Linux Audio

Check our new training course

Loading...
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _LINUX_SWAPOPS_H
  3#define _LINUX_SWAPOPS_H
  4
  5#include <linux/radix-tree.h>
  6#include <linux/bug.h>
  7#include <linux/mm_types.h>
  8
  9#ifdef CONFIG_MMU
 10
 11/*
 12 * swapcache pages are stored in the swapper_space radix tree.  We want to
 13 * get good packing density in that tree, so the index should be dense in
 14 * the low-order bits.
 15 *
 16 * We arrange the `type' and `offset' fields so that `type' is at the seven
 17 * high-order bits of the swp_entry_t and `offset' is right-aligned in the
 18 * remaining bits.  Although `type' itself needs only five bits, we allow for
 19 * shmem/tmpfs to shift it all up a further two bits: see swp_to_radix_entry().
 20 *
 21 * swp_entry_t's are *never* stored anywhere in their arch-dependent format.
 22 */
 23#define SWP_TYPE_SHIFT	(BITS_PER_XA_VALUE - MAX_SWAPFILES_SHIFT)
 24#define SWP_OFFSET_MASK	((1UL << SWP_TYPE_SHIFT) - 1)
 25
 26/* Clear all flags but only keep swp_entry_t related information */
 27static inline pte_t pte_swp_clear_flags(pte_t pte)
 28{
 29	if (pte_swp_soft_dirty(pte))
 30		pte = pte_swp_clear_soft_dirty(pte);
 31	if (pte_swp_uffd_wp(pte))
 32		pte = pte_swp_clear_uffd_wp(pte);
 33	return pte;
 34}
 35
 36/*
 37 * Store a type+offset into a swp_entry_t in an arch-independent format
 38 */
 39static inline swp_entry_t swp_entry(unsigned long type, pgoff_t offset)
 40{
 41	swp_entry_t ret;
 42
 43	ret.val = (type << SWP_TYPE_SHIFT) | (offset & SWP_OFFSET_MASK);
 
 44	return ret;
 45}
 46
 47/*
 48 * Extract the `type' field from a swp_entry_t.  The swp_entry_t is in
 49 * arch-independent format
 50 */
 51static inline unsigned swp_type(swp_entry_t entry)
 52{
 53	return (entry.val >> SWP_TYPE_SHIFT);
 54}
 55
 56/*
 57 * Extract the `offset' field from a swp_entry_t.  The swp_entry_t is in
 58 * arch-independent format
 59 */
 60static inline pgoff_t swp_offset(swp_entry_t entry)
 61{
 62	return entry.val & SWP_OFFSET_MASK;
 63}
 64
 
 65/* check whether a pte points to a swap entry */
 66static inline int is_swap_pte(pte_t pte)
 67{
 68	return !pte_none(pte) && !pte_present(pte);
 69}
 
 70
 71/*
 72 * Convert the arch-dependent pte representation of a swp_entry_t into an
 73 * arch-independent swp_entry_t.
 74 */
 75static inline swp_entry_t pte_to_swp_entry(pte_t pte)
 76{
 77	swp_entry_t arch_entry;
 78
 79	pte = pte_swp_clear_flags(pte);
 
 80	arch_entry = __pte_to_swp_entry(pte);
 81	return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry));
 82}
 83
 84/*
 85 * Convert the arch-independent representation of a swp_entry_t into the
 86 * arch-dependent pte representation.
 87 */
 88static inline pte_t swp_entry_to_pte(swp_entry_t entry)
 89{
 90	swp_entry_t arch_entry;
 91
 92	arch_entry = __swp_entry(swp_type(entry), swp_offset(entry));
 93	return __swp_entry_to_pte(arch_entry);
 94}
 95
 96static inline swp_entry_t radix_to_swp_entry(void *arg)
 97{
 98	swp_entry_t entry;
 99
100	entry.val = xa_to_value(arg);
101	return entry;
102}
103
104static inline void *swp_to_radix_entry(swp_entry_t entry)
105{
106	return xa_mk_value(entry.val);
107}
108
109#if IS_ENABLED(CONFIG_DEVICE_PRIVATE)
110static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset)
111{
112	return swp_entry(SWP_DEVICE_READ, offset);
113}
114
115static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset)
116{
117	return swp_entry(SWP_DEVICE_WRITE, offset);
118}
119
120static inline bool is_device_private_entry(swp_entry_t entry)
121{
122	int type = swp_type(entry);
123	return type == SWP_DEVICE_READ || type == SWP_DEVICE_WRITE;
124}
125
126static inline bool is_writable_device_private_entry(swp_entry_t entry)
127{
128	return unlikely(swp_type(entry) == SWP_DEVICE_WRITE);
129}
130
131static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset)
132{
133	return swp_entry(SWP_DEVICE_EXCLUSIVE_READ, offset);
134}
135
136static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset)
137{
138	return swp_entry(SWP_DEVICE_EXCLUSIVE_WRITE, offset);
139}
140
141static inline bool is_device_exclusive_entry(swp_entry_t entry)
142{
143	return swp_type(entry) == SWP_DEVICE_EXCLUSIVE_READ ||
144		swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE;
145}
146
147static inline bool is_writable_device_exclusive_entry(swp_entry_t entry)
148{
149	return unlikely(swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE);
150}
151#else /* CONFIG_DEVICE_PRIVATE */
152static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset)
153{
154	return swp_entry(0, 0);
155}
156
157static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset)
158{
159	return swp_entry(0, 0);
160}
161
162static inline bool is_device_private_entry(swp_entry_t entry)
163{
164	return false;
165}
166
167static inline bool is_writable_device_private_entry(swp_entry_t entry)
168{
169	return false;
170}
171
172static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset)
173{
174	return swp_entry(0, 0);
175}
176
177static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset)
178{
179	return swp_entry(0, 0);
180}
181
182static inline bool is_device_exclusive_entry(swp_entry_t entry)
183{
184	return false;
185}
186
187static inline bool is_writable_device_exclusive_entry(swp_entry_t entry)
188{
189	return false;
 
 
190}
191#endif /* CONFIG_DEVICE_PRIVATE */
192
193#ifdef CONFIG_MIGRATION
194static inline int is_migration_entry(swp_entry_t entry)
195{
196	return unlikely(swp_type(entry) == SWP_MIGRATION_READ ||
197			swp_type(entry) == SWP_MIGRATION_WRITE);
198}
199
200static inline int is_writable_migration_entry(swp_entry_t entry)
201{
202	return unlikely(swp_type(entry) == SWP_MIGRATION_WRITE);
203}
204
205static inline swp_entry_t make_readable_migration_entry(pgoff_t offset)
206{
207	return swp_entry(SWP_MIGRATION_READ, offset);
 
 
 
 
 
 
208}
209
210static inline swp_entry_t make_writable_migration_entry(pgoff_t offset)
211{
212	return swp_entry(SWP_MIGRATION_WRITE, offset);
213}
214
215extern void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
216					spinlock_t *ptl);
217extern void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
218					unsigned long address);
219extern void migration_entry_wait_huge(struct vm_area_struct *vma,
220		struct mm_struct *mm, pte_t *pte);
221#else
222static inline swp_entry_t make_readable_migration_entry(pgoff_t offset)
223{
224	return swp_entry(0, 0);
225}
226
227static inline swp_entry_t make_writable_migration_entry(pgoff_t offset)
228{
229	return swp_entry(0, 0);
230}
231
 
232static inline int is_migration_entry(swp_entry_t swp)
233{
234	return 0;
235}
236
 
237static inline void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
238					spinlock_t *ptl) { }
239static inline void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
240					 unsigned long address) { }
241static inline void migration_entry_wait_huge(struct vm_area_struct *vma,
242		struct mm_struct *mm, pte_t *pte) { }
243static inline int is_writable_migration_entry(swp_entry_t entry)
244{
245	return 0;
246}
247
248#endif
249
250static inline struct page *pfn_swap_entry_to_page(swp_entry_t entry)
251{
252	struct page *p = pfn_to_page(swp_offset(entry));
253
254	/*
255	 * Any use of migration entries may only occur while the
256	 * corresponding page is locked
257	 */
258	BUG_ON(is_migration_entry(entry) && !PageLocked(p));
259
260	return p;
261}
262
263/*
264 * A pfn swap entry is a special type of swap entry that always has a pfn stored
265 * in the swap offset. They are used to represent unaddressable device memory
266 * and to restrict access to a page undergoing migration.
267 */
268static inline bool is_pfn_swap_entry(swp_entry_t entry)
269{
270	return is_migration_entry(entry) || is_device_private_entry(entry) ||
271	       is_device_exclusive_entry(entry);
272}
273
274struct page_vma_mapped_walk;
275
276#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
277extern void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
278		struct page *page);
279
280extern void remove_migration_pmd(struct page_vma_mapped_walk *pvmw,
281		struct page *new);
282
283extern void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd);
284
285static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd)
286{
287	swp_entry_t arch_entry;
288
289	if (pmd_swp_soft_dirty(pmd))
290		pmd = pmd_swp_clear_soft_dirty(pmd);
291	if (pmd_swp_uffd_wp(pmd))
292		pmd = pmd_swp_clear_uffd_wp(pmd);
293	arch_entry = __pmd_to_swp_entry(pmd);
294	return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry));
295}
296
297static inline pmd_t swp_entry_to_pmd(swp_entry_t entry)
298{
299	swp_entry_t arch_entry;
300
301	arch_entry = __swp_entry(swp_type(entry), swp_offset(entry));
302	return __swp_entry_to_pmd(arch_entry);
303}
304
305static inline int is_pmd_migration_entry(pmd_t pmd)
306{
307	return !pmd_present(pmd) && is_migration_entry(pmd_to_swp_entry(pmd));
308}
309#else
310static inline void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
311		struct page *page)
312{
313	BUILD_BUG();
314}
315
316static inline void remove_migration_pmd(struct page_vma_mapped_walk *pvmw,
317		struct page *new)
318{
319	BUILD_BUG();
320}
321
322static inline void pmd_migration_entry_wait(struct mm_struct *m, pmd_t *p) { }
323
324static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd)
325{
326	return swp_entry(0, 0);
327}
328
329static inline pmd_t swp_entry_to_pmd(swp_entry_t entry)
330{
331	return __pmd(0);
332}
333
334static inline int is_pmd_migration_entry(pmd_t pmd)
335{
336	return 0;
337}
338#endif
339
340#ifdef CONFIG_MEMORY_FAILURE
341
342extern atomic_long_t num_poisoned_pages __read_mostly;
343
344/*
345 * Support for hardware poisoned pages
346 */
347static inline swp_entry_t make_hwpoison_entry(struct page *page)
348{
349	BUG_ON(!PageLocked(page));
350	return swp_entry(SWP_HWPOISON, page_to_pfn(page));
351}
352
353static inline int is_hwpoison_entry(swp_entry_t entry)
354{
355	return swp_type(entry) == SWP_HWPOISON;
356}
357
358static inline unsigned long hwpoison_entry_to_pfn(swp_entry_t entry)
359{
360	return swp_offset(entry);
361}
362
363static inline void num_poisoned_pages_inc(void)
364{
365	atomic_long_inc(&num_poisoned_pages);
366}
367
368static inline void num_poisoned_pages_dec(void)
369{
370	atomic_long_dec(&num_poisoned_pages);
371}
372
 
 
 
 
 
 
 
 
 
373#else
374
375static inline swp_entry_t make_hwpoison_entry(struct page *page)
376{
377	return swp_entry(0, 0);
378}
379
380static inline int is_hwpoison_entry(swp_entry_t swp)
381{
382	return 0;
383}
384
 
 
 
 
 
385static inline void num_poisoned_pages_inc(void)
386{
387}
388#endif
389
390#if defined(CONFIG_MEMORY_FAILURE) || defined(CONFIG_MIGRATION) || \
391    defined(CONFIG_DEVICE_PRIVATE)
392static inline int non_swap_entry(swp_entry_t entry)
393{
394	return swp_type(entry) >= MAX_SWAPFILES;
395}
396#else
397static inline int non_swap_entry(swp_entry_t entry)
398{
399	return 0;
400}
401#endif
402
403#endif /* CONFIG_MMU */
404#endif /* _LINUX_SWAPOPS_H */
v4.6
 
  1#ifndef _LINUX_SWAPOPS_H
  2#define _LINUX_SWAPOPS_H
  3
  4#include <linux/radix-tree.h>
  5#include <linux/bug.h>
 
 
 
  6
  7/*
  8 * swapcache pages are stored in the swapper_space radix tree.  We want to
  9 * get good packing density in that tree, so the index should be dense in
 10 * the low-order bits.
 11 *
 12 * We arrange the `type' and `offset' fields so that `type' is at the seven
 13 * high-order bits of the swp_entry_t and `offset' is right-aligned in the
 14 * remaining bits.  Although `type' itself needs only five bits, we allow for
 15 * shmem/tmpfs to shift it all up a further two bits: see swp_to_radix_entry().
 16 *
 17 * swp_entry_t's are *never* stored anywhere in their arch-dependent format.
 18 */
 19#define SWP_TYPE_SHIFT(e)	((sizeof(e.val) * 8) - \
 20			(MAX_SWAPFILES_SHIFT + RADIX_TREE_EXCEPTIONAL_SHIFT))
 21#define SWP_OFFSET_MASK(e)	((1UL << SWP_TYPE_SHIFT(e)) - 1)
 
 
 
 
 
 
 
 
 
 22
 23/*
 24 * Store a type+offset into a swp_entry_t in an arch-independent format
 25 */
 26static inline swp_entry_t swp_entry(unsigned long type, pgoff_t offset)
 27{
 28	swp_entry_t ret;
 29
 30	ret.val = (type << SWP_TYPE_SHIFT(ret)) |
 31			(offset & SWP_OFFSET_MASK(ret));
 32	return ret;
 33}
 34
 35/*
 36 * Extract the `type' field from a swp_entry_t.  The swp_entry_t is in
 37 * arch-independent format
 38 */
 39static inline unsigned swp_type(swp_entry_t entry)
 40{
 41	return (entry.val >> SWP_TYPE_SHIFT(entry));
 42}
 43
 44/*
 45 * Extract the `offset' field from a swp_entry_t.  The swp_entry_t is in
 46 * arch-independent format
 47 */
 48static inline pgoff_t swp_offset(swp_entry_t entry)
 49{
 50	return entry.val & SWP_OFFSET_MASK(entry);
 51}
 52
 53#ifdef CONFIG_MMU
 54/* check whether a pte points to a swap entry */
 55static inline int is_swap_pte(pte_t pte)
 56{
 57	return !pte_none(pte) && !pte_present(pte);
 58}
 59#endif
 60
 61/*
 62 * Convert the arch-dependent pte representation of a swp_entry_t into an
 63 * arch-independent swp_entry_t.
 64 */
 65static inline swp_entry_t pte_to_swp_entry(pte_t pte)
 66{
 67	swp_entry_t arch_entry;
 68
 69	if (pte_swp_soft_dirty(pte))
 70		pte = pte_swp_clear_soft_dirty(pte);
 71	arch_entry = __pte_to_swp_entry(pte);
 72	return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry));
 73}
 74
 75/*
 76 * Convert the arch-independent representation of a swp_entry_t into the
 77 * arch-dependent pte representation.
 78 */
 79static inline pte_t swp_entry_to_pte(swp_entry_t entry)
 80{
 81	swp_entry_t arch_entry;
 82
 83	arch_entry = __swp_entry(swp_type(entry), swp_offset(entry));
 84	return __swp_entry_to_pte(arch_entry);
 85}
 86
 87static inline swp_entry_t radix_to_swp_entry(void *arg)
 88{
 89	swp_entry_t entry;
 90
 91	entry.val = (unsigned long)arg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
 92	return entry;
 93}
 94
 95static inline void *swp_to_radix_entry(swp_entry_t entry)
 96{
 97	unsigned long value;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 98
 99	value = entry.val << RADIX_TREE_EXCEPTIONAL_SHIFT;
100	return (void *)(value | RADIX_TREE_EXCEPTIONAL_ENTRY);
 
 
101}
102
103#ifdef CONFIG_MIGRATION
104static inline swp_entry_t make_migration_entry(struct page *page, int write)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105{
106	BUG_ON(!PageLocked(page));
107	return swp_entry(write ? SWP_MIGRATION_WRITE : SWP_MIGRATION_READ,
108			page_to_pfn(page));
109}
 
110
 
111static inline int is_migration_entry(swp_entry_t entry)
112{
113	return unlikely(swp_type(entry) == SWP_MIGRATION_READ ||
114			swp_type(entry) == SWP_MIGRATION_WRITE);
115}
116
117static inline int is_write_migration_entry(swp_entry_t entry)
118{
119	return unlikely(swp_type(entry) == SWP_MIGRATION_WRITE);
120}
121
122static inline struct page *migration_entry_to_page(swp_entry_t entry)
123{
124	struct page *p = pfn_to_page(swp_offset(entry));
125	/*
126	 * Any use of migration entries may only occur while the
127	 * corresponding page is locked
128	 */
129	BUG_ON(!PageLocked(p));
130	return p;
131}
132
133static inline void make_migration_entry_read(swp_entry_t *entry)
134{
135	*entry = swp_entry(SWP_MIGRATION_READ, swp_offset(*entry));
136}
137
138extern void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
139					spinlock_t *ptl);
140extern void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
141					unsigned long address);
142extern void migration_entry_wait_huge(struct vm_area_struct *vma,
143		struct mm_struct *mm, pte_t *pte);
144#else
 
 
 
 
 
 
 
 
 
145
146#define make_migration_entry(page, write) swp_entry(0, 0)
147static inline int is_migration_entry(swp_entry_t swp)
148{
149	return 0;
150}
151#define migration_entry_to_page(swp) NULL
152static inline void make_migration_entry_read(swp_entry_t *entryp) { }
153static inline void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
154					spinlock_t *ptl) { }
155static inline void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
156					 unsigned long address) { }
157static inline void migration_entry_wait_huge(struct vm_area_struct *vma,
158		struct mm_struct *mm, pte_t *pte) { }
159static inline int is_write_migration_entry(swp_entry_t entry)
160{
161	return 0;
162}
163
164#endif
165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166#ifdef CONFIG_MEMORY_FAILURE
167
168extern atomic_long_t num_poisoned_pages __read_mostly;
169
170/*
171 * Support for hardware poisoned pages
172 */
173static inline swp_entry_t make_hwpoison_entry(struct page *page)
174{
175	BUG_ON(!PageLocked(page));
176	return swp_entry(SWP_HWPOISON, page_to_pfn(page));
177}
178
179static inline int is_hwpoison_entry(swp_entry_t entry)
180{
181	return swp_type(entry) == SWP_HWPOISON;
182}
183
184static inline bool test_set_page_hwpoison(struct page *page)
185{
186	return TestSetPageHWPoison(page);
187}
188
189static inline void num_poisoned_pages_inc(void)
190{
191	atomic_long_inc(&num_poisoned_pages);
192}
193
194static inline void num_poisoned_pages_dec(void)
195{
196	atomic_long_dec(&num_poisoned_pages);
197}
198
199static inline void num_poisoned_pages_add(long num)
200{
201	atomic_long_add(num, &num_poisoned_pages);
202}
203
204static inline void num_poisoned_pages_sub(long num)
205{
206	atomic_long_sub(num, &num_poisoned_pages);
207}
208#else
209
210static inline swp_entry_t make_hwpoison_entry(struct page *page)
211{
212	return swp_entry(0, 0);
213}
214
215static inline int is_hwpoison_entry(swp_entry_t swp)
216{
217	return 0;
218}
219
220static inline bool test_set_page_hwpoison(struct page *page)
221{
222	return false;
223}
224
225static inline void num_poisoned_pages_inc(void)
226{
227}
228#endif
229
230#if defined(CONFIG_MEMORY_FAILURE) || defined(CONFIG_MIGRATION)
 
231static inline int non_swap_entry(swp_entry_t entry)
232{
233	return swp_type(entry) >= MAX_SWAPFILES;
234}
235#else
236static inline int non_swap_entry(swp_entry_t entry)
237{
238	return 0;
239}
240#endif
241
 
242#endif /* _LINUX_SWAPOPS_H */