Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/checkpoint.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
 
 
 
 
   7 */
   8#include <linux/fs.h>
   9#include <linux/bio.h>
  10#include <linux/mpage.h>
  11#include <linux/writeback.h>
  12#include <linux/blkdev.h>
  13#include <linux/f2fs_fs.h>
  14#include <linux/pagevec.h>
  15#include <linux/swap.h>
  16#include <linux/kthread.h>
  17
  18#include "f2fs.h"
  19#include "node.h"
  20#include "segment.h"
 
  21#include <trace/events/f2fs.h>
  22
  23#define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
  24
  25static struct kmem_cache *ino_entry_slab;
  26struct kmem_cache *f2fs_inode_entry_slab;
  27
  28void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
  29{
  30	f2fs_build_fault_attr(sbi, 0, 0);
  31	set_ckpt_flags(sbi, CP_ERROR_FLAG);
  32	if (!end_io)
  33		f2fs_flush_merged_writes(sbi);
  34}
  35
  36/*
  37 * We guarantee no failure on the returned page.
  38 */
  39struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  40{
  41	struct address_space *mapping = META_MAPPING(sbi);
  42	struct page *page;
  43repeat:
  44	page = f2fs_grab_cache_page(mapping, index, false);
  45	if (!page) {
  46		cond_resched();
  47		goto repeat;
  48	}
  49	f2fs_wait_on_page_writeback(page, META, true, true);
  50	if (!PageUptodate(page))
  51		SetPageUptodate(page);
  52	return page;
  53}
  54
 
 
 
  55static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
  56							bool is_meta)
  57{
  58	struct address_space *mapping = META_MAPPING(sbi);
  59	struct page *page;
  60	struct f2fs_io_info fio = {
  61		.sbi = sbi,
  62		.type = META,
  63		.op = REQ_OP_READ,
  64		.op_flags = REQ_META | REQ_PRIO,
  65		.old_blkaddr = index,
  66		.new_blkaddr = index,
  67		.encrypted_page = NULL,
  68		.is_por = !is_meta,
  69	};
  70	int err;
  71
  72	if (unlikely(!is_meta))
  73		fio.op_flags &= ~REQ_META;
  74repeat:
  75	page = f2fs_grab_cache_page(mapping, index, false);
  76	if (!page) {
  77		cond_resched();
  78		goto repeat;
  79	}
  80	if (PageUptodate(page))
  81		goto out;
  82
  83	fio.page = page;
  84
  85	err = f2fs_submit_page_bio(&fio);
  86	if (err) {
  87		f2fs_put_page(page, 1);
  88		return ERR_PTR(err);
  89	}
  90
  91	f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
  92
  93	lock_page(page);
  94	if (unlikely(page->mapping != mapping)) {
  95		f2fs_put_page(page, 1);
  96		goto repeat;
  97	}
  98
  99	if (unlikely(!PageUptodate(page))) {
 100		f2fs_put_page(page, 1);
 101		return ERR_PTR(-EIO);
 102	}
 
 
 
 103out:
 104	return page;
 105}
 106
 107struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 108{
 109	return __get_meta_page(sbi, index, true);
 110}
 111
 112struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
 113{
 114	struct page *page;
 115	int count = 0;
 116
 117retry:
 118	page = __get_meta_page(sbi, index, true);
 119	if (IS_ERR(page)) {
 120		if (PTR_ERR(page) == -EIO &&
 121				++count <= DEFAULT_RETRY_IO_COUNT)
 122			goto retry;
 123		f2fs_stop_checkpoint(sbi, false);
 124	}
 125	return page;
 126}
 127
 128/* for POR only */
 129struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
 130{
 131	return __get_meta_page(sbi, index, false);
 132}
 133
 134static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
 135							int type)
 136{
 137	struct seg_entry *se;
 138	unsigned int segno, offset;
 139	bool exist;
 140
 141	if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ)
 142		return true;
 143
 144	segno = GET_SEGNO(sbi, blkaddr);
 145	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 146	se = get_seg_entry(sbi, segno);
 147
 148	exist = f2fs_test_bit(offset, se->cur_valid_map);
 149	if (!exist && type == DATA_GENERIC_ENHANCE) {
 150		f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
 151			 blkaddr, exist);
 152		set_sbi_flag(sbi, SBI_NEED_FSCK);
 153		WARN_ON(1);
 154	}
 155	return exist;
 156}
 157
 158bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
 159					block_t blkaddr, int type)
 160{
 161	switch (type) {
 162	case META_NAT:
 163		break;
 164	case META_SIT:
 165		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
 166			return false;
 167		break;
 168	case META_SSA:
 169		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
 170			blkaddr < SM_I(sbi)->ssa_blkaddr))
 171			return false;
 172		break;
 173	case META_CP:
 174		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
 175			blkaddr < __start_cp_addr(sbi)))
 176			return false;
 177		break;
 178	case META_POR:
 179		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
 180			blkaddr < MAIN_BLKADDR(sbi)))
 181			return false;
 182		break;
 183	case DATA_GENERIC:
 184	case DATA_GENERIC_ENHANCE:
 185	case DATA_GENERIC_ENHANCE_READ:
 186		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
 187				blkaddr < MAIN_BLKADDR(sbi))) {
 188			f2fs_warn(sbi, "access invalid blkaddr:%u",
 189				  blkaddr);
 190			set_sbi_flag(sbi, SBI_NEED_FSCK);
 191			WARN_ON(1);
 192			return false;
 193		} else {
 194			return __is_bitmap_valid(sbi, blkaddr, type);
 195		}
 196		break;
 197	case META_GENERIC:
 198		if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
 199			blkaddr >= MAIN_BLKADDR(sbi)))
 200			return false;
 201		break;
 202	default:
 203		BUG();
 204	}
 205
 206	return true;
 207}
 208
 209/*
 210 * Readahead CP/NAT/SIT/SSA/POR pages
 211 */
 212int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
 213							int type, bool sync)
 214{
 215	struct page *page;
 216	block_t blkno = start;
 217	struct f2fs_io_info fio = {
 218		.sbi = sbi,
 219		.type = META,
 220		.op = REQ_OP_READ,
 221		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
 222		.encrypted_page = NULL,
 223		.in_list = false,
 224		.is_por = (type == META_POR),
 225	};
 226	struct blk_plug plug;
 227	int err;
 228
 229	if (unlikely(type == META_POR))
 230		fio.op_flags &= ~REQ_META;
 231
 232	blk_start_plug(&plug);
 233	for (; nrpages-- > 0; blkno++) {
 234
 235		if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
 236			goto out;
 237
 238		switch (type) {
 239		case META_NAT:
 240			if (unlikely(blkno >=
 241					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
 242				blkno = 0;
 243			/* get nat block addr */
 244			fio.new_blkaddr = current_nat_addr(sbi,
 245					blkno * NAT_ENTRY_PER_BLOCK);
 246			break;
 247		case META_SIT:
 248			if (unlikely(blkno >= TOTAL_SEGS(sbi)))
 249				goto out;
 250			/* get sit block addr */
 251			fio.new_blkaddr = current_sit_addr(sbi,
 252					blkno * SIT_ENTRY_PER_BLOCK);
 253			break;
 254		case META_SSA:
 255		case META_CP:
 256		case META_POR:
 257			fio.new_blkaddr = blkno;
 258			break;
 259		default:
 260			BUG();
 261		}
 262
 263		page = f2fs_grab_cache_page(META_MAPPING(sbi),
 264						fio.new_blkaddr, false);
 265		if (!page)
 266			continue;
 267		if (PageUptodate(page)) {
 268			f2fs_put_page(page, 1);
 269			continue;
 270		}
 271
 272		fio.page = page;
 273		err = f2fs_submit_page_bio(&fio);
 274		f2fs_put_page(page, err ? 1 : 0);
 275
 276		if (!err)
 277			f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
 278	}
 279out:
 
 280	blk_finish_plug(&plug);
 281	return blkno - start;
 282}
 283
 284void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
 285{
 286	struct page *page;
 287	bool readahead = false;
 288
 289	page = find_get_page(META_MAPPING(sbi), index);
 290	if (!page || !PageUptodate(page))
 291		readahead = true;
 292	f2fs_put_page(page, 0);
 293
 294	if (readahead)
 295		f2fs_ra_meta_pages(sbi, index, BIO_MAX_VECS, META_POR, true);
 296}
 297
 298static int __f2fs_write_meta_page(struct page *page,
 299				struct writeback_control *wbc,
 300				enum iostat_type io_type)
 301{
 302	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
 303
 304	trace_f2fs_writepage(page, META);
 305
 306	if (unlikely(f2fs_cp_error(sbi)))
 307		goto redirty_out;
 308	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 309		goto redirty_out;
 310	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
 311		goto redirty_out;
 
 
 312
 313	f2fs_do_write_meta_page(sbi, page, io_type);
 314	dec_page_count(sbi, F2FS_DIRTY_META);
 315
 316	if (wbc->for_reclaim)
 317		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
 318
 319	unlock_page(page);
 320
 321	if (unlikely(f2fs_cp_error(sbi)))
 322		f2fs_submit_merged_write(sbi, META);
 323
 324	return 0;
 325
 326redirty_out:
 327	redirty_page_for_writepage(wbc, page);
 328	return AOP_WRITEPAGE_ACTIVATE;
 329}
 330
 331static int f2fs_write_meta_page(struct page *page,
 332				struct writeback_control *wbc)
 333{
 334	return __f2fs_write_meta_page(page, wbc, FS_META_IO);
 335}
 336
 337static int f2fs_write_meta_pages(struct address_space *mapping,
 338				struct writeback_control *wbc)
 339{
 340	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
 341	long diff, written;
 342
 343	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 344		goto skip_write;
 345
 346	/* collect a number of dirty meta pages and write together */
 347	if (wbc->sync_mode != WB_SYNC_ALL &&
 348			get_pages(sbi, F2FS_DIRTY_META) <
 349					nr_pages_to_skip(sbi, META))
 350		goto skip_write;
 351
 352	/* if locked failed, cp will flush dirty pages instead */
 353	if (!down_write_trylock(&sbi->cp_global_sem))
 354		goto skip_write;
 355
 356	trace_f2fs_writepages(mapping->host, wbc, META);
 
 
 
 357	diff = nr_pages_to_write(sbi, META, wbc);
 358	written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
 359	up_write(&sbi->cp_global_sem);
 360	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
 361	return 0;
 362
 363skip_write:
 364	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
 365	trace_f2fs_writepages(mapping->host, wbc, META);
 366	return 0;
 367}
 368
 369long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
 370				long nr_to_write, enum iostat_type io_type)
 371{
 372	struct address_space *mapping = META_MAPPING(sbi);
 373	pgoff_t index = 0, prev = ULONG_MAX;
 374	struct pagevec pvec;
 375	long nwritten = 0;
 376	int nr_pages;
 377	struct writeback_control wbc = {
 378		.for_reclaim = 0,
 379	};
 380	struct blk_plug plug;
 381
 382	pagevec_init(&pvec);
 383
 384	blk_start_plug(&plug);
 385
 386	while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 387				PAGECACHE_TAG_DIRTY))) {
 388		int i;
 
 
 
 
 389
 390		for (i = 0; i < nr_pages; i++) {
 391			struct page *page = pvec.pages[i];
 392
 393			if (prev == ULONG_MAX)
 394				prev = page->index - 1;
 395			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
 396				pagevec_release(&pvec);
 397				goto stop;
 398			}
 399
 400			lock_page(page);
 401
 402			if (unlikely(page->mapping != mapping)) {
 403continue_unlock:
 404				unlock_page(page);
 405				continue;
 406			}
 407			if (!PageDirty(page)) {
 408				/* someone wrote it for us */
 409				goto continue_unlock;
 410			}
 411
 412			f2fs_wait_on_page_writeback(page, META, true, true);
 413
 
 414			if (!clear_page_dirty_for_io(page))
 415				goto continue_unlock;
 416
 417			if (__f2fs_write_meta_page(page, &wbc, io_type)) {
 418				unlock_page(page);
 419				break;
 420			}
 421			nwritten++;
 422			prev = page->index;
 423			if (unlikely(nwritten >= nr_to_write))
 424				break;
 425		}
 426		pagevec_release(&pvec);
 427		cond_resched();
 428	}
 429stop:
 430	if (nwritten)
 431		f2fs_submit_merged_write(sbi, type);
 432
 433	blk_finish_plug(&plug);
 434
 435	return nwritten;
 436}
 437
 438static int f2fs_set_meta_page_dirty(struct page *page)
 439{
 440	trace_f2fs_set_page_dirty(page, META);
 441
 442	if (!PageUptodate(page))
 443		SetPageUptodate(page);
 444	if (!PageDirty(page)) {
 445		__set_page_dirty_nobuffers(page);
 446		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
 447		set_page_private_reference(page);
 
 448		return 1;
 449	}
 450	return 0;
 451}
 452
 453const struct address_space_operations f2fs_meta_aops = {
 454	.writepage	= f2fs_write_meta_page,
 455	.writepages	= f2fs_write_meta_pages,
 456	.set_page_dirty	= f2fs_set_meta_page_dirty,
 457	.invalidatepage = f2fs_invalidate_page,
 458	.releasepage	= f2fs_release_page,
 459#ifdef CONFIG_MIGRATION
 460	.migratepage    = f2fs_migrate_page,
 461#endif
 462};
 463
 464static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
 465						unsigned int devidx, int type)
 466{
 467	struct inode_management *im = &sbi->im[type];
 468	struct ino_entry *e, *tmp;
 469
 470	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
 471
 472	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
 473
 474	spin_lock(&im->ino_lock);
 475	e = radix_tree_lookup(&im->ino_root, ino);
 476	if (!e) {
 477		e = tmp;
 478		if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
 479			f2fs_bug_on(sbi, 1);
 480
 
 
 481		memset(e, 0, sizeof(struct ino_entry));
 482		e->ino = ino;
 483
 484		list_add_tail(&e->list, &im->ino_list);
 485		if (type != ORPHAN_INO)
 486			im->ino_num++;
 487	}
 488
 489	if (type == FLUSH_INO)
 490		f2fs_set_bit(devidx, (char *)&e->dirty_device);
 491
 492	spin_unlock(&im->ino_lock);
 493	radix_tree_preload_end();
 494
 495	if (e != tmp)
 496		kmem_cache_free(ino_entry_slab, tmp);
 497}
 498
 499static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 500{
 501	struct inode_management *im = &sbi->im[type];
 502	struct ino_entry *e;
 503
 504	spin_lock(&im->ino_lock);
 505	e = radix_tree_lookup(&im->ino_root, ino);
 506	if (e) {
 507		list_del(&e->list);
 508		radix_tree_delete(&im->ino_root, ino);
 509		im->ino_num--;
 510		spin_unlock(&im->ino_lock);
 511		kmem_cache_free(ino_entry_slab, e);
 512		return;
 513	}
 514	spin_unlock(&im->ino_lock);
 515}
 516
 517void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 518{
 519	/* add new dirty ino entry into list */
 520	__add_ino_entry(sbi, ino, 0, type);
 521}
 522
 523void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 524{
 525	/* remove dirty ino entry from list */
 526	__remove_ino_entry(sbi, ino, type);
 527}
 528
 529/* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
 530bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
 531{
 532	struct inode_management *im = &sbi->im[mode];
 533	struct ino_entry *e;
 534
 535	spin_lock(&im->ino_lock);
 536	e = radix_tree_lookup(&im->ino_root, ino);
 537	spin_unlock(&im->ino_lock);
 538	return e ? true : false;
 539}
 540
 541void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
 542{
 543	struct ino_entry *e, *tmp;
 544	int i;
 545
 546	for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
 547		struct inode_management *im = &sbi->im[i];
 548
 549		spin_lock(&im->ino_lock);
 550		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
 551			list_del(&e->list);
 552			radix_tree_delete(&im->ino_root, e->ino);
 553			kmem_cache_free(ino_entry_slab, e);
 554			im->ino_num--;
 555		}
 556		spin_unlock(&im->ino_lock);
 557	}
 558}
 559
 560void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
 561					unsigned int devidx, int type)
 562{
 563	__add_ino_entry(sbi, ino, devidx, type);
 564}
 565
 566bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
 567					unsigned int devidx, int type)
 568{
 569	struct inode_management *im = &sbi->im[type];
 570	struct ino_entry *e;
 571	bool is_dirty = false;
 572
 573	spin_lock(&im->ino_lock);
 574	e = radix_tree_lookup(&im->ino_root, ino);
 575	if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
 576		is_dirty = true;
 577	spin_unlock(&im->ino_lock);
 578	return is_dirty;
 579}
 580
 581int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
 582{
 583	struct inode_management *im = &sbi->im[ORPHAN_INO];
 584	int err = 0;
 585
 586	spin_lock(&im->ino_lock);
 587
 588	if (time_to_inject(sbi, FAULT_ORPHAN)) {
 589		spin_unlock(&im->ino_lock);
 590		f2fs_show_injection_info(sbi, FAULT_ORPHAN);
 591		return -ENOSPC;
 592	}
 593
 594	if (unlikely(im->ino_num >= sbi->max_orphans))
 595		err = -ENOSPC;
 596	else
 597		im->ino_num++;
 598	spin_unlock(&im->ino_lock);
 599
 600	return err;
 601}
 602
 603void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
 604{
 605	struct inode_management *im = &sbi->im[ORPHAN_INO];
 606
 607	spin_lock(&im->ino_lock);
 608	f2fs_bug_on(sbi, im->ino_num == 0);
 609	im->ino_num--;
 610	spin_unlock(&im->ino_lock);
 611}
 612
 613void f2fs_add_orphan_inode(struct inode *inode)
 614{
 615	/* add new orphan ino entry into list */
 616	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
 617	f2fs_update_inode_page(inode);
 618}
 619
 620void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 621{
 622	/* remove orphan entry from orphan list */
 623	__remove_ino_entry(sbi, ino, ORPHAN_INO);
 624}
 625
 626static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 627{
 628	struct inode *inode;
 629	struct node_info ni;
 630	int err;
 631
 632	inode = f2fs_iget_retry(sbi->sb, ino);
 633	if (IS_ERR(inode)) {
 634		/*
 635		 * there should be a bug that we can't find the entry
 636		 * to orphan inode.
 637		 */
 638		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
 639		return PTR_ERR(inode);
 640	}
 641
 642	err = dquot_initialize(inode);
 643	if (err) {
 644		iput(inode);
 645		goto err_out;
 646	}
 647
 648	clear_nlink(inode);
 649
 650	/* truncate all the data during iput */
 651	iput(inode);
 652
 653	err = f2fs_get_node_info(sbi, ino, &ni);
 654	if (err)
 655		goto err_out;
 656
 657	/* ENOMEM was fully retried in f2fs_evict_inode. */
 658	if (ni.blk_addr != NULL_ADDR) {
 659		err = -EIO;
 660		goto err_out;
 661	}
 662	return 0;
 663
 664err_out:
 665	set_sbi_flag(sbi, SBI_NEED_FSCK);
 666	f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
 667		  __func__, ino);
 668	return err;
 669}
 670
 671int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
 672{
 673	block_t start_blk, orphan_blocks, i, j;
 674	unsigned int s_flags = sbi->sb->s_flags;
 675	int err = 0;
 676#ifdef CONFIG_QUOTA
 677	int quota_enabled;
 678#endif
 679
 680	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
 681		return 0;
 682
 683	if (bdev_read_only(sbi->sb->s_bdev)) {
 684		f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
 685		return 0;
 686	}
 687
 688	if (s_flags & SB_RDONLY) {
 689		f2fs_info(sbi, "orphan cleanup on readonly fs");
 690		sbi->sb->s_flags &= ~SB_RDONLY;
 691	}
 692
 693#ifdef CONFIG_QUOTA
 694	/* Needed for iput() to work correctly and not trash data */
 695	sbi->sb->s_flags |= SB_ACTIVE;
 696
 697	/*
 698	 * Turn on quotas which were not enabled for read-only mounts if
 699	 * filesystem has quota feature, so that they are updated correctly.
 700	 */
 701	quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
 702#endif
 703
 704	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
 705	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
 706
 707	f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
 708
 709	for (i = 0; i < orphan_blocks; i++) {
 710		struct page *page;
 711		struct f2fs_orphan_block *orphan_blk;
 712
 713		page = f2fs_get_meta_page(sbi, start_blk + i);
 714		if (IS_ERR(page)) {
 715			err = PTR_ERR(page);
 716			goto out;
 717		}
 718
 719		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
 720		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
 721			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
 722
 723			err = recover_orphan_inode(sbi, ino);
 724			if (err) {
 725				f2fs_put_page(page, 1);
 726				goto out;
 727			}
 728		}
 729		f2fs_put_page(page, 1);
 730	}
 731	/* clear Orphan Flag */
 732	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
 733out:
 734	set_sbi_flag(sbi, SBI_IS_RECOVERED);
 735
 736#ifdef CONFIG_QUOTA
 737	/* Turn quotas off */
 738	if (quota_enabled)
 739		f2fs_quota_off_umount(sbi->sb);
 740#endif
 741	sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
 742
 743	return err;
 744}
 745
 746static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
 747{
 748	struct list_head *head;
 749	struct f2fs_orphan_block *orphan_blk = NULL;
 750	unsigned int nentries = 0;
 751	unsigned short index = 1;
 752	unsigned short orphan_blocks;
 753	struct page *page = NULL;
 754	struct ino_entry *orphan = NULL;
 755	struct inode_management *im = &sbi->im[ORPHAN_INO];
 756
 757	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
 758
 759	/*
 760	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
 761	 * orphan inode operations are covered under f2fs_lock_op().
 762	 * And, spin_lock should be avoided due to page operations below.
 763	 */
 764	head = &im->ino_list;
 765
 766	/* loop for each orphan inode entry and write them in Jornal block */
 767	list_for_each_entry(orphan, head, list) {
 768		if (!page) {
 769			page = f2fs_grab_meta_page(sbi, start_blk++);
 770			orphan_blk =
 771				(struct f2fs_orphan_block *)page_address(page);
 772			memset(orphan_blk, 0, sizeof(*orphan_blk));
 773		}
 774
 775		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
 776
 777		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
 778			/*
 779			 * an orphan block is full of 1020 entries,
 780			 * then we need to flush current orphan blocks
 781			 * and bring another one in memory
 782			 */
 783			orphan_blk->blk_addr = cpu_to_le16(index);
 784			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 785			orphan_blk->entry_count = cpu_to_le32(nentries);
 786			set_page_dirty(page);
 787			f2fs_put_page(page, 1);
 788			index++;
 789			nentries = 0;
 790			page = NULL;
 791		}
 792	}
 793
 794	if (page) {
 795		orphan_blk->blk_addr = cpu_to_le16(index);
 796		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 797		orphan_blk->entry_count = cpu_to_le32(nentries);
 798		set_page_dirty(page);
 799		f2fs_put_page(page, 1);
 800	}
 801}
 802
 803static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
 804						struct f2fs_checkpoint *ckpt)
 805{
 806	unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
 807	__u32 chksum;
 808
 809	chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
 810	if (chksum_ofs < CP_CHKSUM_OFFSET) {
 811		chksum_ofs += sizeof(chksum);
 812		chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
 813						F2FS_BLKSIZE - chksum_ofs);
 814	}
 815	return chksum;
 816}
 817
 818static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
 819		struct f2fs_checkpoint **cp_block, struct page **cp_page,
 820		unsigned long long *version)
 821{
 822	size_t crc_offset = 0;
 823	__u32 crc;
 824
 825	*cp_page = f2fs_get_meta_page(sbi, cp_addr);
 826	if (IS_ERR(*cp_page))
 827		return PTR_ERR(*cp_page);
 828
 829	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
 830
 831	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
 832	if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
 833			crc_offset > CP_CHKSUM_OFFSET) {
 834		f2fs_put_page(*cp_page, 1);
 835		f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
 836		return -EINVAL;
 837	}
 838
 839	crc = f2fs_checkpoint_chksum(sbi, *cp_block);
 840	if (crc != cur_cp_crc(*cp_block)) {
 841		f2fs_put_page(*cp_page, 1);
 842		f2fs_warn(sbi, "invalid crc value");
 843		return -EINVAL;
 844	}
 845
 846	*version = cur_cp_version(*cp_block);
 847	return 0;
 848}
 849
 850static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
 851				block_t cp_addr, unsigned long long *version)
 852{
 853	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
 854	struct f2fs_checkpoint *cp_block = NULL;
 
 855	unsigned long long cur_version = 0, pre_version = 0;
 856	int err;
 
 857
 858	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
 859					&cp_page_1, version);
 860	if (err)
 861		return NULL;
 862
 863	if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
 864					sbi->blocks_per_seg) {
 865		f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
 866			  le32_to_cpu(cp_block->cp_pack_total_block_count));
 867		goto invalid_cp;
 868	}
 869	pre_version = *version;
 
 
 
 
 870
 
 871	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
 872	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
 873					&cp_page_2, version);
 874	if (err)
 875		goto invalid_cp;
 876	cur_version = *version;
 
 
 
 
 
 
 
 877
 878	if (cur_version == pre_version) {
 879		*version = cur_version;
 880		f2fs_put_page(cp_page_2, 1);
 881		return cp_page_1;
 882	}
 
 883	f2fs_put_page(cp_page_2, 1);
 884invalid_cp:
 885	f2fs_put_page(cp_page_1, 1);
 886	return NULL;
 887}
 888
 889int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
 890{
 891	struct f2fs_checkpoint *cp_block;
 892	struct f2fs_super_block *fsb = sbi->raw_super;
 893	struct page *cp1, *cp2, *cur_page;
 894	unsigned long blk_size = sbi->blocksize;
 895	unsigned long long cp1_version = 0, cp2_version = 0;
 896	unsigned long long cp_start_blk_no;
 897	unsigned int cp_blks = 1 + __cp_payload(sbi);
 898	block_t cp_blk_no;
 899	int i;
 900	int err;
 901
 902	sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
 903				  GFP_KERNEL);
 904	if (!sbi->ckpt)
 905		return -ENOMEM;
 906	/*
 907	 * Finding out valid cp block involves read both
 908	 * sets( cp pack 1 and cp pack 2)
 909	 */
 910	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 911	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
 912
 913	/* The second checkpoint pack should start at the next segment */
 914	cp_start_blk_no += ((unsigned long long)1) <<
 915				le32_to_cpu(fsb->log_blocks_per_seg);
 916	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
 917
 918	if (cp1 && cp2) {
 919		if (ver_after(cp2_version, cp1_version))
 920			cur_page = cp2;
 921		else
 922			cur_page = cp1;
 923	} else if (cp1) {
 924		cur_page = cp1;
 925	} else if (cp2) {
 926		cur_page = cp2;
 927	} else {
 928		err = -EFSCORRUPTED;
 929		goto fail_no_cp;
 930	}
 931
 932	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
 933	memcpy(sbi->ckpt, cp_block, blk_size);
 934
 935	if (cur_page == cp1)
 936		sbi->cur_cp_pack = 1;
 937	else
 938		sbi->cur_cp_pack = 2;
 939
 940	/* Sanity checking of checkpoint */
 941	if (f2fs_sanity_check_ckpt(sbi)) {
 942		err = -EFSCORRUPTED;
 943		goto free_fail_no_cp;
 944	}
 945
 946	if (cp_blks <= 1)
 947		goto done;
 948
 949	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 950	if (cur_page == cp2)
 951		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
 952
 953	for (i = 1; i < cp_blks; i++) {
 954		void *sit_bitmap_ptr;
 955		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
 956
 957		cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
 958		if (IS_ERR(cur_page)) {
 959			err = PTR_ERR(cur_page);
 960			goto free_fail_no_cp;
 961		}
 962		sit_bitmap_ptr = page_address(cur_page);
 963		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
 964		f2fs_put_page(cur_page, 1);
 965	}
 966done:
 967	f2fs_put_page(cp1, 1);
 968	f2fs_put_page(cp2, 1);
 969	return 0;
 970
 971free_fail_no_cp:
 972	f2fs_put_page(cp1, 1);
 973	f2fs_put_page(cp2, 1);
 974fail_no_cp:
 975	kvfree(sbi->ckpt);
 976	return err;
 977}
 978
 979static void __add_dirty_inode(struct inode *inode, enum inode_type type)
 980{
 981	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 
 982	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
 983
 984	if (is_inode_flag_set(inode, flag))
 985		return;
 986
 987	set_inode_flag(inode, flag);
 988	if (!f2fs_is_volatile_file(inode))
 989		list_add_tail(&F2FS_I(inode)->dirty_list,
 990						&sbi->inode_list[type]);
 991	stat_inc_dirty_inode(sbi, type);
 992}
 993
 994static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
 995{
 
 996	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
 997
 998	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
 
 999		return;
1000
1001	list_del_init(&F2FS_I(inode)->dirty_list);
1002	clear_inode_flag(inode, flag);
1003	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1004}
1005
1006void f2fs_update_dirty_page(struct inode *inode, struct page *page)
1007{
1008	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1009	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1010
1011	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1012			!S_ISLNK(inode->i_mode))
1013		return;
1014
1015	spin_lock(&sbi->inode_lock[type]);
1016	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1017		__add_dirty_inode(inode, type);
1018	inode_inc_dirty_pages(inode);
1019	spin_unlock(&sbi->inode_lock[type]);
1020
1021	set_page_private_reference(page);
 
1022}
1023
1024void f2fs_remove_dirty_inode(struct inode *inode)
1025{
1026	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 
 
 
 
 
 
 
 
 
 
1027	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1028
1029	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1030			!S_ISLNK(inode->i_mode))
1031		return;
1032
1033	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1034		return;
1035
1036	spin_lock(&sbi->inode_lock[type]);
1037	__remove_dirty_inode(inode, type);
1038	spin_unlock(&sbi->inode_lock[type]);
 
 
 
 
 
 
1039}
1040
1041int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
1042{
1043	struct list_head *head;
1044	struct inode *inode;
1045	struct f2fs_inode_info *fi;
1046	bool is_dir = (type == DIR_INODE);
1047	unsigned long ino = 0;
1048
1049	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1050				get_pages(sbi, is_dir ?
1051				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1052retry:
1053	if (unlikely(f2fs_cp_error(sbi))) {
1054		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1055				get_pages(sbi, is_dir ?
1056				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1057		return -EIO;
1058	}
1059
1060	spin_lock(&sbi->inode_lock[type]);
1061
1062	head = &sbi->inode_list[type];
1063	if (list_empty(head)) {
1064		spin_unlock(&sbi->inode_lock[type]);
1065		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1066				get_pages(sbi, is_dir ?
1067				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1068		return 0;
1069	}
1070	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1071	inode = igrab(&fi->vfs_inode);
1072	spin_unlock(&sbi->inode_lock[type]);
1073	if (inode) {
1074		unsigned long cur_ino = inode->i_ino;
1075
1076		F2FS_I(inode)->cp_task = current;
1077
1078		filemap_fdatawrite(inode->i_mapping);
1079
1080		F2FS_I(inode)->cp_task = NULL;
1081
1082		iput(inode);
1083		/* We need to give cpu to another writers. */
1084		if (ino == cur_ino)
1085			cond_resched();
1086		else
1087			ino = cur_ino;
1088	} else {
1089		/*
1090		 * We should submit bio, since it exists several
1091		 * wribacking dentry pages in the freeing inode.
1092		 */
1093		f2fs_submit_merged_write(sbi, DATA);
1094		cond_resched();
1095	}
1096	goto retry;
1097}
1098
1099int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1100{
1101	struct list_head *head = &sbi->inode_list[DIRTY_META];
1102	struct inode *inode;
1103	struct f2fs_inode_info *fi;
1104	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1105
1106	while (total--) {
1107		if (unlikely(f2fs_cp_error(sbi)))
1108			return -EIO;
1109
1110		spin_lock(&sbi->inode_lock[DIRTY_META]);
1111		if (list_empty(head)) {
1112			spin_unlock(&sbi->inode_lock[DIRTY_META]);
1113			return 0;
1114		}
1115		fi = list_first_entry(head, struct f2fs_inode_info,
1116							gdirty_list);
1117		inode = igrab(&fi->vfs_inode);
1118		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1119		if (inode) {
1120			sync_inode_metadata(inode, 0);
1121
1122			/* it's on eviction */
1123			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1124				f2fs_update_inode_page(inode);
1125			iput(inode);
1126		}
1127	}
1128	return 0;
1129}
1130
1131static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1132{
1133	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1134	struct f2fs_nm_info *nm_i = NM_I(sbi);
1135	nid_t last_nid = nm_i->next_scan_nid;
1136
1137	next_free_nid(sbi, &last_nid);
1138	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1139	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1140	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1141	ckpt->next_free_nid = cpu_to_le32(last_nid);
1142}
1143
1144static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1145{
1146	bool ret = false;
1147
1148	if (!is_journalled_quota(sbi))
1149		return false;
1150
1151	down_write(&sbi->quota_sem);
1152	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1153		ret = false;
1154	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1155		ret = false;
1156	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1157		clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1158		ret = true;
1159	} else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1160		ret = true;
1161	}
1162	up_write(&sbi->quota_sem);
1163	return ret;
1164}
1165
1166/*
1167 * Freeze all the FS-operations for checkpoint.
1168 */
1169static int block_operations(struct f2fs_sb_info *sbi)
1170{
1171	struct writeback_control wbc = {
1172		.sync_mode = WB_SYNC_ALL,
1173		.nr_to_write = LONG_MAX,
1174		.for_reclaim = 0,
1175	};
1176	int err = 0, cnt = 0;
1177
1178	/*
1179	 * Let's flush inline_data in dirty node pages.
1180	 */
1181	f2fs_flush_inline_data(sbi);
1182
1183retry_flush_quotas:
1184	f2fs_lock_all(sbi);
1185	if (__need_flush_quota(sbi)) {
1186		int locked;
1187
1188		if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1189			set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1190			set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1191			goto retry_flush_dents;
1192		}
1193		f2fs_unlock_all(sbi);
1194
1195		/* only failed during mount/umount/freeze/quotactl */
1196		locked = down_read_trylock(&sbi->sb->s_umount);
1197		f2fs_quota_sync(sbi->sb, -1);
1198		if (locked)
1199			up_read(&sbi->sb->s_umount);
1200		cond_resched();
1201		goto retry_flush_quotas;
1202	}
1203
1204retry_flush_dents:
 
1205	/* write all the dirty dentry pages */
1206	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1207		f2fs_unlock_all(sbi);
1208		err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1209		if (err)
1210			return err;
1211		cond_resched();
1212		goto retry_flush_quotas;
1213	}
1214
1215	/*
1216	 * POR: we should ensure that there are no dirty node pages
1217	 * until finishing nat/sit flush. inode->i_blocks can be updated.
1218	 */
1219	down_write(&sbi->node_change);
1220
1221	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1222		up_write(&sbi->node_change);
1223		f2fs_unlock_all(sbi);
1224		err = f2fs_sync_inode_meta(sbi);
1225		if (err)
1226			return err;
1227		cond_resched();
1228		goto retry_flush_quotas;
1229	}
1230
1231retry_flush_nodes:
1232	down_write(&sbi->node_write);
1233
1234	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1235		up_write(&sbi->node_write);
1236		atomic_inc(&sbi->wb_sync_req[NODE]);
1237		err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1238		atomic_dec(&sbi->wb_sync_req[NODE]);
1239		if (err) {
1240			up_write(&sbi->node_change);
1241			f2fs_unlock_all(sbi);
1242			return err;
1243		}
1244		cond_resched();
1245		goto retry_flush_nodes;
1246	}
1247
1248	/*
1249	 * sbi->node_change is used only for AIO write_begin path which produces
1250	 * dirty node blocks and some checkpoint values by block allocation.
1251	 */
1252	__prepare_cp_block(sbi);
1253	up_write(&sbi->node_change);
1254	return err;
1255}
1256
1257static void unblock_operations(struct f2fs_sb_info *sbi)
1258{
1259	up_write(&sbi->node_write);
1260	f2fs_unlock_all(sbi);
1261}
1262
1263void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1264{
1265	DEFINE_WAIT(wait);
1266
1267	for (;;) {
1268		if (!get_pages(sbi, type))
1269			break;
1270
1271		if (unlikely(f2fs_cp_error(sbi)))
1272			break;
1273
1274		if (type == F2FS_DIRTY_META)
1275			f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1276							FS_CP_META_IO);
1277		else if (type == F2FS_WB_CP_DATA)
1278			f2fs_submit_merged_write(sbi, DATA);
1279
1280		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1281		io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1282	}
1283	finish_wait(&sbi->cp_wait, &wait);
1284}
1285
1286static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1287{
1288	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1289	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1290	unsigned long flags;
1291
1292	spin_lock_irqsave(&sbi->cp_lock, flags);
1293
1294	if ((cpc->reason & CP_UMOUNT) &&
1295			le32_to_cpu(ckpt->cp_pack_total_block_count) >
1296			sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1297		disable_nat_bits(sbi, false);
1298
1299	if (cpc->reason & CP_TRIMMED)
1300		__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1301	else
1302		__clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1303
1304	if (cpc->reason & CP_UMOUNT)
1305		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1306	else
1307		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1308
1309	if (cpc->reason & CP_FASTBOOT)
1310		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1311	else
1312		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1313
1314	if (orphan_num)
1315		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1316	else
1317		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1318
1319	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1320		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1321
1322	if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1323		__set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1324	else
1325		__clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1326
1327	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1328		__set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1329	else
1330		__clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1331
1332	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1333		__set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1334	else
1335		__clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1336
1337	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1338		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1339	else
1340		__clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1341
1342	if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1343		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1344
1345	/* set this flag to activate crc|cp_ver for recovery */
1346	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1347	__clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1348
1349	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1350}
1351
1352static void commit_checkpoint(struct f2fs_sb_info *sbi,
1353	void *src, block_t blk_addr)
1354{
1355	struct writeback_control wbc = {
1356		.for_reclaim = 0,
1357	};
1358
1359	/*
1360	 * pagevec_lookup_tag and lock_page again will take
1361	 * some extra time. Therefore, f2fs_update_meta_pages and
1362	 * f2fs_sync_meta_pages are combined in this function.
1363	 */
1364	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1365	int err;
1366
1367	f2fs_wait_on_page_writeback(page, META, true, true);
1368
1369	memcpy(page_address(page), src, PAGE_SIZE);
1370
1371	set_page_dirty(page);
1372	if (unlikely(!clear_page_dirty_for_io(page)))
1373		f2fs_bug_on(sbi, 1);
1374
1375	/* writeout cp pack 2 page */
1376	err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1377	if (unlikely(err && f2fs_cp_error(sbi))) {
1378		f2fs_put_page(page, 1);
1379		return;
1380	}
1381
1382	f2fs_bug_on(sbi, err);
1383	f2fs_put_page(page, 0);
1384
1385	/* submit checkpoint (with barrier if NOBARRIER is not set) */
1386	f2fs_submit_merged_write(sbi, META_FLUSH);
1387}
1388
1389static inline u64 get_sectors_written(struct block_device *bdev)
1390{
1391	return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1392}
1393
1394u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1395{
1396	if (f2fs_is_multi_device(sbi)) {
1397		u64 sectors = 0;
1398		int i;
1399
1400		for (i = 0; i < sbi->s_ndevs; i++)
1401			sectors += get_sectors_written(FDEV(i).bdev);
1402
1403		return sectors;
1404	}
1405
1406	return get_sectors_written(sbi->sb->s_bdev);
1407}
1408
1409static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1410{
1411	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 
1412	struct f2fs_nm_info *nm_i = NM_I(sbi);
1413	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
 
1414	block_t start_blk;
1415	unsigned int data_sum_blocks, orphan_blocks;
1416	__u32 crc32 = 0;
1417	int i;
1418	int cp_payload_blks = __cp_payload(sbi);
 
 
 
1419	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1420	u64 kbytes_written;
1421	int err;
 
 
 
 
 
 
1422
1423	/* Flush all the NAT/SIT pages */
1424	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
 
 
 
 
1425
1426	/* start to update checkpoint, cp ver is already updated previously */
1427	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
 
 
 
 
 
 
1428	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1429	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1430		ckpt->cur_node_segno[i] =
1431			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1432		ckpt->cur_node_blkoff[i] =
1433			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1434		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1435				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1436	}
1437	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1438		ckpt->cur_data_segno[i] =
1439			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1440		ckpt->cur_data_blkoff[i] =
1441			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1442		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1443				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1444	}
1445
1446	/* 2 cp + n data seg summary + orphan inode blocks */
1447	data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1448	spin_lock_irqsave(&sbi->cp_lock, flags);
 
 
 
1449	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1450		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1451	else
1452		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1453	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1454
1455	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1456	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1457			orphan_blocks);
1458
1459	if (__remain_node_summaries(cpc->reason))
1460		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1461				cp_payload_blks + data_sum_blocks +
1462				orphan_blocks + NR_CURSEG_NODE_TYPE);
1463	else
1464		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1465				cp_payload_blks + data_sum_blocks +
1466				orphan_blocks);
1467
1468	/* update ckpt flag for checkpoint */
1469	update_ckpt_flags(sbi, cpc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470
1471	/* update SIT/NAT bitmap */
1472	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1473	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1474
1475	crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1476	*((__le32 *)((unsigned char *)ckpt +
1477				le32_to_cpu(ckpt->checksum_offset)))
1478				= cpu_to_le32(crc32);
1479
1480	start_blk = __start_cp_next_addr(sbi);
1481
1482	/* write nat bits */
1483	if (enabled_nat_bits(sbi, cpc)) {
1484		__u64 cp_ver = cur_cp_version(ckpt);
1485		block_t blk;
1486
1487		cp_ver |= ((__u64)crc32 << 32);
1488		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1489
1490		blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1491		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1492			f2fs_update_meta_page(sbi, nm_i->nat_bits +
1493					(i << F2FS_BLKSIZE_BITS), blk + i);
1494	}
1495
1496	/* write out checkpoint buffer at block 0 */
1497	f2fs_update_meta_page(sbi, ckpt, start_blk++);
1498
1499	for (i = 1; i < 1 + cp_payload_blks; i++)
1500		f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1501							start_blk++);
1502
1503	if (orphan_num) {
1504		write_orphan_inodes(sbi, start_blk);
1505		start_blk += orphan_blocks;
1506	}
1507
1508	f2fs_write_data_summaries(sbi, start_blk);
1509	start_blk += data_sum_blocks;
1510
1511	/* Record write statistics in the hot node summary */
1512	kbytes_written = sbi->kbytes_written;
1513	kbytes_written += (f2fs_get_sectors_written(sbi) -
1514				sbi->sectors_written_start) >> 1;
 
1515	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1516
1517	if (__remain_node_summaries(cpc->reason)) {
1518		f2fs_write_node_summaries(sbi, start_blk);
1519		start_blk += NR_CURSEG_NODE_TYPE;
1520	}
1521
 
 
 
 
 
 
 
 
 
 
 
 
1522	/* update user_block_counts */
1523	sbi->last_valid_block_count = sbi->total_valid_block_count;
1524	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1525
1526	/* Here, we have one bio having CP pack except cp pack 2 page */
1527	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1528	/* Wait for all dirty meta pages to be submitted for IO */
1529	f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1530
1531	/* wait for previous submitted meta pages writeback */
1532	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1533
1534	/* flush all device cache */
1535	err = f2fs_flush_device_cache(sbi);
1536	if (err)
1537		return err;
1538
1539	/* barrier and flush checkpoint cp pack 2 page if it can */
1540	commit_checkpoint(sbi, ckpt, start_blk);
1541	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1542
1543	/*
1544	 * invalidate intermediate page cache borrowed from meta inode which are
1545	 * used for migration of encrypted, verity or compressed inode's blocks.
1546	 */
1547	if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1548		f2fs_sb_has_compression(sbi))
1549		invalidate_mapping_pages(META_MAPPING(sbi),
1550				MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1551
1552	f2fs_release_ino_entry(sbi, false);
1553
1554	f2fs_reset_fsync_node_info(sbi);
 
1555
 
1556	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1557	clear_sbi_flag(sbi, SBI_NEED_CP);
1558	clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1559
1560	spin_lock(&sbi->stat_lock);
1561	sbi->unusable_block_count = 0;
1562	spin_unlock(&sbi->stat_lock);
1563
1564	__set_cp_next_pack(sbi);
1565
1566	/*
1567	 * redirty superblock if metadata like node page or inode cache is
1568	 * updated during writing checkpoint.
1569	 */
1570	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1571			get_pages(sbi, F2FS_DIRTY_IMETA))
1572		set_sbi_flag(sbi, SBI_IS_DIRTY);
1573
1574	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1575
1576	return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1577}
1578
1579int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 
 
 
1580{
1581	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1582	unsigned long long ckpt_ver;
1583	int err = 0;
1584
1585	if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1586		return -EROFS;
1587
1588	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1589		if (cpc->reason != CP_PAUSE)
1590			return 0;
1591		f2fs_warn(sbi, "Start checkpoint disabled!");
1592	}
1593	if (cpc->reason != CP_RESIZE)
1594		down_write(&sbi->cp_global_sem);
1595
1596	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1597		((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1598		((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1599		goto out;
1600	if (unlikely(f2fs_cp_error(sbi))) {
1601		err = -EIO;
1602		goto out;
1603	}
 
 
 
 
1604
1605	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1606
1607	err = block_operations(sbi);
1608	if (err)
1609		goto out;
1610
1611	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1612
1613	f2fs_flush_merged_writes(sbi);
1614
1615	/* this is the case of multiple fstrims without any changes */
1616	if (cpc->reason & CP_DISCARD) {
1617		if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1618			unblock_operations(sbi);
1619			goto out;
1620		}
1621
1622		if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1623				SIT_I(sbi)->dirty_sentries == 0 &&
1624				prefree_segments(sbi) == 0) {
1625			f2fs_flush_sit_entries(sbi, cpc);
1626			f2fs_clear_prefree_segments(sbi, cpc);
1627			unblock_operations(sbi);
1628			goto out;
1629		}
1630	}
1631
1632	/*
1633	 * update checkpoint pack index
1634	 * Increase the version number so that
1635	 * SIT entries and seg summaries are written at correct place
1636	 */
1637	ckpt_ver = cur_cp_version(ckpt);
1638	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1639
1640	/* write cached NAT/SIT entries to NAT/SIT area */
1641	err = f2fs_flush_nat_entries(sbi, cpc);
1642	if (err)
1643		goto stop;
1644
1645	f2fs_flush_sit_entries(sbi, cpc);
1646
1647	/* save inmem log status */
1648	f2fs_save_inmem_curseg(sbi);
1649
 
1650	err = do_checkpoint(sbi, cpc);
1651	if (err)
1652		f2fs_release_discard_addrs(sbi);
1653	else
1654		f2fs_clear_prefree_segments(sbi, cpc);
1655
1656	f2fs_restore_inmem_curseg(sbi);
1657stop:
1658	unblock_operations(sbi);
1659	stat_inc_cp_count(sbi->stat_info);
1660
1661	if (cpc->reason & CP_RECOVERY)
1662		f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
 
1663
1664	/* update CP_TIME to trigger checkpoint periodically */
1665	f2fs_update_time(sbi, CP_TIME);
1666	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1667out:
1668	if (cpc->reason != CP_RESIZE)
1669		up_write(&sbi->cp_global_sem);
1670	return err;
1671}
1672
1673void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1674{
1675	int i;
1676
1677	for (i = 0; i < MAX_INO_ENTRY; i++) {
1678		struct inode_management *im = &sbi->im[i];
1679
1680		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1681		spin_lock_init(&im->ino_lock);
1682		INIT_LIST_HEAD(&im->ino_list);
1683		im->ino_num = 0;
1684	}
1685
1686	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1687			NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1688				F2FS_ORPHANS_PER_BLOCK;
1689}
1690
1691int __init f2fs_create_checkpoint_caches(void)
1692{
1693	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1694			sizeof(struct ino_entry));
1695	if (!ino_entry_slab)
1696		return -ENOMEM;
1697	f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1698			sizeof(struct inode_entry));
1699	if (!f2fs_inode_entry_slab) {
1700		kmem_cache_destroy(ino_entry_slab);
1701		return -ENOMEM;
1702	}
1703	return 0;
1704}
1705
1706void f2fs_destroy_checkpoint_caches(void)
1707{
1708	kmem_cache_destroy(ino_entry_slab);
1709	kmem_cache_destroy(f2fs_inode_entry_slab);
1710}
1711
1712static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1713{
1714	struct cp_control cpc = { .reason = CP_SYNC, };
1715	int err;
1716
1717	down_write(&sbi->gc_lock);
1718	err = f2fs_write_checkpoint(sbi, &cpc);
1719	up_write(&sbi->gc_lock);
1720
1721	return err;
1722}
1723
1724static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1725{
1726	struct ckpt_req_control *cprc = &sbi->cprc_info;
1727	struct ckpt_req *req, *next;
1728	struct llist_node *dispatch_list;
1729	u64 sum_diff = 0, diff, count = 0;
1730	int ret;
1731
1732	dispatch_list = llist_del_all(&cprc->issue_list);
1733	if (!dispatch_list)
1734		return;
1735	dispatch_list = llist_reverse_order(dispatch_list);
1736
1737	ret = __write_checkpoint_sync(sbi);
1738	atomic_inc(&cprc->issued_ckpt);
1739
1740	llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1741		diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1742		req->ret = ret;
1743		complete(&req->wait);
1744
1745		sum_diff += diff;
1746		count++;
1747	}
1748	atomic_sub(count, &cprc->queued_ckpt);
1749	atomic_add(count, &cprc->total_ckpt);
1750
1751	spin_lock(&cprc->stat_lock);
1752	cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1753	if (cprc->peak_time < cprc->cur_time)
1754		cprc->peak_time = cprc->cur_time;
1755	spin_unlock(&cprc->stat_lock);
1756}
1757
1758static int issue_checkpoint_thread(void *data)
1759{
1760	struct f2fs_sb_info *sbi = data;
1761	struct ckpt_req_control *cprc = &sbi->cprc_info;
1762	wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1763repeat:
1764	if (kthread_should_stop())
1765		return 0;
1766
1767	if (!llist_empty(&cprc->issue_list))
1768		__checkpoint_and_complete_reqs(sbi);
1769
1770	wait_event_interruptible(*q,
1771		kthread_should_stop() || !llist_empty(&cprc->issue_list));
1772	goto repeat;
1773}
1774
1775static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1776		struct ckpt_req *wait_req)
1777{
1778	struct ckpt_req_control *cprc = &sbi->cprc_info;
1779
1780	if (!llist_empty(&cprc->issue_list)) {
1781		__checkpoint_and_complete_reqs(sbi);
1782	} else {
1783		/* already dispatched by issue_checkpoint_thread */
1784		if (wait_req)
1785			wait_for_completion(&wait_req->wait);
1786	}
1787}
1788
1789static void init_ckpt_req(struct ckpt_req *req)
1790{
1791	memset(req, 0, sizeof(struct ckpt_req));
1792
1793	init_completion(&req->wait);
1794	req->queue_time = ktime_get();
1795}
1796
1797int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1798{
1799	struct ckpt_req_control *cprc = &sbi->cprc_info;
1800	struct ckpt_req req;
1801	struct cp_control cpc;
1802
1803	cpc.reason = __get_cp_reason(sbi);
1804	if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1805		int ret;
1806
1807		down_write(&sbi->gc_lock);
1808		ret = f2fs_write_checkpoint(sbi, &cpc);
1809		up_write(&sbi->gc_lock);
1810
1811		return ret;
1812	}
1813
1814	if (!cprc->f2fs_issue_ckpt)
1815		return __write_checkpoint_sync(sbi);
1816
1817	init_ckpt_req(&req);
1818
1819	llist_add(&req.llnode, &cprc->issue_list);
1820	atomic_inc(&cprc->queued_ckpt);
1821
1822	/*
1823	 * update issue_list before we wake up issue_checkpoint thread,
1824	 * this smp_mb() pairs with another barrier in ___wait_event(),
1825	 * see more details in comments of waitqueue_active().
1826	 */
1827	smp_mb();
1828
1829	if (waitqueue_active(&cprc->ckpt_wait_queue))
1830		wake_up(&cprc->ckpt_wait_queue);
1831
1832	if (cprc->f2fs_issue_ckpt)
1833		wait_for_completion(&req.wait);
1834	else
1835		flush_remained_ckpt_reqs(sbi, &req);
1836
1837	return req.ret;
1838}
1839
1840int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1841{
1842	dev_t dev = sbi->sb->s_bdev->bd_dev;
1843	struct ckpt_req_control *cprc = &sbi->cprc_info;
1844
1845	if (cprc->f2fs_issue_ckpt)
1846		return 0;
1847
1848	cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1849			"f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1850	if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1851		cprc->f2fs_issue_ckpt = NULL;
1852		return -ENOMEM;
1853	}
1854
1855	set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1856
1857	return 0;
1858}
1859
1860void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1861{
1862	struct ckpt_req_control *cprc = &sbi->cprc_info;
1863
1864	if (cprc->f2fs_issue_ckpt) {
1865		struct task_struct *ckpt_task = cprc->f2fs_issue_ckpt;
1866
1867		cprc->f2fs_issue_ckpt = NULL;
1868		kthread_stop(ckpt_task);
1869
1870		flush_remained_ckpt_reqs(sbi, NULL);
1871	}
1872}
1873
1874void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1875{
1876	struct ckpt_req_control *cprc = &sbi->cprc_info;
1877
1878	atomic_set(&cprc->issued_ckpt, 0);
1879	atomic_set(&cprc->total_ckpt, 0);
1880	atomic_set(&cprc->queued_ckpt, 0);
1881	cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1882	init_waitqueue_head(&cprc->ckpt_wait_queue);
1883	init_llist_head(&cprc->issue_list);
1884	spin_lock_init(&cprc->stat_lock);
1885}
v4.6
 
   1/*
   2 * fs/f2fs/checkpoint.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/bio.h>
  13#include <linux/mpage.h>
  14#include <linux/writeback.h>
  15#include <linux/blkdev.h>
  16#include <linux/f2fs_fs.h>
  17#include <linux/pagevec.h>
  18#include <linux/swap.h>
 
  19
  20#include "f2fs.h"
  21#include "node.h"
  22#include "segment.h"
  23#include "trace.h"
  24#include <trace/events/f2fs.h>
  25
 
 
  26static struct kmem_cache *ino_entry_slab;
  27struct kmem_cache *inode_entry_slab;
 
 
 
 
 
 
 
 
  28
  29/*
  30 * We guarantee no failure on the returned page.
  31 */
  32struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  33{
  34	struct address_space *mapping = META_MAPPING(sbi);
  35	struct page *page = NULL;
  36repeat:
  37	page = grab_cache_page(mapping, index);
  38	if (!page) {
  39		cond_resched();
  40		goto repeat;
  41	}
  42	f2fs_wait_on_page_writeback(page, META, true);
  43	SetPageUptodate(page);
 
  44	return page;
  45}
  46
  47/*
  48 * We guarantee no failure on the returned page.
  49 */
  50static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
  51							bool is_meta)
  52{
  53	struct address_space *mapping = META_MAPPING(sbi);
  54	struct page *page;
  55	struct f2fs_io_info fio = {
  56		.sbi = sbi,
  57		.type = META,
  58		.rw = READ_SYNC | REQ_META | REQ_PRIO,
 
  59		.old_blkaddr = index,
  60		.new_blkaddr = index,
  61		.encrypted_page = NULL,
 
  62	};
 
  63
  64	if (unlikely(!is_meta))
  65		fio.rw &= ~REQ_META;
  66repeat:
  67	page = grab_cache_page(mapping, index);
  68	if (!page) {
  69		cond_resched();
  70		goto repeat;
  71	}
  72	if (PageUptodate(page))
  73		goto out;
  74
  75	fio.page = page;
  76
  77	if (f2fs_submit_page_bio(&fio)) {
 
  78		f2fs_put_page(page, 1);
  79		goto repeat;
  80	}
  81
 
 
  82	lock_page(page);
  83	if (unlikely(page->mapping != mapping)) {
  84		f2fs_put_page(page, 1);
  85		goto repeat;
  86	}
  87
  88	/*
  89	 * if there is any IO error when accessing device, make our filesystem
  90	 * readonly and make sure do not write checkpoint with non-uptodate
  91	 * meta page.
  92	 */
  93	if (unlikely(!PageUptodate(page)))
  94		f2fs_stop_checkpoint(sbi);
  95out:
  96	return page;
  97}
  98
  99struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 100{
 101	return __get_meta_page(sbi, index, true);
 102}
 103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104/* for POR only */
 105struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
 106{
 107	return __get_meta_page(sbi, index, false);
 108}
 109
 110bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111{
 112	switch (type) {
 113	case META_NAT:
 114		break;
 115	case META_SIT:
 116		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
 117			return false;
 118		break;
 119	case META_SSA:
 120		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
 121			blkaddr < SM_I(sbi)->ssa_blkaddr))
 122			return false;
 123		break;
 124	case META_CP:
 125		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
 126			blkaddr < __start_cp_addr(sbi)))
 127			return false;
 128		break;
 129	case META_POR:
 130		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
 131			blkaddr < MAIN_BLKADDR(sbi)))
 132			return false;
 133		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134	default:
 135		BUG();
 136	}
 137
 138	return true;
 139}
 140
 141/*
 142 * Readahead CP/NAT/SIT/SSA pages
 143 */
 144int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
 145							int type, bool sync)
 146{
 147	struct page *page;
 148	block_t blkno = start;
 149	struct f2fs_io_info fio = {
 150		.sbi = sbi,
 151		.type = META,
 152		.rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
 
 153		.encrypted_page = NULL,
 
 
 154	};
 155	struct blk_plug plug;
 
 156
 157	if (unlikely(type == META_POR))
 158		fio.rw &= ~REQ_META;
 159
 160	blk_start_plug(&plug);
 161	for (; nrpages-- > 0; blkno++) {
 162
 163		if (!is_valid_blkaddr(sbi, blkno, type))
 164			goto out;
 165
 166		switch (type) {
 167		case META_NAT:
 168			if (unlikely(blkno >=
 169					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
 170				blkno = 0;
 171			/* get nat block addr */
 172			fio.new_blkaddr = current_nat_addr(sbi,
 173					blkno * NAT_ENTRY_PER_BLOCK);
 174			break;
 175		case META_SIT:
 
 
 176			/* get sit block addr */
 177			fio.new_blkaddr = current_sit_addr(sbi,
 178					blkno * SIT_ENTRY_PER_BLOCK);
 179			break;
 180		case META_SSA:
 181		case META_CP:
 182		case META_POR:
 183			fio.new_blkaddr = blkno;
 184			break;
 185		default:
 186			BUG();
 187		}
 188
 189		page = grab_cache_page(META_MAPPING(sbi), fio.new_blkaddr);
 
 190		if (!page)
 191			continue;
 192		if (PageUptodate(page)) {
 193			f2fs_put_page(page, 1);
 194			continue;
 195		}
 196
 197		fio.page = page;
 198		fio.old_blkaddr = fio.new_blkaddr;
 199		f2fs_submit_page_mbio(&fio);
 200		f2fs_put_page(page, 0);
 
 
 201	}
 202out:
 203	f2fs_submit_merged_bio(sbi, META, READ);
 204	blk_finish_plug(&plug);
 205	return blkno - start;
 206}
 207
 208void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
 209{
 210	struct page *page;
 211	bool readahead = false;
 212
 213	page = find_get_page(META_MAPPING(sbi), index);
 214	if (!page || (page && !PageUptodate(page)))
 215		readahead = true;
 216	f2fs_put_page(page, 0);
 217
 218	if (readahead)
 219		ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
 220}
 221
 222static int f2fs_write_meta_page(struct page *page,
 223				struct writeback_control *wbc)
 
 224{
 225	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
 226
 227	trace_f2fs_writepage(page, META);
 228
 
 
 229	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 230		goto redirty_out;
 231	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
 232		goto redirty_out;
 233	if (unlikely(f2fs_cp_error(sbi)))
 234		goto redirty_out;
 235
 236	write_meta_page(sbi, page);
 237	dec_page_count(sbi, F2FS_DIRTY_META);
 238
 239	if (wbc->for_reclaim)
 240		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
 241
 242	unlock_page(page);
 243
 244	if (unlikely(f2fs_cp_error(sbi)))
 245		f2fs_submit_merged_bio(sbi, META, WRITE);
 246
 247	return 0;
 248
 249redirty_out:
 250	redirty_page_for_writepage(wbc, page);
 251	return AOP_WRITEPAGE_ACTIVATE;
 252}
 253
 
 
 
 
 
 
 254static int f2fs_write_meta_pages(struct address_space *mapping,
 255				struct writeback_control *wbc)
 256{
 257	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
 258	long diff, written;
 259
 
 
 
 260	/* collect a number of dirty meta pages and write together */
 261	if (wbc->for_kupdate ||
 262		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
 
 
 
 
 
 263		goto skip_write;
 264
 265	trace_f2fs_writepages(mapping->host, wbc, META);
 266
 267	/* if mounting is failed, skip writing node pages */
 268	mutex_lock(&sbi->cp_mutex);
 269	diff = nr_pages_to_write(sbi, META, wbc);
 270	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
 271	mutex_unlock(&sbi->cp_mutex);
 272	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
 273	return 0;
 274
 275skip_write:
 276	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
 277	trace_f2fs_writepages(mapping->host, wbc, META);
 278	return 0;
 279}
 280
 281long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
 282						long nr_to_write)
 283{
 284	struct address_space *mapping = META_MAPPING(sbi);
 285	pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
 286	struct pagevec pvec;
 287	long nwritten = 0;
 
 288	struct writeback_control wbc = {
 289		.for_reclaim = 0,
 290	};
 291	struct blk_plug plug;
 292
 293	pagevec_init(&pvec, 0);
 294
 295	blk_start_plug(&plug);
 296
 297	while (index <= end) {
 298		int i, nr_pages;
 299		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 300				PAGECACHE_TAG_DIRTY,
 301				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
 302		if (unlikely(nr_pages == 0))
 303			break;
 304
 305		for (i = 0; i < nr_pages; i++) {
 306			struct page *page = pvec.pages[i];
 307
 308			if (prev == ULONG_MAX)
 309				prev = page->index - 1;
 310			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
 311				pagevec_release(&pvec);
 312				goto stop;
 313			}
 314
 315			lock_page(page);
 316
 317			if (unlikely(page->mapping != mapping)) {
 318continue_unlock:
 319				unlock_page(page);
 320				continue;
 321			}
 322			if (!PageDirty(page)) {
 323				/* someone wrote it for us */
 324				goto continue_unlock;
 325			}
 326
 327			f2fs_wait_on_page_writeback(page, META, true);
 328
 329			BUG_ON(PageWriteback(page));
 330			if (!clear_page_dirty_for_io(page))
 331				goto continue_unlock;
 332
 333			if (mapping->a_ops->writepage(page, &wbc)) {
 334				unlock_page(page);
 335				break;
 336			}
 337			nwritten++;
 338			prev = page->index;
 339			if (unlikely(nwritten >= nr_to_write))
 340				break;
 341		}
 342		pagevec_release(&pvec);
 343		cond_resched();
 344	}
 345stop:
 346	if (nwritten)
 347		f2fs_submit_merged_bio(sbi, type, WRITE);
 348
 349	blk_finish_plug(&plug);
 350
 351	return nwritten;
 352}
 353
 354static int f2fs_set_meta_page_dirty(struct page *page)
 355{
 356	trace_f2fs_set_page_dirty(page, META);
 357
 358	SetPageUptodate(page);
 
 359	if (!PageDirty(page)) {
 360		__set_page_dirty_nobuffers(page);
 361		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
 362		SetPagePrivate(page);
 363		f2fs_trace_pid(page);
 364		return 1;
 365	}
 366	return 0;
 367}
 368
 369const struct address_space_operations f2fs_meta_aops = {
 370	.writepage	= f2fs_write_meta_page,
 371	.writepages	= f2fs_write_meta_pages,
 372	.set_page_dirty	= f2fs_set_meta_page_dirty,
 373	.invalidatepage = f2fs_invalidate_page,
 374	.releasepage	= f2fs_release_page,
 
 
 
 375};
 376
 377static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 
 378{
 379	struct inode_management *im = &sbi->im[type];
 380	struct ino_entry *e, *tmp;
 381
 382	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
 383retry:
 384	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
 385
 386	spin_lock(&im->ino_lock);
 387	e = radix_tree_lookup(&im->ino_root, ino);
 388	if (!e) {
 389		e = tmp;
 390		if (radix_tree_insert(&im->ino_root, ino, e)) {
 391			spin_unlock(&im->ino_lock);
 392			radix_tree_preload_end();
 393			goto retry;
 394		}
 395		memset(e, 0, sizeof(struct ino_entry));
 396		e->ino = ino;
 397
 398		list_add_tail(&e->list, &im->ino_list);
 399		if (type != ORPHAN_INO)
 400			im->ino_num++;
 401	}
 
 
 
 
 402	spin_unlock(&im->ino_lock);
 403	radix_tree_preload_end();
 404
 405	if (e != tmp)
 406		kmem_cache_free(ino_entry_slab, tmp);
 407}
 408
 409static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 410{
 411	struct inode_management *im = &sbi->im[type];
 412	struct ino_entry *e;
 413
 414	spin_lock(&im->ino_lock);
 415	e = radix_tree_lookup(&im->ino_root, ino);
 416	if (e) {
 417		list_del(&e->list);
 418		radix_tree_delete(&im->ino_root, ino);
 419		im->ino_num--;
 420		spin_unlock(&im->ino_lock);
 421		kmem_cache_free(ino_entry_slab, e);
 422		return;
 423	}
 424	spin_unlock(&im->ino_lock);
 425}
 426
 427void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 428{
 429	/* add new dirty ino entry into list */
 430	__add_ino_entry(sbi, ino, type);
 431}
 432
 433void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 434{
 435	/* remove dirty ino entry from list */
 436	__remove_ino_entry(sbi, ino, type);
 437}
 438
 439/* mode should be APPEND_INO or UPDATE_INO */
 440bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
 441{
 442	struct inode_management *im = &sbi->im[mode];
 443	struct ino_entry *e;
 444
 445	spin_lock(&im->ino_lock);
 446	e = radix_tree_lookup(&im->ino_root, ino);
 447	spin_unlock(&im->ino_lock);
 448	return e ? true : false;
 449}
 450
 451void release_ino_entry(struct f2fs_sb_info *sbi)
 452{
 453	struct ino_entry *e, *tmp;
 454	int i;
 455
 456	for (i = APPEND_INO; i <= UPDATE_INO; i++) {
 457		struct inode_management *im = &sbi->im[i];
 458
 459		spin_lock(&im->ino_lock);
 460		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
 461			list_del(&e->list);
 462			radix_tree_delete(&im->ino_root, e->ino);
 463			kmem_cache_free(ino_entry_slab, e);
 464			im->ino_num--;
 465		}
 466		spin_unlock(&im->ino_lock);
 467	}
 468}
 469
 470int acquire_orphan_inode(struct f2fs_sb_info *sbi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471{
 472	struct inode_management *im = &sbi->im[ORPHAN_INO];
 473	int err = 0;
 474
 475	spin_lock(&im->ino_lock);
 
 
 
 
 
 
 
 476	if (unlikely(im->ino_num >= sbi->max_orphans))
 477		err = -ENOSPC;
 478	else
 479		im->ino_num++;
 480	spin_unlock(&im->ino_lock);
 481
 482	return err;
 483}
 484
 485void release_orphan_inode(struct f2fs_sb_info *sbi)
 486{
 487	struct inode_management *im = &sbi->im[ORPHAN_INO];
 488
 489	spin_lock(&im->ino_lock);
 490	f2fs_bug_on(sbi, im->ino_num == 0);
 491	im->ino_num--;
 492	spin_unlock(&im->ino_lock);
 493}
 494
 495void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 496{
 497	/* add new orphan ino entry into list */
 498	__add_ino_entry(sbi, ino, ORPHAN_INO);
 
 499}
 500
 501void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 502{
 503	/* remove orphan entry from orphan list */
 504	__remove_ino_entry(sbi, ino, ORPHAN_INO);
 505}
 506
 507static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 508{
 509	struct inode *inode;
 
 
 510
 511	inode = f2fs_iget(sbi->sb, ino);
 512	if (IS_ERR(inode)) {
 513		/*
 514		 * there should be a bug that we can't find the entry
 515		 * to orphan inode.
 516		 */
 517		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
 518		return PTR_ERR(inode);
 519	}
 520
 
 
 
 
 
 
 521	clear_nlink(inode);
 522
 523	/* truncate all the data during iput */
 524	iput(inode);
 
 
 
 
 
 
 
 
 
 
 525	return 0;
 
 
 
 
 
 
 526}
 527
 528int recover_orphan_inodes(struct f2fs_sb_info *sbi)
 529{
 530	block_t start_blk, orphan_blocks, i, j;
 531	int err;
 
 
 
 
 
 
 
 532
 533	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
 
 534		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 535
 536	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
 537	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
 538
 539	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
 540
 541	for (i = 0; i < orphan_blocks; i++) {
 542		struct page *page = get_meta_page(sbi, start_blk + i);
 543		struct f2fs_orphan_block *orphan_blk;
 544
 
 
 
 
 
 
 545		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
 546		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
 547			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
 
 548			err = recover_orphan_inode(sbi, ino);
 549			if (err) {
 550				f2fs_put_page(page, 1);
 551				return err;
 552			}
 553		}
 554		f2fs_put_page(page, 1);
 555	}
 556	/* clear Orphan Flag */
 557	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
 558	return 0;
 
 
 
 
 
 
 
 
 
 
 559}
 560
 561static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
 562{
 563	struct list_head *head;
 564	struct f2fs_orphan_block *orphan_blk = NULL;
 565	unsigned int nentries = 0;
 566	unsigned short index = 1;
 567	unsigned short orphan_blocks;
 568	struct page *page = NULL;
 569	struct ino_entry *orphan = NULL;
 570	struct inode_management *im = &sbi->im[ORPHAN_INO];
 571
 572	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
 573
 574	/*
 575	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
 576	 * orphan inode operations are covered under f2fs_lock_op().
 577	 * And, spin_lock should be avoided due to page operations below.
 578	 */
 579	head = &im->ino_list;
 580
 581	/* loop for each orphan inode entry and write them in Jornal block */
 582	list_for_each_entry(orphan, head, list) {
 583		if (!page) {
 584			page = grab_meta_page(sbi, start_blk++);
 585			orphan_blk =
 586				(struct f2fs_orphan_block *)page_address(page);
 587			memset(orphan_blk, 0, sizeof(*orphan_blk));
 588		}
 589
 590		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
 591
 592		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
 593			/*
 594			 * an orphan block is full of 1020 entries,
 595			 * then we need to flush current orphan blocks
 596			 * and bring another one in memory
 597			 */
 598			orphan_blk->blk_addr = cpu_to_le16(index);
 599			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 600			orphan_blk->entry_count = cpu_to_le32(nentries);
 601			set_page_dirty(page);
 602			f2fs_put_page(page, 1);
 603			index++;
 604			nentries = 0;
 605			page = NULL;
 606		}
 607	}
 608
 609	if (page) {
 610		orphan_blk->blk_addr = cpu_to_le16(index);
 611		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 612		orphan_blk->entry_count = cpu_to_le32(nentries);
 613		set_page_dirty(page);
 614		f2fs_put_page(page, 1);
 615	}
 616}
 617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 618static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
 619				block_t cp_addr, unsigned long long *version)
 620{
 621	struct page *cp_page_1, *cp_page_2 = NULL;
 622	unsigned long blk_size = sbi->blocksize;
 623	struct f2fs_checkpoint *cp_block;
 624	unsigned long long cur_version = 0, pre_version = 0;
 625	size_t crc_offset;
 626	__u32 crc = 0;
 627
 628	/* Read the 1st cp block in this CP pack */
 629	cp_page_1 = get_meta_page(sbi, cp_addr);
 
 
 630
 631	/* get the version number */
 632	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
 633	crc_offset = le32_to_cpu(cp_block->checksum_offset);
 634	if (crc_offset >= blk_size)
 635		goto invalid_cp1;
 636
 637	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
 638	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
 639		goto invalid_cp1;
 640
 641	pre_version = cur_cp_version(cp_block);
 642
 643	/* Read the 2nd cp block in this CP pack */
 644	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
 645	cp_page_2 = get_meta_page(sbi, cp_addr);
 646
 647	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
 648	crc_offset = le32_to_cpu(cp_block->checksum_offset);
 649	if (crc_offset >= blk_size)
 650		goto invalid_cp2;
 651
 652	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
 653	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
 654		goto invalid_cp2;
 655
 656	cur_version = cur_cp_version(cp_block);
 657
 658	if (cur_version == pre_version) {
 659		*version = cur_version;
 660		f2fs_put_page(cp_page_2, 1);
 661		return cp_page_1;
 662	}
 663invalid_cp2:
 664	f2fs_put_page(cp_page_2, 1);
 665invalid_cp1:
 666	f2fs_put_page(cp_page_1, 1);
 667	return NULL;
 668}
 669
 670int get_valid_checkpoint(struct f2fs_sb_info *sbi)
 671{
 672	struct f2fs_checkpoint *cp_block;
 673	struct f2fs_super_block *fsb = sbi->raw_super;
 674	struct page *cp1, *cp2, *cur_page;
 675	unsigned long blk_size = sbi->blocksize;
 676	unsigned long long cp1_version = 0, cp2_version = 0;
 677	unsigned long long cp_start_blk_no;
 678	unsigned int cp_blks = 1 + __cp_payload(sbi);
 679	block_t cp_blk_no;
 680	int i;
 
 681
 682	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
 
 683	if (!sbi->ckpt)
 684		return -ENOMEM;
 685	/*
 686	 * Finding out valid cp block involves read both
 687	 * sets( cp pack1 and cp pack 2)
 688	 */
 689	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 690	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
 691
 692	/* The second checkpoint pack should start at the next segment */
 693	cp_start_blk_no += ((unsigned long long)1) <<
 694				le32_to_cpu(fsb->log_blocks_per_seg);
 695	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
 696
 697	if (cp1 && cp2) {
 698		if (ver_after(cp2_version, cp1_version))
 699			cur_page = cp2;
 700		else
 701			cur_page = cp1;
 702	} else if (cp1) {
 703		cur_page = cp1;
 704	} else if (cp2) {
 705		cur_page = cp2;
 706	} else {
 
 707		goto fail_no_cp;
 708	}
 709
 710	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
 711	memcpy(sbi->ckpt, cp_block, blk_size);
 712
 
 
 
 
 
 713	/* Sanity checking of checkpoint */
 714	if (sanity_check_ckpt(sbi))
 715		goto fail_no_cp;
 
 
 716
 717	if (cp_blks <= 1)
 718		goto done;
 719
 720	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 721	if (cur_page == cp2)
 722		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
 723
 724	for (i = 1; i < cp_blks; i++) {
 725		void *sit_bitmap_ptr;
 726		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
 727
 728		cur_page = get_meta_page(sbi, cp_blk_no + i);
 
 
 
 
 729		sit_bitmap_ptr = page_address(cur_page);
 730		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
 731		f2fs_put_page(cur_page, 1);
 732	}
 733done:
 734	f2fs_put_page(cp1, 1);
 735	f2fs_put_page(cp2, 1);
 736	return 0;
 737
 
 
 
 738fail_no_cp:
 739	kfree(sbi->ckpt);
 740	return -EINVAL;
 741}
 742
 743static void __add_dirty_inode(struct inode *inode, enum inode_type type)
 744{
 745	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 746	struct f2fs_inode_info *fi = F2FS_I(inode);
 747	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
 748
 749	if (is_inode_flag_set(fi, flag))
 750		return;
 751
 752	set_inode_flag(fi, flag);
 753	list_add_tail(&fi->dirty_list, &sbi->inode_list[type]);
 
 
 754	stat_inc_dirty_inode(sbi, type);
 755}
 756
 757static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
 758{
 759	struct f2fs_inode_info *fi = F2FS_I(inode);
 760	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
 761
 762	if (get_dirty_pages(inode) ||
 763			!is_inode_flag_set(F2FS_I(inode), flag))
 764		return;
 765
 766	list_del_init(&fi->dirty_list);
 767	clear_inode_flag(fi, flag);
 768	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
 769}
 770
 771void update_dirty_page(struct inode *inode, struct page *page)
 772{
 773	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 774	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
 775
 776	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
 777			!S_ISLNK(inode->i_mode))
 778		return;
 779
 780	spin_lock(&sbi->inode_lock[type]);
 781	__add_dirty_inode(inode, type);
 
 782	inode_inc_dirty_pages(inode);
 783	spin_unlock(&sbi->inode_lock[type]);
 784
 785	SetPagePrivate(page);
 786	f2fs_trace_pid(page);
 787}
 788
 789void add_dirty_dir_inode(struct inode *inode)
 790{
 791	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 792
 793	spin_lock(&sbi->inode_lock[DIR_INODE]);
 794	__add_dirty_inode(inode, DIR_INODE);
 795	spin_unlock(&sbi->inode_lock[DIR_INODE]);
 796}
 797
 798void remove_dirty_inode(struct inode *inode)
 799{
 800	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 801	struct f2fs_inode_info *fi = F2FS_I(inode);
 802	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
 803
 804	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
 805			!S_ISLNK(inode->i_mode))
 806		return;
 807
 
 
 
 808	spin_lock(&sbi->inode_lock[type]);
 809	__remove_dirty_inode(inode, type);
 810	spin_unlock(&sbi->inode_lock[type]);
 811
 812	/* Only from the recovery routine */
 813	if (is_inode_flag_set(fi, FI_DELAY_IPUT)) {
 814		clear_inode_flag(fi, FI_DELAY_IPUT);
 815		iput(inode);
 816	}
 817}
 818
 819int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
 820{
 821	struct list_head *head;
 822	struct inode *inode;
 823	struct f2fs_inode_info *fi;
 824	bool is_dir = (type == DIR_INODE);
 
 825
 826	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
 827				get_pages(sbi, is_dir ?
 828				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
 829retry:
 830	if (unlikely(f2fs_cp_error(sbi)))
 
 
 
 831		return -EIO;
 
 832
 833	spin_lock(&sbi->inode_lock[type]);
 834
 835	head = &sbi->inode_list[type];
 836	if (list_empty(head)) {
 837		spin_unlock(&sbi->inode_lock[type]);
 838		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
 839				get_pages(sbi, is_dir ?
 840				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
 841		return 0;
 842	}
 843	fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
 844	inode = igrab(&fi->vfs_inode);
 845	spin_unlock(&sbi->inode_lock[type]);
 846	if (inode) {
 
 
 
 
 847		filemap_fdatawrite(inode->i_mapping);
 
 
 
 848		iput(inode);
 
 
 
 
 
 849	} else {
 850		/*
 851		 * We should submit bio, since it exists several
 852		 * wribacking dentry pages in the freeing inode.
 853		 */
 854		f2fs_submit_merged_bio(sbi, DATA, WRITE);
 855		cond_resched();
 856	}
 857	goto retry;
 858}
 859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860/*
 861 * Freeze all the FS-operations for checkpoint.
 862 */
 863static int block_operations(struct f2fs_sb_info *sbi)
 864{
 865	struct writeback_control wbc = {
 866		.sync_mode = WB_SYNC_ALL,
 867		.nr_to_write = LONG_MAX,
 868		.for_reclaim = 0,
 869	};
 870	struct blk_plug plug;
 871	int err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 872
 873	blk_start_plug(&plug);
 
 
 
 
 
 
 
 874
 875retry_flush_dents:
 876	f2fs_lock_all(sbi);
 877	/* write all the dirty dentry pages */
 878	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
 879		f2fs_unlock_all(sbi);
 880		err = sync_dirty_inodes(sbi, DIR_INODE);
 881		if (err)
 882			goto out;
 883		goto retry_flush_dents;
 
 884	}
 885
 886	/*
 887	 * POR: we should ensure that there are no dirty node pages
 888	 * until finishing nat/sit flush.
 889	 */
 
 
 
 
 
 
 
 
 
 
 
 
 890retry_flush_nodes:
 891	down_write(&sbi->node_write);
 892
 893	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
 894		up_write(&sbi->node_write);
 895		err = sync_node_pages(sbi, 0, &wbc);
 
 
 896		if (err) {
 
 897			f2fs_unlock_all(sbi);
 898			goto out;
 899		}
 
 900		goto retry_flush_nodes;
 901	}
 902out:
 903	blk_finish_plug(&plug);
 
 
 
 
 
 904	return err;
 905}
 906
 907static void unblock_operations(struct f2fs_sb_info *sbi)
 908{
 909	up_write(&sbi->node_write);
 910	f2fs_unlock_all(sbi);
 911}
 912
 913static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
 914{
 915	DEFINE_WAIT(wait);
 916
 917	for (;;) {
 918		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
 
 919
 920		if (!get_pages(sbi, F2FS_WRITEBACK))
 921			break;
 922
 923		io_schedule_timeout(5*HZ);
 
 
 
 
 
 
 
 924	}
 925	finish_wait(&sbi->cp_wait, &wait);
 926}
 927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 929{
 930	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 931	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
 932	struct f2fs_nm_info *nm_i = NM_I(sbi);
 933	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
 934	nid_t last_nid = nm_i->next_scan_nid;
 935	block_t start_blk;
 936	unsigned int data_sum_blocks, orphan_blocks;
 937	__u32 crc32 = 0;
 938	int i;
 939	int cp_payload_blks = __cp_payload(sbi);
 940	block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
 941	bool invalidate = false;
 942	struct super_block *sb = sbi->sb;
 943	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
 944	u64 kbytes_written;
 945
 946	/*
 947	 * This avoids to conduct wrong roll-forward operations and uses
 948	 * metapages, so should be called prior to sync_meta_pages below.
 949	 */
 950	if (discard_next_dnode(sbi, discard_blk))
 951		invalidate = true;
 952
 953	/* Flush all the NAT/SIT pages */
 954	while (get_pages(sbi, F2FS_DIRTY_META)) {
 955		sync_meta_pages(sbi, META, LONG_MAX);
 956		if (unlikely(f2fs_cp_error(sbi)))
 957			return -EIO;
 958	}
 959
 960	next_free_nid(sbi, &last_nid);
 961
 962	/*
 963	 * modify checkpoint
 964	 * version number is already updated
 965	 */
 966	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
 967	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
 968	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
 969	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
 970		ckpt->cur_node_segno[i] =
 971			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
 972		ckpt->cur_node_blkoff[i] =
 973			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
 974		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
 975				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
 976	}
 977	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
 978		ckpt->cur_data_segno[i] =
 979			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
 980		ckpt->cur_data_blkoff[i] =
 981			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
 982		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
 983				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
 984	}
 985
 986	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
 987	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
 988	ckpt->next_free_nid = cpu_to_le32(last_nid);
 989
 990	/* 2 cp  + n data seg summary + orphan inode blocks */
 991	data_sum_blocks = npages_for_summary_flush(sbi, false);
 992	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
 993		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
 994	else
 995		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
 
 996
 997	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
 998	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
 999			orphan_blocks);
1000
1001	if (__remain_node_summaries(cpc->reason))
1002		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1003				cp_payload_blks + data_sum_blocks +
1004				orphan_blocks + NR_CURSEG_NODE_TYPE);
1005	else
1006		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1007				cp_payload_blks + data_sum_blocks +
1008				orphan_blocks);
1009
1010	if (cpc->reason == CP_UMOUNT)
1011		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1012	else
1013		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1014
1015	if (cpc->reason == CP_FASTBOOT)
1016		set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1017	else
1018		clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1019
1020	if (orphan_num)
1021		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1022	else
1023		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1024
1025	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1026		set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1027
1028	/* update SIT/NAT bitmap */
1029	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1030	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1031
1032	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1033	*((__le32 *)((unsigned char *)ckpt +
1034				le32_to_cpu(ckpt->checksum_offset)))
1035				= cpu_to_le32(crc32);
1036
1037	start_blk = __start_cp_addr(sbi);
1038
1039	/* need to wait for end_io results */
1040	wait_on_all_pages_writeback(sbi);
1041	if (unlikely(f2fs_cp_error(sbi)))
1042		return -EIO;
 
 
 
 
 
 
 
 
 
1043
1044	/* write out checkpoint buffer at block 0 */
1045	update_meta_page(sbi, ckpt, start_blk++);
1046
1047	for (i = 1; i < 1 + cp_payload_blks; i++)
1048		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1049							start_blk++);
1050
1051	if (orphan_num) {
1052		write_orphan_inodes(sbi, start_blk);
1053		start_blk += orphan_blocks;
1054	}
1055
1056	write_data_summaries(sbi, start_blk);
1057	start_blk += data_sum_blocks;
1058
1059	/* Record write statistics in the hot node summary */
1060	kbytes_written = sbi->kbytes_written;
1061	if (sb->s_bdev->bd_part)
1062		kbytes_written += BD_PART_WRITTEN(sbi);
1063
1064	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1065
1066	if (__remain_node_summaries(cpc->reason)) {
1067		write_node_summaries(sbi, start_blk);
1068		start_blk += NR_CURSEG_NODE_TYPE;
1069	}
1070
1071	/* writeout checkpoint block */
1072	update_meta_page(sbi, ckpt, start_blk);
1073
1074	/* wait for previous submitted node/meta pages writeback */
1075	wait_on_all_pages_writeback(sbi);
1076
1077	if (unlikely(f2fs_cp_error(sbi)))
1078		return -EIO;
1079
1080	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1081	filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1082
1083	/* update user_block_counts */
1084	sbi->last_valid_block_count = sbi->total_valid_block_count;
1085	sbi->alloc_valid_block_count = 0;
1086
1087	/* Here, we only have one bio having CP pack */
1088	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
 
 
1089
1090	/* wait for previous submitted meta pages writeback */
1091	wait_on_all_pages_writeback(sbi);
 
 
 
 
 
 
 
 
 
1092
1093	/*
1094	 * invalidate meta page which is used temporarily for zeroing out
1095	 * block at the end of warm node chain.
1096	 */
1097	if (invalidate)
1098		invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1099								discard_blk);
 
1100
1101	release_ino_entry(sbi);
1102
1103	if (unlikely(f2fs_cp_error(sbi)))
1104		return -EIO;
1105
1106	clear_prefree_segments(sbi, cpc);
1107	clear_sbi_flag(sbi, SBI_IS_DIRTY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108
1109	return 0;
 
 
1110}
1111
1112/*
1113 * We guarantee that this checkpoint procedure will not fail.
1114 */
1115int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1116{
1117	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1118	unsigned long long ckpt_ver;
1119	int err = 0;
1120
1121	mutex_lock(&sbi->cp_mutex);
 
 
 
 
 
 
 
 
 
1122
1123	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1124		(cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1125		(cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1126		goto out;
1127	if (unlikely(f2fs_cp_error(sbi))) {
1128		err = -EIO;
1129		goto out;
1130	}
1131	if (f2fs_readonly(sbi->sb)) {
1132		err = -EROFS;
1133		goto out;
1134	}
1135
1136	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1137
1138	err = block_operations(sbi);
1139	if (err)
1140		goto out;
1141
1142	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1143
1144	f2fs_flush_merged_bios(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145
1146	/*
1147	 * update checkpoint pack index
1148	 * Increase the version number so that
1149	 * SIT entries and seg summaries are written at correct place
1150	 */
1151	ckpt_ver = cur_cp_version(ckpt);
1152	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1153
1154	/* write cached NAT/SIT entries to NAT/SIT area */
1155	flush_nat_entries(sbi);
1156	flush_sit_entries(sbi, cpc);
 
 
 
 
 
 
1157
1158	/* unlock all the fs_lock[] in do_checkpoint() */
1159	err = do_checkpoint(sbi, cpc);
 
 
 
 
1160
 
 
1161	unblock_operations(sbi);
1162	stat_inc_cp_count(sbi->stat_info);
1163
1164	if (cpc->reason == CP_RECOVERY)
1165		f2fs_msg(sbi->sb, KERN_NOTICE,
1166			"checkpoint: version = %llx", ckpt_ver);
1167
1168	/* do checkpoint periodically */
1169	f2fs_update_time(sbi, CP_TIME);
1170	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1171out:
1172	mutex_unlock(&sbi->cp_mutex);
 
1173	return err;
1174}
1175
1176void init_ino_entry_info(struct f2fs_sb_info *sbi)
1177{
1178	int i;
1179
1180	for (i = 0; i < MAX_INO_ENTRY; i++) {
1181		struct inode_management *im = &sbi->im[i];
1182
1183		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1184		spin_lock_init(&im->ino_lock);
1185		INIT_LIST_HEAD(&im->ino_list);
1186		im->ino_num = 0;
1187	}
1188
1189	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1190			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1191				F2FS_ORPHANS_PER_BLOCK;
1192}
1193
1194int __init create_checkpoint_caches(void)
1195{
1196	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1197			sizeof(struct ino_entry));
1198	if (!ino_entry_slab)
1199		return -ENOMEM;
1200	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1201			sizeof(struct inode_entry));
1202	if (!inode_entry_slab) {
1203		kmem_cache_destroy(ino_entry_slab);
1204		return -ENOMEM;
1205	}
1206	return 0;
1207}
1208
1209void destroy_checkpoint_caches(void)
1210{
1211	kmem_cache_destroy(ino_entry_slab);
1212	kmem_cache_destroy(inode_entry_slab);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1213}