Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice.h"
   5#include "ice_base.h"
   6#include "ice_flow.h"
   7#include "ice_lib.h"
   8#include "ice_fltr.h"
   9#include "ice_dcb_lib.h"
  10#include "ice_devlink.h"
  11
  12/**
  13 * ice_vsi_type_str - maps VSI type enum to string equivalents
  14 * @vsi_type: VSI type enum
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  15 */
  16const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
 
  17{
  18	switch (vsi_type) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  19	case ICE_VSI_PF:
  20		return "ICE_VSI_PF";
 
  21	case ICE_VSI_VF:
  22		return "ICE_VSI_VF";
  23	case ICE_VSI_CTRL:
  24		return "ICE_VSI_CTRL";
  25	case ICE_VSI_LB:
  26		return "ICE_VSI_LB";
  27	default:
  28		return "unknown";
  29	}
 
 
 
 
 
 
 
 
 
 
 
 
  30}
  31
  32/**
  33 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34 * @vsi: the VSI being configured
  35 * @ena: start or stop the Rx rings
  36 *
  37 * First enable/disable all of the Rx rings, flush any remaining writes, and
  38 * then verify that they have all been enabled/disabled successfully. This will
  39 * let all of the register writes complete when enabling/disabling the Rx rings
  40 * before waiting for the change in hardware to complete.
  41 */
  42static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
 
 
 
  43{
 
 
 
  44	int ret = 0;
  45	u16 i;
 
 
  46
  47	for (i = 0; i < vsi->num_rxq; i++)
  48		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
 
 
 
 
 
 
 
 
  49
  50	ice_flush(&vsi->back->hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51
  52	for (i = 0; i < vsi->num_rxq; i++) {
  53		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
  54		if (ret)
  55			break;
  56	}
  57
  58	return ret;
  59}
  60
  61/**
  62 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
  63 * @vsi: VSI pointer
  64 *
  65 * On error: returns error code (negative)
  66 * On success: returns 0
  67 */
  68static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
  69{
  70	struct ice_pf *pf = vsi->back;
  71	struct device *dev;
  72
  73	dev = ice_pf_to_dev(pf);
  74
  75	/* allocate memory for both Tx and Rx ring pointers */
  76	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
  77				     sizeof(*vsi->tx_rings), GFP_KERNEL);
  78	if (!vsi->tx_rings)
  79		return -ENOMEM;
  80
  81	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
  82				     sizeof(*vsi->rx_rings), GFP_KERNEL);
  83	if (!vsi->rx_rings)
  84		goto err_rings;
  85
  86	/* XDP will have vsi->alloc_txq Tx queues as well, so double the size */
  87	vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq),
  88				    sizeof(*vsi->txq_map), GFP_KERNEL);
  89
  90	if (!vsi->txq_map)
  91		goto err_txq_map;
  92
  93	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
  94				    sizeof(*vsi->rxq_map), GFP_KERNEL);
  95	if (!vsi->rxq_map)
  96		goto err_rxq_map;
  97
 
  98	/* There is no need to allocate q_vectors for a loopback VSI. */
  99	if (vsi->type == ICE_VSI_LB)
 100		return 0;
 101
 102	/* allocate memory for q_vector pointers */
 103	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
 104				      sizeof(*vsi->q_vectors), GFP_KERNEL);
 105	if (!vsi->q_vectors)
 106		goto err_vectors;
 107
 108	vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
 109	if (!vsi->af_xdp_zc_qps)
 110		goto err_zc_qps;
 111
 112	return 0;
 113
 114err_zc_qps:
 115	devm_kfree(dev, vsi->q_vectors);
 116err_vectors:
 117	devm_kfree(dev, vsi->rxq_map);
 118err_rxq_map:
 119	devm_kfree(dev, vsi->txq_map);
 120err_txq_map:
 121	devm_kfree(dev, vsi->rx_rings);
 122err_rings:
 123	devm_kfree(dev, vsi->tx_rings);
 124	return -ENOMEM;
 125}
 126
 127/**
 128 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
 129 * @vsi: the VSI being configured
 130 */
 131static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
 132{
 133	switch (vsi->type) {
 134	case ICE_VSI_PF:
 135	case ICE_VSI_CTRL:
 136	case ICE_VSI_LB:
 137		/* a user could change the values of num_[tr]x_desc using
 138		 * ethtool -G so we should keep those values instead of
 139		 * overwriting them with the defaults.
 140		 */
 141		if (!vsi->num_rx_desc)
 142			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
 143		if (!vsi->num_tx_desc)
 144			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
 145		break;
 146	default:
 147		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
 
 148			vsi->type);
 149		break;
 150	}
 151}
 152
 153/**
 154 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
 155 * @vsi: the VSI being configured
 156 * @vf_id: ID of the VF being configured
 157 *
 158 * Return 0 on success and a negative value on error
 159 */
 160static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
 161{
 162	struct ice_pf *pf = vsi->back;
 163	struct ice_vf *vf = NULL;
 164
 165	if (vsi->type == ICE_VSI_VF)
 166		vsi->vf_id = vf_id;
 167	else
 168		vsi->vf_id = ICE_INVAL_VFID;
 169
 170	switch (vsi->type) {
 171	case ICE_VSI_PF:
 172		if (vsi->req_txq) {
 173			vsi->alloc_txq = vsi->req_txq;
 174			vsi->num_txq = vsi->req_txq;
 175		} else {
 176			vsi->alloc_txq = min3(pf->num_lan_msix,
 177					      ice_get_avail_txq_count(pf),
 178					      (u16)num_online_cpus());
 179		}
 180
 181		pf->num_lan_tx = vsi->alloc_txq;
 182
 183		/* only 1 Rx queue unless RSS is enabled */
 184		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
 185			vsi->alloc_rxq = 1;
 186		} else {
 187			if (vsi->req_rxq) {
 188				vsi->alloc_rxq = vsi->req_rxq;
 189				vsi->num_rxq = vsi->req_rxq;
 190			} else {
 191				vsi->alloc_rxq = min3(pf->num_lan_msix,
 192						      ice_get_avail_rxq_count(pf),
 193						      (u16)num_online_cpus());
 194			}
 195		}
 196
 197		pf->num_lan_rx = vsi->alloc_rxq;
 198
 199		vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
 200					   max_t(int, vsi->alloc_rxq,
 201						 vsi->alloc_txq));
 202		break;
 203	case ICE_VSI_VF:
 204		vf = &pf->vf[vsi->vf_id];
 205		if (vf->num_req_qs)
 206			vf->num_vf_qs = vf->num_req_qs;
 207		vsi->alloc_txq = vf->num_vf_qs;
 208		vsi->alloc_rxq = vf->num_vf_qs;
 209		/* pf->num_msix_per_vf includes (VF miscellaneous vector +
 210		 * data queue interrupts). Since vsi->num_q_vectors is number
 211		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
 212		 * original vector count
 213		 */
 214		vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF;
 215		break;
 216	case ICE_VSI_CTRL:
 217		vsi->alloc_txq = 1;
 218		vsi->alloc_rxq = 1;
 219		vsi->num_q_vectors = 1;
 220		break;
 221	case ICE_VSI_LB:
 222		vsi->alloc_txq = 1;
 223		vsi->alloc_rxq = 1;
 224		break;
 225	default:
 226		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type);
 227		break;
 228	}
 229
 230	ice_vsi_set_num_desc(vsi);
 231}
 232
 233/**
 234 * ice_get_free_slot - get the next non-NULL location index in array
 235 * @array: array to search
 236 * @size: size of the array
 237 * @curr: last known occupied index to be used as a search hint
 238 *
 239 * void * is being used to keep the functionality generic. This lets us use this
 240 * function on any array of pointers.
 241 */
 242static int ice_get_free_slot(void *array, int size, int curr)
 243{
 244	int **tmp_array = (int **)array;
 245	int next;
 246
 247	if (curr < (size - 1) && !tmp_array[curr + 1]) {
 248		next = curr + 1;
 249	} else {
 250		int i = 0;
 251
 252		while ((i < size) && (tmp_array[i]))
 253			i++;
 254		if (i == size)
 255			next = ICE_NO_VSI;
 256		else
 257			next = i;
 258	}
 259	return next;
 260}
 261
 262/**
 263 * ice_vsi_delete - delete a VSI from the switch
 264 * @vsi: pointer to VSI being removed
 265 */
 266static void ice_vsi_delete(struct ice_vsi *vsi)
 267{
 268	struct ice_pf *pf = vsi->back;
 269	struct ice_vsi_ctx *ctxt;
 270	enum ice_status status;
 271
 272	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
 273	if (!ctxt)
 274		return;
 275
 276	if (vsi->type == ICE_VSI_VF)
 277		ctxt->vf_num = vsi->vf_id;
 278	ctxt->vsi_num = vsi->vsi_num;
 279
 280	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
 281
 282	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
 283	if (status)
 284		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n",
 285			vsi->vsi_num, ice_stat_str(status));
 286
 287	kfree(ctxt);
 288}
 289
 290/**
 291 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
 292 * @vsi: pointer to VSI being cleared
 293 */
 294static void ice_vsi_free_arrays(struct ice_vsi *vsi)
 295{
 296	struct ice_pf *pf = vsi->back;
 297	struct device *dev;
 298
 299	dev = ice_pf_to_dev(pf);
 300
 301	if (vsi->af_xdp_zc_qps) {
 302		bitmap_free(vsi->af_xdp_zc_qps);
 303		vsi->af_xdp_zc_qps = NULL;
 304	}
 305	/* free the ring and vector containers */
 306	if (vsi->q_vectors) {
 307		devm_kfree(dev, vsi->q_vectors);
 308		vsi->q_vectors = NULL;
 309	}
 310	if (vsi->tx_rings) {
 311		devm_kfree(dev, vsi->tx_rings);
 312		vsi->tx_rings = NULL;
 313	}
 314	if (vsi->rx_rings) {
 315		devm_kfree(dev, vsi->rx_rings);
 316		vsi->rx_rings = NULL;
 317	}
 318	if (vsi->txq_map) {
 319		devm_kfree(dev, vsi->txq_map);
 320		vsi->txq_map = NULL;
 321	}
 322	if (vsi->rxq_map) {
 323		devm_kfree(dev, vsi->rxq_map);
 324		vsi->rxq_map = NULL;
 325	}
 326}
 327
 328/**
 329 * ice_vsi_clear - clean up and deallocate the provided VSI
 330 * @vsi: pointer to VSI being cleared
 331 *
 332 * This deallocates the VSI's queue resources, removes it from the PF's
 333 * VSI array if necessary, and deallocates the VSI
 334 *
 335 * Returns 0 on success, negative on failure
 336 */
 337static int ice_vsi_clear(struct ice_vsi *vsi)
 338{
 339	struct ice_pf *pf = NULL;
 340	struct device *dev;
 341
 342	if (!vsi)
 343		return 0;
 344
 345	if (!vsi->back)
 346		return -EINVAL;
 347
 348	pf = vsi->back;
 349	dev = ice_pf_to_dev(pf);
 350
 351	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
 352		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
 
 353		return -EINVAL;
 354	}
 355
 356	mutex_lock(&pf->sw_mutex);
 357	/* updates the PF for this cleared VSI */
 358
 359	pf->vsi[vsi->idx] = NULL;
 360	if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
 361		pf->next_vsi = vsi->idx;
 362	if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL &&
 363	    vsi->vf_id != ICE_INVAL_VFID)
 364		pf->next_vsi = vsi->idx;
 365
 366	ice_vsi_free_arrays(vsi);
 367	mutex_unlock(&pf->sw_mutex);
 368	devm_kfree(dev, vsi);
 369
 370	return 0;
 371}
 372
 373/**
 374 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
 375 * @irq: interrupt number
 376 * @data: pointer to a q_vector
 377 */
 378static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
 379{
 380	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 381
 382	if (!q_vector->tx.ring)
 383		return IRQ_HANDLED;
 384
 385#define FDIR_RX_DESC_CLEAN_BUDGET 64
 386	ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET);
 387	ice_clean_ctrl_tx_irq(q_vector->tx.ring);
 388
 389	return IRQ_HANDLED;
 390}
 391
 392/**
 393 * ice_msix_clean_rings - MSIX mode Interrupt Handler
 394 * @irq: interrupt number
 395 * @data: pointer to a q_vector
 396 */
 397static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
 398{
 399	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 400
 401	if (!q_vector->tx.ring && !q_vector->rx.ring)
 402		return IRQ_HANDLED;
 403
 404	q_vector->total_events++;
 405
 406	napi_schedule(&q_vector->napi);
 407
 408	return IRQ_HANDLED;
 409}
 410
 411/**
 412 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
 413 * @pf: board private structure
 414 * @vsi_type: type of VSI
 415 * @vf_id: ID of the VF being configured
 416 *
 417 * returns a pointer to a VSI on success, NULL on failure.
 418 */
 419static struct ice_vsi *
 420ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id)
 421{
 422	struct device *dev = ice_pf_to_dev(pf);
 423	struct ice_vsi *vsi = NULL;
 424
 425	/* Need to protect the allocation of the VSIs at the PF level */
 426	mutex_lock(&pf->sw_mutex);
 427
 428	/* If we have already allocated our maximum number of VSIs,
 429	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
 430	 * is available to be populated
 431	 */
 432	if (pf->next_vsi == ICE_NO_VSI) {
 433		dev_dbg(dev, "out of VSI slots!\n");
 434		goto unlock_pf;
 435	}
 436
 437	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
 438	if (!vsi)
 439		goto unlock_pf;
 440
 441	vsi->type = vsi_type;
 442	vsi->back = pf;
 443	set_bit(ICE_VSI_DOWN, vsi->state);
 
 
 444
 445	if (vsi_type == ICE_VSI_VF)
 446		ice_vsi_set_num_qs(vsi, vf_id);
 447	else
 448		ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
 449
 450	switch (vsi->type) {
 451	case ICE_VSI_PF:
 452		if (ice_vsi_alloc_arrays(vsi))
 453			goto err_rings;
 454
 455		/* Setup default MSIX irq handler for VSI */
 456		vsi->irq_handler = ice_msix_clean_rings;
 457		break;
 458	case ICE_VSI_CTRL:
 459		if (ice_vsi_alloc_arrays(vsi))
 460			goto err_rings;
 461
 462		/* Setup ctrl VSI MSIX irq handler */
 463		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
 464		break;
 465	case ICE_VSI_VF:
 466		if (ice_vsi_alloc_arrays(vsi))
 467			goto err_rings;
 468		break;
 469	case ICE_VSI_LB:
 470		if (ice_vsi_alloc_arrays(vsi))
 471			goto err_rings;
 472		break;
 473	default:
 474		dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
 475		goto unlock_pf;
 476	}
 477
 478	if (vsi->type == ICE_VSI_CTRL && vf_id == ICE_INVAL_VFID) {
 479		/* Use the last VSI slot as the index for PF control VSI */
 480		vsi->idx = pf->num_alloc_vsi - 1;
 481		pf->ctrl_vsi_idx = vsi->idx;
 482		pf->vsi[vsi->idx] = vsi;
 483	} else {
 484		/* fill slot and make note of the index */
 485		vsi->idx = pf->next_vsi;
 486		pf->vsi[pf->next_vsi] = vsi;
 487
 488		/* prepare pf->next_vsi for next use */
 489		pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
 490						 pf->next_vsi);
 491	}
 492
 493	if (vsi->type == ICE_VSI_CTRL && vf_id != ICE_INVAL_VFID)
 494		pf->vf[vf_id].ctrl_vsi_idx = vsi->idx;
 
 495	goto unlock_pf;
 496
 497err_rings:
 498	devm_kfree(dev, vsi);
 499	vsi = NULL;
 500unlock_pf:
 501	mutex_unlock(&pf->sw_mutex);
 502	return vsi;
 503}
 504
 505/**
 506 * ice_alloc_fd_res - Allocate FD resource for a VSI
 507 * @vsi: pointer to the ice_vsi
 508 *
 509 * This allocates the FD resources
 510 *
 511 * Returns 0 on success, -EPERM on no-op or -EIO on failure
 512 */
 513static int ice_alloc_fd_res(struct ice_vsi *vsi)
 514{
 515	struct ice_pf *pf = vsi->back;
 516	u32 g_val, b_val;
 517
 518	/* Flow Director filters are only allocated/assigned to the PF VSI which
 519	 * passes the traffic. The CTRL VSI is only used to add/delete filters
 520	 * so we don't allocate resources to it
 521	 */
 
 
 
 522
 523	/* FD filters from guaranteed pool per VSI */
 524	g_val = pf->hw.func_caps.fd_fltr_guar;
 525	if (!g_val)
 526		return -EPERM;
 527
 528	/* FD filters from best effort pool */
 529	b_val = pf->hw.func_caps.fd_fltr_best_effort;
 530	if (!b_val)
 531		return -EPERM;
 532
 533	if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF))
 534		return -EPERM;
 
 
 
 
 
 
 
 535
 536	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
 537		return -EPERM;
 
 
 
 
 
 
 
 
 538
 539	vsi->num_gfltr = g_val / pf->num_alloc_vsi;
 
 
 
 
 
 
 540
 541	/* each VSI gets same "best_effort" quota */
 542	vsi->num_bfltr = b_val;
 543
 544	if (vsi->type == ICE_VSI_VF) {
 545		vsi->num_gfltr = 0;
 
 
 
 
 
 
 
 
 
 
 546
 547		/* each VSI gets same "best_effort" quota */
 548		vsi->num_bfltr = b_val;
 
 
 
 
 
 549	}
 550
 551	return 0;
 552}
 553
 554/**
 555 * ice_vsi_get_qs - Assign queues from PF to VSI
 556 * @vsi: the VSI to assign queues to
 557 *
 558 * Returns 0 on success and a negative value on error
 559 */
 560static int ice_vsi_get_qs(struct ice_vsi *vsi)
 561{
 562	struct ice_pf *pf = vsi->back;
 563	struct ice_qs_cfg tx_qs_cfg = {
 564		.qs_mutex = &pf->avail_q_mutex,
 565		.pf_map = pf->avail_txqs,
 566		.pf_map_size = pf->max_pf_txqs,
 567		.q_count = vsi->alloc_txq,
 568		.scatter_count = ICE_MAX_SCATTER_TXQS,
 569		.vsi_map = vsi->txq_map,
 570		.vsi_map_offset = 0,
 571		.mapping_mode = ICE_VSI_MAP_CONTIG
 572	};
 573	struct ice_qs_cfg rx_qs_cfg = {
 574		.qs_mutex = &pf->avail_q_mutex,
 575		.pf_map = pf->avail_rxqs,
 576		.pf_map_size = pf->max_pf_rxqs,
 577		.q_count = vsi->alloc_rxq,
 578		.scatter_count = ICE_MAX_SCATTER_RXQS,
 579		.vsi_map = vsi->rxq_map,
 580		.vsi_map_offset = 0,
 581		.mapping_mode = ICE_VSI_MAP_CONTIG
 582	};
 583	int ret;
 584
 585	ret = __ice_vsi_get_qs(&tx_qs_cfg);
 586	if (ret)
 587		return ret;
 588	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
 589
 590	ret = __ice_vsi_get_qs(&rx_qs_cfg);
 591	if (ret)
 592		return ret;
 593	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
 594
 595	return 0;
 596}
 597
 598/**
 599 * ice_vsi_put_qs - Release queues from VSI to PF
 600 * @vsi: the VSI that is going to release queues
 601 */
 602static void ice_vsi_put_qs(struct ice_vsi *vsi)
 603{
 604	struct ice_pf *pf = vsi->back;
 605	int i;
 606
 607	mutex_lock(&pf->avail_q_mutex);
 608
 609	for (i = 0; i < vsi->alloc_txq; i++) {
 610		clear_bit(vsi->txq_map[i], pf->avail_txqs);
 611		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
 612	}
 613
 614	for (i = 0; i < vsi->alloc_rxq; i++) {
 615		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
 616		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
 617	}
 618
 619	mutex_unlock(&pf->avail_q_mutex);
 620}
 621
 622/**
 623 * ice_is_safe_mode
 624 * @pf: pointer to the PF struct
 625 *
 626 * returns true if driver is in safe mode, false otherwise
 627 */
 628bool ice_is_safe_mode(struct ice_pf *pf)
 629{
 630	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
 631}
 632
 633/**
 634 * ice_is_aux_ena
 635 * @pf: pointer to the PF struct
 636 *
 637 * returns true if AUX devices/drivers are supported, false otherwise
 638 */
 639bool ice_is_aux_ena(struct ice_pf *pf)
 640{
 641	return test_bit(ICE_FLAG_AUX_ENA, pf->flags);
 642}
 643
 644/**
 645 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
 646 * @vsi: the VSI being cleaned up
 647 *
 648 * This function deletes RSS input set for all flows that were configured
 649 * for this VSI
 650 */
 651static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
 652{
 653	struct ice_pf *pf = vsi->back;
 654	enum ice_status status;
 655
 656	if (ice_is_safe_mode(pf))
 657		return;
 658
 659	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
 660	if (status)
 661		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n",
 662			vsi->vsi_num, ice_stat_str(status));
 663}
 664
 665/**
 666 * ice_rss_clean - Delete RSS related VSI structures and configuration
 667 * @vsi: the VSI being removed
 668 */
 669static void ice_rss_clean(struct ice_vsi *vsi)
 670{
 671	struct ice_pf *pf = vsi->back;
 672	struct device *dev;
 673
 674	dev = ice_pf_to_dev(pf);
 675
 676	if (vsi->rss_hkey_user)
 677		devm_kfree(dev, vsi->rss_hkey_user);
 678	if (vsi->rss_lut_user)
 679		devm_kfree(dev, vsi->rss_lut_user);
 680
 681	ice_vsi_clean_rss_flow_fld(vsi);
 682	/* remove RSS replay list */
 683	if (!ice_is_safe_mode(pf))
 684		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
 685}
 686
 687/**
 688 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
 689 * @vsi: the VSI being configured
 690 */
 691static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
 692{
 693	struct ice_hw_common_caps *cap;
 694	struct ice_pf *pf = vsi->back;
 695
 696	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
 697		vsi->rss_size = 1;
 698		return;
 699	}
 700
 701	cap = &pf->hw.func_caps.common_cap;
 702	switch (vsi->type) {
 703	case ICE_VSI_PF:
 704		/* PF VSI will inherit RSS instance of PF */
 705		vsi->rss_table_size = (u16)cap->rss_table_size;
 706		vsi->rss_size = min_t(u16, num_online_cpus(),
 707				      BIT(cap->rss_table_entry_width));
 708		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
 709		break;
 710	case ICE_VSI_VF:
 711		/* VF VSI will get a small RSS table.
 712		 * For VSI_LUT, LUT size should be set to 64 bytes.
 713		 */
 714		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
 715		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
 
 716		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
 717		break;
 718	case ICE_VSI_LB:
 719		break;
 720	default:
 721		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
 722			ice_vsi_type_str(vsi->type));
 723		break;
 724	}
 725}
 726
 727/**
 728 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
 729 * @ctxt: the VSI context being set
 730 *
 731 * This initializes a default VSI context for all sections except the Queues.
 732 */
 733static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
 734{
 735	u32 table = 0;
 736
 737	memset(&ctxt->info, 0, sizeof(ctxt->info));
 738	/* VSI's should be allocated from shared pool */
 739	ctxt->alloc_from_pool = true;
 740	/* Src pruning enabled by default */
 741	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
 742	/* Traffic from VSI can be sent to LAN */
 743	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
 744	/* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
 745	 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
 746	 * packets untagged/tagged.
 747	 */
 748	ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
 749				  ICE_AQ_VSI_VLAN_MODE_M) >>
 750				 ICE_AQ_VSI_VLAN_MODE_S);
 751	/* Have 1:1 UP mapping for both ingress/egress tables */
 752	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
 753	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
 754	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
 755	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
 756	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
 757	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
 758	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
 759	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
 760	ctxt->info.ingress_table = cpu_to_le32(table);
 761	ctxt->info.egress_table = cpu_to_le32(table);
 762	/* Have 1:1 UP mapping for outer to inner UP table */
 763	ctxt->info.outer_up_table = cpu_to_le32(table);
 764	/* No Outer tag support outer_tag_flags remains to zero */
 765}
 766
 767/**
 768 * ice_vsi_setup_q_map - Setup a VSI queue map
 769 * @vsi: the VSI being configured
 770 * @ctxt: VSI context structure
 771 */
 772static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
 773{
 774	u16 offset = 0, qmap = 0, tx_count = 0, pow = 0;
 775	u16 num_txq_per_tc, num_rxq_per_tc;
 776	u16 qcount_tx = vsi->alloc_txq;
 777	u16 qcount_rx = vsi->alloc_rxq;
 
 
 778	bool ena_tc0 = false;
 779	u8 netdev_tc = 0;
 780	int i;
 781
 782	/* at least TC0 should be enabled by default */
 783	if (vsi->tc_cfg.numtc) {
 784		if (!(vsi->tc_cfg.ena_tc & BIT(0)))
 785			ena_tc0 = true;
 786	} else {
 787		ena_tc0 = true;
 788	}
 789
 790	if (ena_tc0) {
 791		vsi->tc_cfg.numtc++;
 792		vsi->tc_cfg.ena_tc |= 1;
 793	}
 794
 795	num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
 796	if (!num_rxq_per_tc)
 797		num_rxq_per_tc = 1;
 798	num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
 799	if (!num_txq_per_tc)
 800		num_txq_per_tc = 1;
 801
 802	/* find the (rounded up) power-of-2 of qcount */
 803	pow = (u16)order_base_2(num_rxq_per_tc);
 804
 805	/* TC mapping is a function of the number of Rx queues assigned to the
 806	 * VSI for each traffic class and the offset of these queues.
 807	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
 808	 * queues allocated to TC0. No:of queues is a power-of-2.
 809	 *
 810	 * If TC is not enabled, the queue offset is set to 0, and allocate one
 811	 * queue, this way, traffic for the given TC will be sent to the default
 812	 * queue.
 813	 *
 814	 * Setup number and offset of Rx queues for all TCs for the VSI
 815	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816	ice_for_each_traffic_class(i) {
 817		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
 818			/* TC is not enabled */
 819			vsi->tc_cfg.tc_info[i].qoffset = 0;
 820			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
 821			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
 822			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
 823			ctxt->info.tc_mapping[i] = 0;
 824			continue;
 825		}
 826
 827		/* TC is enabled */
 828		vsi->tc_cfg.tc_info[i].qoffset = offset;
 829		vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
 830		vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
 831		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
 832
 833		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
 834			ICE_AQ_VSI_TC_Q_OFFSET_M) |
 835			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
 836			 ICE_AQ_VSI_TC_Q_NUM_M);
 837		offset += num_rxq_per_tc;
 838		tx_count += num_txq_per_tc;
 839		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
 840	}
 841
 842	/* if offset is non-zero, means it is calculated correctly based on
 843	 * enabled TCs for a given VSI otherwise qcount_rx will always
 844	 * be correct and non-zero because it is based off - VSI's
 845	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
 846	 * at least 1)
 847	 */
 848	if (offset)
 849		vsi->num_rxq = offset;
 850	else
 851		vsi->num_rxq = num_rxq_per_tc;
 852
 853	vsi->num_txq = tx_count;
 854
 855	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
 856		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
 857		/* since there is a chance that num_rxq could have been changed
 858		 * in the above for loop, make num_txq equal to num_rxq.
 859		 */
 860		vsi->num_txq = vsi->num_rxq;
 861	}
 862
 863	/* Rx queue mapping */
 864	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
 865	/* q_mapping buffer holds the info for the first queue allocated for
 866	 * this VSI in the PF space and also the number of queues associated
 867	 * with this VSI.
 868	 */
 869	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
 870	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
 871}
 872
 873/**
 874 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
 875 * @ctxt: the VSI context being set
 876 * @vsi: the VSI being configured
 877 */
 878static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
 879{
 880	u8 dflt_q_group, dflt_q_prio;
 881	u16 dflt_q, report_q, val;
 882
 883	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
 884	    vsi->type != ICE_VSI_VF)
 885		return;
 886
 887	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
 888	ctxt->info.valid_sections |= cpu_to_le16(val);
 889	dflt_q = 0;
 890	dflt_q_group = 0;
 891	report_q = 0;
 892	dflt_q_prio = 0;
 893
 894	/* enable flow director filtering/programming */
 895	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
 896	ctxt->info.fd_options = cpu_to_le16(val);
 897	/* max of allocated flow director filters */
 898	ctxt->info.max_fd_fltr_dedicated =
 899			cpu_to_le16(vsi->num_gfltr);
 900	/* max of shared flow director filters any VSI may program */
 901	ctxt->info.max_fd_fltr_shared =
 902			cpu_to_le16(vsi->num_bfltr);
 903	/* default queue index within the VSI of the default FD */
 904	val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
 905	       ICE_AQ_VSI_FD_DEF_Q_M);
 906	/* target queue or queue group to the FD filter */
 907	val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
 908		ICE_AQ_VSI_FD_DEF_GRP_M);
 909	ctxt->info.fd_def_q = cpu_to_le16(val);
 910	/* queue index on which FD filter completion is reported */
 911	val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
 912	       ICE_AQ_VSI_FD_REPORT_Q_M);
 913	/* priority of the default qindex action */
 914	val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
 915		ICE_AQ_VSI_FD_DEF_PRIORITY_M);
 916	ctxt->info.fd_report_opt = cpu_to_le16(val);
 917}
 918
 919/**
 920 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
 921 * @ctxt: the VSI context being set
 922 * @vsi: the VSI being configured
 923 */
 924static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
 925{
 926	u8 lut_type, hash_type;
 927	struct device *dev;
 928	struct ice_pf *pf;
 929
 930	pf = vsi->back;
 931	dev = ice_pf_to_dev(pf);
 932
 933	switch (vsi->type) {
 934	case ICE_VSI_PF:
 935		/* PF VSI will inherit RSS instance of PF */
 936		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
 937		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
 938		break;
 939	case ICE_VSI_VF:
 940		/* VF VSI will gets a small RSS table which is a VSI LUT type */
 941		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
 942		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
 943		break;
 
 
 
 944	default:
 945		dev_dbg(dev, "Unsupported VSI type %s\n",
 946			ice_vsi_type_str(vsi->type));
 947		return;
 948	}
 949
 950	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
 951				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
 952				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
 953				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
 954}
 955
 956/**
 957 * ice_vsi_init - Create and initialize a VSI
 958 * @vsi: the VSI being configured
 959 * @init_vsi: is this call creating a VSI
 960 *
 961 * This initializes a VSI context depending on the VSI type to be added and
 962 * passes it down to the add_vsi aq command to create a new VSI.
 963 */
 964static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
 965{
 966	struct ice_pf *pf = vsi->back;
 967	struct ice_hw *hw = &pf->hw;
 968	struct ice_vsi_ctx *ctxt;
 969	struct device *dev;
 970	int ret = 0;
 971
 972	dev = ice_pf_to_dev(pf);
 973	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
 974	if (!ctxt)
 975		return -ENOMEM;
 976
 
 977	switch (vsi->type) {
 978	case ICE_VSI_CTRL:
 979	case ICE_VSI_LB:
 
 980	case ICE_VSI_PF:
 981		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
 982		break;
 983	case ICE_VSI_VF:
 984		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
 985		/* VF number here is the absolute VF number (0-255) */
 986		ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
 987		break;
 988	default:
 989		ret = -ENODEV;
 990		goto out;
 991	}
 992
 993	ice_set_dflt_vsi_ctx(ctxt);
 994	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
 995		ice_set_fd_vsi_ctx(ctxt, vsi);
 996	/* if the switch is in VEB mode, allow VSI loopback */
 997	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
 998		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
 999
1000	/* Set LUT type and HASH type if RSS is enabled */
1001	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1002	    vsi->type != ICE_VSI_CTRL) {
1003		ice_set_rss_vsi_ctx(ctxt, vsi);
1004		/* if updating VSI context, make sure to set valid_section:
1005		 * to indicate which section of VSI context being updated
1006		 */
1007		if (!init_vsi)
1008			ctxt->info.valid_sections |=
1009				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1010	}
1011
1012	ctxt->info.sw_id = vsi->port_info->sw_id;
1013	ice_vsi_setup_q_map(vsi, ctxt);
1014	if (!init_vsi) /* means VSI being updated */
1015		/* must to indicate which section of VSI context are
1016		 * being modified
1017		 */
1018		ctxt->info.valid_sections |=
1019			cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1020
1021	/* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off
1022	 * respectively
1023	 */
1024	if (vsi->type == ICE_VSI_VF) {
1025		ctxt->info.valid_sections |=
1026			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1027		if (pf->vf[vsi->vf_id].spoofchk) {
1028			ctxt->info.sec_flags |=
1029				ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
1030				(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
1031				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
1032		} else {
1033			ctxt->info.sec_flags &=
1034				~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
1035				  (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
1036				   ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S));
1037		}
1038	}
1039
1040	/* Allow control frames out of main VSI */
1041	if (vsi->type == ICE_VSI_PF) {
1042		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1043		ctxt->info.valid_sections |=
1044			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1045	}
1046
1047	if (init_vsi) {
1048		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1049		if (ret) {
1050			dev_err(dev, "Add VSI failed, err %d\n", ret);
1051			ret = -EIO;
1052			goto out;
1053		}
1054	} else {
1055		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1056		if (ret) {
1057			dev_err(dev, "Update VSI failed, err %d\n", ret);
1058			ret = -EIO;
1059			goto out;
1060		}
1061	}
1062
1063	/* keep context for update VSI operations */
1064	vsi->info = ctxt->info;
1065
1066	/* record VSI number returned */
1067	vsi->vsi_num = ctxt->vsi_num;
1068
1069out:
1070	kfree(ctxt);
1071	return ret;
1072}
1073
1074/**
1075 * ice_free_res - free a block of resources
1076 * @res: pointer to the resource
1077 * @index: starting index previously returned by ice_get_res
1078 * @id: identifier to track owner
1079 *
1080 * Returns number of resources freed
1081 */
1082int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
1083{
1084	int count = 0;
1085	int i;
1086
1087	if (!res || index >= res->end)
1088		return -EINVAL;
1089
1090	id |= ICE_RES_VALID_BIT;
1091	for (i = index; i < res->end && res->list[i] == id; i++) {
1092		res->list[i] = 0;
1093		count++;
1094	}
 
1095
1096	return count;
 
 
 
 
 
 
 
 
 
 
1097}
1098
1099/**
1100 * ice_search_res - Search the tracker for a block of resources
1101 * @res: pointer to the resource
1102 * @needed: size of the block needed
1103 * @id: identifier to track owner
1104 *
1105 * Returns the base item index of the block, or -ENOMEM for error
1106 */
1107static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
1108{
1109	u16 start = 0, end = 0;
1110
1111	if (needed > res->end)
1112		return -ENOMEM;
1113
1114	id |= ICE_RES_VALID_BIT;
1115
1116	do {
1117		/* skip already allocated entries */
1118		if (res->list[end++] & ICE_RES_VALID_BIT) {
1119			start = end;
1120			if ((start + needed) > res->end)
1121				break;
1122		}
1123
1124		if (end == (start + needed)) {
1125			int i = start;
1126
1127			/* there was enough, so assign it to the requestor */
1128			while (i != end)
1129				res->list[i++] = id;
1130
1131			return start;
1132		}
1133	} while (end < res->end);
1134
1135	return -ENOMEM;
 
1136}
1137
1138/**
1139 * ice_get_free_res_count - Get free count from a resource tracker
1140 * @res: Resource tracker instance
 
 
 
1141 */
1142static u16 ice_get_free_res_count(struct ice_res_tracker *res)
1143{
1144	u16 i, count = 0;
 
1145
1146	for (i = 0; i < res->end; i++)
1147		if (!(res->list[i] & ICE_RES_VALID_BIT))
1148			count++;
 
1149
1150	return count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1151}
1152
1153/**
1154 * ice_get_res - get a block of resources
1155 * @pf: board private structure
1156 * @res: pointer to the resource
1157 * @needed: size of the block needed
1158 * @id: identifier to track owner
1159 *
1160 * Returns the base item index of the block, or negative for error
 
1161 */
1162int
1163ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
1164{
1165	if (!res || !pf)
1166		return -EINVAL;
 
1167
1168	if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
1169		dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
1170			needed, res->num_entries, id);
1171		return -EINVAL;
1172	}
1173
1174	return ice_search_res(res, needed, id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175}
1176
1177/**
1178 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1179 * @vsi: ptr to the VSI
1180 *
1181 * This should only be called after ice_vsi_alloc() which allocates the
1182 * corresponding SW VSI structure and initializes num_queue_pairs for the
1183 * newly allocated VSI.
1184 *
1185 * Returns 0 on success or negative on failure
1186 */
1187static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1188{
1189	struct ice_pf *pf = vsi->back;
1190	struct device *dev;
1191	u16 num_q_vectors;
1192	int base;
1193
1194	dev = ice_pf_to_dev(pf);
1195	/* SRIOV doesn't grab irq_tracker entries for each VSI */
1196	if (vsi->type == ICE_VSI_VF)
1197		return 0;
1198
1199	if (vsi->base_vector) {
1200		dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
1201			vsi->vsi_num, vsi->base_vector);
1202		return -EEXIST;
1203	}
1204
1205	num_q_vectors = vsi->num_q_vectors;
1206	/* reserve slots from OS requested IRQs */
1207	if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) {
1208		int i;
1209
1210		ice_for_each_vf(pf, i) {
1211			struct ice_vf *vf = &pf->vf[i];
1212
1213			if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) {
1214				base = pf->vsi[vf->ctrl_vsi_idx]->base_vector;
1215				break;
1216			}
1217		}
1218		if (i == pf->num_alloc_vfs)
1219			base = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1220					   ICE_RES_VF_CTRL_VEC_ID);
1221	} else {
1222		base = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1223				   vsi->idx);
1224	}
1225
1226	if (base < 0) {
1227		dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
1228			ice_get_free_res_count(pf->irq_tracker),
1229			ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
1230		return -ENOENT;
1231	}
1232	vsi->base_vector = (u16)base;
1233	pf->num_avail_sw_msix -= num_q_vectors;
1234
1235	return 0;
1236}
1237
1238/**
1239 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1240 * @vsi: the VSI having rings deallocated
1241 */
1242static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1243{
1244	int i;
1245
1246	/* Avoid stale references by clearing map from vector to ring */
1247	if (vsi->q_vectors) {
1248		ice_for_each_q_vector(vsi, i) {
1249			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1250
1251			if (q_vector) {
1252				q_vector->tx.ring = NULL;
1253				q_vector->rx.ring = NULL;
1254			}
1255		}
1256	}
1257
1258	if (vsi->tx_rings) {
1259		for (i = 0; i < vsi->alloc_txq; i++) {
1260			if (vsi->tx_rings[i]) {
1261				kfree_rcu(vsi->tx_rings[i], rcu);
1262				WRITE_ONCE(vsi->tx_rings[i], NULL);
1263			}
1264		}
1265	}
1266	if (vsi->rx_rings) {
1267		for (i = 0; i < vsi->alloc_rxq; i++) {
1268			if (vsi->rx_rings[i]) {
1269				kfree_rcu(vsi->rx_rings[i], rcu);
1270				WRITE_ONCE(vsi->rx_rings[i], NULL);
1271			}
1272		}
1273	}
1274}
1275
1276/**
1277 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1278 * @vsi: VSI which is having rings allocated
1279 */
1280static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1281{
1282	struct ice_pf *pf = vsi->back;
1283	struct device *dev;
1284	u16 i;
1285
1286	dev = ice_pf_to_dev(pf);
1287	/* Allocate Tx rings */
1288	for (i = 0; i < vsi->alloc_txq; i++) {
1289		struct ice_ring *ring;
1290
1291		/* allocate with kzalloc(), free with kfree_rcu() */
1292		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1293
1294		if (!ring)
1295			goto err_out;
1296
1297		ring->q_index = i;
1298		ring->reg_idx = vsi->txq_map[i];
1299		ring->ring_active = false;
1300		ring->vsi = vsi;
1301		ring->tx_tstamps = &pf->ptp.port.tx;
1302		ring->dev = dev;
1303		ring->count = vsi->num_tx_desc;
1304		WRITE_ONCE(vsi->tx_rings[i], ring);
1305	}
1306
1307	/* Allocate Rx rings */
1308	for (i = 0; i < vsi->alloc_rxq; i++) {
1309		struct ice_ring *ring;
1310
1311		/* allocate with kzalloc(), free with kfree_rcu() */
1312		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1313		if (!ring)
1314			goto err_out;
1315
1316		ring->q_index = i;
1317		ring->reg_idx = vsi->rxq_map[i];
1318		ring->ring_active = false;
1319		ring->vsi = vsi;
1320		ring->netdev = vsi->netdev;
1321		ring->dev = dev;
1322		ring->count = vsi->num_rx_desc;
1323		WRITE_ONCE(vsi->rx_rings[i], ring);
1324	}
1325
1326	return 0;
1327
1328err_out:
1329	ice_vsi_clear_rings(vsi);
1330	return -ENOMEM;
1331}
1332
1333/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1334 * ice_vsi_manage_rss_lut - disable/enable RSS
1335 * @vsi: the VSI being changed
1336 * @ena: boolean value indicating if this is an enable or disable request
1337 *
1338 * In the event of disable request for RSS, this function will zero out RSS
1339 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1340 * LUT.
1341 */
1342void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1343{
 
1344	u8 *lut;
1345
1346	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
 
1347	if (!lut)
1348		return;
1349
1350	if (ena) {
1351		if (vsi->rss_lut_user)
1352			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1353		else
1354			ice_fill_rss_lut(lut, vsi->rss_table_size,
1355					 vsi->rss_size);
1356	}
1357
1358	ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1359	kfree(lut);
 
1360}
1361
1362/**
1363 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1364 * @vsi: VSI to be configured
1365 */
1366static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1367{
 
1368	struct ice_pf *pf = vsi->back;
1369	struct device *dev;
1370	u8 *lut, *key;
1371	int err;
1372
1373	dev = ice_pf_to_dev(pf);
1374	vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1375
1376	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1377	if (!lut)
1378		return -ENOMEM;
1379
1380	if (vsi->rss_lut_user)
1381		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1382	else
1383		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1384
1385	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1386	if (err) {
1387		dev_err(dev, "set_rss_lut failed, error %d\n", err);
 
 
 
 
1388		goto ice_vsi_cfg_rss_exit;
1389	}
1390
1391	key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1392	if (!key) {
1393		err = -ENOMEM;
1394		goto ice_vsi_cfg_rss_exit;
1395	}
1396
1397	if (vsi->rss_hkey_user)
1398		memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
 
 
1399	else
1400		netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
 
1401
1402	err = ice_set_rss_key(vsi, key);
1403	if (err)
1404		dev_err(dev, "set_rss_key failed, error %d\n", err);
1405
1406	kfree(key);
 
 
 
 
 
 
1407ice_vsi_cfg_rss_exit:
1408	kfree(lut);
1409	return err;
1410}
1411
1412/**
1413 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1414 * @vsi: VSI to be configured
 
 
1415 *
1416 * This function will only be called during the VF VSI setup. Upon successful
1417 * completion of package download, this function will configure default RSS
1418 * input sets for VF VSI.
1419 */
1420static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1421{
1422	struct ice_pf *pf = vsi->back;
1423	enum ice_status status;
1424	struct device *dev;
1425
1426	dev = ice_pf_to_dev(pf);
1427	if (ice_is_safe_mode(pf)) {
1428		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1429			vsi->vsi_num);
1430		return;
1431	}
1432
1433	status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1434	if (status)
1435		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n",
1436			vsi->vsi_num, ice_stat_str(status));
1437}
1438
1439/**
1440 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1441 * @vsi: VSI to be configured
1442 *
1443 * This function will only be called after successful download package call
1444 * during initialization of PF. Since the downloaded package will erase the
1445 * RSS section, this function will configure RSS input sets for different
1446 * flow types. The last profile added has the highest priority, therefore 2
1447 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1448 * (i.e. IPv4 src/dst TCP src/dst port).
1449 */
1450static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
 
1451{
1452	u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1453	struct ice_pf *pf = vsi->back;
1454	struct ice_hw *hw = &pf->hw;
1455	enum ice_status status;
1456	struct device *dev;
1457
1458	dev = ice_pf_to_dev(pf);
1459	if (ice_is_safe_mode(pf)) {
1460		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1461			vsi_num);
1462		return;
1463	}
1464	/* configure RSS for IPv4 with input set IP src/dst */
1465	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1466				 ICE_FLOW_SEG_HDR_IPV4);
1467	if (status)
1468		dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n",
1469			vsi_num, ice_stat_str(status));
1470
1471	/* configure RSS for IPv6 with input set IPv6 src/dst */
1472	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1473				 ICE_FLOW_SEG_HDR_IPV6);
1474	if (status)
1475		dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n",
1476			vsi_num, ice_stat_str(status));
1477
1478	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1479	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1480				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1481	if (status)
1482		dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n",
1483			vsi_num, ice_stat_str(status));
1484
1485	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1486	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1487				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1488	if (status)
1489		dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n",
1490			vsi_num, ice_stat_str(status));
1491
1492	/* configure RSS for sctp4 with input set IP src/dst */
1493	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1494				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1495	if (status)
1496		dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n",
1497			vsi_num, ice_stat_str(status));
1498
1499	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1500	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1501				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1502	if (status)
1503		dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n",
1504			vsi_num, ice_stat_str(status));
1505
1506	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1507	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1508				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1509	if (status)
1510		dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n",
1511			vsi_num, ice_stat_str(status));
1512
1513	/* configure RSS for sctp6 with input set IPv6 src/dst */
1514	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1515				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1516	if (status)
1517		dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n",
1518			vsi_num, ice_stat_str(status));
1519}
1520
1521/**
1522 * ice_pf_state_is_nominal - checks the PF for nominal state
1523 * @pf: pointer to PF to check
1524 *
1525 * Check the PF's state for a collection of bits that would indicate
1526 * the PF is in a state that would inhibit normal operation for
1527 * driver functionality.
1528 *
1529 * Returns true if PF is in a nominal state, false otherwise
1530 */
1531bool ice_pf_state_is_nominal(struct ice_pf *pf)
1532{
1533	DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1534
1535	if (!pf)
1536		return false;
 
 
 
 
1537
1538	bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1539	if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1540		return false;
1541
1542	return true;
1543}
1544
1545/**
1546 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1547 * @vsi: the VSI to be updated
1548 */
1549void ice_update_eth_stats(struct ice_vsi *vsi)
1550{
1551	struct ice_eth_stats *prev_es, *cur_es;
1552	struct ice_hw *hw = &vsi->back->hw;
1553	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1554
1555	prev_es = &vsi->eth_stats_prev;
1556	cur_es = &vsi->eth_stats;
1557
1558	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1559			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1560
1561	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1562			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1563
1564	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1565			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1566
1567	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1568			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1569
1570	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1571			  &prev_es->rx_discards, &cur_es->rx_discards);
1572
1573	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1574			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1575
1576	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1577			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1578
1579	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1580			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1581
1582	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1583			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1584
1585	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1586			  &prev_es->tx_errors, &cur_es->tx_errors);
1587
1588	vsi->stat_offsets_loaded = true;
1589}
1590
1591/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1592 * ice_vsi_add_vlan - Add VSI membership for given VLAN
1593 * @vsi: the VSI being configured
1594 * @vid: VLAN ID to be added
1595 * @action: filter action to be performed on match
1596 */
1597int
1598ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action)
1599{
 
1600	struct ice_pf *pf = vsi->back;
1601	struct device *dev;
 
1602	int err = 0;
1603
1604	dev = ice_pf_to_dev(pf);
 
 
 
 
 
 
 
 
 
1605
1606	if (!ice_fltr_add_vlan(vsi, vid, action)) {
1607		vsi->num_vlan++;
1608	} else {
 
 
1609		err = -ENODEV;
1610		dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid,
1611			vsi->vsi_num);
1612	}
1613
 
1614	return err;
1615}
1616
1617/**
1618 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
1619 * @vsi: the VSI being configured
1620 * @vid: VLAN ID to be removed
1621 *
1622 * Returns 0 on success and negative on failure
1623 */
1624int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
1625{
 
1626	struct ice_pf *pf = vsi->back;
 
1627	enum ice_status status;
1628	struct device *dev;
1629	int err = 0;
1630
1631	dev = ice_pf_to_dev(pf);
 
 
1632
1633	status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI);
1634	if (!status) {
1635		vsi->num_vlan--;
1636	} else if (status == ICE_ERR_DOES_NOT_EXIST) {
1637		dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n",
1638			vid, vsi->vsi_num, ice_stat_str(status));
1639	} else {
1640		dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n",
1641			vid, vsi->vsi_num, ice_stat_str(status));
 
 
 
 
 
 
 
 
 
 
1642		err = -EIO;
1643	}
1644
1645	return err;
1646}
1647
1648/**
1649 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1650 * @vsi: VSI
1651 */
1652void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1653{
1654	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1655		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1656		vsi->rx_buf_len = ICE_RXBUF_2048;
1657#if (PAGE_SIZE < 8192)
1658	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1659		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1660		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1661		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1662#endif
1663	} else {
1664		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1665#if (PAGE_SIZE < 8192)
1666		vsi->rx_buf_len = ICE_RXBUF_3072;
1667#else
1668		vsi->rx_buf_len = ICE_RXBUF_2048;
1669#endif
1670	}
1671}
1672
1673/**
1674 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1675 * @hw: HW pointer
1676 * @pf_q: index of the Rx queue in the PF's queue space
1677 * @rxdid: flexible descriptor RXDID
1678 * @prio: priority for the RXDID for this queue
1679 * @ena_ts: true to enable timestamp and false to disable timestamp
1680 */
1681void
1682ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1683			bool ena_ts)
1684{
1685	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1686
1687	/* clear any previous values */
1688	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1689		    QRXFLXP_CNTXT_RXDID_PRIO_M |
1690		    QRXFLXP_CNTXT_TS_M);
1691
1692	regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1693		QRXFLXP_CNTXT_RXDID_IDX_M;
1694
1695	regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1696		QRXFLXP_CNTXT_RXDID_PRIO_M;
1697
1698	if (ena_ts)
1699		/* Enable TimeSync on this queue */
1700		regval |= QRXFLXP_CNTXT_TS_M;
1701
1702	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1703}
1704
1705int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
1706{
1707	if (q_idx >= vsi->num_rxq)
1708		return -EINVAL;
1709
1710	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
1711}
1712
1713int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_ring **tx_rings, u16 q_idx)
1714{
1715	struct ice_aqc_add_tx_qgrp *qg_buf;
1716	int err;
1717
1718	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
1719		return -EINVAL;
1720
1721	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1722	if (!qg_buf)
1723		return -ENOMEM;
1724
1725	qg_buf->num_txqs = 1;
1726
1727	err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
1728	kfree(qg_buf);
1729	return err;
1730}
1731
1732/**
1733 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1734 * @vsi: the VSI being configured
1735 *
1736 * Return 0 on success and a negative value on error
1737 * Configure the Rx VSI for operation.
1738 */
1739int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1740{
1741	u16 i;
1742
1743	if (vsi->type == ICE_VSI_VF)
1744		goto setup_rings;
1745
1746	ice_vsi_cfg_frame_size(vsi);
 
 
 
 
 
 
1747setup_rings:
1748	/* set up individual rings */
1749	ice_for_each_rxq(vsi, i) {
1750		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
1751
1752		if (err)
 
 
 
 
1753			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1754	}
1755
 
 
 
 
 
 
 
 
1756	return 0;
1757}
1758
1759/**
1760 * ice_vsi_cfg_txqs - Configure the VSI for Tx
1761 * @vsi: the VSI being configured
1762 * @rings: Tx ring array to be configured
1763 * @count: number of Tx ring array elements
1764 *
1765 * Return 0 on success and a negative value on error
1766 * Configure the Tx VSI for operation.
1767 */
1768static int
1769ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, u16 count)
1770{
1771	struct ice_aqc_add_tx_qgrp *qg_buf;
1772	u16 q_idx = 0;
 
1773	int err = 0;
 
1774
1775	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1776	if (!qg_buf)
1777		return -ENOMEM;
1778
1779	qg_buf->num_txqs = 1;
1780
1781	for (q_idx = 0; q_idx < count; q_idx++) {
1782		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1783		if (err)
1784			goto err_cfg_txqs;
1785	}
 
 
 
 
 
1786
 
 
 
1787err_cfg_txqs:
1788	kfree(qg_buf);
1789	return err;
1790}
1791
1792/**
1793 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1794 * @vsi: the VSI being configured
1795 *
1796 * Return 0 on success and a negative value on error
1797 * Configure the Tx VSI for operation.
1798 */
1799int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1800{
1801	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1802}
1803
1804/**
1805 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1806 * @vsi: the VSI being configured
1807 *
1808 * Return 0 on success and a negative value on error
1809 * Configure the Tx queues dedicated for XDP in given VSI for operation.
1810 */
1811int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1812{
1813	int ret;
1814	int i;
1815
1816	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1817	if (ret)
1818		return ret;
1819
1820	for (i = 0; i < vsi->num_xdp_txq; i++)
1821		vsi->xdp_rings[i]->xsk_pool = ice_xsk_pool(vsi->xdp_rings[i]);
1822
1823	return ret;
1824}
1825
1826/**
1827 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1828 * @intrl: interrupt rate limit in usecs
1829 * @gran: interrupt rate limit granularity in usecs
1830 *
1831 * This function converts a decimal interrupt rate limit in usecs to the format
1832 * expected by firmware.
1833 */
1834static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1835{
1836	u32 val = intrl / gran;
1837
1838	if (val)
1839		return val | GLINT_RATE_INTRL_ENA_M;
1840	return 0;
1841}
1842
1843/**
1844 * ice_write_intrl - write throttle rate limit to interrupt specific register
1845 * @q_vector: pointer to interrupt specific structure
1846 * @intrl: throttle rate limit in microseconds to write
1847 */
1848void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1849{
1850	struct ice_hw *hw = &q_vector->vsi->back->hw;
1851
1852	wr32(hw, GLINT_RATE(q_vector->reg_idx),
1853	     ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1854}
1855
1856/**
1857 * __ice_write_itr - write throttle rate to register
1858 * @q_vector: pointer to interrupt data structure
1859 * @rc: pointer to ring container
1860 * @itr: throttle rate in microseconds to write
 
 
1861 */
1862static void __ice_write_itr(struct ice_q_vector *q_vector,
1863			    struct ice_ring_container *rc, u16 itr)
1864{
1865	struct ice_hw *hw = &q_vector->vsi->back->hw;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1866
1867	wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1868	     ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
 
 
 
 
1869}
1870
1871/**
1872 * ice_write_itr - write throttle rate to queue specific register
1873 * @rc: pointer to ring container
1874 * @itr: throttle rate in microseconds to write
 
 
 
 
 
1875 */
1876void ice_write_itr(struct ice_ring_container *rc, u16 itr)
 
 
 
 
 
 
1877{
1878	struct ice_q_vector *q_vector;
 
 
1879
1880	if (!rc->ring)
1881		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1882
1883	q_vector = rc->ring->q_vector;
 
1884
1885	__ice_write_itr(q_vector, rc, itr);
 
 
1886}
1887
1888/**
1889 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1890 * @vsi: the VSI being configured
1891 *
1892 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1893 * for the VF VSI.
1894 */
1895void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1896{
1897	struct ice_pf *pf = vsi->back;
1898	struct ice_hw *hw = &pf->hw;
1899	u16 txq = 0, rxq = 0;
1900	int i, q;
1901
1902	for (i = 0; i < vsi->num_q_vectors; i++) {
1903		struct ice_q_vector *q_vector = vsi->q_vectors[i];
1904		u16 reg_idx = q_vector->reg_idx;
1905
1906		ice_cfg_itr(hw, q_vector);
1907
 
 
 
1908		/* Both Transmit Queue Interrupt Cause Control register
1909		 * and Receive Queue Interrupt Cause control register
1910		 * expects MSIX_INDX field to be the vector index
1911		 * within the function space and not the absolute
1912		 * vector index across PF or across device.
1913		 * For SR-IOV VF VSIs queue vector index always starts
1914		 * with 1 since first vector index(0) is used for OICR
1915		 * in VF space. Since VMDq and other PF VSIs are within
1916		 * the PF function space, use the vector index that is
1917		 * tracked for this PF.
1918		 */
1919		for (q = 0; q < q_vector->num_ring_tx; q++) {
1920			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1921					      q_vector->tx.itr_idx);
1922			txq++;
1923		}
1924
1925		for (q = 0; q < q_vector->num_ring_rx; q++) {
1926			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1927					      q_vector->rx.itr_idx);
1928			rxq++;
1929		}
1930	}
1931}
1932
1933/**
1934 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
1935 * @vsi: the VSI being changed
1936 */
1937int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
1938{
 
1939	struct ice_hw *hw = &vsi->back->hw;
1940	struct ice_vsi_ctx *ctxt;
1941	enum ice_status status;
1942	int ret = 0;
1943
1944	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1945	if (!ctxt)
1946		return -ENOMEM;
1947
1948	/* Here we are configuring the VSI to let the driver add VLAN tags by
1949	 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
1950	 * insertion happens in the Tx hot path, in ice_tx_map.
1951	 */
1952	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
1953
1954	/* Preserve existing VLAN strip setting */
1955	ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
1956				  ICE_AQ_VSI_VLAN_EMOD_M);
1957
1958	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1959
1960	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1961	if (status) {
1962		dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n",
1963			ice_stat_str(status),
1964			ice_aq_str(hw->adminq.sq_last_status));
1965		ret = -EIO;
1966		goto out;
1967	}
1968
1969	vsi->info.vlan_flags = ctxt->info.vlan_flags;
1970out:
1971	kfree(ctxt);
1972	return ret;
1973}
1974
1975/**
1976 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
1977 * @vsi: the VSI being changed
1978 * @ena: boolean value indicating if this is a enable or disable request
1979 */
1980int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
1981{
 
1982	struct ice_hw *hw = &vsi->back->hw;
1983	struct ice_vsi_ctx *ctxt;
1984	enum ice_status status;
1985	int ret = 0;
1986
1987	/* do not allow modifying VLAN stripping when a port VLAN is configured
1988	 * on this VSI
1989	 */
1990	if (vsi->info.pvid)
1991		return 0;
1992
1993	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1994	if (!ctxt)
1995		return -ENOMEM;
1996
1997	/* Here we are configuring what the VSI should do with the VLAN tag in
1998	 * the Rx packet. We can either leave the tag in the packet or put it in
1999	 * the Rx descriptor.
2000	 */
2001	if (ena)
2002		/* Strip VLAN tag from Rx packet and put it in the desc */
2003		ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
2004	else
2005		/* Disable stripping. Leave tag in packet */
2006		ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
2007
2008	/* Allow all packets untagged/tagged */
2009	ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
2010
2011	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
2012
2013	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
2014	if (status) {
2015		dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n",
2016			ena, ice_stat_str(status),
2017			ice_aq_str(hw->adminq.sq_last_status));
2018		ret = -EIO;
2019		goto out;
2020	}
2021
2022	vsi->info.vlan_flags = ctxt->info.vlan_flags;
2023out:
2024	kfree(ctxt);
2025	return ret;
2026}
2027
2028/**
2029 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2030 * @vsi: the VSI whose rings are to be enabled
2031 *
2032 * Returns 0 on success and a negative value on error
2033 */
2034int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2035{
2036	return ice_vsi_ctrl_all_rx_rings(vsi, true);
2037}
2038
2039/**
2040 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2041 * @vsi: the VSI whose rings are to be disabled
2042 *
2043 * Returns 0 on success and a negative value on error
2044 */
2045int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
 
 
 
 
 
 
 
 
 
 
2046{
2047	return ice_vsi_ctrl_all_rx_rings(vsi, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2048}
2049
2050/**
2051 * ice_vsi_stop_tx_rings - Disable Tx rings
2052 * @vsi: the VSI being configured
2053 * @rst_src: reset source
2054 * @rel_vmvf_num: Relative ID of VF/VM
2055 * @rings: Tx ring array to be stopped
2056 * @count: number of Tx ring array elements
2057 */
2058static int
2059ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2060		      u16 rel_vmvf_num, struct ice_ring **rings, u16 count)
2061{
2062	u16 q_idx;
 
 
2063
2064	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2065		return -EINVAL;
2066
2067	for (q_idx = 0; q_idx < count; q_idx++) {
2068		struct ice_txq_meta txq_meta = { };
2069		int status;
2070
2071		if (!rings || !rings[q_idx])
2072			return -EINVAL;
2073
2074		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2075		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2076					      rings[q_idx], &txq_meta);
2077
2078		if (status)
2079			return status;
 
 
 
 
 
 
 
 
2080	}
2081
2082	return 0;
2083}
2084
2085/**
2086 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2087 * @vsi: the VSI being configured
2088 * @rst_src: reset source
2089 * @rel_vmvf_num: Relative ID of VF/VM
2090 */
2091int
2092ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2093			  u16 rel_vmvf_num)
2094{
2095	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2096}
2097
2098/**
2099 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2100 * @vsi: the VSI being configured
2101 */
2102int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2103{
2104	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2105}
2106
2107/**
2108 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
2109 * @vsi: VSI to check whether or not VLAN pruning is enabled.
2110 *
2111 * returns true if Rx VLAN pruning is enabled and false otherwise.
2112 */
2113bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
2114{
2115	if (!vsi)
2116		return false;
2117
2118	return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
2119}
2120
2121/**
2122 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
2123 * @vsi: VSI to enable or disable VLAN pruning on
2124 * @ena: set to true to enable VLAN pruning and false to disable it
2125 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode
2126 *
2127 * returns 0 if VSI is updated, negative otherwise
2128 */
2129int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)
2130{
2131	struct ice_vsi_ctx *ctxt;
 
2132	struct ice_pf *pf;
2133	int status;
2134
2135	if (!vsi)
2136		return -EINVAL;
2137
2138	/* Don't enable VLAN pruning if the netdev is currently in promiscuous
2139	 * mode. VLAN pruning will be enabled when the interface exits
2140	 * promiscuous mode if any VLAN filters are active.
2141	 */
2142	if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena)
2143		return 0;
2144
2145	pf = vsi->back;
2146	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
 
2147	if (!ctxt)
2148		return -ENOMEM;
2149
2150	ctxt->info = vsi->info;
2151
2152	if (ena)
 
 
 
2153		ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2154	else
 
 
 
2155		ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
 
2156
2157	if (!vlan_promisc)
2158		ctxt->info.valid_sections =
2159			cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
 
2160
2161	status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
2162	if (status) {
2163		netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n",
2164			   ena ? "En" : "Dis", vsi->idx, vsi->vsi_num,
2165			   ice_stat_str(status),
2166			   ice_aq_str(pf->hw.adminq.sq_last_status));
2167		goto err_out;
2168	}
2169
 
2170	vsi->info.sw_flags2 = ctxt->info.sw_flags2;
2171
2172	kfree(ctxt);
2173	return 0;
2174
2175err_out:
2176	kfree(ctxt);
2177	return -EIO;
2178}
2179
2180static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2181{
2182	struct ice_dcbx_cfg *cfg = &vsi->port_info->qos_cfg.local_dcbx_cfg;
2183
2184	vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg);
2185	vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg);
2186}
2187
2188/**
2189 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2190 * @vsi: VSI to set the q_vectors register index on
2191 */
2192static int
2193ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2194{
2195	u16 i;
2196
2197	if (!vsi || !vsi->q_vectors)
2198		return -EINVAL;
2199
2200	ice_for_each_q_vector(vsi, i) {
2201		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2202
2203		if (!q_vector) {
2204			dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
 
2205				i, vsi->vsi_num);
2206			goto clear_reg_idx;
2207		}
2208
2209		if (vsi->type == ICE_VSI_VF) {
2210			struct ice_vf *vf = &vsi->back->vf[vsi->vf_id];
2211
2212			q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2213		} else {
2214			q_vector->reg_idx =
2215				q_vector->v_idx + vsi->base_vector;
2216		}
2217	}
2218
2219	return 0;
2220
2221clear_reg_idx:
2222	ice_for_each_q_vector(vsi, i) {
2223		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2224
2225		if (q_vector)
2226			q_vector->reg_idx = 0;
2227	}
2228
2229	return -EINVAL;
2230}
2231
2232/**
2233 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2234 * @vsi: the VSI being configured
2235 * @tx: bool to determine Tx or Rx rule
2236 * @create: bool to determine create or remove Rule
2237 */
2238void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
 
2239{
2240	enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2241				    enum ice_sw_fwd_act_type act);
2242	struct ice_pf *pf = vsi->back;
 
2243	enum ice_status status;
2244	struct device *dev;
2245
2246	dev = ice_pf_to_dev(pf);
2247	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
 
2248
2249	if (tx) {
2250		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2251				  ICE_DROP_PACKET);
2252	} else {
2253		if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2254			status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2255							  create);
2256		} else {
2257			status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2258					  ICE_FWD_TO_VSI);
2259		}
2260	}
 
 
2261
2262	if (status)
2263		dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n",
2264			create ? "adding" : "removing", tx ? "TX" : "RX",
2265			vsi->vsi_num, ice_stat_str(status));
 
 
2266}
2267
2268/**
2269 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2270 * @vsi: pointer to the VSI
2271 *
2272 * This function will allocate new scheduler aggregator now if needed and will
2273 * move specified VSI into it.
2274 */
2275static void ice_set_agg_vsi(struct ice_vsi *vsi)
2276{
2277	struct device *dev = ice_pf_to_dev(vsi->back);
2278	struct ice_agg_node *agg_node_iter = NULL;
2279	u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2280	struct ice_agg_node *agg_node = NULL;
2281	int node_offset, max_agg_nodes = 0;
2282	struct ice_port_info *port_info;
2283	struct ice_pf *pf = vsi->back;
2284	u32 agg_node_id_start = 0;
2285	enum ice_status status;
2286
2287	/* create (as needed) scheduler aggregator node and move VSI into
2288	 * corresponding aggregator node
2289	 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2290	 * - VF aggregator nodes will contain VF VSI
2291	 */
2292	port_info = pf->hw.port_info;
2293	if (!port_info)
2294		return;
2295
2296	switch (vsi->type) {
2297	case ICE_VSI_CTRL:
2298	case ICE_VSI_LB:
2299	case ICE_VSI_PF:
2300		max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2301		agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2302		agg_node_iter = &pf->pf_agg_node[0];
2303		break;
2304	case ICE_VSI_VF:
2305		/* user can create 'n' VFs on a given PF, but since max children
2306		 * per aggregator node can be only 64. Following code handles
2307		 * aggregator(s) for VF VSIs, either selects a agg_node which
2308		 * was already created provided num_vsis < 64, otherwise
2309		 * select next available node, which will be created
2310		 */
2311		max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2312		agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2313		agg_node_iter = &pf->vf_agg_node[0];
2314		break;
2315	default:
2316		/* other VSI type, handle later if needed */
2317		dev_dbg(dev, "unexpected VSI type %s\n",
2318			ice_vsi_type_str(vsi->type));
2319		return;
2320	}
2321
2322	/* find the appropriate aggregator node */
2323	for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2324		/* see if we can find space in previously created
2325		 * node if num_vsis < 64, otherwise skip
2326		 */
2327		if (agg_node_iter->num_vsis &&
2328		    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2329			agg_node_iter++;
2330			continue;
2331		}
2332
2333		if (agg_node_iter->valid &&
2334		    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2335			agg_id = agg_node_iter->agg_id;
2336			agg_node = agg_node_iter;
2337			break;
2338		}
2339
2340		/* find unclaimed agg_id */
2341		if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2342			agg_id = node_offset + agg_node_id_start;
2343			agg_node = agg_node_iter;
2344			break;
2345		}
2346		/* move to next agg_node */
2347		agg_node_iter++;
2348	}
2349
2350	if (!agg_node)
2351		return;
2352
2353	/* if selected aggregator node was not created, create it */
2354	if (!agg_node->valid) {
2355		status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2356				     (u8)vsi->tc_cfg.ena_tc);
2357		if (status) {
2358			dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2359				agg_id);
2360			return;
2361		}
2362		/* aggregator node is created, store the neeeded info */
2363		agg_node->valid = true;
2364		agg_node->agg_id = agg_id;
2365	}
2366
2367	/* move VSI to corresponding aggregator node */
2368	status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2369				     (u8)vsi->tc_cfg.ena_tc);
2370	if (status) {
2371		dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2372			vsi->idx, agg_id);
2373		return;
2374	}
2375
2376	/* keep active children count for aggregator node */
2377	agg_node->num_vsis++;
 
 
 
2378
2379	/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2380	 * to aggregator node
2381	 */
2382	vsi->agg_node = agg_node;
2383	dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2384		vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2385		vsi->agg_node->num_vsis);
2386}
2387
2388/**
2389 * ice_vsi_setup - Set up a VSI by a given type
2390 * @pf: board private structure
2391 * @pi: pointer to the port_info instance
2392 * @vsi_type: VSI type
2393 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be
2394 *         used only for ICE_VSI_VF VSI type. For other VSI types, should
2395 *         fill-in ICE_INVAL_VFID as input.
2396 *
2397 * This allocates the sw VSI structure and its queue resources.
2398 *
2399 * Returns pointer to the successfully allocated and configured VSI sw struct on
2400 * success, NULL on failure.
2401 */
2402struct ice_vsi *
2403ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2404	      enum ice_vsi_type vsi_type, u16 vf_id)
2405{
2406	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2407	struct device *dev = ice_pf_to_dev(pf);
2408	enum ice_status status;
2409	struct ice_vsi *vsi;
2410	int ret, i;
2411
2412	if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL)
2413		vsi = ice_vsi_alloc(pf, vsi_type, vf_id);
2414	else
2415		vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID);
2416
2417	if (!vsi) {
2418		dev_err(dev, "could not allocate VSI\n");
2419		return NULL;
2420	}
2421
2422	vsi->port_info = pi;
2423	vsi->vsw = pf->first_sw;
2424	if (vsi->type == ICE_VSI_PF)
2425		vsi->ethtype = ETH_P_PAUSE;
2426
2427	if (vsi->type == ICE_VSI_VF || vsi->type == ICE_VSI_CTRL)
2428		vsi->vf_id = vf_id;
2429
2430	ice_alloc_fd_res(vsi);
2431
2432	if (ice_vsi_get_qs(vsi)) {
2433		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2434			vsi->idx);
2435		goto unroll_vsi_alloc;
2436	}
2437
2438	/* set RSS capabilities */
2439	ice_vsi_set_rss_params(vsi);
2440
2441	/* set TC configuration */
2442	ice_vsi_set_tc_cfg(vsi);
2443
2444	/* create the VSI */
2445	ret = ice_vsi_init(vsi, true);
2446	if (ret)
2447		goto unroll_get_qs;
2448
2449	switch (vsi->type) {
2450	case ICE_VSI_CTRL:
2451	case ICE_VSI_PF:
2452		ret = ice_vsi_alloc_q_vectors(vsi);
2453		if (ret)
2454			goto unroll_vsi_init;
2455
2456		ret = ice_vsi_setup_vector_base(vsi);
2457		if (ret)
2458			goto unroll_alloc_q_vector;
2459
2460		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2461		if (ret)
2462			goto unroll_vector_base;
2463
2464		ret = ice_vsi_alloc_rings(vsi);
2465		if (ret)
2466			goto unroll_vector_base;
2467
2468		/* Always add VLAN ID 0 switch rule by default. This is needed
2469		 * in order to allow all untagged and 0 tagged priority traffic
2470		 * if Rx VLAN pruning is enabled. Also there are cases where we
2471		 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid()
2472		 * so this handles those cases (i.e. adding the PF to a bridge
2473		 * without the 8021q module loaded).
2474		 */
2475		ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI);
2476		if (ret)
2477			goto unroll_clear_rings;
2478
2479		ice_vsi_map_rings_to_vectors(vsi);
2480
2481		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2482		if (vsi->type != ICE_VSI_CTRL)
2483			/* Do not exit if configuring RSS had an issue, at
2484			 * least receive traffic on first queue. Hence no
2485			 * need to capture return value
2486			 */
2487			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2488				ice_vsi_cfg_rss_lut_key(vsi);
2489				ice_vsi_set_rss_flow_fld(vsi);
2490			}
2491		ice_init_arfs(vsi);
2492		break;
2493	case ICE_VSI_VF:
2494		/* VF driver will take care of creating netdev for this type and
2495		 * map queues to vectors through Virtchnl, PF driver only
2496		 * creates a VSI and corresponding structures for bookkeeping
2497		 * purpose
2498		 */
2499		ret = ice_vsi_alloc_q_vectors(vsi);
2500		if (ret)
2501			goto unroll_vsi_init;
2502
2503		ret = ice_vsi_alloc_rings(vsi);
2504		if (ret)
2505			goto unroll_alloc_q_vector;
2506
2507		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2508		if (ret)
2509			goto unroll_vector_base;
2510
2511		/* Do not exit if configuring RSS had an issue, at least
2512		 * receive traffic on first queue. Hence no need to capture
2513		 * return value
2514		 */
2515		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2516			ice_vsi_cfg_rss_lut_key(vsi);
2517			ice_vsi_set_vf_rss_flow_fld(vsi);
2518		}
2519		break;
2520	case ICE_VSI_LB:
2521		ret = ice_vsi_alloc_rings(vsi);
2522		if (ret)
2523			goto unroll_vsi_init;
2524		break;
2525	default:
2526		/* clean up the resources and exit */
2527		goto unroll_vsi_init;
2528	}
2529
2530	/* configure VSI nodes based on number of queues and TC's */
2531	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2532		max_txqs[i] = vsi->alloc_txq;
2533
2534	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2535				 max_txqs);
2536	if (status) {
2537		dev_err(dev, "VSI %d failed lan queue config, error %s\n",
2538			vsi->vsi_num, ice_stat_str(status));
2539		goto unroll_clear_rings;
 
2540	}
2541
2542	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2543	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2544	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2545	 * The rule is added once for PF VSI in order to create appropriate
2546	 * recipe, since VSI/VSI list is ignored with drop action...
2547	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2548	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2549	 * settings in the HW.
 
2550	 */
2551	if (!ice_is_safe_mode(pf))
2552		if (vsi->type == ICE_VSI_PF) {
2553			ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2554					 ICE_DROP_PACKET);
 
2555			ice_cfg_sw_lldp(vsi, true, true);
 
 
 
 
2556		}
 
2557
2558	if (!vsi->agg_node)
2559		ice_set_agg_vsi(vsi);
2560	return vsi;
2561
2562unroll_clear_rings:
2563	ice_vsi_clear_rings(vsi);
2564unroll_vector_base:
2565	/* reclaim SW interrupts back to the common pool */
2566	ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2567	pf->num_avail_sw_msix += vsi->num_q_vectors;
2568unroll_alloc_q_vector:
2569	ice_vsi_free_q_vectors(vsi);
2570unroll_vsi_init:
2571	ice_vsi_delete(vsi);
2572unroll_get_qs:
2573	ice_vsi_put_qs(vsi);
2574unroll_vsi_alloc:
2575	if (vsi_type == ICE_VSI_VF)
2576		ice_enable_lag(pf->lag);
2577	ice_vsi_clear(vsi);
2578
2579	return NULL;
2580}
2581
2582/**
2583 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2584 * @vsi: the VSI being cleaned up
2585 */
2586static void ice_vsi_release_msix(struct ice_vsi *vsi)
2587{
2588	struct ice_pf *pf = vsi->back;
2589	struct ice_hw *hw = &pf->hw;
2590	u32 txq = 0;
2591	u32 rxq = 0;
2592	int i, q;
2593
2594	for (i = 0; i < vsi->num_q_vectors; i++) {
2595		struct ice_q_vector *q_vector = vsi->q_vectors[i];
 
2596
2597		ice_write_intrl(q_vector, 0);
 
2598		for (q = 0; q < q_vector->num_ring_tx; q++) {
2599			ice_write_itr(&q_vector->tx, 0);
2600			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2601			if (ice_is_xdp_ena_vsi(vsi)) {
2602				u32 xdp_txq = txq + vsi->num_xdp_txq;
2603
2604				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2605			}
2606			txq++;
2607		}
2608
2609		for (q = 0; q < q_vector->num_ring_rx; q++) {
2610			ice_write_itr(&q_vector->rx, 0);
2611			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2612			rxq++;
2613		}
2614	}
2615
2616	ice_flush(hw);
2617}
2618
2619/**
2620 * ice_vsi_free_irq - Free the IRQ association with the OS
2621 * @vsi: the VSI being configured
2622 */
2623void ice_vsi_free_irq(struct ice_vsi *vsi)
2624{
2625	struct ice_pf *pf = vsi->back;
2626	int base = vsi->base_vector;
2627	int i;
2628
2629	if (!vsi->q_vectors || !vsi->irqs_ready)
2630		return;
2631
2632	ice_vsi_release_msix(vsi);
2633	if (vsi->type == ICE_VSI_VF)
2634		return;
2635
2636	vsi->irqs_ready = false;
2637	ice_for_each_q_vector(vsi, i) {
2638		u16 vector = i + base;
2639		int irq_num;
2640
2641		irq_num = pf->msix_entries[vector].vector;
2642
2643		/* free only the irqs that were actually requested */
2644		if (!vsi->q_vectors[i] ||
2645		    !(vsi->q_vectors[i]->num_ring_tx ||
2646		      vsi->q_vectors[i]->num_ring_rx))
2647			continue;
2648
2649		/* clear the affinity notifier in the IRQ descriptor */
2650		irq_set_affinity_notifier(irq_num, NULL);
2651
2652		/* clear the affinity_mask in the IRQ descriptor */
2653		irq_set_affinity_hint(irq_num, NULL);
2654		synchronize_irq(irq_num);
2655		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
 
2656	}
2657}
2658
2659/**
2660 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2661 * @vsi: the VSI having resources freed
2662 */
2663void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2664{
2665	int i;
2666
2667	if (!vsi->tx_rings)
2668		return;
2669
2670	ice_for_each_txq(vsi, i)
2671		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2672			ice_free_tx_ring(vsi->tx_rings[i]);
2673}
2674
2675/**
2676 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2677 * @vsi: the VSI having resources freed
2678 */
2679void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2680{
2681	int i;
2682
2683	if (!vsi->rx_rings)
2684		return;
2685
2686	ice_for_each_rxq(vsi, i)
2687		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2688			ice_free_rx_ring(vsi->rx_rings[i]);
2689}
2690
2691/**
2692 * ice_vsi_close - Shut down a VSI
2693 * @vsi: the VSI being shut down
2694 */
2695void ice_vsi_close(struct ice_vsi *vsi)
2696{
2697	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2698		ice_down(vsi);
2699
2700	ice_vsi_free_irq(vsi);
2701	ice_vsi_free_tx_rings(vsi);
2702	ice_vsi_free_rx_rings(vsi);
2703}
2704
2705/**
2706 * ice_ena_vsi - resume a VSI
2707 * @vsi: the VSI being resume
2708 * @locked: is the rtnl_lock already held
 
 
 
2709 */
2710int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2711{
2712	int err = 0;
2713
2714	if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2715		return 0;
2716
2717	clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2718
2719	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2720		if (netif_running(vsi->netdev)) {
2721			if (!locked)
2722				rtnl_lock();
2723
2724			err = ice_open_internal(vsi->netdev);
 
2725
2726			if (!locked)
2727				rtnl_unlock();
2728		}
2729	} else if (vsi->type == ICE_VSI_CTRL) {
2730		err = ice_vsi_open_ctrl(vsi);
2731	}
2732
2733	return err;
2734}
2735
2736/**
2737 * ice_dis_vsi - pause a VSI
2738 * @vsi: the VSI being paused
2739 * @locked: is the rtnl_lock already held
 
 
 
2740 */
2741void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2742{
2743	if (test_bit(ICE_VSI_DOWN, vsi->state))
2744		return;
 
 
2745
2746	set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2747
2748	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2749		if (netif_running(vsi->netdev)) {
2750			if (!locked)
2751				rtnl_lock();
 
 
 
2752
2753			ice_vsi_close(vsi);
 
2754
2755			if (!locked)
2756				rtnl_unlock();
2757		} else {
2758			ice_vsi_close(vsi);
 
2759		}
2760	} else if (vsi->type == ICE_VSI_CTRL) {
2761		ice_vsi_close(vsi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2762	}
 
 
2763}
2764
2765/**
2766 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2767 * @vsi: the VSI being un-configured
2768 */
2769void ice_vsi_dis_irq(struct ice_vsi *vsi)
2770{
2771	int base = vsi->base_vector;
2772	struct ice_pf *pf = vsi->back;
2773	struct ice_hw *hw = &pf->hw;
2774	u32 val;
2775	int i;
2776
2777	/* disable interrupt causation from each queue */
2778	if (vsi->tx_rings) {
2779		ice_for_each_txq(vsi, i) {
2780			if (vsi->tx_rings[i]) {
2781				u16 reg;
2782
2783				reg = vsi->tx_rings[i]->reg_idx;
2784				val = rd32(hw, QINT_TQCTL(reg));
2785				val &= ~QINT_TQCTL_CAUSE_ENA_M;
2786				wr32(hw, QINT_TQCTL(reg), val);
2787			}
2788		}
2789	}
2790
2791	if (vsi->rx_rings) {
2792		ice_for_each_rxq(vsi, i) {
2793			if (vsi->rx_rings[i]) {
2794				u16 reg;
2795
2796				reg = vsi->rx_rings[i]->reg_idx;
2797				val = rd32(hw, QINT_RQCTL(reg));
2798				val &= ~QINT_RQCTL_CAUSE_ENA_M;
2799				wr32(hw, QINT_RQCTL(reg), val);
2800			}
2801		}
2802	}
2803
2804	/* disable each interrupt */
2805	ice_for_each_q_vector(vsi, i) {
2806		if (!vsi->q_vectors[i])
2807			continue;
2808		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2809	}
2810
2811	ice_flush(hw);
2812
2813	/* don't call synchronize_irq() for VF's from the host */
2814	if (vsi->type == ICE_VSI_VF)
2815		return;
2816
2817	ice_for_each_q_vector(vsi, i)
2818		synchronize_irq(pf->msix_entries[i + base].vector);
2819}
2820
2821/**
2822 * ice_napi_del - Remove NAPI handler for the VSI
2823 * @vsi: VSI for which NAPI handler is to be removed
2824 */
2825void ice_napi_del(struct ice_vsi *vsi)
2826{
2827	int v_idx;
2828
2829	if (!vsi->netdev)
2830		return;
2831
2832	ice_for_each_q_vector(vsi, v_idx)
2833		netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2834}
2835
2836/**
2837 * ice_vsi_release - Delete a VSI and free its resources
2838 * @vsi: the VSI being removed
2839 *
2840 * Returns 0 on success or < 0 on error
2841 */
2842int ice_vsi_release(struct ice_vsi *vsi)
2843{
2844	enum ice_status err;
2845	struct ice_pf *pf;
2846
2847	if (!vsi->back)
2848		return -ENODEV;
2849	pf = vsi->back;
2850
2851	/* do not unregister while driver is in the reset recovery pending
2852	 * state. Since reset/rebuild happens through PF service task workqueue,
2853	 * it's not a good idea to unregister netdev that is associated to the
2854	 * PF that is running the work queue items currently. This is done to
2855	 * avoid check_flush_dependency() warning on this wq
2856	 */
2857	if (vsi->netdev && !ice_is_reset_in_progress(pf->state) &&
2858	    (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) {
2859		unregister_netdev(vsi->netdev);
2860		clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
2861	}
2862
2863	ice_devlink_destroy_port(vsi);
2864
2865	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2866		ice_rss_clean(vsi);
2867
2868	/* Disable VSI and free resources */
2869	if (vsi->type != ICE_VSI_LB)
2870		ice_vsi_dis_irq(vsi);
2871	ice_vsi_close(vsi);
2872
2873	/* SR-IOV determines needed MSIX resources all at once instead of per
2874	 * VSI since when VFs are spawned we know how many VFs there are and how
2875	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2876	 * cleared in the same manner.
2877	 */
2878	if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) {
2879		int i;
2880
2881		ice_for_each_vf(pf, i) {
2882			struct ice_vf *vf = &pf->vf[i];
2883
2884			if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI)
2885				break;
2886		}
2887		if (i == pf->num_alloc_vfs) {
2888			/* No other VFs left that have control VSI, reclaim SW
2889			 * interrupts back to the common pool
2890			 */
2891			ice_free_res(pf->irq_tracker, vsi->base_vector,
2892				     ICE_RES_VF_CTRL_VEC_ID);
2893			pf->num_avail_sw_msix += vsi->num_q_vectors;
2894		}
2895	} else if (vsi->type != ICE_VSI_VF) {
2896		/* reclaim SW interrupts back to the common pool */
2897		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2898		pf->num_avail_sw_msix += vsi->num_q_vectors;
2899	}
2900
2901	if (!ice_is_safe_mode(pf)) {
2902		if (vsi->type == ICE_VSI_PF) {
2903			ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2904					    ICE_DROP_PACKET);
2905			ice_cfg_sw_lldp(vsi, true, false);
2906			/* The Rx rule will only exist to remove if the LLDP FW
2907			 * engine is currently stopped
2908			 */
2909			if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2910				ice_cfg_sw_lldp(vsi, false, false);
2911		}
2912	}
2913
2914	ice_fltr_remove_all(vsi);
2915	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2916	err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2917	if (err)
2918		dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2919			vsi->vsi_num, err);
2920	ice_vsi_delete(vsi);
2921	ice_vsi_free_q_vectors(vsi);
2922
2923	if (vsi->netdev) {
2924		if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) {
2925			unregister_netdev(vsi->netdev);
2926			clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
2927		}
2928		if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) {
2929			free_netdev(vsi->netdev);
2930			vsi->netdev = NULL;
2931			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
2932		}
2933	}
2934
2935	if (vsi->type == ICE_VSI_VF &&
2936	    vsi->agg_node && vsi->agg_node->valid)
2937		vsi->agg_node->num_vsis--;
2938	ice_vsi_clear_rings(vsi);
2939
2940	ice_vsi_put_qs(vsi);
2941
2942	/* retain SW VSI data structure since it is needed to unregister and
2943	 * free VSI netdev when PF is not in reset recovery pending state,\
2944	 * for ex: during rmmod.
2945	 */
2946	if (!ice_is_reset_in_progress(pf->state))
2947		ice_vsi_clear(vsi);
2948
2949	return 0;
2950}
2951
2952/**
2953 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2954 * @vsi: VSI connected with q_vectors
2955 * @coalesce: array of struct with stored coalesce
2956 *
2957 * Returns array size.
2958 */
2959static int
2960ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2961			     struct ice_coalesce_stored *coalesce)
2962{
2963	int i;
2964
2965	ice_for_each_q_vector(vsi, i) {
2966		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2967
2968		coalesce[i].itr_tx = q_vector->tx.itr_setting;
2969		coalesce[i].itr_rx = q_vector->rx.itr_setting;
2970		coalesce[i].intrl = q_vector->intrl;
2971
2972		if (i < vsi->num_txq)
2973			coalesce[i].tx_valid = true;
2974		if (i < vsi->num_rxq)
2975			coalesce[i].rx_valid = true;
2976	}
2977
2978	return vsi->num_q_vectors;
2979}
2980
2981/**
2982 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2983 * @vsi: VSI connected with q_vectors
2984 * @coalesce: pointer to array of struct with stored coalesce
2985 * @size: size of coalesce array
2986 *
2987 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2988 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2989 * to default value.
2990 */
2991static void
2992ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2993			     struct ice_coalesce_stored *coalesce, int size)
2994{
2995	struct ice_ring_container *rc;
2996	int i;
2997
2998	if ((size && !coalesce) || !vsi)
2999		return;
3000
3001	/* There are a couple of cases that have to be handled here:
3002	 *   1. The case where the number of queue vectors stays the same, but
3003	 *      the number of Tx or Rx rings changes (the first for loop)
3004	 *   2. The case where the number of queue vectors increased (the
3005	 *      second for loop)
3006	 */
3007	for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3008		/* There are 2 cases to handle here and they are the same for
3009		 * both Tx and Rx:
3010		 *   if the entry was valid previously (coalesce[i].[tr]x_valid
3011		 *   and the loop variable is less than the number of rings
3012		 *   allocated, then write the previous values
3013		 *
3014		 *   if the entry was not valid previously, but the number of
3015		 *   rings is less than are allocated (this means the number of
3016		 *   rings increased from previously), then write out the
3017		 *   values in the first element
3018		 *
3019		 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
3020		 *   as there is no harm because the dynamic algorithm
3021		 *   will just overwrite.
3022		 */
3023		if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3024			rc = &vsi->q_vectors[i]->rx;
3025			rc->itr_setting = coalesce[i].itr_rx;
3026			ice_write_itr(rc, rc->itr_setting);
3027		} else if (i < vsi->alloc_rxq) {
3028			rc = &vsi->q_vectors[i]->rx;
3029			rc->itr_setting = coalesce[0].itr_rx;
3030			ice_write_itr(rc, rc->itr_setting);
3031		}
3032
3033		if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3034			rc = &vsi->q_vectors[i]->tx;
3035			rc->itr_setting = coalesce[i].itr_tx;
3036			ice_write_itr(rc, rc->itr_setting);
3037		} else if (i < vsi->alloc_txq) {
3038			rc = &vsi->q_vectors[i]->tx;
3039			rc->itr_setting = coalesce[0].itr_tx;
3040			ice_write_itr(rc, rc->itr_setting);
3041		}
3042
3043		vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3044		ice_write_intrl(vsi->q_vectors[i], coalesce[i].intrl);
3045	}
3046
3047	/* the number of queue vectors increased so write whatever is in
3048	 * the first element
3049	 */
3050	for (; i < vsi->num_q_vectors; i++) {
3051		/* transmit */
3052		rc = &vsi->q_vectors[i]->tx;
3053		rc->itr_setting = coalesce[0].itr_tx;
3054		ice_write_itr(rc, rc->itr_setting);
3055
3056		/* receive */
3057		rc = &vsi->q_vectors[i]->rx;
3058		rc->itr_setting = coalesce[0].itr_rx;
3059		ice_write_itr(rc, rc->itr_setting);
3060
3061		vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3062		ice_write_intrl(vsi->q_vectors[i], coalesce[0].intrl);
3063	}
3064}
3065
3066/**
3067 * ice_vsi_rebuild - Rebuild VSI after reset
3068 * @vsi: VSI to be rebuild
3069 * @init_vsi: is this an initialization or a reconfigure of the VSI
3070 *
3071 * Returns 0 on success and negative value on failure
3072 */
3073int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
3074{
3075	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3076	struct ice_coalesce_stored *coalesce;
3077	int prev_num_q_vectors = 0;
3078	struct ice_vf *vf = NULL;
3079	enum ice_vsi_type vtype;
3080	enum ice_status status;
3081	struct ice_pf *pf;
3082	int ret, i;
3083
3084	if (!vsi)
3085		return -EINVAL;
3086
3087	pf = vsi->back;
3088	vtype = vsi->type;
3089	if (vtype == ICE_VSI_VF)
3090		vf = &pf->vf[vsi->vf_id];
3091
3092	coalesce = kcalloc(vsi->num_q_vectors,
3093			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3094	if (!coalesce)
3095		return -ENOMEM;
3096
3097	prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3098
3099	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3100	ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
3101	if (ret)
3102		dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
3103			vsi->vsi_num, ret);
3104	ice_vsi_free_q_vectors(vsi);
3105
3106	/* SR-IOV determines needed MSIX resources all at once instead of per
3107	 * VSI since when VFs are spawned we know how many VFs there are and how
3108	 * many interrupts each VF needs. SR-IOV MSIX resources are also
3109	 * cleared in the same manner.
3110	 */
3111	if (vtype != ICE_VSI_VF) {
3112		/* reclaim SW interrupts back to the common pool */
3113		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3114		pf->num_avail_sw_msix += vsi->num_q_vectors;
3115		vsi->base_vector = 0;
3116	}
3117
3118	if (ice_is_xdp_ena_vsi(vsi))
3119		/* return value check can be skipped here, it always returns
3120		 * 0 if reset is in progress
3121		 */
3122		ice_destroy_xdp_rings(vsi);
3123	ice_vsi_put_qs(vsi);
3124	ice_vsi_clear_rings(vsi);
3125	ice_vsi_free_arrays(vsi);
3126	if (vtype == ICE_VSI_VF)
 
3127		ice_vsi_set_num_qs(vsi, vf->vf_id);
3128	else
3129		ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
3130
3131	ret = ice_vsi_alloc_arrays(vsi);
3132	if (ret < 0)
3133		goto err_vsi;
3134
3135	ice_vsi_get_qs(vsi);
3136
3137	ice_alloc_fd_res(vsi);
3138	ice_vsi_set_tc_cfg(vsi);
3139
3140	/* Initialize VSI struct elements and create VSI in FW */
3141	ret = ice_vsi_init(vsi, init_vsi);
3142	if (ret < 0)
3143		goto err_vsi;
3144
3145	switch (vtype) {
3146	case ICE_VSI_CTRL:
3147	case ICE_VSI_PF:
3148		ret = ice_vsi_alloc_q_vectors(vsi);
3149		if (ret)
3150			goto err_rings;
3151
3152		ret = ice_vsi_setup_vector_base(vsi);
3153		if (ret)
3154			goto err_vectors;
3155
3156		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3157		if (ret)
3158			goto err_vectors;
3159
3160		ret = ice_vsi_alloc_rings(vsi);
3161		if (ret)
3162			goto err_vectors;
3163
3164		ice_vsi_map_rings_to_vectors(vsi);
3165		if (ice_is_xdp_ena_vsi(vsi)) {
3166			vsi->num_xdp_txq = vsi->alloc_rxq;
3167			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
3168			if (ret)
3169				goto err_vectors;
3170		}
3171		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
3172		if (vtype != ICE_VSI_CTRL)
3173			/* Do not exit if configuring RSS had an issue, at
3174			 * least receive traffic on first queue. Hence no
3175			 * need to capture return value
3176			 */
3177			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3178				ice_vsi_cfg_rss_lut_key(vsi);
3179		break;
3180	case ICE_VSI_VF:
3181		ret = ice_vsi_alloc_q_vectors(vsi);
3182		if (ret)
3183			goto err_rings;
3184
3185		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3186		if (ret)
3187			goto err_vectors;
3188
3189		ret = ice_vsi_alloc_rings(vsi);
3190		if (ret)
3191			goto err_vectors;
3192
3193		break;
3194	default:
3195		break;
3196	}
3197
3198	/* configure VSI nodes based on number of queues and TC's */
3199	for (i = 0; i < vsi->tc_cfg.numtc; i++) {
3200		max_txqs[i] = vsi->alloc_txq;
3201
3202		if (ice_is_xdp_ena_vsi(vsi))
3203			max_txqs[i] += vsi->num_xdp_txq;
3204	}
3205
3206	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3207				 max_txqs);
3208	if (status) {
3209		dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n",
3210			vsi->vsi_num, ice_stat_str(status));
3211		if (init_vsi) {
3212			ret = -EIO;
3213			goto err_vectors;
3214		} else {
3215			return ice_schedule_reset(pf, ICE_RESET_PFR);
3216		}
3217	}
3218	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3219	kfree(coalesce);
3220
3221	return 0;
3222
3223err_vectors:
3224	ice_vsi_free_q_vectors(vsi);
3225err_rings:
3226	if (vsi->netdev) {
3227		vsi->current_netdev_flags = 0;
3228		unregister_netdev(vsi->netdev);
3229		free_netdev(vsi->netdev);
3230		vsi->netdev = NULL;
3231	}
3232err_vsi:
3233	ice_vsi_clear(vsi);
3234	set_bit(ICE_RESET_FAILED, pf->state);
3235	kfree(coalesce);
3236	return ret;
3237}
3238
3239/**
3240 * ice_is_reset_in_progress - check for a reset in progress
3241 * @state: PF state field
3242 */
3243bool ice_is_reset_in_progress(unsigned long *state)
3244{
3245	return test_bit(ICE_RESET_OICR_RECV, state) ||
3246	       test_bit(ICE_PFR_REQ, state) ||
3247	       test_bit(ICE_CORER_REQ, state) ||
3248	       test_bit(ICE_GLOBR_REQ, state);
3249}
3250
3251/**
3252 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3253 * @pf: pointer to the PF structure
3254 * @timeout: length of time to wait, in jiffies
3255 *
3256 * Wait (sleep) for a short time until the driver finishes cleaning up from
3257 * a device reset. The caller must be able to sleep. Use this to delay
3258 * operations that could fail while the driver is cleaning up after a device
3259 * reset.
3260 *
3261 * Returns 0 on success, -EBUSY if the reset is not finished within the
3262 * timeout, and -ERESTARTSYS if the thread was interrupted.
3263 */
3264int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3265{
3266	long ret;
3267
3268	ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3269					       !ice_is_reset_in_progress(pf->state),
3270					       timeout);
3271	if (ret < 0)
3272		return ret;
3273	else if (!ret)
3274		return -EBUSY;
3275	else
3276		return 0;
3277}
3278
3279#ifdef CONFIG_DCB
3280/**
3281 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3282 * @vsi: VSI being configured
3283 * @ctx: the context buffer returned from AQ VSI update command
3284 */
3285static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3286{
3287	vsi->info.mapping_flags = ctx->info.mapping_flags;
3288	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3289	       sizeof(vsi->info.q_mapping));
3290	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3291	       sizeof(vsi->info.tc_mapping));
3292}
3293
3294/**
3295 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3296 * @vsi: VSI to be configured
3297 * @ena_tc: TC bitmap
3298 *
3299 * VSI queues expected to be quiesced before calling this function
3300 */
3301int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3302{
3303	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3304	struct ice_pf *pf = vsi->back;
3305	struct ice_vsi_ctx *ctx;
 
3306	enum ice_status status;
3307	struct device *dev;
3308	int i, ret = 0;
3309	u8 num_tc = 0;
3310
3311	dev = ice_pf_to_dev(pf);
3312
3313	ice_for_each_traffic_class(i) {
3314		/* build bitmap of enabled TCs */
3315		if (ena_tc & BIT(i))
3316			num_tc++;
3317		/* populate max_txqs per TC */
3318		max_txqs[i] = vsi->alloc_txq;
3319	}
3320
3321	vsi->tc_cfg.ena_tc = ena_tc;
3322	vsi->tc_cfg.numtc = num_tc;
3323
3324	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3325	if (!ctx)
3326		return -ENOMEM;
3327
3328	ctx->vf_num = 0;
3329	ctx->info = vsi->info;
3330
3331	ice_vsi_setup_q_map(vsi, ctx);
3332
3333	/* must to indicate which section of VSI context are being modified */
3334	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3335	status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3336	if (status) {
3337		dev_info(dev, "Failed VSI Update\n");
3338		ret = -EIO;
3339		goto out;
3340	}
3341
3342	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3343				 max_txqs);
3344
3345	if (status) {
3346		dev_err(dev, "VSI %d failed TC config, error %s\n",
3347			vsi->vsi_num, ice_stat_str(status));
 
3348		ret = -EIO;
3349		goto out;
3350	}
3351	ice_vsi_update_q_map(vsi, ctx);
3352	vsi->info.valid_sections = 0;
3353
3354	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3355out:
3356	kfree(ctx);
3357	return ret;
3358}
3359#endif /* CONFIG_DCB */
3360
3361/**
3362 * ice_update_ring_stats - Update ring statistics
3363 * @ring: ring to update
3364 * @pkts: number of processed packets
3365 * @bytes: number of processed bytes
3366 *
3367 * This function assumes that caller has acquired a u64_stats_sync lock.
3368 */
3369static void ice_update_ring_stats(struct ice_ring *ring, u64 pkts, u64 bytes)
3370{
3371	ring->stats.bytes += bytes;
3372	ring->stats.pkts += pkts;
3373}
3374
3375/**
3376 * ice_update_tx_ring_stats - Update Tx ring specific counters
3377 * @tx_ring: ring to update
3378 * @pkts: number of processed packets
3379 * @bytes: number of processed bytes
3380 */
3381void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes)
3382{
3383	u64_stats_update_begin(&tx_ring->syncp);
3384	ice_update_ring_stats(tx_ring, pkts, bytes);
3385	u64_stats_update_end(&tx_ring->syncp);
3386}
3387
3388/**
3389 * ice_update_rx_ring_stats - Update Rx ring specific counters
3390 * @rx_ring: ring to update
3391 * @pkts: number of processed packets
3392 * @bytes: number of processed bytes
3393 */
3394void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes)
3395{
3396	u64_stats_update_begin(&rx_ring->syncp);
3397	ice_update_ring_stats(rx_ring, pkts, bytes);
3398	u64_stats_update_end(&rx_ring->syncp);
3399}
3400
3401/**
3402 * ice_status_to_errno - convert from enum ice_status to Linux errno
3403 * @err: ice_status value to convert
3404 */
3405int ice_status_to_errno(enum ice_status err)
3406{
3407	switch (err) {
3408	case ICE_SUCCESS:
3409		return 0;
3410	case ICE_ERR_DOES_NOT_EXIST:
3411		return -ENOENT;
3412	case ICE_ERR_OUT_OF_RANGE:
3413	case ICE_ERR_AQ_ERROR:
3414	case ICE_ERR_AQ_TIMEOUT:
3415	case ICE_ERR_AQ_EMPTY:
3416	case ICE_ERR_AQ_FW_CRITICAL:
3417		return -EIO;
3418	case ICE_ERR_PARAM:
3419	case ICE_ERR_INVAL_SIZE:
3420		return -EINVAL;
3421	case ICE_ERR_NO_MEMORY:
3422		return -ENOMEM;
3423	case ICE_ERR_MAX_LIMIT:
3424		return -EAGAIN;
3425	case ICE_ERR_RESET_ONGOING:
3426		return -EBUSY;
3427	case ICE_ERR_AQ_FULL:
3428		return -ENOSPC;
3429	default:
3430		return -EINVAL;
3431	}
3432}
3433
3434/**
3435 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3436 * @sw: switch to check if its default forwarding VSI is free
3437 *
3438 * Return true if the default forwarding VSI is already being used, else returns
3439 * false signalling that it's available to use.
3440 */
3441bool ice_is_dflt_vsi_in_use(struct ice_sw *sw)
3442{
3443	return (sw->dflt_vsi && sw->dflt_vsi_ena);
3444}
3445
3446/**
3447 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3448 * @sw: switch for the default forwarding VSI to compare against
3449 * @vsi: VSI to compare against default forwarding VSI
3450 *
3451 * If this VSI passed in is the default forwarding VSI then return true, else
3452 * return false
3453 */
3454bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3455{
3456	return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena);
3457}
3458
3459/**
3460 * ice_set_dflt_vsi - set the default forwarding VSI
3461 * @sw: switch used to assign the default forwarding VSI
3462 * @vsi: VSI getting set as the default forwarding VSI on the switch
3463 *
3464 * If the VSI passed in is already the default VSI and it's enabled just return
3465 * success.
3466 *
3467 * If there is already a default VSI on the switch and it's enabled then return
3468 * -EEXIST since there can only be one default VSI per switch.
3469 *
3470 *  Otherwise try to set the VSI passed in as the switch's default VSI and
3471 *  return the result.
3472 */
3473int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3474{
3475	enum ice_status status;
3476	struct device *dev;
 
3477
3478	if (!sw || !vsi)
3479		return -EINVAL;
3480
3481	dev = ice_pf_to_dev(vsi->back);
 
3482
3483	/* the VSI passed in is already the default VSI */
3484	if (ice_is_vsi_dflt_vsi(sw, vsi)) {
3485		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3486			vsi->vsi_num);
3487		return 0;
3488	}
3489
3490	/* another VSI is already the default VSI for this switch */
3491	if (ice_is_dflt_vsi_in_use(sw)) {
3492		dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n",
3493			sw->dflt_vsi->vsi_num);
3494		return -EEXIST;
3495	}
3496
3497	status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX);
3498	if (status) {
3499		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n",
3500			vsi->vsi_num, ice_stat_str(status));
3501		return -EIO;
3502	}
3503
3504	sw->dflt_vsi = vsi;
3505	sw->dflt_vsi_ena = true;
3506
3507	return 0;
3508}
3509
3510/**
3511 * ice_clear_dflt_vsi - clear the default forwarding VSI
3512 * @sw: switch used to clear the default VSI
 
 
3513 *
3514 * If the switch has no default VSI or it's not enabled then return error.
3515 *
3516 * Otherwise try to clear the default VSI and return the result.
3517 */
3518int ice_clear_dflt_vsi(struct ice_sw *sw)
 
3519{
3520	struct ice_vsi *dflt_vsi;
3521	enum ice_status status;
3522	struct device *dev;
3523
3524	if (!sw)
3525		return -EINVAL;
3526
3527	dev = ice_pf_to_dev(sw->pf);
3528
3529	dflt_vsi = sw->dflt_vsi;
3530
3531	/* there is no default VSI configured */
3532	if (!ice_is_dflt_vsi_in_use(sw))
3533		return -ENODEV;
3534
3535	status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false,
3536				  ICE_FLTR_RX);
3537	if (status) {
3538		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n",
3539			dflt_vsi->vsi_num, ice_stat_str(status));
3540		return -EIO;
3541	}
3542
3543	sw->dflt_vsi = NULL;
3544	sw->dflt_vsi_ena = false;
3545
3546	return 0;
3547}
3548
3549/**
3550 * ice_set_link - turn on/off physical link
3551 * @vsi: VSI to modify physical link on
3552 * @ena: turn on/off physical link
3553 */
3554int ice_set_link(struct ice_vsi *vsi, bool ena)
3555{
3556	struct device *dev = ice_pf_to_dev(vsi->back);
3557	struct ice_port_info *pi = vsi->port_info;
3558	struct ice_hw *hw = pi->hw;
3559	enum ice_status status;
3560
3561	if (vsi->type != ICE_VSI_PF)
3562		return -EINVAL;
3563
3564	status = ice_aq_set_link_restart_an(pi, ena, NULL);
3565
3566	/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3567	 * this is not a fatal error, so print a warning message and return
3568	 * a success code. Return an error if FW returns an error code other
3569	 * than ICE_AQ_RC_EMODE
3570	 */
3571	if (status == ICE_ERR_AQ_ERROR) {
3572		if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3573			dev_warn(dev, "can't set link to %s, err %s aq_err %s. not fatal, continuing\n",
3574				 (ena ? "ON" : "OFF"), ice_stat_str(status),
3575				 ice_aq_str(hw->adminq.sq_last_status));
3576	} else if (status) {
3577		dev_err(dev, "can't set link to %s, err %s aq_err %s\n",
3578			(ena ? "ON" : "OFF"), ice_stat_str(status),
3579			ice_aq_str(hw->adminq.sq_last_status));
3580		return -EIO;
3581	}
3582
3583	return 0;
 
 
3584}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice.h"
 
 
   5#include "ice_lib.h"
 
   6#include "ice_dcb_lib.h"
 
   7
   8/**
   9 * ice_setup_rx_ctx - Configure a receive ring context
  10 * @ring: The Rx ring to configure
  11 *
  12 * Configure the Rx descriptor ring in RLAN context.
  13 */
  14static int ice_setup_rx_ctx(struct ice_ring *ring)
  15{
  16	struct ice_vsi *vsi = ring->vsi;
  17	struct ice_hw *hw = &vsi->back->hw;
  18	u32 rxdid = ICE_RXDID_FLEX_NIC;
  19	struct ice_rlan_ctx rlan_ctx;
  20	u32 regval;
  21	u16 pf_q;
  22	int err;
  23
  24	/* what is Rx queue number in global space of 2K Rx queues */
  25	pf_q = vsi->rxq_map[ring->q_index];
  26
  27	/* clear the context structure first */
  28	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
  29
  30	rlan_ctx.base = ring->dma >> 7;
  31
  32	rlan_ctx.qlen = ring->count;
  33
  34	/* Receive Packet Data Buffer Size.
  35	 * The Packet Data Buffer Size is defined in 128 byte units.
  36	 */
  37	rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
  38
  39	/* use 32 byte descriptors */
  40	rlan_ctx.dsize = 1;
  41
  42	/* Strip the Ethernet CRC bytes before the packet is posted to host
  43	 * memory.
  44	 */
  45	rlan_ctx.crcstrip = 1;
  46
  47	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
  48	rlan_ctx.l2tsel = 1;
  49
  50	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
  51	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
  52	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
  53
  54	/* This controls whether VLAN is stripped from inner headers
  55	 * The VLAN in the inner L2 header is stripped to the receive
  56	 * descriptor if enabled by this flag.
  57	 */
  58	rlan_ctx.showiv = 0;
  59
  60	/* Max packet size for this queue - must not be set to a larger value
  61	 * than 5 x DBUF
  62	 */
  63	rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
  64			       ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);
  65
  66	/* Rx queue threshold in units of 64 */
  67	rlan_ctx.lrxqthresh = 1;
  68
  69	 /* Enable Flexible Descriptors in the queue context which
  70	  * allows this driver to select a specific receive descriptor format
  71	  */
  72	if (vsi->type != ICE_VSI_VF) {
  73		regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
  74		regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
  75			QRXFLXP_CNTXT_RXDID_IDX_M;
  76
  77		/* increasing context priority to pick up profile ID;
  78		 * default is 0x01; setting to 0x03 to ensure profile
  79		 * is programming if prev context is of same priority
  80		 */
  81		regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
  82			QRXFLXP_CNTXT_RXDID_PRIO_M;
  83
  84		wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
  85	}
  86
  87	/* Absolute queue number out of 2K needs to be passed */
  88	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
  89	if (err) {
  90		dev_err(&vsi->back->pdev->dev,
  91			"Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
  92			pf_q, err);
  93		return -EIO;
  94	}
  95
  96	if (vsi->type == ICE_VSI_VF)
  97		return 0;
  98
  99	/* init queue specific tail register */
 100	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
 101	writel(0, ring->tail);
 102	ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
 103
 104	return 0;
 105}
 106
 107/**
 108 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
 109 * @ring: The Tx ring to configure
 110 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
 111 * @pf_q: queue index in the PF space
 112 *
 113 * Configure the Tx descriptor ring in TLAN context.
 114 */
 115static void
 116ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
 117{
 118	struct ice_vsi *vsi = ring->vsi;
 119	struct ice_hw *hw = &vsi->back->hw;
 120
 121	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
 122
 123	tlan_ctx->port_num = vsi->port_info->lport;
 124
 125	/* Transmit Queue Length */
 126	tlan_ctx->qlen = ring->count;
 127
 128	ice_set_cgd_num(tlan_ctx, ring);
 129
 130	/* PF number */
 131	tlan_ctx->pf_num = hw->pf_id;
 132
 133	/* queue belongs to a specific VSI type
 134	 * VF / VM index should be programmed per vmvf_type setting:
 135	 * for vmvf_type = VF, it is VF number between 0-256
 136	 * for vmvf_type = VM, it is VM number between 0-767
 137	 * for PF or EMP this field should be set to zero
 138	 */
 139	switch (vsi->type) {
 140	case ICE_VSI_LB:
 141		/* fall through */
 142	case ICE_VSI_PF:
 143		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
 144		break;
 145	case ICE_VSI_VF:
 146		/* Firmware expects vmvf_num to be absolute VF ID */
 147		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
 148		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
 149		break;
 
 150	default:
 151		return;
 152	}
 153
 154	/* make sure the context is associated with the right VSI */
 155	tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
 156
 157	tlan_ctx->tso_ena = ICE_TX_LEGACY;
 158	tlan_ctx->tso_qnum = pf_q;
 159
 160	/* Legacy or Advanced Host Interface:
 161	 * 0: Advanced Host Interface
 162	 * 1: Legacy Host Interface
 163	 */
 164	tlan_ctx->legacy_int = ICE_TX_LEGACY;
 165}
 166
 167/**
 168 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
 169 * @pf: the PF being configured
 170 * @pf_q: the PF queue
 171 * @ena: enable or disable state of the queue
 172 *
 173 * This routine will wait for the given Rx queue of the PF to reach the
 174 * enabled or disabled state.
 175 * Returns -ETIMEDOUT in case of failing to reach the requested state after
 176 * multiple retries; else will return 0 in case of success.
 177 */
 178static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
 179{
 180	int i;
 181
 182	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
 183		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
 184			      QRX_CTRL_QENA_STAT_M))
 185			return 0;
 186
 187		usleep_range(20, 40);
 188	}
 189
 190	return -ETIMEDOUT;
 191}
 192
 193/**
 194 * ice_vsi_ctrl_rx_ring - Start or stop a VSI's Rx ring
 195 * @vsi: the VSI being configured
 196 * @ena: start or stop the Rx rings
 197 * @rxq_idx: Rx queue index
 
 
 
 
 198 */
 199#ifndef CONFIG_PCI_IOV
 200static
 201#endif /* !CONFIG_PCI_IOV */
 202int ice_vsi_ctrl_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
 203{
 204	int pf_q = vsi->rxq_map[rxq_idx];
 205	struct ice_pf *pf = vsi->back;
 206	struct ice_hw *hw = &pf->hw;
 207	int ret = 0;
 208	u32 rx_reg;
 209
 210	rx_reg = rd32(hw, QRX_CTRL(pf_q));
 211
 212	/* Skip if the queue is already in the requested state */
 213	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
 214		return 0;
 215
 216	/* turn on/off the queue */
 217	if (ena)
 218		rx_reg |= QRX_CTRL_QENA_REQ_M;
 219	else
 220		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
 221	wr32(hw, QRX_CTRL(pf_q), rx_reg);
 222
 223	/* wait for the change to finish */
 224	ret = ice_pf_rxq_wait(pf, pf_q, ena);
 225	if (ret)
 226		dev_err(&pf->pdev->dev,
 227			"VSI idx %d Rx ring %d %sable timeout\n",
 228			vsi->idx, pf_q, (ena ? "en" : "dis"));
 229
 230	return ret;
 231}
 232
 233/**
 234 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings
 235 * @vsi: the VSI being configured
 236 * @ena: start or stop the Rx rings
 237 */
 238static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena)
 239{
 240	int i, ret = 0;
 241
 242	for (i = 0; i < vsi->num_rxq; i++) {
 243		ret = ice_vsi_ctrl_rx_ring(vsi, ena, i);
 244		if (ret)
 245			break;
 246	}
 247
 248	return ret;
 249}
 250
 251/**
 252 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
 253 * @vsi: VSI pointer
 254 *
 255 * On error: returns error code (negative)
 256 * On success: returns 0
 257 */
 258static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
 259{
 260	struct ice_pf *pf = vsi->back;
 
 
 
 261
 262	/* allocate memory for both Tx and Rx ring pointers */
 263	vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
 264				     sizeof(*vsi->tx_rings), GFP_KERNEL);
 265	if (!vsi->tx_rings)
 266		return -ENOMEM;
 267
 268	vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
 269				     sizeof(*vsi->rx_rings), GFP_KERNEL);
 270	if (!vsi->rx_rings)
 271		goto err_rings;
 272
 273	vsi->txq_map = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
 
 274				    sizeof(*vsi->txq_map), GFP_KERNEL);
 275
 276	if (!vsi->txq_map)
 277		goto err_txq_map;
 278
 279	vsi->rxq_map = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
 280				    sizeof(*vsi->rxq_map), GFP_KERNEL);
 281	if (!vsi->rxq_map)
 282		goto err_rxq_map;
 283
 284
 285	/* There is no need to allocate q_vectors for a loopback VSI. */
 286	if (vsi->type == ICE_VSI_LB)
 287		return 0;
 288
 289	/* allocate memory for q_vector pointers */
 290	vsi->q_vectors = devm_kcalloc(&pf->pdev->dev, vsi->num_q_vectors,
 291				      sizeof(*vsi->q_vectors), GFP_KERNEL);
 292	if (!vsi->q_vectors)
 293		goto err_vectors;
 294
 
 
 
 
 295	return 0;
 296
 
 
 297err_vectors:
 298	devm_kfree(&pf->pdev->dev, vsi->rxq_map);
 299err_rxq_map:
 300	devm_kfree(&pf->pdev->dev, vsi->txq_map);
 301err_txq_map:
 302	devm_kfree(&pf->pdev->dev, vsi->rx_rings);
 303err_rings:
 304	devm_kfree(&pf->pdev->dev, vsi->tx_rings);
 305	return -ENOMEM;
 306}
 307
 308/**
 309 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
 310 * @vsi: the VSI being configured
 311 */
 312static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
 313{
 314	switch (vsi->type) {
 315	case ICE_VSI_PF:
 316		/* fall through */
 317	case ICE_VSI_LB:
 318		vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
 319		vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
 
 
 
 
 
 
 320		break;
 321	default:
 322		dev_dbg(&vsi->back->pdev->dev,
 323			"Not setting number of Tx/Rx descriptors for VSI type %d\n",
 324			vsi->type);
 325		break;
 326	}
 327}
 328
 329/**
 330 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
 331 * @vsi: the VSI being configured
 332 * @vf_id: ID of the VF being configured
 333 *
 334 * Return 0 on success and a negative value on error
 335 */
 336static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
 337{
 338	struct ice_pf *pf = vsi->back;
 339	struct ice_vf *vf = NULL;
 340
 341	if (vsi->type == ICE_VSI_VF)
 342		vsi->vf_id = vf_id;
 
 
 343
 344	switch (vsi->type) {
 345	case ICE_VSI_PF:
 346		vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf),
 347				       num_online_cpus());
 
 
 
 
 
 
 348
 349		pf->num_lan_tx = vsi->alloc_txq;
 350
 351		/* only 1 Rx queue unless RSS is enabled */
 352		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
 353			vsi->alloc_rxq = 1;
 354		else
 355			vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf),
 356					       num_online_cpus());
 
 
 
 
 
 
 
 357
 358		pf->num_lan_rx = vsi->alloc_rxq;
 359
 360		vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq);
 
 
 361		break;
 362	case ICE_VSI_VF:
 363		vf = &pf->vf[vsi->vf_id];
 
 
 364		vsi->alloc_txq = vf->num_vf_qs;
 365		vsi->alloc_rxq = vf->num_vf_qs;
 366		/* pf->num_vf_msix includes (VF miscellaneous vector +
 367		 * data queue interrupts). Since vsi->num_q_vectors is number
 368		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
 369		 * original vector count
 370		 */
 371		vsi->num_q_vectors = pf->num_vf_msix - ICE_NONQ_VECS_VF;
 
 
 
 
 
 372		break;
 373	case ICE_VSI_LB:
 374		vsi->alloc_txq = 1;
 375		vsi->alloc_rxq = 1;
 376		break;
 377	default:
 378		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
 379		break;
 380	}
 381
 382	ice_vsi_set_num_desc(vsi);
 383}
 384
 385/**
 386 * ice_get_free_slot - get the next non-NULL location index in array
 387 * @array: array to search
 388 * @size: size of the array
 389 * @curr: last known occupied index to be used as a search hint
 390 *
 391 * void * is being used to keep the functionality generic. This lets us use this
 392 * function on any array of pointers.
 393 */
 394static int ice_get_free_slot(void *array, int size, int curr)
 395{
 396	int **tmp_array = (int **)array;
 397	int next;
 398
 399	if (curr < (size - 1) && !tmp_array[curr + 1]) {
 400		next = curr + 1;
 401	} else {
 402		int i = 0;
 403
 404		while ((i < size) && (tmp_array[i]))
 405			i++;
 406		if (i == size)
 407			next = ICE_NO_VSI;
 408		else
 409			next = i;
 410	}
 411	return next;
 412}
 413
 414/**
 415 * ice_vsi_delete - delete a VSI from the switch
 416 * @vsi: pointer to VSI being removed
 417 */
 418void ice_vsi_delete(struct ice_vsi *vsi)
 419{
 420	struct ice_pf *pf = vsi->back;
 421	struct ice_vsi_ctx *ctxt;
 422	enum ice_status status;
 423
 424	ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
 425	if (!ctxt)
 426		return;
 427
 428	if (vsi->type == ICE_VSI_VF)
 429		ctxt->vf_num = vsi->vf_id;
 430	ctxt->vsi_num = vsi->vsi_num;
 431
 432	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
 433
 434	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
 435	if (status)
 436		dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n",
 437			vsi->vsi_num);
 438
 439	devm_kfree(&pf->pdev->dev, ctxt);
 440}
 441
 442/**
 443 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
 444 * @vsi: pointer to VSI being cleared
 445 */
 446static void ice_vsi_free_arrays(struct ice_vsi *vsi)
 447{
 448	struct ice_pf *pf = vsi->back;
 
 449
 
 
 
 
 
 
 450	/* free the ring and vector containers */
 451	if (vsi->q_vectors) {
 452		devm_kfree(&pf->pdev->dev, vsi->q_vectors);
 453		vsi->q_vectors = NULL;
 454	}
 455	if (vsi->tx_rings) {
 456		devm_kfree(&pf->pdev->dev, vsi->tx_rings);
 457		vsi->tx_rings = NULL;
 458	}
 459	if (vsi->rx_rings) {
 460		devm_kfree(&pf->pdev->dev, vsi->rx_rings);
 461		vsi->rx_rings = NULL;
 462	}
 463	if (vsi->txq_map) {
 464		devm_kfree(&pf->pdev->dev, vsi->txq_map);
 465		vsi->txq_map = NULL;
 466	}
 467	if (vsi->rxq_map) {
 468		devm_kfree(&pf->pdev->dev, vsi->rxq_map);
 469		vsi->rxq_map = NULL;
 470	}
 471}
 472
 473/**
 474 * ice_vsi_clear - clean up and deallocate the provided VSI
 475 * @vsi: pointer to VSI being cleared
 476 *
 477 * This deallocates the VSI's queue resources, removes it from the PF's
 478 * VSI array if necessary, and deallocates the VSI
 479 *
 480 * Returns 0 on success, negative on failure
 481 */
 482int ice_vsi_clear(struct ice_vsi *vsi)
 483{
 484	struct ice_pf *pf = NULL;
 
 485
 486	if (!vsi)
 487		return 0;
 488
 489	if (!vsi->back)
 490		return -EINVAL;
 491
 492	pf = vsi->back;
 
 493
 494	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
 495		dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n",
 496			vsi->idx);
 497		return -EINVAL;
 498	}
 499
 500	mutex_lock(&pf->sw_mutex);
 501	/* updates the PF for this cleared VSI */
 502
 503	pf->vsi[vsi->idx] = NULL;
 504	if (vsi->idx < pf->next_vsi)
 
 
 
 505		pf->next_vsi = vsi->idx;
 506
 507	ice_vsi_free_arrays(vsi);
 508	mutex_unlock(&pf->sw_mutex);
 509	devm_kfree(&pf->pdev->dev, vsi);
 510
 511	return 0;
 512}
 513
 514/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515 * ice_msix_clean_rings - MSIX mode Interrupt Handler
 516 * @irq: interrupt number
 517 * @data: pointer to a q_vector
 518 */
 519static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
 520{
 521	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 522
 523	if (!q_vector->tx.ring && !q_vector->rx.ring)
 524		return IRQ_HANDLED;
 525
 
 
 526	napi_schedule(&q_vector->napi);
 527
 528	return IRQ_HANDLED;
 529}
 530
 531/**
 532 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
 533 * @pf: board private structure
 534 * @type: type of VSI
 535 * @vf_id: ID of the VF being configured
 536 *
 537 * returns a pointer to a VSI on success, NULL on failure.
 538 */
 539static struct ice_vsi *
 540ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type, u16 vf_id)
 541{
 
 542	struct ice_vsi *vsi = NULL;
 543
 544	/* Need to protect the allocation of the VSIs at the PF level */
 545	mutex_lock(&pf->sw_mutex);
 546
 547	/* If we have already allocated our maximum number of VSIs,
 548	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
 549	 * is available to be populated
 550	 */
 551	if (pf->next_vsi == ICE_NO_VSI) {
 552		dev_dbg(&pf->pdev->dev, "out of VSI slots!\n");
 553		goto unlock_pf;
 554	}
 555
 556	vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL);
 557	if (!vsi)
 558		goto unlock_pf;
 559
 560	vsi->type = type;
 561	vsi->back = pf;
 562	set_bit(__ICE_DOWN, vsi->state);
 563
 564	vsi->idx = pf->next_vsi;
 565
 566	if (type == ICE_VSI_VF)
 567		ice_vsi_set_num_qs(vsi, vf_id);
 568	else
 569		ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
 570
 571	switch (vsi->type) {
 572	case ICE_VSI_PF:
 573		if (ice_vsi_alloc_arrays(vsi))
 574			goto err_rings;
 575
 576		/* Setup default MSIX irq handler for VSI */
 577		vsi->irq_handler = ice_msix_clean_rings;
 578		break;
 
 
 
 
 
 
 
 579	case ICE_VSI_VF:
 580		if (ice_vsi_alloc_arrays(vsi))
 581			goto err_rings;
 582		break;
 583	case ICE_VSI_LB:
 584		if (ice_vsi_alloc_arrays(vsi))
 585			goto err_rings;
 586		break;
 587	default:
 588		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
 589		goto unlock_pf;
 590	}
 591
 592	/* fill VSI slot in the PF struct */
 593	pf->vsi[pf->next_vsi] = vsi;
 
 
 
 
 
 
 
 
 
 
 
 
 594
 595	/* prepare pf->next_vsi for next use */
 596	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
 597					 pf->next_vsi);
 598	goto unlock_pf;
 599
 600err_rings:
 601	devm_kfree(&pf->pdev->dev, vsi);
 602	vsi = NULL;
 603unlock_pf:
 604	mutex_unlock(&pf->sw_mutex);
 605	return vsi;
 606}
 607
 608/**
 609 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
 610 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
 611 *
 612 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 
 
 613 */
 614static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
 615{
 616	int offset, i;
 
 617
 618	mutex_lock(qs_cfg->qs_mutex);
 619	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
 620					    0, qs_cfg->q_count, 0);
 621	if (offset >= qs_cfg->pf_map_size) {
 622		mutex_unlock(qs_cfg->qs_mutex);
 623		return -ENOMEM;
 624	}
 625
 626	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
 627	for (i = 0; i < qs_cfg->q_count; i++)
 628		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset;
 629	mutex_unlock(qs_cfg->qs_mutex);
 630
 631	return 0;
 632}
 
 
 633
 634/**
 635 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
 636 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 637 *
 638 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 639 */
 640static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
 641{
 642	int i, index = 0;
 643
 644	mutex_lock(qs_cfg->qs_mutex);
 645	for (i = 0; i < qs_cfg->q_count; i++) {
 646		index = find_next_zero_bit(qs_cfg->pf_map,
 647					   qs_cfg->pf_map_size, index);
 648		if (index >= qs_cfg->pf_map_size)
 649			goto err_scatter;
 650		set_bit(index, qs_cfg->pf_map);
 651		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index;
 652	}
 653	mutex_unlock(qs_cfg->qs_mutex);
 654
 655	return 0;
 656err_scatter:
 657	for (index = 0; index < i; index++) {
 658		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
 659		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
 660	}
 661	mutex_unlock(qs_cfg->qs_mutex);
 662
 663	return -ENOMEM;
 664}
 665
 666/**
 667 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
 668 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 669 *
 670 * This function first tries to find contiguous space. If it is not successful,
 671 * it tries with the scatter approach.
 672 *
 673 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 674 */
 675static int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
 676{
 677	int ret = 0;
 678
 679	ret = __ice_vsi_get_qs_contig(qs_cfg);
 680	if (ret) {
 681		/* contig failed, so try with scatter approach */
 682		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
 683		qs_cfg->q_count = min_t(u16, qs_cfg->q_count,
 684					qs_cfg->scatter_count);
 685		ret = __ice_vsi_get_qs_sc(qs_cfg);
 686	}
 687	return ret;
 
 688}
 689
 690/**
 691 * ice_vsi_get_qs - Assign queues from PF to VSI
 692 * @vsi: the VSI to assign queues to
 693 *
 694 * Returns 0 on success and a negative value on error
 695 */
 696static int ice_vsi_get_qs(struct ice_vsi *vsi)
 697{
 698	struct ice_pf *pf = vsi->back;
 699	struct ice_qs_cfg tx_qs_cfg = {
 700		.qs_mutex = &pf->avail_q_mutex,
 701		.pf_map = pf->avail_txqs,
 702		.pf_map_size = pf->max_pf_txqs,
 703		.q_count = vsi->alloc_txq,
 704		.scatter_count = ICE_MAX_SCATTER_TXQS,
 705		.vsi_map = vsi->txq_map,
 706		.vsi_map_offset = 0,
 707		.mapping_mode = vsi->tx_mapping_mode
 708	};
 709	struct ice_qs_cfg rx_qs_cfg = {
 710		.qs_mutex = &pf->avail_q_mutex,
 711		.pf_map = pf->avail_rxqs,
 712		.pf_map_size = pf->max_pf_rxqs,
 713		.q_count = vsi->alloc_rxq,
 714		.scatter_count = ICE_MAX_SCATTER_RXQS,
 715		.vsi_map = vsi->rxq_map,
 716		.vsi_map_offset = 0,
 717		.mapping_mode = vsi->rx_mapping_mode
 718	};
 719	int ret = 0;
 720
 721	vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG;
 722	vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG;
 
 
 723
 724	ret = __ice_vsi_get_qs(&tx_qs_cfg);
 725	if (!ret)
 726		ret = __ice_vsi_get_qs(&rx_qs_cfg);
 
 727
 728	return ret;
 729}
 730
 731/**
 732 * ice_vsi_put_qs - Release queues from VSI to PF
 733 * @vsi: the VSI that is going to release queues
 734 */
 735void ice_vsi_put_qs(struct ice_vsi *vsi)
 736{
 737	struct ice_pf *pf = vsi->back;
 738	int i;
 739
 740	mutex_lock(&pf->avail_q_mutex);
 741
 742	for (i = 0; i < vsi->alloc_txq; i++) {
 743		clear_bit(vsi->txq_map[i], pf->avail_txqs);
 744		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
 745	}
 746
 747	for (i = 0; i < vsi->alloc_rxq; i++) {
 748		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
 749		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
 750	}
 751
 752	mutex_unlock(&pf->avail_q_mutex);
 753}
 754
 755/**
 756 * ice_is_safe_mode
 757 * @pf: pointer to the PF struct
 758 *
 759 * returns true if driver is in safe mode, false otherwise
 760 */
 761bool ice_is_safe_mode(struct ice_pf *pf)
 762{
 763	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
 764}
 765
 766/**
 767 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768 * @vsi: the VSI being removed
 769 */
 770static void ice_rss_clean(struct ice_vsi *vsi)
 771{
 772	struct ice_pf *pf;
 
 773
 774	pf = vsi->back;
 775
 776	if (vsi->rss_hkey_user)
 777		devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user);
 778	if (vsi->rss_lut_user)
 779		devm_kfree(&pf->pdev->dev, vsi->rss_lut_user);
 
 
 
 
 
 780}
 781
 782/**
 783 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
 784 * @vsi: the VSI being configured
 785 */
 786static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
 787{
 788	struct ice_hw_common_caps *cap;
 789	struct ice_pf *pf = vsi->back;
 790
 791	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
 792		vsi->rss_size = 1;
 793		return;
 794	}
 795
 796	cap = &pf->hw.func_caps.common_cap;
 797	switch (vsi->type) {
 798	case ICE_VSI_PF:
 799		/* PF VSI will inherit RSS instance of PF */
 800		vsi->rss_table_size = cap->rss_table_size;
 801		vsi->rss_size = min_t(int, num_online_cpus(),
 802				      BIT(cap->rss_table_entry_width));
 803		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
 804		break;
 805	case ICE_VSI_VF:
 806		/* VF VSI will gets a small RSS table
 807		 * For VSI_LUT, LUT size should be set to 64 bytes
 808		 */
 809		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
 810		vsi->rss_size = min_t(int, num_online_cpus(),
 811				      BIT(cap->rss_table_entry_width));
 812		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
 813		break;
 814	case ICE_VSI_LB:
 815		break;
 816	default:
 817		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n",
 818			 vsi->type);
 819		break;
 820	}
 821}
 822
 823/**
 824 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
 825 * @ctxt: the VSI context being set
 826 *
 827 * This initializes a default VSI context for all sections except the Queues.
 828 */
 829static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
 830{
 831	u32 table = 0;
 832
 833	memset(&ctxt->info, 0, sizeof(ctxt->info));
 834	/* VSI's should be allocated from shared pool */
 835	ctxt->alloc_from_pool = true;
 836	/* Src pruning enabled by default */
 837	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
 838	/* Traffic from VSI can be sent to LAN */
 839	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
 840	/* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
 841	 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
 842	 * packets untagged/tagged.
 843	 */
 844	ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
 845				  ICE_AQ_VSI_VLAN_MODE_M) >>
 846				 ICE_AQ_VSI_VLAN_MODE_S);
 847	/* Have 1:1 UP mapping for both ingress/egress tables */
 848	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
 849	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
 850	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
 851	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
 852	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
 853	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
 854	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
 855	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
 856	ctxt->info.ingress_table = cpu_to_le32(table);
 857	ctxt->info.egress_table = cpu_to_le32(table);
 858	/* Have 1:1 UP mapping for outer to inner UP table */
 859	ctxt->info.outer_up_table = cpu_to_le32(table);
 860	/* No Outer tag support outer_tag_flags remains to zero */
 861}
 862
 863/**
 864 * ice_vsi_setup_q_map - Setup a VSI queue map
 865 * @vsi: the VSI being configured
 866 * @ctxt: VSI context structure
 867 */
 868static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
 869{
 870	u16 offset = 0, qmap = 0, tx_count = 0;
 
 871	u16 qcount_tx = vsi->alloc_txq;
 872	u16 qcount_rx = vsi->alloc_rxq;
 873	u16 tx_numq_tc, rx_numq_tc;
 874	u16 pow = 0, max_rss = 0;
 875	bool ena_tc0 = false;
 876	u8 netdev_tc = 0;
 877	int i;
 878
 879	/* at least TC0 should be enabled by default */
 880	if (vsi->tc_cfg.numtc) {
 881		if (!(vsi->tc_cfg.ena_tc & BIT(0)))
 882			ena_tc0 = true;
 883	} else {
 884		ena_tc0 = true;
 885	}
 886
 887	if (ena_tc0) {
 888		vsi->tc_cfg.numtc++;
 889		vsi->tc_cfg.ena_tc |= 1;
 890	}
 891
 892	rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc;
 893	if (!rx_numq_tc)
 894		rx_numq_tc = 1;
 895	tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc;
 896	if (!tx_numq_tc)
 897		tx_numq_tc = 1;
 
 
 
 898
 899	/* TC mapping is a function of the number of Rx queues assigned to the
 900	 * VSI for each traffic class and the offset of these queues.
 901	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
 902	 * queues allocated to TC0. No:of queues is a power-of-2.
 903	 *
 904	 * If TC is not enabled, the queue offset is set to 0, and allocate one
 905	 * queue, this way, traffic for the given TC will be sent to the default
 906	 * queue.
 907	 *
 908	 * Setup number and offset of Rx queues for all TCs for the VSI
 909	 */
 910
 911	qcount_rx = rx_numq_tc;
 912
 913	/* qcount will change if RSS is enabled */
 914	if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
 915		if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) {
 916			if (vsi->type == ICE_VSI_PF)
 917				max_rss = ICE_MAX_LG_RSS_QS;
 918			else
 919				max_rss = ICE_MAX_SMALL_RSS_QS;
 920			qcount_rx = min_t(int, rx_numq_tc, max_rss);
 921			qcount_rx = min_t(int, qcount_rx, vsi->rss_size);
 922		}
 923	}
 924
 925	/* find the (rounded up) power-of-2 of qcount */
 926	pow = order_base_2(qcount_rx);
 927
 928	ice_for_each_traffic_class(i) {
 929		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
 930			/* TC is not enabled */
 931			vsi->tc_cfg.tc_info[i].qoffset = 0;
 932			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
 933			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
 934			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
 935			ctxt->info.tc_mapping[i] = 0;
 936			continue;
 937		}
 938
 939		/* TC is enabled */
 940		vsi->tc_cfg.tc_info[i].qoffset = offset;
 941		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
 942		vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc;
 943		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
 944
 945		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
 946			ICE_AQ_VSI_TC_Q_OFFSET_M) |
 947			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
 948			 ICE_AQ_VSI_TC_Q_NUM_M);
 949		offset += qcount_rx;
 950		tx_count += tx_numq_tc;
 951		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
 952	}
 953
 954	/* if offset is non-zero, means it is calculated correctly based on
 955	 * enabled TCs for a given VSI otherwise qcount_rx will always
 956	 * be correct and non-zero because it is based off - VSI's
 957	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
 958	 * at least 1)
 959	 */
 960	if (offset)
 961		vsi->num_rxq = offset;
 962	else
 963		vsi->num_rxq = qcount_rx;
 964
 965	vsi->num_txq = tx_count;
 966
 967	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
 968		dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
 969		/* since there is a chance that num_rxq could have been changed
 970		 * in the above for loop, make num_txq equal to num_rxq.
 971		 */
 972		vsi->num_txq = vsi->num_rxq;
 973	}
 974
 975	/* Rx queue mapping */
 976	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
 977	/* q_mapping buffer holds the info for the first queue allocated for
 978	 * this VSI in the PF space and also the number of queues associated
 979	 * with this VSI.
 980	 */
 981	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
 982	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
 983}
 984
 985/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
 987 * @ctxt: the VSI context being set
 988 * @vsi: the VSI being configured
 989 */
 990static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
 991{
 992	u8 lut_type, hash_type;
 
 993	struct ice_pf *pf;
 994
 995	pf = vsi->back;
 
 996
 997	switch (vsi->type) {
 998	case ICE_VSI_PF:
 999		/* PF VSI will inherit RSS instance of PF */
1000		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1001		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1002		break;
1003	case ICE_VSI_VF:
1004		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1005		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1006		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1007		break;
1008	case ICE_VSI_LB:
1009		dev_dbg(&pf->pdev->dev, "Unsupported VSI type %d\n", vsi->type);
1010		return;
1011	default:
1012		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
 
1013		return;
1014	}
1015
1016	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1017				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1018				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1019				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1020}
1021
1022/**
1023 * ice_vsi_init - Create and initialize a VSI
1024 * @vsi: the VSI being configured
 
1025 *
1026 * This initializes a VSI context depending on the VSI type to be added and
1027 * passes it down to the add_vsi aq command to create a new VSI.
1028 */
1029static int ice_vsi_init(struct ice_vsi *vsi)
1030{
1031	struct ice_pf *pf = vsi->back;
1032	struct ice_hw *hw = &pf->hw;
1033	struct ice_vsi_ctx *ctxt;
 
1034	int ret = 0;
1035
1036	ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
 
1037	if (!ctxt)
1038		return -ENOMEM;
1039
1040	ctxt->info = vsi->info;
1041	switch (vsi->type) {
 
1042	case ICE_VSI_LB:
1043		/* fall through */
1044	case ICE_VSI_PF:
1045		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1046		break;
1047	case ICE_VSI_VF:
1048		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1049		/* VF number here is the absolute VF number (0-255) */
1050		ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
1051		break;
1052	default:
1053		return -ENODEV;
 
1054	}
1055
1056	ice_set_dflt_vsi_ctx(ctxt);
 
 
1057	/* if the switch is in VEB mode, allow VSI loopback */
1058	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1059		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1060
1061	/* Set LUT type and HASH type if RSS is enabled */
1062	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
 
1063		ice_set_rss_vsi_ctx(ctxt, vsi);
 
 
 
 
 
 
 
1064
1065	ctxt->info.sw_id = vsi->port_info->sw_id;
1066	ice_vsi_setup_q_map(vsi, ctxt);
 
 
 
 
 
 
1067
1068	/* Enable MAC Antispoof with new VSI being initialized or updated */
1069	if (vsi->type == ICE_VSI_VF && pf->vf[vsi->vf_id].spoofchk) {
 
 
1070		ctxt->info.valid_sections |=
1071			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1072		ctxt->info.sec_flags |=
1073			ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF;
 
 
 
 
 
 
 
 
 
1074	}
1075
1076	/* Allow control frames out of main VSI */
1077	if (vsi->type == ICE_VSI_PF) {
1078		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1079		ctxt->info.valid_sections |=
1080			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1081	}
1082
1083	ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1084	if (ret) {
1085		dev_err(&pf->pdev->dev,
1086			"Add VSI failed, err %d\n", ret);
1087		return -EIO;
 
 
 
 
 
 
 
 
 
1088	}
1089
1090	/* keep context for update VSI operations */
1091	vsi->info = ctxt->info;
1092
1093	/* record VSI number returned */
1094	vsi->vsi_num = ctxt->vsi_num;
1095
1096	devm_kfree(&pf->pdev->dev, ctxt);
 
1097	return ret;
1098}
1099
1100/**
1101 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
1102 * @vsi: VSI having the memory freed
1103 * @v_idx: index of the vector to be freed
 
 
 
1104 */
1105static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
1106{
1107	struct ice_q_vector *q_vector;
1108	struct ice_pf *pf = vsi->back;
1109	struct ice_ring *ring;
 
 
1110
1111	if (!vsi->q_vectors[v_idx]) {
1112		dev_dbg(&pf->pdev->dev, "Queue vector at index %d not found\n",
1113			v_idx);
1114		return;
1115	}
1116	q_vector = vsi->q_vectors[v_idx];
1117
1118	ice_for_each_ring(ring, q_vector->tx)
1119		ring->q_vector = NULL;
1120	ice_for_each_ring(ring, q_vector->rx)
1121		ring->q_vector = NULL;
1122
1123	/* only VSI with an associated netdev is set up with NAPI */
1124	if (vsi->netdev)
1125		netif_napi_del(&q_vector->napi);
1126
1127	devm_kfree(&pf->pdev->dev, q_vector);
1128	vsi->q_vectors[v_idx] = NULL;
1129}
1130
1131/**
1132 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
1133 * @vsi: the VSI having memory freed
 
 
 
 
1134 */
1135void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
1136{
1137	int v_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138
1139	ice_for_each_q_vector(vsi, v_idx)
1140		ice_free_q_vector(vsi, v_idx);
1141}
1142
1143/**
1144 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
1145 * @vsi: the VSI being configured
1146 * @v_idx: index of the vector in the VSI struct
1147 *
1148 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1149 */
1150static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
1151{
1152	struct ice_pf *pf = vsi->back;
1153	struct ice_q_vector *q_vector;
1154
1155	/* allocate q_vector */
1156	q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
1157	if (!q_vector)
1158		return -ENOMEM;
1159
1160	q_vector->vsi = vsi;
1161	q_vector->v_idx = v_idx;
1162	if (vsi->type == ICE_VSI_VF)
1163		goto out;
1164	/* only set affinity_mask if the CPU is online */
1165	if (cpu_online(v_idx))
1166		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
1167
1168	/* This will not be called in the driver load path because the netdev
1169	 * will not be created yet. All other cases with register the NAPI
1170	 * handler here (i.e. resume, reset/rebuild, etc.)
1171	 */
1172	if (vsi->netdev)
1173		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
1174			       NAPI_POLL_WEIGHT);
1175
1176out:
1177	/* tie q_vector and VSI together */
1178	vsi->q_vectors[v_idx] = q_vector;
1179
1180	return 0;
1181}
1182
1183/**
1184 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
1185 * @vsi: the VSI being configured
 
 
 
1186 *
1187 * We allocate one q_vector per queue interrupt. If allocation fails we
1188 * return -ENOMEM.
1189 */
1190static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
 
1191{
1192	struct ice_pf *pf = vsi->back;
1193	int v_idx = 0, num_q_vectors;
1194	int err;
1195
1196	if (vsi->q_vectors[0]) {
1197		dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
1198			vsi->vsi_num);
1199		return -EEXIST;
1200	}
1201
1202	num_q_vectors = vsi->num_q_vectors;
1203
1204	for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
1205		err = ice_vsi_alloc_q_vector(vsi, v_idx);
1206		if (err)
1207			goto err_out;
1208	}
1209
1210	return 0;
1211
1212err_out:
1213	while (v_idx--)
1214		ice_free_q_vector(vsi, v_idx);
1215
1216	dev_err(&pf->pdev->dev,
1217		"Failed to allocate %d q_vector for VSI %d, ret=%d\n",
1218		vsi->num_q_vectors, vsi->vsi_num, err);
1219	vsi->num_q_vectors = 0;
1220	return err;
1221}
1222
1223/**
1224 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1225 * @vsi: ptr to the VSI
1226 *
1227 * This should only be called after ice_vsi_alloc() which allocates the
1228 * corresponding SW VSI structure and initializes num_queue_pairs for the
1229 * newly allocated VSI.
1230 *
1231 * Returns 0 on success or negative on failure
1232 */
1233static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1234{
1235	struct ice_pf *pf = vsi->back;
 
1236	u16 num_q_vectors;
 
1237
 
1238	/* SRIOV doesn't grab irq_tracker entries for each VSI */
1239	if (vsi->type == ICE_VSI_VF)
1240		return 0;
1241
1242	if (vsi->base_vector) {
1243		dev_dbg(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n",
1244			vsi->vsi_num, vsi->base_vector);
1245		return -EEXIST;
1246	}
1247
1248	num_q_vectors = vsi->num_q_vectors;
1249	/* reserve slots from OS requested IRQs */
1250	vsi->base_vector = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1251				       vsi->idx);
1252	if (vsi->base_vector < 0) {
1253		dev_err(&pf->pdev->dev,
1254			"Failed to get tracking for %d vectors for VSI %d, err=%d\n",
1255			num_q_vectors, vsi->vsi_num, vsi->base_vector);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1256		return -ENOENT;
1257	}
 
1258	pf->num_avail_sw_msix -= num_q_vectors;
1259
1260	return 0;
1261}
1262
1263/**
1264 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1265 * @vsi: the VSI having rings deallocated
1266 */
1267static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1268{
1269	int i;
1270
 
 
 
 
 
 
 
 
 
 
 
 
1271	if (vsi->tx_rings) {
1272		for (i = 0; i < vsi->alloc_txq; i++) {
1273			if (vsi->tx_rings[i]) {
1274				kfree_rcu(vsi->tx_rings[i], rcu);
1275				vsi->tx_rings[i] = NULL;
1276			}
1277		}
1278	}
1279	if (vsi->rx_rings) {
1280		for (i = 0; i < vsi->alloc_rxq; i++) {
1281			if (vsi->rx_rings[i]) {
1282				kfree_rcu(vsi->rx_rings[i], rcu);
1283				vsi->rx_rings[i] = NULL;
1284			}
1285		}
1286	}
1287}
1288
1289/**
1290 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1291 * @vsi: VSI which is having rings allocated
1292 */
1293static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1294{
1295	struct ice_pf *pf = vsi->back;
1296	int i;
 
1297
 
1298	/* Allocate Tx rings */
1299	for (i = 0; i < vsi->alloc_txq; i++) {
1300		struct ice_ring *ring;
1301
1302		/* allocate with kzalloc(), free with kfree_rcu() */
1303		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1304
1305		if (!ring)
1306			goto err_out;
1307
1308		ring->q_index = i;
1309		ring->reg_idx = vsi->txq_map[i];
1310		ring->ring_active = false;
1311		ring->vsi = vsi;
1312		ring->dev = &pf->pdev->dev;
 
1313		ring->count = vsi->num_tx_desc;
1314		vsi->tx_rings[i] = ring;
1315	}
1316
1317	/* Allocate Rx rings */
1318	for (i = 0; i < vsi->alloc_rxq; i++) {
1319		struct ice_ring *ring;
1320
1321		/* allocate with kzalloc(), free with kfree_rcu() */
1322		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1323		if (!ring)
1324			goto err_out;
1325
1326		ring->q_index = i;
1327		ring->reg_idx = vsi->rxq_map[i];
1328		ring->ring_active = false;
1329		ring->vsi = vsi;
1330		ring->netdev = vsi->netdev;
1331		ring->dev = &pf->pdev->dev;
1332		ring->count = vsi->num_rx_desc;
1333		vsi->rx_rings[i] = ring;
1334	}
1335
1336	return 0;
1337
1338err_out:
1339	ice_vsi_clear_rings(vsi);
1340	return -ENOMEM;
1341}
1342
1343/**
1344 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
1345 * @vsi: the VSI being configured
1346 *
1347 * This function maps descriptor rings to the queue-specific vectors allotted
1348 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
1349 * and Rx rings to the vector as "efficiently" as possible.
1350 */
1351#ifdef CONFIG_DCB
1352void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1353#else
1354static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1355#endif /* CONFIG_DCB */
1356{
1357	int q_vectors = vsi->num_q_vectors;
1358	int tx_rings_rem, rx_rings_rem;
1359	int v_id;
1360
1361	/* initially assigning remaining rings count to VSIs num queue value */
1362	tx_rings_rem = vsi->num_txq;
1363	rx_rings_rem = vsi->num_rxq;
1364
1365	for (v_id = 0; v_id < q_vectors; v_id++) {
1366		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
1367		int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
1368
1369		/* Tx rings mapping to vector */
1370		tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
1371		q_vector->num_ring_tx = tx_rings_per_v;
1372		q_vector->tx.ring = NULL;
1373		q_vector->tx.itr_idx = ICE_TX_ITR;
1374		q_base = vsi->num_txq - tx_rings_rem;
1375
1376		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
1377			struct ice_ring *tx_ring = vsi->tx_rings[q_id];
1378
1379			tx_ring->q_vector = q_vector;
1380			tx_ring->next = q_vector->tx.ring;
1381			q_vector->tx.ring = tx_ring;
1382		}
1383		tx_rings_rem -= tx_rings_per_v;
1384
1385		/* Rx rings mapping to vector */
1386		rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
1387		q_vector->num_ring_rx = rx_rings_per_v;
1388		q_vector->rx.ring = NULL;
1389		q_vector->rx.itr_idx = ICE_RX_ITR;
1390		q_base = vsi->num_rxq - rx_rings_rem;
1391
1392		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
1393			struct ice_ring *rx_ring = vsi->rx_rings[q_id];
1394
1395			rx_ring->q_vector = q_vector;
1396			rx_ring->next = q_vector->rx.ring;
1397			q_vector->rx.ring = rx_ring;
1398		}
1399		rx_rings_rem -= rx_rings_per_v;
1400	}
1401}
1402
1403/**
1404 * ice_vsi_manage_rss_lut - disable/enable RSS
1405 * @vsi: the VSI being changed
1406 * @ena: boolean value indicating if this is an enable or disable request
1407 *
1408 * In the event of disable request for RSS, this function will zero out RSS
1409 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1410 * LUT.
1411 */
1412int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1413{
1414	int err = 0;
1415	u8 *lut;
1416
1417	lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size,
1418			   GFP_KERNEL);
1419	if (!lut)
1420		return -ENOMEM;
1421
1422	if (ena) {
1423		if (vsi->rss_lut_user)
1424			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1425		else
1426			ice_fill_rss_lut(lut, vsi->rss_table_size,
1427					 vsi->rss_size);
1428	}
1429
1430	err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size);
1431	devm_kfree(&vsi->back->pdev->dev, lut);
1432	return err;
1433}
1434
1435/**
1436 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1437 * @vsi: VSI to be configured
1438 */
1439static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1440{
1441	struct ice_aqc_get_set_rss_keys *key;
1442	struct ice_pf *pf = vsi->back;
1443	enum ice_status status;
1444	int err = 0;
1445	u8 *lut;
1446
1447	vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq);
 
1448
1449	lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL);
1450	if (!lut)
1451		return -ENOMEM;
1452
1453	if (vsi->rss_lut_user)
1454		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1455	else
1456		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1457
1458	status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut,
1459				    vsi->rss_table_size);
1460
1461	if (status) {
1462		dev_err(&pf->pdev->dev,
1463			"set_rss_lut failed, error %d\n", status);
1464		err = -EIO;
1465		goto ice_vsi_cfg_rss_exit;
1466	}
1467
1468	key = devm_kzalloc(&pf->pdev->dev, sizeof(*key), GFP_KERNEL);
1469	if (!key) {
1470		err = -ENOMEM;
1471		goto ice_vsi_cfg_rss_exit;
1472	}
1473
1474	if (vsi->rss_hkey_user)
1475		memcpy(key,
1476		       (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user,
1477		       ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1478	else
1479		netdev_rss_key_fill((void *)key,
1480				    ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1481
1482	status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key);
 
 
1483
1484	if (status) {
1485		dev_err(&pf->pdev->dev, "set_rss_key failed, error %d\n",
1486			status);
1487		err = -EIO;
1488	}
1489
1490	devm_kfree(&pf->pdev->dev, key);
1491ice_vsi_cfg_rss_exit:
1492	devm_kfree(&pf->pdev->dev, lut);
1493	return err;
1494}
1495
1496/**
1497 * ice_add_mac_to_list - Add a MAC address filter entry to the list
1498 * @vsi: the VSI to be forwarded to
1499 * @add_list: pointer to the list which contains MAC filter entries
1500 * @macaddr: the MAC address to be added.
1501 *
1502 * Adds MAC address filter entry to the temp list
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1503 *
1504 * Returns 0 on success or ENOMEM on failure.
 
 
 
 
 
1505 */
1506int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list,
1507			const u8 *macaddr)
1508{
1509	struct ice_fltr_list_entry *tmp;
1510	struct ice_pf *pf = vsi->back;
 
 
 
1511
1512	tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC);
1513	if (!tmp)
1514		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1515
1516	tmp->fltr_info.flag = ICE_FLTR_TX;
1517	tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1518	tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
1519	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1520	tmp->fltr_info.vsi_handle = vsi->idx;
1521	ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr);
1522
1523	INIT_LIST_HEAD(&tmp->list_entry);
1524	list_add(&tmp->list_entry, add_list);
 
1525
1526	return 0;
1527}
1528
1529/**
1530 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1531 * @vsi: the VSI to be updated
1532 */
1533void ice_update_eth_stats(struct ice_vsi *vsi)
1534{
1535	struct ice_eth_stats *prev_es, *cur_es;
1536	struct ice_hw *hw = &vsi->back->hw;
1537	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1538
1539	prev_es = &vsi->eth_stats_prev;
1540	cur_es = &vsi->eth_stats;
1541
1542	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1543			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1544
1545	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1546			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1547
1548	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1549			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1550
1551	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1552			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1553
1554	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1555			  &prev_es->rx_discards, &cur_es->rx_discards);
1556
1557	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1558			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1559
1560	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1561			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1562
1563	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1564			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1565
1566	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1567			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1568
1569	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1570			  &prev_es->tx_errors, &cur_es->tx_errors);
1571
1572	vsi->stat_offsets_loaded = true;
1573}
1574
1575/**
1576 * ice_free_fltr_list - free filter lists helper
1577 * @dev: pointer to the device struct
1578 * @h: pointer to the list head to be freed
1579 *
1580 * Helper function to free filter lists previously created using
1581 * ice_add_mac_to_list
1582 */
1583void ice_free_fltr_list(struct device *dev, struct list_head *h)
1584{
1585	struct ice_fltr_list_entry *e, *tmp;
1586
1587	list_for_each_entry_safe(e, tmp, h, list_entry) {
1588		list_del(&e->list_entry);
1589		devm_kfree(dev, e);
1590	}
1591}
1592
1593/**
1594 * ice_vsi_add_vlan - Add VSI membership for given VLAN
1595 * @vsi: the VSI being configured
1596 * @vid: VLAN ID to be added
 
1597 */
1598int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid)
 
1599{
1600	struct ice_fltr_list_entry *tmp;
1601	struct ice_pf *pf = vsi->back;
1602	LIST_HEAD(tmp_add_list);
1603	enum ice_status status;
1604	int err = 0;
1605
1606	tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL);
1607	if (!tmp)
1608		return -ENOMEM;
1609
1610	tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1611	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1612	tmp->fltr_info.flag = ICE_FLTR_TX;
1613	tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1614	tmp->fltr_info.vsi_handle = vsi->idx;
1615	tmp->fltr_info.l_data.vlan.vlan_id = vid;
1616
1617	INIT_LIST_HEAD(&tmp->list_entry);
1618	list_add(&tmp->list_entry, &tmp_add_list);
1619
1620	status = ice_add_vlan(&pf->hw, &tmp_add_list);
1621	if (status) {
1622		err = -ENODEV;
1623		dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n",
1624			vid, vsi->vsi_num);
1625	}
1626
1627	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
1628	return err;
1629}
1630
1631/**
1632 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
1633 * @vsi: the VSI being configured
1634 * @vid: VLAN ID to be removed
1635 *
1636 * Returns 0 on success and negative on failure
1637 */
1638int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
1639{
1640	struct ice_fltr_list_entry *list;
1641	struct ice_pf *pf = vsi->back;
1642	LIST_HEAD(tmp_add_list);
1643	enum ice_status status;
 
1644	int err = 0;
1645
1646	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
1647	if (!list)
1648		return -ENOMEM;
1649
1650	list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1651	list->fltr_info.vsi_handle = vsi->idx;
1652	list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1653	list->fltr_info.l_data.vlan.vlan_id = vid;
1654	list->fltr_info.flag = ICE_FLTR_TX;
1655	list->fltr_info.src_id = ICE_SRC_ID_VSI;
1656
1657	INIT_LIST_HEAD(&list->list_entry);
1658	list_add(&list->list_entry, &tmp_add_list);
1659
1660	status = ice_remove_vlan(&pf->hw, &tmp_add_list);
1661	if (status == ICE_ERR_DOES_NOT_EXIST) {
1662		dev_dbg(&pf->pdev->dev,
1663			"Failed to remove VLAN %d on VSI %i, it does not exist, status: %d\n",
1664			vid, vsi->vsi_num, status);
1665	} else if (status) {
1666		dev_err(&pf->pdev->dev,
1667			"Error removing VLAN %d on vsi %i error: %d\n",
1668			vid, vsi->vsi_num, status);
1669		err = -EIO;
1670	}
1671
1672	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1673	return err;
1674}
1675
1676/**
1677 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1678 * @vsi: the VSI being configured
1679 *
1680 * Return 0 on success and a negative value on error
1681 * Configure the Rx VSI for operation.
1682 */
1683int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1684{
1685	u16 i;
1686
1687	if (vsi->type == ICE_VSI_VF)
1688		goto setup_rings;
1689
1690	if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN)
1691		vsi->max_frame = vsi->netdev->mtu +
1692			ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1693	else
1694		vsi->max_frame = ICE_RXBUF_2048;
1695
1696	vsi->rx_buf_len = ICE_RXBUF_2048;
1697setup_rings:
1698	/* set up individual rings */
1699	for (i = 0; i < vsi->num_rxq; i++) {
1700		int err;
1701
1702		err = ice_setup_rx_ctx(vsi->rx_rings[i]);
1703		if (err) {
1704			dev_err(&vsi->back->pdev->dev,
1705				"ice_setup_rx_ctx failed for RxQ %d, err %d\n",
1706				i, err);
1707			return err;
1708		}
1709	}
1710
1711	return 0;
1712}
1713
1714/**
1715 * ice_vsi_cfg_txq - Configure single Tx queue
1716 * @vsi: the VSI that queue belongs to
1717 * @ring: Tx ring to be configured
1718 * @tc_q_idx: queue index within given TC
1719 * @qg_buf: queue group buffer
1720 * @tc: TC that Tx ring belongs to
1721 */
1722static int
1723ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring, u16 tc_q_idx,
1724		struct ice_aqc_add_tx_qgrp *qg_buf, u8 tc)
1725{
1726	struct ice_tlan_ctx tlan_ctx = { 0 };
1727	struct ice_aqc_add_txqs_perq *txq;
1728	struct ice_pf *pf = vsi->back;
1729	u8 buf_len = sizeof(*qg_buf);
1730	enum ice_status status;
1731	u16 pf_q;
1732
1733	pf_q = ring->reg_idx;
1734	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
1735	/* copy context contents into the qg_buf */
1736	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
1737	ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
1738		    ice_tlan_ctx_info);
1739
1740	/* init queue specific tail reg. It is referred as
1741	 * transmit comm scheduler queue doorbell.
1742	 */
1743	ring->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
1744
1745	/* Add unique software queue handle of the Tx queue per
1746	 * TC into the VSI Tx ring
1747	 */
1748	ring->q_handle = tc_q_idx;
1749
1750	status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
1751				 1, qg_buf, buf_len, NULL);
1752	if (status) {
1753		dev_err(&pf->pdev->dev,
1754			"Failed to set LAN Tx queue context, error: %d\n",
1755			status);
1756		return -ENODEV;
1757	}
1758
1759	/* Add Tx Queue TEID into the VSI Tx ring from the
1760	 * response. This will complete configuring and
1761	 * enabling the queue.
1762	 */
1763	txq = &qg_buf->txqs[0];
1764	if (pf_q == le16_to_cpu(txq->txq_id))
1765		ring->txq_teid = le32_to_cpu(txq->q_teid);
1766
1767	return 0;
1768}
1769
1770/**
1771 * ice_vsi_cfg_txqs - Configure the VSI for Tx
1772 * @vsi: the VSI being configured
1773 * @rings: Tx ring array to be configured
1774 * @offset: offset within vsi->txq_map
1775 *
1776 * Return 0 on success and a negative value on error
1777 * Configure the Tx VSI for operation.
1778 */
1779static int
1780ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, int offset)
1781{
1782	struct ice_aqc_add_tx_qgrp *qg_buf;
1783	struct ice_pf *pf = vsi->back;
1784	u16 q_idx = 0, i;
1785	int err = 0;
1786	u8 tc;
1787
1788	qg_buf = devm_kzalloc(&pf->pdev->dev, sizeof(*qg_buf), GFP_KERNEL);
1789	if (!qg_buf)
1790		return -ENOMEM;
1791
1792	qg_buf->num_txqs = 1;
1793
1794	/* set up and configure the Tx queues for each enabled TC */
1795	ice_for_each_traffic_class(tc) {
1796		if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
1797			break;
1798
1799		for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
1800			err = ice_vsi_cfg_txq(vsi, rings[q_idx], i + offset,
1801					      qg_buf, tc);
1802			if (err)
1803				goto err_cfg_txqs;
1804
1805			q_idx++;
1806		}
1807	}
1808err_cfg_txqs:
1809	devm_kfree(&pf->pdev->dev, qg_buf);
1810	return err;
1811}
1812
1813/**
1814 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1815 * @vsi: the VSI being configured
1816 *
1817 * Return 0 on success and a negative value on error
1818 * Configure the Tx VSI for operation.
1819 */
1820int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1821{
1822	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823}
1824
1825/**
1826 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1827 * @intrl: interrupt rate limit in usecs
1828 * @gran: interrupt rate limit granularity in usecs
1829 *
1830 * This function converts a decimal interrupt rate limit in usecs to the format
1831 * expected by firmware.
1832 */
1833u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1834{
1835	u32 val = intrl / gran;
1836
1837	if (val)
1838		return val | GLINT_RATE_INTRL_ENA_M;
1839	return 0;
1840}
1841
1842/**
1843 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
1844 * @hw: board specific structure
 
1845 */
1846static void ice_cfg_itr_gran(struct ice_hw *hw)
1847{
1848	u32 regval = rd32(hw, GLINT_CTL);
1849
1850	/* no need to update global register if ITR gran is already set */
1851	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
1852	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
1853	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
1854	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
1855	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
1856	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
1857	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
1858	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
1859	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
1860		return;
1861
1862	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
1863		  GLINT_CTL_ITR_GRAN_200_M) |
1864		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
1865		  GLINT_CTL_ITR_GRAN_100_M) |
1866		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
1867		  GLINT_CTL_ITR_GRAN_50_M) |
1868		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
1869		  GLINT_CTL_ITR_GRAN_25_M);
1870	wr32(hw, GLINT_CTL, regval);
1871}
1872
1873/**
1874 * ice_cfg_itr - configure the initial interrupt throttle values
1875 * @hw: pointer to the HW structure
1876 * @q_vector: interrupt vector that's being configured
1877 *
1878 * Configure interrupt throttling values for the ring containers that are
1879 * associated with the interrupt vector passed in.
1880 */
1881static void
1882ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1883{
1884	ice_cfg_itr_gran(hw);
1885
1886	if (q_vector->num_ring_rx) {
1887		struct ice_ring_container *rc = &q_vector->rx;
1888
1889		/* if this value is set then don't overwrite with default */
1890		if (!rc->itr_setting)
1891			rc->itr_setting = ICE_DFLT_RX_ITR;
1892
1893		rc->target_itr = ITR_TO_REG(rc->itr_setting);
1894		rc->next_update = jiffies + 1;
1895		rc->current_itr = rc->target_itr;
1896		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1897		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1898	}
1899
1900	if (q_vector->num_ring_tx) {
1901		struct ice_ring_container *rc = &q_vector->tx;
1902
1903		/* if this value is set then don't overwrite with default */
1904		if (!rc->itr_setting)
1905			rc->itr_setting = ICE_DFLT_TX_ITR;
1906
1907		rc->target_itr = ITR_TO_REG(rc->itr_setting);
1908		rc->next_update = jiffies + 1;
1909		rc->current_itr = rc->target_itr;
1910		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1911		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1912	}
1913}
1914
1915/**
1916 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1917 * @vsi: the VSI being configured
1918 * @txq: Tx queue being mapped to MSI-X vector
1919 * @msix_idx: MSI-X vector index within the function
1920 * @itr_idx: ITR index of the interrupt cause
1921 *
1922 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1923 * within the function space.
1924 */
1925#ifdef CONFIG_PCI_IOV
1926void
1927ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1928#else
1929static void
1930ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1931#endif /* CONFIG_PCI_IOV */
1932{
1933	struct ice_pf *pf = vsi->back;
1934	struct ice_hw *hw = &pf->hw;
1935	u32 val;
1936
1937	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
1938
1939	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1940	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
1941
1942	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1943}
1944
1945/**
1946 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1947 * @vsi: the VSI being configured
1948 * @rxq: Rx queue being mapped to MSI-X vector
1949 * @msix_idx: MSI-X vector index within the function
1950 * @itr_idx: ITR index of the interrupt cause
1951 *
1952 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1953 * within the function space.
1954 */
1955#ifdef CONFIG_PCI_IOV
1956void
1957ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1958#else
1959static void
1960ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1961#endif /* CONFIG_PCI_IOV */
1962{
1963	struct ice_pf *pf = vsi->back;
1964	struct ice_hw *hw = &pf->hw;
1965	u32 val;
1966
1967	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
1968
1969	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1970	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
1971
1972	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1973
1974	ice_flush(hw);
1975}
1976
1977/**
1978 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1979 * @vsi: the VSI being configured
1980 *
1981 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1982 * for the VF VSI.
1983 */
1984void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1985{
1986	struct ice_pf *pf = vsi->back;
1987	struct ice_hw *hw = &pf->hw;
1988	u32 txq = 0, rxq = 0;
1989	int i, q;
1990
1991	for (i = 0; i < vsi->num_q_vectors; i++) {
1992		struct ice_q_vector *q_vector = vsi->q_vectors[i];
1993		u16 reg_idx = q_vector->reg_idx;
1994
1995		ice_cfg_itr(hw, q_vector);
1996
1997		wr32(hw, GLINT_RATE(reg_idx),
1998		     ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
1999
2000		/* Both Transmit Queue Interrupt Cause Control register
2001		 * and Receive Queue Interrupt Cause control register
2002		 * expects MSIX_INDX field to be the vector index
2003		 * within the function space and not the absolute
2004		 * vector index across PF or across device.
2005		 * For SR-IOV VF VSIs queue vector index always starts
2006		 * with 1 since first vector index(0) is used for OICR
2007		 * in VF space. Since VMDq and other PF VSIs are within
2008		 * the PF function space, use the vector index that is
2009		 * tracked for this PF.
2010		 */
2011		for (q = 0; q < q_vector->num_ring_tx; q++) {
2012			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2013					      q_vector->tx.itr_idx);
2014			txq++;
2015		}
2016
2017		for (q = 0; q < q_vector->num_ring_rx; q++) {
2018			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2019					      q_vector->rx.itr_idx);
2020			rxq++;
2021		}
2022	}
2023}
2024
2025/**
2026 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
2027 * @vsi: the VSI being changed
2028 */
2029int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
2030{
2031	struct device *dev = &vsi->back->pdev->dev;
2032	struct ice_hw *hw = &vsi->back->hw;
2033	struct ice_vsi_ctx *ctxt;
2034	enum ice_status status;
2035	int ret = 0;
2036
2037	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2038	if (!ctxt)
2039		return -ENOMEM;
2040
2041	/* Here we are configuring the VSI to let the driver add VLAN tags by
2042	 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
2043	 * insertion happens in the Tx hot path, in ice_tx_map.
2044	 */
2045	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
2046
2047	/* Preserve existing VLAN strip setting */
2048	ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
2049				  ICE_AQ_VSI_VLAN_EMOD_M);
2050
2051	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
2052
2053	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
2054	if (status) {
2055		dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
2056			status, hw->adminq.sq_last_status);
 
2057		ret = -EIO;
2058		goto out;
2059	}
2060
2061	vsi->info.vlan_flags = ctxt->info.vlan_flags;
2062out:
2063	devm_kfree(dev, ctxt);
2064	return ret;
2065}
2066
2067/**
2068 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
2069 * @vsi: the VSI being changed
2070 * @ena: boolean value indicating if this is a enable or disable request
2071 */
2072int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
2073{
2074	struct device *dev = &vsi->back->pdev->dev;
2075	struct ice_hw *hw = &vsi->back->hw;
2076	struct ice_vsi_ctx *ctxt;
2077	enum ice_status status;
2078	int ret = 0;
2079
2080	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
 
 
 
 
 
 
2081	if (!ctxt)
2082		return -ENOMEM;
2083
2084	/* Here we are configuring what the VSI should do with the VLAN tag in
2085	 * the Rx packet. We can either leave the tag in the packet or put it in
2086	 * the Rx descriptor.
2087	 */
2088	if (ena)
2089		/* Strip VLAN tag from Rx packet and put it in the desc */
2090		ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
2091	else
2092		/* Disable stripping. Leave tag in packet */
2093		ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
2094
2095	/* Allow all packets untagged/tagged */
2096	ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
2097
2098	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
2099
2100	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
2101	if (status) {
2102		dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n",
2103			ena, status, hw->adminq.sq_last_status);
 
2104		ret = -EIO;
2105		goto out;
2106	}
2107
2108	vsi->info.vlan_flags = ctxt->info.vlan_flags;
2109out:
2110	devm_kfree(dev, ctxt);
2111	return ret;
2112}
2113
2114/**
2115 * ice_vsi_start_rx_rings - start VSI's Rx rings
2116 * @vsi: the VSI whose rings are to be started
2117 *
2118 * Returns 0 on success and a negative value on error
2119 */
2120int ice_vsi_start_rx_rings(struct ice_vsi *vsi)
2121{
2122	return ice_vsi_ctrl_rx_rings(vsi, true);
2123}
2124
2125/**
2126 * ice_vsi_stop_rx_rings - stop VSI's Rx rings
2127 * @vsi: the VSI
2128 *
2129 * Returns 0 on success and a negative value on error
2130 */
2131int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
2132{
2133	return ice_vsi_ctrl_rx_rings(vsi, false);
2134}
2135
2136/**
2137 * ice_trigger_sw_intr - trigger a software interrupt
2138 * @hw: pointer to the HW structure
2139 * @q_vector: interrupt vector to trigger the software interrupt for
2140 */
2141void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
2142{
2143	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
2144	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
2145	     GLINT_DYN_CTL_SWINT_TRIG_M |
2146	     GLINT_DYN_CTL_INTENA_M);
2147}
2148
2149/**
2150 * ice_vsi_stop_tx_ring - Disable single Tx ring
2151 * @vsi: the VSI being configured
2152 * @rst_src: reset source
2153 * @rel_vmvf_num: Relative ID of VF/VM
2154 * @ring: Tx ring to be stopped
2155 * @txq_meta: Meta data of Tx ring to be stopped
2156 */
2157#ifndef CONFIG_PCI_IOV
2158static
2159#endif /* !CONFIG_PCI_IOV */
2160int
2161ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2162		     u16 rel_vmvf_num, struct ice_ring *ring,
2163		     struct ice_txq_meta *txq_meta)
2164{
2165	struct ice_pf *pf = vsi->back;
2166	struct ice_q_vector *q_vector;
2167	struct ice_hw *hw = &pf->hw;
2168	enum ice_status status;
2169	u32 val;
2170
2171	/* clear cause_ena bit for disabled queues */
2172	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
2173	val &= ~QINT_TQCTL_CAUSE_ENA_M;
2174	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
2175
2176	/* software is expected to wait for 100 ns */
2177	ndelay(100);
2178
2179	/* trigger a software interrupt for the vector
2180	 * associated to the queue to schedule NAPI handler
2181	 */
2182	q_vector = ring->q_vector;
2183	if (q_vector)
2184		ice_trigger_sw_intr(hw, q_vector);
2185
2186	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
2187				 txq_meta->tc, 1, &txq_meta->q_handle,
2188				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
2189				 rel_vmvf_num, NULL);
2190
2191	/* if the disable queue command was exercised during an
2192	 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
2193	 * This is not an error as the reset operation disables
2194	 * queues at the hardware level anyway.
2195	 */
2196	if (status == ICE_ERR_RESET_ONGOING) {
2197		dev_dbg(&vsi->back->pdev->dev,
2198			"Reset in progress. LAN Tx queues already disabled\n");
2199	} else if (status == ICE_ERR_DOES_NOT_EXIST) {
2200		dev_dbg(&vsi->back->pdev->dev,
2201			"LAN Tx queues do not exist, nothing to disable\n");
2202	} else if (status) {
2203		dev_err(&vsi->back->pdev->dev,
2204			"Failed to disable LAN Tx queues, error: %d\n", status);
2205		return -ENODEV;
2206	}
2207
2208	return 0;
2209}
2210
2211/**
2212 * ice_fill_txq_meta - Prepare the Tx queue's meta data
2213 * @vsi: VSI that ring belongs to
2214 * @ring: ring that txq_meta will be based on
2215 * @txq_meta: a helper struct that wraps Tx queue's information
2216 *
2217 * Set up a helper struct that will contain all the necessary fields that
2218 * are needed for stopping Tx queue
2219 */
2220#ifndef CONFIG_PCI_IOV
2221static
2222#endif /* !CONFIG_PCI_IOV */
2223void
2224ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
2225		  struct ice_txq_meta *txq_meta)
2226{
2227	u8 tc = 0;
2228
2229#ifdef CONFIG_DCB
2230	tc = ring->dcb_tc;
2231#endif /* CONFIG_DCB */
2232	txq_meta->q_id = ring->reg_idx;
2233	txq_meta->q_teid = ring->txq_teid;
2234	txq_meta->q_handle = ring->q_handle;
2235	txq_meta->vsi_idx = vsi->idx;
2236	txq_meta->tc = tc;
2237}
2238
2239/**
2240 * ice_vsi_stop_tx_rings - Disable Tx rings
2241 * @vsi: the VSI being configured
2242 * @rst_src: reset source
2243 * @rel_vmvf_num: Relative ID of VF/VM
2244 * @rings: Tx ring array to be stopped
 
2245 */
2246static int
2247ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2248		      u16 rel_vmvf_num, struct ice_ring **rings)
2249{
2250	u16 i, q_idx = 0;
2251	int status;
2252	u8 tc;
2253
2254	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2255		return -EINVAL;
2256
2257	/* set up the Tx queue list to be disabled for each enabled TC */
2258	ice_for_each_traffic_class(tc) {
2259		if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
2260			break;
2261
2262		for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
2263			struct ice_txq_meta txq_meta = { };
2264
2265			if (!rings || !rings[q_idx])
2266				return -EINVAL;
2267
2268			ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2269			status = ice_vsi_stop_tx_ring(vsi, rst_src,
2270						      rel_vmvf_num,
2271						      rings[q_idx], &txq_meta);
2272
2273			if (status)
2274				return status;
2275
2276			q_idx++;
2277		}
2278	}
2279
2280	return 0;
2281}
2282
2283/**
2284 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2285 * @vsi: the VSI being configured
2286 * @rst_src: reset source
2287 * @rel_vmvf_num: Relative ID of VF/VM
2288 */
2289int
2290ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2291			  u16 rel_vmvf_num)
2292{
2293	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2294}
2295
2296/**
2297 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
2298 * @vsi: VSI to enable or disable VLAN pruning on
2299 * @ena: set to true to enable VLAN pruning and false to disable it
2300 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode
2301 *
2302 * returns 0 if VSI is updated, negative otherwise
2303 */
2304int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)
2305{
2306	struct ice_vsi_ctx *ctxt;
2307	struct device *dev;
2308	struct ice_pf *pf;
2309	int status;
2310
2311	if (!vsi)
2312		return -EINVAL;
2313
 
 
 
 
 
 
 
2314	pf = vsi->back;
2315	dev = &pf->pdev->dev;
2316	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2317	if (!ctxt)
2318		return -ENOMEM;
2319
2320	ctxt->info = vsi->info;
2321
2322	if (ena) {
2323		ctxt->info.sec_flags |=
2324			ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2325			ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S;
2326		ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2327	} else {
2328		ctxt->info.sec_flags &=
2329			~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2330			  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
2331		ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2332	}
2333
2334	if (!vlan_promisc)
2335		ctxt->info.valid_sections =
2336			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID |
2337				    ICE_AQ_VSI_PROP_SW_VALID);
2338
2339	status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
2340	if (status) {
2341		netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n",
2342			   ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status,
2343			   pf->hw.adminq.sq_last_status);
 
2344		goto err_out;
2345	}
2346
2347	vsi->info.sec_flags = ctxt->info.sec_flags;
2348	vsi->info.sw_flags2 = ctxt->info.sw_flags2;
2349
2350	devm_kfree(dev, ctxt);
2351	return 0;
2352
2353err_out:
2354	devm_kfree(dev, ctxt);
2355	return -EIO;
2356}
2357
2358static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2359{
2360	struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg;
2361
2362	vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg);
2363	vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg);
2364}
2365
2366/**
2367 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2368 * @vsi: VSI to set the q_vectors register index on
2369 */
2370static int
2371ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2372{
2373	u16 i;
2374
2375	if (!vsi || !vsi->q_vectors)
2376		return -EINVAL;
2377
2378	ice_for_each_q_vector(vsi, i) {
2379		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2380
2381		if (!q_vector) {
2382			dev_err(&vsi->back->pdev->dev,
2383				"Failed to set reg_idx on q_vector %d VSI %d\n",
2384				i, vsi->vsi_num);
2385			goto clear_reg_idx;
2386		}
2387
2388		if (vsi->type == ICE_VSI_VF) {
2389			struct ice_vf *vf = &vsi->back->vf[vsi->vf_id];
2390
2391			q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2392		} else {
2393			q_vector->reg_idx =
2394				q_vector->v_idx + vsi->base_vector;
2395		}
2396	}
2397
2398	return 0;
2399
2400clear_reg_idx:
2401	ice_for_each_q_vector(vsi, i) {
2402		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2403
2404		if (q_vector)
2405			q_vector->reg_idx = 0;
2406	}
2407
2408	return -EINVAL;
2409}
2410
2411/**
2412 * ice_vsi_add_rem_eth_mac - Program VSI ethertype based filter with rule
2413 * @vsi: the VSI being configured
2414 * @add_rule: boolean value to add or remove ethertype filter rule
 
2415 */
2416static void
2417ice_vsi_add_rem_eth_mac(struct ice_vsi *vsi, bool add_rule)
2418{
2419	struct ice_fltr_list_entry *list;
 
2420	struct ice_pf *pf = vsi->back;
2421	LIST_HEAD(tmp_add_list);
2422	enum ice_status status;
 
2423
2424	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2425	if (!list)
2426		return;
2427
2428	list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
2429	list->fltr_info.fltr_act = ICE_DROP_PACKET;
2430	list->fltr_info.flag = ICE_FLTR_TX;
2431	list->fltr_info.src_id = ICE_SRC_ID_VSI;
2432	list->fltr_info.vsi_handle = vsi->idx;
2433	list->fltr_info.l_data.ethertype_mac.ethertype = vsi->ethtype;
2434
2435	INIT_LIST_HEAD(&list->list_entry);
2436	list_add(&list->list_entry, &tmp_add_list);
2437
2438	if (add_rule)
2439		status = ice_add_eth_mac(&pf->hw, &tmp_add_list);
2440	else
2441		status = ice_remove_eth_mac(&pf->hw, &tmp_add_list);
2442
2443	if (status)
2444		dev_err(&pf->pdev->dev,
2445			"Failure Adding or Removing Ethertype on VSI %i error: %d\n",
2446			vsi->vsi_num, status);
2447
2448	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2449}
2450
2451/**
2452 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2453 * @vsi: the VSI being configured
2454 * @tx: bool to determine Tx or Rx rule
2455 * @create: bool to determine create or remove Rule
 
2456 */
2457void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2458{
2459	struct ice_fltr_list_entry *list;
 
 
 
 
 
2460	struct ice_pf *pf = vsi->back;
2461	LIST_HEAD(tmp_add_list);
2462	enum ice_status status;
2463
2464	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2465	if (!list)
 
 
 
 
 
2466		return;
2467
2468	list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
2469	list->fltr_info.vsi_handle = vsi->idx;
2470	list->fltr_info.l_data.ethertype_mac.ethertype = ETH_P_LLDP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2471
2472	if (tx) {
2473		list->fltr_info.fltr_act = ICE_DROP_PACKET;
2474		list->fltr_info.flag = ICE_FLTR_TX;
2475		list->fltr_info.src_id = ICE_SRC_ID_VSI;
2476	} else {
2477		list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
2478		list->fltr_info.flag = ICE_FLTR_RX;
2479		list->fltr_info.src_id = ICE_SRC_ID_LPORT;
2480	}
2481
2482	INIT_LIST_HEAD(&list->list_entry);
2483	list_add(&list->list_entry, &tmp_add_list);
2484
2485	if (create)
2486		status = ice_add_eth_mac(&pf->hw, &tmp_add_list);
2487	else
2488		status = ice_remove_eth_mac(&pf->hw, &tmp_add_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2489
2490	if (status)
2491		dev_err(&pf->pdev->dev,
2492			"Fail %s %s LLDP rule on VSI %i error: %d\n",
2493			create ? "adding" : "removing", tx ? "TX" : "RX",
2494			vsi->vsi_num, status);
2495
2496	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
 
 
 
 
 
 
2497}
2498
2499/**
2500 * ice_vsi_setup - Set up a VSI by a given type
2501 * @pf: board private structure
2502 * @pi: pointer to the port_info instance
2503 * @type: VSI type
2504 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be
2505 *         used only for ICE_VSI_VF VSI type. For other VSI types, should
2506 *         fill-in ICE_INVAL_VFID as input.
2507 *
2508 * This allocates the sw VSI structure and its queue resources.
2509 *
2510 * Returns pointer to the successfully allocated and configured VSI sw struct on
2511 * success, NULL on failure.
2512 */
2513struct ice_vsi *
2514ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2515	      enum ice_vsi_type type, u16 vf_id)
2516{
2517	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2518	struct device *dev = &pf->pdev->dev;
2519	enum ice_status status;
2520	struct ice_vsi *vsi;
2521	int ret, i;
2522
2523	if (type == ICE_VSI_VF)
2524		vsi = ice_vsi_alloc(pf, type, vf_id);
2525	else
2526		vsi = ice_vsi_alloc(pf, type, ICE_INVAL_VFID);
2527
2528	if (!vsi) {
2529		dev_err(dev, "could not allocate VSI\n");
2530		return NULL;
2531	}
2532
2533	vsi->port_info = pi;
2534	vsi->vsw = pf->first_sw;
2535	if (vsi->type == ICE_VSI_PF)
2536		vsi->ethtype = ETH_P_PAUSE;
2537
2538	if (vsi->type == ICE_VSI_VF)
2539		vsi->vf_id = vf_id;
2540
 
 
2541	if (ice_vsi_get_qs(vsi)) {
2542		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2543			vsi->idx);
2544		goto unroll_get_qs;
2545	}
2546
2547	/* set RSS capabilities */
2548	ice_vsi_set_rss_params(vsi);
2549
2550	/* set TC configuration */
2551	ice_vsi_set_tc_cfg(vsi);
2552
2553	/* create the VSI */
2554	ret = ice_vsi_init(vsi);
2555	if (ret)
2556		goto unroll_get_qs;
2557
2558	switch (vsi->type) {
 
2559	case ICE_VSI_PF:
2560		ret = ice_vsi_alloc_q_vectors(vsi);
2561		if (ret)
2562			goto unroll_vsi_init;
2563
2564		ret = ice_vsi_setup_vector_base(vsi);
2565		if (ret)
2566			goto unroll_alloc_q_vector;
2567
2568		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2569		if (ret)
2570			goto unroll_vector_base;
2571
2572		ret = ice_vsi_alloc_rings(vsi);
2573		if (ret)
2574			goto unroll_vector_base;
2575
 
 
 
 
 
 
 
 
 
 
 
2576		ice_vsi_map_rings_to_vectors(vsi);
2577
2578		/* Do not exit if configuring RSS had an issue, at least
2579		 * receive traffic on first queue. Hence no need to capture
2580		 * return value
2581		 */
2582		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2583			ice_vsi_cfg_rss_lut_key(vsi);
 
 
 
 
 
2584		break;
2585	case ICE_VSI_VF:
2586		/* VF driver will take care of creating netdev for this type and
2587		 * map queues to vectors through Virtchnl, PF driver only
2588		 * creates a VSI and corresponding structures for bookkeeping
2589		 * purpose
2590		 */
2591		ret = ice_vsi_alloc_q_vectors(vsi);
2592		if (ret)
2593			goto unroll_vsi_init;
2594
2595		ret = ice_vsi_alloc_rings(vsi);
2596		if (ret)
2597			goto unroll_alloc_q_vector;
2598
2599		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2600		if (ret)
2601			goto unroll_vector_base;
2602
2603		/* Do not exit if configuring RSS had an issue, at least
2604		 * receive traffic on first queue. Hence no need to capture
2605		 * return value
2606		 */
2607		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2608			ice_vsi_cfg_rss_lut_key(vsi);
 
 
2609		break;
2610	case ICE_VSI_LB:
2611		ret = ice_vsi_alloc_rings(vsi);
2612		if (ret)
2613			goto unroll_vsi_init;
2614		break;
2615	default:
2616		/* clean up the resources and exit */
2617		goto unroll_vsi_init;
2618	}
2619
2620	/* configure VSI nodes based on number of queues and TC's */
2621	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2622		max_txqs[i] = vsi->alloc_txq;
2623
2624	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2625				 max_txqs);
2626	if (status) {
2627		dev_err(&pf->pdev->dev,
2628			"VSI %d failed lan queue config, error %d\n",
2629			vsi->vsi_num, status);
2630		goto unroll_vector_base;
2631	}
2632
2633	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2634	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2635	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2636	 * The rule is added once for PF VSI in order to create appropriate
2637	 * recipe, since VSI/VSI list is ignored with drop action...
2638	 * Also add rules to handle LLDP Tx and Rx packets.  Tx LLDP packets
2639	 * need to be dropped so that VFs cannot send LLDP packets to reconfig
2640	 * DCB settings in the HW.  Also, if the FW DCBX engine is not running
2641	 * then Rx LLDP packets need to be redirected up the stack.
2642	 */
2643	if (!ice_is_safe_mode(pf)) {
2644		if (vsi->type == ICE_VSI_PF) {
2645			ice_vsi_add_rem_eth_mac(vsi, true);
2646
2647			/* Tx LLDP packets */
2648			ice_cfg_sw_lldp(vsi, true, true);
2649
2650			/* Rx LLDP packets */
2651			if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2652				ice_cfg_sw_lldp(vsi, false, true);
2653		}
2654	}
2655
 
 
2656	return vsi;
2657
 
 
2658unroll_vector_base:
2659	/* reclaim SW interrupts back to the common pool */
2660	ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2661	pf->num_avail_sw_msix += vsi->num_q_vectors;
2662unroll_alloc_q_vector:
2663	ice_vsi_free_q_vectors(vsi);
2664unroll_vsi_init:
2665	ice_vsi_delete(vsi);
2666unroll_get_qs:
2667	ice_vsi_put_qs(vsi);
 
 
 
2668	ice_vsi_clear(vsi);
2669
2670	return NULL;
2671}
2672
2673/**
2674 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2675 * @vsi: the VSI being cleaned up
2676 */
2677static void ice_vsi_release_msix(struct ice_vsi *vsi)
2678{
2679	struct ice_pf *pf = vsi->back;
2680	struct ice_hw *hw = &pf->hw;
2681	u32 txq = 0;
2682	u32 rxq = 0;
2683	int i, q;
2684
2685	for (i = 0; i < vsi->num_q_vectors; i++) {
2686		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2687		u16 reg_idx = q_vector->reg_idx;
2688
2689		wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0);
2690		wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0);
2691		for (q = 0; q < q_vector->num_ring_tx; q++) {
 
2692			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
 
 
 
 
 
2693			txq++;
2694		}
2695
2696		for (q = 0; q < q_vector->num_ring_rx; q++) {
 
2697			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2698			rxq++;
2699		}
2700	}
2701
2702	ice_flush(hw);
2703}
2704
2705/**
2706 * ice_vsi_free_irq - Free the IRQ association with the OS
2707 * @vsi: the VSI being configured
2708 */
2709void ice_vsi_free_irq(struct ice_vsi *vsi)
2710{
2711	struct ice_pf *pf = vsi->back;
2712	int base = vsi->base_vector;
2713	int i;
2714
2715	if (!vsi->q_vectors || !vsi->irqs_ready)
2716		return;
2717
2718	ice_vsi_release_msix(vsi);
2719	if (vsi->type == ICE_VSI_VF)
2720		return;
2721
2722	vsi->irqs_ready = false;
2723	ice_for_each_q_vector(vsi, i) {
2724		u16 vector = i + base;
2725		int irq_num;
2726
2727		irq_num = pf->msix_entries[vector].vector;
2728
2729		/* free only the irqs that were actually requested */
2730		if (!vsi->q_vectors[i] ||
2731		    !(vsi->q_vectors[i]->num_ring_tx ||
2732		      vsi->q_vectors[i]->num_ring_rx))
2733			continue;
2734
2735		/* clear the affinity notifier in the IRQ descriptor */
2736		irq_set_affinity_notifier(irq_num, NULL);
2737
2738		/* clear the affinity_mask in the IRQ descriptor */
2739		irq_set_affinity_hint(irq_num, NULL);
2740		synchronize_irq(irq_num);
2741		devm_free_irq(&pf->pdev->dev, irq_num,
2742			      vsi->q_vectors[i]);
2743	}
2744}
2745
2746/**
2747 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2748 * @vsi: the VSI having resources freed
2749 */
2750void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2751{
2752	int i;
2753
2754	if (!vsi->tx_rings)
2755		return;
2756
2757	ice_for_each_txq(vsi, i)
2758		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2759			ice_free_tx_ring(vsi->tx_rings[i]);
2760}
2761
2762/**
2763 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2764 * @vsi: the VSI having resources freed
2765 */
2766void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2767{
2768	int i;
2769
2770	if (!vsi->rx_rings)
2771		return;
2772
2773	ice_for_each_rxq(vsi, i)
2774		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2775			ice_free_rx_ring(vsi->rx_rings[i]);
2776}
2777
2778/**
2779 * ice_vsi_close - Shut down a VSI
2780 * @vsi: the VSI being shut down
2781 */
2782void ice_vsi_close(struct ice_vsi *vsi)
2783{
2784	if (!test_and_set_bit(__ICE_DOWN, vsi->state))
2785		ice_down(vsi);
2786
2787	ice_vsi_free_irq(vsi);
2788	ice_vsi_free_tx_rings(vsi);
2789	ice_vsi_free_rx_rings(vsi);
2790}
2791
2792/**
2793 * ice_free_res - free a block of resources
2794 * @res: pointer to the resource
2795 * @index: starting index previously returned by ice_get_res
2796 * @id: identifier to track owner
2797 *
2798 * Returns number of resources freed
2799 */
2800int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
2801{
2802	int count = 0;
2803	int i;
 
 
 
 
 
 
 
 
 
2804
2805	if (!res || index >= res->end)
2806		return -EINVAL;
2807
2808	id |= ICE_RES_VALID_BIT;
2809	for (i = index; i < res->end && res->list[i] == id; i++) {
2810		res->list[i] = 0;
2811		count++;
 
2812	}
2813
2814	return count;
2815}
2816
2817/**
2818 * ice_search_res - Search the tracker for a block of resources
2819 * @res: pointer to the resource
2820 * @needed: size of the block needed
2821 * @id: identifier to track owner
2822 *
2823 * Returns the base item index of the block, or -ENOMEM for error
2824 */
2825static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
2826{
2827	int start = 0, end = 0;
2828
2829	if (needed > res->end)
2830		return -ENOMEM;
2831
2832	id |= ICE_RES_VALID_BIT;
2833
2834	do {
2835		/* skip already allocated entries */
2836		if (res->list[end++] & ICE_RES_VALID_BIT) {
2837			start = end;
2838			if ((start + needed) > res->end)
2839				break;
2840		}
2841
2842		if (end == (start + needed)) {
2843			int i = start;
2844
2845			/* there was enough, so assign it to the requestor */
2846			while (i != end)
2847				res->list[i++] = id;
2848
2849			return start;
2850		}
2851	} while (end < res->end);
2852
2853	return -ENOMEM;
2854}
2855
2856/**
2857 * ice_get_res - get a block of resources
2858 * @pf: board private structure
2859 * @res: pointer to the resource
2860 * @needed: size of the block needed
2861 * @id: identifier to track owner
2862 *
2863 * Returns the base item index of the block, or negative for error
2864 */
2865int
2866ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
2867{
2868	if (!res || !pf)
2869		return -EINVAL;
2870
2871	if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
2872		dev_err(&pf->pdev->dev,
2873			"param err: needed=%d, num_entries = %d id=0x%04x\n",
2874			needed, res->num_entries, id);
2875		return -EINVAL;
2876	}
2877
2878	return ice_search_res(res, needed, id);
2879}
2880
2881/**
2882 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2883 * @vsi: the VSI being un-configured
2884 */
2885void ice_vsi_dis_irq(struct ice_vsi *vsi)
2886{
2887	int base = vsi->base_vector;
2888	struct ice_pf *pf = vsi->back;
2889	struct ice_hw *hw = &pf->hw;
2890	u32 val;
2891	int i;
2892
2893	/* disable interrupt causation from each queue */
2894	if (vsi->tx_rings) {
2895		ice_for_each_txq(vsi, i) {
2896			if (vsi->tx_rings[i]) {
2897				u16 reg;
2898
2899				reg = vsi->tx_rings[i]->reg_idx;
2900				val = rd32(hw, QINT_TQCTL(reg));
2901				val &= ~QINT_TQCTL_CAUSE_ENA_M;
2902				wr32(hw, QINT_TQCTL(reg), val);
2903			}
2904		}
2905	}
2906
2907	if (vsi->rx_rings) {
2908		ice_for_each_rxq(vsi, i) {
2909			if (vsi->rx_rings[i]) {
2910				u16 reg;
2911
2912				reg = vsi->rx_rings[i]->reg_idx;
2913				val = rd32(hw, QINT_RQCTL(reg));
2914				val &= ~QINT_RQCTL_CAUSE_ENA_M;
2915				wr32(hw, QINT_RQCTL(reg), val);
2916			}
2917		}
2918	}
2919
2920	/* disable each interrupt */
2921	ice_for_each_q_vector(vsi, i) {
2922		if (!vsi->q_vectors[i])
2923			continue;
2924		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2925	}
2926
2927	ice_flush(hw);
2928
2929	/* don't call synchronize_irq() for VF's from the host */
2930	if (vsi->type == ICE_VSI_VF)
2931		return;
2932
2933	ice_for_each_q_vector(vsi, i)
2934		synchronize_irq(pf->msix_entries[i + base].vector);
2935}
2936
2937/**
2938 * ice_napi_del - Remove NAPI handler for the VSI
2939 * @vsi: VSI for which NAPI handler is to be removed
2940 */
2941void ice_napi_del(struct ice_vsi *vsi)
2942{
2943	int v_idx;
2944
2945	if (!vsi->netdev)
2946		return;
2947
2948	ice_for_each_q_vector(vsi, v_idx)
2949		netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2950}
2951
2952/**
2953 * ice_vsi_release - Delete a VSI and free its resources
2954 * @vsi: the VSI being removed
2955 *
2956 * Returns 0 on success or < 0 on error
2957 */
2958int ice_vsi_release(struct ice_vsi *vsi)
2959{
 
2960	struct ice_pf *pf;
2961
2962	if (!vsi->back)
2963		return -ENODEV;
2964	pf = vsi->back;
2965
2966	/* do not unregister while driver is in the reset recovery pending
2967	 * state. Since reset/rebuild happens through PF service task workqueue,
2968	 * it's not a good idea to unregister netdev that is associated to the
2969	 * PF that is running the work queue items currently. This is done to
2970	 * avoid check_flush_dependency() warning on this wq
2971	 */
2972	if (vsi->netdev && !ice_is_reset_in_progress(pf->state))
 
2973		unregister_netdev(vsi->netdev);
 
 
 
 
2974
2975	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2976		ice_rss_clean(vsi);
2977
2978	/* Disable VSI and free resources */
2979	if (vsi->type != ICE_VSI_LB)
2980		ice_vsi_dis_irq(vsi);
2981	ice_vsi_close(vsi);
2982
2983	/* SR-IOV determines needed MSIX resources all at once instead of per
2984	 * VSI since when VFs are spawned we know how many VFs there are and how
2985	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2986	 * cleared in the same manner.
2987	 */
2988	if (vsi->type != ICE_VSI_VF) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2989		/* reclaim SW interrupts back to the common pool */
2990		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2991		pf->num_avail_sw_msix += vsi->num_q_vectors;
2992	}
2993
2994	if (!ice_is_safe_mode(pf)) {
2995		if (vsi->type == ICE_VSI_PF) {
2996			ice_vsi_add_rem_eth_mac(vsi, false);
 
2997			ice_cfg_sw_lldp(vsi, true, false);
2998			/* The Rx rule will only exist to remove if the LLDP FW
2999			 * engine is currently stopped
3000			 */
3001			if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
3002				ice_cfg_sw_lldp(vsi, false, false);
3003		}
3004	}
3005
3006	ice_remove_vsi_fltr(&pf->hw, vsi->idx);
3007	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
 
 
 
 
3008	ice_vsi_delete(vsi);
3009	ice_vsi_free_q_vectors(vsi);
3010
3011	/* make sure unregister_netdev() was called by checking __ICE_DOWN */
3012	if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) {
3013		free_netdev(vsi->netdev);
3014		vsi->netdev = NULL;
 
 
 
 
 
 
3015	}
3016
 
 
 
3017	ice_vsi_clear_rings(vsi);
3018
3019	ice_vsi_put_qs(vsi);
3020
3021	/* retain SW VSI data structure since it is needed to unregister and
3022	 * free VSI netdev when PF is not in reset recovery pending state,\
3023	 * for ex: during rmmod.
3024	 */
3025	if (!ice_is_reset_in_progress(pf->state))
3026		ice_vsi_clear(vsi);
3027
3028	return 0;
3029}
3030
3031/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3032 * ice_vsi_rebuild - Rebuild VSI after reset
3033 * @vsi: VSI to be rebuild
 
3034 *
3035 * Returns 0 on success and negative value on failure
3036 */
3037int ice_vsi_rebuild(struct ice_vsi *vsi)
3038{
3039	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
 
 
3040	struct ice_vf *vf = NULL;
 
3041	enum ice_status status;
3042	struct ice_pf *pf;
3043	int ret, i;
3044
3045	if (!vsi)
3046		return -EINVAL;
3047
3048	pf = vsi->back;
3049	if (vsi->type == ICE_VSI_VF)
 
3050		vf = &pf->vf[vsi->vf_id];
3051
 
 
 
 
 
 
 
3052	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
 
 
 
 
3053	ice_vsi_free_q_vectors(vsi);
3054
3055	/* SR-IOV determines needed MSIX resources all at once instead of per
3056	 * VSI since when VFs are spawned we know how many VFs there are and how
3057	 * many interrupts each VF needs. SR-IOV MSIX resources are also
3058	 * cleared in the same manner.
3059	 */
3060	if (vsi->type != ICE_VSI_VF) {
3061		/* reclaim SW interrupts back to the common pool */
3062		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3063		pf->num_avail_sw_msix += vsi->num_q_vectors;
3064		vsi->base_vector = 0;
3065	}
3066
 
 
 
 
 
3067	ice_vsi_put_qs(vsi);
3068	ice_vsi_clear_rings(vsi);
3069	ice_vsi_free_arrays(vsi);
3070	ice_dev_onetime_setup(&pf->hw);
3071	if (vsi->type == ICE_VSI_VF)
3072		ice_vsi_set_num_qs(vsi, vf->vf_id);
3073	else
3074		ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
3075
3076	ret = ice_vsi_alloc_arrays(vsi);
3077	if (ret < 0)
3078		goto err_vsi;
3079
3080	ice_vsi_get_qs(vsi);
 
 
3081	ice_vsi_set_tc_cfg(vsi);
3082
3083	/* Initialize VSI struct elements and create VSI in FW */
3084	ret = ice_vsi_init(vsi);
3085	if (ret < 0)
3086		goto err_vsi;
3087
3088
3089	switch (vsi->type) {
3090	case ICE_VSI_PF:
3091		ret = ice_vsi_alloc_q_vectors(vsi);
3092		if (ret)
3093			goto err_rings;
3094
3095		ret = ice_vsi_setup_vector_base(vsi);
3096		if (ret)
3097			goto err_vectors;
3098
3099		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3100		if (ret)
3101			goto err_vectors;
3102
3103		ret = ice_vsi_alloc_rings(vsi);
3104		if (ret)
3105			goto err_vectors;
3106
3107		ice_vsi_map_rings_to_vectors(vsi);
3108		/* Do not exit if configuring RSS had an issue, at least
3109		 * receive traffic on first queue. Hence no need to capture
3110		 * return value
3111		 */
3112		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3113			ice_vsi_cfg_rss_lut_key(vsi);
 
 
 
 
 
 
 
 
3114		break;
3115	case ICE_VSI_VF:
3116		ret = ice_vsi_alloc_q_vectors(vsi);
3117		if (ret)
3118			goto err_rings;
3119
3120		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3121		if (ret)
3122			goto err_vectors;
3123
3124		ret = ice_vsi_alloc_rings(vsi);
3125		if (ret)
3126			goto err_vectors;
3127
3128		break;
3129	default:
3130		break;
3131	}
3132
3133	/* configure VSI nodes based on number of queues and TC's */
3134	for (i = 0; i < vsi->tc_cfg.numtc; i++)
3135		max_txqs[i] = vsi->alloc_txq;
3136
 
 
 
 
3137	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3138				 max_txqs);
3139	if (status) {
3140		dev_err(&pf->pdev->dev,
3141			"VSI %d failed lan queue config, error %d\n",
3142			vsi->vsi_num, status);
3143		goto err_vectors;
 
 
 
 
3144	}
 
 
 
3145	return 0;
3146
3147err_vectors:
3148	ice_vsi_free_q_vectors(vsi);
3149err_rings:
3150	if (vsi->netdev) {
3151		vsi->current_netdev_flags = 0;
3152		unregister_netdev(vsi->netdev);
3153		free_netdev(vsi->netdev);
3154		vsi->netdev = NULL;
3155	}
3156err_vsi:
3157	ice_vsi_clear(vsi);
3158	set_bit(__ICE_RESET_FAILED, pf->state);
 
3159	return ret;
3160}
3161
3162/**
3163 * ice_is_reset_in_progress - check for a reset in progress
3164 * @state: PF state field
3165 */
3166bool ice_is_reset_in_progress(unsigned long *state)
3167{
3168	return test_bit(__ICE_RESET_OICR_RECV, state) ||
3169	       test_bit(__ICE_PFR_REQ, state) ||
3170	       test_bit(__ICE_CORER_REQ, state) ||
3171	       test_bit(__ICE_GLOBR_REQ, state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172}
3173
3174#ifdef CONFIG_DCB
3175/**
3176 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3177 * @vsi: VSI being configured
3178 * @ctx: the context buffer returned from AQ VSI update command
3179 */
3180static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3181{
3182	vsi->info.mapping_flags = ctx->info.mapping_flags;
3183	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3184	       sizeof(vsi->info.q_mapping));
3185	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3186	       sizeof(vsi->info.tc_mapping));
3187}
3188
3189/**
3190 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3191 * @vsi: VSI to be configured
3192 * @ena_tc: TC bitmap
3193 *
3194 * VSI queues expected to be quiesced before calling this function
3195 */
3196int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3197{
3198	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
 
3199	struct ice_vsi_ctx *ctx;
3200	struct ice_pf *pf = vsi->back;
3201	enum ice_status status;
 
3202	int i, ret = 0;
3203	u8 num_tc = 0;
3204
 
 
3205	ice_for_each_traffic_class(i) {
3206		/* build bitmap of enabled TCs */
3207		if (ena_tc & BIT(i))
3208			num_tc++;
3209		/* populate max_txqs per TC */
3210		max_txqs[i] = vsi->alloc_txq;
3211	}
3212
3213	vsi->tc_cfg.ena_tc = ena_tc;
3214	vsi->tc_cfg.numtc = num_tc;
3215
3216	ctx = devm_kzalloc(&pf->pdev->dev, sizeof(*ctx), GFP_KERNEL);
3217	if (!ctx)
3218		return -ENOMEM;
3219
3220	ctx->vf_num = 0;
3221	ctx->info = vsi->info;
3222
3223	ice_vsi_setup_q_map(vsi, ctx);
3224
3225	/* must to indicate which section of VSI context are being modified */
3226	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3227	status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3228	if (status) {
3229		dev_info(&pf->pdev->dev, "Failed VSI Update\n");
3230		ret = -EIO;
3231		goto out;
3232	}
3233
3234	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3235				 max_txqs);
3236
3237	if (status) {
3238		dev_err(&pf->pdev->dev,
3239			"VSI %d failed TC config, error %d\n",
3240			vsi->vsi_num, status);
3241		ret = -EIO;
3242		goto out;
3243	}
3244	ice_vsi_update_q_map(vsi, ctx);
3245	vsi->info.valid_sections = 0;
3246
3247	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3248out:
3249	devm_kfree(&pf->pdev->dev, ctx);
3250	return ret;
3251}
3252#endif /* CONFIG_DCB */
3253
3254/**
3255 * ice_nvm_version_str - format the NVM version strings
3256 * @hw: ptr to the hardware info
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3257 */
3258char *ice_nvm_version_str(struct ice_hw *hw)
3259{
3260	u8 oem_ver, oem_patch, ver_hi, ver_lo;
3261	static char buf[ICE_NVM_VER_LEN];
3262	u16 oem_build;
3263
3264	ice_get_nvm_version(hw, &oem_ver, &oem_build, &oem_patch, &ver_hi,
3265			    &ver_lo);
3266
3267	snprintf(buf, sizeof(buf), "%x.%02x 0x%x %d.%d.%d", ver_hi, ver_lo,
3268		 hw->nvm.eetrack, oem_ver, oem_build, oem_patch);
3269
3270	return buf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3271}
3272
3273/**
3274 * ice_vsi_cfg_mac_fltr - Add or remove a MAC address filter for a VSI
3275 * @vsi: the VSI being configured MAC filter
3276 * @macaddr: the MAC address to be added.
3277 * @set: Add or delete a MAC filter
3278 *
3279 * Adds or removes MAC address filter entry for VF VSI
 
 
3280 */
3281enum ice_status
3282ice_vsi_cfg_mac_fltr(struct ice_vsi *vsi, const u8 *macaddr, bool set)
3283{
3284	LIST_HEAD(tmp_add_list);
3285	enum ice_status status;
 
 
 
 
3286
3287	 /* Update MAC filter list to be added or removed for a VSI */
3288	if (ice_add_mac_to_list(vsi, &tmp_add_list, macaddr)) {
3289		status = ICE_ERR_NO_MEMORY;
3290		goto cfg_mac_fltr_exit;
 
 
 
 
 
 
 
 
 
 
3291	}
3292
3293	if (set)
3294		status = ice_add_mac(&vsi->back->hw, &tmp_add_list);
3295	else
3296		status = ice_remove_mac(&vsi->back->hw, &tmp_add_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3297
3298cfg_mac_fltr_exit:
3299	ice_free_fltr_list(&vsi->back->pdev->dev, &tmp_add_list);
3300	return status;
3301}