Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Linux Socket Filter Data Structures
4 */
5#ifndef __LINUX_FILTER_H__
6#define __LINUX_FILTER_H__
7
8#include <stdarg.h>
9
10#include <linux/atomic.h>
11#include <linux/refcount.h>
12#include <linux/compat.h>
13#include <linux/skbuff.h>
14#include <linux/linkage.h>
15#include <linux/printk.h>
16#include <linux/workqueue.h>
17#include <linux/sched.h>
18#include <linux/capability.h>
19#include <linux/set_memory.h>
20#include <linux/kallsyms.h>
21#include <linux/if_vlan.h>
22#include <linux/vmalloc.h>
23#include <linux/sockptr.h>
24#include <crypto/sha1.h>
25#include <linux/u64_stats_sync.h>
26
27#include <net/sch_generic.h>
28
29#include <asm/byteorder.h>
30#include <uapi/linux/filter.h>
31#include <uapi/linux/bpf.h>
32
33struct sk_buff;
34struct sock;
35struct seccomp_data;
36struct bpf_prog_aux;
37struct xdp_rxq_info;
38struct xdp_buff;
39struct sock_reuseport;
40struct ctl_table;
41struct ctl_table_header;
42
43/* ArgX, context and stack frame pointer register positions. Note,
44 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
45 * calls in BPF_CALL instruction.
46 */
47#define BPF_REG_ARG1 BPF_REG_1
48#define BPF_REG_ARG2 BPF_REG_2
49#define BPF_REG_ARG3 BPF_REG_3
50#define BPF_REG_ARG4 BPF_REG_4
51#define BPF_REG_ARG5 BPF_REG_5
52#define BPF_REG_CTX BPF_REG_6
53#define BPF_REG_FP BPF_REG_10
54
55/* Additional register mappings for converted user programs. */
56#define BPF_REG_A BPF_REG_0
57#define BPF_REG_X BPF_REG_7
58#define BPF_REG_TMP BPF_REG_2 /* scratch reg */
59#define BPF_REG_D BPF_REG_8 /* data, callee-saved */
60#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */
61
62/* Kernel hidden auxiliary/helper register. */
63#define BPF_REG_AX MAX_BPF_REG
64#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1)
65#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG
66
67/* unused opcode to mark special call to bpf_tail_call() helper */
68#define BPF_TAIL_CALL 0xf0
69
70/* unused opcode to mark special load instruction. Same as BPF_ABS */
71#define BPF_PROBE_MEM 0x20
72
73/* unused opcode to mark call to interpreter with arguments */
74#define BPF_CALL_ARGS 0xe0
75
76/* unused opcode to mark speculation barrier for mitigating
77 * Speculative Store Bypass
78 */
79#define BPF_NOSPEC 0xc0
80
81/* As per nm, we expose JITed images as text (code) section for
82 * kallsyms. That way, tools like perf can find it to match
83 * addresses.
84 */
85#define BPF_SYM_ELF_TYPE 't'
86
87/* BPF program can access up to 512 bytes of stack space. */
88#define MAX_BPF_STACK 512
89
90/* Helper macros for filter block array initializers. */
91
92/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
93
94#define BPF_ALU64_REG(OP, DST, SRC) \
95 ((struct bpf_insn) { \
96 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \
97 .dst_reg = DST, \
98 .src_reg = SRC, \
99 .off = 0, \
100 .imm = 0 })
101
102#define BPF_ALU32_REG(OP, DST, SRC) \
103 ((struct bpf_insn) { \
104 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \
105 .dst_reg = DST, \
106 .src_reg = SRC, \
107 .off = 0, \
108 .imm = 0 })
109
110/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
111
112#define BPF_ALU64_IMM(OP, DST, IMM) \
113 ((struct bpf_insn) { \
114 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \
115 .dst_reg = DST, \
116 .src_reg = 0, \
117 .off = 0, \
118 .imm = IMM })
119
120#define BPF_ALU32_IMM(OP, DST, IMM) \
121 ((struct bpf_insn) { \
122 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \
123 .dst_reg = DST, \
124 .src_reg = 0, \
125 .off = 0, \
126 .imm = IMM })
127
128/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
129
130#define BPF_ENDIAN(TYPE, DST, LEN) \
131 ((struct bpf_insn) { \
132 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \
133 .dst_reg = DST, \
134 .src_reg = 0, \
135 .off = 0, \
136 .imm = LEN })
137
138/* Short form of mov, dst_reg = src_reg */
139
140#define BPF_MOV64_REG(DST, SRC) \
141 ((struct bpf_insn) { \
142 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
143 .dst_reg = DST, \
144 .src_reg = SRC, \
145 .off = 0, \
146 .imm = 0 })
147
148#define BPF_MOV32_REG(DST, SRC) \
149 ((struct bpf_insn) { \
150 .code = BPF_ALU | BPF_MOV | BPF_X, \
151 .dst_reg = DST, \
152 .src_reg = SRC, \
153 .off = 0, \
154 .imm = 0 })
155
156/* Short form of mov, dst_reg = imm32 */
157
158#define BPF_MOV64_IMM(DST, IMM) \
159 ((struct bpf_insn) { \
160 .code = BPF_ALU64 | BPF_MOV | BPF_K, \
161 .dst_reg = DST, \
162 .src_reg = 0, \
163 .off = 0, \
164 .imm = IMM })
165
166#define BPF_MOV32_IMM(DST, IMM) \
167 ((struct bpf_insn) { \
168 .code = BPF_ALU | BPF_MOV | BPF_K, \
169 .dst_reg = DST, \
170 .src_reg = 0, \
171 .off = 0, \
172 .imm = IMM })
173
174/* Special form of mov32, used for doing explicit zero extension on dst. */
175#define BPF_ZEXT_REG(DST) \
176 ((struct bpf_insn) { \
177 .code = BPF_ALU | BPF_MOV | BPF_X, \
178 .dst_reg = DST, \
179 .src_reg = DST, \
180 .off = 0, \
181 .imm = 1 })
182
183static inline bool insn_is_zext(const struct bpf_insn *insn)
184{
185 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
186}
187
188/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
189#define BPF_LD_IMM64(DST, IMM) \
190 BPF_LD_IMM64_RAW(DST, 0, IMM)
191
192#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \
193 ((struct bpf_insn) { \
194 .code = BPF_LD | BPF_DW | BPF_IMM, \
195 .dst_reg = DST, \
196 .src_reg = SRC, \
197 .off = 0, \
198 .imm = (__u32) (IMM) }), \
199 ((struct bpf_insn) { \
200 .code = 0, /* zero is reserved opcode */ \
201 .dst_reg = 0, \
202 .src_reg = 0, \
203 .off = 0, \
204 .imm = ((__u64) (IMM)) >> 32 })
205
206/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
207#define BPF_LD_MAP_FD(DST, MAP_FD) \
208 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
209
210/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
211
212#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \
213 ((struct bpf_insn) { \
214 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \
215 .dst_reg = DST, \
216 .src_reg = SRC, \
217 .off = 0, \
218 .imm = IMM })
219
220#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \
221 ((struct bpf_insn) { \
222 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \
223 .dst_reg = DST, \
224 .src_reg = SRC, \
225 .off = 0, \
226 .imm = IMM })
227
228/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
229
230#define BPF_LD_ABS(SIZE, IMM) \
231 ((struct bpf_insn) { \
232 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \
233 .dst_reg = 0, \
234 .src_reg = 0, \
235 .off = 0, \
236 .imm = IMM })
237
238/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
239
240#define BPF_LD_IND(SIZE, SRC, IMM) \
241 ((struct bpf_insn) { \
242 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \
243 .dst_reg = 0, \
244 .src_reg = SRC, \
245 .off = 0, \
246 .imm = IMM })
247
248/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
249
250#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \
251 ((struct bpf_insn) { \
252 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \
253 .dst_reg = DST, \
254 .src_reg = SRC, \
255 .off = OFF, \
256 .imm = 0 })
257
258/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
259
260#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \
261 ((struct bpf_insn) { \
262 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \
263 .dst_reg = DST, \
264 .src_reg = SRC, \
265 .off = OFF, \
266 .imm = 0 })
267
268
269/*
270 * Atomic operations:
271 *
272 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg
273 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg
274 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg
275 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg
276 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
277 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
278 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
279 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
280 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg)
281 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
282 */
283
284#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \
285 ((struct bpf_insn) { \
286 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
287 .dst_reg = DST, \
288 .src_reg = SRC, \
289 .off = OFF, \
290 .imm = OP })
291
292/* Legacy alias */
293#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
294
295/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
296
297#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \
298 ((struct bpf_insn) { \
299 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
300 .dst_reg = DST, \
301 .src_reg = 0, \
302 .off = OFF, \
303 .imm = IMM })
304
305/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
306
307#define BPF_JMP_REG(OP, DST, SRC, OFF) \
308 ((struct bpf_insn) { \
309 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \
310 .dst_reg = DST, \
311 .src_reg = SRC, \
312 .off = OFF, \
313 .imm = 0 })
314
315/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
316
317#define BPF_JMP_IMM(OP, DST, IMM, OFF) \
318 ((struct bpf_insn) { \
319 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \
320 .dst_reg = DST, \
321 .src_reg = 0, \
322 .off = OFF, \
323 .imm = IMM })
324
325/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
326
327#define BPF_JMP32_REG(OP, DST, SRC, OFF) \
328 ((struct bpf_insn) { \
329 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \
330 .dst_reg = DST, \
331 .src_reg = SRC, \
332 .off = OFF, \
333 .imm = 0 })
334
335/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
336
337#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \
338 ((struct bpf_insn) { \
339 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \
340 .dst_reg = DST, \
341 .src_reg = 0, \
342 .off = OFF, \
343 .imm = IMM })
344
345/* Unconditional jumps, goto pc + off16 */
346
347#define BPF_JMP_A(OFF) \
348 ((struct bpf_insn) { \
349 .code = BPF_JMP | BPF_JA, \
350 .dst_reg = 0, \
351 .src_reg = 0, \
352 .off = OFF, \
353 .imm = 0 })
354
355/* Relative call */
356
357#define BPF_CALL_REL(TGT) \
358 ((struct bpf_insn) { \
359 .code = BPF_JMP | BPF_CALL, \
360 .dst_reg = 0, \
361 .src_reg = BPF_PSEUDO_CALL, \
362 .off = 0, \
363 .imm = TGT })
364
365/* Function call */
366
367#define BPF_CAST_CALL(x) \
368 ((u64 (*)(u64, u64, u64, u64, u64))(x))
369
370#define BPF_EMIT_CALL(FUNC) \
371 ((struct bpf_insn) { \
372 .code = BPF_JMP | BPF_CALL, \
373 .dst_reg = 0, \
374 .src_reg = 0, \
375 .off = 0, \
376 .imm = ((FUNC) - __bpf_call_base) })
377
378/* Raw code statement block */
379
380#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \
381 ((struct bpf_insn) { \
382 .code = CODE, \
383 .dst_reg = DST, \
384 .src_reg = SRC, \
385 .off = OFF, \
386 .imm = IMM })
387
388/* Program exit */
389
390#define BPF_EXIT_INSN() \
391 ((struct bpf_insn) { \
392 .code = BPF_JMP | BPF_EXIT, \
393 .dst_reg = 0, \
394 .src_reg = 0, \
395 .off = 0, \
396 .imm = 0 })
397
398/* Speculation barrier */
399
400#define BPF_ST_NOSPEC() \
401 ((struct bpf_insn) { \
402 .code = BPF_ST | BPF_NOSPEC, \
403 .dst_reg = 0, \
404 .src_reg = 0, \
405 .off = 0, \
406 .imm = 0 })
407
408/* Internal classic blocks for direct assignment */
409
410#define __BPF_STMT(CODE, K) \
411 ((struct sock_filter) BPF_STMT(CODE, K))
412
413#define __BPF_JUMP(CODE, K, JT, JF) \
414 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
415
416#define bytes_to_bpf_size(bytes) \
417({ \
418 int bpf_size = -EINVAL; \
419 \
420 if (bytes == sizeof(u8)) \
421 bpf_size = BPF_B; \
422 else if (bytes == sizeof(u16)) \
423 bpf_size = BPF_H; \
424 else if (bytes == sizeof(u32)) \
425 bpf_size = BPF_W; \
426 else if (bytes == sizeof(u64)) \
427 bpf_size = BPF_DW; \
428 \
429 bpf_size; \
430})
431
432#define bpf_size_to_bytes(bpf_size) \
433({ \
434 int bytes = -EINVAL; \
435 \
436 if (bpf_size == BPF_B) \
437 bytes = sizeof(u8); \
438 else if (bpf_size == BPF_H) \
439 bytes = sizeof(u16); \
440 else if (bpf_size == BPF_W) \
441 bytes = sizeof(u32); \
442 else if (bpf_size == BPF_DW) \
443 bytes = sizeof(u64); \
444 \
445 bytes; \
446})
447
448#define BPF_SIZEOF(type) \
449 ({ \
450 const int __size = bytes_to_bpf_size(sizeof(type)); \
451 BUILD_BUG_ON(__size < 0); \
452 __size; \
453 })
454
455#define BPF_FIELD_SIZEOF(type, field) \
456 ({ \
457 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
458 BUILD_BUG_ON(__size < 0); \
459 __size; \
460 })
461
462#define BPF_LDST_BYTES(insn) \
463 ({ \
464 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
465 WARN_ON(__size < 0); \
466 __size; \
467 })
468
469#define __BPF_MAP_0(m, v, ...) v
470#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
471#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
472#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
473#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
474#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
475
476#define __BPF_REG_0(...) __BPF_PAD(5)
477#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
478#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
479#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
480#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
481#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
482
483#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
484#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
485
486#define __BPF_CAST(t, a) \
487 (__force t) \
488 (__force \
489 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \
490 (unsigned long)0, (t)0))) a
491#define __BPF_V void
492#define __BPF_N
493
494#define __BPF_DECL_ARGS(t, a) t a
495#define __BPF_DECL_REGS(t, a) u64 a
496
497#define __BPF_PAD(n) \
498 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \
499 u64, __ur_3, u64, __ur_4, u64, __ur_5)
500
501#define BPF_CALL_x(x, name, ...) \
502 static __always_inline \
503 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
504 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
505 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \
506 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \
507 { \
508 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
509 } \
510 static __always_inline \
511 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
512
513#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__)
514#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__)
515#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__)
516#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__)
517#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__)
518#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__)
519
520#define bpf_ctx_range(TYPE, MEMBER) \
521 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
522#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \
523 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
524#if BITS_PER_LONG == 64
525# define bpf_ctx_range_ptr(TYPE, MEMBER) \
526 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
527#else
528# define bpf_ctx_range_ptr(TYPE, MEMBER) \
529 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
530#endif /* BITS_PER_LONG == 64 */
531
532#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \
533 ({ \
534 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \
535 *(PTR_SIZE) = (SIZE); \
536 offsetof(TYPE, MEMBER); \
537 })
538
539/* A struct sock_filter is architecture independent. */
540struct compat_sock_fprog {
541 u16 len;
542 compat_uptr_t filter; /* struct sock_filter * */
543};
544
545struct sock_fprog_kern {
546 u16 len;
547 struct sock_filter *filter;
548};
549
550/* Some arches need doubleword alignment for their instructions and/or data */
551#define BPF_IMAGE_ALIGNMENT 8
552
553struct bpf_binary_header {
554 u32 pages;
555 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
556};
557
558struct bpf_prog_stats {
559 u64 cnt;
560 u64 nsecs;
561 u64 misses;
562 struct u64_stats_sync syncp;
563} __aligned(2 * sizeof(u64));
564
565struct bpf_prog {
566 u16 pages; /* Number of allocated pages */
567 u16 jited:1, /* Is our filter JIT'ed? */
568 jit_requested:1,/* archs need to JIT the prog */
569 gpl_compatible:1, /* Is filter GPL compatible? */
570 cb_access:1, /* Is control block accessed? */
571 dst_needed:1, /* Do we need dst entry? */
572 blinded:1, /* Was blinded */
573 is_func:1, /* program is a bpf function */
574 kprobe_override:1, /* Do we override a kprobe? */
575 has_callchain_buf:1, /* callchain buffer allocated? */
576 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
577 call_get_stack:1; /* Do we call bpf_get_stack() or bpf_get_stackid() */
578 enum bpf_prog_type type; /* Type of BPF program */
579 enum bpf_attach_type expected_attach_type; /* For some prog types */
580 u32 len; /* Number of filter blocks */
581 u32 jited_len; /* Size of jited insns in bytes */
582 u8 tag[BPF_TAG_SIZE];
583 struct bpf_prog_stats __percpu *stats;
584 int __percpu *active;
585 unsigned int (*bpf_func)(const void *ctx,
586 const struct bpf_insn *insn);
587 struct bpf_prog_aux *aux; /* Auxiliary fields */
588 struct sock_fprog_kern *orig_prog; /* Original BPF program */
589 /* Instructions for interpreter */
590 struct sock_filter insns[0];
591 struct bpf_insn insnsi[];
592};
593
594struct sk_filter {
595 refcount_t refcnt;
596 struct rcu_head rcu;
597 struct bpf_prog *prog;
598};
599
600DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
601
602#define __BPF_PROG_RUN(prog, ctx, dfunc) ({ \
603 u32 __ret; \
604 cant_migrate(); \
605 if (static_branch_unlikely(&bpf_stats_enabled_key)) { \
606 struct bpf_prog_stats *__stats; \
607 u64 __start = sched_clock(); \
608 __ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func); \
609 __stats = this_cpu_ptr(prog->stats); \
610 u64_stats_update_begin(&__stats->syncp); \
611 __stats->cnt++; \
612 __stats->nsecs += sched_clock() - __start; \
613 u64_stats_update_end(&__stats->syncp); \
614 } else { \
615 __ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func); \
616 } \
617 __ret; })
618
619#define BPF_PROG_RUN(prog, ctx) \
620 __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func)
621
622/*
623 * Use in preemptible and therefore migratable context to make sure that
624 * the execution of the BPF program runs on one CPU.
625 *
626 * This uses migrate_disable/enable() explicitly to document that the
627 * invocation of a BPF program does not require reentrancy protection
628 * against a BPF program which is invoked from a preempting task.
629 *
630 * For non RT enabled kernels migrate_disable/enable() maps to
631 * preempt_disable/enable(), i.e. it disables also preemption.
632 */
633static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
634 const void *ctx)
635{
636 u32 ret;
637
638 migrate_disable();
639 ret = __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func);
640 migrate_enable();
641 return ret;
642}
643
644#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
645
646struct bpf_skb_data_end {
647 struct qdisc_skb_cb qdisc_cb;
648 void *data_meta;
649 void *data_end;
650};
651
652struct bpf_nh_params {
653 u32 nh_family;
654 union {
655 u32 ipv4_nh;
656 struct in6_addr ipv6_nh;
657 };
658};
659
660struct bpf_redirect_info {
661 u32 flags;
662 u32 tgt_index;
663 void *tgt_value;
664 struct bpf_map *map;
665 u32 map_id;
666 enum bpf_map_type map_type;
667 u32 kern_flags;
668 struct bpf_nh_params nh;
669};
670
671DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
672
673/* flags for bpf_redirect_info kern_flags */
674#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */
675
676/* Compute the linear packet data range [data, data_end) which
677 * will be accessed by various program types (cls_bpf, act_bpf,
678 * lwt, ...). Subsystems allowing direct data access must (!)
679 * ensure that cb[] area can be written to when BPF program is
680 * invoked (otherwise cb[] save/restore is necessary).
681 */
682static inline void bpf_compute_data_pointers(struct sk_buff *skb)
683{
684 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
685
686 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
687 cb->data_meta = skb->data - skb_metadata_len(skb);
688 cb->data_end = skb->data + skb_headlen(skb);
689}
690
691/* Similar to bpf_compute_data_pointers(), except that save orginal
692 * data in cb->data and cb->meta_data for restore.
693 */
694static inline void bpf_compute_and_save_data_end(
695 struct sk_buff *skb, void **saved_data_end)
696{
697 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
698
699 *saved_data_end = cb->data_end;
700 cb->data_end = skb->data + skb_headlen(skb);
701}
702
703/* Restore data saved by bpf_compute_data_pointers(). */
704static inline void bpf_restore_data_end(
705 struct sk_buff *skb, void *saved_data_end)
706{
707 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
708
709 cb->data_end = saved_data_end;
710}
711
712static inline u8 *bpf_skb_cb(struct sk_buff *skb)
713{
714 /* eBPF programs may read/write skb->cb[] area to transfer meta
715 * data between tail calls. Since this also needs to work with
716 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
717 *
718 * In some socket filter cases, the cb unfortunately needs to be
719 * saved/restored so that protocol specific skb->cb[] data won't
720 * be lost. In any case, due to unpriviledged eBPF programs
721 * attached to sockets, we need to clear the bpf_skb_cb() area
722 * to not leak previous contents to user space.
723 */
724 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
725 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
726 sizeof_field(struct qdisc_skb_cb, data));
727
728 return qdisc_skb_cb(skb)->data;
729}
730
731/* Must be invoked with migration disabled */
732static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
733 struct sk_buff *skb)
734{
735 u8 *cb_data = bpf_skb_cb(skb);
736 u8 cb_saved[BPF_SKB_CB_LEN];
737 u32 res;
738
739 if (unlikely(prog->cb_access)) {
740 memcpy(cb_saved, cb_data, sizeof(cb_saved));
741 memset(cb_data, 0, sizeof(cb_saved));
742 }
743
744 res = BPF_PROG_RUN(prog, skb);
745
746 if (unlikely(prog->cb_access))
747 memcpy(cb_data, cb_saved, sizeof(cb_saved));
748
749 return res;
750}
751
752static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
753 struct sk_buff *skb)
754{
755 u32 res;
756
757 migrate_disable();
758 res = __bpf_prog_run_save_cb(prog, skb);
759 migrate_enable();
760 return res;
761}
762
763static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
764 struct sk_buff *skb)
765{
766 u8 *cb_data = bpf_skb_cb(skb);
767 u32 res;
768
769 if (unlikely(prog->cb_access))
770 memset(cb_data, 0, BPF_SKB_CB_LEN);
771
772 res = bpf_prog_run_pin_on_cpu(prog, skb);
773 return res;
774}
775
776DECLARE_BPF_DISPATCHER(xdp)
777
778static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
779 struct xdp_buff *xdp)
780{
781 /* Driver XDP hooks are invoked within a single NAPI poll cycle and thus
782 * under local_bh_disable(), which provides the needed RCU protection
783 * for accessing map entries.
784 */
785 return __BPF_PROG_RUN(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
786}
787
788void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
789
790static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
791{
792 return prog->len * sizeof(struct bpf_insn);
793}
794
795static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
796{
797 return round_up(bpf_prog_insn_size(prog) +
798 sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
799}
800
801static inline unsigned int bpf_prog_size(unsigned int proglen)
802{
803 return max(sizeof(struct bpf_prog),
804 offsetof(struct bpf_prog, insns[proglen]));
805}
806
807static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
808{
809 /* When classic BPF programs have been loaded and the arch
810 * does not have a classic BPF JIT (anymore), they have been
811 * converted via bpf_migrate_filter() to eBPF and thus always
812 * have an unspec program type.
813 */
814 return prog->type == BPF_PROG_TYPE_UNSPEC;
815}
816
817static inline u32 bpf_ctx_off_adjust_machine(u32 size)
818{
819 const u32 size_machine = sizeof(unsigned long);
820
821 if (size > size_machine && size % size_machine == 0)
822 size = size_machine;
823
824 return size;
825}
826
827static inline bool
828bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
829{
830 return size <= size_default && (size & (size - 1)) == 0;
831}
832
833static inline u8
834bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
835{
836 u8 access_off = off & (size_default - 1);
837
838#ifdef __LITTLE_ENDIAN
839 return access_off;
840#else
841 return size_default - (access_off + size);
842#endif
843}
844
845#define bpf_ctx_wide_access_ok(off, size, type, field) \
846 (size == sizeof(__u64) && \
847 off >= offsetof(type, field) && \
848 off + sizeof(__u64) <= offsetofend(type, field) && \
849 off % sizeof(__u64) == 0)
850
851#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
852
853static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
854{
855#ifndef CONFIG_BPF_JIT_ALWAYS_ON
856 if (!fp->jited) {
857 set_vm_flush_reset_perms(fp);
858 set_memory_ro((unsigned long)fp, fp->pages);
859 }
860#endif
861}
862
863static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
864{
865 set_vm_flush_reset_perms(hdr);
866 set_memory_ro((unsigned long)hdr, hdr->pages);
867 set_memory_x((unsigned long)hdr, hdr->pages);
868}
869
870static inline struct bpf_binary_header *
871bpf_jit_binary_hdr(const struct bpf_prog *fp)
872{
873 unsigned long real_start = (unsigned long)fp->bpf_func;
874 unsigned long addr = real_start & PAGE_MASK;
875
876 return (void *)addr;
877}
878
879int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
880static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
881{
882 return sk_filter_trim_cap(sk, skb, 1);
883}
884
885struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
886void bpf_prog_free(struct bpf_prog *fp);
887
888bool bpf_opcode_in_insntable(u8 code);
889
890void bpf_prog_free_linfo(struct bpf_prog *prog);
891void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
892 const u32 *insn_to_jit_off);
893int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
894void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
895
896struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
897struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
898struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
899 gfp_t gfp_extra_flags);
900void __bpf_prog_free(struct bpf_prog *fp);
901
902static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
903{
904 __bpf_prog_free(fp);
905}
906
907typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
908 unsigned int flen);
909
910int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
911int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
912 bpf_aux_classic_check_t trans, bool save_orig);
913void bpf_prog_destroy(struct bpf_prog *fp);
914
915int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
916int sk_attach_bpf(u32 ufd, struct sock *sk);
917int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
918int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
919void sk_reuseport_prog_free(struct bpf_prog *prog);
920int sk_detach_filter(struct sock *sk);
921int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
922 unsigned int len);
923
924bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
925void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
926
927u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
928#define __bpf_call_base_args \
929 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
930 (void *)__bpf_call_base)
931
932struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
933void bpf_jit_compile(struct bpf_prog *prog);
934bool bpf_jit_needs_zext(void);
935bool bpf_jit_supports_kfunc_call(void);
936bool bpf_helper_changes_pkt_data(void *func);
937
938static inline bool bpf_dump_raw_ok(const struct cred *cred)
939{
940 /* Reconstruction of call-sites is dependent on kallsyms,
941 * thus make dump the same restriction.
942 */
943 return kallsyms_show_value(cred);
944}
945
946struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
947 const struct bpf_insn *patch, u32 len);
948int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
949
950void bpf_clear_redirect_map(struct bpf_map *map);
951
952static inline bool xdp_return_frame_no_direct(void)
953{
954 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
955
956 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
957}
958
959static inline void xdp_set_return_frame_no_direct(void)
960{
961 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
962
963 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
964}
965
966static inline void xdp_clear_return_frame_no_direct(void)
967{
968 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
969
970 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
971}
972
973static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
974 unsigned int pktlen)
975{
976 unsigned int len;
977
978 if (unlikely(!(fwd->flags & IFF_UP)))
979 return -ENETDOWN;
980
981 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
982 if (pktlen > len)
983 return -EMSGSIZE;
984
985 return 0;
986}
987
988/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
989 * same cpu context. Further for best results no more than a single map
990 * for the do_redirect/do_flush pair should be used. This limitation is
991 * because we only track one map and force a flush when the map changes.
992 * This does not appear to be a real limitation for existing software.
993 */
994int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
995 struct xdp_buff *xdp, struct bpf_prog *prog);
996int xdp_do_redirect(struct net_device *dev,
997 struct xdp_buff *xdp,
998 struct bpf_prog *prog);
999void xdp_do_flush(void);
1000
1001/* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
1002 * it is no longer only flushing maps. Keep this define for compatibility
1003 * until all drivers are updated - do not use xdp_do_flush_map() in new code!
1004 */
1005#define xdp_do_flush_map xdp_do_flush
1006
1007void bpf_warn_invalid_xdp_action(u32 act);
1008
1009#ifdef CONFIG_INET
1010struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1011 struct bpf_prog *prog, struct sk_buff *skb,
1012 struct sock *migrating_sk,
1013 u32 hash);
1014#else
1015static inline struct sock *
1016bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1017 struct bpf_prog *prog, struct sk_buff *skb,
1018 struct sock *migrating_sk,
1019 u32 hash)
1020{
1021 return NULL;
1022}
1023#endif
1024
1025#ifdef CONFIG_BPF_JIT
1026extern int bpf_jit_enable;
1027extern int bpf_jit_harden;
1028extern int bpf_jit_kallsyms;
1029extern long bpf_jit_limit;
1030
1031typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1032
1033struct bpf_binary_header *
1034bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1035 unsigned int alignment,
1036 bpf_jit_fill_hole_t bpf_fill_ill_insns);
1037void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1038u64 bpf_jit_alloc_exec_limit(void);
1039void *bpf_jit_alloc_exec(unsigned long size);
1040void bpf_jit_free_exec(void *addr);
1041void bpf_jit_free(struct bpf_prog *fp);
1042
1043int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1044 struct bpf_jit_poke_descriptor *poke);
1045
1046int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1047 const struct bpf_insn *insn, bool extra_pass,
1048 u64 *func_addr, bool *func_addr_fixed);
1049
1050struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1051void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1052
1053static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1054 u32 pass, void *image)
1055{
1056 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1057 proglen, pass, image, current->comm, task_pid_nr(current));
1058
1059 if (image)
1060 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1061 16, 1, image, proglen, false);
1062}
1063
1064static inline bool bpf_jit_is_ebpf(void)
1065{
1066# ifdef CONFIG_HAVE_EBPF_JIT
1067 return true;
1068# else
1069 return false;
1070# endif
1071}
1072
1073static inline bool ebpf_jit_enabled(void)
1074{
1075 return bpf_jit_enable && bpf_jit_is_ebpf();
1076}
1077
1078static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1079{
1080 return fp->jited && bpf_jit_is_ebpf();
1081}
1082
1083static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1084{
1085 /* These are the prerequisites, should someone ever have the
1086 * idea to call blinding outside of them, we make sure to
1087 * bail out.
1088 */
1089 if (!bpf_jit_is_ebpf())
1090 return false;
1091 if (!prog->jit_requested)
1092 return false;
1093 if (!bpf_jit_harden)
1094 return false;
1095 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1096 return false;
1097
1098 return true;
1099}
1100
1101static inline bool bpf_jit_kallsyms_enabled(void)
1102{
1103 /* There are a couple of corner cases where kallsyms should
1104 * not be enabled f.e. on hardening.
1105 */
1106 if (bpf_jit_harden)
1107 return false;
1108 if (!bpf_jit_kallsyms)
1109 return false;
1110 if (bpf_jit_kallsyms == 1)
1111 return true;
1112
1113 return false;
1114}
1115
1116const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1117 unsigned long *off, char *sym);
1118bool is_bpf_text_address(unsigned long addr);
1119int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1120 char *sym);
1121
1122static inline const char *
1123bpf_address_lookup(unsigned long addr, unsigned long *size,
1124 unsigned long *off, char **modname, char *sym)
1125{
1126 const char *ret = __bpf_address_lookup(addr, size, off, sym);
1127
1128 if (ret && modname)
1129 *modname = NULL;
1130 return ret;
1131}
1132
1133void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1134void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1135
1136#else /* CONFIG_BPF_JIT */
1137
1138static inline bool ebpf_jit_enabled(void)
1139{
1140 return false;
1141}
1142
1143static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1144{
1145 return false;
1146}
1147
1148static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1149{
1150 return false;
1151}
1152
1153static inline int
1154bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1155 struct bpf_jit_poke_descriptor *poke)
1156{
1157 return -ENOTSUPP;
1158}
1159
1160static inline void bpf_jit_free(struct bpf_prog *fp)
1161{
1162 bpf_prog_unlock_free(fp);
1163}
1164
1165static inline bool bpf_jit_kallsyms_enabled(void)
1166{
1167 return false;
1168}
1169
1170static inline const char *
1171__bpf_address_lookup(unsigned long addr, unsigned long *size,
1172 unsigned long *off, char *sym)
1173{
1174 return NULL;
1175}
1176
1177static inline bool is_bpf_text_address(unsigned long addr)
1178{
1179 return false;
1180}
1181
1182static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1183 char *type, char *sym)
1184{
1185 return -ERANGE;
1186}
1187
1188static inline const char *
1189bpf_address_lookup(unsigned long addr, unsigned long *size,
1190 unsigned long *off, char **modname, char *sym)
1191{
1192 return NULL;
1193}
1194
1195static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1196{
1197}
1198
1199static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1200{
1201}
1202
1203#endif /* CONFIG_BPF_JIT */
1204
1205void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1206
1207#define BPF_ANC BIT(15)
1208
1209static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1210{
1211 switch (first->code) {
1212 case BPF_RET | BPF_K:
1213 case BPF_LD | BPF_W | BPF_LEN:
1214 return false;
1215
1216 case BPF_LD | BPF_W | BPF_ABS:
1217 case BPF_LD | BPF_H | BPF_ABS:
1218 case BPF_LD | BPF_B | BPF_ABS:
1219 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1220 return true;
1221 return false;
1222
1223 default:
1224 return true;
1225 }
1226}
1227
1228static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1229{
1230 BUG_ON(ftest->code & BPF_ANC);
1231
1232 switch (ftest->code) {
1233 case BPF_LD | BPF_W | BPF_ABS:
1234 case BPF_LD | BPF_H | BPF_ABS:
1235 case BPF_LD | BPF_B | BPF_ABS:
1236#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \
1237 return BPF_ANC | SKF_AD_##CODE
1238 switch (ftest->k) {
1239 BPF_ANCILLARY(PROTOCOL);
1240 BPF_ANCILLARY(PKTTYPE);
1241 BPF_ANCILLARY(IFINDEX);
1242 BPF_ANCILLARY(NLATTR);
1243 BPF_ANCILLARY(NLATTR_NEST);
1244 BPF_ANCILLARY(MARK);
1245 BPF_ANCILLARY(QUEUE);
1246 BPF_ANCILLARY(HATYPE);
1247 BPF_ANCILLARY(RXHASH);
1248 BPF_ANCILLARY(CPU);
1249 BPF_ANCILLARY(ALU_XOR_X);
1250 BPF_ANCILLARY(VLAN_TAG);
1251 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1252 BPF_ANCILLARY(PAY_OFFSET);
1253 BPF_ANCILLARY(RANDOM);
1254 BPF_ANCILLARY(VLAN_TPID);
1255 }
1256 fallthrough;
1257 default:
1258 return ftest->code;
1259 }
1260}
1261
1262void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1263 int k, unsigned int size);
1264
1265static inline int bpf_tell_extensions(void)
1266{
1267 return SKF_AD_MAX;
1268}
1269
1270struct bpf_sock_addr_kern {
1271 struct sock *sk;
1272 struct sockaddr *uaddr;
1273 /* Temporary "register" to make indirect stores to nested structures
1274 * defined above. We need three registers to make such a store, but
1275 * only two (src and dst) are available at convert_ctx_access time
1276 */
1277 u64 tmp_reg;
1278 void *t_ctx; /* Attach type specific context. */
1279};
1280
1281struct bpf_sock_ops_kern {
1282 struct sock *sk;
1283 union {
1284 u32 args[4];
1285 u32 reply;
1286 u32 replylong[4];
1287 };
1288 struct sk_buff *syn_skb;
1289 struct sk_buff *skb;
1290 void *skb_data_end;
1291 u8 op;
1292 u8 is_fullsock;
1293 u8 remaining_opt_len;
1294 u64 temp; /* temp and everything after is not
1295 * initialized to 0 before calling
1296 * the BPF program. New fields that
1297 * should be initialized to 0 should
1298 * be inserted before temp.
1299 * temp is scratch storage used by
1300 * sock_ops_convert_ctx_access
1301 * as temporary storage of a register.
1302 */
1303};
1304
1305struct bpf_sysctl_kern {
1306 struct ctl_table_header *head;
1307 struct ctl_table *table;
1308 void *cur_val;
1309 size_t cur_len;
1310 void *new_val;
1311 size_t new_len;
1312 int new_updated;
1313 int write;
1314 loff_t *ppos;
1315 /* Temporary "register" for indirect stores to ppos. */
1316 u64 tmp_reg;
1317};
1318
1319#define BPF_SOCKOPT_KERN_BUF_SIZE 32
1320struct bpf_sockopt_buf {
1321 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE];
1322};
1323
1324struct bpf_sockopt_kern {
1325 struct sock *sk;
1326 u8 *optval;
1327 u8 *optval_end;
1328 s32 level;
1329 s32 optname;
1330 s32 optlen;
1331 s32 retval;
1332};
1333
1334int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1335
1336struct bpf_sk_lookup_kern {
1337 u16 family;
1338 u16 protocol;
1339 __be16 sport;
1340 u16 dport;
1341 struct {
1342 __be32 saddr;
1343 __be32 daddr;
1344 } v4;
1345 struct {
1346 const struct in6_addr *saddr;
1347 const struct in6_addr *daddr;
1348 } v6;
1349 struct sock *selected_sk;
1350 bool no_reuseport;
1351};
1352
1353extern struct static_key_false bpf_sk_lookup_enabled;
1354
1355/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1356 *
1357 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1358 * SK_DROP. Their meaning is as follows:
1359 *
1360 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1361 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1362 * SK_DROP : terminate lookup with -ECONNREFUSED
1363 *
1364 * This macro aggregates return values and selected sockets from
1365 * multiple BPF programs according to following rules in order:
1366 *
1367 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1368 * macro result is SK_PASS and last ctx.selected_sk is used.
1369 * 2. If any program returned SK_DROP return value,
1370 * macro result is SK_DROP.
1371 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1372 *
1373 * Caller must ensure that the prog array is non-NULL, and that the
1374 * array as well as the programs it contains remain valid.
1375 */
1376#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \
1377 ({ \
1378 struct bpf_sk_lookup_kern *_ctx = &(ctx); \
1379 struct bpf_prog_array_item *_item; \
1380 struct sock *_selected_sk = NULL; \
1381 bool _no_reuseport = false; \
1382 struct bpf_prog *_prog; \
1383 bool _all_pass = true; \
1384 u32 _ret; \
1385 \
1386 migrate_disable(); \
1387 _item = &(array)->items[0]; \
1388 while ((_prog = READ_ONCE(_item->prog))) { \
1389 /* restore most recent selection */ \
1390 _ctx->selected_sk = _selected_sk; \
1391 _ctx->no_reuseport = _no_reuseport; \
1392 \
1393 _ret = func(_prog, _ctx); \
1394 if (_ret == SK_PASS && _ctx->selected_sk) { \
1395 /* remember last non-NULL socket */ \
1396 _selected_sk = _ctx->selected_sk; \
1397 _no_reuseport = _ctx->no_reuseport; \
1398 } else if (_ret == SK_DROP && _all_pass) { \
1399 _all_pass = false; \
1400 } \
1401 _item++; \
1402 } \
1403 _ctx->selected_sk = _selected_sk; \
1404 _ctx->no_reuseport = _no_reuseport; \
1405 migrate_enable(); \
1406 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \
1407 })
1408
1409static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1410 const __be32 saddr, const __be16 sport,
1411 const __be32 daddr, const u16 dport,
1412 struct sock **psk)
1413{
1414 struct bpf_prog_array *run_array;
1415 struct sock *selected_sk = NULL;
1416 bool no_reuseport = false;
1417
1418 rcu_read_lock();
1419 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1420 if (run_array) {
1421 struct bpf_sk_lookup_kern ctx = {
1422 .family = AF_INET,
1423 .protocol = protocol,
1424 .v4.saddr = saddr,
1425 .v4.daddr = daddr,
1426 .sport = sport,
1427 .dport = dport,
1428 };
1429 u32 act;
1430
1431 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1432 if (act == SK_PASS) {
1433 selected_sk = ctx.selected_sk;
1434 no_reuseport = ctx.no_reuseport;
1435 } else {
1436 selected_sk = ERR_PTR(-ECONNREFUSED);
1437 }
1438 }
1439 rcu_read_unlock();
1440 *psk = selected_sk;
1441 return no_reuseport;
1442}
1443
1444#if IS_ENABLED(CONFIG_IPV6)
1445static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1446 const struct in6_addr *saddr,
1447 const __be16 sport,
1448 const struct in6_addr *daddr,
1449 const u16 dport,
1450 struct sock **psk)
1451{
1452 struct bpf_prog_array *run_array;
1453 struct sock *selected_sk = NULL;
1454 bool no_reuseport = false;
1455
1456 rcu_read_lock();
1457 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1458 if (run_array) {
1459 struct bpf_sk_lookup_kern ctx = {
1460 .family = AF_INET6,
1461 .protocol = protocol,
1462 .v6.saddr = saddr,
1463 .v6.daddr = daddr,
1464 .sport = sport,
1465 .dport = dport,
1466 };
1467 u32 act;
1468
1469 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1470 if (act == SK_PASS) {
1471 selected_sk = ctx.selected_sk;
1472 no_reuseport = ctx.no_reuseport;
1473 } else {
1474 selected_sk = ERR_PTR(-ECONNREFUSED);
1475 }
1476 }
1477 rcu_read_unlock();
1478 *psk = selected_sk;
1479 return no_reuseport;
1480}
1481#endif /* IS_ENABLED(CONFIG_IPV6) */
1482
1483static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex,
1484 u64 flags, const u64 flag_mask,
1485 void *lookup_elem(struct bpf_map *map, u32 key))
1486{
1487 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1488 const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1489
1490 /* Lower bits of the flags are used as return code on lookup failure */
1491 if (unlikely(flags & ~(action_mask | flag_mask)))
1492 return XDP_ABORTED;
1493
1494 ri->tgt_value = lookup_elem(map, ifindex);
1495 if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1496 /* If the lookup fails we want to clear out the state in the
1497 * redirect_info struct completely, so that if an eBPF program
1498 * performs multiple lookups, the last one always takes
1499 * precedence.
1500 */
1501 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1502 ri->map_type = BPF_MAP_TYPE_UNSPEC;
1503 return flags & action_mask;
1504 }
1505
1506 ri->tgt_index = ifindex;
1507 ri->map_id = map->id;
1508 ri->map_type = map->map_type;
1509
1510 if (flags & BPF_F_BROADCAST) {
1511 WRITE_ONCE(ri->map, map);
1512 ri->flags = flags;
1513 } else {
1514 WRITE_ONCE(ri->map, NULL);
1515 ri->flags = 0;
1516 }
1517
1518 return XDP_REDIRECT;
1519}
1520
1521#endif /* __LINUX_FILTER_H__ */
1/*
2 * Linux Socket Filter Data Structures
3 */
4#ifndef __LINUX_FILTER_H__
5#define __LINUX_FILTER_H__
6
7#include <stdarg.h>
8
9#include <linux/atomic.h>
10#include <linux/compat.h>
11#include <linux/skbuff.h>
12#include <linux/linkage.h>
13#include <linux/printk.h>
14#include <linux/workqueue.h>
15#include <linux/sched.h>
16#include <net/sch_generic.h>
17
18#include <asm/cacheflush.h>
19
20#include <uapi/linux/filter.h>
21#include <uapi/linux/bpf.h>
22
23struct sk_buff;
24struct sock;
25struct seccomp_data;
26struct bpf_prog_aux;
27
28/* ArgX, context and stack frame pointer register positions. Note,
29 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
30 * calls in BPF_CALL instruction.
31 */
32#define BPF_REG_ARG1 BPF_REG_1
33#define BPF_REG_ARG2 BPF_REG_2
34#define BPF_REG_ARG3 BPF_REG_3
35#define BPF_REG_ARG4 BPF_REG_4
36#define BPF_REG_ARG5 BPF_REG_5
37#define BPF_REG_CTX BPF_REG_6
38#define BPF_REG_FP BPF_REG_10
39
40/* Additional register mappings for converted user programs. */
41#define BPF_REG_A BPF_REG_0
42#define BPF_REG_X BPF_REG_7
43#define BPF_REG_TMP BPF_REG_8
44
45/* BPF program can access up to 512 bytes of stack space. */
46#define MAX_BPF_STACK 512
47
48/* Helper macros for filter block array initializers. */
49
50/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
51
52#define BPF_ALU64_REG(OP, DST, SRC) \
53 ((struct bpf_insn) { \
54 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \
55 .dst_reg = DST, \
56 .src_reg = SRC, \
57 .off = 0, \
58 .imm = 0 })
59
60#define BPF_ALU32_REG(OP, DST, SRC) \
61 ((struct bpf_insn) { \
62 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \
63 .dst_reg = DST, \
64 .src_reg = SRC, \
65 .off = 0, \
66 .imm = 0 })
67
68/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
69
70#define BPF_ALU64_IMM(OP, DST, IMM) \
71 ((struct bpf_insn) { \
72 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \
73 .dst_reg = DST, \
74 .src_reg = 0, \
75 .off = 0, \
76 .imm = IMM })
77
78#define BPF_ALU32_IMM(OP, DST, IMM) \
79 ((struct bpf_insn) { \
80 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \
81 .dst_reg = DST, \
82 .src_reg = 0, \
83 .off = 0, \
84 .imm = IMM })
85
86/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
87
88#define BPF_ENDIAN(TYPE, DST, LEN) \
89 ((struct bpf_insn) { \
90 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \
91 .dst_reg = DST, \
92 .src_reg = 0, \
93 .off = 0, \
94 .imm = LEN })
95
96/* Short form of mov, dst_reg = src_reg */
97
98#define BPF_MOV64_REG(DST, SRC) \
99 ((struct bpf_insn) { \
100 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
101 .dst_reg = DST, \
102 .src_reg = SRC, \
103 .off = 0, \
104 .imm = 0 })
105
106#define BPF_MOV32_REG(DST, SRC) \
107 ((struct bpf_insn) { \
108 .code = BPF_ALU | BPF_MOV | BPF_X, \
109 .dst_reg = DST, \
110 .src_reg = SRC, \
111 .off = 0, \
112 .imm = 0 })
113
114/* Short form of mov, dst_reg = imm32 */
115
116#define BPF_MOV64_IMM(DST, IMM) \
117 ((struct bpf_insn) { \
118 .code = BPF_ALU64 | BPF_MOV | BPF_K, \
119 .dst_reg = DST, \
120 .src_reg = 0, \
121 .off = 0, \
122 .imm = IMM })
123
124#define BPF_MOV32_IMM(DST, IMM) \
125 ((struct bpf_insn) { \
126 .code = BPF_ALU | BPF_MOV | BPF_K, \
127 .dst_reg = DST, \
128 .src_reg = 0, \
129 .off = 0, \
130 .imm = IMM })
131
132/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
133#define BPF_LD_IMM64(DST, IMM) \
134 BPF_LD_IMM64_RAW(DST, 0, IMM)
135
136#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \
137 ((struct bpf_insn) { \
138 .code = BPF_LD | BPF_DW | BPF_IMM, \
139 .dst_reg = DST, \
140 .src_reg = SRC, \
141 .off = 0, \
142 .imm = (__u32) (IMM) }), \
143 ((struct bpf_insn) { \
144 .code = 0, /* zero is reserved opcode */ \
145 .dst_reg = 0, \
146 .src_reg = 0, \
147 .off = 0, \
148 .imm = ((__u64) (IMM)) >> 32 })
149
150/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
151#define BPF_LD_MAP_FD(DST, MAP_FD) \
152 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
153
154/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
155
156#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \
157 ((struct bpf_insn) { \
158 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \
159 .dst_reg = DST, \
160 .src_reg = SRC, \
161 .off = 0, \
162 .imm = IMM })
163
164#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \
165 ((struct bpf_insn) { \
166 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \
167 .dst_reg = DST, \
168 .src_reg = SRC, \
169 .off = 0, \
170 .imm = IMM })
171
172/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
173
174#define BPF_LD_ABS(SIZE, IMM) \
175 ((struct bpf_insn) { \
176 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \
177 .dst_reg = 0, \
178 .src_reg = 0, \
179 .off = 0, \
180 .imm = IMM })
181
182/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
183
184#define BPF_LD_IND(SIZE, SRC, IMM) \
185 ((struct bpf_insn) { \
186 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \
187 .dst_reg = 0, \
188 .src_reg = SRC, \
189 .off = 0, \
190 .imm = IMM })
191
192/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
193
194#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \
195 ((struct bpf_insn) { \
196 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \
197 .dst_reg = DST, \
198 .src_reg = SRC, \
199 .off = OFF, \
200 .imm = 0 })
201
202/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
203
204#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \
205 ((struct bpf_insn) { \
206 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \
207 .dst_reg = DST, \
208 .src_reg = SRC, \
209 .off = OFF, \
210 .imm = 0 })
211
212/* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
213
214#define BPF_STX_XADD(SIZE, DST, SRC, OFF) \
215 ((struct bpf_insn) { \
216 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \
217 .dst_reg = DST, \
218 .src_reg = SRC, \
219 .off = OFF, \
220 .imm = 0 })
221
222/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
223
224#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \
225 ((struct bpf_insn) { \
226 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
227 .dst_reg = DST, \
228 .src_reg = 0, \
229 .off = OFF, \
230 .imm = IMM })
231
232/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
233
234#define BPF_JMP_REG(OP, DST, SRC, OFF) \
235 ((struct bpf_insn) { \
236 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \
237 .dst_reg = DST, \
238 .src_reg = SRC, \
239 .off = OFF, \
240 .imm = 0 })
241
242/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
243
244#define BPF_JMP_IMM(OP, DST, IMM, OFF) \
245 ((struct bpf_insn) { \
246 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \
247 .dst_reg = DST, \
248 .src_reg = 0, \
249 .off = OFF, \
250 .imm = IMM })
251
252/* Function call */
253
254#define BPF_EMIT_CALL(FUNC) \
255 ((struct bpf_insn) { \
256 .code = BPF_JMP | BPF_CALL, \
257 .dst_reg = 0, \
258 .src_reg = 0, \
259 .off = 0, \
260 .imm = ((FUNC) - __bpf_call_base) })
261
262/* Raw code statement block */
263
264#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \
265 ((struct bpf_insn) { \
266 .code = CODE, \
267 .dst_reg = DST, \
268 .src_reg = SRC, \
269 .off = OFF, \
270 .imm = IMM })
271
272/* Program exit */
273
274#define BPF_EXIT_INSN() \
275 ((struct bpf_insn) { \
276 .code = BPF_JMP | BPF_EXIT, \
277 .dst_reg = 0, \
278 .src_reg = 0, \
279 .off = 0, \
280 .imm = 0 })
281
282/* Internal classic blocks for direct assignment */
283
284#define __BPF_STMT(CODE, K) \
285 ((struct sock_filter) BPF_STMT(CODE, K))
286
287#define __BPF_JUMP(CODE, K, JT, JF) \
288 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
289
290#define bytes_to_bpf_size(bytes) \
291({ \
292 int bpf_size = -EINVAL; \
293 \
294 if (bytes == sizeof(u8)) \
295 bpf_size = BPF_B; \
296 else if (bytes == sizeof(u16)) \
297 bpf_size = BPF_H; \
298 else if (bytes == sizeof(u32)) \
299 bpf_size = BPF_W; \
300 else if (bytes == sizeof(u64)) \
301 bpf_size = BPF_DW; \
302 \
303 bpf_size; \
304})
305
306#ifdef CONFIG_COMPAT
307/* A struct sock_filter is architecture independent. */
308struct compat_sock_fprog {
309 u16 len;
310 compat_uptr_t filter; /* struct sock_filter * */
311};
312#endif
313
314struct sock_fprog_kern {
315 u16 len;
316 struct sock_filter *filter;
317};
318
319struct bpf_binary_header {
320 unsigned int pages;
321 u8 image[];
322};
323
324struct bpf_prog {
325 u16 pages; /* Number of allocated pages */
326 kmemcheck_bitfield_begin(meta);
327 u16 jited:1, /* Is our filter JIT'ed? */
328 gpl_compatible:1, /* Is filter GPL compatible? */
329 cb_access:1, /* Is control block accessed? */
330 dst_needed:1; /* Do we need dst entry? */
331 kmemcheck_bitfield_end(meta);
332 u32 len; /* Number of filter blocks */
333 enum bpf_prog_type type; /* Type of BPF program */
334 struct bpf_prog_aux *aux; /* Auxiliary fields */
335 struct sock_fprog_kern *orig_prog; /* Original BPF program */
336 unsigned int (*bpf_func)(const struct sk_buff *skb,
337 const struct bpf_insn *filter);
338 /* Instructions for interpreter */
339 union {
340 struct sock_filter insns[0];
341 struct bpf_insn insnsi[0];
342 };
343};
344
345struct sk_filter {
346 atomic_t refcnt;
347 struct rcu_head rcu;
348 struct bpf_prog *prog;
349};
350
351#define BPF_PROG_RUN(filter, ctx) (*filter->bpf_func)(ctx, filter->insnsi)
352
353#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
354
355static inline u8 *bpf_skb_cb(struct sk_buff *skb)
356{
357 /* eBPF programs may read/write skb->cb[] area to transfer meta
358 * data between tail calls. Since this also needs to work with
359 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
360 *
361 * In some socket filter cases, the cb unfortunately needs to be
362 * saved/restored so that protocol specific skb->cb[] data won't
363 * be lost. In any case, due to unpriviledged eBPF programs
364 * attached to sockets, we need to clear the bpf_skb_cb() area
365 * to not leak previous contents to user space.
366 */
367 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
368 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) !=
369 FIELD_SIZEOF(struct qdisc_skb_cb, data));
370
371 return qdisc_skb_cb(skb)->data;
372}
373
374static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
375 struct sk_buff *skb)
376{
377 u8 *cb_data = bpf_skb_cb(skb);
378 u8 cb_saved[BPF_SKB_CB_LEN];
379 u32 res;
380
381 if (unlikely(prog->cb_access)) {
382 memcpy(cb_saved, cb_data, sizeof(cb_saved));
383 memset(cb_data, 0, sizeof(cb_saved));
384 }
385
386 res = BPF_PROG_RUN(prog, skb);
387
388 if (unlikely(prog->cb_access))
389 memcpy(cb_data, cb_saved, sizeof(cb_saved));
390
391 return res;
392}
393
394static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
395 struct sk_buff *skb)
396{
397 u8 *cb_data = bpf_skb_cb(skb);
398
399 if (unlikely(prog->cb_access))
400 memset(cb_data, 0, BPF_SKB_CB_LEN);
401
402 return BPF_PROG_RUN(prog, skb);
403}
404
405static inline unsigned int bpf_prog_size(unsigned int proglen)
406{
407 return max(sizeof(struct bpf_prog),
408 offsetof(struct bpf_prog, insns[proglen]));
409}
410
411static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
412{
413 /* When classic BPF programs have been loaded and the arch
414 * does not have a classic BPF JIT (anymore), they have been
415 * converted via bpf_migrate_filter() to eBPF and thus always
416 * have an unspec program type.
417 */
418 return prog->type == BPF_PROG_TYPE_UNSPEC;
419}
420
421#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
422
423#ifdef CONFIG_DEBUG_SET_MODULE_RONX
424static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
425{
426 set_memory_ro((unsigned long)fp, fp->pages);
427}
428
429static inline void bpf_prog_unlock_ro(struct bpf_prog *fp)
430{
431 set_memory_rw((unsigned long)fp, fp->pages);
432}
433#else
434static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
435{
436}
437
438static inline void bpf_prog_unlock_ro(struct bpf_prog *fp)
439{
440}
441#endif /* CONFIG_DEBUG_SET_MODULE_RONX */
442
443int sk_filter(struct sock *sk, struct sk_buff *skb);
444
445int bpf_prog_select_runtime(struct bpf_prog *fp);
446void bpf_prog_free(struct bpf_prog *fp);
447
448struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
449struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
450 gfp_t gfp_extra_flags);
451void __bpf_prog_free(struct bpf_prog *fp);
452
453static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
454{
455 bpf_prog_unlock_ro(fp);
456 __bpf_prog_free(fp);
457}
458
459typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
460 unsigned int flen);
461
462int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
463int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
464 bpf_aux_classic_check_t trans, bool save_orig);
465void bpf_prog_destroy(struct bpf_prog *fp);
466
467int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
468int __sk_attach_filter(struct sock_fprog *fprog, struct sock *sk,
469 bool locked);
470int sk_attach_bpf(u32 ufd, struct sock *sk);
471int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
472int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
473int sk_detach_filter(struct sock *sk);
474int __sk_detach_filter(struct sock *sk, bool locked);
475
476int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
477 unsigned int len);
478
479bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
480void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
481
482u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
483void bpf_int_jit_compile(struct bpf_prog *fp);
484bool bpf_helper_changes_skb_data(void *func);
485
486#ifdef CONFIG_BPF_JIT
487typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
488
489struct bpf_binary_header *
490bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
491 unsigned int alignment,
492 bpf_jit_fill_hole_t bpf_fill_ill_insns);
493void bpf_jit_binary_free(struct bpf_binary_header *hdr);
494
495void bpf_jit_compile(struct bpf_prog *fp);
496void bpf_jit_free(struct bpf_prog *fp);
497
498static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
499 u32 pass, void *image)
500{
501 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
502 proglen, pass, image, current->comm, task_pid_nr(current));
503
504 if (image)
505 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
506 16, 1, image, proglen, false);
507}
508#else
509static inline void bpf_jit_compile(struct bpf_prog *fp)
510{
511}
512
513static inline void bpf_jit_free(struct bpf_prog *fp)
514{
515 bpf_prog_unlock_free(fp);
516}
517#endif /* CONFIG_BPF_JIT */
518
519#define BPF_ANC BIT(15)
520
521static inline bool bpf_needs_clear_a(const struct sock_filter *first)
522{
523 switch (first->code) {
524 case BPF_RET | BPF_K:
525 case BPF_LD | BPF_W | BPF_LEN:
526 return false;
527
528 case BPF_LD | BPF_W | BPF_ABS:
529 case BPF_LD | BPF_H | BPF_ABS:
530 case BPF_LD | BPF_B | BPF_ABS:
531 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
532 return true;
533 return false;
534
535 default:
536 return true;
537 }
538}
539
540static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
541{
542 BUG_ON(ftest->code & BPF_ANC);
543
544 switch (ftest->code) {
545 case BPF_LD | BPF_W | BPF_ABS:
546 case BPF_LD | BPF_H | BPF_ABS:
547 case BPF_LD | BPF_B | BPF_ABS:
548#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \
549 return BPF_ANC | SKF_AD_##CODE
550 switch (ftest->k) {
551 BPF_ANCILLARY(PROTOCOL);
552 BPF_ANCILLARY(PKTTYPE);
553 BPF_ANCILLARY(IFINDEX);
554 BPF_ANCILLARY(NLATTR);
555 BPF_ANCILLARY(NLATTR_NEST);
556 BPF_ANCILLARY(MARK);
557 BPF_ANCILLARY(QUEUE);
558 BPF_ANCILLARY(HATYPE);
559 BPF_ANCILLARY(RXHASH);
560 BPF_ANCILLARY(CPU);
561 BPF_ANCILLARY(ALU_XOR_X);
562 BPF_ANCILLARY(VLAN_TAG);
563 BPF_ANCILLARY(VLAN_TAG_PRESENT);
564 BPF_ANCILLARY(PAY_OFFSET);
565 BPF_ANCILLARY(RANDOM);
566 BPF_ANCILLARY(VLAN_TPID);
567 }
568 /* Fallthrough. */
569 default:
570 return ftest->code;
571 }
572}
573
574void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
575 int k, unsigned int size);
576
577static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
578 unsigned int size, void *buffer)
579{
580 if (k >= 0)
581 return skb_header_pointer(skb, k, size, buffer);
582
583 return bpf_internal_load_pointer_neg_helper(skb, k, size);
584}
585
586static inline int bpf_tell_extensions(void)
587{
588 return SKF_AD_MAX;
589}
590
591#endif /* __LINUX_FILTER_H__ */