Linux Audio

Check our new training course

Loading...
v5.14.15
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others.
  7 * Copyright (C) 2005, 2006 by Ralf Baechle (ralf@linux-mips.org)
  8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  9 * Copyright (C) 2004 Thiemo Seufer
 10 * Copyright (C) 2013  Imagination Technologies Ltd.
 11 */
 12#include <linux/cpu.h>
 13#include <linux/errno.h>
 14#include <linux/init.h>
 15#include <linux/kallsyms.h>
 16#include <linux/kernel.h>
 17#include <linux/nmi.h>
 18#include <linux/personality.h>
 19#include <linux/prctl.h>
 20#include <linux/random.h>
 21#include <linux/sched.h>
 22#include <linux/sched/debug.h>
 
 23#include <linux/sched/task_stack.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 24
 25#include <asm/abi.h>
 26#include <asm/asm.h>
 
 
 27#include <asm/dsemul.h>
 28#include <asm/dsp.h>
 29#include <asm/exec.h>
 30#include <asm/fpu.h>
 31#include <asm/inst.h>
 32#include <asm/irq.h>
 33#include <asm/irq_regs.h>
 34#include <asm/isadep.h>
 35#include <asm/msa.h>
 36#include <asm/mips-cps.h>
 
 
 37#include <asm/mipsregs.h>
 38#include <asm/processor.h>
 39#include <asm/reg.h>
 
 
 
 
 
 40#include <asm/stacktrace.h>
 
 41
 42#ifdef CONFIG_HOTPLUG_CPU
 43void arch_cpu_idle_dead(void)
 44{
 45	play_dead();
 46}
 47#endif
 48
 49asmlinkage void ret_from_fork(void);
 50asmlinkage void ret_from_kernel_thread(void);
 51
 52void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
 53{
 54	unsigned long status;
 55
 56	/* New thread loses kernel privileges. */
 57	status = regs->cp0_status & ~(ST0_CU0|ST0_CU1|ST0_CU2|ST0_FR|KU_MASK);
 58	status |= KU_USER;
 59	regs->cp0_status = status;
 60	lose_fpu(0);
 61	clear_thread_flag(TIF_MSA_CTX_LIVE);
 62	clear_used_math();
 63#ifdef CONFIG_MIPS_FP_SUPPORT
 64	atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE);
 65#endif
 66	init_dsp();
 67	regs->cp0_epc = pc;
 68	regs->regs[29] = sp;
 69}
 70
 71void exit_thread(struct task_struct *tsk)
 72{
 73	/*
 74	 * User threads may have allocated a delay slot emulation frame.
 75	 * If so, clean up that allocation.
 76	 */
 77	if (!(current->flags & PF_KTHREAD))
 78		dsemul_thread_cleanup(tsk);
 79}
 80
 81int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 82{
 83	/*
 84	 * Save any process state which is live in hardware registers to the
 85	 * parent context prior to duplication. This prevents the new child
 86	 * state becoming stale if the parent is preempted before copy_thread()
 87	 * gets a chance to save the parent's live hardware registers to the
 88	 * child context.
 89	 */
 90	preempt_disable();
 91
 92	if (is_msa_enabled())
 93		save_msa(current);
 94	else if (is_fpu_owner())
 95		_save_fp(current);
 96
 97	save_dsp(current);
 98
 99	preempt_enable();
100
101	*dst = *src;
102	return 0;
103}
104
105/*
106 * Copy architecture-specific thread state
107 */
108int copy_thread(unsigned long clone_flags, unsigned long usp,
109		unsigned long kthread_arg, struct task_struct *p,
110		unsigned long tls)
111{
112	struct thread_info *ti = task_thread_info(p);
113	struct pt_regs *childregs, *regs = current_pt_regs();
114	unsigned long childksp;
115
116	childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE - 32;
117
118	/* set up new TSS. */
119	childregs = (struct pt_regs *) childksp - 1;
120	/*  Put the stack after the struct pt_regs.  */
121	childksp = (unsigned long) childregs;
122	p->thread.cp0_status = (read_c0_status() & ~(ST0_CU2|ST0_CU1)) | ST0_KERNEL_CUMASK;
123	if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
124		/* kernel thread */
125		unsigned long status = p->thread.cp0_status;
126		memset(childregs, 0, sizeof(struct pt_regs));
 
127		p->thread.reg16 = usp; /* fn */
128		p->thread.reg17 = kthread_arg;
129		p->thread.reg29 = childksp;
130		p->thread.reg31 = (unsigned long) ret_from_kernel_thread;
131#if defined(CONFIG_CPU_R3000) || defined(CONFIG_CPU_TX39XX)
132		status = (status & ~(ST0_KUP | ST0_IEP | ST0_IEC)) |
133			 ((status & (ST0_KUC | ST0_IEC)) << 2);
134#else
135		status |= ST0_EXL;
136#endif
137		childregs->cp0_status = status;
138		return 0;
139	}
140
141	/* user thread */
142	*childregs = *regs;
143	childregs->regs[7] = 0; /* Clear error flag */
144	childregs->regs[2] = 0; /* Child gets zero as return value */
145	if (usp)
146		childregs->regs[29] = usp;
 
147
148	p->thread.reg29 = (unsigned long) childregs;
149	p->thread.reg31 = (unsigned long) ret_from_fork;
150
151	/*
152	 * New tasks lose permission to use the fpu. This accelerates context
153	 * switching for most programs since they don't use the fpu.
154	 */
155	childregs->cp0_status &= ~(ST0_CU2|ST0_CU1);
156
157	clear_tsk_thread_flag(p, TIF_USEDFPU);
158	clear_tsk_thread_flag(p, TIF_USEDMSA);
159	clear_tsk_thread_flag(p, TIF_MSA_CTX_LIVE);
160
161#ifdef CONFIG_MIPS_MT_FPAFF
162	clear_tsk_thread_flag(p, TIF_FPUBOUND);
163#endif /* CONFIG_MIPS_MT_FPAFF */
164
165#ifdef CONFIG_MIPS_FP_SUPPORT
166	atomic_set(&p->thread.bd_emu_frame, BD_EMUFRAME_NONE);
167#endif
168
169	if (clone_flags & CLONE_SETTLS)
170		ti->tp_value = tls;
171
172	return 0;
173}
174
175#ifdef CONFIG_STACKPROTECTOR
176#include <linux/stackprotector.h>
177unsigned long __stack_chk_guard __read_mostly;
178EXPORT_SYMBOL(__stack_chk_guard);
179#endif
180
181struct mips_frame_info {
182	void		*func;
183	unsigned long	func_size;
184	int		frame_size;
185	int		pc_offset;
186};
187
188#define J_TARGET(pc,target)	\
189		(((unsigned long)(pc) & 0xf0000000) | ((target) << 2))
190
191static inline int is_jr_ra_ins(union mips_instruction *ip)
192{
193#ifdef CONFIG_CPU_MICROMIPS
194	/*
195	 * jr16 ra
196	 * jr ra
197	 */
198	if (mm_insn_16bit(ip->word >> 16)) {
199		if (ip->mm16_r5_format.opcode == mm_pool16c_op &&
200		    ip->mm16_r5_format.rt == mm_jr16_op &&
201		    ip->mm16_r5_format.imm == 31)
202			return 1;
203		return 0;
204	}
205
206	if (ip->r_format.opcode == mm_pool32a_op &&
207	    ip->r_format.func == mm_pool32axf_op &&
208	    ((ip->u_format.uimmediate >> 6) & GENMASK(9, 0)) == mm_jalr_op &&
209	    ip->r_format.rt == 31)
210		return 1;
211	return 0;
212#else
213	if (ip->r_format.opcode == spec_op &&
214	    ip->r_format.func == jr_op &&
215	    ip->r_format.rs == 31)
216		return 1;
217	return 0;
218#endif
219}
220
221static inline int is_ra_save_ins(union mips_instruction *ip, int *poff)
222{
223#ifdef CONFIG_CPU_MICROMIPS
224	/*
225	 * swsp ra,offset
226	 * swm16 reglist,offset(sp)
227	 * swm32 reglist,offset(sp)
228	 * sw32 ra,offset(sp)
229	 * jradiussp - NOT SUPPORTED
230	 *
231	 * microMIPS is way more fun...
232	 */
233	if (mm_insn_16bit(ip->word >> 16)) {
234		switch (ip->mm16_r5_format.opcode) {
235		case mm_swsp16_op:
236			if (ip->mm16_r5_format.rt != 31)
237				return 0;
238
239			*poff = ip->mm16_r5_format.imm;
240			*poff = (*poff << 2) / sizeof(ulong);
241			return 1;
242
243		case mm_pool16c_op:
244			switch (ip->mm16_m_format.func) {
245			case mm_swm16_op:
246				*poff = ip->mm16_m_format.imm;
247				*poff += 1 + ip->mm16_m_format.rlist;
248				*poff = (*poff << 2) / sizeof(ulong);
249				return 1;
250
251			default:
252				return 0;
253			}
254
255		default:
256			return 0;
257		}
258	}
259
260	switch (ip->i_format.opcode) {
261	case mm_sw32_op:
262		if (ip->i_format.rs != 29)
263			return 0;
264		if (ip->i_format.rt != 31)
265			return 0;
266
267		*poff = ip->i_format.simmediate / sizeof(ulong);
268		return 1;
269
270	case mm_pool32b_op:
271		switch (ip->mm_m_format.func) {
272		case mm_swm32_func:
273			if (ip->mm_m_format.rd < 0x10)
274				return 0;
275			if (ip->mm_m_format.base != 29)
276				return 0;
277
278			*poff = ip->mm_m_format.simmediate;
279			*poff += (ip->mm_m_format.rd & 0xf) * sizeof(u32);
280			*poff /= sizeof(ulong);
281			return 1;
282		default:
283			return 0;
284		}
285
286	default:
287		return 0;
288	}
289#else
290	/* sw / sd $ra, offset($sp) */
291	if ((ip->i_format.opcode == sw_op || ip->i_format.opcode == sd_op) &&
292		ip->i_format.rs == 29 && ip->i_format.rt == 31) {
293		*poff = ip->i_format.simmediate / sizeof(ulong);
294		return 1;
295	}
296#ifdef CONFIG_CPU_LOONGSON64
297	if ((ip->loongson3_lswc2_format.opcode == swc2_op) &&
298		      (ip->loongson3_lswc2_format.ls == 1) &&
299		      (ip->loongson3_lswc2_format.fr == 0) &&
300		      (ip->loongson3_lswc2_format.base == 29)) {
301		if (ip->loongson3_lswc2_format.rt == 31) {
302			*poff = ip->loongson3_lswc2_format.offset << 1;
303			return 1;
304		}
305		if (ip->loongson3_lswc2_format.rq == 31) {
306			*poff = (ip->loongson3_lswc2_format.offset << 1) + 1;
307			return 1;
308		}
309	}
310#endif
311	return 0;
312#endif
313}
314
315static inline int is_jump_ins(union mips_instruction *ip)
316{
317#ifdef CONFIG_CPU_MICROMIPS
318	/*
319	 * jr16,jrc,jalr16,jalr16
320	 * jal
321	 * jalr/jr,jalr.hb/jr.hb,jalrs,jalrs.hb
322	 * jraddiusp - NOT SUPPORTED
323	 *
324	 * microMIPS is kind of more fun...
325	 */
326	if (mm_insn_16bit(ip->word >> 16)) {
327		if ((ip->mm16_r5_format.opcode == mm_pool16c_op &&
328		    (ip->mm16_r5_format.rt & mm_jr16_op) == mm_jr16_op))
329			return 1;
330		return 0;
331	}
332
333	if (ip->j_format.opcode == mm_j32_op)
334		return 1;
335	if (ip->j_format.opcode == mm_jal32_op)
336		return 1;
337	if (ip->r_format.opcode != mm_pool32a_op ||
338			ip->r_format.func != mm_pool32axf_op)
339		return 0;
340	return ((ip->u_format.uimmediate >> 6) & mm_jalr_op) == mm_jalr_op;
341#else
342	if (ip->j_format.opcode == j_op)
343		return 1;
344	if (ip->j_format.opcode == jal_op)
345		return 1;
346	if (ip->r_format.opcode != spec_op)
347		return 0;
348	return ip->r_format.func == jalr_op || ip->r_format.func == jr_op;
349#endif
350}
351
352static inline int is_sp_move_ins(union mips_instruction *ip, int *frame_size)
353{
354#ifdef CONFIG_CPU_MICROMIPS
355	unsigned short tmp;
356
357	/*
358	 * addiusp -imm
359	 * addius5 sp,-imm
360	 * addiu32 sp,sp,-imm
361	 * jradiussp - NOT SUPPORTED
362	 *
363	 * microMIPS is not more fun...
364	 */
365	if (mm_insn_16bit(ip->word >> 16)) {
366		if (ip->mm16_r3_format.opcode == mm_pool16d_op &&
367		    ip->mm16_r3_format.simmediate & mm_addiusp_func) {
368			tmp = ip->mm_b0_format.simmediate >> 1;
369			tmp = ((tmp & 0x1ff) ^ 0x100) - 0x100;
370			if ((tmp + 2) < 4) /* 0x0,0x1,0x1fe,0x1ff are special */
371				tmp ^= 0x100;
372			*frame_size = -(signed short)(tmp << 2);
373			return 1;
374		}
375		if (ip->mm16_r5_format.opcode == mm_pool16d_op &&
376		    ip->mm16_r5_format.rt == 29) {
377			tmp = ip->mm16_r5_format.imm >> 1;
378			*frame_size = -(signed short)(tmp & 0xf);
379			return 1;
380		}
381		return 0;
382	}
383
384	if (ip->mm_i_format.opcode == mm_addiu32_op &&
385	    ip->mm_i_format.rt == 29 && ip->mm_i_format.rs == 29) {
386		*frame_size = -ip->i_format.simmediate;
387		return 1;
388	}
389#else
390	/* addiu/daddiu sp,sp,-imm */
391	if (ip->i_format.rs != 29 || ip->i_format.rt != 29)
392		return 0;
393
394	if (ip->i_format.opcode == addiu_op ||
395	    ip->i_format.opcode == daddiu_op) {
396		*frame_size = -ip->i_format.simmediate;
397		return 1;
398	}
399#endif
400	return 0;
401}
402
403static int get_frame_info(struct mips_frame_info *info)
404{
405	bool is_mmips = IS_ENABLED(CONFIG_CPU_MICROMIPS);
406	union mips_instruction insn, *ip, *ip_end;
 
407	unsigned int last_insn_size = 0;
 
408	bool saw_jump = false;
409
410	info->pc_offset = -1;
411	info->frame_size = 0;
412
413	ip = (void *)msk_isa16_mode((ulong)info->func);
414	if (!ip)
415		goto err;
416
417	ip_end = (void *)ip + (info->func_size ? info->func_size : 512);
418
419	while (ip < ip_end) {
420		ip = (void *)ip + last_insn_size;
421
422		if (is_mmips && mm_insn_16bit(ip->halfword[0])) {
423			insn.word = ip->halfword[0] << 16;
424			last_insn_size = 2;
425		} else if (is_mmips) {
426			insn.word = ip->halfword[0] << 16 | ip->halfword[1];
427			last_insn_size = 4;
428		} else {
429			insn.word = ip->word;
430			last_insn_size = 4;
431		}
432
433		if (is_jr_ra_ins(ip)) {
434			break;
435		} else if (!info->frame_size) {
436			is_sp_move_ins(&insn, &info->frame_size);
437			continue;
438		} else if (!saw_jump && is_jump_ins(ip)) {
439			/*
440			 * If we see a jump instruction, we are finished
441			 * with the frame save.
442			 *
443			 * Some functions can have a shortcut return at
444			 * the beginning of the function, so don't start
445			 * looking for jump instruction until we see the
446			 * frame setup.
447			 *
448			 * The RA save instruction can get put into the
449			 * delay slot of the jump instruction, so look
450			 * at the next instruction, too.
451			 */
452			saw_jump = true;
453			continue;
454		}
455		if (info->pc_offset == -1 &&
456		    is_ra_save_ins(&insn, &info->pc_offset))
457			break;
458		if (saw_jump)
459			break;
460	}
461	if (info->frame_size && info->pc_offset >= 0) /* nested */
462		return 0;
463	if (info->pc_offset < 0) /* leaf */
464		return 1;
465	/* prologue seems bogus... */
466err:
467	return -1;
468}
469
470static struct mips_frame_info schedule_mfi __read_mostly;
471
472#ifdef CONFIG_KALLSYMS
473static unsigned long get___schedule_addr(void)
474{
475	return kallsyms_lookup_name("__schedule");
476}
477#else
478static unsigned long get___schedule_addr(void)
479{
480	union mips_instruction *ip = (void *)schedule;
481	int max_insns = 8;
482	int i;
483
484	for (i = 0; i < max_insns; i++, ip++) {
485		if (ip->j_format.opcode == j_op)
486			return J_TARGET(ip, ip->j_format.target);
487	}
488	return 0;
489}
490#endif
491
492static int __init frame_info_init(void)
493{
494	unsigned long size = 0;
495#ifdef CONFIG_KALLSYMS
496	unsigned long ofs;
497#endif
498	unsigned long addr;
499
500	addr = get___schedule_addr();
501	if (!addr)
502		addr = (unsigned long)schedule;
503
504#ifdef CONFIG_KALLSYMS
505	kallsyms_lookup_size_offset(addr, &size, &ofs);
506#endif
507	schedule_mfi.func = (void *)addr;
508	schedule_mfi.func_size = size;
509
510	get_frame_info(&schedule_mfi);
511
512	/*
513	 * Without schedule() frame info, result given by
514	 * thread_saved_pc() and get_wchan() are not reliable.
515	 */
516	if (schedule_mfi.pc_offset < 0)
517		printk("Can't analyze schedule() prologue at %p\n", schedule);
518
519	return 0;
520}
521
522arch_initcall(frame_info_init);
523
524/*
525 * Return saved PC of a blocked thread.
526 */
527static unsigned long thread_saved_pc(struct task_struct *tsk)
528{
529	struct thread_struct *t = &tsk->thread;
530
531	/* New born processes are a special case */
532	if (t->reg31 == (unsigned long) ret_from_fork)
533		return t->reg31;
534	if (schedule_mfi.pc_offset < 0)
535		return 0;
536	return ((unsigned long *)t->reg29)[schedule_mfi.pc_offset];
537}
538
539
540#ifdef CONFIG_KALLSYMS
541/* generic stack unwinding function */
542unsigned long notrace unwind_stack_by_address(unsigned long stack_page,
543					      unsigned long *sp,
544					      unsigned long pc,
545					      unsigned long *ra)
546{
547	unsigned long low, high, irq_stack_high;
548	struct mips_frame_info info;
549	unsigned long size, ofs;
550	struct pt_regs *regs;
551	int leaf;
552
553	if (!stack_page)
554		return 0;
555
556	/*
557	 * IRQ stacks start at IRQ_STACK_START
558	 * task stacks at THREAD_SIZE - 32
559	 */
560	low = stack_page;
561	if (!preemptible() && on_irq_stack(raw_smp_processor_id(), *sp)) {
562		high = stack_page + IRQ_STACK_START;
563		irq_stack_high = high;
564	} else {
565		high = stack_page + THREAD_SIZE - 32;
566		irq_stack_high = 0;
567	}
568
569	/*
570	 * If we reached the top of the interrupt stack, start unwinding
571	 * the interrupted task stack.
572	 */
573	if (unlikely(*sp == irq_stack_high)) {
574		unsigned long task_sp = *(unsigned long *)*sp;
575
576		/*
577		 * Check that the pointer saved in the IRQ stack head points to
578		 * something within the stack of the current task
579		 */
580		if (!object_is_on_stack((void *)task_sp))
581			return 0;
582
583		/*
584		 * Follow pointer to tasks kernel stack frame where interrupted
585		 * state was saved.
586		 */
587		regs = (struct pt_regs *)task_sp;
588		pc = regs->cp0_epc;
589		if (!user_mode(regs) && __kernel_text_address(pc)) {
590			*sp = regs->regs[29];
591			*ra = regs->regs[31];
592			return pc;
593		}
594		return 0;
595	}
596	if (!kallsyms_lookup_size_offset(pc, &size, &ofs))
597		return 0;
598	/*
599	 * Return ra if an exception occurred at the first instruction
600	 */
601	if (unlikely(ofs == 0)) {
602		pc = *ra;
603		*ra = 0;
604		return pc;
605	}
606
607	info.func = (void *)(pc - ofs);
608	info.func_size = ofs;	/* analyze from start to ofs */
609	leaf = get_frame_info(&info);
610	if (leaf < 0)
611		return 0;
612
613	if (*sp < low || *sp + info.frame_size > high)
614		return 0;
615
616	if (leaf)
617		/*
618		 * For some extreme cases, get_frame_info() can
619		 * consider wrongly a nested function as a leaf
620		 * one. In that cases avoid to return always the
621		 * same value.
622		 */
623		pc = pc != *ra ? *ra : 0;
624	else
625		pc = ((unsigned long *)(*sp))[info.pc_offset];
626
627	*sp += info.frame_size;
628	*ra = 0;
629	return __kernel_text_address(pc) ? pc : 0;
630}
631EXPORT_SYMBOL(unwind_stack_by_address);
632
633/* used by show_backtrace() */
634unsigned long unwind_stack(struct task_struct *task, unsigned long *sp,
635			   unsigned long pc, unsigned long *ra)
636{
637	unsigned long stack_page = 0;
638	int cpu;
639
640	for_each_possible_cpu(cpu) {
641		if (on_irq_stack(cpu, *sp)) {
642			stack_page = (unsigned long)irq_stack[cpu];
643			break;
644		}
645	}
646
647	if (!stack_page)
648		stack_page = (unsigned long)task_stack_page(task);
649
650	return unwind_stack_by_address(stack_page, sp, pc, ra);
651}
652#endif
653
654/*
655 * get_wchan - a maintenance nightmare^W^Wpain in the ass ...
656 */
657unsigned long get_wchan(struct task_struct *task)
658{
659	unsigned long pc = 0;
660#ifdef CONFIG_KALLSYMS
661	unsigned long sp;
662	unsigned long ra = 0;
663#endif
664
665	if (!task || task == current || task_is_running(task))
666		goto out;
667	if (!task_stack_page(task))
668		goto out;
669
670	pc = thread_saved_pc(task);
671
672#ifdef CONFIG_KALLSYMS
673	sp = task->thread.reg29 + schedule_mfi.frame_size;
674
675	while (in_sched_functions(pc))
676		pc = unwind_stack(task, &sp, pc, &ra);
677#endif
678
679out:
680	return pc;
681}
682
683unsigned long mips_stack_top(void)
684{
685	unsigned long top = TASK_SIZE & PAGE_MASK;
686
687	if (IS_ENABLED(CONFIG_MIPS_FP_SUPPORT)) {
688		/* One page for branch delay slot "emulation" */
689		top -= PAGE_SIZE;
690	}
691
692	/* Space for the VDSO, data page & GIC user page */
693	top -= PAGE_ALIGN(current->thread.abi->vdso->size);
694	top -= PAGE_SIZE;
695	top -= mips_gic_present() ? PAGE_SIZE : 0;
696
697	/* Space for cache colour alignment */
698	if (cpu_has_dc_aliases)
699		top -= shm_align_mask + 1;
700
701	/* Space to randomize the VDSO base */
702	if (current->flags & PF_RANDOMIZE)
703		top -= VDSO_RANDOMIZE_SIZE;
704
705	return top;
706}
707
708/*
709 * Don't forget that the stack pointer must be aligned on a 8 bytes
710 * boundary for 32-bits ABI and 16 bytes for 64-bits ABI.
711 */
712unsigned long arch_align_stack(unsigned long sp)
713{
714	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
715		sp -= get_random_int() & ~PAGE_MASK;
716
717	return sp & ALMASK;
718}
719
 
720static struct cpumask backtrace_csd_busy;
721
722static void handle_backtrace(void *info)
723{
724	nmi_cpu_backtrace(get_irq_regs());
725	cpumask_clear_cpu(smp_processor_id(), &backtrace_csd_busy);
726}
727
728static DEFINE_PER_CPU(call_single_data_t, backtrace_csd) =
729	CSD_INIT(handle_backtrace, NULL);
730
731static void raise_backtrace(cpumask_t *mask)
732{
733	call_single_data_t *csd;
734	int cpu;
735
736	for_each_cpu(cpu, mask) {
737		/*
738		 * If we previously sent an IPI to the target CPU & it hasn't
739		 * cleared its bit in the busy cpumask then it didn't handle
740		 * our previous IPI & it's not safe for us to reuse the
741		 * call_single_data_t.
742		 */
743		if (cpumask_test_and_set_cpu(cpu, &backtrace_csd_busy)) {
744			pr_warn("Unable to send backtrace IPI to CPU%u - perhaps it hung?\n",
745				cpu);
746			continue;
747		}
748
749		csd = &per_cpu(backtrace_csd, cpu);
 
750		smp_call_function_single_async(cpu, csd);
751	}
752}
753
754void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
755{
756	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_backtrace);
757}
758
759int mips_get_process_fp_mode(struct task_struct *task)
760{
761	int value = 0;
762
763	if (!test_tsk_thread_flag(task, TIF_32BIT_FPREGS))
764		value |= PR_FP_MODE_FR;
765	if (test_tsk_thread_flag(task, TIF_HYBRID_FPREGS))
766		value |= PR_FP_MODE_FRE;
767
768	return value;
769}
770
771static long prepare_for_fp_mode_switch(void *unused)
772{
773	/*
774	 * This is icky, but we use this to simply ensure that all CPUs have
775	 * context switched, regardless of whether they were previously running
776	 * kernel or user code. This ensures that no CPU that a mode-switching
777	 * program may execute on keeps its FPU enabled (& in the old mode)
778	 * throughout the mode switch.
779	 */
780	return 0;
781}
782
783int mips_set_process_fp_mode(struct task_struct *task, unsigned int value)
784{
785	const unsigned int known_bits = PR_FP_MODE_FR | PR_FP_MODE_FRE;
786	struct task_struct *t;
787	struct cpumask process_cpus;
788	int cpu;
789
790	/* If nothing to change, return right away, successfully.  */
791	if (value == mips_get_process_fp_mode(task))
792		return 0;
793
794	/* Only accept a mode change if 64-bit FP enabled for o32.  */
795	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
796		return -EOPNOTSUPP;
797
798	/* And only for o32 tasks.  */
799	if (IS_ENABLED(CONFIG_64BIT) && !test_thread_flag(TIF_32BIT_REGS))
800		return -EOPNOTSUPP;
801
802	/* Check the value is valid */
803	if (value & ~known_bits)
804		return -EOPNOTSUPP;
805
806	/* Setting FRE without FR is not supported.  */
807	if ((value & (PR_FP_MODE_FR | PR_FP_MODE_FRE)) == PR_FP_MODE_FRE)
808		return -EOPNOTSUPP;
809
810	/* Avoid inadvertently triggering emulation */
811	if ((value & PR_FP_MODE_FR) && raw_cpu_has_fpu &&
812	    !(raw_current_cpu_data.fpu_id & MIPS_FPIR_F64))
813		return -EOPNOTSUPP;
814	if ((value & PR_FP_MODE_FRE) && raw_cpu_has_fpu && !cpu_has_fre)
815		return -EOPNOTSUPP;
816
817	/* FR = 0 not supported in MIPS R6 */
818	if (!(value & PR_FP_MODE_FR) && raw_cpu_has_fpu && cpu_has_mips_r6)
819		return -EOPNOTSUPP;
820
821	/* Indicate the new FP mode in each thread */
822	for_each_thread(task, t) {
823		/* Update desired FP register width */
824		if (value & PR_FP_MODE_FR) {
825			clear_tsk_thread_flag(t, TIF_32BIT_FPREGS);
826		} else {
827			set_tsk_thread_flag(t, TIF_32BIT_FPREGS);
828			clear_tsk_thread_flag(t, TIF_MSA_CTX_LIVE);
829		}
830
831		/* Update desired FP single layout */
832		if (value & PR_FP_MODE_FRE)
833			set_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
834		else
835			clear_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
836	}
837
838	/*
839	 * We need to ensure that all threads in the process have switched mode
840	 * before returning, in order to allow userland to not worry about
841	 * races. We can do this by forcing all CPUs that any thread in the
842	 * process may be running on to schedule something else - in this case
843	 * prepare_for_fp_mode_switch().
844	 *
845	 * We begin by generating a mask of all CPUs that any thread in the
846	 * process may be running on.
847	 */
848	cpumask_clear(&process_cpus);
849	for_each_thread(task, t)
850		cpumask_set_cpu(task_cpu(t), &process_cpus);
851
852	/*
853	 * Now we schedule prepare_for_fp_mode_switch() on each of those CPUs.
854	 *
855	 * The CPUs may have rescheduled already since we switched mode or
856	 * generated the cpumask, but that doesn't matter. If the task in this
857	 * process is scheduled out then our scheduling
858	 * prepare_for_fp_mode_switch() will simply be redundant. If it's
859	 * scheduled in then it will already have picked up the new FP mode
860	 * whilst doing so.
861	 */
862	get_online_cpus();
863	for_each_cpu_and(cpu, &process_cpus, cpu_online_mask)
864		work_on_cpu(cpu, prepare_for_fp_mode_switch, NULL);
865	put_online_cpus();
866
867	return 0;
868}
869
870#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
871void mips_dump_regs32(u32 *uregs, const struct pt_regs *regs)
872{
873	unsigned int i;
874
875	for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) {
876		/* k0/k1 are copied as zero. */
877		if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27)
878			uregs[i] = 0;
879		else
880			uregs[i] = regs->regs[i - MIPS32_EF_R0];
881	}
882
883	uregs[MIPS32_EF_LO] = regs->lo;
884	uregs[MIPS32_EF_HI] = regs->hi;
885	uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc;
886	uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
887	uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status;
888	uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause;
889}
890#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
891
892#ifdef CONFIG_64BIT
893void mips_dump_regs64(u64 *uregs, const struct pt_regs *regs)
894{
895	unsigned int i;
896
897	for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) {
898		/* k0/k1 are copied as zero. */
899		if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27)
900			uregs[i] = 0;
901		else
902			uregs[i] = regs->regs[i - MIPS64_EF_R0];
903	}
904
905	uregs[MIPS64_EF_LO] = regs->lo;
906	uregs[MIPS64_EF_HI] = regs->hi;
907	uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc;
908	uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
909	uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status;
910	uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause;
911}
912#endif /* CONFIG_64BIT */
v5.4
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others.
  7 * Copyright (C) 2005, 2006 by Ralf Baechle (ralf@linux-mips.org)
  8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  9 * Copyright (C) 2004 Thiemo Seufer
 10 * Copyright (C) 2013  Imagination Technologies Ltd.
 11 */
 
 12#include <linux/errno.h>
 
 
 
 
 
 
 
 13#include <linux/sched.h>
 14#include <linux/sched/debug.h>
 15#include <linux/sched/task.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/tick.h>
 18#include <linux/kernel.h>
 19#include <linux/mm.h>
 20#include <linux/stddef.h>
 21#include <linux/unistd.h>
 22#include <linux/export.h>
 23#include <linux/ptrace.h>
 24#include <linux/mman.h>
 25#include <linux/personality.h>
 26#include <linux/sys.h>
 27#include <linux/init.h>
 28#include <linux/completion.h>
 29#include <linux/kallsyms.h>
 30#include <linux/random.h>
 31#include <linux/prctl.h>
 32#include <linux/nmi.h>
 33#include <linux/cpu.h>
 34
 35#include <asm/abi.h>
 36#include <asm/asm.h>
 37#include <asm/bootinfo.h>
 38#include <asm/cpu.h>
 39#include <asm/dsemul.h>
 40#include <asm/dsp.h>
 
 41#include <asm/fpu.h>
 
 42#include <asm/irq.h>
 
 
 
 43#include <asm/mips-cps.h>
 44#include <asm/msa.h>
 45#include <asm/pgtable.h>
 46#include <asm/mipsregs.h>
 47#include <asm/processor.h>
 48#include <asm/reg.h>
 49#include <linux/uaccess.h>
 50#include <asm/io.h>
 51#include <asm/elf.h>
 52#include <asm/isadep.h>
 53#include <asm/inst.h>
 54#include <asm/stacktrace.h>
 55#include <asm/irq_regs.h>
 56
 57#ifdef CONFIG_HOTPLUG_CPU
 58void arch_cpu_idle_dead(void)
 59{
 60	play_dead();
 61}
 62#endif
 63
 64asmlinkage void ret_from_fork(void);
 65asmlinkage void ret_from_kernel_thread(void);
 66
 67void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
 68{
 69	unsigned long status;
 70
 71	/* New thread loses kernel privileges. */
 72	status = regs->cp0_status & ~(ST0_CU0|ST0_CU1|ST0_FR|KU_MASK);
 73	status |= KU_USER;
 74	regs->cp0_status = status;
 75	lose_fpu(0);
 76	clear_thread_flag(TIF_MSA_CTX_LIVE);
 77	clear_used_math();
 
 78	atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE);
 
 79	init_dsp();
 80	regs->cp0_epc = pc;
 81	regs->regs[29] = sp;
 82}
 83
 84void exit_thread(struct task_struct *tsk)
 85{
 86	/*
 87	 * User threads may have allocated a delay slot emulation frame.
 88	 * If so, clean up that allocation.
 89	 */
 90	if (!(current->flags & PF_KTHREAD))
 91		dsemul_thread_cleanup(tsk);
 92}
 93
 94int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 95{
 96	/*
 97	 * Save any process state which is live in hardware registers to the
 98	 * parent context prior to duplication. This prevents the new child
 99	 * state becoming stale if the parent is preempted before copy_thread()
100	 * gets a chance to save the parent's live hardware registers to the
101	 * child context.
102	 */
103	preempt_disable();
104
105	if (is_msa_enabled())
106		save_msa(current);
107	else if (is_fpu_owner())
108		_save_fp(current);
109
110	save_dsp(current);
111
112	preempt_enable();
113
114	*dst = *src;
115	return 0;
116}
117
118/*
119 * Copy architecture-specific thread state
120 */
121int copy_thread_tls(unsigned long clone_flags, unsigned long usp,
122	unsigned long kthread_arg, struct task_struct *p, unsigned long tls)
 
123{
124	struct thread_info *ti = task_thread_info(p);
125	struct pt_regs *childregs, *regs = current_pt_regs();
126	unsigned long childksp;
127
128	childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE - 32;
129
130	/* set up new TSS. */
131	childregs = (struct pt_regs *) childksp - 1;
132	/*  Put the stack after the struct pt_regs.  */
133	childksp = (unsigned long) childregs;
134	p->thread.cp0_status = read_c0_status() & ~(ST0_CU2|ST0_CU1);
135	if (unlikely(p->flags & PF_KTHREAD)) {
136		/* kernel thread */
137		unsigned long status = p->thread.cp0_status;
138		memset(childregs, 0, sizeof(struct pt_regs));
139		ti->addr_limit = KERNEL_DS;
140		p->thread.reg16 = usp; /* fn */
141		p->thread.reg17 = kthread_arg;
142		p->thread.reg29 = childksp;
143		p->thread.reg31 = (unsigned long) ret_from_kernel_thread;
144#if defined(CONFIG_CPU_R3000) || defined(CONFIG_CPU_TX39XX)
145		status = (status & ~(ST0_KUP | ST0_IEP | ST0_IEC)) |
146			 ((status & (ST0_KUC | ST0_IEC)) << 2);
147#else
148		status |= ST0_EXL;
149#endif
150		childregs->cp0_status = status;
151		return 0;
152	}
153
154	/* user thread */
155	*childregs = *regs;
156	childregs->regs[7] = 0; /* Clear error flag */
157	childregs->regs[2] = 0; /* Child gets zero as return value */
158	if (usp)
159		childregs->regs[29] = usp;
160	ti->addr_limit = USER_DS;
161
162	p->thread.reg29 = (unsigned long) childregs;
163	p->thread.reg31 = (unsigned long) ret_from_fork;
164
165	/*
166	 * New tasks lose permission to use the fpu. This accelerates context
167	 * switching for most programs since they don't use the fpu.
168	 */
169	childregs->cp0_status &= ~(ST0_CU2|ST0_CU1);
170
171	clear_tsk_thread_flag(p, TIF_USEDFPU);
172	clear_tsk_thread_flag(p, TIF_USEDMSA);
173	clear_tsk_thread_flag(p, TIF_MSA_CTX_LIVE);
174
175#ifdef CONFIG_MIPS_MT_FPAFF
176	clear_tsk_thread_flag(p, TIF_FPUBOUND);
177#endif /* CONFIG_MIPS_MT_FPAFF */
178
 
179	atomic_set(&p->thread.bd_emu_frame, BD_EMUFRAME_NONE);
 
180
181	if (clone_flags & CLONE_SETTLS)
182		ti->tp_value = tls;
183
184	return 0;
185}
186
187#ifdef CONFIG_STACKPROTECTOR
188#include <linux/stackprotector.h>
189unsigned long __stack_chk_guard __read_mostly;
190EXPORT_SYMBOL(__stack_chk_guard);
191#endif
192
193struct mips_frame_info {
194	void		*func;
195	unsigned long	func_size;
196	int		frame_size;
197	int		pc_offset;
198};
199
200#define J_TARGET(pc,target)	\
201		(((unsigned long)(pc) & 0xf0000000) | ((target) << 2))
202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203static inline int is_ra_save_ins(union mips_instruction *ip, int *poff)
204{
205#ifdef CONFIG_CPU_MICROMIPS
206	/*
207	 * swsp ra,offset
208	 * swm16 reglist,offset(sp)
209	 * swm32 reglist,offset(sp)
210	 * sw32 ra,offset(sp)
211	 * jradiussp - NOT SUPPORTED
212	 *
213	 * microMIPS is way more fun...
214	 */
215	if (mm_insn_16bit(ip->word >> 16)) {
216		switch (ip->mm16_r5_format.opcode) {
217		case mm_swsp16_op:
218			if (ip->mm16_r5_format.rt != 31)
219				return 0;
220
221			*poff = ip->mm16_r5_format.imm;
222			*poff = (*poff << 2) / sizeof(ulong);
223			return 1;
224
225		case mm_pool16c_op:
226			switch (ip->mm16_m_format.func) {
227			case mm_swm16_op:
228				*poff = ip->mm16_m_format.imm;
229				*poff += 1 + ip->mm16_m_format.rlist;
230				*poff = (*poff << 2) / sizeof(ulong);
231				return 1;
232
233			default:
234				return 0;
235			}
236
237		default:
238			return 0;
239		}
240	}
241
242	switch (ip->i_format.opcode) {
243	case mm_sw32_op:
244		if (ip->i_format.rs != 29)
245			return 0;
246		if (ip->i_format.rt != 31)
247			return 0;
248
249		*poff = ip->i_format.simmediate / sizeof(ulong);
250		return 1;
251
252	case mm_pool32b_op:
253		switch (ip->mm_m_format.func) {
254		case mm_swm32_func:
255			if (ip->mm_m_format.rd < 0x10)
256				return 0;
257			if (ip->mm_m_format.base != 29)
258				return 0;
259
260			*poff = ip->mm_m_format.simmediate;
261			*poff += (ip->mm_m_format.rd & 0xf) * sizeof(u32);
262			*poff /= sizeof(ulong);
263			return 1;
264		default:
265			return 0;
266		}
267
268	default:
269		return 0;
270	}
271#else
272	/* sw / sd $ra, offset($sp) */
273	if ((ip->i_format.opcode == sw_op || ip->i_format.opcode == sd_op) &&
274		ip->i_format.rs == 29 && ip->i_format.rt == 31) {
275		*poff = ip->i_format.simmediate / sizeof(ulong);
276		return 1;
277	}
278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
279	return 0;
280#endif
281}
282
283static inline int is_jump_ins(union mips_instruction *ip)
284{
285#ifdef CONFIG_CPU_MICROMIPS
286	/*
287	 * jr16,jrc,jalr16,jalr16
288	 * jal
289	 * jalr/jr,jalr.hb/jr.hb,jalrs,jalrs.hb
290	 * jraddiusp - NOT SUPPORTED
291	 *
292	 * microMIPS is kind of more fun...
293	 */
294	if (mm_insn_16bit(ip->word >> 16)) {
295		if ((ip->mm16_r5_format.opcode == mm_pool16c_op &&
296		    (ip->mm16_r5_format.rt & mm_jr16_op) == mm_jr16_op))
297			return 1;
298		return 0;
299	}
300
301	if (ip->j_format.opcode == mm_j32_op)
302		return 1;
303	if (ip->j_format.opcode == mm_jal32_op)
304		return 1;
305	if (ip->r_format.opcode != mm_pool32a_op ||
306			ip->r_format.func != mm_pool32axf_op)
307		return 0;
308	return ((ip->u_format.uimmediate >> 6) & mm_jalr_op) == mm_jalr_op;
309#else
310	if (ip->j_format.opcode == j_op)
311		return 1;
312	if (ip->j_format.opcode == jal_op)
313		return 1;
314	if (ip->r_format.opcode != spec_op)
315		return 0;
316	return ip->r_format.func == jalr_op || ip->r_format.func == jr_op;
317#endif
318}
319
320static inline int is_sp_move_ins(union mips_instruction *ip, int *frame_size)
321{
322#ifdef CONFIG_CPU_MICROMIPS
323	unsigned short tmp;
324
325	/*
326	 * addiusp -imm
327	 * addius5 sp,-imm
328	 * addiu32 sp,sp,-imm
329	 * jradiussp - NOT SUPPORTED
330	 *
331	 * microMIPS is not more fun...
332	 */
333	if (mm_insn_16bit(ip->word >> 16)) {
334		if (ip->mm16_r3_format.opcode == mm_pool16d_op &&
335		    ip->mm16_r3_format.simmediate & mm_addiusp_func) {
336			tmp = ip->mm_b0_format.simmediate >> 1;
337			tmp = ((tmp & 0x1ff) ^ 0x100) - 0x100;
338			if ((tmp + 2) < 4) /* 0x0,0x1,0x1fe,0x1ff are special */
339				tmp ^= 0x100;
340			*frame_size = -(signed short)(tmp << 2);
341			return 1;
342		}
343		if (ip->mm16_r5_format.opcode == mm_pool16d_op &&
344		    ip->mm16_r5_format.rt == 29) {
345			tmp = ip->mm16_r5_format.imm >> 1;
346			*frame_size = -(signed short)(tmp & 0xf);
347			return 1;
348		}
349		return 0;
350	}
351
352	if (ip->mm_i_format.opcode == mm_addiu32_op &&
353	    ip->mm_i_format.rt == 29 && ip->mm_i_format.rs == 29) {
354		*frame_size = -ip->i_format.simmediate;
355		return 1;
356	}
357#else
358	/* addiu/daddiu sp,sp,-imm */
359	if (ip->i_format.rs != 29 || ip->i_format.rt != 29)
360		return 0;
361
362	if (ip->i_format.opcode == addiu_op ||
363	    ip->i_format.opcode == daddiu_op) {
364		*frame_size = -ip->i_format.simmediate;
365		return 1;
366	}
367#endif
368	return 0;
369}
370
371static int get_frame_info(struct mips_frame_info *info)
372{
373	bool is_mmips = IS_ENABLED(CONFIG_CPU_MICROMIPS);
374	union mips_instruction insn, *ip;
375	const unsigned int max_insns = 128;
376	unsigned int last_insn_size = 0;
377	unsigned int i;
378	bool saw_jump = false;
379
380	info->pc_offset = -1;
381	info->frame_size = 0;
382
383	ip = (void *)msk_isa16_mode((ulong)info->func);
384	if (!ip)
385		goto err;
386
387	for (i = 0; i < max_insns; i++) {
 
 
388		ip = (void *)ip + last_insn_size;
389
390		if (is_mmips && mm_insn_16bit(ip->halfword[0])) {
391			insn.word = ip->halfword[0] << 16;
392			last_insn_size = 2;
393		} else if (is_mmips) {
394			insn.word = ip->halfword[0] << 16 | ip->halfword[1];
395			last_insn_size = 4;
396		} else {
397			insn.word = ip->word;
398			last_insn_size = 4;
399		}
400
401		if (!info->frame_size) {
 
 
402			is_sp_move_ins(&insn, &info->frame_size);
403			continue;
404		} else if (!saw_jump && is_jump_ins(ip)) {
405			/*
406			 * If we see a jump instruction, we are finished
407			 * with the frame save.
408			 *
409			 * Some functions can have a shortcut return at
410			 * the beginning of the function, so don't start
411			 * looking for jump instruction until we see the
412			 * frame setup.
413			 *
414			 * The RA save instruction can get put into the
415			 * delay slot of the jump instruction, so look
416			 * at the next instruction, too.
417			 */
418			saw_jump = true;
419			continue;
420		}
421		if (info->pc_offset == -1 &&
422		    is_ra_save_ins(&insn, &info->pc_offset))
423			break;
424		if (saw_jump)
425			break;
426	}
427	if (info->frame_size && info->pc_offset >= 0) /* nested */
428		return 0;
429	if (info->pc_offset < 0) /* leaf */
430		return 1;
431	/* prologue seems bogus... */
432err:
433	return -1;
434}
435
436static struct mips_frame_info schedule_mfi __read_mostly;
437
438#ifdef CONFIG_KALLSYMS
439static unsigned long get___schedule_addr(void)
440{
441	return kallsyms_lookup_name("__schedule");
442}
443#else
444static unsigned long get___schedule_addr(void)
445{
446	union mips_instruction *ip = (void *)schedule;
447	int max_insns = 8;
448	int i;
449
450	for (i = 0; i < max_insns; i++, ip++) {
451		if (ip->j_format.opcode == j_op)
452			return J_TARGET(ip, ip->j_format.target);
453	}
454	return 0;
455}
456#endif
457
458static int __init frame_info_init(void)
459{
460	unsigned long size = 0;
461#ifdef CONFIG_KALLSYMS
462	unsigned long ofs;
463#endif
464	unsigned long addr;
465
466	addr = get___schedule_addr();
467	if (!addr)
468		addr = (unsigned long)schedule;
469
470#ifdef CONFIG_KALLSYMS
471	kallsyms_lookup_size_offset(addr, &size, &ofs);
472#endif
473	schedule_mfi.func = (void *)addr;
474	schedule_mfi.func_size = size;
475
476	get_frame_info(&schedule_mfi);
477
478	/*
479	 * Without schedule() frame info, result given by
480	 * thread_saved_pc() and get_wchan() are not reliable.
481	 */
482	if (schedule_mfi.pc_offset < 0)
483		printk("Can't analyze schedule() prologue at %p\n", schedule);
484
485	return 0;
486}
487
488arch_initcall(frame_info_init);
489
490/*
491 * Return saved PC of a blocked thread.
492 */
493static unsigned long thread_saved_pc(struct task_struct *tsk)
494{
495	struct thread_struct *t = &tsk->thread;
496
497	/* New born processes are a special case */
498	if (t->reg31 == (unsigned long) ret_from_fork)
499		return t->reg31;
500	if (schedule_mfi.pc_offset < 0)
501		return 0;
502	return ((unsigned long *)t->reg29)[schedule_mfi.pc_offset];
503}
504
505
506#ifdef CONFIG_KALLSYMS
507/* generic stack unwinding function */
508unsigned long notrace unwind_stack_by_address(unsigned long stack_page,
509					      unsigned long *sp,
510					      unsigned long pc,
511					      unsigned long *ra)
512{
513	unsigned long low, high, irq_stack_high;
514	struct mips_frame_info info;
515	unsigned long size, ofs;
516	struct pt_regs *regs;
517	int leaf;
518
519	if (!stack_page)
520		return 0;
521
522	/*
523	 * IRQ stacks start at IRQ_STACK_START
524	 * task stacks at THREAD_SIZE - 32
525	 */
526	low = stack_page;
527	if (!preemptible() && on_irq_stack(raw_smp_processor_id(), *sp)) {
528		high = stack_page + IRQ_STACK_START;
529		irq_stack_high = high;
530	} else {
531		high = stack_page + THREAD_SIZE - 32;
532		irq_stack_high = 0;
533	}
534
535	/*
536	 * If we reached the top of the interrupt stack, start unwinding
537	 * the interrupted task stack.
538	 */
539	if (unlikely(*sp == irq_stack_high)) {
540		unsigned long task_sp = *(unsigned long *)*sp;
541
542		/*
543		 * Check that the pointer saved in the IRQ stack head points to
544		 * something within the stack of the current task
545		 */
546		if (!object_is_on_stack((void *)task_sp))
547			return 0;
548
549		/*
550		 * Follow pointer to tasks kernel stack frame where interrupted
551		 * state was saved.
552		 */
553		regs = (struct pt_regs *)task_sp;
554		pc = regs->cp0_epc;
555		if (!user_mode(regs) && __kernel_text_address(pc)) {
556			*sp = regs->regs[29];
557			*ra = regs->regs[31];
558			return pc;
559		}
560		return 0;
561	}
562	if (!kallsyms_lookup_size_offset(pc, &size, &ofs))
563		return 0;
564	/*
565	 * Return ra if an exception occurred at the first instruction
566	 */
567	if (unlikely(ofs == 0)) {
568		pc = *ra;
569		*ra = 0;
570		return pc;
571	}
572
573	info.func = (void *)(pc - ofs);
574	info.func_size = ofs;	/* analyze from start to ofs */
575	leaf = get_frame_info(&info);
576	if (leaf < 0)
577		return 0;
578
579	if (*sp < low || *sp + info.frame_size > high)
580		return 0;
581
582	if (leaf)
583		/*
584		 * For some extreme cases, get_frame_info() can
585		 * consider wrongly a nested function as a leaf
586		 * one. In that cases avoid to return always the
587		 * same value.
588		 */
589		pc = pc != *ra ? *ra : 0;
590	else
591		pc = ((unsigned long *)(*sp))[info.pc_offset];
592
593	*sp += info.frame_size;
594	*ra = 0;
595	return __kernel_text_address(pc) ? pc : 0;
596}
597EXPORT_SYMBOL(unwind_stack_by_address);
598
599/* used by show_backtrace() */
600unsigned long unwind_stack(struct task_struct *task, unsigned long *sp,
601			   unsigned long pc, unsigned long *ra)
602{
603	unsigned long stack_page = 0;
604	int cpu;
605
606	for_each_possible_cpu(cpu) {
607		if (on_irq_stack(cpu, *sp)) {
608			stack_page = (unsigned long)irq_stack[cpu];
609			break;
610		}
611	}
612
613	if (!stack_page)
614		stack_page = (unsigned long)task_stack_page(task);
615
616	return unwind_stack_by_address(stack_page, sp, pc, ra);
617}
618#endif
619
620/*
621 * get_wchan - a maintenance nightmare^W^Wpain in the ass ...
622 */
623unsigned long get_wchan(struct task_struct *task)
624{
625	unsigned long pc = 0;
626#ifdef CONFIG_KALLSYMS
627	unsigned long sp;
628	unsigned long ra = 0;
629#endif
630
631	if (!task || task == current || task->state == TASK_RUNNING)
632		goto out;
633	if (!task_stack_page(task))
634		goto out;
635
636	pc = thread_saved_pc(task);
637
638#ifdef CONFIG_KALLSYMS
639	sp = task->thread.reg29 + schedule_mfi.frame_size;
640
641	while (in_sched_functions(pc))
642		pc = unwind_stack(task, &sp, pc, &ra);
643#endif
644
645out:
646	return pc;
647}
648
649unsigned long mips_stack_top(void)
650{
651	unsigned long top = TASK_SIZE & PAGE_MASK;
652
653	/* One page for branch delay slot "emulation" */
654	top -= PAGE_SIZE;
 
 
655
656	/* Space for the VDSO, data page & GIC user page */
657	top -= PAGE_ALIGN(current->thread.abi->vdso->size);
658	top -= PAGE_SIZE;
659	top -= mips_gic_present() ? PAGE_SIZE : 0;
660
661	/* Space for cache colour alignment */
662	if (cpu_has_dc_aliases)
663		top -= shm_align_mask + 1;
664
665	/* Space to randomize the VDSO base */
666	if (current->flags & PF_RANDOMIZE)
667		top -= VDSO_RANDOMIZE_SIZE;
668
669	return top;
670}
671
672/*
673 * Don't forget that the stack pointer must be aligned on a 8 bytes
674 * boundary for 32-bits ABI and 16 bytes for 64-bits ABI.
675 */
676unsigned long arch_align_stack(unsigned long sp)
677{
678	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
679		sp -= get_random_int() & ~PAGE_MASK;
680
681	return sp & ALMASK;
682}
683
684static DEFINE_PER_CPU(call_single_data_t, backtrace_csd);
685static struct cpumask backtrace_csd_busy;
686
687static void handle_backtrace(void *info)
688{
689	nmi_cpu_backtrace(get_irq_regs());
690	cpumask_clear_cpu(smp_processor_id(), &backtrace_csd_busy);
691}
692
 
 
 
693static void raise_backtrace(cpumask_t *mask)
694{
695	call_single_data_t *csd;
696	int cpu;
697
698	for_each_cpu(cpu, mask) {
699		/*
700		 * If we previously sent an IPI to the target CPU & it hasn't
701		 * cleared its bit in the busy cpumask then it didn't handle
702		 * our previous IPI & it's not safe for us to reuse the
703		 * call_single_data_t.
704		 */
705		if (cpumask_test_and_set_cpu(cpu, &backtrace_csd_busy)) {
706			pr_warn("Unable to send backtrace IPI to CPU%u - perhaps it hung?\n",
707				cpu);
708			continue;
709		}
710
711		csd = &per_cpu(backtrace_csd, cpu);
712		csd->func = handle_backtrace;
713		smp_call_function_single_async(cpu, csd);
714	}
715}
716
717void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
718{
719	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_backtrace);
720}
721
722int mips_get_process_fp_mode(struct task_struct *task)
723{
724	int value = 0;
725
726	if (!test_tsk_thread_flag(task, TIF_32BIT_FPREGS))
727		value |= PR_FP_MODE_FR;
728	if (test_tsk_thread_flag(task, TIF_HYBRID_FPREGS))
729		value |= PR_FP_MODE_FRE;
730
731	return value;
732}
733
734static long prepare_for_fp_mode_switch(void *unused)
735{
736	/*
737	 * This is icky, but we use this to simply ensure that all CPUs have
738	 * context switched, regardless of whether they were previously running
739	 * kernel or user code. This ensures that no CPU that a mode-switching
740	 * program may execute on keeps its FPU enabled (& in the old mode)
741	 * throughout the mode switch.
742	 */
743	return 0;
744}
745
746int mips_set_process_fp_mode(struct task_struct *task, unsigned int value)
747{
748	const unsigned int known_bits = PR_FP_MODE_FR | PR_FP_MODE_FRE;
749	struct task_struct *t;
750	struct cpumask process_cpus;
751	int cpu;
752
753	/* If nothing to change, return right away, successfully.  */
754	if (value == mips_get_process_fp_mode(task))
755		return 0;
756
757	/* Only accept a mode change if 64-bit FP enabled for o32.  */
758	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
759		return -EOPNOTSUPP;
760
761	/* And only for o32 tasks.  */
762	if (IS_ENABLED(CONFIG_64BIT) && !test_thread_flag(TIF_32BIT_REGS))
763		return -EOPNOTSUPP;
764
765	/* Check the value is valid */
766	if (value & ~known_bits)
767		return -EOPNOTSUPP;
768
769	/* Setting FRE without FR is not supported.  */
770	if ((value & (PR_FP_MODE_FR | PR_FP_MODE_FRE)) == PR_FP_MODE_FRE)
771		return -EOPNOTSUPP;
772
773	/* Avoid inadvertently triggering emulation */
774	if ((value & PR_FP_MODE_FR) && raw_cpu_has_fpu &&
775	    !(raw_current_cpu_data.fpu_id & MIPS_FPIR_F64))
776		return -EOPNOTSUPP;
777	if ((value & PR_FP_MODE_FRE) && raw_cpu_has_fpu && !cpu_has_fre)
778		return -EOPNOTSUPP;
779
780	/* FR = 0 not supported in MIPS R6 */
781	if (!(value & PR_FP_MODE_FR) && raw_cpu_has_fpu && cpu_has_mips_r6)
782		return -EOPNOTSUPP;
783
784	/* Indicate the new FP mode in each thread */
785	for_each_thread(task, t) {
786		/* Update desired FP register width */
787		if (value & PR_FP_MODE_FR) {
788			clear_tsk_thread_flag(t, TIF_32BIT_FPREGS);
789		} else {
790			set_tsk_thread_flag(t, TIF_32BIT_FPREGS);
791			clear_tsk_thread_flag(t, TIF_MSA_CTX_LIVE);
792		}
793
794		/* Update desired FP single layout */
795		if (value & PR_FP_MODE_FRE)
796			set_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
797		else
798			clear_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
799	}
800
801	/*
802	 * We need to ensure that all threads in the process have switched mode
803	 * before returning, in order to allow userland to not worry about
804	 * races. We can do this by forcing all CPUs that any thread in the
805	 * process may be running on to schedule something else - in this case
806	 * prepare_for_fp_mode_switch().
807	 *
808	 * We begin by generating a mask of all CPUs that any thread in the
809	 * process may be running on.
810	 */
811	cpumask_clear(&process_cpus);
812	for_each_thread(task, t)
813		cpumask_set_cpu(task_cpu(t), &process_cpus);
814
815	/*
816	 * Now we schedule prepare_for_fp_mode_switch() on each of those CPUs.
817	 *
818	 * The CPUs may have rescheduled already since we switched mode or
819	 * generated the cpumask, but that doesn't matter. If the task in this
820	 * process is scheduled out then our scheduling
821	 * prepare_for_fp_mode_switch() will simply be redundant. If it's
822	 * scheduled in then it will already have picked up the new FP mode
823	 * whilst doing so.
824	 */
825	get_online_cpus();
826	for_each_cpu_and(cpu, &process_cpus, cpu_online_mask)
827		work_on_cpu(cpu, prepare_for_fp_mode_switch, NULL);
828	put_online_cpus();
829
830	return 0;
831}
832
833#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
834void mips_dump_regs32(u32 *uregs, const struct pt_regs *regs)
835{
836	unsigned int i;
837
838	for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) {
839		/* k0/k1 are copied as zero. */
840		if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27)
841			uregs[i] = 0;
842		else
843			uregs[i] = regs->regs[i - MIPS32_EF_R0];
844	}
845
846	uregs[MIPS32_EF_LO] = regs->lo;
847	uregs[MIPS32_EF_HI] = regs->hi;
848	uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc;
849	uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
850	uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status;
851	uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause;
852}
853#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
854
855#ifdef CONFIG_64BIT
856void mips_dump_regs64(u64 *uregs, const struct pt_regs *regs)
857{
858	unsigned int i;
859
860	for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) {
861		/* k0/k1 are copied as zero. */
862		if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27)
863			uregs[i] = 0;
864		else
865			uregs[i] = regs->regs[i - MIPS64_EF_R0];
866	}
867
868	uregs[MIPS64_EF_LO] = regs->lo;
869	uregs[MIPS64_EF_HI] = regs->hi;
870	uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc;
871	uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
872	uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status;
873	uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause;
874}
875#endif /* CONFIG_64BIT */