Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include <linux/ceph/ceph_debug.h>
  4
  5#include <linux/err.h>
  6#include <linux/scatterlist.h>
  7#include <linux/sched.h>
  8#include <linux/slab.h>
  9#include <crypto/aes.h>
 10#include <crypto/skcipher.h>
 11#include <linux/key-type.h>
 12#include <linux/sched/mm.h>
 13
 14#include <keys/ceph-type.h>
 15#include <keys/user-type.h>
 16#include <linux/ceph/decode.h>
 17#include "crypto.h"
 18
 19/*
 20 * Set ->key and ->tfm.  The rest of the key should be filled in before
 21 * this function is called.
 22 */
 23static int set_secret(struct ceph_crypto_key *key, void *buf)
 24{
 25	unsigned int noio_flag;
 26	int ret;
 27
 28	key->key = NULL;
 29	key->tfm = NULL;
 30
 31	switch (key->type) {
 32	case CEPH_CRYPTO_NONE:
 33		return 0; /* nothing to do */
 34	case CEPH_CRYPTO_AES:
 35		break;
 36	default:
 37		return -ENOTSUPP;
 38	}
 39
 40	if (!key->len)
 41		return -EINVAL;
 42
 43	key->key = kmemdup(buf, key->len, GFP_NOIO);
 44	if (!key->key) {
 45		ret = -ENOMEM;
 46		goto fail;
 47	}
 48
 49	/* crypto_alloc_sync_skcipher() allocates with GFP_KERNEL */
 50	noio_flag = memalloc_noio_save();
 51	key->tfm = crypto_alloc_sync_skcipher("cbc(aes)", 0, 0);
 52	memalloc_noio_restore(noio_flag);
 53	if (IS_ERR(key->tfm)) {
 54		ret = PTR_ERR(key->tfm);
 55		key->tfm = NULL;
 56		goto fail;
 57	}
 58
 59	ret = crypto_sync_skcipher_setkey(key->tfm, key->key, key->len);
 60	if (ret)
 61		goto fail;
 62
 63	return 0;
 64
 65fail:
 66	ceph_crypto_key_destroy(key);
 67	return ret;
 68}
 69
 70int ceph_crypto_key_clone(struct ceph_crypto_key *dst,
 71			  const struct ceph_crypto_key *src)
 72{
 73	memcpy(dst, src, sizeof(struct ceph_crypto_key));
 74	return set_secret(dst, src->key);
 
 
 
 75}
 76
 77int ceph_crypto_key_encode(struct ceph_crypto_key *key, void **p, void *end)
 78{
 79	if (*p + sizeof(u16) + sizeof(key->created) +
 80	    sizeof(u16) + key->len > end)
 81		return -ERANGE;
 82	ceph_encode_16(p, key->type);
 83	ceph_encode_copy(p, &key->created, sizeof(key->created));
 84	ceph_encode_16(p, key->len);
 85	ceph_encode_copy(p, key->key, key->len);
 86	return 0;
 87}
 88
 89int ceph_crypto_key_decode(struct ceph_crypto_key *key, void **p, void *end)
 90{
 91	int ret;
 92
 93	ceph_decode_need(p, end, 2*sizeof(u16) + sizeof(key->created), bad);
 94	key->type = ceph_decode_16(p);
 95	ceph_decode_copy(p, &key->created, sizeof(key->created));
 96	key->len = ceph_decode_16(p);
 97	ceph_decode_need(p, end, key->len, bad);
 98	ret = set_secret(key, *p);
 99	memzero_explicit(*p, key->len);
100	*p += key->len;
101	return ret;
 
102
103bad:
104	dout("failed to decode crypto key\n");
105	return -EINVAL;
106}
107
108int ceph_crypto_key_unarmor(struct ceph_crypto_key *key, const char *inkey)
109{
110	int inlen = strlen(inkey);
111	int blen = inlen * 3 / 4;
112	void *buf, *p;
113	int ret;
114
115	dout("crypto_key_unarmor %s\n", inkey);
116	buf = kmalloc(blen, GFP_NOFS);
117	if (!buf)
118		return -ENOMEM;
119	blen = ceph_unarmor(buf, inkey, inkey+inlen);
120	if (blen < 0) {
121		kfree(buf);
122		return blen;
123	}
124
125	p = buf;
126	ret = ceph_crypto_key_decode(key, &p, p + blen);
127	kfree(buf);
128	if (ret)
129		return ret;
130	dout("crypto_key_unarmor key %p type %d len %d\n", key,
131	     key->type, key->len);
132	return 0;
133}
134
135void ceph_crypto_key_destroy(struct ceph_crypto_key *key)
136{
137	if (key) {
138		kfree_sensitive(key->key);
139		key->key = NULL;
140		if (key->tfm) {
141			crypto_free_sync_skcipher(key->tfm);
142			key->tfm = NULL;
143		}
144	}
145}
146
147static const u8 *aes_iv = (u8 *)CEPH_AES_IV;
148
149/*
150 * Should be used for buffers allocated with ceph_kvmalloc().
151 * Currently these are encrypt out-buffer (ceph_buffer) and decrypt
152 * in-buffer (msg front).
153 *
154 * Dispose of @sgt with teardown_sgtable().
155 *
156 * @prealloc_sg is to avoid memory allocation inside sg_alloc_table()
157 * in cases where a single sg is sufficient.  No attempt to reduce the
158 * number of sgs by squeezing physically contiguous pages together is
159 * made though, for simplicity.
160 */
161static int setup_sgtable(struct sg_table *sgt, struct scatterlist *prealloc_sg,
162			 const void *buf, unsigned int buf_len)
163{
164	struct scatterlist *sg;
165	const bool is_vmalloc = is_vmalloc_addr(buf);
166	unsigned int off = offset_in_page(buf);
167	unsigned int chunk_cnt = 1;
168	unsigned int chunk_len = PAGE_ALIGN(off + buf_len);
169	int i;
170	int ret;
171
172	if (buf_len == 0) {
173		memset(sgt, 0, sizeof(*sgt));
174		return -EINVAL;
175	}
176
177	if (is_vmalloc) {
178		chunk_cnt = chunk_len >> PAGE_SHIFT;
179		chunk_len = PAGE_SIZE;
180	}
181
182	if (chunk_cnt > 1) {
183		ret = sg_alloc_table(sgt, chunk_cnt, GFP_NOFS);
184		if (ret)
185			return ret;
186	} else {
187		WARN_ON(chunk_cnt != 1);
188		sg_init_table(prealloc_sg, 1);
189		sgt->sgl = prealloc_sg;
190		sgt->nents = sgt->orig_nents = 1;
191	}
192
193	for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) {
194		struct page *page;
195		unsigned int len = min(chunk_len - off, buf_len);
196
197		if (is_vmalloc)
198			page = vmalloc_to_page(buf);
199		else
200			page = virt_to_page(buf);
201
202		sg_set_page(sg, page, len, off);
203
204		off = 0;
205		buf += len;
206		buf_len -= len;
207	}
208	WARN_ON(buf_len != 0);
209
210	return 0;
211}
212
213static void teardown_sgtable(struct sg_table *sgt)
214{
215	if (sgt->orig_nents > 1)
216		sg_free_table(sgt);
217}
218
219static int ceph_aes_crypt(const struct ceph_crypto_key *key, bool encrypt,
220			  void *buf, int buf_len, int in_len, int *pout_len)
221{
222	SYNC_SKCIPHER_REQUEST_ON_STACK(req, key->tfm);
223	struct sg_table sgt;
224	struct scatterlist prealloc_sg;
225	char iv[AES_BLOCK_SIZE] __aligned(8);
226	int pad_byte = AES_BLOCK_SIZE - (in_len & (AES_BLOCK_SIZE - 1));
227	int crypt_len = encrypt ? in_len + pad_byte : in_len;
228	int ret;
 
 
 
229
230	WARN_ON(crypt_len > buf_len);
231	if (encrypt)
232		memset(buf + in_len, pad_byte, pad_byte);
233	ret = setup_sgtable(&sgt, &prealloc_sg, buf, crypt_len);
 
 
 
 
 
 
 
234	if (ret)
235		return ret;
236
 
237	memcpy(iv, aes_iv, AES_BLOCK_SIZE);
238	skcipher_request_set_sync_tfm(req, key->tfm);
 
239	skcipher_request_set_callback(req, 0, NULL, NULL);
240	skcipher_request_set_crypt(req, sgt.sgl, sgt.sgl, crypt_len, iv);
 
241
242	/*
243	print_hex_dump(KERN_ERR, "key: ", DUMP_PREFIX_NONE, 16, 1,
244		       key->key, key->len, 1);
245	print_hex_dump(KERN_ERR, " in: ", DUMP_PREFIX_NONE, 16, 1,
246		       buf, crypt_len, 1);
 
 
247	*/
248	if (encrypt)
249		ret = crypto_skcipher_encrypt(req);
250	else
251		ret = crypto_skcipher_decrypt(req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252	skcipher_request_zero(req);
253	if (ret) {
254		pr_err("%s %scrypt failed: %d\n", __func__,
255		       encrypt ? "en" : "de", ret);
256		goto out_sgt;
257	}
258	/*
259	print_hex_dump(KERN_ERR, "out: ", DUMP_PREFIX_NONE, 16, 1,
260		       buf, crypt_len, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261	*/
 
 
 
 
 
 
262
263	if (encrypt) {
264		*pout_len = crypt_len;
 
 
 
 
265	} else {
266		pad_byte = *(char *)(buf + in_len - 1);
267		if (pad_byte > 0 && pad_byte <= AES_BLOCK_SIZE &&
268		    in_len >= pad_byte) {
269			*pout_len = in_len - pad_byte;
270		} else {
271			pr_err("%s got bad padding %d on in_len %d\n",
272			       __func__, pad_byte, in_len);
273			ret = -EPERM;
274			goto out_sgt;
275		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276	}
 
 
 
 
 
 
277
278out_sgt:
279	teardown_sgtable(&sgt);
 
 
280	return ret;
281}
282
283int ceph_crypt(const struct ceph_crypto_key *key, bool encrypt,
284	       void *buf, int buf_len, int in_len, int *pout_len)
 
285{
286	switch (key->type) {
287	case CEPH_CRYPTO_NONE:
288		*pout_len = in_len;
 
 
 
289		return 0;
 
290	case CEPH_CRYPTO_AES:
291		return ceph_aes_crypt(key, encrypt, buf, buf_len, in_len,
292				      pout_len);
 
293	default:
294		return -ENOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295	}
296}
297
298static int ceph_key_preparse(struct key_preparsed_payload *prep)
299{
300	struct ceph_crypto_key *ckey;
301	size_t datalen = prep->datalen;
302	int ret;
303	void *p;
304
305	ret = -EINVAL;
306	if (datalen <= 0 || datalen > 32767 || !prep->data)
307		goto err;
308
309	ret = -ENOMEM;
310	ckey = kmalloc(sizeof(*ckey), GFP_KERNEL);
311	if (!ckey)
312		goto err;
313
314	/* TODO ceph_crypto_key_decode should really take const input */
315	p = (void *)prep->data;
316	ret = ceph_crypto_key_decode(ckey, &p, (char*)prep->data+datalen);
317	if (ret < 0)
318		goto err_ckey;
319
320	prep->payload.data[0] = ckey;
321	prep->quotalen = datalen;
322	return 0;
323
324err_ckey:
325	kfree(ckey);
326err:
327	return ret;
328}
329
330static void ceph_key_free_preparse(struct key_preparsed_payload *prep)
331{
332	struct ceph_crypto_key *ckey = prep->payload.data[0];
333	ceph_crypto_key_destroy(ckey);
334	kfree(ckey);
335}
336
337static void ceph_key_destroy(struct key *key)
338{
339	struct ceph_crypto_key *ckey = key->payload.data[0];
340
341	ceph_crypto_key_destroy(ckey);
342	kfree(ckey);
343}
344
345struct key_type key_type_ceph = {
346	.name		= "ceph",
347	.preparse	= ceph_key_preparse,
348	.free_preparse	= ceph_key_free_preparse,
349	.instantiate	= generic_key_instantiate,
350	.destroy	= ceph_key_destroy,
351};
352
353int __init ceph_crypto_init(void)
354{
355	return register_key_type(&key_type_ceph);
356}
357
358void ceph_crypto_shutdown(void)
359{
360	unregister_key_type(&key_type_ceph);
361}
v4.6
 
  1
  2#include <linux/ceph/ceph_debug.h>
  3
  4#include <linux/err.h>
  5#include <linux/scatterlist.h>
 
  6#include <linux/slab.h>
  7#include <crypto/aes.h>
  8#include <crypto/skcipher.h>
  9#include <linux/key-type.h>
 
 10
 11#include <keys/ceph-type.h>
 12#include <keys/user-type.h>
 13#include <linux/ceph/decode.h>
 14#include "crypto.h"
 15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 16int ceph_crypto_key_clone(struct ceph_crypto_key *dst,
 17			  const struct ceph_crypto_key *src)
 18{
 19	memcpy(dst, src, sizeof(struct ceph_crypto_key));
 20	dst->key = kmemdup(src->key, src->len, GFP_NOFS);
 21	if (!dst->key)
 22		return -ENOMEM;
 23	return 0;
 24}
 25
 26int ceph_crypto_key_encode(struct ceph_crypto_key *key, void **p, void *end)
 27{
 28	if (*p + sizeof(u16) + sizeof(key->created) +
 29	    sizeof(u16) + key->len > end)
 30		return -ERANGE;
 31	ceph_encode_16(p, key->type);
 32	ceph_encode_copy(p, &key->created, sizeof(key->created));
 33	ceph_encode_16(p, key->len);
 34	ceph_encode_copy(p, key->key, key->len);
 35	return 0;
 36}
 37
 38int ceph_crypto_key_decode(struct ceph_crypto_key *key, void **p, void *end)
 39{
 
 
 40	ceph_decode_need(p, end, 2*sizeof(u16) + sizeof(key->created), bad);
 41	key->type = ceph_decode_16(p);
 42	ceph_decode_copy(p, &key->created, sizeof(key->created));
 43	key->len = ceph_decode_16(p);
 44	ceph_decode_need(p, end, key->len, bad);
 45	key->key = kmalloc(key->len, GFP_NOFS);
 46	if (!key->key)
 47		return -ENOMEM;
 48	ceph_decode_copy(p, key->key, key->len);
 49	return 0;
 50
 51bad:
 52	dout("failed to decode crypto key\n");
 53	return -EINVAL;
 54}
 55
 56int ceph_crypto_key_unarmor(struct ceph_crypto_key *key, const char *inkey)
 57{
 58	int inlen = strlen(inkey);
 59	int blen = inlen * 3 / 4;
 60	void *buf, *p;
 61	int ret;
 62
 63	dout("crypto_key_unarmor %s\n", inkey);
 64	buf = kmalloc(blen, GFP_NOFS);
 65	if (!buf)
 66		return -ENOMEM;
 67	blen = ceph_unarmor(buf, inkey, inkey+inlen);
 68	if (blen < 0) {
 69		kfree(buf);
 70		return blen;
 71	}
 72
 73	p = buf;
 74	ret = ceph_crypto_key_decode(key, &p, p + blen);
 75	kfree(buf);
 76	if (ret)
 77		return ret;
 78	dout("crypto_key_unarmor key %p type %d len %d\n", key,
 79	     key->type, key->len);
 80	return 0;
 81}
 82
 83static struct crypto_skcipher *ceph_crypto_alloc_cipher(void)
 84{
 85	return crypto_alloc_skcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
 
 
 
 
 
 
 
 86}
 87
 88static const u8 *aes_iv = (u8 *)CEPH_AES_IV;
 89
 90/*
 91 * Should be used for buffers allocated with ceph_kvmalloc().
 92 * Currently these are encrypt out-buffer (ceph_buffer) and decrypt
 93 * in-buffer (msg front).
 94 *
 95 * Dispose of @sgt with teardown_sgtable().
 96 *
 97 * @prealloc_sg is to avoid memory allocation inside sg_alloc_table()
 98 * in cases where a single sg is sufficient.  No attempt to reduce the
 99 * number of sgs by squeezing physically contiguous pages together is
100 * made though, for simplicity.
101 */
102static int setup_sgtable(struct sg_table *sgt, struct scatterlist *prealloc_sg,
103			 const void *buf, unsigned int buf_len)
104{
105	struct scatterlist *sg;
106	const bool is_vmalloc = is_vmalloc_addr(buf);
107	unsigned int off = offset_in_page(buf);
108	unsigned int chunk_cnt = 1;
109	unsigned int chunk_len = PAGE_ALIGN(off + buf_len);
110	int i;
111	int ret;
112
113	if (buf_len == 0) {
114		memset(sgt, 0, sizeof(*sgt));
115		return -EINVAL;
116	}
117
118	if (is_vmalloc) {
119		chunk_cnt = chunk_len >> PAGE_SHIFT;
120		chunk_len = PAGE_SIZE;
121	}
122
123	if (chunk_cnt > 1) {
124		ret = sg_alloc_table(sgt, chunk_cnt, GFP_NOFS);
125		if (ret)
126			return ret;
127	} else {
128		WARN_ON(chunk_cnt != 1);
129		sg_init_table(prealloc_sg, 1);
130		sgt->sgl = prealloc_sg;
131		sgt->nents = sgt->orig_nents = 1;
132	}
133
134	for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) {
135		struct page *page;
136		unsigned int len = min(chunk_len - off, buf_len);
137
138		if (is_vmalloc)
139			page = vmalloc_to_page(buf);
140		else
141			page = virt_to_page(buf);
142
143		sg_set_page(sg, page, len, off);
144
145		off = 0;
146		buf += len;
147		buf_len -= len;
148	}
149	WARN_ON(buf_len != 0);
150
151	return 0;
152}
153
154static void teardown_sgtable(struct sg_table *sgt)
155{
156	if (sgt->orig_nents > 1)
157		sg_free_table(sgt);
158}
159
160static int ceph_aes_encrypt(const void *key, int key_len,
161			    void *dst, size_t *dst_len,
162			    const void *src, size_t src_len)
163{
164	struct scatterlist sg_in[2], prealloc_sg;
165	struct sg_table sg_out;
166	struct crypto_skcipher *tfm = ceph_crypto_alloc_cipher();
167	SKCIPHER_REQUEST_ON_STACK(req, tfm);
 
168	int ret;
169	char iv[AES_BLOCK_SIZE];
170	size_t zero_padding = (0x10 - (src_len & 0x0f));
171	char pad[16];
172
173	if (IS_ERR(tfm))
174		return PTR_ERR(tfm);
175
176	memset(pad, zero_padding, zero_padding);
177
178	*dst_len = src_len + zero_padding;
179
180	sg_init_table(sg_in, 2);
181	sg_set_buf(&sg_in[0], src, src_len);
182	sg_set_buf(&sg_in[1], pad, zero_padding);
183	ret = setup_sgtable(&sg_out, &prealloc_sg, dst, *dst_len);
184	if (ret)
185		goto out_tfm;
186
187	crypto_skcipher_setkey((void *)tfm, key, key_len);
188	memcpy(iv, aes_iv, AES_BLOCK_SIZE);
189
190	skcipher_request_set_tfm(req, tfm);
191	skcipher_request_set_callback(req, 0, NULL, NULL);
192	skcipher_request_set_crypt(req, sg_in, sg_out.sgl,
193				   src_len + zero_padding, iv);
194
195	/*
196	print_hex_dump(KERN_ERR, "enc key: ", DUMP_PREFIX_NONE, 16, 1,
197		       key, key_len, 1);
198	print_hex_dump(KERN_ERR, "enc src: ", DUMP_PREFIX_NONE, 16, 1,
199			src, src_len, 1);
200	print_hex_dump(KERN_ERR, "enc pad: ", DUMP_PREFIX_NONE, 16, 1,
201			pad, zero_padding, 1);
202	*/
203	ret = crypto_skcipher_encrypt(req);
204	skcipher_request_zero(req);
205	if (ret < 0) {
206		pr_err("ceph_aes_crypt failed %d\n", ret);
207		goto out_sg;
208	}
209	/*
210	print_hex_dump(KERN_ERR, "enc out: ", DUMP_PREFIX_NONE, 16, 1,
211		       dst, *dst_len, 1);
212	*/
213
214out_sg:
215	teardown_sgtable(&sg_out);
216out_tfm:
217	crypto_free_skcipher(tfm);
218	return ret;
219}
220
221static int ceph_aes_encrypt2(const void *key, int key_len, void *dst,
222			     size_t *dst_len,
223			     const void *src1, size_t src1_len,
224			     const void *src2, size_t src2_len)
225{
226	struct scatterlist sg_in[3], prealloc_sg;
227	struct sg_table sg_out;
228	struct crypto_skcipher *tfm = ceph_crypto_alloc_cipher();
229	SKCIPHER_REQUEST_ON_STACK(req, tfm);
230	int ret;
231	char iv[AES_BLOCK_SIZE];
232	size_t zero_padding = (0x10 - ((src1_len + src2_len) & 0x0f));
233	char pad[16];
234
235	if (IS_ERR(tfm))
236		return PTR_ERR(tfm);
237
238	memset(pad, zero_padding, zero_padding);
239
240	*dst_len = src1_len + src2_len + zero_padding;
241
242	sg_init_table(sg_in, 3);
243	sg_set_buf(&sg_in[0], src1, src1_len);
244	sg_set_buf(&sg_in[1], src2, src2_len);
245	sg_set_buf(&sg_in[2], pad, zero_padding);
246	ret = setup_sgtable(&sg_out, &prealloc_sg, dst, *dst_len);
247	if (ret)
248		goto out_tfm;
249
250	crypto_skcipher_setkey((void *)tfm, key, key_len);
251	memcpy(iv, aes_iv, AES_BLOCK_SIZE);
252
253	skcipher_request_set_tfm(req, tfm);
254	skcipher_request_set_callback(req, 0, NULL, NULL);
255	skcipher_request_set_crypt(req, sg_in, sg_out.sgl,
256				   src1_len + src2_len + zero_padding, iv);
257
258	/*
259	print_hex_dump(KERN_ERR, "enc  key: ", DUMP_PREFIX_NONE, 16, 1,
260		       key, key_len, 1);
261	print_hex_dump(KERN_ERR, "enc src1: ", DUMP_PREFIX_NONE, 16, 1,
262			src1, src1_len, 1);
263	print_hex_dump(KERN_ERR, "enc src2: ", DUMP_PREFIX_NONE, 16, 1,
264			src2, src2_len, 1);
265	print_hex_dump(KERN_ERR, "enc  pad: ", DUMP_PREFIX_NONE, 16, 1,
266			pad, zero_padding, 1);
267	*/
268	ret = crypto_skcipher_encrypt(req);
269	skcipher_request_zero(req);
270	if (ret < 0) {
271		pr_err("ceph_aes_crypt2 failed %d\n", ret);
272		goto out_sg;
 
273	}
274	/*
275	print_hex_dump(KERN_ERR, "enc  out: ", DUMP_PREFIX_NONE, 16, 1,
276		       dst, *dst_len, 1);
277	*/
278
279out_sg:
280	teardown_sgtable(&sg_out);
281out_tfm:
282	crypto_free_skcipher(tfm);
283	return ret;
284}
285
286static int ceph_aes_decrypt(const void *key, int key_len,
287			    void *dst, size_t *dst_len,
288			    const void *src, size_t src_len)
289{
290	struct sg_table sg_in;
291	struct scatterlist sg_out[2], prealloc_sg;
292	struct crypto_skcipher *tfm = ceph_crypto_alloc_cipher();
293	SKCIPHER_REQUEST_ON_STACK(req, tfm);
294	char pad[16];
295	char iv[AES_BLOCK_SIZE];
296	int ret;
297	int last_byte;
298
299	if (IS_ERR(tfm))
300		return PTR_ERR(tfm);
301
302	sg_init_table(sg_out, 2);
303	sg_set_buf(&sg_out[0], dst, *dst_len);
304	sg_set_buf(&sg_out[1], pad, sizeof(pad));
305	ret = setup_sgtable(&sg_in, &prealloc_sg, src, src_len);
306	if (ret)
307		goto out_tfm;
308
309	crypto_skcipher_setkey((void *)tfm, key, key_len);
310	memcpy(iv, aes_iv, AES_BLOCK_SIZE);
311
312	skcipher_request_set_tfm(req, tfm);
313	skcipher_request_set_callback(req, 0, NULL, NULL);
314	skcipher_request_set_crypt(req, sg_in.sgl, sg_out,
315				   src_len, iv);
316
317	/*
318	print_hex_dump(KERN_ERR, "dec key: ", DUMP_PREFIX_NONE, 16, 1,
319		       key, key_len, 1);
320	print_hex_dump(KERN_ERR, "dec  in: ", DUMP_PREFIX_NONE, 16, 1,
321		       src, src_len, 1);
322	*/
323	ret = crypto_skcipher_decrypt(req);
324	skcipher_request_zero(req);
325	if (ret < 0) {
326		pr_err("ceph_aes_decrypt failed %d\n", ret);
327		goto out_sg;
328	}
329
330	if (src_len <= *dst_len)
331		last_byte = ((char *)dst)[src_len - 1];
332	else
333		last_byte = pad[src_len - *dst_len - 1];
334	if (last_byte <= 16 && src_len >= last_byte) {
335		*dst_len = src_len - last_byte;
336	} else {
337		pr_err("ceph_aes_decrypt got bad padding %d on src len %d\n",
338		       last_byte, (int)src_len);
339		return -EPERM;  /* bad padding */
340	}
341	/*
342	print_hex_dump(KERN_ERR, "dec out: ", DUMP_PREFIX_NONE, 16, 1,
343		       dst, *dst_len, 1);
344	*/
345
346out_sg:
347	teardown_sgtable(&sg_in);
348out_tfm:
349	crypto_free_skcipher(tfm);
350	return ret;
351}
352
353static int ceph_aes_decrypt2(const void *key, int key_len,
354			     void *dst1, size_t *dst1_len,
355			     void *dst2, size_t *dst2_len,
356			     const void *src, size_t src_len)
357{
358	struct sg_table sg_in;
359	struct scatterlist sg_out[3], prealloc_sg;
360	struct crypto_skcipher *tfm = ceph_crypto_alloc_cipher();
361	SKCIPHER_REQUEST_ON_STACK(req, tfm);
362	char pad[16];
363	char iv[AES_BLOCK_SIZE];
364	int ret;
365	int last_byte;
366
367	if (IS_ERR(tfm))
368		return PTR_ERR(tfm);
369
370	sg_init_table(sg_out, 3);
371	sg_set_buf(&sg_out[0], dst1, *dst1_len);
372	sg_set_buf(&sg_out[1], dst2, *dst2_len);
373	sg_set_buf(&sg_out[2], pad, sizeof(pad));
374	ret = setup_sgtable(&sg_in, &prealloc_sg, src, src_len);
375	if (ret)
376		goto out_tfm;
377
378	crypto_skcipher_setkey((void *)tfm, key, key_len);
379	memcpy(iv, aes_iv, AES_BLOCK_SIZE);
380
381	skcipher_request_set_tfm(req, tfm);
382	skcipher_request_set_callback(req, 0, NULL, NULL);
383	skcipher_request_set_crypt(req, sg_in.sgl, sg_out,
384				   src_len, iv);
385
386	/*
387	print_hex_dump(KERN_ERR, "dec  key: ", DUMP_PREFIX_NONE, 16, 1,
388		       key, key_len, 1);
389	print_hex_dump(KERN_ERR, "dec   in: ", DUMP_PREFIX_NONE, 16, 1,
390		       src, src_len, 1);
391	*/
392	ret = crypto_skcipher_decrypt(req);
393	skcipher_request_zero(req);
394	if (ret < 0) {
395		pr_err("ceph_aes_decrypt failed %d\n", ret);
396		goto out_sg;
397	}
398
399	if (src_len <= *dst1_len)
400		last_byte = ((char *)dst1)[src_len - 1];
401	else if (src_len <= *dst1_len + *dst2_len)
402		last_byte = ((char *)dst2)[src_len - *dst1_len - 1];
403	else
404		last_byte = pad[src_len - *dst1_len - *dst2_len - 1];
405	if (last_byte <= 16 && src_len >= last_byte) {
406		src_len -= last_byte;
407	} else {
408		pr_err("ceph_aes_decrypt got bad padding %d on src len %d\n",
409		       last_byte, (int)src_len);
410		return -EPERM;  /* bad padding */
411	}
412
413	if (src_len < *dst1_len) {
414		*dst1_len = src_len;
415		*dst2_len = 0;
416	} else {
417		*dst2_len = src_len - *dst1_len;
418	}
419	/*
420	print_hex_dump(KERN_ERR, "dec  out1: ", DUMP_PREFIX_NONE, 16, 1,
421		       dst1, *dst1_len, 1);
422	print_hex_dump(KERN_ERR, "dec  out2: ", DUMP_PREFIX_NONE, 16, 1,
423		       dst2, *dst2_len, 1);
424	*/
425
426out_sg:
427	teardown_sgtable(&sg_in);
428out_tfm:
429	crypto_free_skcipher(tfm);
430	return ret;
431}
432
433
434int ceph_decrypt(struct ceph_crypto_key *secret, void *dst, size_t *dst_len,
435		 const void *src, size_t src_len)
436{
437	switch (secret->type) {
438	case CEPH_CRYPTO_NONE:
439		if (*dst_len < src_len)
440			return -ERANGE;
441		memcpy(dst, src, src_len);
442		*dst_len = src_len;
443		return 0;
444
445	case CEPH_CRYPTO_AES:
446		return ceph_aes_decrypt(secret->key, secret->len, dst,
447					dst_len, src, src_len);
448
449	default:
450		return -EINVAL;
451	}
452}
453
454int ceph_decrypt2(struct ceph_crypto_key *secret,
455			void *dst1, size_t *dst1_len,
456			void *dst2, size_t *dst2_len,
457			const void *src, size_t src_len)
458{
459	size_t t;
460
461	switch (secret->type) {
462	case CEPH_CRYPTO_NONE:
463		if (*dst1_len + *dst2_len < src_len)
464			return -ERANGE;
465		t = min(*dst1_len, src_len);
466		memcpy(dst1, src, t);
467		*dst1_len = t;
468		src += t;
469		src_len -= t;
470		if (src_len) {
471			t = min(*dst2_len, src_len);
472			memcpy(dst2, src, t);
473			*dst2_len = t;
474		}
475		return 0;
476
477	case CEPH_CRYPTO_AES:
478		return ceph_aes_decrypt2(secret->key, secret->len,
479					 dst1, dst1_len, dst2, dst2_len,
480					 src, src_len);
481
482	default:
483		return -EINVAL;
484	}
485}
486
487int ceph_encrypt(struct ceph_crypto_key *secret, void *dst, size_t *dst_len,
488		 const void *src, size_t src_len)
489{
490	switch (secret->type) {
491	case CEPH_CRYPTO_NONE:
492		if (*dst_len < src_len)
493			return -ERANGE;
494		memcpy(dst, src, src_len);
495		*dst_len = src_len;
496		return 0;
497
498	case CEPH_CRYPTO_AES:
499		return ceph_aes_encrypt(secret->key, secret->len, dst,
500					dst_len, src, src_len);
501
502	default:
503		return -EINVAL;
504	}
505}
506
507int ceph_encrypt2(struct ceph_crypto_key *secret, void *dst, size_t *dst_len,
508		  const void *src1, size_t src1_len,
509		  const void *src2, size_t src2_len)
510{
511	switch (secret->type) {
512	case CEPH_CRYPTO_NONE:
513		if (*dst_len < src1_len + src2_len)
514			return -ERANGE;
515		memcpy(dst, src1, src1_len);
516		memcpy(dst + src1_len, src2, src2_len);
517		*dst_len = src1_len + src2_len;
518		return 0;
519
520	case CEPH_CRYPTO_AES:
521		return ceph_aes_encrypt2(secret->key, secret->len, dst, dst_len,
522					 src1, src1_len, src2, src2_len);
523
524	default:
525		return -EINVAL;
526	}
527}
528
529static int ceph_key_preparse(struct key_preparsed_payload *prep)
530{
531	struct ceph_crypto_key *ckey;
532	size_t datalen = prep->datalen;
533	int ret;
534	void *p;
535
536	ret = -EINVAL;
537	if (datalen <= 0 || datalen > 32767 || !prep->data)
538		goto err;
539
540	ret = -ENOMEM;
541	ckey = kmalloc(sizeof(*ckey), GFP_KERNEL);
542	if (!ckey)
543		goto err;
544
545	/* TODO ceph_crypto_key_decode should really take const input */
546	p = (void *)prep->data;
547	ret = ceph_crypto_key_decode(ckey, &p, (char*)prep->data+datalen);
548	if (ret < 0)
549		goto err_ckey;
550
551	prep->payload.data[0] = ckey;
552	prep->quotalen = datalen;
553	return 0;
554
555err_ckey:
556	kfree(ckey);
557err:
558	return ret;
559}
560
561static void ceph_key_free_preparse(struct key_preparsed_payload *prep)
562{
563	struct ceph_crypto_key *ckey = prep->payload.data[0];
564	ceph_crypto_key_destroy(ckey);
565	kfree(ckey);
566}
567
568static void ceph_key_destroy(struct key *key)
569{
570	struct ceph_crypto_key *ckey = key->payload.data[0];
571
572	ceph_crypto_key_destroy(ckey);
573	kfree(ckey);
574}
575
576struct key_type key_type_ceph = {
577	.name		= "ceph",
578	.preparse	= ceph_key_preparse,
579	.free_preparse	= ceph_key_free_preparse,
580	.instantiate	= generic_key_instantiate,
581	.destroy	= ceph_key_destroy,
582};
583
584int ceph_crypto_init(void) {
 
585	return register_key_type(&key_type_ceph);
586}
587
588void ceph_crypto_shutdown(void) {
 
589	unregister_key_type(&key_type_ceph);
590}