Loading...
Note: File does not exist in v4.6.
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PGTABLE_H
3#define _LINUX_PGTABLE_H
4
5#include <linux/pfn.h>
6#include <asm/pgtable.h>
7
8#ifndef __ASSEMBLY__
9#ifdef CONFIG_MMU
10
11#include <linux/mm_types.h>
12#include <linux/bug.h>
13#include <linux/errno.h>
14#include <asm-generic/pgtable_uffd.h>
15
16#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
17 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
18#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
19#endif
20
21/*
22 * On almost all architectures and configurations, 0 can be used as the
23 * upper ceiling to free_pgtables(): on many architectures it has the same
24 * effect as using TASK_SIZE. However, there is one configuration which
25 * must impose a more careful limit, to avoid freeing kernel pgtables.
26 */
27#ifndef USER_PGTABLES_CEILING
28#define USER_PGTABLES_CEILING 0UL
29#endif
30
31/*
32 * This defines the first usable user address. Platforms
33 * can override its value with custom FIRST_USER_ADDRESS
34 * defined in their respective <asm/pgtable.h>.
35 */
36#ifndef FIRST_USER_ADDRESS
37#define FIRST_USER_ADDRESS 0UL
38#endif
39
40/*
41 * This defines the generic helper for accessing PMD page
42 * table page. Although platforms can still override this
43 * via their respective <asm/pgtable.h>.
44 */
45#ifndef pmd_pgtable
46#define pmd_pgtable(pmd) pmd_page(pmd)
47#endif
48
49/*
50 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
51 *
52 * The pXx_index() functions return the index of the entry in the page
53 * table page which would control the given virtual address
54 *
55 * As these functions may be used by the same code for different levels of
56 * the page table folding, they are always available, regardless of
57 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
58 * because in such cases PTRS_PER_PxD equals 1.
59 */
60
61static inline unsigned long pte_index(unsigned long address)
62{
63 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
64}
65
66#ifndef pmd_index
67static inline unsigned long pmd_index(unsigned long address)
68{
69 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
70}
71#define pmd_index pmd_index
72#endif
73
74#ifndef pud_index
75static inline unsigned long pud_index(unsigned long address)
76{
77 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
78}
79#define pud_index pud_index
80#endif
81
82#ifndef pgd_index
83/* Must be a compile-time constant, so implement it as a macro */
84#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
85#endif
86
87#ifndef pte_offset_kernel
88static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
89{
90 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
91}
92#define pte_offset_kernel pte_offset_kernel
93#endif
94
95#if defined(CONFIG_HIGHPTE)
96#define pte_offset_map(dir, address) \
97 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \
98 pte_index((address)))
99#define pte_unmap(pte) kunmap_atomic((pte))
100#else
101#define pte_offset_map(dir, address) pte_offset_kernel((dir), (address))
102#define pte_unmap(pte) ((void)(pte)) /* NOP */
103#endif
104
105/* Find an entry in the second-level page table.. */
106#ifndef pmd_offset
107static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
108{
109 return pud_pgtable(*pud) + pmd_index(address);
110}
111#define pmd_offset pmd_offset
112#endif
113
114#ifndef pud_offset
115static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
116{
117 return p4d_pgtable(*p4d) + pud_index(address);
118}
119#define pud_offset pud_offset
120#endif
121
122static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
123{
124 return (pgd + pgd_index(address));
125};
126
127/*
128 * a shortcut to get a pgd_t in a given mm
129 */
130#ifndef pgd_offset
131#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
132#endif
133
134/*
135 * a shortcut which implies the use of the kernel's pgd, instead
136 * of a process's
137 */
138#ifndef pgd_offset_k
139#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
140#endif
141
142/*
143 * In many cases it is known that a virtual address is mapped at PMD or PTE
144 * level, so instead of traversing all the page table levels, we can get a
145 * pointer to the PMD entry in user or kernel page table or translate a virtual
146 * address to the pointer in the PTE in the kernel page tables with simple
147 * helpers.
148 */
149static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
150{
151 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
152}
153
154static inline pmd_t *pmd_off_k(unsigned long va)
155{
156 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
157}
158
159static inline pte_t *virt_to_kpte(unsigned long vaddr)
160{
161 pmd_t *pmd = pmd_off_k(vaddr);
162
163 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
164}
165
166#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
167extern int ptep_set_access_flags(struct vm_area_struct *vma,
168 unsigned long address, pte_t *ptep,
169 pte_t entry, int dirty);
170#endif
171
172#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
173#ifdef CONFIG_TRANSPARENT_HUGEPAGE
174extern int pmdp_set_access_flags(struct vm_area_struct *vma,
175 unsigned long address, pmd_t *pmdp,
176 pmd_t entry, int dirty);
177extern int pudp_set_access_flags(struct vm_area_struct *vma,
178 unsigned long address, pud_t *pudp,
179 pud_t entry, int dirty);
180#else
181static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
182 unsigned long address, pmd_t *pmdp,
183 pmd_t entry, int dirty)
184{
185 BUILD_BUG();
186 return 0;
187}
188static inline int pudp_set_access_flags(struct vm_area_struct *vma,
189 unsigned long address, pud_t *pudp,
190 pud_t entry, int dirty)
191{
192 BUILD_BUG();
193 return 0;
194}
195#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
196#endif
197
198#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
199static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
200 unsigned long address,
201 pte_t *ptep)
202{
203 pte_t pte = *ptep;
204 int r = 1;
205 if (!pte_young(pte))
206 r = 0;
207 else
208 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
209 return r;
210}
211#endif
212
213#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
214#ifdef CONFIG_TRANSPARENT_HUGEPAGE
215static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
216 unsigned long address,
217 pmd_t *pmdp)
218{
219 pmd_t pmd = *pmdp;
220 int r = 1;
221 if (!pmd_young(pmd))
222 r = 0;
223 else
224 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
225 return r;
226}
227#else
228static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
229 unsigned long address,
230 pmd_t *pmdp)
231{
232 BUILD_BUG();
233 return 0;
234}
235#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
236#endif
237
238#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
239int ptep_clear_flush_young(struct vm_area_struct *vma,
240 unsigned long address, pte_t *ptep);
241#endif
242
243#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
244#ifdef CONFIG_TRANSPARENT_HUGEPAGE
245extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
246 unsigned long address, pmd_t *pmdp);
247#else
248/*
249 * Despite relevant to THP only, this API is called from generic rmap code
250 * under PageTransHuge(), hence needs a dummy implementation for !THP
251 */
252static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
253 unsigned long address, pmd_t *pmdp)
254{
255 BUILD_BUG();
256 return 0;
257}
258#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
259#endif
260
261#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
262static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
263 unsigned long address,
264 pte_t *ptep)
265{
266 pte_t pte = *ptep;
267 pte_clear(mm, address, ptep);
268 return pte;
269}
270#endif
271
272#ifndef __HAVE_ARCH_PTEP_GET
273static inline pte_t ptep_get(pte_t *ptep)
274{
275 return READ_ONCE(*ptep);
276}
277#endif
278
279#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
280/*
281 * WARNING: only to be used in the get_user_pages_fast() implementation.
282 *
283 * With get_user_pages_fast(), we walk down the pagetables without taking any
284 * locks. For this we would like to load the pointers atomically, but sometimes
285 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
286 * we do have is the guarantee that a PTE will only either go from not present
287 * to present, or present to not present or both -- it will not switch to a
288 * completely different present page without a TLB flush in between; something
289 * that we are blocking by holding interrupts off.
290 *
291 * Setting ptes from not present to present goes:
292 *
293 * ptep->pte_high = h;
294 * smp_wmb();
295 * ptep->pte_low = l;
296 *
297 * And present to not present goes:
298 *
299 * ptep->pte_low = 0;
300 * smp_wmb();
301 * ptep->pte_high = 0;
302 *
303 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
304 * We load pte_high *after* loading pte_low, which ensures we don't see an older
305 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
306 * picked up a changed pte high. We might have gotten rubbish values from
307 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
308 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
309 * operates on present ptes we're safe.
310 */
311static inline pte_t ptep_get_lockless(pte_t *ptep)
312{
313 pte_t pte;
314
315 do {
316 pte.pte_low = ptep->pte_low;
317 smp_rmb();
318 pte.pte_high = ptep->pte_high;
319 smp_rmb();
320 } while (unlikely(pte.pte_low != ptep->pte_low));
321
322 return pte;
323}
324#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
325/*
326 * We require that the PTE can be read atomically.
327 */
328static inline pte_t ptep_get_lockless(pte_t *ptep)
329{
330 return ptep_get(ptep);
331}
332#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
333
334#ifdef CONFIG_TRANSPARENT_HUGEPAGE
335#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
336static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
337 unsigned long address,
338 pmd_t *pmdp)
339{
340 pmd_t pmd = *pmdp;
341 pmd_clear(pmdp);
342 return pmd;
343}
344#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
345#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
346static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
347 unsigned long address,
348 pud_t *pudp)
349{
350 pud_t pud = *pudp;
351
352 pud_clear(pudp);
353 return pud;
354}
355#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
356#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
357
358#ifdef CONFIG_TRANSPARENT_HUGEPAGE
359#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
360static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
361 unsigned long address, pmd_t *pmdp,
362 int full)
363{
364 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
365}
366#endif
367
368#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
369static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
370 unsigned long address, pud_t *pudp,
371 int full)
372{
373 return pudp_huge_get_and_clear(mm, address, pudp);
374}
375#endif
376#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
377
378#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
379static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
380 unsigned long address, pte_t *ptep,
381 int full)
382{
383 pte_t pte;
384 pte = ptep_get_and_clear(mm, address, ptep);
385 return pte;
386}
387#endif
388
389
390/*
391 * If two threads concurrently fault at the same page, the thread that
392 * won the race updates the PTE and its local TLB/Cache. The other thread
393 * gives up, simply does nothing, and continues; on architectures where
394 * software can update TLB, local TLB can be updated here to avoid next page
395 * fault. This function updates TLB only, do nothing with cache or others.
396 * It is the difference with function update_mmu_cache.
397 */
398#ifndef __HAVE_ARCH_UPDATE_MMU_TLB
399static inline void update_mmu_tlb(struct vm_area_struct *vma,
400 unsigned long address, pte_t *ptep)
401{
402}
403#define __HAVE_ARCH_UPDATE_MMU_TLB
404#endif
405
406/*
407 * Some architectures may be able to avoid expensive synchronization
408 * primitives when modifications are made to PTE's which are already
409 * not present, or in the process of an address space destruction.
410 */
411#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
412static inline void pte_clear_not_present_full(struct mm_struct *mm,
413 unsigned long address,
414 pte_t *ptep,
415 int full)
416{
417 pte_clear(mm, address, ptep);
418}
419#endif
420
421#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
422extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
423 unsigned long address,
424 pte_t *ptep);
425#endif
426
427#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
428extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
429 unsigned long address,
430 pmd_t *pmdp);
431extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
432 unsigned long address,
433 pud_t *pudp);
434#endif
435
436#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
437struct mm_struct;
438static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
439{
440 pte_t old_pte = *ptep;
441 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
442}
443#endif
444
445/*
446 * On some architectures hardware does not set page access bit when accessing
447 * memory page, it is responsibility of software setting this bit. It brings
448 * out extra page fault penalty to track page access bit. For optimization page
449 * access bit can be set during all page fault flow on these arches.
450 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
451 * where software maintains page access bit.
452 */
453#ifndef pte_sw_mkyoung
454static inline pte_t pte_sw_mkyoung(pte_t pte)
455{
456 return pte;
457}
458#define pte_sw_mkyoung pte_sw_mkyoung
459#endif
460
461#ifndef pte_savedwrite
462#define pte_savedwrite pte_write
463#endif
464
465#ifndef pte_mk_savedwrite
466#define pte_mk_savedwrite pte_mkwrite
467#endif
468
469#ifndef pte_clear_savedwrite
470#define pte_clear_savedwrite pte_wrprotect
471#endif
472
473#ifndef pmd_savedwrite
474#define pmd_savedwrite pmd_write
475#endif
476
477#ifndef pmd_mk_savedwrite
478#define pmd_mk_savedwrite pmd_mkwrite
479#endif
480
481#ifndef pmd_clear_savedwrite
482#define pmd_clear_savedwrite pmd_wrprotect
483#endif
484
485#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
486#ifdef CONFIG_TRANSPARENT_HUGEPAGE
487static inline void pmdp_set_wrprotect(struct mm_struct *mm,
488 unsigned long address, pmd_t *pmdp)
489{
490 pmd_t old_pmd = *pmdp;
491 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
492}
493#else
494static inline void pmdp_set_wrprotect(struct mm_struct *mm,
495 unsigned long address, pmd_t *pmdp)
496{
497 BUILD_BUG();
498}
499#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
500#endif
501#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
502#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
503static inline void pudp_set_wrprotect(struct mm_struct *mm,
504 unsigned long address, pud_t *pudp)
505{
506 pud_t old_pud = *pudp;
507
508 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
509}
510#else
511static inline void pudp_set_wrprotect(struct mm_struct *mm,
512 unsigned long address, pud_t *pudp)
513{
514 BUILD_BUG();
515}
516#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
517#endif
518
519#ifndef pmdp_collapse_flush
520#ifdef CONFIG_TRANSPARENT_HUGEPAGE
521extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
522 unsigned long address, pmd_t *pmdp);
523#else
524static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
525 unsigned long address,
526 pmd_t *pmdp)
527{
528 BUILD_BUG();
529 return *pmdp;
530}
531#define pmdp_collapse_flush pmdp_collapse_flush
532#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
533#endif
534
535#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
536extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
537 pgtable_t pgtable);
538#endif
539
540#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
541extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
542#endif
543
544#ifdef CONFIG_TRANSPARENT_HUGEPAGE
545/*
546 * This is an implementation of pmdp_establish() that is only suitable for an
547 * architecture that doesn't have hardware dirty/accessed bits. In this case we
548 * can't race with CPU which sets these bits and non-atomic approach is fine.
549 */
550static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
551 unsigned long address, pmd_t *pmdp, pmd_t pmd)
552{
553 pmd_t old_pmd = *pmdp;
554 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
555 return old_pmd;
556}
557#endif
558
559#ifndef __HAVE_ARCH_PMDP_INVALIDATE
560extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
561 pmd_t *pmdp);
562#endif
563
564#ifndef __HAVE_ARCH_PTE_SAME
565static inline int pte_same(pte_t pte_a, pte_t pte_b)
566{
567 return pte_val(pte_a) == pte_val(pte_b);
568}
569#endif
570
571#ifndef __HAVE_ARCH_PTE_UNUSED
572/*
573 * Some architectures provide facilities to virtualization guests
574 * so that they can flag allocated pages as unused. This allows the
575 * host to transparently reclaim unused pages. This function returns
576 * whether the pte's page is unused.
577 */
578static inline int pte_unused(pte_t pte)
579{
580 return 0;
581}
582#endif
583
584#ifndef pte_access_permitted
585#define pte_access_permitted(pte, write) \
586 (pte_present(pte) && (!(write) || pte_write(pte)))
587#endif
588
589#ifndef pmd_access_permitted
590#define pmd_access_permitted(pmd, write) \
591 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
592#endif
593
594#ifndef pud_access_permitted
595#define pud_access_permitted(pud, write) \
596 (pud_present(pud) && (!(write) || pud_write(pud)))
597#endif
598
599#ifndef p4d_access_permitted
600#define p4d_access_permitted(p4d, write) \
601 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
602#endif
603
604#ifndef pgd_access_permitted
605#define pgd_access_permitted(pgd, write) \
606 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
607#endif
608
609#ifndef __HAVE_ARCH_PMD_SAME
610static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
611{
612 return pmd_val(pmd_a) == pmd_val(pmd_b);
613}
614
615static inline int pud_same(pud_t pud_a, pud_t pud_b)
616{
617 return pud_val(pud_a) == pud_val(pud_b);
618}
619#endif
620
621#ifndef __HAVE_ARCH_P4D_SAME
622static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
623{
624 return p4d_val(p4d_a) == p4d_val(p4d_b);
625}
626#endif
627
628#ifndef __HAVE_ARCH_PGD_SAME
629static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
630{
631 return pgd_val(pgd_a) == pgd_val(pgd_b);
632}
633#endif
634
635/*
636 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
637 * TLB flush will be required as a result of the "set". For example, use
638 * in scenarios where it is known ahead of time that the routine is
639 * setting non-present entries, or re-setting an existing entry to the
640 * same value. Otherwise, use the typical "set" helpers and flush the
641 * TLB.
642 */
643#define set_pte_safe(ptep, pte) \
644({ \
645 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
646 set_pte(ptep, pte); \
647})
648
649#define set_pmd_safe(pmdp, pmd) \
650({ \
651 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
652 set_pmd(pmdp, pmd); \
653})
654
655#define set_pud_safe(pudp, pud) \
656({ \
657 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
658 set_pud(pudp, pud); \
659})
660
661#define set_p4d_safe(p4dp, p4d) \
662({ \
663 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
664 set_p4d(p4dp, p4d); \
665})
666
667#define set_pgd_safe(pgdp, pgd) \
668({ \
669 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
670 set_pgd(pgdp, pgd); \
671})
672
673#ifndef __HAVE_ARCH_DO_SWAP_PAGE
674/*
675 * Some architectures support metadata associated with a page. When a
676 * page is being swapped out, this metadata must be saved so it can be
677 * restored when the page is swapped back in. SPARC M7 and newer
678 * processors support an ADI (Application Data Integrity) tag for the
679 * page as metadata for the page. arch_do_swap_page() can restore this
680 * metadata when a page is swapped back in.
681 */
682static inline void arch_do_swap_page(struct mm_struct *mm,
683 struct vm_area_struct *vma,
684 unsigned long addr,
685 pte_t pte, pte_t oldpte)
686{
687
688}
689#endif
690
691#ifndef __HAVE_ARCH_UNMAP_ONE
692/*
693 * Some architectures support metadata associated with a page. When a
694 * page is being swapped out, this metadata must be saved so it can be
695 * restored when the page is swapped back in. SPARC M7 and newer
696 * processors support an ADI (Application Data Integrity) tag for the
697 * page as metadata for the page. arch_unmap_one() can save this
698 * metadata on a swap-out of a page.
699 */
700static inline int arch_unmap_one(struct mm_struct *mm,
701 struct vm_area_struct *vma,
702 unsigned long addr,
703 pte_t orig_pte)
704{
705 return 0;
706}
707#endif
708
709/*
710 * Allow architectures to preserve additional metadata associated with
711 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
712 * prototypes must be defined in the arch-specific asm/pgtable.h file.
713 */
714#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
715static inline int arch_prepare_to_swap(struct page *page)
716{
717 return 0;
718}
719#endif
720
721#ifndef __HAVE_ARCH_SWAP_INVALIDATE
722static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
723{
724}
725
726static inline void arch_swap_invalidate_area(int type)
727{
728}
729#endif
730
731#ifndef __HAVE_ARCH_SWAP_RESTORE
732static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
733{
734}
735#endif
736
737#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
738#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
739#endif
740
741#ifndef __HAVE_ARCH_MOVE_PTE
742#define move_pte(pte, prot, old_addr, new_addr) (pte)
743#endif
744
745#ifndef pte_accessible
746# define pte_accessible(mm, pte) ((void)(pte), 1)
747#endif
748
749#ifndef flush_tlb_fix_spurious_fault
750#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
751#endif
752
753/*
754 * When walking page tables, get the address of the next boundary,
755 * or the end address of the range if that comes earlier. Although no
756 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
757 */
758
759#define pgd_addr_end(addr, end) \
760({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
761 (__boundary - 1 < (end) - 1)? __boundary: (end); \
762})
763
764#ifndef p4d_addr_end
765#define p4d_addr_end(addr, end) \
766({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
767 (__boundary - 1 < (end) - 1)? __boundary: (end); \
768})
769#endif
770
771#ifndef pud_addr_end
772#define pud_addr_end(addr, end) \
773({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
774 (__boundary - 1 < (end) - 1)? __boundary: (end); \
775})
776#endif
777
778#ifndef pmd_addr_end
779#define pmd_addr_end(addr, end) \
780({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
781 (__boundary - 1 < (end) - 1)? __boundary: (end); \
782})
783#endif
784
785/*
786 * When walking page tables, we usually want to skip any p?d_none entries;
787 * and any p?d_bad entries - reporting the error before resetting to none.
788 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
789 */
790void pgd_clear_bad(pgd_t *);
791
792#ifndef __PAGETABLE_P4D_FOLDED
793void p4d_clear_bad(p4d_t *);
794#else
795#define p4d_clear_bad(p4d) do { } while (0)
796#endif
797
798#ifndef __PAGETABLE_PUD_FOLDED
799void pud_clear_bad(pud_t *);
800#else
801#define pud_clear_bad(p4d) do { } while (0)
802#endif
803
804void pmd_clear_bad(pmd_t *);
805
806static inline int pgd_none_or_clear_bad(pgd_t *pgd)
807{
808 if (pgd_none(*pgd))
809 return 1;
810 if (unlikely(pgd_bad(*pgd))) {
811 pgd_clear_bad(pgd);
812 return 1;
813 }
814 return 0;
815}
816
817static inline int p4d_none_or_clear_bad(p4d_t *p4d)
818{
819 if (p4d_none(*p4d))
820 return 1;
821 if (unlikely(p4d_bad(*p4d))) {
822 p4d_clear_bad(p4d);
823 return 1;
824 }
825 return 0;
826}
827
828static inline int pud_none_or_clear_bad(pud_t *pud)
829{
830 if (pud_none(*pud))
831 return 1;
832 if (unlikely(pud_bad(*pud))) {
833 pud_clear_bad(pud);
834 return 1;
835 }
836 return 0;
837}
838
839static inline int pmd_none_or_clear_bad(pmd_t *pmd)
840{
841 if (pmd_none(*pmd))
842 return 1;
843 if (unlikely(pmd_bad(*pmd))) {
844 pmd_clear_bad(pmd);
845 return 1;
846 }
847 return 0;
848}
849
850static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
851 unsigned long addr,
852 pte_t *ptep)
853{
854 /*
855 * Get the current pte state, but zero it out to make it
856 * non-present, preventing the hardware from asynchronously
857 * updating it.
858 */
859 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
860}
861
862static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
863 unsigned long addr,
864 pte_t *ptep, pte_t pte)
865{
866 /*
867 * The pte is non-present, so there's no hardware state to
868 * preserve.
869 */
870 set_pte_at(vma->vm_mm, addr, ptep, pte);
871}
872
873#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
874/*
875 * Start a pte protection read-modify-write transaction, which
876 * protects against asynchronous hardware modifications to the pte.
877 * The intention is not to prevent the hardware from making pte
878 * updates, but to prevent any updates it may make from being lost.
879 *
880 * This does not protect against other software modifications of the
881 * pte; the appropriate pte lock must be held over the transaction.
882 *
883 * Note that this interface is intended to be batchable, meaning that
884 * ptep_modify_prot_commit may not actually update the pte, but merely
885 * queue the update to be done at some later time. The update must be
886 * actually committed before the pte lock is released, however.
887 */
888static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
889 unsigned long addr,
890 pte_t *ptep)
891{
892 return __ptep_modify_prot_start(vma, addr, ptep);
893}
894
895/*
896 * Commit an update to a pte, leaving any hardware-controlled bits in
897 * the PTE unmodified.
898 */
899static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
900 unsigned long addr,
901 pte_t *ptep, pte_t old_pte, pte_t pte)
902{
903 __ptep_modify_prot_commit(vma, addr, ptep, pte);
904}
905#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
906#endif /* CONFIG_MMU */
907
908/*
909 * No-op macros that just return the current protection value. Defined here
910 * because these macros can be used even if CONFIG_MMU is not defined.
911 */
912
913#ifndef pgprot_nx
914#define pgprot_nx(prot) (prot)
915#endif
916
917#ifndef pgprot_noncached
918#define pgprot_noncached(prot) (prot)
919#endif
920
921#ifndef pgprot_writecombine
922#define pgprot_writecombine pgprot_noncached
923#endif
924
925#ifndef pgprot_writethrough
926#define pgprot_writethrough pgprot_noncached
927#endif
928
929#ifndef pgprot_device
930#define pgprot_device pgprot_noncached
931#endif
932
933#ifndef pgprot_mhp
934#define pgprot_mhp(prot) (prot)
935#endif
936
937#ifdef CONFIG_MMU
938#ifndef pgprot_modify
939#define pgprot_modify pgprot_modify
940static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
941{
942 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
943 newprot = pgprot_noncached(newprot);
944 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
945 newprot = pgprot_writecombine(newprot);
946 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
947 newprot = pgprot_device(newprot);
948 return newprot;
949}
950#endif
951#endif /* CONFIG_MMU */
952
953#ifndef pgprot_encrypted
954#define pgprot_encrypted(prot) (prot)
955#endif
956
957#ifndef pgprot_decrypted
958#define pgprot_decrypted(prot) (prot)
959#endif
960
961/*
962 * A facility to provide lazy MMU batching. This allows PTE updates and
963 * page invalidations to be delayed until a call to leave lazy MMU mode
964 * is issued. Some architectures may benefit from doing this, and it is
965 * beneficial for both shadow and direct mode hypervisors, which may batch
966 * the PTE updates which happen during this window. Note that using this
967 * interface requires that read hazards be removed from the code. A read
968 * hazard could result in the direct mode hypervisor case, since the actual
969 * write to the page tables may not yet have taken place, so reads though
970 * a raw PTE pointer after it has been modified are not guaranteed to be
971 * up to date. This mode can only be entered and left under the protection of
972 * the page table locks for all page tables which may be modified. In the UP
973 * case, this is required so that preemption is disabled, and in the SMP case,
974 * it must synchronize the delayed page table writes properly on other CPUs.
975 */
976#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
977#define arch_enter_lazy_mmu_mode() do {} while (0)
978#define arch_leave_lazy_mmu_mode() do {} while (0)
979#define arch_flush_lazy_mmu_mode() do {} while (0)
980#endif
981
982/*
983 * A facility to provide batching of the reload of page tables and
984 * other process state with the actual context switch code for
985 * paravirtualized guests. By convention, only one of the batched
986 * update (lazy) modes (CPU, MMU) should be active at any given time,
987 * entry should never be nested, and entry and exits should always be
988 * paired. This is for sanity of maintaining and reasoning about the
989 * kernel code. In this case, the exit (end of the context switch) is
990 * in architecture-specific code, and so doesn't need a generic
991 * definition.
992 */
993#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
994#define arch_start_context_switch(prev) do {} while (0)
995#endif
996
997#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
998#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
999static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1000{
1001 return pmd;
1002}
1003
1004static inline int pmd_swp_soft_dirty(pmd_t pmd)
1005{
1006 return 0;
1007}
1008
1009static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1010{
1011 return pmd;
1012}
1013#endif
1014#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1015static inline int pte_soft_dirty(pte_t pte)
1016{
1017 return 0;
1018}
1019
1020static inline int pmd_soft_dirty(pmd_t pmd)
1021{
1022 return 0;
1023}
1024
1025static inline pte_t pte_mksoft_dirty(pte_t pte)
1026{
1027 return pte;
1028}
1029
1030static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1031{
1032 return pmd;
1033}
1034
1035static inline pte_t pte_clear_soft_dirty(pte_t pte)
1036{
1037 return pte;
1038}
1039
1040static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1041{
1042 return pmd;
1043}
1044
1045static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1046{
1047 return pte;
1048}
1049
1050static inline int pte_swp_soft_dirty(pte_t pte)
1051{
1052 return 0;
1053}
1054
1055static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1056{
1057 return pte;
1058}
1059
1060static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1061{
1062 return pmd;
1063}
1064
1065static inline int pmd_swp_soft_dirty(pmd_t pmd)
1066{
1067 return 0;
1068}
1069
1070static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1071{
1072 return pmd;
1073}
1074#endif
1075
1076#ifndef __HAVE_PFNMAP_TRACKING
1077/*
1078 * Interfaces that can be used by architecture code to keep track of
1079 * memory type of pfn mappings specified by the remap_pfn_range,
1080 * vmf_insert_pfn.
1081 */
1082
1083/*
1084 * track_pfn_remap is called when a _new_ pfn mapping is being established
1085 * by remap_pfn_range() for physical range indicated by pfn and size.
1086 */
1087static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1088 unsigned long pfn, unsigned long addr,
1089 unsigned long size)
1090{
1091 return 0;
1092}
1093
1094/*
1095 * track_pfn_insert is called when a _new_ single pfn is established
1096 * by vmf_insert_pfn().
1097 */
1098static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1099 pfn_t pfn)
1100{
1101}
1102
1103/*
1104 * track_pfn_copy is called when vma that is covering the pfnmap gets
1105 * copied through copy_page_range().
1106 */
1107static inline int track_pfn_copy(struct vm_area_struct *vma)
1108{
1109 return 0;
1110}
1111
1112/*
1113 * untrack_pfn is called while unmapping a pfnmap for a region.
1114 * untrack can be called for a specific region indicated by pfn and size or
1115 * can be for the entire vma (in which case pfn, size are zero).
1116 */
1117static inline void untrack_pfn(struct vm_area_struct *vma,
1118 unsigned long pfn, unsigned long size)
1119{
1120}
1121
1122/*
1123 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1124 */
1125static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1126{
1127}
1128#else
1129extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1130 unsigned long pfn, unsigned long addr,
1131 unsigned long size);
1132extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1133 pfn_t pfn);
1134extern int track_pfn_copy(struct vm_area_struct *vma);
1135extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1136 unsigned long size);
1137extern void untrack_pfn_moved(struct vm_area_struct *vma);
1138#endif
1139
1140#ifdef CONFIG_MMU
1141#ifdef __HAVE_COLOR_ZERO_PAGE
1142static inline int is_zero_pfn(unsigned long pfn)
1143{
1144 extern unsigned long zero_pfn;
1145 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1146 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1147}
1148
1149#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1150
1151#else
1152static inline int is_zero_pfn(unsigned long pfn)
1153{
1154 extern unsigned long zero_pfn;
1155 return pfn == zero_pfn;
1156}
1157
1158static inline unsigned long my_zero_pfn(unsigned long addr)
1159{
1160 extern unsigned long zero_pfn;
1161 return zero_pfn;
1162}
1163#endif
1164#else
1165static inline int is_zero_pfn(unsigned long pfn)
1166{
1167 return 0;
1168}
1169
1170static inline unsigned long my_zero_pfn(unsigned long addr)
1171{
1172 return 0;
1173}
1174#endif /* CONFIG_MMU */
1175
1176#ifdef CONFIG_MMU
1177
1178#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1179static inline int pmd_trans_huge(pmd_t pmd)
1180{
1181 return 0;
1182}
1183#ifndef pmd_write
1184static inline int pmd_write(pmd_t pmd)
1185{
1186 BUG();
1187 return 0;
1188}
1189#endif /* pmd_write */
1190#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1191
1192#ifndef pud_write
1193static inline int pud_write(pud_t pud)
1194{
1195 BUG();
1196 return 0;
1197}
1198#endif /* pud_write */
1199
1200#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1201static inline int pmd_devmap(pmd_t pmd)
1202{
1203 return 0;
1204}
1205static inline int pud_devmap(pud_t pud)
1206{
1207 return 0;
1208}
1209static inline int pgd_devmap(pgd_t pgd)
1210{
1211 return 0;
1212}
1213#endif
1214
1215#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1216 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1217 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
1218static inline int pud_trans_huge(pud_t pud)
1219{
1220 return 0;
1221}
1222#endif
1223
1224/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1225static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1226{
1227 pud_t pudval = READ_ONCE(*pud);
1228
1229 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1230 return 1;
1231 if (unlikely(pud_bad(pudval))) {
1232 pud_clear_bad(pud);
1233 return 1;
1234 }
1235 return 0;
1236}
1237
1238/* See pmd_trans_unstable for discussion. */
1239static inline int pud_trans_unstable(pud_t *pud)
1240{
1241#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1242 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1243 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1244#else
1245 return 0;
1246#endif
1247}
1248
1249#ifndef pmd_read_atomic
1250static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1251{
1252 /*
1253 * Depend on compiler for an atomic pmd read. NOTE: this is
1254 * only going to work, if the pmdval_t isn't larger than
1255 * an unsigned long.
1256 */
1257 return *pmdp;
1258}
1259#endif
1260
1261#ifndef arch_needs_pgtable_deposit
1262#define arch_needs_pgtable_deposit() (false)
1263#endif
1264/*
1265 * This function is meant to be used by sites walking pagetables with
1266 * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1267 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1268 * into a null pmd and the transhuge page fault can convert a null pmd
1269 * into an hugepmd or into a regular pmd (if the hugepage allocation
1270 * fails). While holding the mmap_lock in read mode the pmd becomes
1271 * stable and stops changing under us only if it's not null and not a
1272 * transhuge pmd. When those races occurs and this function makes a
1273 * difference vs the standard pmd_none_or_clear_bad, the result is
1274 * undefined so behaving like if the pmd was none is safe (because it
1275 * can return none anyway). The compiler level barrier() is critically
1276 * important to compute the two checks atomically on the same pmdval.
1277 *
1278 * For 32bit kernels with a 64bit large pmd_t this automatically takes
1279 * care of reading the pmd atomically to avoid SMP race conditions
1280 * against pmd_populate() when the mmap_lock is hold for reading by the
1281 * caller (a special atomic read not done by "gcc" as in the generic
1282 * version above, is also needed when THP is disabled because the page
1283 * fault can populate the pmd from under us).
1284 */
1285static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1286{
1287 pmd_t pmdval = pmd_read_atomic(pmd);
1288 /*
1289 * The barrier will stabilize the pmdval in a register or on
1290 * the stack so that it will stop changing under the code.
1291 *
1292 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1293 * pmd_read_atomic is allowed to return a not atomic pmdval
1294 * (for example pointing to an hugepage that has never been
1295 * mapped in the pmd). The below checks will only care about
1296 * the low part of the pmd with 32bit PAE x86 anyway, with the
1297 * exception of pmd_none(). So the important thing is that if
1298 * the low part of the pmd is found null, the high part will
1299 * be also null or the pmd_none() check below would be
1300 * confused.
1301 */
1302#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1303 barrier();
1304#endif
1305 /*
1306 * !pmd_present() checks for pmd migration entries
1307 *
1308 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1309 * But using that requires moving current function and pmd_trans_unstable()
1310 * to linux/swapops.h to resolve dependency, which is too much code move.
1311 *
1312 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1313 * because !pmd_present() pages can only be under migration not swapped
1314 * out.
1315 *
1316 * pmd_none() is preserved for future condition checks on pmd migration
1317 * entries and not confusing with this function name, although it is
1318 * redundant with !pmd_present().
1319 */
1320 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1321 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1322 return 1;
1323 if (unlikely(pmd_bad(pmdval))) {
1324 pmd_clear_bad(pmd);
1325 return 1;
1326 }
1327 return 0;
1328}
1329
1330/*
1331 * This is a noop if Transparent Hugepage Support is not built into
1332 * the kernel. Otherwise it is equivalent to
1333 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1334 * places that already verified the pmd is not none and they want to
1335 * walk ptes while holding the mmap sem in read mode (write mode don't
1336 * need this). If THP is not enabled, the pmd can't go away under the
1337 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1338 * run a pmd_trans_unstable before walking the ptes after
1339 * split_huge_pmd returns (because it may have run when the pmd become
1340 * null, but then a page fault can map in a THP and not a regular page).
1341 */
1342static inline int pmd_trans_unstable(pmd_t *pmd)
1343{
1344#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1345 return pmd_none_or_trans_huge_or_clear_bad(pmd);
1346#else
1347 return 0;
1348#endif
1349}
1350
1351/*
1352 * the ordering of these checks is important for pmds with _page_devmap set.
1353 * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1354 * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1355 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1356 */
1357static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1358{
1359 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1360}
1361
1362#ifndef CONFIG_NUMA_BALANCING
1363/*
1364 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1365 * the only case the kernel cares is for NUMA balancing and is only ever set
1366 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1367 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1368 * is the responsibility of the caller to distinguish between PROT_NONE
1369 * protections and NUMA hinting fault protections.
1370 */
1371static inline int pte_protnone(pte_t pte)
1372{
1373 return 0;
1374}
1375
1376static inline int pmd_protnone(pmd_t pmd)
1377{
1378 return 0;
1379}
1380#endif /* CONFIG_NUMA_BALANCING */
1381
1382#endif /* CONFIG_MMU */
1383
1384#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1385
1386#ifndef __PAGETABLE_P4D_FOLDED
1387int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1388int p4d_clear_huge(p4d_t *p4d);
1389#else
1390static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1391{
1392 return 0;
1393}
1394static inline int p4d_clear_huge(p4d_t *p4d)
1395{
1396 return 0;
1397}
1398#endif /* !__PAGETABLE_P4D_FOLDED */
1399
1400int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1401int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1402int pud_clear_huge(pud_t *pud);
1403int pmd_clear_huge(pmd_t *pmd);
1404int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1405int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1406int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1407#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1408static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1409{
1410 return 0;
1411}
1412static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1413{
1414 return 0;
1415}
1416static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1417{
1418 return 0;
1419}
1420static inline int p4d_clear_huge(p4d_t *p4d)
1421{
1422 return 0;
1423}
1424static inline int pud_clear_huge(pud_t *pud)
1425{
1426 return 0;
1427}
1428static inline int pmd_clear_huge(pmd_t *pmd)
1429{
1430 return 0;
1431}
1432static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1433{
1434 return 0;
1435}
1436static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1437{
1438 return 0;
1439}
1440static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1441{
1442 return 0;
1443}
1444#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1445
1446#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1447#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1448/*
1449 * ARCHes with special requirements for evicting THP backing TLB entries can
1450 * implement this. Otherwise also, it can help optimize normal TLB flush in
1451 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1452 * entire TLB if flush span is greater than a threshold, which will
1453 * likely be true for a single huge page. Thus a single THP flush will
1454 * invalidate the entire TLB which is not desirable.
1455 * e.g. see arch/arc: flush_pmd_tlb_range
1456 */
1457#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1458#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1459#else
1460#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1461#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1462#endif
1463#endif
1464
1465struct file;
1466int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1467 unsigned long size, pgprot_t *vma_prot);
1468
1469#ifndef CONFIG_X86_ESPFIX64
1470static inline void init_espfix_bsp(void) { }
1471#endif
1472
1473extern void __init pgtable_cache_init(void);
1474
1475#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1476static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1477{
1478 return true;
1479}
1480
1481static inline bool arch_has_pfn_modify_check(void)
1482{
1483 return false;
1484}
1485#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1486
1487/*
1488 * Architecture PAGE_KERNEL_* fallbacks
1489 *
1490 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1491 * because they really don't support them, or the port needs to be updated to
1492 * reflect the required functionality. Below are a set of relatively safe
1493 * fallbacks, as best effort, which we can count on in lieu of the architectures
1494 * not defining them on their own yet.
1495 */
1496
1497#ifndef PAGE_KERNEL_RO
1498# define PAGE_KERNEL_RO PAGE_KERNEL
1499#endif
1500
1501#ifndef PAGE_KERNEL_EXEC
1502# define PAGE_KERNEL_EXEC PAGE_KERNEL
1503#endif
1504
1505/*
1506 * Page Table Modification bits for pgtbl_mod_mask.
1507 *
1508 * These are used by the p?d_alloc_track*() set of functions an in the generic
1509 * vmalloc/ioremap code to track at which page-table levels entries have been
1510 * modified. Based on that the code can better decide when vmalloc and ioremap
1511 * mapping changes need to be synchronized to other page-tables in the system.
1512 */
1513#define __PGTBL_PGD_MODIFIED 0
1514#define __PGTBL_P4D_MODIFIED 1
1515#define __PGTBL_PUD_MODIFIED 2
1516#define __PGTBL_PMD_MODIFIED 3
1517#define __PGTBL_PTE_MODIFIED 4
1518
1519#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1520#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1521#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1522#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1523#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1524
1525/* Page-Table Modification Mask */
1526typedef unsigned int pgtbl_mod_mask;
1527
1528#endif /* !__ASSEMBLY__ */
1529
1530#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1531#ifdef CONFIG_PHYS_ADDR_T_64BIT
1532/*
1533 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1534 * with physical address space extension, but falls back to
1535 * BITS_PER_LONG otherwise.
1536 */
1537#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1538#else
1539#define MAX_POSSIBLE_PHYSMEM_BITS 32
1540#endif
1541#endif
1542
1543#ifndef has_transparent_hugepage
1544#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1545#define has_transparent_hugepage() 1
1546#else
1547#define has_transparent_hugepage() 0
1548#endif
1549#endif
1550
1551/*
1552 * On some architectures it depends on the mm if the p4d/pud or pmd
1553 * layer of the page table hierarchy is folded or not.
1554 */
1555#ifndef mm_p4d_folded
1556#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1557#endif
1558
1559#ifndef mm_pud_folded
1560#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1561#endif
1562
1563#ifndef mm_pmd_folded
1564#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1565#endif
1566
1567#ifndef p4d_offset_lockless
1568#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1569#endif
1570#ifndef pud_offset_lockless
1571#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1572#endif
1573#ifndef pmd_offset_lockless
1574#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1575#endif
1576
1577/*
1578 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1579 * This differs from p?d_huge() by the fact that they are always available (if
1580 * the architecture supports large pages at the appropriate level) even
1581 * if CONFIG_HUGETLB_PAGE is not defined.
1582 * Only meaningful when called on a valid entry.
1583 */
1584#ifndef pgd_leaf
1585#define pgd_leaf(x) 0
1586#endif
1587#ifndef p4d_leaf
1588#define p4d_leaf(x) 0
1589#endif
1590#ifndef pud_leaf
1591#define pud_leaf(x) 0
1592#endif
1593#ifndef pmd_leaf
1594#define pmd_leaf(x) 0
1595#endif
1596
1597#ifndef pgd_leaf_size
1598#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1599#endif
1600#ifndef p4d_leaf_size
1601#define p4d_leaf_size(x) P4D_SIZE
1602#endif
1603#ifndef pud_leaf_size
1604#define pud_leaf_size(x) PUD_SIZE
1605#endif
1606#ifndef pmd_leaf_size
1607#define pmd_leaf_size(x) PMD_SIZE
1608#endif
1609#ifndef pte_leaf_size
1610#define pte_leaf_size(x) PAGE_SIZE
1611#endif
1612
1613/*
1614 * Some architectures have MMUs that are configurable or selectable at boot
1615 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1616 * helps to have a static maximum value.
1617 */
1618
1619#ifndef MAX_PTRS_PER_PTE
1620#define MAX_PTRS_PER_PTE PTRS_PER_PTE
1621#endif
1622
1623#ifndef MAX_PTRS_PER_PMD
1624#define MAX_PTRS_PER_PMD PTRS_PER_PMD
1625#endif
1626
1627#ifndef MAX_PTRS_PER_PUD
1628#define MAX_PTRS_PER_PUD PTRS_PER_PUD
1629#endif
1630
1631#ifndef MAX_PTRS_PER_P4D
1632#define MAX_PTRS_PER_P4D PTRS_PER_P4D
1633#endif
1634
1635#endif /* _LINUX_PGTABLE_H */