC;
6165 wr32(IGC_CTRL, ctrl);
6166
6167 /* Allow time for pending master requests to run */
6168 igc_disable_pcie_master(hw);
6169
6170 wr32(IGC_WUC, IGC_WUC_PME_EN);
6171 wr32(IGC_WUFC, wufc);
6172 } else {
6173 wr32(IGC_WUC, 0);
6174 wr32(IGC_WUFC, 0);
6175 }
6176
6177 wake = wufc || adapter->en_mng_pt;
6178 if (!wake)
6179 igc_power_down_phy_copper_base(&adapter->hw);
6180 else
6181 igc_power_up_link(adapter);
6182
6183 if (enable_wake)
6184 *enable_wake = wake;
6185
6186 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6187 * would have already happened in close and is redundant.
6188 */
6189 igc_release_hw_control(adapter);
6190
6191 pci_disable_device(pdev);
6192
6193 return 0;
6194}
6195
6196#ifdef CONFIG_PM
6197static int __maybe_unused igc_runtime_suspend(struct device *dev)
6198{
6199 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
6200}
6201
6202static void igc_deliver_wake_packet(struct net_device *netdev)
6203{
6204 struct igc_adapter *adapter = netdev_priv(netdev);
6205 struct igc_hw *hw = &adapter->hw;
6206 struct sk_buff *skb;
6207 u32 wupl;
6208
6209 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
6210
6211 /* WUPM stores only the first 128 bytes of the wake packet.
6212 * Read the packet only if we have the whole thing.
6213 */
6214 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
6215 return;
6216
6217 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
6218 if (!skb)
6219 return;
6220
6221 skb_put(skb, wupl);
6222
6223 /* Ensure reads are 32-bit aligned */
6224 wupl = roundup(wupl, 4);
6225
6226 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
6227
6228 skb->protocol = eth_type_trans(skb, netdev);
6229 netif_rx(skb);
6230}
6231
6232static int __maybe_unused igc_resume(struct device *dev)
6233{
6234 struct pci_dev *pdev = to_pci_dev(dev);
6235 struct net_device *netdev = pci_get_drvdata(pdev);
6236 struct igc_adapter *adapter = netdev_priv(netdev);
6237 struct igc_hw *hw = &adapter->hw;
6238 u32 err, val;
6239
6240 pci_set_power_state(pdev, PCI_D0);
6241 pci_restore_state(pdev);
6242 pci_save_state(pdev);
6243
6244 if (!pci_device_is_present(pdev))
6245 return -ENODEV;
6246 err = pci_enable_device_mem(pdev);
6247 if (err) {
6248 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
6249 return err;
6250 }
6251 pci_set_master(pdev);
6252
6253 pci_enable_wake(pdev, PCI_D3hot, 0);
6254 pci_enable_wake(pdev, PCI_D3cold, 0);
6255
6256 if (igc_init_interrupt_scheme(adapter, true)) {
6257 netdev_err(netdev, "Unable to allocate memory for queues\n");
6258 return -ENOMEM;
6259 }
6260
6261 igc_reset(adapter);
6262
6263 /* let the f/w know that the h/w is now under the control of the
6264 * driver.
6265 */
6266 igc_get_hw_control(adapter);
6267
6268 val = rd32(IGC_WUS);
6269 if (val & WAKE_PKT_WUS)
6270 igc_deliver_wake_packet(netdev);
6271
6272 wr32(IGC_WUS, ~0);
6273
6274 rtnl_lock();
6275 if (!err && netif_running(netdev))
6276 err = __igc_open(netdev, true);
6277
6278 if (!err)
6279 netif_device_attach(netdev);
6280 rtnl_unlock();
6281
6282 return err;
6283}
6284
6285static int __maybe_unused igc_runtime_resume(struct device *dev)
6286{
6287 return igc_resume(dev);
6288}
6289
6290static int __maybe_unused igc_suspend(struct device *dev)
6291{
6292 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
6293}
6294
6295static int __maybe_unused igc_runtime_idle(struct device *dev)
6296{
6297 struct net_device *netdev = dev_get_drvdata(dev);
6298 struct igc_adapter *adapter = netdev_priv(netdev);
6299
6300 if (!igc_has_link(adapter))
6301 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6302
6303 return -EBUSY;
6304}
6305#endif /* CONFIG_PM */
6306
6307static void igc_shutdown(struct pci_dev *pdev)
6308{
6309 bool wake;
6310
6311 __igc_shutdown(pdev, &wake, 0);
6312
6313 if (system_state == SYSTEM_POWER_OFF) {
6314 pci_wake_from_d3(pdev, wake);
6315 pci_set_power_state(pdev, PCI_D3hot);
6316 }
6317}
6318
6319/**
6320 * igc_io_error_detected - called when PCI error is detected
6321 * @pdev: Pointer to PCI device
6322 * @state: The current PCI connection state
6323 *
6324 * This function is called after a PCI bus error affecting
6325 * this device has been detected.
6326 **/
6327static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
6328 pci_channel_state_t state)
6329{
6330 struct net_device *netdev = pci_get_drvdata(pdev);
6331 struct igc_adapter *adapter = netdev_priv(netdev);
6332
6333 netif_device_detach(netdev);
6334
6335 if (state == pci_channel_io_perm_failure)
6336 return PCI_ERS_RESULT_DISCONNECT;
6337
6338 if (netif_running(netdev))
6339 igc_down(adapter);
6340 pci_disable_device(pdev);
6341
6342 /* Request a slot reset. */
6343 return PCI_ERS_RESULT_NEED_RESET;
6344}
6345
6346/**
6347 * igc_io_slot_reset - called after the PCI bus has been reset.
6348 * @pdev: Pointer to PCI device
6349 *
6350 * Restart the card from scratch, as if from a cold-boot. Implementation
6351 * resembles the first-half of the igc_resume routine.
6352 **/
6353static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
6354{
6355 struct net_device *netdev = pci_get_drvdata(pdev);
6356 struct igc_adapter *adapter = netdev_priv(netdev);
6357 struct igc_hw *hw = &adapter->hw;
6358 pci_ers_result_t result;
6359
6360 if (pci_enable_device_mem(pdev)) {
6361 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
6362 result = PCI_ERS_RESULT_DISCONNECT;
6363 } else {
6364 pci_set_master(pdev);
6365 pci_restore_state(pdev);
6366 pci_save_state(pdev);
6367
6368 pci_enable_wake(pdev, PCI_D3hot, 0);
6369 pci_enable_wake(pdev, PCI_D3cold, 0);
6370
6371 /* In case of PCI error, adapter loses its HW address
6372 * so we should re-assign it here.
6373 */
6374 hw->hw_addr = adapter->io_addr;
6375
6376 igc_reset(adapter);
6377 wr32(IGC_WUS, ~0);
6378 result = PCI_ERS_RESULT_RECOVERED;
6379 }
6380
6381 return result;
6382}
6383
6384/**
6385 * igc_io_resume - called when traffic can start to flow again.
6386 * @pdev: Pointer to PCI device
6387 *
6388 * This callback is called when the error recovery driver tells us that
6389 * its OK to resume normal operation. Implementation resembles the
6390 * second-half of the igc_resume routine.
6391 */
6392static void igc_io_resume(struct pci_dev *pdev)
6393{
6394 struct net_device *netdev = pci_get_drvdata(pdev);
6395 struct igc_adapter *adapter = netdev_priv(netdev);
6396
6397 rtnl_lock();
6398 if (netif_running(netdev)) {
6399 if (igc_open(netdev)) {
6400 netdev_err(netdev, "igc_open failed after reset\n");
6401 return;
6402 }
6403 }
6404
6405 netif_device_attach(netdev);
6406
6407 /* let the f/w know that the h/w is now under the control of the
6408 * driver.
6409 */
6410 igc_get_hw_control(adapter);
6411 rtnl_unlock();
6412}
6413
6414static const struct pci_error_handlers igc_err_handler = {
6415 .error_detected = igc_io_error_detected,
6416 .slot_reset = igc_io_slot_reset,
6417 .resume = igc_io_resume,
6418};
6419
6420#ifdef CONFIG_PM
6421static const struct dev_pm_ops igc_pm_ops = {
6422 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
6423 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
6424 igc_runtime_idle)
6425};
6426#endif
6427
6428static struct pci_driver igc_driver = {
6429 .name = igc_driver_name,
6430 .id_table = igc_pci_tbl,
6431 .probe = igc_probe,
6432 .remove = igc_remove,
6433#ifdef CONFIG_PM
6434 .driver.pm = &igc_pm_ops,
6435#endif
6436 .shutdown = igc_shutdown,
6437 .err_handler = &igc_err_handler,
6438};
6439
6440/**
6441 * igc_reinit_queues - return error
6442 * @adapter: pointer to adapter structure
6443 */
6444int igc_reinit_queues(struct igc_adapter *adapter)
6445{
6446 struct net_device *netdev = adapter->netdev;
6447 int err = 0;
6448
6449 if (netif_running(netdev))
6450 igc_close(netdev);
6451
6452 igc_reset_interrupt_capability(adapter);
6453
6454 if (igc_init_interrupt_scheme(adapter, true)) {
6455 netdev_err(netdev, "Unable to allocate memory for queues\n");
6456 return -ENOMEM;
6457 }
6458
6459 if (netif_running(netdev))
6460 err = igc_open(netdev);
6461
6462 return err;
6463}
6464
6465/**
6466 * igc_get_hw_dev - return device
6467 * @hw: pointer to hardware structure
6468 *
6469 * used by hardware layer to print debugging information
6470 */
6471struct net_device *igc_get_hw_dev(struct igc_hw *hw)
6472{
6473 struct igc_adapter *adapter = hw->back;
6474
6475 return adapter->netdev;
6476}
6477
6478static void igc_disable_rx_ring_hw(struct igc_ring *ring)
6479{
6480 struct igc_hw *hw = &ring->q_vector->adapter->hw;
6481 u8 idx = ring->reg_idx;
6482 u32 rxdctl;
6483
6484 rxdctl = rd32(IGC_RXDCTL(idx));
6485 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
6486 rxdctl |= IGC_RXDCTL_SWFLUSH;
6487 wr32(IGC_RXDCTL(idx), rxdctl);
6488}
6489
6490void igc_disable_rx_ring(struct igc_ring *ring)
6491{
6492 igc_disable_rx_ring_hw(ring);
6493 igc_clean_rx_ring(ring);
6494}
6495
6496void igc_enable_rx_ring(struct igc_ring *ring)
6497{
6498 struct igc_adapter *adapter = ring->q_vector->adapter;
6499
6500 igc_configure_rx_ring(adapter, ring);
6501
6502 if (ring->xsk_pool)
6503 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
6504 else
6505 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
6506}
6507
6508static void igc_disable_tx_ring_hw(struct igc_ring *ring)
6509{
6510 struct igc_hw *hw = &ring->q_vector->adapter->hw;
6511 u8 idx = ring->reg_idx;
6512 u32 txdctl;
6513
6514 txdctl = rd32(IGC_TXDCTL(idx));
6515 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
6516 txdctl |= IGC_TXDCTL_SWFLUSH;
6517 wr32(IGC_TXDCTL(idx), txdctl);
6518}
6519
6520void igc_disable_tx_ring(struct igc_ring *ring)
6521{
6522 igc_disable_tx_ring_hw(ring);
6523 igc_clean_tx_ring(ring);
6524}
6525
6526void igc_enable_tx_ring(struct igc_ring *ring)
6527{
6528 struct igc_adapter *adapter = ring->q_vector->adapter;
6529
6530 igc_configure_tx_ring(adapter, ring);
6531}
6532
6533/**
6534 * igc_init_module - Driver Registration Routine
6535 *
6536 * igc_init_module is the first routine called when the driver is
6537 * loaded. All it does is register with the PCI subsystem.
6538 */
6539static int __init igc_init_module(void)
6540{
6541 int ret;
6542
6543 pr_info("%s\n", igc_driver_string);
6544 pr_info("%s\n", igc_copyright);
6545
6546 ret = pci_register_driver(&igc_driver);
6547 return ret;
6548}
6549
6550module_init(igc_init_module);
6551
6552/**
6553 * igc_exit_module - Driver Exit Cleanup Routine
6554 *
6555 * igc_exit_module is called just before the driver is removed
6556 * from memory.
6557 */
6558static void __exit igc_exit_module(void)
6559{
6560 pci_unregister_driver(&igc_driver);
6561}
6562
6563module_exit(igc_exit_module);
6564/* igc_main.c */
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018 Intel Corporation */
3
4#include <linux/module.h>
5#include <linux/types.h>
6#include <linux/if_vlan.h>
7#include <linux/aer.h>
8#include <linux/tcp.h>
9#include <linux/udp.h>
10#include <linux/ip.h>
11
12#include <net/ipv6.h>
13
14#include "igc.h"
15#include "igc_hw.h"
16
17#define DRV_VERSION "0.0.1-k"
18#define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
19
20#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
21
22static int debug = -1;
23
24MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
25MODULE_DESCRIPTION(DRV_SUMMARY);
26MODULE_LICENSE("GPL v2");
27MODULE_VERSION(DRV_VERSION);
28module_param(debug, int, 0);
29MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
30
31char igc_driver_name[] = "igc";
32char igc_driver_version[] = DRV_VERSION;
33static const char igc_driver_string[] = DRV_SUMMARY;
34static const char igc_copyright[] =
35 "Copyright(c) 2018 Intel Corporation.";
36
37static const struct igc_info *igc_info_tbl[] = {
38 [board_base] = &igc_base_info,
39};
40
41static const struct pci_device_id igc_pci_tbl[] = {
42 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
43 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
44 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
45 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
46 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
47 /* required last entry */
48 {0, }
49};
50
51MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
52
53/* forward declaration */
54static void igc_clean_tx_ring(struct igc_ring *tx_ring);
55static int igc_sw_init(struct igc_adapter *);
56static void igc_configure(struct igc_adapter *adapter);
57static void igc_power_down_link(struct igc_adapter *adapter);
58static void igc_set_default_mac_filter(struct igc_adapter *adapter);
59static void igc_set_rx_mode(struct net_device *netdev);
60static void igc_write_itr(struct igc_q_vector *q_vector);
61static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector);
62static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx);
63static void igc_set_interrupt_capability(struct igc_adapter *adapter,
64 bool msix);
65static void igc_free_q_vectors(struct igc_adapter *adapter);
66static void igc_irq_disable(struct igc_adapter *adapter);
67static void igc_irq_enable(struct igc_adapter *adapter);
68static void igc_configure_msix(struct igc_adapter *adapter);
69static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
70 struct igc_rx_buffer *bi);
71
72enum latency_range {
73 lowest_latency = 0,
74 low_latency = 1,
75 bulk_latency = 2,
76 latency_invalid = 255
77};
78
79void igc_reset(struct igc_adapter *adapter)
80{
81 struct pci_dev *pdev = adapter->pdev;
82 struct igc_hw *hw = &adapter->hw;
83 struct igc_fc_info *fc = &hw->fc;
84 u32 pba, hwm;
85
86 /* Repartition PBA for greater than 9k MTU if required */
87 pba = IGC_PBA_34K;
88
89 /* flow control settings
90 * The high water mark must be low enough to fit one full frame
91 * after transmitting the pause frame. As such we must have enough
92 * space to allow for us to complete our current transmit and then
93 * receive the frame that is in progress from the link partner.
94 * Set it to:
95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 */
97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98
99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
100 fc->low_water = fc->high_water - 16;
101 fc->pause_time = 0xFFFF;
102 fc->send_xon = 1;
103 fc->current_mode = fc->requested_mode;
104
105 hw->mac.ops.reset_hw(hw);
106
107 if (hw->mac.ops.init_hw(hw))
108 dev_err(&pdev->dev, "Hardware Error\n");
109
110 if (!netif_running(adapter->netdev))
111 igc_power_down_link(adapter);
112
113 igc_get_phy_info(hw);
114}
115
116/**
117 * igc_power_up_link - Power up the phy/serdes link
118 * @adapter: address of board private structure
119 */
120static void igc_power_up_link(struct igc_adapter *adapter)
121{
122 igc_reset_phy(&adapter->hw);
123
124 if (adapter->hw.phy.media_type == igc_media_type_copper)
125 igc_power_up_phy_copper(&adapter->hw);
126
127 igc_setup_link(&adapter->hw);
128}
129
130/**
131 * igc_power_down_link - Power down the phy/serdes link
132 * @adapter: address of board private structure
133 */
134static void igc_power_down_link(struct igc_adapter *adapter)
135{
136 if (adapter->hw.phy.media_type == igc_media_type_copper)
137 igc_power_down_phy_copper_base(&adapter->hw);
138}
139
140/**
141 * igc_release_hw_control - release control of the h/w to f/w
142 * @adapter: address of board private structure
143 *
144 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
145 * For ASF and Pass Through versions of f/w this means that the
146 * driver is no longer loaded.
147 */
148static void igc_release_hw_control(struct igc_adapter *adapter)
149{
150 struct igc_hw *hw = &adapter->hw;
151 u32 ctrl_ext;
152
153 /* Let firmware take over control of h/w */
154 ctrl_ext = rd32(IGC_CTRL_EXT);
155 wr32(IGC_CTRL_EXT,
156 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
157}
158
159/**
160 * igc_get_hw_control - get control of the h/w from f/w
161 * @adapter: address of board private structure
162 *
163 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
164 * For ASF and Pass Through versions of f/w this means that
165 * the driver is loaded.
166 */
167static void igc_get_hw_control(struct igc_adapter *adapter)
168{
169 struct igc_hw *hw = &adapter->hw;
170 u32 ctrl_ext;
171
172 /* Let firmware know the driver has taken over */
173 ctrl_ext = rd32(IGC_CTRL_EXT);
174 wr32(IGC_CTRL_EXT,
175 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
176}
177
178/**
179 * igc_free_tx_resources - Free Tx Resources per Queue
180 * @tx_ring: Tx descriptor ring for a specific queue
181 *
182 * Free all transmit software resources
183 */
184void igc_free_tx_resources(struct igc_ring *tx_ring)
185{
186 igc_clean_tx_ring(tx_ring);
187
188 vfree(tx_ring->tx_buffer_info);
189 tx_ring->tx_buffer_info = NULL;
190
191 /* if not set, then don't free */
192 if (!tx_ring->desc)
193 return;
194
195 dma_free_coherent(tx_ring->dev, tx_ring->size,
196 tx_ring->desc, tx_ring->dma);
197
198 tx_ring->desc = NULL;
199}
200
201/**
202 * igc_free_all_tx_resources - Free Tx Resources for All Queues
203 * @adapter: board private structure
204 *
205 * Free all transmit software resources
206 */
207static void igc_free_all_tx_resources(struct igc_adapter *adapter)
208{
209 int i;
210
211 for (i = 0; i < adapter->num_tx_queues; i++)
212 igc_free_tx_resources(adapter->tx_ring[i]);
213}
214
215/**
216 * igc_clean_tx_ring - Free Tx Buffers
217 * @tx_ring: ring to be cleaned
218 */
219static void igc_clean_tx_ring(struct igc_ring *tx_ring)
220{
221 u16 i = tx_ring->next_to_clean;
222 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
223
224 while (i != tx_ring->next_to_use) {
225 union igc_adv_tx_desc *eop_desc, *tx_desc;
226
227 /* Free all the Tx ring sk_buffs */
228 dev_kfree_skb_any(tx_buffer->skb);
229
230 /* unmap skb header data */
231 dma_unmap_single(tx_ring->dev,
232 dma_unmap_addr(tx_buffer, dma),
233 dma_unmap_len(tx_buffer, len),
234 DMA_TO_DEVICE);
235
236 /* check for eop_desc to determine the end of the packet */
237 eop_desc = tx_buffer->next_to_watch;
238 tx_desc = IGC_TX_DESC(tx_ring, i);
239
240 /* unmap remaining buffers */
241 while (tx_desc != eop_desc) {
242 tx_buffer++;
243 tx_desc++;
244 i++;
245 if (unlikely(i == tx_ring->count)) {
246 i = 0;
247 tx_buffer = tx_ring->tx_buffer_info;
248 tx_desc = IGC_TX_DESC(tx_ring, 0);
249 }
250
251 /* unmap any remaining paged data */
252 if (dma_unmap_len(tx_buffer, len))
253 dma_unmap_page(tx_ring->dev,
254 dma_unmap_addr(tx_buffer, dma),
255 dma_unmap_len(tx_buffer, len),
256 DMA_TO_DEVICE);
257 }
258
259 /* move us one more past the eop_desc for start of next pkt */
260 tx_buffer++;
261 i++;
262 if (unlikely(i == tx_ring->count)) {
263 i = 0;
264 tx_buffer = tx_ring->tx_buffer_info;
265 }
266 }
267
268 /* reset BQL for queue */
269 netdev_tx_reset_queue(txring_txq(tx_ring));
270
271 /* reset next_to_use and next_to_clean */
272 tx_ring->next_to_use = 0;
273 tx_ring->next_to_clean = 0;
274}
275
276/**
277 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
278 * @adapter: board private structure
279 */
280static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
281{
282 int i;
283
284 for (i = 0; i < adapter->num_tx_queues; i++)
285 if (adapter->tx_ring[i])
286 igc_clean_tx_ring(adapter->tx_ring[i]);
287}
288
289/**
290 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
291 * @tx_ring: tx descriptor ring (for a specific queue) to setup
292 *
293 * Return 0 on success, negative on failure
294 */
295int igc_setup_tx_resources(struct igc_ring *tx_ring)
296{
297 struct device *dev = tx_ring->dev;
298 int size = 0;
299
300 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
301 tx_ring->tx_buffer_info = vzalloc(size);
302 if (!tx_ring->tx_buffer_info)
303 goto err;
304
305 /* round up to nearest 4K */
306 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
307 tx_ring->size = ALIGN(tx_ring->size, 4096);
308
309 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
310 &tx_ring->dma, GFP_KERNEL);
311
312 if (!tx_ring->desc)
313 goto err;
314
315 tx_ring->next_to_use = 0;
316 tx_ring->next_to_clean = 0;
317
318 return 0;
319
320err:
321 vfree(tx_ring->tx_buffer_info);
322 dev_err(dev,
323 "Unable to allocate memory for the transmit descriptor ring\n");
324 return -ENOMEM;
325}
326
327/**
328 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
329 * @adapter: board private structure
330 *
331 * Return 0 on success, negative on failure
332 */
333static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
334{
335 struct pci_dev *pdev = adapter->pdev;
336 int i, err = 0;
337
338 for (i = 0; i < adapter->num_tx_queues; i++) {
339 err = igc_setup_tx_resources(adapter->tx_ring[i]);
340 if (err) {
341 dev_err(&pdev->dev,
342 "Allocation for Tx Queue %u failed\n", i);
343 for (i--; i >= 0; i--)
344 igc_free_tx_resources(adapter->tx_ring[i]);
345 break;
346 }
347 }
348
349 return err;
350}
351
352/**
353 * igc_clean_rx_ring - Free Rx Buffers per Queue
354 * @rx_ring: ring to free buffers from
355 */
356static void igc_clean_rx_ring(struct igc_ring *rx_ring)
357{
358 u16 i = rx_ring->next_to_clean;
359
360 dev_kfree_skb(rx_ring->skb);
361 rx_ring->skb = NULL;
362
363 /* Free all the Rx ring sk_buffs */
364 while (i != rx_ring->next_to_alloc) {
365 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
366
367 /* Invalidate cache lines that may have been written to by
368 * device so that we avoid corrupting memory.
369 */
370 dma_sync_single_range_for_cpu(rx_ring->dev,
371 buffer_info->dma,
372 buffer_info->page_offset,
373 igc_rx_bufsz(rx_ring),
374 DMA_FROM_DEVICE);
375
376 /* free resources associated with mapping */
377 dma_unmap_page_attrs(rx_ring->dev,
378 buffer_info->dma,
379 igc_rx_pg_size(rx_ring),
380 DMA_FROM_DEVICE,
381 IGC_RX_DMA_ATTR);
382 __page_frag_cache_drain(buffer_info->page,
383 buffer_info->pagecnt_bias);
384
385 i++;
386 if (i == rx_ring->count)
387 i = 0;
388 }
389
390 rx_ring->next_to_alloc = 0;
391 rx_ring->next_to_clean = 0;
392 rx_ring->next_to_use = 0;
393}
394
395/**
396 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
397 * @adapter: board private structure
398 */
399static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
400{
401 int i;
402
403 for (i = 0; i < adapter->num_rx_queues; i++)
404 if (adapter->rx_ring[i])
405 igc_clean_rx_ring(adapter->rx_ring[i]);
406}
407
408/**
409 * igc_free_rx_resources - Free Rx Resources
410 * @rx_ring: ring to clean the resources from
411 *
412 * Free all receive software resources
413 */
414void igc_free_rx_resources(struct igc_ring *rx_ring)
415{
416 igc_clean_rx_ring(rx_ring);
417
418 vfree(rx_ring->rx_buffer_info);
419 rx_ring->rx_buffer_info = NULL;
420
421 /* if not set, then don't free */
422 if (!rx_ring->desc)
423 return;
424
425 dma_free_coherent(rx_ring->dev, rx_ring->size,
426 rx_ring->desc, rx_ring->dma);
427
428 rx_ring->desc = NULL;
429}
430
431/**
432 * igc_free_all_rx_resources - Free Rx Resources for All Queues
433 * @adapter: board private structure
434 *
435 * Free all receive software resources
436 */
437static void igc_free_all_rx_resources(struct igc_adapter *adapter)
438{
439 int i;
440
441 for (i = 0; i < adapter->num_rx_queues; i++)
442 igc_free_rx_resources(adapter->rx_ring[i]);
443}
444
445/**
446 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
447 * @rx_ring: rx descriptor ring (for a specific queue) to setup
448 *
449 * Returns 0 on success, negative on failure
450 */
451int igc_setup_rx_resources(struct igc_ring *rx_ring)
452{
453 struct device *dev = rx_ring->dev;
454 int size, desc_len;
455
456 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
457 rx_ring->rx_buffer_info = vzalloc(size);
458 if (!rx_ring->rx_buffer_info)
459 goto err;
460
461 desc_len = sizeof(union igc_adv_rx_desc);
462
463 /* Round up to nearest 4K */
464 rx_ring->size = rx_ring->count * desc_len;
465 rx_ring->size = ALIGN(rx_ring->size, 4096);
466
467 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
468 &rx_ring->dma, GFP_KERNEL);
469
470 if (!rx_ring->desc)
471 goto err;
472
473 rx_ring->next_to_alloc = 0;
474 rx_ring->next_to_clean = 0;
475 rx_ring->next_to_use = 0;
476
477 return 0;
478
479err:
480 vfree(rx_ring->rx_buffer_info);
481 rx_ring->rx_buffer_info = NULL;
482 dev_err(dev,
483 "Unable to allocate memory for the receive descriptor ring\n");
484 return -ENOMEM;
485}
486
487/**
488 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
489 * (Descriptors) for all queues
490 * @adapter: board private structure
491 *
492 * Return 0 on success, negative on failure
493 */
494static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
495{
496 struct pci_dev *pdev = adapter->pdev;
497 int i, err = 0;
498
499 for (i = 0; i < adapter->num_rx_queues; i++) {
500 err = igc_setup_rx_resources(adapter->rx_ring[i]);
501 if (err) {
502 dev_err(&pdev->dev,
503 "Allocation for Rx Queue %u failed\n", i);
504 for (i--; i >= 0; i--)
505 igc_free_rx_resources(adapter->rx_ring[i]);
506 break;
507 }
508 }
509
510 return err;
511}
512
513/**
514 * igc_configure_rx_ring - Configure a receive ring after Reset
515 * @adapter: board private structure
516 * @ring: receive ring to be configured
517 *
518 * Configure the Rx unit of the MAC after a reset.
519 */
520static void igc_configure_rx_ring(struct igc_adapter *adapter,
521 struct igc_ring *ring)
522{
523 struct igc_hw *hw = &adapter->hw;
524 union igc_adv_rx_desc *rx_desc;
525 int reg_idx = ring->reg_idx;
526 u32 srrctl = 0, rxdctl = 0;
527 u64 rdba = ring->dma;
528
529 /* disable the queue */
530 wr32(IGC_RXDCTL(reg_idx), 0);
531
532 /* Set DMA base address registers */
533 wr32(IGC_RDBAL(reg_idx),
534 rdba & 0x00000000ffffffffULL);
535 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
536 wr32(IGC_RDLEN(reg_idx),
537 ring->count * sizeof(union igc_adv_rx_desc));
538
539 /* initialize head and tail */
540 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
541 wr32(IGC_RDH(reg_idx), 0);
542 writel(0, ring->tail);
543
544 /* reset next-to- use/clean to place SW in sync with hardware */
545 ring->next_to_clean = 0;
546 ring->next_to_use = 0;
547
548 /* set descriptor configuration */
549 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
550 if (ring_uses_large_buffer(ring))
551 srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
552 else
553 srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
554 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
555
556 wr32(IGC_SRRCTL(reg_idx), srrctl);
557
558 rxdctl |= IGC_RX_PTHRESH;
559 rxdctl |= IGC_RX_HTHRESH << 8;
560 rxdctl |= IGC_RX_WTHRESH << 16;
561
562 /* initialize rx_buffer_info */
563 memset(ring->rx_buffer_info, 0,
564 sizeof(struct igc_rx_buffer) * ring->count);
565
566 /* initialize Rx descriptor 0 */
567 rx_desc = IGC_RX_DESC(ring, 0);
568 rx_desc->wb.upper.length = 0;
569
570 /* enable receive descriptor fetching */
571 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
572
573 wr32(IGC_RXDCTL(reg_idx), rxdctl);
574}
575
576/**
577 * igc_configure_rx - Configure receive Unit after Reset
578 * @adapter: board private structure
579 *
580 * Configure the Rx unit of the MAC after a reset.
581 */
582static void igc_configure_rx(struct igc_adapter *adapter)
583{
584 int i;
585
586 /* Setup the HW Rx Head and Tail Descriptor Pointers and
587 * the Base and Length of the Rx Descriptor Ring
588 */
589 for (i = 0; i < adapter->num_rx_queues; i++)
590 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
591}
592
593/**
594 * igc_configure_tx_ring - Configure transmit ring after Reset
595 * @adapter: board private structure
596 * @ring: tx ring to configure
597 *
598 * Configure a transmit ring after a reset.
599 */
600static void igc_configure_tx_ring(struct igc_adapter *adapter,
601 struct igc_ring *ring)
602{
603 struct igc_hw *hw = &adapter->hw;
604 int reg_idx = ring->reg_idx;
605 u64 tdba = ring->dma;
606 u32 txdctl = 0;
607
608 /* disable the queue */
609 wr32(IGC_TXDCTL(reg_idx), 0);
610 wrfl();
611 mdelay(10);
612
613 wr32(IGC_TDLEN(reg_idx),
614 ring->count * sizeof(union igc_adv_tx_desc));
615 wr32(IGC_TDBAL(reg_idx),
616 tdba & 0x00000000ffffffffULL);
617 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
618
619 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
620 wr32(IGC_TDH(reg_idx), 0);
621 writel(0, ring->tail);
622
623 txdctl |= IGC_TX_PTHRESH;
624 txdctl |= IGC_TX_HTHRESH << 8;
625 txdctl |= IGC_TX_WTHRESH << 16;
626
627 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
628 wr32(IGC_TXDCTL(reg_idx), txdctl);
629}
630
631/**
632 * igc_configure_tx - Configure transmit Unit after Reset
633 * @adapter: board private structure
634 *
635 * Configure the Tx unit of the MAC after a reset.
636 */
637static void igc_configure_tx(struct igc_adapter *adapter)
638{
639 int i;
640
641 for (i = 0; i < adapter->num_tx_queues; i++)
642 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
643}
644
645/**
646 * igc_setup_mrqc - configure the multiple receive queue control registers
647 * @adapter: Board private structure
648 */
649static void igc_setup_mrqc(struct igc_adapter *adapter)
650{
651 struct igc_hw *hw = &adapter->hw;
652 u32 j, num_rx_queues;
653 u32 mrqc, rxcsum;
654 u32 rss_key[10];
655
656 netdev_rss_key_fill(rss_key, sizeof(rss_key));
657 for (j = 0; j < 10; j++)
658 wr32(IGC_RSSRK(j), rss_key[j]);
659
660 num_rx_queues = adapter->rss_queues;
661
662 if (adapter->rss_indir_tbl_init != num_rx_queues) {
663 for (j = 0; j < IGC_RETA_SIZE; j++)
664 adapter->rss_indir_tbl[j] =
665 (j * num_rx_queues) / IGC_RETA_SIZE;
666 adapter->rss_indir_tbl_init = num_rx_queues;
667 }
668 igc_write_rss_indir_tbl(adapter);
669
670 /* Disable raw packet checksumming so that RSS hash is placed in
671 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
672 * offloads as they are enabled by default
673 */
674 rxcsum = rd32(IGC_RXCSUM);
675 rxcsum |= IGC_RXCSUM_PCSD;
676
677 /* Enable Receive Checksum Offload for SCTP */
678 rxcsum |= IGC_RXCSUM_CRCOFL;
679
680 /* Don't need to set TUOFL or IPOFL, they default to 1 */
681 wr32(IGC_RXCSUM, rxcsum);
682
683 /* Generate RSS hash based on packet types, TCP/UDP
684 * port numbers and/or IPv4/v6 src and dst addresses
685 */
686 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
687 IGC_MRQC_RSS_FIELD_IPV4_TCP |
688 IGC_MRQC_RSS_FIELD_IPV6 |
689 IGC_MRQC_RSS_FIELD_IPV6_TCP |
690 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
691
692 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
693 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
694 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
695 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
696
697 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
698
699 wr32(IGC_MRQC, mrqc);
700}
701
702/**
703 * igc_setup_rctl - configure the receive control registers
704 * @adapter: Board private structure
705 */
706static void igc_setup_rctl(struct igc_adapter *adapter)
707{
708 struct igc_hw *hw = &adapter->hw;
709 u32 rctl;
710
711 rctl = rd32(IGC_RCTL);
712
713 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
714 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
715
716 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
717 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
718
719 /* enable stripping of CRC. Newer features require
720 * that the HW strips the CRC.
721 */
722 rctl |= IGC_RCTL_SECRC;
723
724 /* disable store bad packets and clear size bits. */
725 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
726
727 /* enable LPE to allow for reception of jumbo frames */
728 rctl |= IGC_RCTL_LPE;
729
730 /* disable queue 0 to prevent tail write w/o re-config */
731 wr32(IGC_RXDCTL(0), 0);
732
733 /* This is useful for sniffing bad packets. */
734 if (adapter->netdev->features & NETIF_F_RXALL) {
735 /* UPE and MPE will be handled by normal PROMISC logic
736 * in set_rx_mode
737 */
738 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
739 IGC_RCTL_BAM | /* RX All Bcast Pkts */
740 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
741
742 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
743 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
744 }
745
746 wr32(IGC_RCTL, rctl);
747}
748
749/**
750 * igc_setup_tctl - configure the transmit control registers
751 * @adapter: Board private structure
752 */
753static void igc_setup_tctl(struct igc_adapter *adapter)
754{
755 struct igc_hw *hw = &adapter->hw;
756 u32 tctl;
757
758 /* disable queue 0 which icould be enabled by default */
759 wr32(IGC_TXDCTL(0), 0);
760
761 /* Program the Transmit Control Register */
762 tctl = rd32(IGC_TCTL);
763 tctl &= ~IGC_TCTL_CT;
764 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
765 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
766
767 /* Enable transmits */
768 tctl |= IGC_TCTL_EN;
769
770 wr32(IGC_TCTL, tctl);
771}
772
773/**
774 * igc_set_mac - Change the Ethernet Address of the NIC
775 * @netdev: network interface device structure
776 * @p: pointer to an address structure
777 *
778 * Returns 0 on success, negative on failure
779 */
780static int igc_set_mac(struct net_device *netdev, void *p)
781{
782 struct igc_adapter *adapter = netdev_priv(netdev);
783 struct igc_hw *hw = &adapter->hw;
784 struct sockaddr *addr = p;
785
786 if (!is_valid_ether_addr(addr->sa_data))
787 return -EADDRNOTAVAIL;
788
789 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
790 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
791
792 /* set the correct pool for the new PF MAC address in entry 0 */
793 igc_set_default_mac_filter(adapter);
794
795 return 0;
796}
797
798static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
799 struct igc_tx_buffer *first,
800 u32 vlan_macip_lens, u32 type_tucmd,
801 u32 mss_l4len_idx)
802{
803 struct igc_adv_tx_context_desc *context_desc;
804 u16 i = tx_ring->next_to_use;
805 struct timespec64 ts;
806
807 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
808
809 i++;
810 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
811
812 /* set bits to identify this as an advanced context descriptor */
813 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
814
815 /* For 82575, context index must be unique per ring. */
816 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
817 mss_l4len_idx |= tx_ring->reg_idx << 4;
818
819 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
820 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
821 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
822
823 /* We assume there is always a valid Tx time available. Invalid times
824 * should have been handled by the upper layers.
825 */
826 if (tx_ring->launchtime_enable) {
827 ts = ktime_to_timespec64(first->skb->tstamp);
828 first->skb->tstamp = ktime_set(0, 0);
829 context_desc->launch_time = cpu_to_le32(ts.tv_nsec / 32);
830 } else {
831 context_desc->launch_time = 0;
832 }
833}
834
835static inline bool igc_ipv6_csum_is_sctp(struct sk_buff *skb)
836{
837 unsigned int offset = 0;
838
839 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
840
841 return offset == skb_checksum_start_offset(skb);
842}
843
844static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
845{
846 struct sk_buff *skb = first->skb;
847 u32 vlan_macip_lens = 0;
848 u32 type_tucmd = 0;
849
850 if (skb->ip_summed != CHECKSUM_PARTIAL) {
851csum_failed:
852 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
853 !tx_ring->launchtime_enable)
854 return;
855 goto no_csum;
856 }
857
858 switch (skb->csum_offset) {
859 case offsetof(struct tcphdr, check):
860 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
861 /* fall through */
862 case offsetof(struct udphdr, check):
863 break;
864 case offsetof(struct sctphdr, checksum):
865 /* validate that this is actually an SCTP request */
866 if ((first->protocol == htons(ETH_P_IP) &&
867 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
868 (first->protocol == htons(ETH_P_IPV6) &&
869 igc_ipv6_csum_is_sctp(skb))) {
870 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
871 break;
872 }
873 /* fall through */
874 default:
875 skb_checksum_help(skb);
876 goto csum_failed;
877 }
878
879 /* update TX checksum flag */
880 first->tx_flags |= IGC_TX_FLAGS_CSUM;
881 vlan_macip_lens = skb_checksum_start_offset(skb) -
882 skb_network_offset(skb);
883no_csum:
884 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
885 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
886
887 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
888}
889
890static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
891{
892 struct net_device *netdev = tx_ring->netdev;
893
894 netif_stop_subqueue(netdev, tx_ring->queue_index);
895
896 /* memory barriier comment */
897 smp_mb();
898
899 /* We need to check again in a case another CPU has just
900 * made room available.
901 */
902 if (igc_desc_unused(tx_ring) < size)
903 return -EBUSY;
904
905 /* A reprieve! */
906 netif_wake_subqueue(netdev, tx_ring->queue_index);
907
908 u64_stats_update_begin(&tx_ring->tx_syncp2);
909 tx_ring->tx_stats.restart_queue2++;
910 u64_stats_update_end(&tx_ring->tx_syncp2);
911
912 return 0;
913}
914
915static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
916{
917 if (igc_desc_unused(tx_ring) >= size)
918 return 0;
919 return __igc_maybe_stop_tx(tx_ring, size);
920}
921
922static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
923{
924 /* set type for advanced descriptor with frame checksum insertion */
925 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
926 IGC_ADVTXD_DCMD_DEXT |
927 IGC_ADVTXD_DCMD_IFCS;
928
929 return cmd_type;
930}
931
932static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
933 union igc_adv_tx_desc *tx_desc,
934 u32 tx_flags, unsigned int paylen)
935{
936 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
937
938 /* insert L4 checksum */
939 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
940 ((IGC_TXD_POPTS_TXSM << 8) /
941 IGC_TX_FLAGS_CSUM);
942
943 /* insert IPv4 checksum */
944 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
945 (((IGC_TXD_POPTS_IXSM << 8)) /
946 IGC_TX_FLAGS_IPV4);
947
948 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
949}
950
951static int igc_tx_map(struct igc_ring *tx_ring,
952 struct igc_tx_buffer *first,
953 const u8 hdr_len)
954{
955 struct sk_buff *skb = first->skb;
956 struct igc_tx_buffer *tx_buffer;
957 union igc_adv_tx_desc *tx_desc;
958 u32 tx_flags = first->tx_flags;
959 skb_frag_t *frag;
960 u16 i = tx_ring->next_to_use;
961 unsigned int data_len, size;
962 dma_addr_t dma;
963 u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
964
965 tx_desc = IGC_TX_DESC(tx_ring, i);
966
967 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
968
969 size = skb_headlen(skb);
970 data_len = skb->data_len;
971
972 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
973
974 tx_buffer = first;
975
976 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
977 if (dma_mapping_error(tx_ring->dev, dma))
978 goto dma_error;
979
980 /* record length, and DMA address */
981 dma_unmap_len_set(tx_buffer, len, size);
982 dma_unmap_addr_set(tx_buffer, dma, dma);
983
984 tx_desc->read.buffer_addr = cpu_to_le64(dma);
985
986 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
987 tx_desc->read.cmd_type_len =
988 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
989
990 i++;
991 tx_desc++;
992 if (i == tx_ring->count) {
993 tx_desc = IGC_TX_DESC(tx_ring, 0);
994 i = 0;
995 }
996 tx_desc->read.olinfo_status = 0;
997
998 dma += IGC_MAX_DATA_PER_TXD;
999 size -= IGC_MAX_DATA_PER_TXD;
1000
1001 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1002 }
1003
1004 if (likely(!data_len))
1005 break;
1006
1007 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1008
1009 i++;
1010 tx_desc++;
1011 if (i == tx_ring->count) {
1012 tx_desc = IGC_TX_DESC(tx_ring, 0);
1013 i = 0;
1014 }
1015 tx_desc->read.olinfo_status = 0;
1016
1017 size = skb_frag_size(frag);
1018 data_len -= size;
1019
1020 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1021 size, DMA_TO_DEVICE);
1022
1023 tx_buffer = &tx_ring->tx_buffer_info[i];
1024 }
1025
1026 /* write last descriptor with RS and EOP bits */
1027 cmd_type |= size | IGC_TXD_DCMD;
1028 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1029
1030 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1031
1032 /* set the timestamp */
1033 first->time_stamp = jiffies;
1034
1035 skb_tx_timestamp(skb);
1036
1037 /* Force memory writes to complete before letting h/w know there
1038 * are new descriptors to fetch. (Only applicable for weak-ordered
1039 * memory model archs, such as IA-64).
1040 *
1041 * We also need this memory barrier to make certain all of the
1042 * status bits have been updated before next_to_watch is written.
1043 */
1044 wmb();
1045
1046 /* set next_to_watch value indicating a packet is present */
1047 first->next_to_watch = tx_desc;
1048
1049 i++;
1050 if (i == tx_ring->count)
1051 i = 0;
1052
1053 tx_ring->next_to_use = i;
1054
1055 /* Make sure there is space in the ring for the next send. */
1056 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1057
1058 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1059 writel(i, tx_ring->tail);
1060 }
1061
1062 return 0;
1063dma_error:
1064 dev_err(tx_ring->dev, "TX DMA map failed\n");
1065 tx_buffer = &tx_ring->tx_buffer_info[i];
1066
1067 /* clear dma mappings for failed tx_buffer_info map */
1068 while (tx_buffer != first) {
1069 if (dma_unmap_len(tx_buffer, len))
1070 dma_unmap_page(tx_ring->dev,
1071 dma_unmap_addr(tx_buffer, dma),
1072 dma_unmap_len(tx_buffer, len),
1073 DMA_TO_DEVICE);
1074 dma_unmap_len_set(tx_buffer, len, 0);
1075
1076 if (i-- == 0)
1077 i += tx_ring->count;
1078 tx_buffer = &tx_ring->tx_buffer_info[i];
1079 }
1080
1081 if (dma_unmap_len(tx_buffer, len))
1082 dma_unmap_single(tx_ring->dev,
1083 dma_unmap_addr(tx_buffer, dma),
1084 dma_unmap_len(tx_buffer, len),
1085 DMA_TO_DEVICE);
1086 dma_unmap_len_set(tx_buffer, len, 0);
1087
1088 dev_kfree_skb_any(tx_buffer->skb);
1089 tx_buffer->skb = NULL;
1090
1091 tx_ring->next_to_use = i;
1092
1093 return -1;
1094}
1095
1096static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1097 struct igc_ring *tx_ring)
1098{
1099 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1100 __be16 protocol = vlan_get_protocol(skb);
1101 struct igc_tx_buffer *first;
1102 u32 tx_flags = 0;
1103 unsigned short f;
1104 u8 hdr_len = 0;
1105
1106 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1107 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1108 * + 2 desc gap to keep tail from touching head,
1109 * + 1 desc for context descriptor,
1110 * otherwise try next time
1111 */
1112 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1113 count += TXD_USE_COUNT(skb_frag_size(
1114 &skb_shinfo(skb)->frags[f]));
1115
1116 if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1117 /* this is a hard error */
1118 return NETDEV_TX_BUSY;
1119 }
1120
1121 /* record the location of the first descriptor for this packet */
1122 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1123 first->skb = skb;
1124 first->bytecount = skb->len;
1125 first->gso_segs = 1;
1126
1127 /* record initial flags and protocol */
1128 first->tx_flags = tx_flags;
1129 first->protocol = protocol;
1130
1131 igc_tx_csum(tx_ring, first);
1132
1133 igc_tx_map(tx_ring, first, hdr_len);
1134
1135 return NETDEV_TX_OK;
1136}
1137
1138static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1139 struct sk_buff *skb)
1140{
1141 unsigned int r_idx = skb->queue_mapping;
1142
1143 if (r_idx >= adapter->num_tx_queues)
1144 r_idx = r_idx % adapter->num_tx_queues;
1145
1146 return adapter->tx_ring[r_idx];
1147}
1148
1149static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1150 struct net_device *netdev)
1151{
1152 struct igc_adapter *adapter = netdev_priv(netdev);
1153
1154 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1155 * in order to meet this minimum size requirement.
1156 */
1157 if (skb->len < 17) {
1158 if (skb_padto(skb, 17))
1159 return NETDEV_TX_OK;
1160 skb->len = 17;
1161 }
1162
1163 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1164}
1165
1166static inline void igc_rx_hash(struct igc_ring *ring,
1167 union igc_adv_rx_desc *rx_desc,
1168 struct sk_buff *skb)
1169{
1170 if (ring->netdev->features & NETIF_F_RXHASH)
1171 skb_set_hash(skb,
1172 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1173 PKT_HASH_TYPE_L3);
1174}
1175
1176/**
1177 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1178 * @rx_ring: rx descriptor ring packet is being transacted on
1179 * @rx_desc: pointer to the EOP Rx descriptor
1180 * @skb: pointer to current skb being populated
1181 *
1182 * This function checks the ring, descriptor, and packet information in
1183 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
1184 * other fields within the skb.
1185 */
1186static void igc_process_skb_fields(struct igc_ring *rx_ring,
1187 union igc_adv_rx_desc *rx_desc,
1188 struct sk_buff *skb)
1189{
1190 igc_rx_hash(rx_ring, rx_desc, skb);
1191
1192 skb_record_rx_queue(skb, rx_ring->queue_index);
1193
1194 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1195}
1196
1197static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1198 const unsigned int size)
1199{
1200 struct igc_rx_buffer *rx_buffer;
1201
1202 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1203 prefetchw(rx_buffer->page);
1204
1205 /* we are reusing so sync this buffer for CPU use */
1206 dma_sync_single_range_for_cpu(rx_ring->dev,
1207 rx_buffer->dma,
1208 rx_buffer->page_offset,
1209 size,
1210 DMA_FROM_DEVICE);
1211
1212 rx_buffer->pagecnt_bias--;
1213
1214 return rx_buffer;
1215}
1216
1217/**
1218 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1219 * @rx_ring: rx descriptor ring to transact packets on
1220 * @rx_buffer: buffer containing page to add
1221 * @skb: sk_buff to place the data into
1222 * @size: size of buffer to be added
1223 *
1224 * This function will add the data contained in rx_buffer->page to the skb.
1225 */
1226static void igc_add_rx_frag(struct igc_ring *rx_ring,
1227 struct igc_rx_buffer *rx_buffer,
1228 struct sk_buff *skb,
1229 unsigned int size)
1230{
1231#if (PAGE_SIZE < 8192)
1232 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1233
1234 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1235 rx_buffer->page_offset, size, truesize);
1236 rx_buffer->page_offset ^= truesize;
1237#else
1238 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1239 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1240 SKB_DATA_ALIGN(size);
1241 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1242 rx_buffer->page_offset, size, truesize);
1243 rx_buffer->page_offset += truesize;
1244#endif
1245}
1246
1247static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1248 struct igc_rx_buffer *rx_buffer,
1249 union igc_adv_rx_desc *rx_desc,
1250 unsigned int size)
1251{
1252 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1253#if (PAGE_SIZE < 8192)
1254 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1255#else
1256 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1257 SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1258#endif
1259 struct sk_buff *skb;
1260
1261 /* prefetch first cache line of first page */
1262 prefetch(va);
1263#if L1_CACHE_BYTES < 128
1264 prefetch(va + L1_CACHE_BYTES);
1265#endif
1266
1267 /* build an skb around the page buffer */
1268 skb = build_skb(va - IGC_SKB_PAD, truesize);
1269 if (unlikely(!skb))
1270 return NULL;
1271
1272 /* update pointers within the skb to store the data */
1273 skb_reserve(skb, IGC_SKB_PAD);
1274 __skb_put(skb, size);
1275
1276 /* update buffer offset */
1277#if (PAGE_SIZE < 8192)
1278 rx_buffer->page_offset ^= truesize;
1279#else
1280 rx_buffer->page_offset += truesize;
1281#endif
1282
1283 return skb;
1284}
1285
1286static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1287 struct igc_rx_buffer *rx_buffer,
1288 union igc_adv_rx_desc *rx_desc,
1289 unsigned int size)
1290{
1291 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1292#if (PAGE_SIZE < 8192)
1293 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1294#else
1295 unsigned int truesize = SKB_DATA_ALIGN(size);
1296#endif
1297 unsigned int headlen;
1298 struct sk_buff *skb;
1299
1300 /* prefetch first cache line of first page */
1301 prefetch(va);
1302#if L1_CACHE_BYTES < 128
1303 prefetch(va + L1_CACHE_BYTES);
1304#endif
1305
1306 /* allocate a skb to store the frags */
1307 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1308 if (unlikely(!skb))
1309 return NULL;
1310
1311 /* Determine available headroom for copy */
1312 headlen = size;
1313 if (headlen > IGC_RX_HDR_LEN)
1314 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1315
1316 /* align pull length to size of long to optimize memcpy performance */
1317 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1318
1319 /* update all of the pointers */
1320 size -= headlen;
1321 if (size) {
1322 skb_add_rx_frag(skb, 0, rx_buffer->page,
1323 (va + headlen) - page_address(rx_buffer->page),
1324 size, truesize);
1325#if (PAGE_SIZE < 8192)
1326 rx_buffer->page_offset ^= truesize;
1327#else
1328 rx_buffer->page_offset += truesize;
1329#endif
1330 } else {
1331 rx_buffer->pagecnt_bias++;
1332 }
1333
1334 return skb;
1335}
1336
1337/**
1338 * igc_reuse_rx_page - page flip buffer and store it back on the ring
1339 * @rx_ring: rx descriptor ring to store buffers on
1340 * @old_buff: donor buffer to have page reused
1341 *
1342 * Synchronizes page for reuse by the adapter
1343 */
1344static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1345 struct igc_rx_buffer *old_buff)
1346{
1347 u16 nta = rx_ring->next_to_alloc;
1348 struct igc_rx_buffer *new_buff;
1349
1350 new_buff = &rx_ring->rx_buffer_info[nta];
1351
1352 /* update, and store next to alloc */
1353 nta++;
1354 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1355
1356 /* Transfer page from old buffer to new buffer.
1357 * Move each member individually to avoid possible store
1358 * forwarding stalls.
1359 */
1360 new_buff->dma = old_buff->dma;
1361 new_buff->page = old_buff->page;
1362 new_buff->page_offset = old_buff->page_offset;
1363 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1364}
1365
1366static inline bool igc_page_is_reserved(struct page *page)
1367{
1368 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1369}
1370
1371static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1372{
1373 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1374 struct page *page = rx_buffer->page;
1375
1376 /* avoid re-using remote pages */
1377 if (unlikely(igc_page_is_reserved(page)))
1378 return false;
1379
1380#if (PAGE_SIZE < 8192)
1381 /* if we are only owner of page we can reuse it */
1382 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1383 return false;
1384#else
1385#define IGC_LAST_OFFSET \
1386 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1387
1388 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1389 return false;
1390#endif
1391
1392 /* If we have drained the page fragment pool we need to update
1393 * the pagecnt_bias and page count so that we fully restock the
1394 * number of references the driver holds.
1395 */
1396 if (unlikely(!pagecnt_bias)) {
1397 page_ref_add(page, USHRT_MAX);
1398 rx_buffer->pagecnt_bias = USHRT_MAX;
1399 }
1400
1401 return true;
1402}
1403
1404/**
1405 * igc_is_non_eop - process handling of non-EOP buffers
1406 * @rx_ring: Rx ring being processed
1407 * @rx_desc: Rx descriptor for current buffer
1408 * @skb: current socket buffer containing buffer in progress
1409 *
1410 * This function updates next to clean. If the buffer is an EOP buffer
1411 * this function exits returning false, otherwise it will place the
1412 * sk_buff in the next buffer to be chained and return true indicating
1413 * that this is in fact a non-EOP buffer.
1414 */
1415static bool igc_is_non_eop(struct igc_ring *rx_ring,
1416 union igc_adv_rx_desc *rx_desc)
1417{
1418 u32 ntc = rx_ring->next_to_clean + 1;
1419
1420 /* fetch, update, and store next to clean */
1421 ntc = (ntc < rx_ring->count) ? ntc : 0;
1422 rx_ring->next_to_clean = ntc;
1423
1424 prefetch(IGC_RX_DESC(rx_ring, ntc));
1425
1426 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1427 return false;
1428
1429 return true;
1430}
1431
1432/**
1433 * igc_cleanup_headers - Correct corrupted or empty headers
1434 * @rx_ring: rx descriptor ring packet is being transacted on
1435 * @rx_desc: pointer to the EOP Rx descriptor
1436 * @skb: pointer to current skb being fixed
1437 *
1438 * Address the case where we are pulling data in on pages only
1439 * and as such no data is present in the skb header.
1440 *
1441 * In addition if skb is not at least 60 bytes we need to pad it so that
1442 * it is large enough to qualify as a valid Ethernet frame.
1443 *
1444 * Returns true if an error was encountered and skb was freed.
1445 */
1446static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1447 union igc_adv_rx_desc *rx_desc,
1448 struct sk_buff *skb)
1449{
1450 if (unlikely((igc_test_staterr(rx_desc,
1451 IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) {
1452 struct net_device *netdev = rx_ring->netdev;
1453
1454 if (!(netdev->features & NETIF_F_RXALL)) {
1455 dev_kfree_skb_any(skb);
1456 return true;
1457 }
1458 }
1459
1460 /* if eth_skb_pad returns an error the skb was freed */
1461 if (eth_skb_pad(skb))
1462 return true;
1463
1464 return false;
1465}
1466
1467static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1468 struct igc_rx_buffer *rx_buffer)
1469{
1470 if (igc_can_reuse_rx_page(rx_buffer)) {
1471 /* hand second half of page back to the ring */
1472 igc_reuse_rx_page(rx_ring, rx_buffer);
1473 } else {
1474 /* We are not reusing the buffer so unmap it and free
1475 * any references we are holding to it
1476 */
1477 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1478 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1479 IGC_RX_DMA_ATTR);
1480 __page_frag_cache_drain(rx_buffer->page,
1481 rx_buffer->pagecnt_bias);
1482 }
1483
1484 /* clear contents of rx_buffer */
1485 rx_buffer->page = NULL;
1486}
1487
1488/**
1489 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1490 * @adapter: address of board private structure
1491 */
1492static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1493{
1494 union igc_adv_rx_desc *rx_desc;
1495 u16 i = rx_ring->next_to_use;
1496 struct igc_rx_buffer *bi;
1497 u16 bufsz;
1498
1499 /* nothing to do */
1500 if (!cleaned_count)
1501 return;
1502
1503 rx_desc = IGC_RX_DESC(rx_ring, i);
1504 bi = &rx_ring->rx_buffer_info[i];
1505 i -= rx_ring->count;
1506
1507 bufsz = igc_rx_bufsz(rx_ring);
1508
1509 do {
1510 if (!igc_alloc_mapped_page(rx_ring, bi))
1511 break;
1512
1513 /* sync the buffer for use by the device */
1514 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1515 bi->page_offset, bufsz,
1516 DMA_FROM_DEVICE);
1517
1518 /* Refresh the desc even if buffer_addrs didn't change
1519 * because each write-back erases this info.
1520 */
1521 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1522
1523 rx_desc++;
1524 bi++;
1525 i++;
1526 if (unlikely(!i)) {
1527 rx_desc = IGC_RX_DESC(rx_ring, 0);
1528 bi = rx_ring->rx_buffer_info;
1529 i -= rx_ring->count;
1530 }
1531
1532 /* clear the length for the next_to_use descriptor */
1533 rx_desc->wb.upper.length = 0;
1534
1535 cleaned_count--;
1536 } while (cleaned_count);
1537
1538 i += rx_ring->count;
1539
1540 if (rx_ring->next_to_use != i) {
1541 /* record the next descriptor to use */
1542 rx_ring->next_to_use = i;
1543
1544 /* update next to alloc since we have filled the ring */
1545 rx_ring->next_to_alloc = i;
1546
1547 /* Force memory writes to complete before letting h/w
1548 * know there are new descriptors to fetch. (Only
1549 * applicable for weak-ordered memory model archs,
1550 * such as IA-64).
1551 */
1552 wmb();
1553 writel(i, rx_ring->tail);
1554 }
1555}
1556
1557static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1558{
1559 unsigned int total_bytes = 0, total_packets = 0;
1560 struct igc_ring *rx_ring = q_vector->rx.ring;
1561 struct sk_buff *skb = rx_ring->skb;
1562 u16 cleaned_count = igc_desc_unused(rx_ring);
1563
1564 while (likely(total_packets < budget)) {
1565 union igc_adv_rx_desc *rx_desc;
1566 struct igc_rx_buffer *rx_buffer;
1567 unsigned int size;
1568
1569 /* return some buffers to hardware, one at a time is too slow */
1570 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1571 igc_alloc_rx_buffers(rx_ring, cleaned_count);
1572 cleaned_count = 0;
1573 }
1574
1575 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1576 size = le16_to_cpu(rx_desc->wb.upper.length);
1577 if (!size)
1578 break;
1579
1580 /* This memory barrier is needed to keep us from reading
1581 * any other fields out of the rx_desc until we know the
1582 * descriptor has been written back
1583 */
1584 dma_rmb();
1585
1586 rx_buffer = igc_get_rx_buffer(rx_ring, size);
1587
1588 /* retrieve a buffer from the ring */
1589 if (skb)
1590 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1591 else if (ring_uses_build_skb(rx_ring))
1592 skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1593 else
1594 skb = igc_construct_skb(rx_ring, rx_buffer,
1595 rx_desc, size);
1596
1597 /* exit if we failed to retrieve a buffer */
1598 if (!skb) {
1599 rx_ring->rx_stats.alloc_failed++;
1600 rx_buffer->pagecnt_bias++;
1601 break;
1602 }
1603
1604 igc_put_rx_buffer(rx_ring, rx_buffer);
1605 cleaned_count++;
1606
1607 /* fetch next buffer in frame if non-eop */
1608 if (igc_is_non_eop(rx_ring, rx_desc))
1609 continue;
1610
1611 /* verify the packet layout is correct */
1612 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1613 skb = NULL;
1614 continue;
1615 }
1616
1617 /* probably a little skewed due to removing CRC */
1618 total_bytes += skb->len;
1619
1620 /* populate checksum, timestamp, VLAN, and protocol */
1621 igc_process_skb_fields(rx_ring, rx_desc, skb);
1622
1623 napi_gro_receive(&q_vector->napi, skb);
1624
1625 /* reset skb pointer */
1626 skb = NULL;
1627
1628 /* update budget accounting */
1629 total_packets++;
1630 }
1631
1632 /* place incomplete frames back on ring for completion */
1633 rx_ring->skb = skb;
1634
1635 u64_stats_update_begin(&rx_ring->rx_syncp);
1636 rx_ring->rx_stats.packets += total_packets;
1637 rx_ring->rx_stats.bytes += total_bytes;
1638 u64_stats_update_end(&rx_ring->rx_syncp);
1639 q_vector->rx.total_packets += total_packets;
1640 q_vector->rx.total_bytes += total_bytes;
1641
1642 if (cleaned_count)
1643 igc_alloc_rx_buffers(rx_ring, cleaned_count);
1644
1645 return total_packets;
1646}
1647
1648static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1649{
1650 return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1651}
1652
1653static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1654 struct igc_rx_buffer *bi)
1655{
1656 struct page *page = bi->page;
1657 dma_addr_t dma;
1658
1659 /* since we are recycling buffers we should seldom need to alloc */
1660 if (likely(page))
1661 return true;
1662
1663 /* alloc new page for storage */
1664 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1665 if (unlikely(!page)) {
1666 rx_ring->rx_stats.alloc_failed++;
1667 return false;
1668 }
1669
1670 /* map page for use */
1671 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1672 igc_rx_pg_size(rx_ring),
1673 DMA_FROM_DEVICE,
1674 IGC_RX_DMA_ATTR);
1675
1676 /* if mapping failed free memory back to system since
1677 * there isn't much point in holding memory we can't use
1678 */
1679 if (dma_mapping_error(rx_ring->dev, dma)) {
1680 __free_page(page);
1681
1682 rx_ring->rx_stats.alloc_failed++;
1683 return false;
1684 }
1685
1686 bi->dma = dma;
1687 bi->page = page;
1688 bi->page_offset = igc_rx_offset(rx_ring);
1689 bi->pagecnt_bias = 1;
1690
1691 return true;
1692}
1693
1694/**
1695 * igc_clean_tx_irq - Reclaim resources after transmit completes
1696 * @q_vector: pointer to q_vector containing needed info
1697 * @napi_budget: Used to determine if we are in netpoll
1698 *
1699 * returns true if ring is completely cleaned
1700 */
1701static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
1702{
1703 struct igc_adapter *adapter = q_vector->adapter;
1704 unsigned int total_bytes = 0, total_packets = 0;
1705 unsigned int budget = q_vector->tx.work_limit;
1706 struct igc_ring *tx_ring = q_vector->tx.ring;
1707 unsigned int i = tx_ring->next_to_clean;
1708 struct igc_tx_buffer *tx_buffer;
1709 union igc_adv_tx_desc *tx_desc;
1710
1711 if (test_bit(__IGC_DOWN, &adapter->state))
1712 return true;
1713
1714 tx_buffer = &tx_ring->tx_buffer_info[i];
1715 tx_desc = IGC_TX_DESC(tx_ring, i);
1716 i -= tx_ring->count;
1717
1718 do {
1719 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
1720
1721 /* if next_to_watch is not set then there is no work pending */
1722 if (!eop_desc)
1723 break;
1724
1725 /* prevent any other reads prior to eop_desc */
1726 smp_rmb();
1727
1728 /* if DD is not set pending work has not been completed */
1729 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
1730 break;
1731
1732 /* clear next_to_watch to prevent false hangs */
1733 tx_buffer->next_to_watch = NULL;
1734
1735 /* update the statistics for this packet */
1736 total_bytes += tx_buffer->bytecount;
1737 total_packets += tx_buffer->gso_segs;
1738
1739 /* free the skb */
1740 napi_consume_skb(tx_buffer->skb, napi_budget);
1741
1742 /* unmap skb header data */
1743 dma_unmap_single(tx_ring->dev,
1744 dma_unmap_addr(tx_buffer, dma),
1745 dma_unmap_len(tx_buffer, len),
1746 DMA_TO_DEVICE);
1747
1748 /* clear tx_buffer data */
1749 dma_unmap_len_set(tx_buffer, len, 0);
1750
1751 /* clear last DMA location and unmap remaining buffers */
1752 while (tx_desc != eop_desc) {
1753 tx_buffer++;
1754 tx_desc++;
1755 i++;
1756 if (unlikely(!i)) {
1757 i -= tx_ring->count;
1758 tx_buffer = tx_ring->tx_buffer_info;
1759 tx_desc = IGC_TX_DESC(tx_ring, 0);
1760 }
1761
1762 /* unmap any remaining paged data */
1763 if (dma_unmap_len(tx_buffer, len)) {
1764 dma_unmap_page(tx_ring->dev,
1765 dma_unmap_addr(tx_buffer, dma),
1766 dma_unmap_len(tx_buffer, len),
1767 DMA_TO_DEVICE);
1768 dma_unmap_len_set(tx_buffer, len, 0);
1769 }
1770 }
1771
1772 /* move us one more past the eop_desc for start of next pkt */
1773 tx_buffer++;
1774 tx_desc++;
1775 i++;
1776 if (unlikely(!i)) {
1777 i -= tx_ring->count;
1778 tx_buffer = tx_ring->tx_buffer_info;
1779 tx_desc = IGC_TX_DESC(tx_ring, 0);
1780 }
1781
1782 /* issue prefetch for next Tx descriptor */
1783 prefetch(tx_desc);
1784
1785 /* update budget accounting */
1786 budget--;
1787 } while (likely(budget));
1788
1789 netdev_tx_completed_queue(txring_txq(tx_ring),
1790 total_packets, total_bytes);
1791
1792 i += tx_ring->count;
1793 tx_ring->next_to_clean = i;
1794 u64_stats_update_begin(&tx_ring->tx_syncp);
1795 tx_ring->tx_stats.bytes += total_bytes;
1796 tx_ring->tx_stats.packets += total_packets;
1797 u64_stats_update_end(&tx_ring->tx_syncp);
1798 q_vector->tx.total_bytes += total_bytes;
1799 q_vector->tx.total_packets += total_packets;
1800
1801 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
1802 struct igc_hw *hw = &adapter->hw;
1803
1804 /* Detect a transmit hang in hardware, this serializes the
1805 * check with the clearing of time_stamp and movement of i
1806 */
1807 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
1808 if (tx_buffer->next_to_watch &&
1809 time_after(jiffies, tx_buffer->time_stamp +
1810 (adapter->tx_timeout_factor * HZ)) &&
1811 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
1812 /* detected Tx unit hang */
1813 dev_err(tx_ring->dev,
1814 "Detected Tx Unit Hang\n"
1815 " Tx Queue <%d>\n"
1816 " TDH <%x>\n"
1817 " TDT <%x>\n"
1818 " next_to_use <%x>\n"
1819 " next_to_clean <%x>\n"
1820 "buffer_info[next_to_clean]\n"
1821 " time_stamp <%lx>\n"
1822 " next_to_watch <%p>\n"
1823 " jiffies <%lx>\n"
1824 " desc.status <%x>\n",
1825 tx_ring->queue_index,
1826 rd32(IGC_TDH(tx_ring->reg_idx)),
1827 readl(tx_ring->tail),
1828 tx_ring->next_to_use,
1829 tx_ring->next_to_clean,
1830 tx_buffer->time_stamp,
1831 tx_buffer->next_to_watch,
1832 jiffies,
1833 tx_buffer->next_to_watch->wb.status);
1834 netif_stop_subqueue(tx_ring->netdev,
1835 tx_ring->queue_index);
1836
1837 /* we are about to reset, no point in enabling stuff */
1838 return true;
1839 }
1840 }
1841
1842#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
1843 if (unlikely(total_packets &&
1844 netif_carrier_ok(tx_ring->netdev) &&
1845 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
1846 /* Make sure that anybody stopping the queue after this
1847 * sees the new next_to_clean.
1848 */
1849 smp_mb();
1850 if (__netif_subqueue_stopped(tx_ring->netdev,
1851 tx_ring->queue_index) &&
1852 !(test_bit(__IGC_DOWN, &adapter->state))) {
1853 netif_wake_subqueue(tx_ring->netdev,
1854 tx_ring->queue_index);
1855
1856 u64_stats_update_begin(&tx_ring->tx_syncp);
1857 tx_ring->tx_stats.restart_queue++;
1858 u64_stats_update_end(&tx_ring->tx_syncp);
1859 }
1860 }
1861
1862 return !!budget;
1863}
1864
1865/**
1866 * igc_up - Open the interface and prepare it to handle traffic
1867 * @adapter: board private structure
1868 */
1869void igc_up(struct igc_adapter *adapter)
1870{
1871 struct igc_hw *hw = &adapter->hw;
1872 int i = 0;
1873
1874 /* hardware has been reset, we need to reload some things */
1875 igc_configure(adapter);
1876
1877 clear_bit(__IGC_DOWN, &adapter->state);
1878
1879 for (i = 0; i < adapter->num_q_vectors; i++)
1880 napi_enable(&adapter->q_vector[i]->napi);
1881
1882 if (adapter->msix_entries)
1883 igc_configure_msix(adapter);
1884 else
1885 igc_assign_vector(adapter->q_vector[0], 0);
1886
1887 /* Clear any pending interrupts. */
1888 rd32(IGC_ICR);
1889 igc_irq_enable(adapter);
1890
1891 netif_tx_start_all_queues(adapter->netdev);
1892
1893 /* start the watchdog. */
1894 hw->mac.get_link_status = 1;
1895 schedule_work(&adapter->watchdog_task);
1896}
1897
1898/**
1899 * igc_update_stats - Update the board statistics counters
1900 * @adapter: board private structure
1901 */
1902void igc_update_stats(struct igc_adapter *adapter)
1903{
1904 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
1905 struct pci_dev *pdev = adapter->pdev;
1906 struct igc_hw *hw = &adapter->hw;
1907 u64 _bytes, _packets;
1908 u64 bytes, packets;
1909 unsigned int start;
1910 u32 mpc;
1911 int i;
1912
1913 /* Prevent stats update while adapter is being reset, or if the pci
1914 * connection is down.
1915 */
1916 if (adapter->link_speed == 0)
1917 return;
1918 if (pci_channel_offline(pdev))
1919 return;
1920
1921 packets = 0;
1922 bytes = 0;
1923
1924 rcu_read_lock();
1925 for (i = 0; i < adapter->num_rx_queues; i++) {
1926 struct igc_ring *ring = adapter->rx_ring[i];
1927 u32 rqdpc = rd32(IGC_RQDPC(i));
1928
1929 if (hw->mac.type >= igc_i225)
1930 wr32(IGC_RQDPC(i), 0);
1931
1932 if (rqdpc) {
1933 ring->rx_stats.drops += rqdpc;
1934 net_stats->rx_fifo_errors += rqdpc;
1935 }
1936
1937 do {
1938 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
1939 _bytes = ring->rx_stats.bytes;
1940 _packets = ring->rx_stats.packets;
1941 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
1942 bytes += _bytes;
1943 packets += _packets;
1944 }
1945
1946 net_stats->rx_bytes = bytes;
1947 net_stats->rx_packets = packets;
1948
1949 packets = 0;
1950 bytes = 0;
1951 for (i = 0; i < adapter->num_tx_queues; i++) {
1952 struct igc_ring *ring = adapter->tx_ring[i];
1953
1954 do {
1955 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
1956 _bytes = ring->tx_stats.bytes;
1957 _packets = ring->tx_stats.packets;
1958 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
1959 bytes += _bytes;
1960 packets += _packets;
1961 }
1962 net_stats->tx_bytes = bytes;
1963 net_stats->tx_packets = packets;
1964 rcu_read_unlock();
1965
1966 /* read stats registers */
1967 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
1968 adapter->stats.gprc += rd32(IGC_GPRC);
1969 adapter->stats.gorc += rd32(IGC_GORCL);
1970 rd32(IGC_GORCH); /* clear GORCL */
1971 adapter->stats.bprc += rd32(IGC_BPRC);
1972 adapter->stats.mprc += rd32(IGC_MPRC);
1973 adapter->stats.roc += rd32(IGC_ROC);
1974
1975 adapter->stats.prc64 += rd32(IGC_PRC64);
1976 adapter->stats.prc127 += rd32(IGC_PRC127);
1977 adapter->stats.prc255 += rd32(IGC_PRC255);
1978 adapter->stats.prc511 += rd32(IGC_PRC511);
1979 adapter->stats.prc1023 += rd32(IGC_PRC1023);
1980 adapter->stats.prc1522 += rd32(IGC_PRC1522);
1981 adapter->stats.symerrs += rd32(IGC_SYMERRS);
1982 adapter->stats.sec += rd32(IGC_SEC);
1983
1984 mpc = rd32(IGC_MPC);
1985 adapter->stats.mpc += mpc;
1986 net_stats->rx_fifo_errors += mpc;
1987 adapter->stats.scc += rd32(IGC_SCC);
1988 adapter->stats.ecol += rd32(IGC_ECOL);
1989 adapter->stats.mcc += rd32(IGC_MCC);
1990 adapter->stats.latecol += rd32(IGC_LATECOL);
1991 adapter->stats.dc += rd32(IGC_DC);
1992 adapter->stats.rlec += rd32(IGC_RLEC);
1993 adapter->stats.xonrxc += rd32(IGC_XONRXC);
1994 adapter->stats.xontxc += rd32(IGC_XONTXC);
1995 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
1996 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
1997 adapter->stats.fcruc += rd32(IGC_FCRUC);
1998 adapter->stats.gptc += rd32(IGC_GPTC);
1999 adapter->stats.gotc += rd32(IGC_GOTCL);
2000 rd32(IGC_GOTCH); /* clear GOTCL */
2001 adapter->stats.rnbc += rd32(IGC_RNBC);
2002 adapter->stats.ruc += rd32(IGC_RUC);
2003 adapter->stats.rfc += rd32(IGC_RFC);
2004 adapter->stats.rjc += rd32(IGC_RJC);
2005 adapter->stats.tor += rd32(IGC_TORH);
2006 adapter->stats.tot += rd32(IGC_TOTH);
2007 adapter->stats.tpr += rd32(IGC_TPR);
2008
2009 adapter->stats.ptc64 += rd32(IGC_PTC64);
2010 adapter->stats.ptc127 += rd32(IGC_PTC127);
2011 adapter->stats.ptc255 += rd32(IGC_PTC255);
2012 adapter->stats.ptc511 += rd32(IGC_PTC511);
2013 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
2014 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
2015
2016 adapter->stats.mptc += rd32(IGC_MPTC);
2017 adapter->stats.bptc += rd32(IGC_BPTC);
2018
2019 adapter->stats.tpt += rd32(IGC_TPT);
2020 adapter->stats.colc += rd32(IGC_COLC);
2021
2022 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
2023
2024 adapter->stats.tsctc += rd32(IGC_TSCTC);
2025 adapter->stats.tsctfc += rd32(IGC_TSCTFC);
2026
2027 adapter->stats.iac += rd32(IGC_IAC);
2028 adapter->stats.icrxoc += rd32(IGC_ICRXOC);
2029 adapter->stats.icrxptc += rd32(IGC_ICRXPTC);
2030 adapter->stats.icrxatc += rd32(IGC_ICRXATC);
2031 adapter->stats.ictxptc += rd32(IGC_ICTXPTC);
2032 adapter->stats.ictxatc += rd32(IGC_ICTXATC);
2033 adapter->stats.ictxqec += rd32(IGC_ICTXQEC);
2034 adapter->stats.ictxqmtc += rd32(IGC_ICTXQMTC);
2035 adapter->stats.icrxdmtc += rd32(IGC_ICRXDMTC);
2036
2037 /* Fill out the OS statistics structure */
2038 net_stats->multicast = adapter->stats.mprc;
2039 net_stats->collisions = adapter->stats.colc;
2040
2041 /* Rx Errors */
2042
2043 /* RLEC on some newer hardware can be incorrect so build
2044 * our own version based on RUC and ROC
2045 */
2046 net_stats->rx_errors = adapter->stats.rxerrc +
2047 adapter->stats.crcerrs + adapter->stats.algnerrc +
2048 adapter->stats.ruc + adapter->stats.roc +
2049 adapter->stats.cexterr;
2050 net_stats->rx_length_errors = adapter->stats.ruc +
2051 adapter->stats.roc;
2052 net_stats->rx_crc_errors = adapter->stats.crcerrs;
2053 net_stats->rx_frame_errors = adapter->stats.algnerrc;
2054 net_stats->rx_missed_errors = adapter->stats.mpc;
2055
2056 /* Tx Errors */
2057 net_stats->tx_errors = adapter->stats.ecol +
2058 adapter->stats.latecol;
2059 net_stats->tx_aborted_errors = adapter->stats.ecol;
2060 net_stats->tx_window_errors = adapter->stats.latecol;
2061 net_stats->tx_carrier_errors = adapter->stats.tncrs;
2062
2063 /* Tx Dropped needs to be maintained elsewhere */
2064
2065 /* Management Stats */
2066 adapter->stats.mgptc += rd32(IGC_MGTPTC);
2067 adapter->stats.mgprc += rd32(IGC_MGTPRC);
2068 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
2069}
2070
2071static void igc_nfc_filter_exit(struct igc_adapter *adapter)
2072{
2073 struct igc_nfc_filter *rule;
2074
2075 spin_lock(&adapter->nfc_lock);
2076
2077 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
2078 igc_erase_filter(adapter, rule);
2079
2080 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
2081 igc_erase_filter(adapter, rule);
2082
2083 spin_unlock(&adapter->nfc_lock);
2084}
2085
2086static void igc_nfc_filter_restore(struct igc_adapter *adapter)
2087{
2088 struct igc_nfc_filter *rule;
2089
2090 spin_lock(&adapter->nfc_lock);
2091
2092 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
2093 igc_add_filter(adapter, rule);
2094
2095 spin_unlock(&adapter->nfc_lock);
2096}
2097
2098/**
2099 * igc_down - Close the interface
2100 * @adapter: board private structure
2101 */
2102void igc_down(struct igc_adapter *adapter)
2103{
2104 struct net_device *netdev = adapter->netdev;
2105 struct igc_hw *hw = &adapter->hw;
2106 u32 tctl, rctl;
2107 int i = 0;
2108
2109 set_bit(__IGC_DOWN, &adapter->state);
2110
2111 /* disable receives in the hardware */
2112 rctl = rd32(IGC_RCTL);
2113 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
2114 /* flush and sleep below */
2115
2116 igc_nfc_filter_exit(adapter);
2117
2118 /* set trans_start so we don't get spurious watchdogs during reset */
2119 netif_trans_update(netdev);
2120
2121 netif_carrier_off(netdev);
2122 netif_tx_stop_all_queues(netdev);
2123
2124 /* disable transmits in the hardware */
2125 tctl = rd32(IGC_TCTL);
2126 tctl &= ~IGC_TCTL_EN;
2127 wr32(IGC_TCTL, tctl);
2128 /* flush both disables and wait for them to finish */
2129 wrfl();
2130 usleep_range(10000, 20000);
2131
2132 igc_irq_disable(adapter);
2133
2134 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2135
2136 for (i = 0; i < adapter->num_q_vectors; i++) {
2137 if (adapter->q_vector[i]) {
2138 napi_synchronize(&adapter->q_vector[i]->napi);
2139 napi_disable(&adapter->q_vector[i]->napi);
2140 }
2141 }
2142
2143 del_timer_sync(&adapter->watchdog_timer);
2144 del_timer_sync(&adapter->phy_info_timer);
2145
2146 /* record the stats before reset*/
2147 spin_lock(&adapter->stats64_lock);
2148 igc_update_stats(adapter);
2149 spin_unlock(&adapter->stats64_lock);
2150
2151 adapter->link_speed = 0;
2152 adapter->link_duplex = 0;
2153
2154 if (!pci_channel_offline(adapter->pdev))
2155 igc_reset(adapter);
2156
2157 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2158 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
2159
2160 igc_clean_all_tx_rings(adapter);
2161 igc_clean_all_rx_rings(adapter);
2162}
2163
2164void igc_reinit_locked(struct igc_adapter *adapter)
2165{
2166 WARN_ON(in_interrupt());
2167 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
2168 usleep_range(1000, 2000);
2169 igc_down(adapter);
2170 igc_up(adapter);
2171 clear_bit(__IGC_RESETTING, &adapter->state);
2172}
2173
2174static void igc_reset_task(struct work_struct *work)
2175{
2176 struct igc_adapter *adapter;
2177
2178 adapter = container_of(work, struct igc_adapter, reset_task);
2179
2180 netdev_err(adapter->netdev, "Reset adapter\n");
2181 igc_reinit_locked(adapter);
2182}
2183
2184/**
2185 * igc_change_mtu - Change the Maximum Transfer Unit
2186 * @netdev: network interface device structure
2187 * @new_mtu: new value for maximum frame size
2188 *
2189 * Returns 0 on success, negative on failure
2190 */
2191static int igc_change_mtu(struct net_device *netdev, int new_mtu)
2192{
2193 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2194 struct igc_adapter *adapter = netdev_priv(netdev);
2195 struct pci_dev *pdev = adapter->pdev;
2196
2197 /* adjust max frame to be at least the size of a standard frame */
2198 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
2199 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
2200
2201 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
2202 usleep_range(1000, 2000);
2203
2204 /* igc_down has a dependency on max_frame_size */
2205 adapter->max_frame_size = max_frame;
2206
2207 if (netif_running(netdev))
2208 igc_down(adapter);
2209
2210 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
2211 netdev->mtu, new_mtu);
2212 netdev->mtu = new_mtu;
2213
2214 if (netif_running(netdev))
2215 igc_up(adapter);
2216 else
2217 igc_reset(adapter);
2218
2219 clear_bit(__IGC_RESETTING, &adapter->state);
2220
2221 return 0;
2222}
2223
2224/**
2225 * igc_get_stats - Get System Network Statistics
2226 * @netdev: network interface device structure
2227 *
2228 * Returns the address of the device statistics structure.
2229 * The statistics are updated here and also from the timer callback.
2230 */
2231static struct net_device_stats *igc_get_stats(struct net_device *netdev)
2232{
2233 struct igc_adapter *adapter = netdev_priv(netdev);
2234
2235 if (!test_bit(__IGC_RESETTING, &adapter->state))
2236 igc_update_stats(adapter);
2237
2238 /* only return the current stats */
2239 return &netdev->stats;
2240}
2241
2242static netdev_features_t igc_fix_features(struct net_device *netdev,
2243 netdev_features_t features)
2244{
2245 /* Since there is no support for separate Rx/Tx vlan accel
2246 * enable/disable make sure Tx flag is always in same state as Rx.
2247 */
2248 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2249 features |= NETIF_F_HW_VLAN_CTAG_TX;
2250 else
2251 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2252
2253 return features;
2254}
2255
2256static int igc_set_features(struct net_device *netdev,
2257 netdev_features_t features)
2258{
2259 netdev_features_t changed = netdev->features ^ features;
2260 struct igc_adapter *adapter = netdev_priv(netdev);
2261
2262 /* Add VLAN support */
2263 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2264 return 0;
2265
2266 if (!(features & NETIF_F_NTUPLE)) {
2267 struct hlist_node *node2;
2268 struct igc_nfc_filter *rule;
2269
2270 spin_lock(&adapter->nfc_lock);
2271 hlist_for_each_entry_safe(rule, node2,
2272 &adapter->nfc_filter_list, nfc_node) {
2273 igc_erase_filter(adapter, rule);
2274 hlist_del(&rule->nfc_node);
2275 kfree(rule);
2276 }
2277 spin_unlock(&adapter->nfc_lock);
2278 adapter->nfc_filter_count = 0;
2279 }
2280
2281 netdev->features = features;
2282
2283 if (netif_running(netdev))
2284 igc_reinit_locked(adapter);
2285 else
2286 igc_reset(adapter);
2287
2288 return 1;
2289}
2290
2291static netdev_features_t
2292igc_features_check(struct sk_buff *skb, struct net_device *dev,
2293 netdev_features_t features)
2294{
2295 unsigned int network_hdr_len, mac_hdr_len;
2296
2297 /* Make certain the headers can be described by a context descriptor */
2298 mac_hdr_len = skb_network_header(skb) - skb->data;
2299 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
2300 return features & ~(NETIF_F_HW_CSUM |
2301 NETIF_F_SCTP_CRC |
2302 NETIF_F_HW_VLAN_CTAG_TX |
2303 NETIF_F_TSO |
2304 NETIF_F_TSO6);
2305
2306 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2307 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
2308 return features & ~(NETIF_F_HW_CSUM |
2309 NETIF_F_SCTP_CRC |
2310 NETIF_F_TSO |
2311 NETIF_F_TSO6);
2312
2313 /* We can only support IPv4 TSO in tunnels if we can mangle the
2314 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2315 */
2316 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2317 features &= ~NETIF_F_TSO;
2318
2319 return features;
2320}
2321
2322/**
2323 * igc_configure - configure the hardware for RX and TX
2324 * @adapter: private board structure
2325 */
2326static void igc_configure(struct igc_adapter *adapter)
2327{
2328 struct net_device *netdev = adapter->netdev;
2329 int i = 0;
2330
2331 igc_get_hw_control(adapter);
2332 igc_set_rx_mode(netdev);
2333
2334 igc_setup_tctl(adapter);
2335 igc_setup_mrqc(adapter);
2336 igc_setup_rctl(adapter);
2337
2338 igc_nfc_filter_restore(adapter);
2339 igc_configure_tx(adapter);
2340 igc_configure_rx(adapter);
2341
2342 igc_rx_fifo_flush_base(&adapter->hw);
2343
2344 /* call igc_desc_unused which always leaves
2345 * at least 1 descriptor unused to make sure
2346 * next_to_use != next_to_clean
2347 */
2348 for (i = 0; i < adapter->num_rx_queues; i++) {
2349 struct igc_ring *ring = adapter->rx_ring[i];
2350
2351 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2352 }
2353}
2354
2355/**
2356 * igc_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
2357 * @adapter: address of board private structure
2358 * @index: Index of the RAR entry which need to be synced with MAC table
2359 */
2360static void igc_rar_set_index(struct igc_adapter *adapter, u32 index)
2361{
2362 u8 *addr = adapter->mac_table[index].addr;
2363 struct igc_hw *hw = &adapter->hw;
2364 u32 rar_low, rar_high;
2365
2366 /* HW expects these to be in network order when they are plugged
2367 * into the registers which are little endian. In order to guarantee
2368 * that ordering we need to do an leXX_to_cpup here in order to be
2369 * ready for the byteswap that occurs with writel
2370 */
2371 rar_low = le32_to_cpup((__le32 *)(addr));
2372 rar_high = le16_to_cpup((__le16 *)(addr + 4));
2373
2374 /* Indicate to hardware the Address is Valid. */
2375 if (adapter->mac_table[index].state & IGC_MAC_STATE_IN_USE) {
2376 if (is_valid_ether_addr(addr))
2377 rar_high |= IGC_RAH_AV;
2378
2379 rar_high |= IGC_RAH_POOL_1 <<
2380 adapter->mac_table[index].queue;
2381 }
2382
2383 wr32(IGC_RAL(index), rar_low);
2384 wrfl();
2385 wr32(IGC_RAH(index), rar_high);
2386 wrfl();
2387}
2388
2389/* Set default MAC address for the PF in the first RAR entry */
2390static void igc_set_default_mac_filter(struct igc_adapter *adapter)
2391{
2392 struct igc_mac_addr *mac_table = &adapter->mac_table[0];
2393
2394 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
2395 mac_table->state = IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
2396
2397 igc_rar_set_index(adapter, 0);
2398}
2399
2400/* If the filter to be added and an already existing filter express
2401 * the same address and address type, it should be possible to only
2402 * override the other configurations, for example the queue to steer
2403 * traffic.
2404 */
2405static bool igc_mac_entry_can_be_used(const struct igc_mac_addr *entry,
2406 const u8 *addr, const u8 flags)
2407{
2408 if (!(entry->state & IGC_MAC_STATE_IN_USE))
2409 return true;
2410
2411 if ((entry->state & IGC_MAC_STATE_SRC_ADDR) !=
2412 (flags & IGC_MAC_STATE_SRC_ADDR))
2413 return false;
2414
2415 if (!ether_addr_equal(addr, entry->addr))
2416 return false;
2417
2418 return true;
2419}
2420
2421/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
2422 * 'flags' is used to indicate what kind of match is made, match is by
2423 * default for the destination address, if matching by source address
2424 * is desired the flag IGC_MAC_STATE_SRC_ADDR can be used.
2425 */
2426static int igc_add_mac_filter_flags(struct igc_adapter *adapter,
2427 const u8 *addr, const u8 queue,
2428 const u8 flags)
2429{
2430 struct igc_hw *hw = &adapter->hw;
2431 int rar_entries = hw->mac.rar_entry_count;
2432 int i;
2433
2434 if (is_zero_ether_addr(addr))
2435 return -EINVAL;
2436
2437 /* Search for the first empty entry in the MAC table.
2438 * Do not touch entries at the end of the table reserved for the VF MAC
2439 * addresses.
2440 */
2441 for (i = 0; i < rar_entries; i++) {
2442 if (!igc_mac_entry_can_be_used(&adapter->mac_table[i],
2443 addr, flags))
2444 continue;
2445
2446 ether_addr_copy(adapter->mac_table[i].addr, addr);
2447 adapter->mac_table[i].queue = queue;
2448 adapter->mac_table[i].state |= IGC_MAC_STATE_IN_USE | flags;
2449
2450 igc_rar_set_index(adapter, i);
2451 return i;
2452 }
2453
2454 return -ENOSPC;
2455}
2456
2457int igc_add_mac_steering_filter(struct igc_adapter *adapter,
2458 const u8 *addr, u8 queue, u8 flags)
2459{
2460 return igc_add_mac_filter_flags(adapter, addr, queue,
2461 IGC_MAC_STATE_QUEUE_STEERING | flags);
2462}
2463
2464/* Remove a MAC filter for 'addr' directing matching traffic to
2465 * 'queue', 'flags' is used to indicate what kind of match need to be
2466 * removed, match is by default for the destination address, if
2467 * matching by source address is to be removed the flag
2468 * IGC_MAC_STATE_SRC_ADDR can be used.
2469 */
2470static int igc_del_mac_filter_flags(struct igc_adapter *adapter,
2471 const u8 *addr, const u8 queue,
2472 const u8 flags)
2473{
2474 struct igc_hw *hw = &adapter->hw;
2475 int rar_entries = hw->mac.rar_entry_count;
2476 int i;
2477
2478 if (is_zero_ether_addr(addr))
2479 return -EINVAL;
2480
2481 /* Search for matching entry in the MAC table based on given address
2482 * and queue. Do not touch entries at the end of the table reserved
2483 * for the VF MAC addresses.
2484 */
2485 for (i = 0; i < rar_entries; i++) {
2486 if (!(adapter->mac_table[i].state & IGC_MAC_STATE_IN_USE))
2487 continue;
2488 if ((adapter->mac_table[i].state & flags) != flags)
2489 continue;
2490 if (adapter->mac_table[i].queue != queue)
2491 continue;
2492 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
2493 continue;
2494
2495 /* When a filter for the default address is "deleted",
2496 * we return it to its initial configuration
2497 */
2498 if (adapter->mac_table[i].state & IGC_MAC_STATE_DEFAULT) {
2499 adapter->mac_table[i].state =
2500 IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
2501 } else {
2502 adapter->mac_table[i].state = 0;
2503 adapter->mac_table[i].queue = 0;
2504 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
2505 }
2506
2507 igc_rar_set_index(adapter, i);
2508 return 0;
2509 }
2510
2511 return -ENOENT;
2512}
2513
2514int igc_del_mac_steering_filter(struct igc_adapter *adapter,
2515 const u8 *addr, u8 queue, u8 flags)
2516{
2517 return igc_del_mac_filter_flags(adapter, addr, queue,
2518 IGC_MAC_STATE_QUEUE_STEERING | flags);
2519}
2520
2521/**
2522 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2523 * @netdev: network interface device structure
2524 *
2525 * The set_rx_mode entry point is called whenever the unicast or multicast
2526 * address lists or the network interface flags are updated. This routine is
2527 * responsible for configuring the hardware for proper unicast, multicast,
2528 * promiscuous mode, and all-multi behavior.
2529 */
2530static void igc_set_rx_mode(struct net_device *netdev)
2531{
2532}
2533
2534/**
2535 * igc_msix_other - msix other interrupt handler
2536 * @irq: interrupt number
2537 * @data: pointer to a q_vector
2538 */
2539static irqreturn_t igc_msix_other(int irq, void *data)
2540{
2541 struct igc_adapter *adapter = data;
2542 struct igc_hw *hw = &adapter->hw;
2543 u32 icr = rd32(IGC_ICR);
2544
2545 /* reading ICR causes bit 31 of EICR to be cleared */
2546 if (icr & IGC_ICR_DRSTA)
2547 schedule_work(&adapter->reset_task);
2548
2549 if (icr & IGC_ICR_DOUTSYNC) {
2550 /* HW is reporting DMA is out of sync */
2551 adapter->stats.doosync++;
2552 }
2553
2554 if (icr & IGC_ICR_LSC) {
2555 hw->mac.get_link_status = 1;
2556 /* guard against interrupt when we're going down */
2557 if (!test_bit(__IGC_DOWN, &adapter->state))
2558 mod_timer(&adapter->watchdog_timer, jiffies + 1);
2559 }
2560
2561 wr32(IGC_EIMS, adapter->eims_other);
2562
2563 return IRQ_HANDLED;
2564}
2565
2566/**
2567 * igc_write_ivar - configure ivar for given MSI-X vector
2568 * @hw: pointer to the HW structure
2569 * @msix_vector: vector number we are allocating to a given ring
2570 * @index: row index of IVAR register to write within IVAR table
2571 * @offset: column offset of in IVAR, should be multiple of 8
2572 *
2573 * The IVAR table consists of 2 columns,
2574 * each containing an cause allocation for an Rx and Tx ring, and a
2575 * variable number of rows depending on the number of queues supported.
2576 */
2577static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2578 int index, int offset)
2579{
2580 u32 ivar = array_rd32(IGC_IVAR0, index);
2581
2582 /* clear any bits that are currently set */
2583 ivar &= ~((u32)0xFF << offset);
2584
2585 /* write vector and valid bit */
2586 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2587
2588 array_wr32(IGC_IVAR0, index, ivar);
2589}
2590
2591static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2592{
2593 struct igc_adapter *adapter = q_vector->adapter;
2594 struct igc_hw *hw = &adapter->hw;
2595 int rx_queue = IGC_N0_QUEUE;
2596 int tx_queue = IGC_N0_QUEUE;
2597
2598 if (q_vector->rx.ring)
2599 rx_queue = q_vector->rx.ring->reg_idx;
2600 if (q_vector->tx.ring)
2601 tx_queue = q_vector->tx.ring->reg_idx;
2602
2603 switch (hw->mac.type) {
2604 case igc_i225:
2605 if (rx_queue > IGC_N0_QUEUE)
2606 igc_write_ivar(hw, msix_vector,
2607 rx_queue >> 1,
2608 (rx_queue & 0x1) << 4);
2609 if (tx_queue > IGC_N0_QUEUE)
2610 igc_write_ivar(hw, msix_vector,
2611 tx_queue >> 1,
2612 ((tx_queue & 0x1) << 4) + 8);
2613 q_vector->eims_value = BIT(msix_vector);
2614 break;
2615 default:
2616 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2617 break;
2618 }
2619
2620 /* add q_vector eims value to global eims_enable_mask */
2621 adapter->eims_enable_mask |= q_vector->eims_value;
2622
2623 /* configure q_vector to set itr on first interrupt */
2624 q_vector->set_itr = 1;
2625}
2626
2627/**
2628 * igc_configure_msix - Configure MSI-X hardware
2629 * @adapter: Pointer to adapter structure
2630 *
2631 * igc_configure_msix sets up the hardware to properly
2632 * generate MSI-X interrupts.
2633 */
2634static void igc_configure_msix(struct igc_adapter *adapter)
2635{
2636 struct igc_hw *hw = &adapter->hw;
2637 int i, vector = 0;
2638 u32 tmp;
2639
2640 adapter->eims_enable_mask = 0;
2641
2642 /* set vector for other causes, i.e. link changes */
2643 switch (hw->mac.type) {
2644 case igc_i225:
2645 /* Turn on MSI-X capability first, or our settings
2646 * won't stick. And it will take days to debug.
2647 */
2648 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2649 IGC_GPIE_PBA | IGC_GPIE_EIAME |
2650 IGC_GPIE_NSICR);
2651
2652 /* enable msix_other interrupt */
2653 adapter->eims_other = BIT(vector);
2654 tmp = (vector++ | IGC_IVAR_VALID) << 8;
2655
2656 wr32(IGC_IVAR_MISC, tmp);
2657 break;
2658 default:
2659 /* do nothing, since nothing else supports MSI-X */
2660 break;
2661 } /* switch (hw->mac.type) */
2662
2663 adapter->eims_enable_mask |= adapter->eims_other;
2664
2665 for (i = 0; i < adapter->num_q_vectors; i++)
2666 igc_assign_vector(adapter->q_vector[i], vector++);
2667
2668 wrfl();
2669}
2670
2671static irqreturn_t igc_msix_ring(int irq, void *data)
2672{
2673 struct igc_q_vector *q_vector = data;
2674
2675 /* Write the ITR value calculated from the previous interrupt. */
2676 igc_write_itr(q_vector);
2677
2678 napi_schedule(&q_vector->napi);
2679
2680 return IRQ_HANDLED;
2681}
2682
2683/**
2684 * igc_request_msix - Initialize MSI-X interrupts
2685 * @adapter: Pointer to adapter structure
2686 *
2687 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
2688 * kernel.
2689 */
2690static int igc_request_msix(struct igc_adapter *adapter)
2691{
2692 int i = 0, err = 0, vector = 0, free_vector = 0;
2693 struct net_device *netdev = adapter->netdev;
2694
2695 err = request_irq(adapter->msix_entries[vector].vector,
2696 &igc_msix_other, 0, netdev->name, adapter);
2697 if (err)
2698 goto err_out;
2699
2700 for (i = 0; i < adapter->num_q_vectors; i++) {
2701 struct igc_q_vector *q_vector = adapter->q_vector[i];
2702
2703 vector++;
2704
2705 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
2706
2707 if (q_vector->rx.ring && q_vector->tx.ring)
2708 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
2709 q_vector->rx.ring->queue_index);
2710 else if (q_vector->tx.ring)
2711 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
2712 q_vector->tx.ring->queue_index);
2713 else if (q_vector->rx.ring)
2714 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
2715 q_vector->rx.ring->queue_index);
2716 else
2717 sprintf(q_vector->name, "%s-unused", netdev->name);
2718
2719 err = request_irq(adapter->msix_entries[vector].vector,
2720 igc_msix_ring, 0, q_vector->name,
2721 q_vector);
2722 if (err)
2723 goto err_free;
2724 }
2725
2726 igc_configure_msix(adapter);
2727 return 0;
2728
2729err_free:
2730 /* free already assigned IRQs */
2731 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
2732
2733 vector--;
2734 for (i = 0; i < vector; i++) {
2735 free_irq(adapter->msix_entries[free_vector++].vector,
2736 adapter->q_vector[i]);
2737 }
2738err_out:
2739 return err;
2740}
2741
2742/**
2743 * igc_reset_q_vector - Reset config for interrupt vector
2744 * @adapter: board private structure to initialize
2745 * @v_idx: Index of vector to be reset
2746 *
2747 * If NAPI is enabled it will delete any references to the
2748 * NAPI struct. This is preparation for igc_free_q_vector.
2749 */
2750static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2751{
2752 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2753
2754 /* if we're coming from igc_set_interrupt_capability, the vectors are
2755 * not yet allocated
2756 */
2757 if (!q_vector)
2758 return;
2759
2760 if (q_vector->tx.ring)
2761 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2762
2763 if (q_vector->rx.ring)
2764 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2765
2766 netif_napi_del(&q_vector->napi);
2767}
2768
2769static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
2770{
2771 int v_idx = adapter->num_q_vectors;
2772
2773 if (adapter->msix_entries) {
2774 pci_disable_msix(adapter->pdev);
2775 kfree(adapter->msix_entries);
2776 adapter->msix_entries = NULL;
2777 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
2778 pci_disable_msi(adapter->pdev);
2779 }
2780
2781 while (v_idx--)
2782 igc_reset_q_vector(adapter, v_idx);
2783}
2784
2785/**
2786 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
2787 * @adapter: Pointer to adapter structure
2788 *
2789 * This function resets the device so that it has 0 rx queues, tx queues, and
2790 * MSI-X interrupts allocated.
2791 */
2792static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
2793{
2794 igc_free_q_vectors(adapter);
2795 igc_reset_interrupt_capability(adapter);
2796}
2797
2798/**
2799 * igc_free_q_vectors - Free memory allocated for interrupt vectors
2800 * @adapter: board private structure to initialize
2801 *
2802 * This function frees the memory allocated to the q_vectors. In addition if
2803 * NAPI is enabled it will delete any references to the NAPI struct prior
2804 * to freeing the q_vector.
2805 */
2806static void igc_free_q_vectors(struct igc_adapter *adapter)
2807{
2808 int v_idx = adapter->num_q_vectors;
2809
2810 adapter->num_tx_queues = 0;
2811 adapter->num_rx_queues = 0;
2812 adapter->num_q_vectors = 0;
2813
2814 while (v_idx--) {
2815 igc_reset_q_vector(adapter, v_idx);
2816 igc_free_q_vector(adapter, v_idx);
2817 }
2818}
2819
2820/**
2821 * igc_free_q_vector - Free memory allocated for specific interrupt vector
2822 * @adapter: board private structure to initialize
2823 * @v_idx: Index of vector to be freed
2824 *
2825 * This function frees the memory allocated to the q_vector.
2826 */
2827static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2828{
2829 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2830
2831 adapter->q_vector[v_idx] = NULL;
2832
2833 /* igc_get_stats64() might access the rings on this vector,
2834 * we must wait a grace period before freeing it.
2835 */
2836 if (q_vector)
2837 kfree_rcu(q_vector, rcu);
2838}
2839
2840/* Need to wait a few seconds after link up to get diagnostic information from
2841 * the phy
2842 */
2843static void igc_update_phy_info(struct timer_list *t)
2844{
2845 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
2846
2847 igc_get_phy_info(&adapter->hw);
2848}
2849
2850/**
2851 * igc_has_link - check shared code for link and determine up/down
2852 * @adapter: pointer to driver private info
2853 */
2854bool igc_has_link(struct igc_adapter *adapter)
2855{
2856 struct igc_hw *hw = &adapter->hw;
2857 bool link_active = false;
2858
2859 /* get_link_status is set on LSC (link status) interrupt or
2860 * rx sequence error interrupt. get_link_status will stay
2861 * false until the igc_check_for_link establishes link
2862 * for copper adapters ONLY
2863 */
2864 switch (hw->phy.media_type) {
2865 case igc_media_type_copper:
2866 if (!hw->mac.get_link_status)
2867 return true;
2868 hw->mac.ops.check_for_link(hw);
2869 link_active = !hw->mac.get_link_status;
2870 break;
2871 default:
2872 case igc_media_type_unknown:
2873 break;
2874 }
2875
2876 if (hw->mac.type == igc_i225 &&
2877 hw->phy.id == I225_I_PHY_ID) {
2878 if (!netif_carrier_ok(adapter->netdev)) {
2879 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2880 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
2881 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
2882 adapter->link_check_timeout = jiffies;
2883 }
2884 }
2885
2886 return link_active;
2887}
2888
2889/**
2890 * igc_watchdog - Timer Call-back
2891 * @data: pointer to adapter cast into an unsigned long
2892 */
2893static void igc_watchdog(struct timer_list *t)
2894{
2895 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
2896 /* Do the rest outside of interrupt context */
2897 schedule_work(&adapter->watchdog_task);
2898}
2899
2900static void igc_watchdog_task(struct work_struct *work)
2901{
2902 struct igc_adapter *adapter = container_of(work,
2903 struct igc_adapter,
2904 watchdog_task);
2905 struct net_device *netdev = adapter->netdev;
2906 struct igc_hw *hw = &adapter->hw;
2907 struct igc_phy_info *phy = &hw->phy;
2908 u16 phy_data, retry_count = 20;
2909 u32 connsw;
2910 u32 link;
2911 int i;
2912
2913 link = igc_has_link(adapter);
2914
2915 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
2916 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
2917 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2918 else
2919 link = false;
2920 }
2921
2922 /* Force link down if we have fiber to swap to */
2923 if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
2924 if (hw->phy.media_type == igc_media_type_copper) {
2925 connsw = rd32(IGC_CONNSW);
2926 if (!(connsw & IGC_CONNSW_AUTOSENSE_EN))
2927 link = 0;
2928 }
2929 }
2930 if (link) {
2931 if (!netif_carrier_ok(netdev)) {
2932 u32 ctrl;
2933
2934 hw->mac.ops.get_speed_and_duplex(hw,
2935 &adapter->link_speed,
2936 &adapter->link_duplex);
2937
2938 ctrl = rd32(IGC_CTRL);
2939 /* Link status message must follow this format */
2940 netdev_info(netdev,
2941 "igc: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
2942 netdev->name,
2943 adapter->link_speed,
2944 adapter->link_duplex == FULL_DUPLEX ?
2945 "Full" : "Half",
2946 (ctrl & IGC_CTRL_TFCE) &&
2947 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
2948 (ctrl & IGC_CTRL_RFCE) ? "RX" :
2949 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
2950
2951 /* check if SmartSpeed worked */
2952 igc_check_downshift(hw);
2953 if (phy->speed_downgraded)
2954 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
2955
2956 /* adjust timeout factor according to speed/duplex */
2957 adapter->tx_timeout_factor = 1;
2958 switch (adapter->link_speed) {
2959 case SPEED_10:
2960 adapter->tx_timeout_factor = 14;
2961 break;
2962 case SPEED_100:
2963 /* maybe add some timeout factor ? */
2964 break;
2965 }
2966
2967 if (adapter->link_speed != SPEED_1000)
2968 goto no_wait;
2969
2970 /* wait for Remote receiver status OK */
2971retry_read_status:
2972 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
2973 &phy_data)) {
2974 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
2975 retry_count) {
2976 msleep(100);
2977 retry_count--;
2978 goto retry_read_status;
2979 } else if (!retry_count) {
2980 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
2981 }
2982 } else {
2983 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
2984 }
2985no_wait:
2986 netif_carrier_on(netdev);
2987
2988 /* link state has changed, schedule phy info update */
2989 if (!test_bit(__IGC_DOWN, &adapter->state))
2990 mod_timer(&adapter->phy_info_timer,
2991 round_jiffies(jiffies + 2 * HZ));
2992 }
2993 } else {
2994 if (netif_carrier_ok(netdev)) {
2995 adapter->link_speed = 0;
2996 adapter->link_duplex = 0;
2997
2998 /* Links status message must follow this format */
2999 netdev_info(netdev, "igc: %s NIC Link is Down\n",
3000 netdev->name);
3001 netif_carrier_off(netdev);
3002
3003 /* link state has changed, schedule phy info update */
3004 if (!test_bit(__IGC_DOWN, &adapter->state))
3005 mod_timer(&adapter->phy_info_timer,
3006 round_jiffies(jiffies + 2 * HZ));
3007
3008 /* link is down, time to check for alternate media */
3009 if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
3010 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
3011 schedule_work(&adapter->reset_task);
3012 /* return immediately */
3013 return;
3014 }
3015 }
3016
3017 /* also check for alternate media here */
3018 } else if (!netif_carrier_ok(netdev) &&
3019 (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
3020 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
3021 schedule_work(&adapter->reset_task);
3022 /* return immediately */
3023 return;
3024 }
3025 }
3026 }
3027
3028 spin_lock(&adapter->stats64_lock);
3029 igc_update_stats(adapter);
3030 spin_unlock(&adapter->stats64_lock);
3031
3032 for (i = 0; i < adapter->num_tx_queues; i++) {
3033 struct igc_ring *tx_ring = adapter->tx_ring[i];
3034
3035 if (!netif_carrier_ok(netdev)) {
3036 /* We've lost link, so the controller stops DMA,
3037 * but we've got queued Tx work that's never going
3038 * to get done, so reset controller to flush Tx.
3039 * (Do the reset outside of interrupt context).
3040 */
3041 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
3042 adapter->tx_timeout_count++;
3043 schedule_work(&adapter->reset_task);
3044 /* return immediately since reset is imminent */
3045 return;
3046 }
3047 }
3048
3049 /* Force detection of hung controller every watchdog period */
3050 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3051 }
3052
3053 /* Cause software interrupt to ensure Rx ring is cleaned */
3054 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
3055 u32 eics = 0;
3056
3057 for (i = 0; i < adapter->num_q_vectors; i++)
3058 eics |= adapter->q_vector[i]->eims_value;
3059 wr32(IGC_EICS, eics);
3060 } else {
3061 wr32(IGC_ICS, IGC_ICS_RXDMT0);
3062 }
3063
3064 /* Reset the timer */
3065 if (!test_bit(__IGC_DOWN, &adapter->state)) {
3066 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
3067 mod_timer(&adapter->watchdog_timer,
3068 round_jiffies(jiffies + HZ));
3069 else
3070 mod_timer(&adapter->watchdog_timer,
3071 round_jiffies(jiffies + 2 * HZ));
3072 }
3073}
3074
3075/**
3076 * igc_update_ring_itr - update the dynamic ITR value based on packet size
3077 * @q_vector: pointer to q_vector
3078 *
3079 * Stores a new ITR value based on strictly on packet size. This
3080 * algorithm is less sophisticated than that used in igc_update_itr,
3081 * due to the difficulty of synchronizing statistics across multiple
3082 * receive rings. The divisors and thresholds used by this function
3083 * were determined based on theoretical maximum wire speed and testing
3084 * data, in order to minimize response time while increasing bulk
3085 * throughput.
3086 * NOTE: This function is called only when operating in a multiqueue
3087 * receive environment.
3088 */
3089static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3090{
3091 struct igc_adapter *adapter = q_vector->adapter;
3092 int new_val = q_vector->itr_val;
3093 int avg_wire_size = 0;
3094 unsigned int packets;
3095
3096 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3097 * ints/sec - ITR timer value of 120 ticks.
3098 */
3099 switch (adapter->link_speed) {
3100 case SPEED_10:
3101 case SPEED_100:
3102 new_val = IGC_4K_ITR;
3103 goto set_itr_val;
3104 default:
3105 break;
3106 }
3107
3108 packets = q_vector->rx.total_packets;
3109 if (packets)
3110 avg_wire_size = q_vector->rx.total_bytes / packets;
3111
3112 packets = q_vector->tx.total_packets;
3113 if (packets)
3114 avg_wire_size = max_t(u32, avg_wire_size,
3115 q_vector->tx.total_bytes / packets);
3116
3117 /* if avg_wire_size isn't set no work was done */
3118 if (!avg_wire_size)
3119 goto clear_counts;
3120
3121 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3122 avg_wire_size += 24;
3123
3124 /* Don't starve jumbo frames */
3125 avg_wire_size = min(avg_wire_size, 3000);
3126
3127 /* Give a little boost to mid-size frames */
3128 if (avg_wire_size > 300 && avg_wire_size < 1200)
3129 new_val = avg_wire_size / 3;
3130 else
3131 new_val = avg_wire_size / 2;
3132
3133 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3134 if (new_val < IGC_20K_ITR &&
3135 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3136 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3137 new_val = IGC_20K_ITR;
3138
3139set_itr_val:
3140 if (new_val != q_vector->itr_val) {
3141 q_vector->itr_val = new_val;
3142 q_vector->set_itr = 1;
3143 }
3144clear_counts:
3145 q_vector->rx.total_bytes = 0;
3146 q_vector->rx.total_packets = 0;
3147 q_vector->tx.total_bytes = 0;
3148 q_vector->tx.total_packets = 0;
3149}
3150
3151/**
3152 * igc_update_itr - update the dynamic ITR value based on statistics
3153 * @q_vector: pointer to q_vector
3154 * @ring_container: ring info to update the itr for
3155 *
3156 * Stores a new ITR value based on packets and byte
3157 * counts during the last interrupt. The advantage of per interrupt
3158 * computation is faster updates and more accurate ITR for the current
3159 * traffic pattern. Constants in this function were computed
3160 * based on theoretical maximum wire speed and thresholds were set based
3161 * on testing data as well as attempting to minimize response time
3162 * while increasing bulk throughput.
3163 * NOTE: These calculations are only valid when operating in a single-
3164 * queue environment.
3165 */
3166static void igc_update_itr(struct igc_q_vector *q_vector,
3167 struct igc_ring_container *ring_container)
3168{
3169 unsigned int packets = ring_container->total_packets;
3170 unsigned int bytes = ring_container->total_bytes;
3171 u8 itrval = ring_container->itr;
3172
3173 /* no packets, exit with status unchanged */
3174 if (packets == 0)
3175 return;
3176
3177 switch (itrval) {
3178 case lowest_latency:
3179 /* handle TSO and jumbo frames */
3180 if (bytes / packets > 8000)
3181 itrval = bulk_latency;
3182 else if ((packets < 5) && (bytes > 512))
3183 itrval = low_latency;
3184 break;
3185 case low_latency: /* 50 usec aka 20000 ints/s */
3186 if (bytes > 10000) {
3187 /* this if handles the TSO accounting */
3188 if (bytes / packets > 8000)
3189 itrval = bulk_latency;
3190 else if ((packets < 10) || ((bytes / packets) > 1200))
3191 itrval = bulk_latency;
3192 else if ((packets > 35))
3193 itrval = lowest_latency;
3194 } else if (bytes / packets > 2000) {
3195 itrval = bulk_latency;
3196 } else if (packets <= 2 && bytes < 512) {
3197 itrval = lowest_latency;
3198 }
3199 break;
3200 case bulk_latency: /* 250 usec aka 4000 ints/s */
3201 if (bytes > 25000) {
3202 if (packets > 35)
3203 itrval = low_latency;
3204 } else if (bytes < 1500) {
3205 itrval = low_latency;
3206 }
3207 break;
3208 }
3209
3210 /* clear work counters since we have the values we need */
3211 ring_container->total_bytes = 0;
3212 ring_container->total_packets = 0;
3213
3214 /* write updated itr to ring container */
3215 ring_container->itr = itrval;
3216}
3217
3218/**
3219 * igc_intr_msi - Interrupt Handler
3220 * @irq: interrupt number
3221 * @data: pointer to a network interface device structure
3222 */
3223static irqreturn_t igc_intr_msi(int irq, void *data)
3224{
3225 struct igc_adapter *adapter = data;
3226 struct igc_q_vector *q_vector = adapter->q_vector[0];
3227 struct igc_hw *hw = &adapter->hw;
3228 /* read ICR disables interrupts using IAM */
3229 u32 icr = rd32(IGC_ICR);
3230
3231 igc_write_itr(q_vector);
3232
3233 if (icr & IGC_ICR_DRSTA)
3234 schedule_work(&adapter->reset_task);
3235
3236 if (icr & IGC_ICR_DOUTSYNC) {
3237 /* HW is reporting DMA is out of sync */
3238 adapter->stats.doosync++;
3239 }
3240
3241 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
3242 hw->mac.get_link_status = 1;
3243 if (!test_bit(__IGC_DOWN, &adapter->state))
3244 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3245 }
3246
3247 napi_schedule(&q_vector->napi);
3248
3249 return IRQ_HANDLED;
3250}
3251
3252/**
3253 * igc_intr - Legacy Interrupt Handler
3254 * @irq: interrupt number
3255 * @data: pointer to a network interface device structure
3256 */
3257static irqreturn_t igc_intr(int irq, void *data)
3258{
3259 struct igc_adapter *adapter = data;
3260 struct igc_q_vector *q_vector = adapter->q_vector[0];
3261 struct igc_hw *hw = &adapter->hw;
3262 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3263 * need for the IMC write
3264 */
3265 u32 icr = rd32(IGC_ICR);
3266
3267 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3268 * not set, then the adapter didn't send an interrupt
3269 */
3270 if (!(icr & IGC_ICR_INT_ASSERTED))
3271 return IRQ_NONE;
3272
3273 igc_write_itr(q_vector);
3274
3275 if (icr & IGC_ICR_DRSTA)
3276 schedule_work(&adapter->reset_task);
3277
3278 if (icr & IGC_ICR_DOUTSYNC) {
3279 /* HW is reporting DMA is out of sync */
3280 adapter->stats.doosync++;
3281 }
3282
3283 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
3284 hw->mac.get_link_status = 1;
3285 /* guard against interrupt when we're going down */
3286 if (!test_bit(__IGC_DOWN, &adapter->state))
3287 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3288 }
3289
3290 napi_schedule(&q_vector->napi);
3291
3292 return IRQ_HANDLED;
3293}
3294
3295static void igc_set_itr(struct igc_q_vector *q_vector)
3296{
3297 struct igc_adapter *adapter = q_vector->adapter;
3298 u32 new_itr = q_vector->itr_val;
3299 u8 current_itr = 0;
3300
3301 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3302 switch (adapter->link_speed) {
3303 case SPEED_10:
3304 case SPEED_100:
3305 current_itr = 0;
3306 new_itr = IGC_4K_ITR;
3307 goto set_itr_now;
3308 default:
3309 break;
3310 }
3311
3312 igc_update_itr(q_vector, &q_vector->tx);
3313 igc_update_itr(q_vector, &q_vector->rx);
3314
3315 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3316
3317 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3318 if (current_itr == lowest_latency &&
3319 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3320 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3321 current_itr = low_latency;
3322
3323 switch (current_itr) {
3324 /* counts and packets in update_itr are dependent on these numbers */
3325 case lowest_latency:
3326 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3327 break;
3328 case low_latency:
3329 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3330 break;
3331 case bulk_latency:
3332 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
3333 break;
3334 default:
3335 break;
3336 }
3337
3338set_itr_now:
3339 if (new_itr != q_vector->itr_val) {
3340 /* this attempts to bias the interrupt rate towards Bulk
3341 * by adding intermediate steps when interrupt rate is
3342 * increasing
3343 */
3344 new_itr = new_itr > q_vector->itr_val ?
3345 max((new_itr * q_vector->itr_val) /
3346 (new_itr + (q_vector->itr_val >> 2)),
3347 new_itr) : new_itr;
3348 /* Don't write the value here; it resets the adapter's
3349 * internal timer, and causes us to delay far longer than
3350 * we should between interrupts. Instead, we write the ITR
3351 * value at the beginning of the next interrupt so the timing
3352 * ends up being correct.
3353 */
3354 q_vector->itr_val = new_itr;
3355 q_vector->set_itr = 1;
3356 }
3357}
3358
3359static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3360{
3361 struct igc_adapter *adapter = q_vector->adapter;
3362 struct igc_hw *hw = &adapter->hw;
3363
3364 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3365 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3366 if (adapter->num_q_vectors == 1)
3367 igc_set_itr(q_vector);
3368 else
3369 igc_update_ring_itr(q_vector);
3370 }
3371
3372 if (!test_bit(__IGC_DOWN, &adapter->state)) {
3373 if (adapter->msix_entries)
3374 wr32(IGC_EIMS, q_vector->eims_value);
3375 else
3376 igc_irq_enable(adapter);
3377 }
3378}
3379
3380/**
3381 * igc_poll - NAPI Rx polling callback
3382 * @napi: napi polling structure
3383 * @budget: count of how many packets we should handle
3384 */
3385static int igc_poll(struct napi_struct *napi, int budget)
3386{
3387 struct igc_q_vector *q_vector = container_of(napi,
3388 struct igc_q_vector,
3389 napi);
3390 bool clean_complete = true;
3391 int work_done = 0;
3392
3393 if (q_vector->tx.ring)
3394 clean_complete = igc_clean_tx_irq(q_vector, budget);
3395
3396 if (q_vector->rx.ring) {
3397 int cleaned = igc_clean_rx_irq(q_vector, budget);
3398
3399 work_done += cleaned;
3400 if (cleaned >= budget)
3401 clean_complete = false;
3402 }
3403
3404 /* If all work not completed, return budget and keep polling */
3405 if (!clean_complete)
3406 return budget;
3407
3408 /* Exit the polling mode, but don't re-enable interrupts if stack might
3409 * poll us due to busy-polling
3410 */
3411 if (likely(napi_complete_done(napi, work_done)))
3412 igc_ring_irq_enable(q_vector);
3413
3414 return min(work_done, budget - 1);
3415}
3416
3417/**
3418 * igc_set_interrupt_capability - set MSI or MSI-X if supported
3419 * @adapter: Pointer to adapter structure
3420 *
3421 * Attempt to configure interrupts using the best available
3422 * capabilities of the hardware and kernel.
3423 */
3424static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3425 bool msix)
3426{
3427 int numvecs, i;
3428 int err;
3429
3430 if (!msix)
3431 goto msi_only;
3432 adapter->flags |= IGC_FLAG_HAS_MSIX;
3433
3434 /* Number of supported queues. */
3435 adapter->num_rx_queues = adapter->rss_queues;
3436
3437 adapter->num_tx_queues = adapter->rss_queues;
3438
3439 /* start with one vector for every Rx queue */
3440 numvecs = adapter->num_rx_queues;
3441
3442 /* if Tx handler is separate add 1 for every Tx queue */
3443 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3444 numvecs += adapter->num_tx_queues;
3445
3446 /* store the number of vectors reserved for queues */
3447 adapter->num_q_vectors = numvecs;
3448
3449 /* add 1 vector for link status interrupts */
3450 numvecs++;
3451
3452 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3453 GFP_KERNEL);
3454
3455 if (!adapter->msix_entries)
3456 return;
3457
3458 /* populate entry values */
3459 for (i = 0; i < numvecs; i++)
3460 adapter->msix_entries[i].entry = i;
3461
3462 err = pci_enable_msix_range(adapter->pdev,
3463 adapter->msix_entries,
3464 numvecs,
3465 numvecs);
3466 if (err > 0)
3467 return;
3468
3469 kfree(adapter->msix_entries);
3470 adapter->msix_entries = NULL;
3471
3472 igc_reset_interrupt_capability(adapter);
3473
3474msi_only:
3475 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3476
3477 adapter->rss_queues = 1;
3478 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3479 adapter->num_rx_queues = 1;
3480 adapter->num_tx_queues = 1;
3481 adapter->num_q_vectors = 1;
3482 if (!pci_enable_msi(adapter->pdev))
3483 adapter->flags |= IGC_FLAG_HAS_MSI;
3484}
3485
3486static void igc_add_ring(struct igc_ring *ring,
3487 struct igc_ring_container *head)
3488{
3489 head->ring = ring;
3490 head->count++;
3491}
3492
3493/**
3494 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3495 * @adapter: board private structure to initialize
3496 * @v_count: q_vectors allocated on adapter, used for ring interleaving
3497 * @v_idx: index of vector in adapter struct
3498 * @txr_count: total number of Tx rings to allocate
3499 * @txr_idx: index of first Tx ring to allocate
3500 * @rxr_count: total number of Rx rings to allocate
3501 * @rxr_idx: index of first Rx ring to allocate
3502 *
3503 * We allocate one q_vector. If allocation fails we return -ENOMEM.
3504 */
3505static int igc_alloc_q_vector(struct igc_adapter *adapter,
3506 unsigned int v_count, unsigned int v_idx,
3507 unsigned int txr_count, unsigned int txr_idx,
3508 unsigned int rxr_count, unsigned int rxr_idx)
3509{
3510 struct igc_q_vector *q_vector;
3511 struct igc_ring *ring;
3512 int ring_count;
3513
3514 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
3515 if (txr_count > 1 || rxr_count > 1)
3516 return -ENOMEM;
3517
3518 ring_count = txr_count + rxr_count;
3519
3520 /* allocate q_vector and rings */
3521 q_vector = adapter->q_vector[v_idx];
3522 if (!q_vector)
3523 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3524 GFP_KERNEL);
3525 else
3526 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3527 if (!q_vector)
3528 return -ENOMEM;
3529
3530 /* initialize NAPI */
3531 netif_napi_add(adapter->netdev, &q_vector->napi,
3532 igc_poll, 64);
3533
3534 /* tie q_vector and adapter together */
3535 adapter->q_vector[v_idx] = q_vector;
3536 q_vector->adapter = adapter;
3537
3538 /* initialize work limits */
3539 q_vector->tx.work_limit = adapter->tx_work_limit;
3540
3541 /* initialize ITR configuration */
3542 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3543 q_vector->itr_val = IGC_START_ITR;
3544
3545 /* initialize pointer to rings */
3546 ring = q_vector->ring;
3547
3548 /* initialize ITR */
3549 if (rxr_count) {
3550 /* rx or rx/tx vector */
3551 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3552 q_vector->itr_val = adapter->rx_itr_setting;
3553 } else {
3554 /* tx only vector */
3555 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3556 q_vector->itr_val = adapter->tx_itr_setting;
3557 }
3558
3559 if (txr_count) {
3560 /* assign generic ring traits */
3561 ring->dev = &adapter->pdev->dev;
3562 ring->netdev = adapter->netdev;
3563
3564 /* configure backlink on ring */
3565 ring->q_vector = q_vector;
3566
3567 /* update q_vector Tx values */
3568 igc_add_ring(ring, &q_vector->tx);
3569
3570 /* apply Tx specific ring traits */
3571 ring->count = adapter->tx_ring_count;
3572 ring->queue_index = txr_idx;
3573
3574 /* assign ring to adapter */
3575 adapter->tx_ring[txr_idx] = ring;
3576
3577 /* push pointer to next ring */
3578 ring++;
3579 }
3580
3581 if (rxr_count) {
3582 /* assign generic ring traits */
3583 ring->dev = &adapter->pdev->dev;
3584 ring->netdev = adapter->netdev;
3585
3586 /* configure backlink on ring */
3587 ring->q_vector = q_vector;
3588
3589 /* update q_vector Rx values */
3590 igc_add_ring(ring, &q_vector->rx);
3591
3592 /* apply Rx specific ring traits */
3593 ring->count = adapter->rx_ring_count;
3594 ring->queue_index = rxr_idx;
3595
3596 /* assign ring to adapter */
3597 adapter->rx_ring[rxr_idx] = ring;
3598 }
3599
3600 return 0;
3601}
3602
3603/**
3604 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3605 * @adapter: board private structure to initialize
3606 *
3607 * We allocate one q_vector per queue interrupt. If allocation fails we
3608 * return -ENOMEM.
3609 */
3610static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3611{
3612 int rxr_remaining = adapter->num_rx_queues;
3613 int txr_remaining = adapter->num_tx_queues;
3614 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3615 int q_vectors = adapter->num_q_vectors;
3616 int err;
3617
3618 if (q_vectors >= (rxr_remaining + txr_remaining)) {
3619 for (; rxr_remaining; v_idx++) {
3620 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3621 0, 0, 1, rxr_idx);
3622
3623 if (err)
3624 goto err_out;
3625
3626 /* update counts and index */
3627 rxr_remaining--;
3628 rxr_idx++;
3629 }
3630 }
3631
3632 for (; v_idx < q_vectors; v_idx++) {
3633 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3634 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3635
3636 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3637 tqpv, txr_idx, rqpv, rxr_idx);
3638
3639 if (err)
3640 goto err_out;
3641
3642 /* update counts and index */
3643 rxr_remaining -= rqpv;
3644 txr_remaining -= tqpv;
3645 rxr_idx++;
3646 txr_idx++;
3647 }
3648
3649 return 0;
3650
3651err_out:
3652 adapter->num_tx_queues = 0;
3653 adapter->num_rx_queues = 0;
3654 adapter->num_q_vectors = 0;
3655
3656 while (v_idx--)
3657 igc_free_q_vector(adapter, v_idx);
3658
3659 return -ENOMEM;
3660}
3661
3662/**
3663 * igc_cache_ring_register - Descriptor ring to register mapping
3664 * @adapter: board private structure to initialize
3665 *
3666 * Once we know the feature-set enabled for the device, we'll cache
3667 * the register offset the descriptor ring is assigned to.
3668 */
3669static void igc_cache_ring_register(struct igc_adapter *adapter)
3670{
3671 int i = 0, j = 0;
3672
3673 switch (adapter->hw.mac.type) {
3674 case igc_i225:
3675 /* Fall through */
3676 default:
3677 for (; i < adapter->num_rx_queues; i++)
3678 adapter->rx_ring[i]->reg_idx = i;
3679 for (; j < adapter->num_tx_queues; j++)
3680 adapter->tx_ring[j]->reg_idx = j;
3681 break;
3682 }
3683}
3684
3685/**
3686 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3687 * @adapter: Pointer to adapter structure
3688 *
3689 * This function initializes the interrupts and allocates all of the queues.
3690 */
3691static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3692{
3693 struct pci_dev *pdev = adapter->pdev;
3694 int err = 0;
3695
3696 igc_set_interrupt_capability(adapter, msix);
3697
3698 err = igc_alloc_q_vectors(adapter);
3699 if (err) {
3700 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
3701 goto err_alloc_q_vectors;
3702 }
3703
3704 igc_cache_ring_register(adapter);
3705
3706 return 0;
3707
3708err_alloc_q_vectors:
3709 igc_reset_interrupt_capability(adapter);
3710 return err;
3711}
3712
3713static void igc_free_irq(struct igc_adapter *adapter)
3714{
3715 if (adapter->msix_entries) {
3716 int vector = 0, i;
3717
3718 free_irq(adapter->msix_entries[vector++].vector, adapter);
3719
3720 for (i = 0; i < adapter->num_q_vectors; i++)
3721 free_irq(adapter->msix_entries[vector++].vector,
3722 adapter->q_vector[i]);
3723 } else {
3724 free_irq(adapter->pdev->irq, adapter);
3725 }
3726}
3727
3728/**
3729 * igc_irq_disable - Mask off interrupt generation on the NIC
3730 * @adapter: board private structure
3731 */
3732static void igc_irq_disable(struct igc_adapter *adapter)
3733{
3734 struct igc_hw *hw = &adapter->hw;
3735
3736 if (adapter->msix_entries) {
3737 u32 regval = rd32(IGC_EIAM);
3738
3739 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3740 wr32(IGC_EIMC, adapter->eims_enable_mask);
3741 regval = rd32(IGC_EIAC);
3742 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3743 }
3744
3745 wr32(IGC_IAM, 0);
3746 wr32(IGC_IMC, ~0);
3747 wrfl();
3748
3749 if (adapter->msix_entries) {
3750 int vector = 0, i;
3751
3752 synchronize_irq(adapter->msix_entries[vector++].vector);
3753
3754 for (i = 0; i < adapter->num_q_vectors; i++)
3755 synchronize_irq(adapter->msix_entries[vector++].vector);
3756 } else {
3757 synchronize_irq(adapter->pdev->irq);
3758 }
3759}
3760
3761/**
3762 * igc_irq_enable - Enable default interrupt generation settings
3763 * @adapter: board private structure
3764 */
3765static void igc_irq_enable(struct igc_adapter *adapter)
3766{
3767 struct igc_hw *hw = &adapter->hw;
3768
3769 if (adapter->msix_entries) {
3770 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3771 u32 regval = rd32(IGC_EIAC);
3772
3773 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3774 regval = rd32(IGC_EIAM);
3775 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3776 wr32(IGC_EIMS, adapter->eims_enable_mask);
3777 wr32(IGC_IMS, ims);
3778 } else {
3779 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3780 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3781 }
3782}
3783
3784/**
3785 * igc_request_irq - initialize interrupts
3786 * @adapter: Pointer to adapter structure
3787 *
3788 * Attempts to configure interrupts using the best available
3789 * capabilities of the hardware and kernel.
3790 */
3791static int igc_request_irq(struct igc_adapter *adapter)
3792{
3793 struct net_device *netdev = adapter->netdev;
3794 struct pci_dev *pdev = adapter->pdev;
3795 int err = 0;
3796
3797 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
3798 err = igc_request_msix(adapter);
3799 if (!err)
3800 goto request_done;
3801 /* fall back to MSI */
3802 igc_free_all_tx_resources(adapter);
3803 igc_free_all_rx_resources(adapter);
3804
3805 igc_clear_interrupt_scheme(adapter);
3806 err = igc_init_interrupt_scheme(adapter, false);
3807 if (err)
3808 goto request_done;
3809 igc_setup_all_tx_resources(adapter);
3810 igc_setup_all_rx_resources(adapter);
3811 igc_configure(adapter);
3812 }
3813
3814 igc_assign_vector(adapter->q_vector[0], 0);
3815
3816 if (adapter->flags & IGC_FLAG_HAS_MSI) {
3817 err = request_irq(pdev->irq, &igc_intr_msi, 0,
3818 netdev->name, adapter);
3819 if (!err)
3820 goto request_done;
3821
3822 /* fall back to legacy interrupts */
3823 igc_reset_interrupt_capability(adapter);
3824 adapter->flags &= ~IGC_FLAG_HAS_MSI;
3825 }
3826
3827 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
3828 netdev->name, adapter);
3829
3830 if (err)
3831 dev_err(&pdev->dev, "Error %d getting interrupt\n",
3832 err);
3833
3834request_done:
3835 return err;
3836}
3837
3838static void igc_write_itr(struct igc_q_vector *q_vector)
3839{
3840 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
3841
3842 if (!q_vector->set_itr)
3843 return;
3844
3845 if (!itr_val)
3846 itr_val = IGC_ITR_VAL_MASK;
3847
3848 itr_val |= IGC_EITR_CNT_IGNR;
3849
3850 writel(itr_val, q_vector->itr_register);
3851 q_vector->set_itr = 0;
3852}
3853
3854/**
3855 * igc_open - Called when a network interface is made active
3856 * @netdev: network interface device structure
3857 *
3858 * Returns 0 on success, negative value on failure
3859 *
3860 * The open entry point is called when a network interface is made
3861 * active by the system (IFF_UP). At this point all resources needed
3862 * for transmit and receive operations are allocated, the interrupt
3863 * handler is registered with the OS, the watchdog timer is started,
3864 * and the stack is notified that the interface is ready.
3865 */
3866static int __igc_open(struct net_device *netdev, bool resuming)
3867{
3868 struct igc_adapter *adapter = netdev_priv(netdev);
3869 struct igc_hw *hw = &adapter->hw;
3870 int err = 0;
3871 int i = 0;
3872
3873 /* disallow open during test */
3874
3875 if (test_bit(__IGC_TESTING, &adapter->state)) {
3876 WARN_ON(resuming);
3877 return -EBUSY;
3878 }
3879
3880 netif_carrier_off(netdev);
3881
3882 /* allocate transmit descriptors */
3883 err = igc_setup_all_tx_resources(adapter);
3884 if (err)
3885 goto err_setup_tx;
3886
3887 /* allocate receive descriptors */
3888 err = igc_setup_all_rx_resources(adapter);
3889 if (err)
3890 goto err_setup_rx;
3891
3892 igc_power_up_link(adapter);
3893
3894 igc_configure(adapter);
3895
3896 err = igc_request_irq(adapter);
3897 if (err)
3898 goto err_req_irq;
3899
3900 /* Notify the stack of the actual queue counts. */
3901 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3902 if (err)
3903 goto err_set_queues;
3904
3905 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3906 if (err)
3907 goto err_set_queues;
3908
3909 clear_bit(__IGC_DOWN, &adapter->state);
3910
3911 for (i = 0; i < adapter->num_q_vectors; i++)
3912 napi_enable(&adapter->q_vector[i]->napi);
3913
3914 /* Clear any pending interrupts. */
3915 rd32(IGC_ICR);
3916 igc_irq_enable(adapter);
3917
3918 netif_tx_start_all_queues(netdev);
3919
3920 /* start the watchdog. */
3921 hw->mac.get_link_status = 1;
3922 schedule_work(&adapter->watchdog_task);
3923
3924 return IGC_SUCCESS;
3925
3926err_set_queues:
3927 igc_free_irq(adapter);
3928err_req_irq:
3929 igc_release_hw_control(adapter);
3930 igc_power_down_link(adapter);
3931 igc_free_all_rx_resources(adapter);
3932err_setup_rx:
3933 igc_free_all_tx_resources(adapter);
3934err_setup_tx:
3935 igc_reset(adapter);
3936
3937 return err;
3938}
3939
3940static int igc_open(struct net_device *netdev)
3941{
3942 return __igc_open(netdev, false);
3943}
3944
3945/**
3946 * igc_close - Disables a network interface
3947 * @netdev: network interface device structure
3948 *
3949 * Returns 0, this is not allowed to fail
3950 *
3951 * The close entry point is called when an interface is de-activated
3952 * by the OS. The hardware is still under the driver's control, but
3953 * needs to be disabled. A global MAC reset is issued to stop the
3954 * hardware, and all transmit and receive resources are freed.
3955 */
3956static int __igc_close(struct net_device *netdev, bool suspending)
3957{
3958 struct igc_adapter *adapter = netdev_priv(netdev);
3959
3960 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
3961
3962 igc_down(adapter);
3963
3964 igc_release_hw_control(adapter);
3965
3966 igc_free_irq(adapter);
3967
3968 igc_free_all_tx_resources(adapter);
3969 igc_free_all_rx_resources(adapter);
3970
3971 return 0;
3972}
3973
3974static int igc_close(struct net_device *netdev)
3975{
3976 if (netif_device_present(netdev) || netdev->dismantle)
3977 return __igc_close(netdev, false);
3978 return 0;
3979}
3980
3981static const struct net_device_ops igc_netdev_ops = {
3982 .ndo_open = igc_open,
3983 .ndo_stop = igc_close,
3984 .ndo_start_xmit = igc_xmit_frame,
3985 .ndo_set_mac_address = igc_set_mac,
3986 .ndo_change_mtu = igc_change_mtu,
3987 .ndo_get_stats = igc_get_stats,
3988 .ndo_fix_features = igc_fix_features,
3989 .ndo_set_features = igc_set_features,
3990 .ndo_features_check = igc_features_check,
3991};
3992
3993/* PCIe configuration access */
3994void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
3995{
3996 struct igc_adapter *adapter = hw->back;
3997
3998 pci_read_config_word(adapter->pdev, reg, value);
3999}
4000
4001void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4002{
4003 struct igc_adapter *adapter = hw->back;
4004
4005 pci_write_config_word(adapter->pdev, reg, *value);
4006}
4007
4008s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4009{
4010 struct igc_adapter *adapter = hw->back;
4011
4012 if (!pci_is_pcie(adapter->pdev))
4013 return -IGC_ERR_CONFIG;
4014
4015 pcie_capability_read_word(adapter->pdev, reg, value);
4016
4017 return IGC_SUCCESS;
4018}
4019
4020s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4021{
4022 struct igc_adapter *adapter = hw->back;
4023
4024 if (!pci_is_pcie(adapter->pdev))
4025 return -IGC_ERR_CONFIG;
4026
4027 pcie_capability_write_word(adapter->pdev, reg, *value);
4028
4029 return IGC_SUCCESS;
4030}
4031
4032u32 igc_rd32(struct igc_hw *hw, u32 reg)
4033{
4034 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
4035 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
4036 u32 value = 0;
4037
4038 if (IGC_REMOVED(hw_addr))
4039 return ~value;
4040
4041 value = readl(&hw_addr[reg]);
4042
4043 /* reads should not return all F's */
4044 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
4045 struct net_device *netdev = igc->netdev;
4046
4047 hw->hw_addr = NULL;
4048 netif_device_detach(netdev);
4049 netdev_err(netdev, "PCIe link lost, device now detached\n");
4050 WARN(pci_device_is_present(igc->pdev),
4051 "igc: Failed to read reg 0x%x!\n", reg);
4052 }
4053
4054 return value;
4055}
4056
4057int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
4058{
4059 struct pci_dev *pdev = adapter->pdev;
4060 struct igc_mac_info *mac = &adapter->hw.mac;
4061
4062 mac->autoneg = 0;
4063
4064 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4065 * for the switch() below to work
4066 */
4067 if ((spd & 1) || (dplx & ~1))
4068 goto err_inval;
4069
4070 switch (spd + dplx) {
4071 case SPEED_10 + DUPLEX_HALF:
4072 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4073 break;
4074 case SPEED_10 + DUPLEX_FULL:
4075 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4076 break;
4077 case SPEED_100 + DUPLEX_HALF:
4078 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4079 break;
4080 case SPEED_100 + DUPLEX_FULL:
4081 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4082 break;
4083 case SPEED_1000 + DUPLEX_FULL:
4084 mac->autoneg = 1;
4085 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4086 break;
4087 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4088 goto err_inval;
4089 case SPEED_2500 + DUPLEX_FULL:
4090 mac->autoneg = 1;
4091 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
4092 break;
4093 case SPEED_2500 + DUPLEX_HALF: /* not supported */
4094 default:
4095 goto err_inval;
4096 }
4097
4098 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4099 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4100
4101 return 0;
4102
4103err_inval:
4104 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
4105 return -EINVAL;
4106}
4107
4108/**
4109 * igc_probe - Device Initialization Routine
4110 * @pdev: PCI device information struct
4111 * @ent: entry in igc_pci_tbl
4112 *
4113 * Returns 0 on success, negative on failure
4114 *
4115 * igc_probe initializes an adapter identified by a pci_dev structure.
4116 * The OS initialization, configuring the adapter private structure,
4117 * and a hardware reset occur.
4118 */
4119static int igc_probe(struct pci_dev *pdev,
4120 const struct pci_device_id *ent)
4121{
4122 struct igc_adapter *adapter;
4123 struct net_device *netdev;
4124 struct igc_hw *hw;
4125 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
4126 int err;
4127
4128 err = pci_enable_device_mem(pdev);
4129 if (err)
4130 return err;
4131
4132 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
4133 if (!err) {
4134 err = dma_set_coherent_mask(&pdev->dev,
4135 DMA_BIT_MASK(64));
4136 } else {
4137 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
4138 if (err) {
4139 err = dma_set_coherent_mask(&pdev->dev,
4140 DMA_BIT_MASK(32));
4141 if (err) {
4142 dev_err(&pdev->dev, "igc: Wrong DMA config\n");
4143 goto err_dma;
4144 }
4145 }
4146 }
4147
4148 err = pci_request_selected_regions(pdev,
4149 pci_select_bars(pdev,
4150 IORESOURCE_MEM),
4151 igc_driver_name);
4152 if (err)
4153 goto err_pci_reg;
4154
4155 pci_enable_pcie_error_reporting(pdev);
4156
4157 pci_set_master(pdev);
4158
4159 err = -ENOMEM;
4160 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
4161 IGC_MAX_TX_QUEUES);
4162
4163 if (!netdev)
4164 goto err_alloc_etherdev;
4165
4166 SET_NETDEV_DEV(netdev, &pdev->dev);
4167
4168 pci_set_drvdata(pdev, netdev);
4169 adapter = netdev_priv(netdev);
4170 adapter->netdev = netdev;
4171 adapter->pdev = pdev;
4172 hw = &adapter->hw;
4173 hw->back = adapter;
4174 adapter->port_num = hw->bus.func;
4175 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4176
4177 err = pci_save_state(pdev);
4178 if (err)
4179 goto err_ioremap;
4180
4181 err = -EIO;
4182 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
4183 pci_resource_len(pdev, 0));
4184 if (!adapter->io_addr)
4185 goto err_ioremap;
4186
4187 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
4188 hw->hw_addr = adapter->io_addr;
4189
4190 netdev->netdev_ops = &igc_netdev_ops;
4191 igc_set_ethtool_ops(netdev);
4192 netdev->watchdog_timeo = 5 * HZ;
4193
4194 netdev->mem_start = pci_resource_start(pdev, 0);
4195 netdev->mem_end = pci_resource_end(pdev, 0);
4196
4197 /* PCI config space info */
4198 hw->vendor_id = pdev->vendor;
4199 hw->device_id = pdev->device;
4200 hw->revision_id = pdev->revision;
4201 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4202 hw->subsystem_device_id = pdev->subsystem_device;
4203
4204 /* Copy the default MAC and PHY function pointers */
4205 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4206 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4207
4208 /* Initialize skew-specific constants */
4209 err = ei->get_invariants(hw);
4210 if (err)
4211 goto err_sw_init;
4212
4213 /* Add supported features to the features list*/
4214 netdev->features |= NETIF_F_HW_CSUM;
4215
4216 /* setup the private structure */
4217 err = igc_sw_init(adapter);
4218 if (err)
4219 goto err_sw_init;
4220
4221 /* copy netdev features into list of user selectable features */
4222 netdev->hw_features |= NETIF_F_NTUPLE;
4223 netdev->hw_features |= netdev->features;
4224
4225 /* MTU range: 68 - 9216 */
4226 netdev->min_mtu = ETH_MIN_MTU;
4227 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
4228
4229 /* before reading the NVM, reset the controller to put the device in a
4230 * known good starting state
4231 */
4232 hw->mac.ops.reset_hw(hw);
4233
4234 if (igc_get_flash_presence_i225(hw)) {
4235 if (hw->nvm.ops.validate(hw) < 0) {
4236 dev_err(&pdev->dev,
4237 "The NVM Checksum Is Not Valid\n");
4238 err = -EIO;
4239 goto err_eeprom;
4240 }
4241 }
4242
4243 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
4244 /* copy the MAC address out of the NVM */
4245 if (hw->mac.ops.read_mac_addr(hw))
4246 dev_err(&pdev->dev, "NVM Read Error\n");
4247 }
4248
4249 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
4250
4251 if (!is_valid_ether_addr(netdev->dev_addr)) {
4252 dev_err(&pdev->dev, "Invalid MAC Address\n");
4253 err = -EIO;
4254 goto err_eeprom;
4255 }
4256
4257 /* configure RXPBSIZE and TXPBSIZE */
4258 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
4259 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
4260
4261 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
4262 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
4263
4264 INIT_WORK(&adapter->reset_task, igc_reset_task);
4265 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
4266
4267 /* Initialize link properties that are user-changeable */
4268 adapter->fc_autoneg = true;
4269 hw->mac.autoneg = true;
4270 hw->phy.autoneg_advertised = 0xaf;
4271
4272 hw->fc.requested_mode = igc_fc_default;
4273 hw->fc.current_mode = igc_fc_default;
4274
4275 /* reset the hardware with the new settings */
4276 igc_reset(adapter);
4277
4278 /* let the f/w know that the h/w is now under the control of the
4279 * driver.
4280 */
4281 igc_get_hw_control(adapter);
4282
4283 strncpy(netdev->name, "eth%d", IFNAMSIZ);
4284 err = register_netdev(netdev);
4285 if (err)
4286 goto err_register;
4287
4288 /* carrier off reporting is important to ethtool even BEFORE open */
4289 netif_carrier_off(netdev);
4290
4291 /* Check if Media Autosense is enabled */
4292 adapter->ei = *ei;
4293
4294 /* print pcie link status and MAC address */
4295 pcie_print_link_status(pdev);
4296 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
4297
4298 return 0;
4299
4300err_register:
4301 igc_release_hw_control(adapter);
4302err_eeprom:
4303 if (!igc_check_reset_block(hw))
4304 igc_reset_phy(hw);
4305err_sw_init:
4306 igc_clear_interrupt_scheme(adapter);
4307 iounmap(adapter->io_addr);
4308err_ioremap:
4309 free_netdev(netdev);
4310err_alloc_etherdev:
4311 pci_release_selected_regions(pdev,
4312 pci_select_bars(pdev, IORESOURCE_MEM));
4313err_pci_reg:
4314err_dma:
4315 pci_disable_device(pdev);
4316 return err;
4317}
4318
4319/**
4320 * igc_remove - Device Removal Routine
4321 * @pdev: PCI device information struct
4322 *
4323 * igc_remove is called by the PCI subsystem to alert the driver
4324 * that it should release a PCI device. This could be caused by a
4325 * Hot-Plug event, or because the driver is going to be removed from
4326 * memory.
4327 */
4328static void igc_remove(struct pci_dev *pdev)
4329{
4330 struct net_device *netdev = pci_get_drvdata(pdev);
4331 struct igc_adapter *adapter = netdev_priv(netdev);
4332
4333 set_bit(__IGC_DOWN, &adapter->state);
4334
4335 del_timer_sync(&adapter->watchdog_timer);
4336 del_timer_sync(&adapter->phy_info_timer);
4337
4338 cancel_work_sync(&adapter->reset_task);
4339 cancel_work_sync(&adapter->watchdog_task);
4340
4341 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4342 * would have already happened in close and is redundant.
4343 */
4344 igc_release_hw_control(adapter);
4345 unregister_netdev(netdev);
4346
4347 igc_clear_interrupt_scheme(adapter);
4348 pci_iounmap(pdev, adapter->io_addr);
4349 pci_release_mem_regions(pdev);
4350
4351 kfree(adapter->mac_table);
4352 kfree(adapter->shadow_vfta);
4353 free_netdev(netdev);
4354
4355 pci_disable_pcie_error_reporting(pdev);
4356
4357 pci_disable_device(pdev);
4358}
4359
4360static struct pci_driver igc_driver = {
4361 .name = igc_driver_name,
4362 .id_table = igc_pci_tbl,
4363 .probe = igc_probe,
4364 .remove = igc_remove,
4365};
4366
4367void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4368 const u32 max_rss_queues)
4369{
4370 /* Determine if we need to pair queues. */
4371 /* If rss_queues > half of max_rss_queues, pair the queues in
4372 * order to conserve interrupts due to limited supply.
4373 */
4374 if (adapter->rss_queues > (max_rss_queues / 2))
4375 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4376 else
4377 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4378}
4379
4380unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4381{
4382 unsigned int max_rss_queues;
4383
4384 /* Determine the maximum number of RSS queues supported. */
4385 max_rss_queues = IGC_MAX_RX_QUEUES;
4386
4387 return max_rss_queues;
4388}
4389
4390static void igc_init_queue_configuration(struct igc_adapter *adapter)
4391{
4392 u32 max_rss_queues;
4393
4394 max_rss_queues = igc_get_max_rss_queues(adapter);
4395 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4396
4397 igc_set_flag_queue_pairs(adapter, max_rss_queues);
4398}
4399
4400/**
4401 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4402 * @adapter: board private structure to initialize
4403 *
4404 * igc_sw_init initializes the Adapter private data structure.
4405 * Fields are initialized based on PCI device information and
4406 * OS network device settings (MTU size).
4407 */
4408static int igc_sw_init(struct igc_adapter *adapter)
4409{
4410 struct net_device *netdev = adapter->netdev;
4411 struct pci_dev *pdev = adapter->pdev;
4412 struct igc_hw *hw = &adapter->hw;
4413
4414 int size = sizeof(struct igc_mac_addr) * hw->mac.rar_entry_count;
4415
4416 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4417
4418 /* set default ring sizes */
4419 adapter->tx_ring_count = IGC_DEFAULT_TXD;
4420 adapter->rx_ring_count = IGC_DEFAULT_RXD;
4421
4422 /* set default ITR values */
4423 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4424 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4425
4426 /* set default work limits */
4427 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4428
4429 /* adjust max frame to be at least the size of a standard frame */
4430 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4431 VLAN_HLEN;
4432 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4433
4434 spin_lock_init(&adapter->nfc_lock);
4435 spin_lock_init(&adapter->stats64_lock);
4436 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4437 adapter->flags |= IGC_FLAG_HAS_MSIX;
4438
4439 adapter->mac_table = kzalloc(size, GFP_ATOMIC);
4440 if (!adapter->mac_table)
4441 return -ENOMEM;
4442
4443 igc_init_queue_configuration(adapter);
4444
4445 /* This call may decrease the number of queues */
4446 if (igc_init_interrupt_scheme(adapter, true)) {
4447 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4448 return -ENOMEM;
4449 }
4450
4451 /* Explicitly disable IRQ since the NIC can be in any state. */
4452 igc_irq_disable(adapter);
4453
4454 set_bit(__IGC_DOWN, &adapter->state);
4455
4456 return 0;
4457}
4458
4459/**
4460 * igc_reinit_queues - return error
4461 * @adapter: pointer to adapter structure
4462 */
4463int igc_reinit_queues(struct igc_adapter *adapter)
4464{
4465 struct net_device *netdev = adapter->netdev;
4466 struct pci_dev *pdev = adapter->pdev;
4467 int err = 0;
4468
4469 if (netif_running(netdev))
4470 igc_close(netdev);
4471
4472 igc_reset_interrupt_capability(adapter);
4473
4474 if (igc_init_interrupt_scheme(adapter, true)) {
4475 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4476 return -ENOMEM;
4477 }
4478
4479 if (netif_running(netdev))
4480 err = igc_open(netdev);
4481
4482 return err;
4483}
4484
4485/**
4486 * igc_get_hw_dev - return device
4487 * @hw: pointer to hardware structure
4488 *
4489 * used by hardware layer to print debugging information
4490 */
4491struct net_device *igc_get_hw_dev(struct igc_hw *hw)
4492{
4493 struct igc_adapter *adapter = hw->back;
4494
4495 return adapter->netdev;
4496}
4497
4498/**
4499 * igc_init_module - Driver Registration Routine
4500 *
4501 * igc_init_module is the first routine called when the driver is
4502 * loaded. All it does is register with the PCI subsystem.
4503 */
4504static int __init igc_init_module(void)
4505{
4506 int ret;
4507
4508 pr_info("%s - version %s\n",
4509 igc_driver_string, igc_driver_version);
4510
4511 pr_info("%s\n", igc_copyright);
4512
4513 ret = pci_register_driver(&igc_driver);
4514 return ret;
4515}
4516
4517module_init(igc_init_module);
4518
4519/**
4520 * igc_exit_module - Driver Exit Cleanup Routine
4521 *
4522 * igc_exit_module is called just before the driver is removed
4523 * from memory.
4524 */
4525static void __exit igc_exit_module(void)
4526{
4527 pci_unregister_driver(&igc_driver);
4528}
4529
4530module_exit(igc_exit_module);
4531/* igc_main.c */