Linux Audio

Check our new training course

Loading...
v5.14.15
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Linux Socket Filter Data Structures
   4 */
   5#ifndef __LINUX_FILTER_H__
   6#define __LINUX_FILTER_H__
   7
   8#include <stdarg.h>
   9
  10#include <linux/atomic.h>
  11#include <linux/refcount.h>
  12#include <linux/compat.h>
  13#include <linux/skbuff.h>
  14#include <linux/linkage.h>
  15#include <linux/printk.h>
  16#include <linux/workqueue.h>
  17#include <linux/sched.h>
  18#include <linux/capability.h>
  19#include <linux/set_memory.h>
  20#include <linux/kallsyms.h>
  21#include <linux/if_vlan.h>
  22#include <linux/vmalloc.h>
  23#include <linux/sockptr.h>
  24#include <crypto/sha1.h>
  25#include <linux/u64_stats_sync.h>
  26
  27#include <net/sch_generic.h>
  28
  29#include <asm/byteorder.h>
 
  30#include <uapi/linux/filter.h>
  31#include <uapi/linux/bpf.h>
  32
  33struct sk_buff;
  34struct sock;
  35struct seccomp_data;
  36struct bpf_prog_aux;
  37struct xdp_rxq_info;
  38struct xdp_buff;
  39struct sock_reuseport;
  40struct ctl_table;
  41struct ctl_table_header;
  42
  43/* ArgX, context and stack frame pointer register positions. Note,
  44 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
  45 * calls in BPF_CALL instruction.
  46 */
  47#define BPF_REG_ARG1	BPF_REG_1
  48#define BPF_REG_ARG2	BPF_REG_2
  49#define BPF_REG_ARG3	BPF_REG_3
  50#define BPF_REG_ARG4	BPF_REG_4
  51#define BPF_REG_ARG5	BPF_REG_5
  52#define BPF_REG_CTX	BPF_REG_6
  53#define BPF_REG_FP	BPF_REG_10
  54
  55/* Additional register mappings for converted user programs. */
  56#define BPF_REG_A	BPF_REG_0
  57#define BPF_REG_X	BPF_REG_7
  58#define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
  59#define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
  60#define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
  61
  62/* Kernel hidden auxiliary/helper register. */
  63#define BPF_REG_AX		MAX_BPF_REG
  64#define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
  65#define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
  66
  67/* unused opcode to mark special call to bpf_tail_call() helper */
  68#define BPF_TAIL_CALL	0xf0
  69
  70/* unused opcode to mark special load instruction. Same as BPF_ABS */
  71#define BPF_PROBE_MEM	0x20
  72
  73/* unused opcode to mark call to interpreter with arguments */
  74#define BPF_CALL_ARGS	0xe0
  75
  76/* unused opcode to mark speculation barrier for mitigating
  77 * Speculative Store Bypass
  78 */
  79#define BPF_NOSPEC	0xc0
  80
  81/* As per nm, we expose JITed images as text (code) section for
  82 * kallsyms. That way, tools like perf can find it to match
  83 * addresses.
  84 */
  85#define BPF_SYM_ELF_TYPE	't'
  86
  87/* BPF program can access up to 512 bytes of stack space. */
  88#define MAX_BPF_STACK	512
  89
  90/* Helper macros for filter block array initializers. */
  91
  92/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
  93
  94#define BPF_ALU64_REG(OP, DST, SRC)				\
  95	((struct bpf_insn) {					\
  96		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
  97		.dst_reg = DST,					\
  98		.src_reg = SRC,					\
  99		.off   = 0,					\
 100		.imm   = 0 })
 101
 102#define BPF_ALU32_REG(OP, DST, SRC)				\
 103	((struct bpf_insn) {					\
 104		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
 105		.dst_reg = DST,					\
 106		.src_reg = SRC,					\
 107		.off   = 0,					\
 108		.imm   = 0 })
 109
 110/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
 111
 112#define BPF_ALU64_IMM(OP, DST, IMM)				\
 113	((struct bpf_insn) {					\
 114		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
 115		.dst_reg = DST,					\
 116		.src_reg = 0,					\
 117		.off   = 0,					\
 118		.imm   = IMM })
 119
 120#define BPF_ALU32_IMM(OP, DST, IMM)				\
 121	((struct bpf_insn) {					\
 122		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
 123		.dst_reg = DST,					\
 124		.src_reg = 0,					\
 125		.off   = 0,					\
 126		.imm   = IMM })
 127
 128/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
 129
 130#define BPF_ENDIAN(TYPE, DST, LEN)				\
 131	((struct bpf_insn) {					\
 132		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
 133		.dst_reg = DST,					\
 134		.src_reg = 0,					\
 135		.off   = 0,					\
 136		.imm   = LEN })
 137
 138/* Short form of mov, dst_reg = src_reg */
 139
 140#define BPF_MOV64_REG(DST, SRC)					\
 141	((struct bpf_insn) {					\
 142		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
 143		.dst_reg = DST,					\
 144		.src_reg = SRC,					\
 145		.off   = 0,					\
 146		.imm   = 0 })
 147
 148#define BPF_MOV32_REG(DST, SRC)					\
 149	((struct bpf_insn) {					\
 150		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
 151		.dst_reg = DST,					\
 152		.src_reg = SRC,					\
 153		.off   = 0,					\
 154		.imm   = 0 })
 155
 156/* Short form of mov, dst_reg = imm32 */
 157
 158#define BPF_MOV64_IMM(DST, IMM)					\
 159	((struct bpf_insn) {					\
 160		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
 161		.dst_reg = DST,					\
 162		.src_reg = 0,					\
 163		.off   = 0,					\
 164		.imm   = IMM })
 165
 166#define BPF_MOV32_IMM(DST, IMM)					\
 167	((struct bpf_insn) {					\
 168		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
 169		.dst_reg = DST,					\
 170		.src_reg = 0,					\
 171		.off   = 0,					\
 172		.imm   = IMM })
 173
 174/* Special form of mov32, used for doing explicit zero extension on dst. */
 175#define BPF_ZEXT_REG(DST)					\
 176	((struct bpf_insn) {					\
 177		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
 178		.dst_reg = DST,					\
 179		.src_reg = DST,					\
 180		.off   = 0,					\
 181		.imm   = 1 })
 182
 183static inline bool insn_is_zext(const struct bpf_insn *insn)
 184{
 185	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
 186}
 187
 188/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
 189#define BPF_LD_IMM64(DST, IMM)					\
 190	BPF_LD_IMM64_RAW(DST, 0, IMM)
 191
 192#define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
 193	((struct bpf_insn) {					\
 194		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
 195		.dst_reg = DST,					\
 196		.src_reg = SRC,					\
 197		.off   = 0,					\
 198		.imm   = (__u32) (IMM) }),			\
 199	((struct bpf_insn) {					\
 200		.code  = 0, /* zero is reserved opcode */	\
 201		.dst_reg = 0,					\
 202		.src_reg = 0,					\
 203		.off   = 0,					\
 204		.imm   = ((__u64) (IMM)) >> 32 })
 205
 206/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
 207#define BPF_LD_MAP_FD(DST, MAP_FD)				\
 208	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
 209
 210/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
 211
 212#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
 213	((struct bpf_insn) {					\
 214		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
 215		.dst_reg = DST,					\
 216		.src_reg = SRC,					\
 217		.off   = 0,					\
 218		.imm   = IMM })
 219
 220#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
 221	((struct bpf_insn) {					\
 222		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
 223		.dst_reg = DST,					\
 224		.src_reg = SRC,					\
 225		.off   = 0,					\
 226		.imm   = IMM })
 227
 228/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
 229
 230#define BPF_LD_ABS(SIZE, IMM)					\
 231	((struct bpf_insn) {					\
 232		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
 233		.dst_reg = 0,					\
 234		.src_reg = 0,					\
 235		.off   = 0,					\
 236		.imm   = IMM })
 237
 238/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
 239
 240#define BPF_LD_IND(SIZE, SRC, IMM)				\
 241	((struct bpf_insn) {					\
 242		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
 243		.dst_reg = 0,					\
 244		.src_reg = SRC,					\
 245		.off   = 0,					\
 246		.imm   = IMM })
 247
 248/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
 249
 250#define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
 251	((struct bpf_insn) {					\
 252		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
 253		.dst_reg = DST,					\
 254		.src_reg = SRC,					\
 255		.off   = OFF,					\
 256		.imm   = 0 })
 257
 258/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
 259
 260#define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
 261	((struct bpf_insn) {					\
 262		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
 263		.dst_reg = DST,					\
 264		.src_reg = SRC,					\
 265		.off   = OFF,					\
 266		.imm   = 0 })
 267
 
 268
 269/*
 270 * Atomic operations:
 271 *
 272 *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
 273 *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
 274 *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
 275 *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
 276 *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
 277 *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
 278 *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
 279 *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
 280 *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
 281 *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
 282 */
 283
 284#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
 285	((struct bpf_insn) {					\
 286		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
 287		.dst_reg = DST,					\
 288		.src_reg = SRC,					\
 289		.off   = OFF,					\
 290		.imm   = OP })
 291
 292/* Legacy alias */
 293#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
 294
 295/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
 296
 297#define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
 298	((struct bpf_insn) {					\
 299		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
 300		.dst_reg = DST,					\
 301		.src_reg = 0,					\
 302		.off   = OFF,					\
 303		.imm   = IMM })
 304
 305/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
 306
 307#define BPF_JMP_REG(OP, DST, SRC, OFF)				\
 308	((struct bpf_insn) {					\
 309		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
 310		.dst_reg = DST,					\
 311		.src_reg = SRC,					\
 312		.off   = OFF,					\
 313		.imm   = 0 })
 314
 315/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
 316
 317#define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
 318	((struct bpf_insn) {					\
 319		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
 320		.dst_reg = DST,					\
 321		.src_reg = 0,					\
 322		.off   = OFF,					\
 323		.imm   = IMM })
 324
 325/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
 326
 327#define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
 328	((struct bpf_insn) {					\
 329		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
 330		.dst_reg = DST,					\
 331		.src_reg = SRC,					\
 332		.off   = OFF,					\
 333		.imm   = 0 })
 334
 335/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
 336
 337#define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
 338	((struct bpf_insn) {					\
 339		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
 340		.dst_reg = DST,					\
 341		.src_reg = 0,					\
 342		.off   = OFF,					\
 343		.imm   = IMM })
 344
 345/* Unconditional jumps, goto pc + off16 */
 346
 347#define BPF_JMP_A(OFF)						\
 348	((struct bpf_insn) {					\
 349		.code  = BPF_JMP | BPF_JA,			\
 350		.dst_reg = 0,					\
 351		.src_reg = 0,					\
 352		.off   = OFF,					\
 353		.imm   = 0 })
 354
 355/* Relative call */
 356
 357#define BPF_CALL_REL(TGT)					\
 358	((struct bpf_insn) {					\
 359		.code  = BPF_JMP | BPF_CALL,			\
 360		.dst_reg = 0,					\
 361		.src_reg = BPF_PSEUDO_CALL,			\
 362		.off   = 0,					\
 363		.imm   = TGT })
 364
 365/* Function call */
 366
 367#define BPF_CAST_CALL(x)					\
 368		((u64 (*)(u64, u64, u64, u64, u64))(x))
 369
 370#define BPF_EMIT_CALL(FUNC)					\
 371	((struct bpf_insn) {					\
 372		.code  = BPF_JMP | BPF_CALL,			\
 373		.dst_reg = 0,					\
 374		.src_reg = 0,					\
 375		.off   = 0,					\
 376		.imm   = ((FUNC) - __bpf_call_base) })
 377
 378/* Raw code statement block */
 379
 380#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
 381	((struct bpf_insn) {					\
 382		.code  = CODE,					\
 383		.dst_reg = DST,					\
 384		.src_reg = SRC,					\
 385		.off   = OFF,					\
 386		.imm   = IMM })
 387
 388/* Program exit */
 389
 390#define BPF_EXIT_INSN()						\
 391	((struct bpf_insn) {					\
 392		.code  = BPF_JMP | BPF_EXIT,			\
 393		.dst_reg = 0,					\
 394		.src_reg = 0,					\
 395		.off   = 0,					\
 396		.imm   = 0 })
 397
 398/* Speculation barrier */
 399
 400#define BPF_ST_NOSPEC()						\
 401	((struct bpf_insn) {					\
 402		.code  = BPF_ST | BPF_NOSPEC,			\
 403		.dst_reg = 0,					\
 404		.src_reg = 0,					\
 405		.off   = 0,					\
 406		.imm   = 0 })
 407
 408/* Internal classic blocks for direct assignment */
 409
 410#define __BPF_STMT(CODE, K)					\
 411	((struct sock_filter) BPF_STMT(CODE, K))
 412
 413#define __BPF_JUMP(CODE, K, JT, JF)				\
 414	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
 415
 416#define bytes_to_bpf_size(bytes)				\
 417({								\
 418	int bpf_size = -EINVAL;					\
 419								\
 420	if (bytes == sizeof(u8))				\
 421		bpf_size = BPF_B;				\
 422	else if (bytes == sizeof(u16))				\
 423		bpf_size = BPF_H;				\
 424	else if (bytes == sizeof(u32))				\
 425		bpf_size = BPF_W;				\
 426	else if (bytes == sizeof(u64))				\
 427		bpf_size = BPF_DW;				\
 428								\
 429	bpf_size;						\
 430})
 431
 432#define bpf_size_to_bytes(bpf_size)				\
 433({								\
 434	int bytes = -EINVAL;					\
 435								\
 436	if (bpf_size == BPF_B)					\
 437		bytes = sizeof(u8);				\
 438	else if (bpf_size == BPF_H)				\
 439		bytes = sizeof(u16);				\
 440	else if (bpf_size == BPF_W)				\
 441		bytes = sizeof(u32);				\
 442	else if (bpf_size == BPF_DW)				\
 443		bytes = sizeof(u64);				\
 444								\
 445	bytes;							\
 446})
 447
 448#define BPF_SIZEOF(type)					\
 449	({							\
 450		const int __size = bytes_to_bpf_size(sizeof(type)); \
 451		BUILD_BUG_ON(__size < 0);			\
 452		__size;						\
 453	})
 454
 455#define BPF_FIELD_SIZEOF(type, field)				\
 456	({							\
 457		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
 458		BUILD_BUG_ON(__size < 0);			\
 459		__size;						\
 460	})
 461
 462#define BPF_LDST_BYTES(insn)					\
 463	({							\
 464		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
 465		WARN_ON(__size < 0);				\
 466		__size;						\
 467	})
 468
 469#define __BPF_MAP_0(m, v, ...) v
 470#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
 471#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
 472#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
 473#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
 474#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
 475
 476#define __BPF_REG_0(...) __BPF_PAD(5)
 477#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
 478#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
 479#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
 480#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
 481#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
 482
 483#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
 484#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
 485
 486#define __BPF_CAST(t, a)						       \
 487	(__force t)							       \
 488	(__force							       \
 489	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
 490				      (unsigned long)0, (t)0))) a
 491#define __BPF_V void
 492#define __BPF_N
 493
 494#define __BPF_DECL_ARGS(t, a) t   a
 495#define __BPF_DECL_REGS(t, a) u64 a
 496
 497#define __BPF_PAD(n)							       \
 498	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
 499		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
 500
 501#define BPF_CALL_x(x, name, ...)					       \
 502	static __always_inline						       \
 503	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
 504	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
 505	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
 506	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
 507	{								       \
 508		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
 509	}								       \
 510	static __always_inline						       \
 511	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
 512
 513#define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
 514#define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
 515#define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
 516#define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
 517#define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
 518#define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)
 519
 520#define bpf_ctx_range(TYPE, MEMBER)						\
 521	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
 522#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
 523	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
 524#if BITS_PER_LONG == 64
 525# define bpf_ctx_range_ptr(TYPE, MEMBER)					\
 526	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
 527#else
 528# define bpf_ctx_range_ptr(TYPE, MEMBER)					\
 529	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
 530#endif /* BITS_PER_LONG == 64 */
 531
 532#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
 533	({									\
 534		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
 535		*(PTR_SIZE) = (SIZE);						\
 536		offsetof(TYPE, MEMBER);						\
 537	})
 538
 539/* A struct sock_filter is architecture independent. */
 540struct compat_sock_fprog {
 541	u16		len;
 542	compat_uptr_t	filter;	/* struct sock_filter * */
 543};
 
 544
 545struct sock_fprog_kern {
 546	u16			len;
 547	struct sock_filter	*filter;
 548};
 549
 550/* Some arches need doubleword alignment for their instructions and/or data */
 551#define BPF_IMAGE_ALIGNMENT 8
 552
 553struct bpf_binary_header {
 554	u32 pages;
 555	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
 556};
 557
 558struct bpf_prog_stats {
 559	u64 cnt;
 560	u64 nsecs;
 561	u64 misses;
 562	struct u64_stats_sync syncp;
 563} __aligned(2 * sizeof(u64));
 564
 565struct bpf_prog {
 566	u16			pages;		/* Number of allocated pages */
 
 567	u16			jited:1,	/* Is our filter JIT'ed? */
 568				jit_requested:1,/* archs need to JIT the prog */
 569				gpl_compatible:1, /* Is filter GPL compatible? */
 570				cb_access:1,	/* Is control block accessed? */
 571				dst_needed:1,	/* Do we need dst entry? */
 572				blinded:1,	/* Was blinded */
 573				is_func:1,	/* program is a bpf function */
 574				kprobe_override:1, /* Do we override a kprobe? */
 575				has_callchain_buf:1, /* callchain buffer allocated? */
 576				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
 577				call_get_stack:1; /* Do we call bpf_get_stack() or bpf_get_stackid() */
 578	enum bpf_prog_type	type;		/* Type of BPF program */
 579	enum bpf_attach_type	expected_attach_type; /* For some prog types */
 580	u32			len;		/* Number of filter blocks */
 581	u32			jited_len;	/* Size of jited insns in bytes */
 582	u8			tag[BPF_TAG_SIZE];
 583	struct bpf_prog_stats __percpu *stats;
 584	int __percpu		*active;
 585	unsigned int		(*bpf_func)(const void *ctx,
 586					    const struct bpf_insn *insn);
 587	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
 588	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
 
 
 589	/* Instructions for interpreter */
 590	struct sock_filter	insns[0];
 591	struct bpf_insn		insnsi[];
 
 
 592};
 593
 594struct sk_filter {
 595	refcount_t	refcnt;
 596	struct rcu_head	rcu;
 597	struct bpf_prog	*prog;
 598};
 599
 600DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
 601
 602#define __BPF_PROG_RUN(prog, ctx, dfunc)	({			\
 603	u32 __ret;							\
 604	cant_migrate();							\
 605	if (static_branch_unlikely(&bpf_stats_enabled_key)) {		\
 606		struct bpf_prog_stats *__stats;				\
 607		u64 __start = sched_clock();				\
 608		__ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);	\
 609		__stats = this_cpu_ptr(prog->stats);			\
 610		u64_stats_update_begin(&__stats->syncp);		\
 611		__stats->cnt++;						\
 612		__stats->nsecs += sched_clock() - __start;		\
 613		u64_stats_update_end(&__stats->syncp);			\
 614	} else {							\
 615		__ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);	\
 616	}								\
 617	__ret; })
 618
 619#define BPF_PROG_RUN(prog, ctx)						\
 620	__BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func)
 621
 622/*
 623 * Use in preemptible and therefore migratable context to make sure that
 624 * the execution of the BPF program runs on one CPU.
 625 *
 626 * This uses migrate_disable/enable() explicitly to document that the
 627 * invocation of a BPF program does not require reentrancy protection
 628 * against a BPF program which is invoked from a preempting task.
 629 *
 630 * For non RT enabled kernels migrate_disable/enable() maps to
 631 * preempt_disable/enable(), i.e. it disables also preemption.
 632 */
 633static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
 634					  const void *ctx)
 635{
 636	u32 ret;
 637
 638	migrate_disable();
 639	ret = __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func);
 640	migrate_enable();
 641	return ret;
 642}
 643
 644#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
 645
 646struct bpf_skb_data_end {
 647	struct qdisc_skb_cb qdisc_cb;
 648	void *data_meta;
 649	void *data_end;
 650};
 651
 652struct bpf_nh_params {
 653	u32 nh_family;
 654	union {
 655		u32 ipv4_nh;
 656		struct in6_addr ipv6_nh;
 657	};
 658};
 659
 660struct bpf_redirect_info {
 661	u32 flags;
 662	u32 tgt_index;
 663	void *tgt_value;
 664	struct bpf_map *map;
 665	u32 map_id;
 666	enum bpf_map_type map_type;
 667	u32 kern_flags;
 668	struct bpf_nh_params nh;
 669};
 670
 671DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
 672
 673/* flags for bpf_redirect_info kern_flags */
 674#define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
 675
 676/* Compute the linear packet data range [data, data_end) which
 677 * will be accessed by various program types (cls_bpf, act_bpf,
 678 * lwt, ...). Subsystems allowing direct data access must (!)
 679 * ensure that cb[] area can be written to when BPF program is
 680 * invoked (otherwise cb[] save/restore is necessary).
 681 */
 682static inline void bpf_compute_data_pointers(struct sk_buff *skb)
 683{
 684	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
 685
 686	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
 687	cb->data_meta = skb->data - skb_metadata_len(skb);
 688	cb->data_end  = skb->data + skb_headlen(skb);
 689}
 690
 691/* Similar to bpf_compute_data_pointers(), except that save orginal
 692 * data in cb->data and cb->meta_data for restore.
 693 */
 694static inline void bpf_compute_and_save_data_end(
 695	struct sk_buff *skb, void **saved_data_end)
 696{
 697	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
 698
 699	*saved_data_end = cb->data_end;
 700	cb->data_end  = skb->data + skb_headlen(skb);
 701}
 702
 703/* Restore data saved by bpf_compute_data_pointers(). */
 704static inline void bpf_restore_data_end(
 705	struct sk_buff *skb, void *saved_data_end)
 706{
 707	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
 708
 709	cb->data_end = saved_data_end;
 710}
 711
 712static inline u8 *bpf_skb_cb(struct sk_buff *skb)
 713{
 714	/* eBPF programs may read/write skb->cb[] area to transfer meta
 715	 * data between tail calls. Since this also needs to work with
 716	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
 717	 *
 718	 * In some socket filter cases, the cb unfortunately needs to be
 719	 * saved/restored so that protocol specific skb->cb[] data won't
 720	 * be lost. In any case, due to unpriviledged eBPF programs
 721	 * attached to sockets, we need to clear the bpf_skb_cb() area
 722	 * to not leak previous contents to user space.
 723	 */
 724	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
 725	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
 726		     sizeof_field(struct qdisc_skb_cb, data));
 727
 728	return qdisc_skb_cb(skb)->data;
 729}
 730
 731/* Must be invoked with migration disabled */
 732static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
 733					 struct sk_buff *skb)
 734{
 735	u8 *cb_data = bpf_skb_cb(skb);
 736	u8 cb_saved[BPF_SKB_CB_LEN];
 737	u32 res;
 738
 739	if (unlikely(prog->cb_access)) {
 740		memcpy(cb_saved, cb_data, sizeof(cb_saved));
 741		memset(cb_data, 0, sizeof(cb_saved));
 742	}
 743
 744	res = BPF_PROG_RUN(prog, skb);
 745
 746	if (unlikely(prog->cb_access))
 747		memcpy(cb_data, cb_saved, sizeof(cb_saved));
 748
 749	return res;
 750}
 751
 752static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
 753				       struct sk_buff *skb)
 754{
 755	u32 res;
 756
 757	migrate_disable();
 758	res = __bpf_prog_run_save_cb(prog, skb);
 759	migrate_enable();
 760	return res;
 761}
 762
 763static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
 764					struct sk_buff *skb)
 765{
 766	u8 *cb_data = bpf_skb_cb(skb);
 767	u32 res;
 768
 769	if (unlikely(prog->cb_access))
 770		memset(cb_data, 0, BPF_SKB_CB_LEN);
 771
 772	res = bpf_prog_run_pin_on_cpu(prog, skb);
 773	return res;
 774}
 775
 776DECLARE_BPF_DISPATCHER(xdp)
 777
 778static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
 779					    struct xdp_buff *xdp)
 780{
 781	/* Driver XDP hooks are invoked within a single NAPI poll cycle and thus
 782	 * under local_bh_disable(), which provides the needed RCU protection
 783	 * for accessing map entries.
 784	 */
 785	return __BPF_PROG_RUN(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
 786}
 787
 788void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
 789
 790static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
 791{
 792	return prog->len * sizeof(struct bpf_insn);
 793}
 794
 795static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
 796{
 797	return round_up(bpf_prog_insn_size(prog) +
 798			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
 799}
 800
 801static inline unsigned int bpf_prog_size(unsigned int proglen)
 802{
 803	return max(sizeof(struct bpf_prog),
 804		   offsetof(struct bpf_prog, insns[proglen]));
 805}
 806
 807static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
 808{
 809	/* When classic BPF programs have been loaded and the arch
 810	 * does not have a classic BPF JIT (anymore), they have been
 811	 * converted via bpf_migrate_filter() to eBPF and thus always
 812	 * have an unspec program type.
 813	 */
 814	return prog->type == BPF_PROG_TYPE_UNSPEC;
 815}
 816
 817static inline u32 bpf_ctx_off_adjust_machine(u32 size)
 818{
 819	const u32 size_machine = sizeof(unsigned long);
 820
 821	if (size > size_machine && size % size_machine == 0)
 822		size = size_machine;
 823
 824	return size;
 825}
 826
 827static inline bool
 828bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
 829{
 830	return size <= size_default && (size & (size - 1)) == 0;
 831}
 832
 833static inline u8
 834bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
 835{
 836	u8 access_off = off & (size_default - 1);
 837
 838#ifdef __LITTLE_ENDIAN
 839	return access_off;
 840#else
 841	return size_default - (access_off + size);
 842#endif
 843}
 844
 845#define bpf_ctx_wide_access_ok(off, size, type, field)			\
 846	(size == sizeof(__u64) &&					\
 847	off >= offsetof(type, field) &&					\
 848	off + sizeof(__u64) <= offsetofend(type, field) &&		\
 849	off % sizeof(__u64) == 0)
 850
 851#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
 852
 
 853static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
 854{
 855#ifndef CONFIG_BPF_JIT_ALWAYS_ON
 856	if (!fp->jited) {
 857		set_vm_flush_reset_perms(fp);
 858		set_memory_ro((unsigned long)fp, fp->pages);
 859	}
 860#endif
 861}
 862
 863static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
 864{
 865	set_vm_flush_reset_perms(hdr);
 866	set_memory_ro((unsigned long)hdr, hdr->pages);
 867	set_memory_x((unsigned long)hdr, hdr->pages);
 868}
 869
 870static inline struct bpf_binary_header *
 871bpf_jit_binary_hdr(const struct bpf_prog *fp)
 872{
 873	unsigned long real_start = (unsigned long)fp->bpf_func;
 874	unsigned long addr = real_start & PAGE_MASK;
 875
 876	return (void *)addr;
 877}
 878
 879int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
 880static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
 881{
 882	return sk_filter_trim_cap(sk, skb, 1);
 883}
 
 884
 885struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
 886void bpf_prog_free(struct bpf_prog *fp);
 887
 888bool bpf_opcode_in_insntable(u8 code);
 889
 890void bpf_prog_free_linfo(struct bpf_prog *prog);
 891void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
 892			       const u32 *insn_to_jit_off);
 893int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
 894void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
 895
 896struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
 897struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
 898struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 899				  gfp_t gfp_extra_flags);
 900void __bpf_prog_free(struct bpf_prog *fp);
 901
 902static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
 903{
 
 904	__bpf_prog_free(fp);
 905}
 906
 907typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
 908				       unsigned int flen);
 909
 910int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
 911int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
 912			      bpf_aux_classic_check_t trans, bool save_orig);
 913void bpf_prog_destroy(struct bpf_prog *fp);
 914
 915int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
 
 
 916int sk_attach_bpf(u32 ufd, struct sock *sk);
 917int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
 918int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
 919void sk_reuseport_prog_free(struct bpf_prog *prog);
 920int sk_detach_filter(struct sock *sk);
 
 
 921int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
 922		  unsigned int len);
 923
 924bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
 925void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
 926
 927u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
 928#define __bpf_call_base_args \
 929	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
 930	 (void *)__bpf_call_base)
 931
 932struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
 933void bpf_jit_compile(struct bpf_prog *prog);
 934bool bpf_jit_needs_zext(void);
 935bool bpf_jit_supports_kfunc_call(void);
 936bool bpf_helper_changes_pkt_data(void *func);
 937
 938static inline bool bpf_dump_raw_ok(const struct cred *cred)
 939{
 940	/* Reconstruction of call-sites is dependent on kallsyms,
 941	 * thus make dump the same restriction.
 942	 */
 943	return kallsyms_show_value(cred);
 944}
 945
 946struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 947				       const struct bpf_insn *patch, u32 len);
 948int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
 949
 950void bpf_clear_redirect_map(struct bpf_map *map);
 951
 952static inline bool xdp_return_frame_no_direct(void)
 953{
 954	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
 955
 956	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
 957}
 958
 959static inline void xdp_set_return_frame_no_direct(void)
 960{
 961	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
 962
 963	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
 964}
 965
 966static inline void xdp_clear_return_frame_no_direct(void)
 967{
 968	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
 969
 970	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
 971}
 972
 973static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
 974				 unsigned int pktlen)
 975{
 976	unsigned int len;
 977
 978	if (unlikely(!(fwd->flags & IFF_UP)))
 979		return -ENETDOWN;
 980
 981	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
 982	if (pktlen > len)
 983		return -EMSGSIZE;
 984
 985	return 0;
 986}
 987
 988/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
 989 * same cpu context. Further for best results no more than a single map
 990 * for the do_redirect/do_flush pair should be used. This limitation is
 991 * because we only track one map and force a flush when the map changes.
 992 * This does not appear to be a real limitation for existing software.
 993 */
 994int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
 995			    struct xdp_buff *xdp, struct bpf_prog *prog);
 996int xdp_do_redirect(struct net_device *dev,
 997		    struct xdp_buff *xdp,
 998		    struct bpf_prog *prog);
 999void xdp_do_flush(void);
1000
1001/* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
1002 * it is no longer only flushing maps. Keep this define for compatibility
1003 * until all drivers are updated - do not use xdp_do_flush_map() in new code!
1004 */
1005#define xdp_do_flush_map xdp_do_flush
1006
1007void bpf_warn_invalid_xdp_action(u32 act);
1008
1009#ifdef CONFIG_INET
1010struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1011				  struct bpf_prog *prog, struct sk_buff *skb,
1012				  struct sock *migrating_sk,
1013				  u32 hash);
1014#else
1015static inline struct sock *
1016bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1017		     struct bpf_prog *prog, struct sk_buff *skb,
1018		     struct sock *migrating_sk,
1019		     u32 hash)
1020{
1021	return NULL;
1022}
1023#endif
1024
1025#ifdef CONFIG_BPF_JIT
1026extern int bpf_jit_enable;
1027extern int bpf_jit_harden;
1028extern int bpf_jit_kallsyms;
1029extern long bpf_jit_limit;
1030
1031typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1032
1033struct bpf_binary_header *
1034bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1035		     unsigned int alignment,
1036		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1037void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1038u64 bpf_jit_alloc_exec_limit(void);
1039void *bpf_jit_alloc_exec(unsigned long size);
1040void bpf_jit_free_exec(void *addr);
1041void bpf_jit_free(struct bpf_prog *fp);
1042
1043int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1044				struct bpf_jit_poke_descriptor *poke);
1045
1046int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1047			  const struct bpf_insn *insn, bool extra_pass,
1048			  u64 *func_addr, bool *func_addr_fixed);
1049
1050struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1051void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1052
1053static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1054				u32 pass, void *image)
1055{
1056	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1057	       proglen, pass, image, current->comm, task_pid_nr(current));
1058
1059	if (image)
1060		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1061			       16, 1, image, proglen, false);
1062}
1063
1064static inline bool bpf_jit_is_ebpf(void)
1065{
1066# ifdef CONFIG_HAVE_EBPF_JIT
1067	return true;
1068# else
1069	return false;
1070# endif
1071}
1072
1073static inline bool ebpf_jit_enabled(void)
1074{
1075	return bpf_jit_enable && bpf_jit_is_ebpf();
1076}
1077
1078static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1079{
1080	return fp->jited && bpf_jit_is_ebpf();
1081}
1082
1083static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1084{
1085	/* These are the prerequisites, should someone ever have the
1086	 * idea to call blinding outside of them, we make sure to
1087	 * bail out.
1088	 */
1089	if (!bpf_jit_is_ebpf())
1090		return false;
1091	if (!prog->jit_requested)
1092		return false;
1093	if (!bpf_jit_harden)
1094		return false;
1095	if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1096		return false;
1097
1098	return true;
1099}
1100
1101static inline bool bpf_jit_kallsyms_enabled(void)
1102{
1103	/* There are a couple of corner cases where kallsyms should
1104	 * not be enabled f.e. on hardening.
1105	 */
1106	if (bpf_jit_harden)
1107		return false;
1108	if (!bpf_jit_kallsyms)
1109		return false;
1110	if (bpf_jit_kallsyms == 1)
1111		return true;
1112
1113	return false;
1114}
1115
1116const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1117				 unsigned long *off, char *sym);
1118bool is_bpf_text_address(unsigned long addr);
1119int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1120		    char *sym);
1121
1122static inline const char *
1123bpf_address_lookup(unsigned long addr, unsigned long *size,
1124		   unsigned long *off, char **modname, char *sym)
1125{
1126	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1127
1128	if (ret && modname)
1129		*modname = NULL;
1130	return ret;
1131}
1132
1133void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1134void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1135
1136#else /* CONFIG_BPF_JIT */
1137
1138static inline bool ebpf_jit_enabled(void)
1139{
1140	return false;
1141}
1142
1143static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1144{
1145	return false;
1146}
1147
1148static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1149{
1150	return false;
1151}
1152
1153static inline int
1154bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1155			    struct bpf_jit_poke_descriptor *poke)
1156{
1157	return -ENOTSUPP;
1158}
1159
1160static inline void bpf_jit_free(struct bpf_prog *fp)
1161{
1162	bpf_prog_unlock_free(fp);
1163}
1164
1165static inline bool bpf_jit_kallsyms_enabled(void)
1166{
1167	return false;
1168}
1169
1170static inline const char *
1171__bpf_address_lookup(unsigned long addr, unsigned long *size,
1172		     unsigned long *off, char *sym)
1173{
1174	return NULL;
1175}
1176
1177static inline bool is_bpf_text_address(unsigned long addr)
1178{
1179	return false;
1180}
1181
1182static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1183				  char *type, char *sym)
1184{
1185	return -ERANGE;
1186}
1187
1188static inline const char *
1189bpf_address_lookup(unsigned long addr, unsigned long *size,
1190		   unsigned long *off, char **modname, char *sym)
1191{
1192	return NULL;
1193}
1194
1195static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1196{
1197}
1198
1199static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1200{
1201}
1202
1203#endif /* CONFIG_BPF_JIT */
1204
1205void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1206
1207#define BPF_ANC		BIT(15)
1208
1209static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1210{
1211	switch (first->code) {
1212	case BPF_RET | BPF_K:
1213	case BPF_LD | BPF_W | BPF_LEN:
1214		return false;
1215
1216	case BPF_LD | BPF_W | BPF_ABS:
1217	case BPF_LD | BPF_H | BPF_ABS:
1218	case BPF_LD | BPF_B | BPF_ABS:
1219		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1220			return true;
1221		return false;
1222
1223	default:
1224		return true;
1225	}
1226}
1227
1228static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1229{
1230	BUG_ON(ftest->code & BPF_ANC);
1231
1232	switch (ftest->code) {
1233	case BPF_LD | BPF_W | BPF_ABS:
1234	case BPF_LD | BPF_H | BPF_ABS:
1235	case BPF_LD | BPF_B | BPF_ABS:
1236#define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1237				return BPF_ANC | SKF_AD_##CODE
1238		switch (ftest->k) {
1239		BPF_ANCILLARY(PROTOCOL);
1240		BPF_ANCILLARY(PKTTYPE);
1241		BPF_ANCILLARY(IFINDEX);
1242		BPF_ANCILLARY(NLATTR);
1243		BPF_ANCILLARY(NLATTR_NEST);
1244		BPF_ANCILLARY(MARK);
1245		BPF_ANCILLARY(QUEUE);
1246		BPF_ANCILLARY(HATYPE);
1247		BPF_ANCILLARY(RXHASH);
1248		BPF_ANCILLARY(CPU);
1249		BPF_ANCILLARY(ALU_XOR_X);
1250		BPF_ANCILLARY(VLAN_TAG);
1251		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1252		BPF_ANCILLARY(PAY_OFFSET);
1253		BPF_ANCILLARY(RANDOM);
1254		BPF_ANCILLARY(VLAN_TPID);
1255		}
1256		fallthrough;
1257	default:
1258		return ftest->code;
1259	}
1260}
1261
1262void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1263					   int k, unsigned int size);
1264
1265static inline int bpf_tell_extensions(void)
1266{
1267	return SKF_AD_MAX;
1268}
1269
1270struct bpf_sock_addr_kern {
1271	struct sock *sk;
1272	struct sockaddr *uaddr;
1273	/* Temporary "register" to make indirect stores to nested structures
1274	 * defined above. We need three registers to make such a store, but
1275	 * only two (src and dst) are available at convert_ctx_access time
1276	 */
1277	u64 tmp_reg;
1278	void *t_ctx;	/* Attach type specific context. */
1279};
1280
1281struct bpf_sock_ops_kern {
1282	struct	sock *sk;
1283	union {
1284		u32 args[4];
1285		u32 reply;
1286		u32 replylong[4];
1287	};
1288	struct sk_buff	*syn_skb;
1289	struct sk_buff	*skb;
1290	void	*skb_data_end;
1291	u8	op;
1292	u8	is_fullsock;
1293	u8	remaining_opt_len;
1294	u64	temp;			/* temp and everything after is not
1295					 * initialized to 0 before calling
1296					 * the BPF program. New fields that
1297					 * should be initialized to 0 should
1298					 * be inserted before temp.
1299					 * temp is scratch storage used by
1300					 * sock_ops_convert_ctx_access
1301					 * as temporary storage of a register.
1302					 */
1303};
1304
1305struct bpf_sysctl_kern {
1306	struct ctl_table_header *head;
1307	struct ctl_table *table;
1308	void *cur_val;
1309	size_t cur_len;
1310	void *new_val;
1311	size_t new_len;
1312	int new_updated;
1313	int write;
1314	loff_t *ppos;
1315	/* Temporary "register" for indirect stores to ppos. */
1316	u64 tmp_reg;
1317};
1318
1319#define BPF_SOCKOPT_KERN_BUF_SIZE	32
1320struct bpf_sockopt_buf {
1321	u8		data[BPF_SOCKOPT_KERN_BUF_SIZE];
1322};
1323
1324struct bpf_sockopt_kern {
1325	struct sock	*sk;
1326	u8		*optval;
1327	u8		*optval_end;
1328	s32		level;
1329	s32		optname;
1330	s32		optlen;
1331	s32		retval;
1332};
1333
1334int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1335
1336struct bpf_sk_lookup_kern {
1337	u16		family;
1338	u16		protocol;
1339	__be16		sport;
1340	u16		dport;
1341	struct {
1342		__be32 saddr;
1343		__be32 daddr;
1344	} v4;
1345	struct {
1346		const struct in6_addr *saddr;
1347		const struct in6_addr *daddr;
1348	} v6;
1349	struct sock	*selected_sk;
1350	bool		no_reuseport;
1351};
1352
1353extern struct static_key_false bpf_sk_lookup_enabled;
1354
1355/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1356 *
1357 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1358 * SK_DROP. Their meaning is as follows:
1359 *
1360 *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1361 *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1362 *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1363 *
1364 * This macro aggregates return values and selected sockets from
1365 * multiple BPF programs according to following rules in order:
1366 *
1367 *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1368 *     macro result is SK_PASS and last ctx.selected_sk is used.
1369 *  2. If any program returned SK_DROP return value,
1370 *     macro result is SK_DROP.
1371 *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1372 *
1373 * Caller must ensure that the prog array is non-NULL, and that the
1374 * array as well as the programs it contains remain valid.
1375 */
1376#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1377	({								\
1378		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1379		struct bpf_prog_array_item *_item;			\
1380		struct sock *_selected_sk = NULL;			\
1381		bool _no_reuseport = false;				\
1382		struct bpf_prog *_prog;					\
1383		bool _all_pass = true;					\
1384		u32 _ret;						\
1385									\
1386		migrate_disable();					\
1387		_item = &(array)->items[0];				\
1388		while ((_prog = READ_ONCE(_item->prog))) {		\
1389			/* restore most recent selection */		\
1390			_ctx->selected_sk = _selected_sk;		\
1391			_ctx->no_reuseport = _no_reuseport;		\
1392									\
1393			_ret = func(_prog, _ctx);			\
1394			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1395				/* remember last non-NULL socket */	\
1396				_selected_sk = _ctx->selected_sk;	\
1397				_no_reuseport = _ctx->no_reuseport;	\
1398			} else if (_ret == SK_DROP && _all_pass) {	\
1399				_all_pass = false;			\
1400			}						\
1401			_item++;					\
1402		}							\
1403		_ctx->selected_sk = _selected_sk;			\
1404		_ctx->no_reuseport = _no_reuseport;			\
1405		migrate_enable();					\
1406		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1407	 })
1408
1409static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1410					const __be32 saddr, const __be16 sport,
1411					const __be32 daddr, const u16 dport,
1412					struct sock **psk)
1413{
1414	struct bpf_prog_array *run_array;
1415	struct sock *selected_sk = NULL;
1416	bool no_reuseport = false;
1417
1418	rcu_read_lock();
1419	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1420	if (run_array) {
1421		struct bpf_sk_lookup_kern ctx = {
1422			.family		= AF_INET,
1423			.protocol	= protocol,
1424			.v4.saddr	= saddr,
1425			.v4.daddr	= daddr,
1426			.sport		= sport,
1427			.dport		= dport,
1428		};
1429		u32 act;
1430
1431		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1432		if (act == SK_PASS) {
1433			selected_sk = ctx.selected_sk;
1434			no_reuseport = ctx.no_reuseport;
1435		} else {
1436			selected_sk = ERR_PTR(-ECONNREFUSED);
1437		}
1438	}
1439	rcu_read_unlock();
1440	*psk = selected_sk;
1441	return no_reuseport;
1442}
1443
1444#if IS_ENABLED(CONFIG_IPV6)
1445static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1446					const struct in6_addr *saddr,
1447					const __be16 sport,
1448					const struct in6_addr *daddr,
1449					const u16 dport,
1450					struct sock **psk)
1451{
1452	struct bpf_prog_array *run_array;
1453	struct sock *selected_sk = NULL;
1454	bool no_reuseport = false;
1455
1456	rcu_read_lock();
1457	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1458	if (run_array) {
1459		struct bpf_sk_lookup_kern ctx = {
1460			.family		= AF_INET6,
1461			.protocol	= protocol,
1462			.v6.saddr	= saddr,
1463			.v6.daddr	= daddr,
1464			.sport		= sport,
1465			.dport		= dport,
1466		};
1467		u32 act;
1468
1469		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1470		if (act == SK_PASS) {
1471			selected_sk = ctx.selected_sk;
1472			no_reuseport = ctx.no_reuseport;
1473		} else {
1474			selected_sk = ERR_PTR(-ECONNREFUSED);
1475		}
1476	}
1477	rcu_read_unlock();
1478	*psk = selected_sk;
1479	return no_reuseport;
1480}
1481#endif /* IS_ENABLED(CONFIG_IPV6) */
1482
1483static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex,
1484						  u64 flags, const u64 flag_mask,
1485						  void *lookup_elem(struct bpf_map *map, u32 key))
1486{
1487	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1488	const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1489
1490	/* Lower bits of the flags are used as return code on lookup failure */
1491	if (unlikely(flags & ~(action_mask | flag_mask)))
1492		return XDP_ABORTED;
1493
1494	ri->tgt_value = lookup_elem(map, ifindex);
1495	if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1496		/* If the lookup fails we want to clear out the state in the
1497		 * redirect_info struct completely, so that if an eBPF program
1498		 * performs multiple lookups, the last one always takes
1499		 * precedence.
1500		 */
1501		ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1502		ri->map_type = BPF_MAP_TYPE_UNSPEC;
1503		return flags & action_mask;
1504	}
1505
1506	ri->tgt_index = ifindex;
1507	ri->map_id = map->id;
1508	ri->map_type = map->map_type;
1509
1510	if (flags & BPF_F_BROADCAST) {
1511		WRITE_ONCE(ri->map, map);
1512		ri->flags = flags;
1513	} else {
1514		WRITE_ONCE(ri->map, NULL);
1515		ri->flags = 0;
1516	}
1517
1518	return XDP_REDIRECT;
1519}
1520
1521#endif /* __LINUX_FILTER_H__ */
v4.6
 
  1/*
  2 * Linux Socket Filter Data Structures
  3 */
  4#ifndef __LINUX_FILTER_H__
  5#define __LINUX_FILTER_H__
  6
  7#include <stdarg.h>
  8
  9#include <linux/atomic.h>
 
 10#include <linux/compat.h>
 11#include <linux/skbuff.h>
 12#include <linux/linkage.h>
 13#include <linux/printk.h>
 14#include <linux/workqueue.h>
 15#include <linux/sched.h>
 
 
 
 
 
 
 
 
 
 16#include <net/sch_generic.h>
 17
 18#include <asm/cacheflush.h>
 19
 20#include <uapi/linux/filter.h>
 21#include <uapi/linux/bpf.h>
 22
 23struct sk_buff;
 24struct sock;
 25struct seccomp_data;
 26struct bpf_prog_aux;
 
 
 
 
 
 27
 28/* ArgX, context and stack frame pointer register positions. Note,
 29 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
 30 * calls in BPF_CALL instruction.
 31 */
 32#define BPF_REG_ARG1	BPF_REG_1
 33#define BPF_REG_ARG2	BPF_REG_2
 34#define BPF_REG_ARG3	BPF_REG_3
 35#define BPF_REG_ARG4	BPF_REG_4
 36#define BPF_REG_ARG5	BPF_REG_5
 37#define BPF_REG_CTX	BPF_REG_6
 38#define BPF_REG_FP	BPF_REG_10
 39
 40/* Additional register mappings for converted user programs. */
 41#define BPF_REG_A	BPF_REG_0
 42#define BPF_REG_X	BPF_REG_7
 43#define BPF_REG_TMP	BPF_REG_8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 44
 45/* BPF program can access up to 512 bytes of stack space. */
 46#define MAX_BPF_STACK	512
 47
 48/* Helper macros for filter block array initializers. */
 49
 50/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
 51
 52#define BPF_ALU64_REG(OP, DST, SRC)				\
 53	((struct bpf_insn) {					\
 54		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
 55		.dst_reg = DST,					\
 56		.src_reg = SRC,					\
 57		.off   = 0,					\
 58		.imm   = 0 })
 59
 60#define BPF_ALU32_REG(OP, DST, SRC)				\
 61	((struct bpf_insn) {					\
 62		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
 63		.dst_reg = DST,					\
 64		.src_reg = SRC,					\
 65		.off   = 0,					\
 66		.imm   = 0 })
 67
 68/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
 69
 70#define BPF_ALU64_IMM(OP, DST, IMM)				\
 71	((struct bpf_insn) {					\
 72		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
 73		.dst_reg = DST,					\
 74		.src_reg = 0,					\
 75		.off   = 0,					\
 76		.imm   = IMM })
 77
 78#define BPF_ALU32_IMM(OP, DST, IMM)				\
 79	((struct bpf_insn) {					\
 80		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
 81		.dst_reg = DST,					\
 82		.src_reg = 0,					\
 83		.off   = 0,					\
 84		.imm   = IMM })
 85
 86/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
 87
 88#define BPF_ENDIAN(TYPE, DST, LEN)				\
 89	((struct bpf_insn) {					\
 90		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
 91		.dst_reg = DST,					\
 92		.src_reg = 0,					\
 93		.off   = 0,					\
 94		.imm   = LEN })
 95
 96/* Short form of mov, dst_reg = src_reg */
 97
 98#define BPF_MOV64_REG(DST, SRC)					\
 99	((struct bpf_insn) {					\
100		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
101		.dst_reg = DST,					\
102		.src_reg = SRC,					\
103		.off   = 0,					\
104		.imm   = 0 })
105
106#define BPF_MOV32_REG(DST, SRC)					\
107	((struct bpf_insn) {					\
108		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
109		.dst_reg = DST,					\
110		.src_reg = SRC,					\
111		.off   = 0,					\
112		.imm   = 0 })
113
114/* Short form of mov, dst_reg = imm32 */
115
116#define BPF_MOV64_IMM(DST, IMM)					\
117	((struct bpf_insn) {					\
118		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
119		.dst_reg = DST,					\
120		.src_reg = 0,					\
121		.off   = 0,					\
122		.imm   = IMM })
123
124#define BPF_MOV32_IMM(DST, IMM)					\
125	((struct bpf_insn) {					\
126		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
127		.dst_reg = DST,					\
128		.src_reg = 0,					\
129		.off   = 0,					\
130		.imm   = IMM })
131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
133#define BPF_LD_IMM64(DST, IMM)					\
134	BPF_LD_IMM64_RAW(DST, 0, IMM)
135
136#define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
137	((struct bpf_insn) {					\
138		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
139		.dst_reg = DST,					\
140		.src_reg = SRC,					\
141		.off   = 0,					\
142		.imm   = (__u32) (IMM) }),			\
143	((struct bpf_insn) {					\
144		.code  = 0, /* zero is reserved opcode */	\
145		.dst_reg = 0,					\
146		.src_reg = 0,					\
147		.off   = 0,					\
148		.imm   = ((__u64) (IMM)) >> 32 })
149
150/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
151#define BPF_LD_MAP_FD(DST, MAP_FD)				\
152	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
153
154/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
155
156#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
157	((struct bpf_insn) {					\
158		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
159		.dst_reg = DST,					\
160		.src_reg = SRC,					\
161		.off   = 0,					\
162		.imm   = IMM })
163
164#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
165	((struct bpf_insn) {					\
166		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
167		.dst_reg = DST,					\
168		.src_reg = SRC,					\
169		.off   = 0,					\
170		.imm   = IMM })
171
172/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
173
174#define BPF_LD_ABS(SIZE, IMM)					\
175	((struct bpf_insn) {					\
176		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
177		.dst_reg = 0,					\
178		.src_reg = 0,					\
179		.off   = 0,					\
180		.imm   = IMM })
181
182/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
183
184#define BPF_LD_IND(SIZE, SRC, IMM)				\
185	((struct bpf_insn) {					\
186		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
187		.dst_reg = 0,					\
188		.src_reg = SRC,					\
189		.off   = 0,					\
190		.imm   = IMM })
191
192/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
193
194#define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
195	((struct bpf_insn) {					\
196		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
197		.dst_reg = DST,					\
198		.src_reg = SRC,					\
199		.off   = OFF,					\
200		.imm   = 0 })
201
202/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
203
204#define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
205	((struct bpf_insn) {					\
206		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
207		.dst_reg = DST,					\
208		.src_reg = SRC,					\
209		.off   = OFF,					\
210		.imm   = 0 })
211
212/* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
213
214#define BPF_STX_XADD(SIZE, DST, SRC, OFF)			\
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215	((struct bpf_insn) {					\
216		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD,	\
217		.dst_reg = DST,					\
218		.src_reg = SRC,					\
219		.off   = OFF,					\
220		.imm   = 0 })
 
 
 
221
222/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
223
224#define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
225	((struct bpf_insn) {					\
226		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
227		.dst_reg = DST,					\
228		.src_reg = 0,					\
229		.off   = OFF,					\
230		.imm   = IMM })
231
232/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
233
234#define BPF_JMP_REG(OP, DST, SRC, OFF)				\
235	((struct bpf_insn) {					\
236		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
237		.dst_reg = DST,					\
238		.src_reg = SRC,					\
239		.off   = OFF,					\
240		.imm   = 0 })
241
242/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
243
244#define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
245	((struct bpf_insn) {					\
246		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
247		.dst_reg = DST,					\
248		.src_reg = 0,					\
249		.off   = OFF,					\
250		.imm   = IMM })
251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252/* Function call */
253
 
 
 
254#define BPF_EMIT_CALL(FUNC)					\
255	((struct bpf_insn) {					\
256		.code  = BPF_JMP | BPF_CALL,			\
257		.dst_reg = 0,					\
258		.src_reg = 0,					\
259		.off   = 0,					\
260		.imm   = ((FUNC) - __bpf_call_base) })
261
262/* Raw code statement block */
263
264#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
265	((struct bpf_insn) {					\
266		.code  = CODE,					\
267		.dst_reg = DST,					\
268		.src_reg = SRC,					\
269		.off   = OFF,					\
270		.imm   = IMM })
271
272/* Program exit */
273
274#define BPF_EXIT_INSN()						\
275	((struct bpf_insn) {					\
276		.code  = BPF_JMP | BPF_EXIT,			\
277		.dst_reg = 0,					\
278		.src_reg = 0,					\
279		.off   = 0,					\
280		.imm   = 0 })
281
 
 
 
 
 
 
 
 
 
 
282/* Internal classic blocks for direct assignment */
283
284#define __BPF_STMT(CODE, K)					\
285	((struct sock_filter) BPF_STMT(CODE, K))
286
287#define __BPF_JUMP(CODE, K, JT, JF)				\
288	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
289
290#define bytes_to_bpf_size(bytes)				\
291({								\
292	int bpf_size = -EINVAL;					\
293								\
294	if (bytes == sizeof(u8))				\
295		bpf_size = BPF_B;				\
296	else if (bytes == sizeof(u16))				\
297		bpf_size = BPF_H;				\
298	else if (bytes == sizeof(u32))				\
299		bpf_size = BPF_W;				\
300	else if (bytes == sizeof(u64))				\
301		bpf_size = BPF_DW;				\
302								\
303	bpf_size;						\
304})
305
306#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307/* A struct sock_filter is architecture independent. */
308struct compat_sock_fprog {
309	u16		len;
310	compat_uptr_t	filter;	/* struct sock_filter * */
311};
312#endif
313
314struct sock_fprog_kern {
315	u16			len;
316	struct sock_filter	*filter;
317};
318
 
 
 
319struct bpf_binary_header {
320	unsigned int pages;
321	u8 image[];
322};
323
 
 
 
 
 
 
 
324struct bpf_prog {
325	u16			pages;		/* Number of allocated pages */
326	kmemcheck_bitfield_begin(meta);
327	u16			jited:1,	/* Is our filter JIT'ed? */
 
328				gpl_compatible:1, /* Is filter GPL compatible? */
329				cb_access:1,	/* Is control block accessed? */
330				dst_needed:1;	/* Do we need dst entry? */
331	kmemcheck_bitfield_end(meta);
 
 
 
 
 
 
 
332	u32			len;		/* Number of filter blocks */
333	enum bpf_prog_type	type;		/* Type of BPF program */
 
 
 
 
 
334	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
335	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
336	unsigned int		(*bpf_func)(const struct sk_buff *skb,
337					    const struct bpf_insn *filter);
338	/* Instructions for interpreter */
339	union {
340		struct sock_filter	insns[0];
341		struct bpf_insn		insnsi[0];
342	};
343};
344
345struct sk_filter {
346	atomic_t	refcnt;
347	struct rcu_head	rcu;
348	struct bpf_prog	*prog;
349};
350
351#define BPF_PROG_RUN(filter, ctx)  (*filter->bpf_func)(ctx, filter->insnsi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352
353#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355static inline u8 *bpf_skb_cb(struct sk_buff *skb)
356{
357	/* eBPF programs may read/write skb->cb[] area to transfer meta
358	 * data between tail calls. Since this also needs to work with
359	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
360	 *
361	 * In some socket filter cases, the cb unfortunately needs to be
362	 * saved/restored so that protocol specific skb->cb[] data won't
363	 * be lost. In any case, due to unpriviledged eBPF programs
364	 * attached to sockets, we need to clear the bpf_skb_cb() area
365	 * to not leak previous contents to user space.
366	 */
367	BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
368	BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) !=
369		     FIELD_SIZEOF(struct qdisc_skb_cb, data));
370
371	return qdisc_skb_cb(skb)->data;
372}
373
374static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
375				       struct sk_buff *skb)
 
376{
377	u8 *cb_data = bpf_skb_cb(skb);
378	u8 cb_saved[BPF_SKB_CB_LEN];
379	u32 res;
380
381	if (unlikely(prog->cb_access)) {
382		memcpy(cb_saved, cb_data, sizeof(cb_saved));
383		memset(cb_data, 0, sizeof(cb_saved));
384	}
385
386	res = BPF_PROG_RUN(prog, skb);
387
388	if (unlikely(prog->cb_access))
389		memcpy(cb_data, cb_saved, sizeof(cb_saved));
390
391	return res;
392}
393
 
 
 
 
 
 
 
 
 
 
 
394static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
395					struct sk_buff *skb)
396{
397	u8 *cb_data = bpf_skb_cb(skb);
 
398
399	if (unlikely(prog->cb_access))
400		memset(cb_data, 0, BPF_SKB_CB_LEN);
401
402	return BPF_PROG_RUN(prog, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
403}
404
405static inline unsigned int bpf_prog_size(unsigned int proglen)
406{
407	return max(sizeof(struct bpf_prog),
408		   offsetof(struct bpf_prog, insns[proglen]));
409}
410
411static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
412{
413	/* When classic BPF programs have been loaded and the arch
414	 * does not have a classic BPF JIT (anymore), they have been
415	 * converted via bpf_migrate_filter() to eBPF and thus always
416	 * have an unspec program type.
417	 */
418	return prog->type == BPF_PROG_TYPE_UNSPEC;
419}
420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
421#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
422
423#ifdef CONFIG_DEBUG_SET_MODULE_RONX
424static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
425{
426	set_memory_ro((unsigned long)fp, fp->pages);
 
 
 
 
 
427}
428
429static inline void bpf_prog_unlock_ro(struct bpf_prog *fp)
430{
431	set_memory_rw((unsigned long)fp, fp->pages);
 
 
432}
433#else
434static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
 
435{
 
 
 
 
436}
437
438static inline void bpf_prog_unlock_ro(struct bpf_prog *fp)
 
439{
 
440}
441#endif /* CONFIG_DEBUG_SET_MODULE_RONX */
442
443int sk_filter(struct sock *sk, struct sk_buff *skb);
 
 
 
444
445int bpf_prog_select_runtime(struct bpf_prog *fp);
446void bpf_prog_free(struct bpf_prog *fp);
 
 
 
447
448struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
 
449struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
450				  gfp_t gfp_extra_flags);
451void __bpf_prog_free(struct bpf_prog *fp);
452
453static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
454{
455	bpf_prog_unlock_ro(fp);
456	__bpf_prog_free(fp);
457}
458
459typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
460				       unsigned int flen);
461
462int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
463int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
464			      bpf_aux_classic_check_t trans, bool save_orig);
465void bpf_prog_destroy(struct bpf_prog *fp);
466
467int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
468int __sk_attach_filter(struct sock_fprog *fprog, struct sock *sk,
469		       bool locked);
470int sk_attach_bpf(u32 ufd, struct sock *sk);
471int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
472int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
 
473int sk_detach_filter(struct sock *sk);
474int __sk_detach_filter(struct sock *sk, bool locked);
475
476int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
477		  unsigned int len);
478
479bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
480void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
481
482u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
483void bpf_int_jit_compile(struct bpf_prog *fp);
484bool bpf_helper_changes_skb_data(void *func);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485
486#ifdef CONFIG_BPF_JIT
 
 
 
 
 
487typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
488
489struct bpf_binary_header *
490bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
491		     unsigned int alignment,
492		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
493void bpf_jit_binary_free(struct bpf_binary_header *hdr);
 
 
 
 
 
 
 
 
 
 
 
494
495void bpf_jit_compile(struct bpf_prog *fp);
496void bpf_jit_free(struct bpf_prog *fp);
497
498static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
499				u32 pass, void *image)
500{
501	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
502	       proglen, pass, image, current->comm, task_pid_nr(current));
503
504	if (image)
505		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
506			       16, 1, image, proglen, false);
507}
508#else
509static inline void bpf_jit_compile(struct bpf_prog *fp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510{
 
511}
512
513static inline void bpf_jit_free(struct bpf_prog *fp)
514{
515	bpf_prog_unlock_free(fp);
516}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
517#endif /* CONFIG_BPF_JIT */
518
 
 
519#define BPF_ANC		BIT(15)
520
521static inline bool bpf_needs_clear_a(const struct sock_filter *first)
522{
523	switch (first->code) {
524	case BPF_RET | BPF_K:
525	case BPF_LD | BPF_W | BPF_LEN:
526		return false;
527
528	case BPF_LD | BPF_W | BPF_ABS:
529	case BPF_LD | BPF_H | BPF_ABS:
530	case BPF_LD | BPF_B | BPF_ABS:
531		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
532			return true;
533		return false;
534
535	default:
536		return true;
537	}
538}
539
540static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
541{
542	BUG_ON(ftest->code & BPF_ANC);
543
544	switch (ftest->code) {
545	case BPF_LD | BPF_W | BPF_ABS:
546	case BPF_LD | BPF_H | BPF_ABS:
547	case BPF_LD | BPF_B | BPF_ABS:
548#define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
549				return BPF_ANC | SKF_AD_##CODE
550		switch (ftest->k) {
551		BPF_ANCILLARY(PROTOCOL);
552		BPF_ANCILLARY(PKTTYPE);
553		BPF_ANCILLARY(IFINDEX);
554		BPF_ANCILLARY(NLATTR);
555		BPF_ANCILLARY(NLATTR_NEST);
556		BPF_ANCILLARY(MARK);
557		BPF_ANCILLARY(QUEUE);
558		BPF_ANCILLARY(HATYPE);
559		BPF_ANCILLARY(RXHASH);
560		BPF_ANCILLARY(CPU);
561		BPF_ANCILLARY(ALU_XOR_X);
562		BPF_ANCILLARY(VLAN_TAG);
563		BPF_ANCILLARY(VLAN_TAG_PRESENT);
564		BPF_ANCILLARY(PAY_OFFSET);
565		BPF_ANCILLARY(RANDOM);
566		BPF_ANCILLARY(VLAN_TPID);
567		}
568		/* Fallthrough. */
569	default:
570		return ftest->code;
571	}
572}
573
574void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
575					   int k, unsigned int size);
576
577static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
578				     unsigned int size, void *buffer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
579{
580	if (k >= 0)
581		return skb_header_pointer(skb, k, size, buffer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
582
583	return bpf_internal_load_pointer_neg_helper(skb, k, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
584}
 
585
586static inline int bpf_tell_extensions(void)
 
 
587{
588	return SKF_AD_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589}
590
591#endif /* __LINUX_FILTER_H__ */