Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
 
 
 
 
   3 *
   4 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   5 *     & Swedish University of Agricultural Sciences.
   6 *
   7 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
   8 *     Agricultural Sciences.
   9 *
  10 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  11 *
  12 * This work is based on the LPC-trie which is originally described in:
  13 *
  14 * An experimental study of compression methods for dynamic tries
  15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
 
  17 *
  18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  20 *
 
  21 * Code from fib_hash has been reused which includes the following header:
  22 *
 
  23 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  24 *		operating system.  INET is implemented using the  BSD Socket
  25 *		interface as the means of communication with the user level.
  26 *
  27 *		IPv4 FIB: lookup engine and maintenance routines.
  28 *
 
  29 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  30 *
 
 
 
 
 
  31 * Substantial contributions to this work comes from:
  32 *
  33 *		David S. Miller, <davem@davemloft.net>
  34 *		Stephen Hemminger <shemminger@osdl.org>
  35 *		Paul E. McKenney <paulmck@us.ibm.com>
  36 *		Patrick McHardy <kaber@trash.net>
  37 */
  38#include <linux/cache.h>
  39#include <linux/uaccess.h>
 
 
  40#include <linux/bitops.h>
  41#include <linux/types.h>
  42#include <linux/kernel.h>
  43#include <linux/mm.h>
  44#include <linux/string.h>
  45#include <linux/socket.h>
  46#include <linux/sockios.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/inet.h>
  50#include <linux/inetdevice.h>
  51#include <linux/netdevice.h>
  52#include <linux/if_arp.h>
  53#include <linux/proc_fs.h>
  54#include <linux/rcupdate.h>
  55#include <linux/skbuff.h>
  56#include <linux/netlink.h>
  57#include <linux/init.h>
  58#include <linux/list.h>
  59#include <linux/slab.h>
  60#include <linux/export.h>
  61#include <linux/vmalloc.h>
  62#include <linux/notifier.h>
  63#include <net/net_namespace.h>
  64#include <net/ip.h>
  65#include <net/protocol.h>
  66#include <net/route.h>
  67#include <net/tcp.h>
  68#include <net/sock.h>
  69#include <net/ip_fib.h>
  70#include <net/fib_notifier.h>
  71#include <trace/events/fib.h>
  72#include "fib_lookup.h"
  73
  74static int call_fib_entry_notifier(struct notifier_block *nb,
  75				   enum fib_event_type event_type, u32 dst,
  76				   int dst_len, struct fib_alias *fa,
  77				   struct netlink_ext_ack *extack)
  78{
  79	struct fib_entry_notifier_info info = {
  80		.info.extack = extack,
  81		.dst = dst,
  82		.dst_len = dst_len,
  83		.fi = fa->fa_info,
  84		.tos = fa->fa_tos,
  85		.type = fa->fa_type,
  86		.tb_id = fa->tb_id,
  87	};
  88	return call_fib4_notifier(nb, event_type, &info.info);
  89}
  90
  91static int call_fib_entry_notifiers(struct net *net,
  92				    enum fib_event_type event_type, u32 dst,
  93				    int dst_len, struct fib_alias *fa,
  94				    struct netlink_ext_ack *extack)
  95{
  96	struct fib_entry_notifier_info info = {
  97		.info.extack = extack,
  98		.dst = dst,
  99		.dst_len = dst_len,
 100		.fi = fa->fa_info,
 101		.tos = fa->fa_tos,
 102		.type = fa->fa_type,
 103		.tb_id = fa->tb_id,
 104	};
 105	return call_fib4_notifiers(net, event_type, &info.info);
 106}
 107
 108#define MAX_STAT_DEPTH 32
 109
 110#define KEYLENGTH	(8*sizeof(t_key))
 111#define KEY_MAX		((t_key)~0)
 112
 113typedef unsigned int t_key;
 114
 115#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
 116#define IS_TNODE(n)	((n)->bits)
 117#define IS_LEAF(n)	(!(n)->bits)
 118
 119struct key_vector {
 120	t_key key;
 121	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
 122	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
 123	unsigned char slen;
 124	union {
 125		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 126		struct hlist_head leaf;
 127		/* This array is valid if (pos | bits) > 0 (TNODE) */
 128		struct key_vector __rcu *tnode[0];
 129	};
 130};
 131
 132struct tnode {
 133	struct rcu_head rcu;
 134	t_key empty_children;		/* KEYLENGTH bits needed */
 135	t_key full_children;		/* KEYLENGTH bits needed */
 136	struct key_vector __rcu *parent;
 137	struct key_vector kv[1];
 138#define tn_bits kv[0].bits
 139};
 140
 141#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
 142#define LEAF_SIZE	TNODE_SIZE(1)
 143
 144#ifdef CONFIG_IP_FIB_TRIE_STATS
 145struct trie_use_stats {
 146	unsigned int gets;
 147	unsigned int backtrack;
 148	unsigned int semantic_match_passed;
 149	unsigned int semantic_match_miss;
 150	unsigned int null_node_hit;
 151	unsigned int resize_node_skipped;
 152};
 153#endif
 154
 155struct trie_stat {
 156	unsigned int totdepth;
 157	unsigned int maxdepth;
 158	unsigned int tnodes;
 159	unsigned int leaves;
 160	unsigned int nullpointers;
 161	unsigned int prefixes;
 162	unsigned int nodesizes[MAX_STAT_DEPTH];
 163};
 164
 165struct trie {
 166	struct key_vector kv[1];
 167#ifdef CONFIG_IP_FIB_TRIE_STATS
 168	struct trie_use_stats __percpu *stats;
 169#endif
 170};
 171
 172static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 173static unsigned int tnode_free_size;
 174
 175/*
 176 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
 177 * especially useful before resizing the root node with PREEMPT_NONE configs;
 178 * the value was obtained experimentally, aiming to avoid visible slowdown.
 179 */
 180unsigned int sysctl_fib_sync_mem = 512 * 1024;
 181unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
 182unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
 183
 184static struct kmem_cache *fn_alias_kmem __ro_after_init;
 185static struct kmem_cache *trie_leaf_kmem __ro_after_init;
 186
 187static inline struct tnode *tn_info(struct key_vector *kv)
 188{
 189	return container_of(kv, struct tnode, kv[0]);
 190}
 191
 192/* caller must hold RTNL */
 193#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 194#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 195
 196/* caller must hold RCU read lock or RTNL */
 197#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 198#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 199
 200/* wrapper for rcu_assign_pointer */
 201static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 202{
 203	if (n)
 204		rcu_assign_pointer(tn_info(n)->parent, tp);
 205}
 206
 207#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 208
 209/* This provides us with the number of children in this node, in the case of a
 210 * leaf this will return 0 meaning none of the children are accessible.
 211 */
 212static inline unsigned long child_length(const struct key_vector *tn)
 213{
 214	return (1ul << tn->bits) & ~(1ul);
 215}
 216
 217#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 218
 219static inline unsigned long get_index(t_key key, struct key_vector *kv)
 220{
 221	unsigned long index = key ^ kv->key;
 222
 223	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 224		return 0;
 225
 226	return index >> kv->pos;
 227}
 228
 229/* To understand this stuff, an understanding of keys and all their bits is
 230 * necessary. Every node in the trie has a key associated with it, but not
 231 * all of the bits in that key are significant.
 232 *
 233 * Consider a node 'n' and its parent 'tp'.
 234 *
 235 * If n is a leaf, every bit in its key is significant. Its presence is
 236 * necessitated by path compression, since during a tree traversal (when
 237 * searching for a leaf - unless we are doing an insertion) we will completely
 238 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 239 * a potentially successful search, that we have indeed been walking the
 240 * correct key path.
 241 *
 242 * Note that we can never "miss" the correct key in the tree if present by
 243 * following the wrong path. Path compression ensures that segments of the key
 244 * that are the same for all keys with a given prefix are skipped, but the
 245 * skipped part *is* identical for each node in the subtrie below the skipped
 246 * bit! trie_insert() in this implementation takes care of that.
 247 *
 248 * if n is an internal node - a 'tnode' here, the various parts of its key
 249 * have many different meanings.
 250 *
 251 * Example:
 252 * _________________________________________________________________
 253 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 254 * -----------------------------------------------------------------
 255 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 256 *
 257 * _________________________________________________________________
 258 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 259 * -----------------------------------------------------------------
 260 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 261 *
 262 * tp->pos = 22
 263 * tp->bits = 3
 264 * n->pos = 13
 265 * n->bits = 4
 266 *
 267 * First, let's just ignore the bits that come before the parent tp, that is
 268 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 269 * point we do not use them for anything.
 270 *
 271 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 272 * index into the parent's child array. That is, they will be used to find
 273 * 'n' among tp's children.
 274 *
 275 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
 276 * for the node n.
 277 *
 278 * All the bits we have seen so far are significant to the node n. The rest
 279 * of the bits are really not needed or indeed known in n->key.
 280 *
 281 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 282 * n's child array, and will of course be different for each child.
 283 *
 284 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
 285 * at this point.
 286 */
 287
 288static const int halve_threshold = 25;
 289static const int inflate_threshold = 50;
 290static const int halve_threshold_root = 15;
 291static const int inflate_threshold_root = 30;
 292
 293static void __alias_free_mem(struct rcu_head *head)
 294{
 295	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 296	kmem_cache_free(fn_alias_kmem, fa);
 297}
 298
 299static inline void alias_free_mem_rcu(struct fib_alias *fa)
 300{
 301	call_rcu(&fa->rcu, __alias_free_mem);
 302}
 303
 
 
 304#define TNODE_VMALLOC_MAX \
 305	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 306
 307static void __node_free_rcu(struct rcu_head *head)
 308{
 309	struct tnode *n = container_of(head, struct tnode, rcu);
 310
 311	if (!n->tn_bits)
 312		kmem_cache_free(trie_leaf_kmem, n);
 313	else
 314		kvfree(n);
 315}
 316
 317#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 318
 319static struct tnode *tnode_alloc(int bits)
 320{
 321	size_t size;
 322
 323	/* verify bits is within bounds */
 324	if (bits > TNODE_VMALLOC_MAX)
 325		return NULL;
 326
 327	/* determine size and verify it is non-zero and didn't overflow */
 328	size = TNODE_SIZE(1ul << bits);
 329
 330	if (size <= PAGE_SIZE)
 331		return kzalloc(size, GFP_KERNEL);
 332	else
 333		return vzalloc(size);
 334}
 335
 336static inline void empty_child_inc(struct key_vector *n)
 337{
 338	tn_info(n)->empty_children++;
 339
 340	if (!tn_info(n)->empty_children)
 341		tn_info(n)->full_children++;
 342}
 343
 344static inline void empty_child_dec(struct key_vector *n)
 345{
 346	if (!tn_info(n)->empty_children)
 347		tn_info(n)->full_children--;
 348
 349	tn_info(n)->empty_children--;
 350}
 351
 352static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 353{
 354	struct key_vector *l;
 355	struct tnode *kv;
 356
 357	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 358	if (!kv)
 359		return NULL;
 360
 361	/* initialize key vector */
 362	l = kv->kv;
 363	l->key = key;
 364	l->pos = 0;
 365	l->bits = 0;
 366	l->slen = fa->fa_slen;
 367
 368	/* link leaf to fib alias */
 369	INIT_HLIST_HEAD(&l->leaf);
 370	hlist_add_head(&fa->fa_list, &l->leaf);
 371
 372	return l;
 373}
 374
 375static struct key_vector *tnode_new(t_key key, int pos, int bits)
 376{
 377	unsigned int shift = pos + bits;
 378	struct key_vector *tn;
 379	struct tnode *tnode;
 380
 381	/* verify bits and pos their msb bits clear and values are valid */
 382	BUG_ON(!bits || (shift > KEYLENGTH));
 383
 384	tnode = tnode_alloc(bits);
 385	if (!tnode)
 386		return NULL;
 387
 388	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 389		 sizeof(struct key_vector *) << bits);
 390
 391	if (bits == KEYLENGTH)
 392		tnode->full_children = 1;
 393	else
 394		tnode->empty_children = 1ul << bits;
 395
 396	tn = tnode->kv;
 397	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 398	tn->pos = pos;
 399	tn->bits = bits;
 400	tn->slen = pos;
 401
 402	return tn;
 403}
 404
 405/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 406 * and no bits are skipped. See discussion in dyntree paper p. 6
 407 */
 408static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 409{
 410	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 411}
 412
 413/* Add a child at position i overwriting the old value.
 414 * Update the value of full_children and empty_children.
 415 */
 416static void put_child(struct key_vector *tn, unsigned long i,
 417		      struct key_vector *n)
 418{
 419	struct key_vector *chi = get_child(tn, i);
 420	int isfull, wasfull;
 421
 422	BUG_ON(i >= child_length(tn));
 423
 424	/* update emptyChildren, overflow into fullChildren */
 425	if (!n && chi)
 426		empty_child_inc(tn);
 427	if (n && !chi)
 428		empty_child_dec(tn);
 429
 430	/* update fullChildren */
 431	wasfull = tnode_full(tn, chi);
 432	isfull = tnode_full(tn, n);
 433
 434	if (wasfull && !isfull)
 435		tn_info(tn)->full_children--;
 436	else if (!wasfull && isfull)
 437		tn_info(tn)->full_children++;
 438
 439	if (n && (tn->slen < n->slen))
 440		tn->slen = n->slen;
 441
 442	rcu_assign_pointer(tn->tnode[i], n);
 443}
 444
 445static void update_children(struct key_vector *tn)
 446{
 447	unsigned long i;
 448
 449	/* update all of the child parent pointers */
 450	for (i = child_length(tn); i;) {
 451		struct key_vector *inode = get_child(tn, --i);
 452
 453		if (!inode)
 454			continue;
 455
 456		/* Either update the children of a tnode that
 457		 * already belongs to us or update the child
 458		 * to point to ourselves.
 459		 */
 460		if (node_parent(inode) == tn)
 461			update_children(inode);
 462		else
 463			node_set_parent(inode, tn);
 464	}
 465}
 466
 467static inline void put_child_root(struct key_vector *tp, t_key key,
 468				  struct key_vector *n)
 469{
 470	if (IS_TRIE(tp))
 471		rcu_assign_pointer(tp->tnode[0], n);
 472	else
 473		put_child(tp, get_index(key, tp), n);
 474}
 475
 476static inline void tnode_free_init(struct key_vector *tn)
 477{
 478	tn_info(tn)->rcu.next = NULL;
 479}
 480
 481static inline void tnode_free_append(struct key_vector *tn,
 482				     struct key_vector *n)
 483{
 484	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 485	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 486}
 487
 488static void tnode_free(struct key_vector *tn)
 489{
 490	struct callback_head *head = &tn_info(tn)->rcu;
 491
 492	while (head) {
 493		head = head->next;
 494		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 495		node_free(tn);
 496
 497		tn = container_of(head, struct tnode, rcu)->kv;
 498	}
 499
 500	if (tnode_free_size >= sysctl_fib_sync_mem) {
 501		tnode_free_size = 0;
 502		synchronize_rcu();
 503	}
 504}
 505
 506static struct key_vector *replace(struct trie *t,
 507				  struct key_vector *oldtnode,
 508				  struct key_vector *tn)
 509{
 510	struct key_vector *tp = node_parent(oldtnode);
 511	unsigned long i;
 512
 513	/* setup the parent pointer out of and back into this node */
 514	NODE_INIT_PARENT(tn, tp);
 515	put_child_root(tp, tn->key, tn);
 516
 517	/* update all of the child parent pointers */
 518	update_children(tn);
 519
 520	/* all pointers should be clean so we are done */
 521	tnode_free(oldtnode);
 522
 523	/* resize children now that oldtnode is freed */
 524	for (i = child_length(tn); i;) {
 525		struct key_vector *inode = get_child(tn, --i);
 526
 527		/* resize child node */
 528		if (tnode_full(tn, inode))
 529			tn = resize(t, inode);
 530	}
 531
 532	return tp;
 533}
 534
 535static struct key_vector *inflate(struct trie *t,
 536				  struct key_vector *oldtnode)
 537{
 538	struct key_vector *tn;
 539	unsigned long i;
 540	t_key m;
 541
 542	pr_debug("In inflate\n");
 543
 544	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 545	if (!tn)
 546		goto notnode;
 547
 548	/* prepare oldtnode to be freed */
 549	tnode_free_init(oldtnode);
 550
 551	/* Assemble all of the pointers in our cluster, in this case that
 552	 * represents all of the pointers out of our allocated nodes that
 553	 * point to existing tnodes and the links between our allocated
 554	 * nodes.
 555	 */
 556	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 557		struct key_vector *inode = get_child(oldtnode, --i);
 558		struct key_vector *node0, *node1;
 559		unsigned long j, k;
 560
 561		/* An empty child */
 562		if (!inode)
 563			continue;
 564
 565		/* A leaf or an internal node with skipped bits */
 566		if (!tnode_full(oldtnode, inode)) {
 567			put_child(tn, get_index(inode->key, tn), inode);
 568			continue;
 569		}
 570
 571		/* drop the node in the old tnode free list */
 572		tnode_free_append(oldtnode, inode);
 573
 574		/* An internal node with two children */
 575		if (inode->bits == 1) {
 576			put_child(tn, 2 * i + 1, get_child(inode, 1));
 577			put_child(tn, 2 * i, get_child(inode, 0));
 578			continue;
 579		}
 580
 581		/* We will replace this node 'inode' with two new
 582		 * ones, 'node0' and 'node1', each with half of the
 583		 * original children. The two new nodes will have
 584		 * a position one bit further down the key and this
 585		 * means that the "significant" part of their keys
 586		 * (see the discussion near the top of this file)
 587		 * will differ by one bit, which will be "0" in
 588		 * node0's key and "1" in node1's key. Since we are
 589		 * moving the key position by one step, the bit that
 590		 * we are moving away from - the bit at position
 591		 * (tn->pos) - is the one that will differ between
 592		 * node0 and node1. So... we synthesize that bit in the
 593		 * two new keys.
 594		 */
 595		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 596		if (!node1)
 597			goto nomem;
 598		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 599
 600		tnode_free_append(tn, node1);
 601		if (!node0)
 602			goto nomem;
 603		tnode_free_append(tn, node0);
 604
 605		/* populate child pointers in new nodes */
 606		for (k = child_length(inode), j = k / 2; j;) {
 607			put_child(node1, --j, get_child(inode, --k));
 608			put_child(node0, j, get_child(inode, j));
 609			put_child(node1, --j, get_child(inode, --k));
 610			put_child(node0, j, get_child(inode, j));
 611		}
 612
 613		/* link new nodes to parent */
 614		NODE_INIT_PARENT(node1, tn);
 615		NODE_INIT_PARENT(node0, tn);
 616
 617		/* link parent to nodes */
 618		put_child(tn, 2 * i + 1, node1);
 619		put_child(tn, 2 * i, node0);
 620	}
 621
 622	/* setup the parent pointers into and out of this node */
 623	return replace(t, oldtnode, tn);
 624nomem:
 625	/* all pointers should be clean so we are done */
 626	tnode_free(tn);
 627notnode:
 628	return NULL;
 629}
 630
 631static struct key_vector *halve(struct trie *t,
 632				struct key_vector *oldtnode)
 633{
 634	struct key_vector *tn;
 635	unsigned long i;
 636
 637	pr_debug("In halve\n");
 638
 639	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 640	if (!tn)
 641		goto notnode;
 642
 643	/* prepare oldtnode to be freed */
 644	tnode_free_init(oldtnode);
 645
 646	/* Assemble all of the pointers in our cluster, in this case that
 647	 * represents all of the pointers out of our allocated nodes that
 648	 * point to existing tnodes and the links between our allocated
 649	 * nodes.
 650	 */
 651	for (i = child_length(oldtnode); i;) {
 652		struct key_vector *node1 = get_child(oldtnode, --i);
 653		struct key_vector *node0 = get_child(oldtnode, --i);
 654		struct key_vector *inode;
 655
 656		/* At least one of the children is empty */
 657		if (!node1 || !node0) {
 658			put_child(tn, i / 2, node1 ? : node0);
 659			continue;
 660		}
 661
 662		/* Two nonempty children */
 663		inode = tnode_new(node0->key, oldtnode->pos, 1);
 664		if (!inode)
 665			goto nomem;
 666		tnode_free_append(tn, inode);
 667
 668		/* initialize pointers out of node */
 669		put_child(inode, 1, node1);
 670		put_child(inode, 0, node0);
 671		NODE_INIT_PARENT(inode, tn);
 672
 673		/* link parent to node */
 674		put_child(tn, i / 2, inode);
 675	}
 676
 677	/* setup the parent pointers into and out of this node */
 678	return replace(t, oldtnode, tn);
 679nomem:
 680	/* all pointers should be clean so we are done */
 681	tnode_free(tn);
 682notnode:
 683	return NULL;
 684}
 685
 686static struct key_vector *collapse(struct trie *t,
 687				   struct key_vector *oldtnode)
 688{
 689	struct key_vector *n, *tp;
 690	unsigned long i;
 691
 692	/* scan the tnode looking for that one child that might still exist */
 693	for (n = NULL, i = child_length(oldtnode); !n && i;)
 694		n = get_child(oldtnode, --i);
 695
 696	/* compress one level */
 697	tp = node_parent(oldtnode);
 698	put_child_root(tp, oldtnode->key, n);
 699	node_set_parent(n, tp);
 700
 701	/* drop dead node */
 702	node_free(oldtnode);
 703
 704	return tp;
 705}
 706
 707static unsigned char update_suffix(struct key_vector *tn)
 708{
 709	unsigned char slen = tn->pos;
 710	unsigned long stride, i;
 711	unsigned char slen_max;
 712
 713	/* only vector 0 can have a suffix length greater than or equal to
 714	 * tn->pos + tn->bits, the second highest node will have a suffix
 715	 * length at most of tn->pos + tn->bits - 1
 716	 */
 717	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
 718
 719	/* search though the list of children looking for nodes that might
 720	 * have a suffix greater than the one we currently have.  This is
 721	 * why we start with a stride of 2 since a stride of 1 would
 722	 * represent the nodes with suffix length equal to tn->pos
 723	 */
 724	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 725		struct key_vector *n = get_child(tn, i);
 726
 727		if (!n || (n->slen <= slen))
 728			continue;
 729
 730		/* update stride and slen based on new value */
 731		stride <<= (n->slen - slen);
 732		slen = n->slen;
 733		i &= ~(stride - 1);
 734
 735		/* stop searching if we have hit the maximum possible value */
 736		if (slen >= slen_max)
 
 
 
 
 737			break;
 738	}
 739
 740	tn->slen = slen;
 741
 742	return slen;
 743}
 744
 745/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 746 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 747 * Telecommunications, page 6:
 748 * "A node is doubled if the ratio of non-empty children to all
 749 * children in the *doubled* node is at least 'high'."
 750 *
 751 * 'high' in this instance is the variable 'inflate_threshold'. It
 752 * is expressed as a percentage, so we multiply it with
 753 * child_length() and instead of multiplying by 2 (since the
 754 * child array will be doubled by inflate()) and multiplying
 755 * the left-hand side by 100 (to handle the percentage thing) we
 756 * multiply the left-hand side by 50.
 757 *
 758 * The left-hand side may look a bit weird: child_length(tn)
 759 * - tn->empty_children is of course the number of non-null children
 760 * in the current node. tn->full_children is the number of "full"
 761 * children, that is non-null tnodes with a skip value of 0.
 762 * All of those will be doubled in the resulting inflated tnode, so
 763 * we just count them one extra time here.
 764 *
 765 * A clearer way to write this would be:
 766 *
 767 * to_be_doubled = tn->full_children;
 768 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 769 *     tn->full_children;
 770 *
 771 * new_child_length = child_length(tn) * 2;
 772 *
 773 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 774 *      new_child_length;
 775 * if (new_fill_factor >= inflate_threshold)
 776 *
 777 * ...and so on, tho it would mess up the while () loop.
 778 *
 779 * anyway,
 780 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 781 *      inflate_threshold
 782 *
 783 * avoid a division:
 784 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 785 *      inflate_threshold * new_child_length
 786 *
 787 * expand not_to_be_doubled and to_be_doubled, and shorten:
 788 * 100 * (child_length(tn) - tn->empty_children +
 789 *    tn->full_children) >= inflate_threshold * new_child_length
 790 *
 791 * expand new_child_length:
 792 * 100 * (child_length(tn) - tn->empty_children +
 793 *    tn->full_children) >=
 794 *      inflate_threshold * child_length(tn) * 2
 795 *
 796 * shorten again:
 797 * 50 * (tn->full_children + child_length(tn) -
 798 *    tn->empty_children) >= inflate_threshold *
 799 *    child_length(tn)
 800 *
 801 */
 802static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 803{
 804	unsigned long used = child_length(tn);
 805	unsigned long threshold = used;
 806
 807	/* Keep root node larger */
 808	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 809	used -= tn_info(tn)->empty_children;
 810	used += tn_info(tn)->full_children;
 811
 812	/* if bits == KEYLENGTH then pos = 0, and will fail below */
 813
 814	return (used > 1) && tn->pos && ((50 * used) >= threshold);
 815}
 816
 817static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 818{
 819	unsigned long used = child_length(tn);
 820	unsigned long threshold = used;
 821
 822	/* Keep root node larger */
 823	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 824	used -= tn_info(tn)->empty_children;
 825
 826	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 827
 828	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 829}
 830
 831static inline bool should_collapse(struct key_vector *tn)
 832{
 833	unsigned long used = child_length(tn);
 834
 835	used -= tn_info(tn)->empty_children;
 836
 837	/* account for bits == KEYLENGTH case */
 838	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 839		used -= KEY_MAX;
 840
 841	/* One child or none, time to drop us from the trie */
 842	return used < 2;
 843}
 844
 845#define MAX_WORK 10
 846static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 847{
 848#ifdef CONFIG_IP_FIB_TRIE_STATS
 849	struct trie_use_stats __percpu *stats = t->stats;
 850#endif
 851	struct key_vector *tp = node_parent(tn);
 852	unsigned long cindex = get_index(tn->key, tp);
 853	int max_work = MAX_WORK;
 854
 855	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 856		 tn, inflate_threshold, halve_threshold);
 857
 858	/* track the tnode via the pointer from the parent instead of
 859	 * doing it ourselves.  This way we can let RCU fully do its
 860	 * thing without us interfering
 861	 */
 862	BUG_ON(tn != get_child(tp, cindex));
 863
 864	/* Double as long as the resulting node has a number of
 865	 * nonempty nodes that are above the threshold.
 866	 */
 867	while (should_inflate(tp, tn) && max_work) {
 868		tp = inflate(t, tn);
 869		if (!tp) {
 870#ifdef CONFIG_IP_FIB_TRIE_STATS
 871			this_cpu_inc(stats->resize_node_skipped);
 872#endif
 873			break;
 874		}
 875
 876		max_work--;
 877		tn = get_child(tp, cindex);
 878	}
 879
 880	/* update parent in case inflate failed */
 881	tp = node_parent(tn);
 882
 883	/* Return if at least one inflate is run */
 884	if (max_work != MAX_WORK)
 885		return tp;
 886
 887	/* Halve as long as the number of empty children in this
 888	 * node is above threshold.
 889	 */
 890	while (should_halve(tp, tn) && max_work) {
 891		tp = halve(t, tn);
 892		if (!tp) {
 893#ifdef CONFIG_IP_FIB_TRIE_STATS
 894			this_cpu_inc(stats->resize_node_skipped);
 895#endif
 896			break;
 897		}
 898
 899		max_work--;
 900		tn = get_child(tp, cindex);
 901	}
 902
 903	/* Only one child remains */
 904	if (should_collapse(tn))
 905		return collapse(t, tn);
 906
 907	/* update parent in case halve failed */
 908	return node_parent(tn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909}
 910
 911static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
 912{
 913	unsigned char node_slen = tn->slen;
 914
 915	while ((node_slen > tn->pos) && (node_slen > slen)) {
 916		slen = update_suffix(tn);
 917		if (node_slen == slen)
 918			break;
 919
 920		tn = node_parent(tn);
 921		node_slen = tn->slen;
 922	}
 923}
 924
 925static void node_push_suffix(struct key_vector *tn, unsigned char slen)
 926{
 927	while (tn->slen < slen) {
 928		tn->slen = slen;
 
 
 
 929		tn = node_parent(tn);
 930	}
 931}
 932
 933/* rcu_read_lock needs to be hold by caller from readside */
 934static struct key_vector *fib_find_node(struct trie *t,
 935					struct key_vector **tp, u32 key)
 936{
 937	struct key_vector *pn, *n = t->kv;
 938	unsigned long index = 0;
 939
 940	do {
 941		pn = n;
 942		n = get_child_rcu(n, index);
 943
 944		if (!n)
 945			break;
 946
 947		index = get_cindex(key, n);
 948
 949		/* This bit of code is a bit tricky but it combines multiple
 950		 * checks into a single check.  The prefix consists of the
 951		 * prefix plus zeros for the bits in the cindex. The index
 952		 * is the difference between the key and this value.  From
 953		 * this we can actually derive several pieces of data.
 954		 *   if (index >= (1ul << bits))
 955		 *     we have a mismatch in skip bits and failed
 956		 *   else
 957		 *     we know the value is cindex
 958		 *
 959		 * This check is safe even if bits == KEYLENGTH due to the
 960		 * fact that we can only allocate a node with 32 bits if a
 961		 * long is greater than 32 bits.
 962		 */
 963		if (index >= (1ul << n->bits)) {
 964			n = NULL;
 965			break;
 966		}
 967
 968		/* keep searching until we find a perfect match leaf or NULL */
 969	} while (IS_TNODE(n));
 970
 971	*tp = pn;
 972
 973	return n;
 974}
 975
 976/* Return the first fib alias matching TOS with
 977 * priority less than or equal to PRIO.
 978 * If 'find_first' is set, return the first matching
 979 * fib alias, regardless of TOS and priority.
 980 */
 981static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 982					u8 tos, u32 prio, u32 tb_id,
 983					bool find_first)
 984{
 985	struct fib_alias *fa;
 986
 987	if (!fah)
 988		return NULL;
 989
 990	hlist_for_each_entry(fa, fah, fa_list) {
 991		if (fa->fa_slen < slen)
 992			continue;
 993		if (fa->fa_slen != slen)
 994			break;
 995		if (fa->tb_id > tb_id)
 996			continue;
 997		if (fa->tb_id != tb_id)
 998			break;
 999		if (find_first)
1000			return fa;
1001		if (fa->fa_tos > tos)
1002			continue;
1003		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004			return fa;
1005	}
1006
1007	return NULL;
1008}
1009
1010static struct fib_alias *
1011fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012{
1013	u8 slen = KEYLENGTH - fri->dst_len;
1014	struct key_vector *l, *tp;
1015	struct fib_table *tb;
1016	struct fib_alias *fa;
1017	struct trie *t;
1018
1019	tb = fib_get_table(net, fri->tb_id);
1020	if (!tb)
1021		return NULL;
1022
1023	t = (struct trie *)tb->tb_data;
1024	l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025	if (!l)
1026		return NULL;
1027
1028	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029		if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030		    fa->fa_tos == fri->tos && fa->fa_info == fri->fi &&
1031		    fa->fa_type == fri->type)
1032			return fa;
1033	}
1034
1035	return NULL;
1036}
1037
1038void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039{
1040	struct fib_alias *fa_match;
1041	struct sk_buff *skb;
1042	int err;
1043
1044	rcu_read_lock();
1045
1046	fa_match = fib_find_matching_alias(net, fri);
1047	if (!fa_match)
1048		goto out;
1049
1050	if (fa_match->offload == fri->offload && fa_match->trap == fri->trap &&
1051	    fa_match->offload_failed == fri->offload_failed)
1052		goto out;
1053
1054	fa_match->offload = fri->offload;
1055	fa_match->trap = fri->trap;
1056
1057	/* 2 means send notifications only if offload_failed was changed. */
1058	if (net->ipv4.sysctl_fib_notify_on_flag_change == 2 &&
1059	    fa_match->offload_failed == fri->offload_failed)
1060		goto out;
1061
1062	fa_match->offload_failed = fri->offload_failed;
1063
1064	if (!net->ipv4.sysctl_fib_notify_on_flag_change)
1065		goto out;
1066
1067	skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1068	if (!skb) {
1069		err = -ENOBUFS;
1070		goto errout;
1071	}
1072
1073	err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1074	if (err < 0) {
1075		/* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1076		WARN_ON(err == -EMSGSIZE);
1077		kfree_skb(skb);
1078		goto errout;
1079	}
1080
1081	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1082	goto out;
1083
1084errout:
1085	rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1086out:
1087	rcu_read_unlock();
1088}
1089EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1090
1091static void trie_rebalance(struct trie *t, struct key_vector *tn)
1092{
1093	while (!IS_TRIE(tn))
1094		tn = resize(t, tn);
1095}
1096
1097static int fib_insert_node(struct trie *t, struct key_vector *tp,
1098			   struct fib_alias *new, t_key key)
1099{
1100	struct key_vector *n, *l;
1101
1102	l = leaf_new(key, new);
1103	if (!l)
1104		goto noleaf;
1105
1106	/* retrieve child from parent node */
1107	n = get_child(tp, get_index(key, tp));
1108
1109	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1110	 *
1111	 *  Add a new tnode here
1112	 *  first tnode need some special handling
1113	 *  leaves us in position for handling as case 3
1114	 */
1115	if (n) {
1116		struct key_vector *tn;
1117
1118		tn = tnode_new(key, __fls(key ^ n->key), 1);
1119		if (!tn)
1120			goto notnode;
1121
1122		/* initialize routes out of node */
1123		NODE_INIT_PARENT(tn, tp);
1124		put_child(tn, get_index(key, tn) ^ 1, n);
1125
1126		/* start adding routes into the node */
1127		put_child_root(tp, key, tn);
1128		node_set_parent(n, tn);
1129
1130		/* parent now has a NULL spot where the leaf can go */
1131		tp = tn;
1132	}
1133
1134	/* Case 3: n is NULL, and will just insert a new leaf */
1135	node_push_suffix(tp, new->fa_slen);
1136	NODE_INIT_PARENT(l, tp);
1137	put_child_root(tp, key, l);
1138	trie_rebalance(t, tp);
1139
1140	return 0;
1141notnode:
1142	node_free(l);
1143noleaf:
1144	return -ENOMEM;
1145}
1146
1147static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1148			    struct key_vector *l, struct fib_alias *new,
1149			    struct fib_alias *fa, t_key key)
1150{
1151	if (!l)
1152		return fib_insert_node(t, tp, new, key);
1153
1154	if (fa) {
1155		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1156	} else {
1157		struct fib_alias *last;
1158
1159		hlist_for_each_entry(last, &l->leaf, fa_list) {
1160			if (new->fa_slen < last->fa_slen)
1161				break;
1162			if ((new->fa_slen == last->fa_slen) &&
1163			    (new->tb_id > last->tb_id))
1164				break;
1165			fa = last;
1166		}
1167
1168		if (fa)
1169			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1170		else
1171			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1172	}
1173
1174	/* if we added to the tail node then we need to update slen */
1175	if (l->slen < new->fa_slen) {
1176		l->slen = new->fa_slen;
1177		node_push_suffix(tp, new->fa_slen);
1178	}
1179
1180	return 0;
1181}
1182
1183static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1184{
1185	if (plen > KEYLENGTH) {
1186		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1187		return false;
1188	}
1189
1190	if ((plen < KEYLENGTH) && (key << plen)) {
1191		NL_SET_ERR_MSG(extack,
1192			       "Invalid prefix for given prefix length");
1193		return false;
1194	}
1195
1196	return true;
1197}
1198
1199static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1200			     struct key_vector *l, struct fib_alias *old);
1201
1202/* Caller must hold RTNL. */
1203int fib_table_insert(struct net *net, struct fib_table *tb,
1204		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1205{
1206	struct trie *t = (struct trie *)tb->tb_data;
1207	struct fib_alias *fa, *new_fa;
1208	struct key_vector *l, *tp;
1209	u16 nlflags = NLM_F_EXCL;
1210	struct fib_info *fi;
1211	u8 plen = cfg->fc_dst_len;
1212	u8 slen = KEYLENGTH - plen;
1213	u8 tos = cfg->fc_tos;
1214	u32 key;
1215	int err;
1216
1217	key = ntohl(cfg->fc_dst);
1218
1219	if (!fib_valid_key_len(key, plen, extack))
1220		return -EINVAL;
1221
 
 
1222	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1223
1224	fi = fib_create_info(cfg, extack);
 
 
 
1225	if (IS_ERR(fi)) {
1226		err = PTR_ERR(fi);
1227		goto err;
1228	}
1229
1230	l = fib_find_node(t, &tp, key);
1231	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1232				tb->tb_id, false) : NULL;
1233
1234	/* Now fa, if non-NULL, points to the first fib alias
1235	 * with the same keys [prefix,tos,priority], if such key already
1236	 * exists or to the node before which we will insert new one.
1237	 *
1238	 * If fa is NULL, we will need to allocate a new one and
1239	 * insert to the tail of the section matching the suffix length
1240	 * of the new alias.
1241	 */
1242
1243	if (fa && fa->fa_tos == tos &&
1244	    fa->fa_info->fib_priority == fi->fib_priority) {
1245		struct fib_alias *fa_first, *fa_match;
1246
1247		err = -EEXIST;
1248		if (cfg->fc_nlflags & NLM_F_EXCL)
1249			goto out;
1250
1251		nlflags &= ~NLM_F_EXCL;
1252
1253		/* We have 2 goals:
1254		 * 1. Find exact match for type, scope, fib_info to avoid
1255		 * duplicate routes
1256		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1257		 */
1258		fa_match = NULL;
1259		fa_first = fa;
1260		hlist_for_each_entry_from(fa, fa_list) {
1261			if ((fa->fa_slen != slen) ||
1262			    (fa->tb_id != tb->tb_id) ||
1263			    (fa->fa_tos != tos))
1264				break;
1265			if (fa->fa_info->fib_priority != fi->fib_priority)
1266				break;
1267			if (fa->fa_type == cfg->fc_type &&
1268			    fa->fa_info == fi) {
1269				fa_match = fa;
1270				break;
1271			}
1272		}
1273
1274		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1275			struct fib_info *fi_drop;
1276			u8 state;
1277
1278			nlflags |= NLM_F_REPLACE;
1279			fa = fa_first;
1280			if (fa_match) {
1281				if (fa == fa_match)
1282					err = 0;
1283				goto out;
1284			}
1285			err = -ENOBUFS;
1286			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1287			if (!new_fa)
1288				goto out;
1289
1290			fi_drop = fa->fa_info;
1291			new_fa->fa_tos = fa->fa_tos;
1292			new_fa->fa_info = fi;
1293			new_fa->fa_type = cfg->fc_type;
1294			state = fa->fa_state;
1295			new_fa->fa_state = state & ~FA_S_ACCESSED;
1296			new_fa->fa_slen = fa->fa_slen;
1297			new_fa->tb_id = tb->tb_id;
1298			new_fa->fa_default = -1;
1299			new_fa->offload = 0;
1300			new_fa->trap = 0;
1301			new_fa->offload_failed = 0;
1302
1303			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1304
1305			if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1306					   tb->tb_id, true) == new_fa) {
1307				enum fib_event_type fib_event;
1308
1309				fib_event = FIB_EVENT_ENTRY_REPLACE;
1310				err = call_fib_entry_notifiers(net, fib_event,
1311							       key, plen,
1312							       new_fa, extack);
1313				if (err) {
1314					hlist_replace_rcu(&new_fa->fa_list,
1315							  &fa->fa_list);
1316					goto out_free_new_fa;
1317				}
1318			}
1319
1320			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1321				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1322
1323			alias_free_mem_rcu(fa);
1324
1325			fib_release_info(fi_drop);
1326			if (state & FA_S_ACCESSED)
1327				rt_cache_flush(cfg->fc_nlinfo.nl_net);
 
 
1328
1329			goto succeeded;
1330		}
1331		/* Error if we find a perfect match which
1332		 * uses the same scope, type, and nexthop
1333		 * information.
1334		 */
1335		if (fa_match)
1336			goto out;
1337
1338		if (cfg->fc_nlflags & NLM_F_APPEND)
1339			nlflags |= NLM_F_APPEND;
1340		else
1341			fa = fa_first;
1342	}
1343	err = -ENOENT;
1344	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1345		goto out;
1346
1347	nlflags |= NLM_F_CREATE;
1348	err = -ENOBUFS;
1349	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1350	if (!new_fa)
1351		goto out;
1352
1353	new_fa->fa_info = fi;
1354	new_fa->fa_tos = tos;
1355	new_fa->fa_type = cfg->fc_type;
1356	new_fa->fa_state = 0;
1357	new_fa->fa_slen = slen;
1358	new_fa->tb_id = tb->tb_id;
1359	new_fa->fa_default = -1;
1360	new_fa->offload = 0;
1361	new_fa->trap = 0;
1362	new_fa->offload_failed = 0;
 
 
 
 
 
1363
1364	/* Insert new entry to the list. */
1365	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1366	if (err)
1367		goto out_free_new_fa;
1368
1369	/* The alias was already inserted, so the node must exist. */
1370	l = l ? l : fib_find_node(t, &tp, key);
1371	if (WARN_ON_ONCE(!l))
1372		goto out_free_new_fa;
1373
1374	if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1375	    new_fa) {
1376		enum fib_event_type fib_event;
1377
1378		fib_event = FIB_EVENT_ENTRY_REPLACE;
1379		err = call_fib_entry_notifiers(net, fib_event, key, plen,
1380					       new_fa, extack);
1381		if (err)
1382			goto out_remove_new_fa;
1383	}
1384
1385	if (!plen)
1386		tb->tb_num_default++;
1387
1388	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1389	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1390		  &cfg->fc_nlinfo, nlflags);
1391succeeded:
1392	return 0;
1393
1394out_remove_new_fa:
1395	fib_remove_alias(t, tp, l, new_fa);
1396out_free_new_fa:
1397	kmem_cache_free(fn_alias_kmem, new_fa);
1398out:
1399	fib_release_info(fi);
1400err:
1401	return err;
1402}
1403
1404static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1405{
1406	t_key prefix = n->key;
1407
1408	return (key ^ prefix) & (prefix | -prefix);
1409}
1410
1411bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1412			 const struct flowi4 *flp)
1413{
1414	if (nhc->nhc_flags & RTNH_F_DEAD)
1415		return false;
1416
1417	if (ip_ignore_linkdown(nhc->nhc_dev) &&
1418	    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1419	    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1420		return false;
1421
1422	if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1423		if (flp->flowi4_oif &&
1424		    flp->flowi4_oif != nhc->nhc_oif)
1425			return false;
1426	}
1427
1428	return true;
1429}
1430
1431/* should be called with rcu_read_lock */
1432int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1433		     struct fib_result *res, int fib_flags)
1434{
1435	struct trie *t = (struct trie *) tb->tb_data;
1436#ifdef CONFIG_IP_FIB_TRIE_STATS
1437	struct trie_use_stats __percpu *stats = t->stats;
1438#endif
1439	const t_key key = ntohl(flp->daddr);
1440	struct key_vector *n, *pn;
1441	struct fib_alias *fa;
1442	unsigned long index;
1443	t_key cindex;
1444
 
 
1445	pn = t->kv;
1446	cindex = 0;
1447
1448	n = get_child_rcu(pn, cindex);
1449	if (!n) {
1450		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1451		return -EAGAIN;
1452	}
1453
1454#ifdef CONFIG_IP_FIB_TRIE_STATS
1455	this_cpu_inc(stats->gets);
1456#endif
1457
1458	/* Step 1: Travel to the longest prefix match in the trie */
1459	for (;;) {
1460		index = get_cindex(key, n);
1461
1462		/* This bit of code is a bit tricky but it combines multiple
1463		 * checks into a single check.  The prefix consists of the
1464		 * prefix plus zeros for the "bits" in the prefix. The index
1465		 * is the difference between the key and this value.  From
1466		 * this we can actually derive several pieces of data.
1467		 *   if (index >= (1ul << bits))
1468		 *     we have a mismatch in skip bits and failed
1469		 *   else
1470		 *     we know the value is cindex
1471		 *
1472		 * This check is safe even if bits == KEYLENGTH due to the
1473		 * fact that we can only allocate a node with 32 bits if a
1474		 * long is greater than 32 bits.
1475		 */
1476		if (index >= (1ul << n->bits))
1477			break;
1478
1479		/* we have found a leaf. Prefixes have already been compared */
1480		if (IS_LEAF(n))
1481			goto found;
1482
1483		/* only record pn and cindex if we are going to be chopping
1484		 * bits later.  Otherwise we are just wasting cycles.
1485		 */
1486		if (n->slen > n->pos) {
1487			pn = n;
1488			cindex = index;
1489		}
1490
1491		n = get_child_rcu(n, index);
1492		if (unlikely(!n))
1493			goto backtrace;
1494	}
1495
1496	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1497	for (;;) {
1498		/* record the pointer where our next node pointer is stored */
1499		struct key_vector __rcu **cptr = n->tnode;
1500
1501		/* This test verifies that none of the bits that differ
1502		 * between the key and the prefix exist in the region of
1503		 * the lsb and higher in the prefix.
1504		 */
1505		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1506			goto backtrace;
1507
1508		/* exit out and process leaf */
1509		if (unlikely(IS_LEAF(n)))
1510			break;
1511
1512		/* Don't bother recording parent info.  Since we are in
1513		 * prefix match mode we will have to come back to wherever
1514		 * we started this traversal anyway
1515		 */
1516
1517		while ((n = rcu_dereference(*cptr)) == NULL) {
1518backtrace:
1519#ifdef CONFIG_IP_FIB_TRIE_STATS
1520			if (!n)
1521				this_cpu_inc(stats->null_node_hit);
1522#endif
1523			/* If we are at cindex 0 there are no more bits for
1524			 * us to strip at this level so we must ascend back
1525			 * up one level to see if there are any more bits to
1526			 * be stripped there.
1527			 */
1528			while (!cindex) {
1529				t_key pkey = pn->key;
1530
1531				/* If we don't have a parent then there is
1532				 * nothing for us to do as we do not have any
1533				 * further nodes to parse.
1534				 */
1535				if (IS_TRIE(pn)) {
1536					trace_fib_table_lookup(tb->tb_id, flp,
1537							       NULL, -EAGAIN);
1538					return -EAGAIN;
1539				}
1540#ifdef CONFIG_IP_FIB_TRIE_STATS
1541				this_cpu_inc(stats->backtrack);
1542#endif
1543				/* Get Child's index */
1544				pn = node_parent_rcu(pn);
1545				cindex = get_index(pkey, pn);
1546			}
1547
1548			/* strip the least significant bit from the cindex */
1549			cindex &= cindex - 1;
1550
1551			/* grab pointer for next child node */
1552			cptr = &pn->tnode[cindex];
1553		}
1554	}
1555
1556found:
1557	/* this line carries forward the xor from earlier in the function */
1558	index = key ^ n->key;
1559
1560	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1561	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1562		struct fib_info *fi = fa->fa_info;
1563		struct fib_nh_common *nhc;
1564		int nhsel, err;
1565
1566		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1567			if (index >= (1ul << fa->fa_slen))
1568				continue;
1569		}
1570		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1571			continue;
1572		if (fi->fib_dead)
1573			continue;
1574		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1575			continue;
1576		fib_alias_accessed(fa);
1577		err = fib_props[fa->fa_type].error;
1578		if (unlikely(err < 0)) {
1579out_reject:
1580#ifdef CONFIG_IP_FIB_TRIE_STATS
1581			this_cpu_inc(stats->semantic_match_passed);
1582#endif
1583			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1584			return err;
1585		}
1586		if (fi->fib_flags & RTNH_F_DEAD)
1587			continue;
 
 
 
1588
1589		if (unlikely(fi->nh)) {
1590			if (nexthop_is_blackhole(fi->nh)) {
1591				err = fib_props[RTN_BLACKHOLE].error;
1592				goto out_reject;
 
 
 
 
 
 
 
1593			}
1594
1595			nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1596						     &nhsel);
1597			if (nhc)
1598				goto set_result;
1599			goto miss;
1600		}
1601
1602		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1603			nhc = fib_info_nhc(fi, nhsel);
1604
1605			if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1606				continue;
1607set_result:
1608			if (!(fib_flags & FIB_LOOKUP_NOREF))
1609				refcount_inc(&fi->fib_clntref);
1610
1611			res->prefix = htonl(n->key);
1612			res->prefixlen = KEYLENGTH - fa->fa_slen;
1613			res->nh_sel = nhsel;
1614			res->nhc = nhc;
1615			res->type = fa->fa_type;
1616			res->scope = fi->fib_scope;
1617			res->fi = fi;
1618			res->table = tb;
1619			res->fa_head = &n->leaf;
1620#ifdef CONFIG_IP_FIB_TRIE_STATS
1621			this_cpu_inc(stats->semantic_match_passed);
1622#endif
1623			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1624
1625			return err;
1626		}
1627	}
1628miss:
1629#ifdef CONFIG_IP_FIB_TRIE_STATS
1630	this_cpu_inc(stats->semantic_match_miss);
1631#endif
1632	goto backtrace;
1633}
1634EXPORT_SYMBOL_GPL(fib_table_lookup);
1635
1636static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1637			     struct key_vector *l, struct fib_alias *old)
1638{
1639	/* record the location of the previous list_info entry */
1640	struct hlist_node **pprev = old->fa_list.pprev;
1641	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1642
1643	/* remove the fib_alias from the list */
1644	hlist_del_rcu(&old->fa_list);
1645
1646	/* if we emptied the list this leaf will be freed and we can sort
1647	 * out parent suffix lengths as a part of trie_rebalance
1648	 */
1649	if (hlist_empty(&l->leaf)) {
1650		if (tp->slen == l->slen)
1651			node_pull_suffix(tp, tp->pos);
1652		put_child_root(tp, l->key, NULL);
1653		node_free(l);
1654		trie_rebalance(t, tp);
1655		return;
1656	}
1657
1658	/* only access fa if it is pointing at the last valid hlist_node */
1659	if (*pprev)
1660		return;
1661
1662	/* update the trie with the latest suffix length */
1663	l->slen = fa->fa_slen;
1664	node_pull_suffix(tp, fa->fa_slen);
1665}
1666
1667static void fib_notify_alias_delete(struct net *net, u32 key,
1668				    struct hlist_head *fah,
1669				    struct fib_alias *fa_to_delete,
1670				    struct netlink_ext_ack *extack)
1671{
1672	struct fib_alias *fa_next, *fa_to_notify;
1673	u32 tb_id = fa_to_delete->tb_id;
1674	u8 slen = fa_to_delete->fa_slen;
1675	enum fib_event_type fib_event;
1676
1677	/* Do not notify if we do not care about the route. */
1678	if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1679		return;
1680
1681	/* Determine if the route should be replaced by the next route in the
1682	 * list.
1683	 */
1684	fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1685				   struct fib_alias, fa_list);
1686	if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1687		fib_event = FIB_EVENT_ENTRY_REPLACE;
1688		fa_to_notify = fa_next;
1689	} else {
1690		fib_event = FIB_EVENT_ENTRY_DEL;
1691		fa_to_notify = fa_to_delete;
1692	}
1693	call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1694				 fa_to_notify, extack);
1695}
1696
1697/* Caller must hold RTNL. */
1698int fib_table_delete(struct net *net, struct fib_table *tb,
1699		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1700{
1701	struct trie *t = (struct trie *) tb->tb_data;
1702	struct fib_alias *fa, *fa_to_delete;
1703	struct key_vector *l, *tp;
1704	u8 plen = cfg->fc_dst_len;
1705	u8 slen = KEYLENGTH - plen;
1706	u8 tos = cfg->fc_tos;
1707	u32 key;
1708
 
 
 
1709	key = ntohl(cfg->fc_dst);
1710
1711	if (!fib_valid_key_len(key, plen, extack))
1712		return -EINVAL;
1713
1714	l = fib_find_node(t, &tp, key);
1715	if (!l)
1716		return -ESRCH;
1717
1718	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false);
1719	if (!fa)
1720		return -ESRCH;
1721
1722	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1723
1724	fa_to_delete = NULL;
1725	hlist_for_each_entry_from(fa, fa_list) {
1726		struct fib_info *fi = fa->fa_info;
1727
1728		if ((fa->fa_slen != slen) ||
1729		    (fa->tb_id != tb->tb_id) ||
1730		    (fa->fa_tos != tos))
1731			break;
1732
1733		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1734		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1735		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1736		    (!cfg->fc_prefsrc ||
1737		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1738		    (!cfg->fc_protocol ||
1739		     fi->fib_protocol == cfg->fc_protocol) &&
1740		    fib_nh_match(net, cfg, fi, extack) == 0 &&
1741		    fib_metrics_match(cfg, fi)) {
1742			fa_to_delete = fa;
1743			break;
1744		}
1745	}
1746
1747	if (!fa_to_delete)
1748		return -ESRCH;
1749
1750	fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
 
 
1751	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1752		  &cfg->fc_nlinfo, 0);
1753
1754	if (!plen)
1755		tb->tb_num_default--;
1756
1757	fib_remove_alias(t, tp, l, fa_to_delete);
1758
1759	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1760		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1761
1762	fib_release_info(fa_to_delete->fa_info);
1763	alias_free_mem_rcu(fa_to_delete);
1764	return 0;
1765}
1766
1767/* Scan for the next leaf starting at the provided key value */
1768static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1769{
1770	struct key_vector *pn, *n = *tn;
1771	unsigned long cindex;
1772
1773	/* this loop is meant to try and find the key in the trie */
1774	do {
1775		/* record parent and next child index */
1776		pn = n;
1777		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1778
1779		if (cindex >> pn->bits)
1780			break;
1781
1782		/* descend into the next child */
1783		n = get_child_rcu(pn, cindex++);
1784		if (!n)
1785			break;
1786
1787		/* guarantee forward progress on the keys */
1788		if (IS_LEAF(n) && (n->key >= key))
1789			goto found;
1790	} while (IS_TNODE(n));
1791
1792	/* this loop will search for the next leaf with a greater key */
1793	while (!IS_TRIE(pn)) {
1794		/* if we exhausted the parent node we will need to climb */
1795		if (cindex >= (1ul << pn->bits)) {
1796			t_key pkey = pn->key;
1797
1798			pn = node_parent_rcu(pn);
1799			cindex = get_index(pkey, pn) + 1;
1800			continue;
1801		}
1802
1803		/* grab the next available node */
1804		n = get_child_rcu(pn, cindex++);
1805		if (!n)
1806			continue;
1807
1808		/* no need to compare keys since we bumped the index */
1809		if (IS_LEAF(n))
1810			goto found;
1811
1812		/* Rescan start scanning in new node */
1813		pn = n;
1814		cindex = 0;
1815	}
1816
1817	*tn = pn;
1818	return NULL; /* Root of trie */
1819found:
1820	/* if we are at the limit for keys just return NULL for the tnode */
1821	*tn = pn;
1822	return n;
1823}
1824
1825static void fib_trie_free(struct fib_table *tb)
1826{
1827	struct trie *t = (struct trie *)tb->tb_data;
1828	struct key_vector *pn = t->kv;
1829	unsigned long cindex = 1;
1830	struct hlist_node *tmp;
1831	struct fib_alias *fa;
1832
1833	/* walk trie in reverse order and free everything */
1834	for (;;) {
1835		struct key_vector *n;
1836
1837		if (!(cindex--)) {
1838			t_key pkey = pn->key;
1839
1840			if (IS_TRIE(pn))
1841				break;
1842
1843			n = pn;
1844			pn = node_parent(pn);
1845
1846			/* drop emptied tnode */
1847			put_child_root(pn, n->key, NULL);
1848			node_free(n);
1849
1850			cindex = get_index(pkey, pn);
1851
1852			continue;
1853		}
1854
1855		/* grab the next available node */
1856		n = get_child(pn, cindex);
1857		if (!n)
1858			continue;
1859
1860		if (IS_TNODE(n)) {
1861			/* record pn and cindex for leaf walking */
1862			pn = n;
1863			cindex = 1ul << n->bits;
1864
1865			continue;
1866		}
1867
1868		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1869			hlist_del_rcu(&fa->fa_list);
1870			alias_free_mem_rcu(fa);
1871		}
1872
1873		put_child_root(pn, n->key, NULL);
1874		node_free(n);
1875	}
1876
1877#ifdef CONFIG_IP_FIB_TRIE_STATS
1878	free_percpu(t->stats);
1879#endif
1880	kfree(tb);
1881}
1882
1883struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1884{
1885	struct trie *ot = (struct trie *)oldtb->tb_data;
1886	struct key_vector *l, *tp = ot->kv;
1887	struct fib_table *local_tb;
1888	struct fib_alias *fa;
1889	struct trie *lt;
1890	t_key key = 0;
1891
1892	if (oldtb->tb_data == oldtb->__data)
1893		return oldtb;
1894
1895	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1896	if (!local_tb)
1897		return NULL;
1898
1899	lt = (struct trie *)local_tb->tb_data;
1900
1901	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1902		struct key_vector *local_l = NULL, *local_tp;
1903
1904		hlist_for_each_entry(fa, &l->leaf, fa_list) {
1905			struct fib_alias *new_fa;
1906
1907			if (local_tb->tb_id != fa->tb_id)
1908				continue;
1909
1910			/* clone fa for new local table */
1911			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1912			if (!new_fa)
1913				goto out;
1914
1915			memcpy(new_fa, fa, sizeof(*fa));
1916
1917			/* insert clone into table */
1918			if (!local_l)
1919				local_l = fib_find_node(lt, &local_tp, l->key);
1920
1921			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1922					     NULL, l->key)) {
1923				kmem_cache_free(fn_alias_kmem, new_fa);
1924				goto out;
1925			}
1926		}
1927
1928		/* stop loop if key wrapped back to 0 */
1929		key = l->key + 1;
1930		if (key < l->key)
1931			break;
1932	}
1933
1934	return local_tb;
1935out:
1936	fib_trie_free(local_tb);
1937
1938	return NULL;
1939}
1940
1941/* Caller must hold RTNL */
1942void fib_table_flush_external(struct fib_table *tb)
1943{
1944	struct trie *t = (struct trie *)tb->tb_data;
1945	struct key_vector *pn = t->kv;
1946	unsigned long cindex = 1;
1947	struct hlist_node *tmp;
1948	struct fib_alias *fa;
1949
1950	/* walk trie in reverse order */
1951	for (;;) {
1952		unsigned char slen = 0;
1953		struct key_vector *n;
1954
1955		if (!(cindex--)) {
1956			t_key pkey = pn->key;
1957
1958			/* cannot resize the trie vector */
1959			if (IS_TRIE(pn))
1960				break;
1961
1962			/* update the suffix to address pulled leaves */
1963			if (pn->slen > pn->pos)
1964				update_suffix(pn);
1965
1966			/* resize completed node */
1967			pn = resize(t, pn);
1968			cindex = get_index(pkey, pn);
1969
1970			continue;
1971		}
1972
1973		/* grab the next available node */
1974		n = get_child(pn, cindex);
1975		if (!n)
1976			continue;
1977
1978		if (IS_TNODE(n)) {
1979			/* record pn and cindex for leaf walking */
1980			pn = n;
1981			cindex = 1ul << n->bits;
1982
1983			continue;
1984		}
1985
1986		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
 
 
1987			/* if alias was cloned to local then we just
1988			 * need to remove the local copy from main
1989			 */
1990			if (tb->tb_id != fa->tb_id) {
1991				hlist_del_rcu(&fa->fa_list);
1992				alias_free_mem_rcu(fa);
1993				continue;
1994			}
1995
1996			/* record local slen */
1997			slen = fa->fa_slen;
 
 
 
 
 
 
 
1998		}
1999
2000		/* update leaf slen */
2001		n->slen = slen;
2002
2003		if (hlist_empty(&n->leaf)) {
2004			put_child_root(pn, n->key, NULL);
2005			node_free(n);
2006		}
2007	}
2008}
2009
2010/* Caller must hold RTNL. */
2011int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2012{
2013	struct trie *t = (struct trie *)tb->tb_data;
2014	struct key_vector *pn = t->kv;
2015	unsigned long cindex = 1;
2016	struct hlist_node *tmp;
2017	struct fib_alias *fa;
2018	int found = 0;
2019
2020	/* walk trie in reverse order */
2021	for (;;) {
2022		unsigned char slen = 0;
2023		struct key_vector *n;
2024
2025		if (!(cindex--)) {
2026			t_key pkey = pn->key;
2027
2028			/* cannot resize the trie vector */
2029			if (IS_TRIE(pn))
2030				break;
2031
2032			/* update the suffix to address pulled leaves */
2033			if (pn->slen > pn->pos)
2034				update_suffix(pn);
2035
2036			/* resize completed node */
2037			pn = resize(t, pn);
2038			cindex = get_index(pkey, pn);
2039
2040			continue;
2041		}
2042
2043		/* grab the next available node */
2044		n = get_child(pn, cindex);
2045		if (!n)
2046			continue;
2047
2048		if (IS_TNODE(n)) {
2049			/* record pn and cindex for leaf walking */
2050			pn = n;
2051			cindex = 1ul << n->bits;
2052
2053			continue;
2054		}
2055
2056		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2057			struct fib_info *fi = fa->fa_info;
2058
2059			if (!fi || tb->tb_id != fa->tb_id ||
2060			    (!(fi->fib_flags & RTNH_F_DEAD) &&
2061			     !fib_props[fa->fa_type].error)) {
2062				slen = fa->fa_slen;
2063				continue;
2064			}
2065
2066			/* Do not flush error routes if network namespace is
2067			 * not being dismantled
2068			 */
2069			if (!flush_all && fib_props[fa->fa_type].error) {
2070				slen = fa->fa_slen;
2071				continue;
2072			}
2073
2074			fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2075						NULL);
2076			hlist_del_rcu(&fa->fa_list);
2077			fib_release_info(fa->fa_info);
2078			alias_free_mem_rcu(fa);
2079			found++;
2080		}
2081
2082		/* update leaf slen */
2083		n->slen = slen;
2084
2085		if (hlist_empty(&n->leaf)) {
2086			put_child_root(pn, n->key, NULL);
2087			node_free(n);
2088		}
2089	}
2090
2091	pr_debug("trie_flush found=%d\n", found);
2092	return found;
2093}
2094
2095/* derived from fib_trie_free */
2096static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2097				     struct nl_info *info)
2098{
2099	struct trie *t = (struct trie *)tb->tb_data;
2100	struct key_vector *pn = t->kv;
2101	unsigned long cindex = 1;
2102	struct fib_alias *fa;
2103
2104	for (;;) {
2105		struct key_vector *n;
2106
2107		if (!(cindex--)) {
2108			t_key pkey = pn->key;
2109
2110			if (IS_TRIE(pn))
2111				break;
2112
2113			pn = node_parent(pn);
2114			cindex = get_index(pkey, pn);
2115			continue;
2116		}
2117
2118		/* grab the next available node */
2119		n = get_child(pn, cindex);
2120		if (!n)
2121			continue;
2122
2123		if (IS_TNODE(n)) {
2124			/* record pn and cindex for leaf walking */
2125			pn = n;
2126			cindex = 1ul << n->bits;
2127
2128			continue;
2129		}
2130
2131		hlist_for_each_entry(fa, &n->leaf, fa_list) {
2132			struct fib_info *fi = fa->fa_info;
2133
2134			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2135				continue;
2136
2137			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2138				  KEYLENGTH - fa->fa_slen, tb->tb_id,
2139				  info, NLM_F_REPLACE);
2140		}
2141	}
2142}
2143
2144void fib_info_notify_update(struct net *net, struct nl_info *info)
2145{
2146	unsigned int h;
2147
2148	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2149		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2150		struct fib_table *tb;
2151
2152		hlist_for_each_entry_rcu(tb, head, tb_hlist,
2153					 lockdep_rtnl_is_held())
2154			__fib_info_notify_update(net, tb, info);
2155	}
2156}
2157
2158static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2159			   struct notifier_block *nb,
2160			   struct netlink_ext_ack *extack)
2161{
2162	struct fib_alias *fa;
2163	int last_slen = -1;
2164	int err;
2165
2166	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2167		struct fib_info *fi = fa->fa_info;
2168
2169		if (!fi)
2170			continue;
2171
2172		/* local and main table can share the same trie,
2173		 * so don't notify twice for the same entry.
2174		 */
2175		if (tb->tb_id != fa->tb_id)
2176			continue;
2177
2178		if (fa->fa_slen == last_slen)
2179			continue;
2180
2181		last_slen = fa->fa_slen;
2182		err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2183					      l->key, KEYLENGTH - fa->fa_slen,
2184					      fa, extack);
2185		if (err)
2186			return err;
2187	}
2188	return 0;
2189}
2190
2191static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2192			    struct netlink_ext_ack *extack)
2193{
2194	struct trie *t = (struct trie *)tb->tb_data;
2195	struct key_vector *l, *tp = t->kv;
2196	t_key key = 0;
2197	int err;
2198
2199	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2200		err = fib_leaf_notify(l, tb, nb, extack);
2201		if (err)
2202			return err;
2203
2204		key = l->key + 1;
2205		/* stop in case of wrap around */
2206		if (key < l->key)
2207			break;
2208	}
2209	return 0;
2210}
2211
2212int fib_notify(struct net *net, struct notifier_block *nb,
2213	       struct netlink_ext_ack *extack)
2214{
2215	unsigned int h;
2216	int err;
2217
2218	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2219		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2220		struct fib_table *tb;
2221
2222		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2223			err = fib_table_notify(tb, nb, extack);
2224			if (err)
2225				return err;
2226		}
2227	}
2228	return 0;
2229}
2230
2231static void __trie_free_rcu(struct rcu_head *head)
2232{
2233	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2234#ifdef CONFIG_IP_FIB_TRIE_STATS
2235	struct trie *t = (struct trie *)tb->tb_data;
2236
2237	if (tb->tb_data == tb->__data)
2238		free_percpu(t->stats);
2239#endif /* CONFIG_IP_FIB_TRIE_STATS */
2240	kfree(tb);
2241}
2242
2243void fib_free_table(struct fib_table *tb)
2244{
2245	call_rcu(&tb->rcu, __trie_free_rcu);
2246}
2247
2248static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2249			     struct sk_buff *skb, struct netlink_callback *cb,
2250			     struct fib_dump_filter *filter)
2251{
2252	unsigned int flags = NLM_F_MULTI;
2253	__be32 xkey = htonl(l->key);
2254	int i, s_i, i_fa, s_fa, err;
2255	struct fib_alias *fa;
2256
2257	if (filter->filter_set ||
2258	    !filter->dump_exceptions || !filter->dump_routes)
2259		flags |= NLM_F_DUMP_FILTERED;
2260
2261	s_i = cb->args[4];
2262	s_fa = cb->args[5];
2263	i = 0;
2264
2265	/* rcu_read_lock is hold by caller */
2266	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2267		struct fib_info *fi = fa->fa_info;
2268
2269		if (i < s_i)
2270			goto next;
2271
2272		i_fa = 0;
2273
2274		if (tb->tb_id != fa->tb_id)
2275			goto next;
2276
2277		if (filter->filter_set) {
2278			if (filter->rt_type && fa->fa_type != filter->rt_type)
2279				goto next;
2280
2281			if ((filter->protocol &&
2282			     fi->fib_protocol != filter->protocol))
2283				goto next;
2284
2285			if (filter->dev &&
2286			    !fib_info_nh_uses_dev(fi, filter->dev))
2287				goto next;
2288		}
2289
2290		if (filter->dump_routes) {
2291			if (!s_fa) {
2292				struct fib_rt_info fri;
2293
2294				fri.fi = fi;
2295				fri.tb_id = tb->tb_id;
2296				fri.dst = xkey;
2297				fri.dst_len = KEYLENGTH - fa->fa_slen;
2298				fri.tos = fa->fa_tos;
2299				fri.type = fa->fa_type;
2300				fri.offload = fa->offload;
2301				fri.trap = fa->trap;
2302				fri.offload_failed = fa->offload_failed;
2303				err = fib_dump_info(skb,
2304						    NETLINK_CB(cb->skb).portid,
2305						    cb->nlh->nlmsg_seq,
2306						    RTM_NEWROUTE, &fri, flags);
2307				if (err < 0)
2308					goto stop;
2309			}
2310
2311			i_fa++;
2312		}
2313
2314		if (filter->dump_exceptions) {
2315			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2316						 &i_fa, s_fa, flags);
2317			if (err < 0)
2318				goto stop;
2319		}
2320
2321next:
 
 
 
 
 
 
 
 
 
 
 
2322		i++;
2323	}
2324
2325	cb->args[4] = i;
2326	return skb->len;
2327
2328stop:
2329	cb->args[4] = i;
2330	cb->args[5] = i_fa;
2331	return err;
2332}
2333
2334/* rcu_read_lock needs to be hold by caller from readside */
2335int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2336		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2337{
2338	struct trie *t = (struct trie *)tb->tb_data;
2339	struct key_vector *l, *tp = t->kv;
2340	/* Dump starting at last key.
2341	 * Note: 0.0.0.0/0 (ie default) is first key.
2342	 */
2343	int count = cb->args[2];
2344	t_key key = cb->args[3];
2345
2346	/* First time here, count and key are both always 0. Count > 0
2347	 * and key == 0 means the dump has wrapped around and we are done.
2348	 */
2349	if (count && !key)
2350		return skb->len;
2351
2352	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2353		int err;
2354
2355		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2356		if (err < 0) {
2357			cb->args[3] = key;
2358			cb->args[2] = count;
2359			return err;
2360		}
2361
2362		++count;
2363		key = l->key + 1;
2364
2365		memset(&cb->args[4], 0,
2366		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2367
2368		/* stop loop if key wrapped back to 0 */
2369		if (key < l->key)
2370			break;
2371	}
2372
2373	cb->args[3] = key;
2374	cb->args[2] = count;
2375
2376	return skb->len;
2377}
2378
2379void __init fib_trie_init(void)
2380{
2381	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2382					  sizeof(struct fib_alias),
2383					  0, SLAB_PANIC, NULL);
2384
2385	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2386					   LEAF_SIZE,
2387					   0, SLAB_PANIC, NULL);
2388}
2389
2390struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2391{
2392	struct fib_table *tb;
2393	struct trie *t;
2394	size_t sz = sizeof(*tb);
2395
2396	if (!alias)
2397		sz += sizeof(struct trie);
2398
2399	tb = kzalloc(sz, GFP_KERNEL);
2400	if (!tb)
2401		return NULL;
2402
2403	tb->tb_id = id;
2404	tb->tb_num_default = 0;
2405	tb->tb_data = (alias ? alias->__data : tb->__data);
2406
2407	if (alias)
2408		return tb;
2409
2410	t = (struct trie *) tb->tb_data;
2411	t->kv[0].pos = KEYLENGTH;
2412	t->kv[0].slen = KEYLENGTH;
2413#ifdef CONFIG_IP_FIB_TRIE_STATS
2414	t->stats = alloc_percpu(struct trie_use_stats);
2415	if (!t->stats) {
2416		kfree(tb);
2417		tb = NULL;
2418	}
2419#endif
2420
2421	return tb;
2422}
2423
2424#ifdef CONFIG_PROC_FS
2425/* Depth first Trie walk iterator */
2426struct fib_trie_iter {
2427	struct seq_net_private p;
2428	struct fib_table *tb;
2429	struct key_vector *tnode;
2430	unsigned int index;
2431	unsigned int depth;
2432};
2433
2434static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2435{
2436	unsigned long cindex = iter->index;
2437	struct key_vector *pn = iter->tnode;
2438	t_key pkey;
2439
2440	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2441		 iter->tnode, iter->index, iter->depth);
2442
2443	while (!IS_TRIE(pn)) {
2444		while (cindex < child_length(pn)) {
2445			struct key_vector *n = get_child_rcu(pn, cindex++);
2446
2447			if (!n)
2448				continue;
2449
2450			if (IS_LEAF(n)) {
2451				iter->tnode = pn;
2452				iter->index = cindex;
2453			} else {
2454				/* push down one level */
2455				iter->tnode = n;
2456				iter->index = 0;
2457				++iter->depth;
2458			}
2459
2460			return n;
2461		}
2462
2463		/* Current node exhausted, pop back up */
2464		pkey = pn->key;
2465		pn = node_parent_rcu(pn);
2466		cindex = get_index(pkey, pn) + 1;
2467		--iter->depth;
2468	}
2469
2470	/* record root node so further searches know we are done */
2471	iter->tnode = pn;
2472	iter->index = 0;
2473
2474	return NULL;
2475}
2476
2477static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2478					     struct trie *t)
2479{
2480	struct key_vector *n, *pn;
2481
2482	if (!t)
2483		return NULL;
2484
2485	pn = t->kv;
2486	n = rcu_dereference(pn->tnode[0]);
2487	if (!n)
2488		return NULL;
2489
2490	if (IS_TNODE(n)) {
2491		iter->tnode = n;
2492		iter->index = 0;
2493		iter->depth = 1;
2494	} else {
2495		iter->tnode = pn;
2496		iter->index = 0;
2497		iter->depth = 0;
2498	}
2499
2500	return n;
2501}
2502
2503static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2504{
2505	struct key_vector *n;
2506	struct fib_trie_iter iter;
2507
2508	memset(s, 0, sizeof(*s));
2509
2510	rcu_read_lock();
2511	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2512		if (IS_LEAF(n)) {
2513			struct fib_alias *fa;
2514
2515			s->leaves++;
2516			s->totdepth += iter.depth;
2517			if (iter.depth > s->maxdepth)
2518				s->maxdepth = iter.depth;
2519
2520			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2521				++s->prefixes;
2522		} else {
2523			s->tnodes++;
2524			if (n->bits < MAX_STAT_DEPTH)
2525				s->nodesizes[n->bits]++;
2526			s->nullpointers += tn_info(n)->empty_children;
2527		}
2528	}
2529	rcu_read_unlock();
2530}
2531
2532/*
2533 *	This outputs /proc/net/fib_triestats
2534 */
2535static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2536{
2537	unsigned int i, max, pointers, bytes, avdepth;
2538
2539	if (stat->leaves)
2540		avdepth = stat->totdepth*100 / stat->leaves;
2541	else
2542		avdepth = 0;
2543
2544	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2545		   avdepth / 100, avdepth % 100);
2546	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2547
2548	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2549	bytes = LEAF_SIZE * stat->leaves;
2550
2551	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2552	bytes += sizeof(struct fib_alias) * stat->prefixes;
2553
2554	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2555	bytes += TNODE_SIZE(0) * stat->tnodes;
2556
2557	max = MAX_STAT_DEPTH;
2558	while (max > 0 && stat->nodesizes[max-1] == 0)
2559		max--;
2560
2561	pointers = 0;
2562	for (i = 1; i < max; i++)
2563		if (stat->nodesizes[i] != 0) {
2564			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2565			pointers += (1<<i) * stat->nodesizes[i];
2566		}
2567	seq_putc(seq, '\n');
2568	seq_printf(seq, "\tPointers: %u\n", pointers);
2569
2570	bytes += sizeof(struct key_vector *) * pointers;
2571	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2572	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2573}
2574
2575#ifdef CONFIG_IP_FIB_TRIE_STATS
2576static void trie_show_usage(struct seq_file *seq,
2577			    const struct trie_use_stats __percpu *stats)
2578{
2579	struct trie_use_stats s = { 0 };
2580	int cpu;
2581
2582	/* loop through all of the CPUs and gather up the stats */
2583	for_each_possible_cpu(cpu) {
2584		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2585
2586		s.gets += pcpu->gets;
2587		s.backtrack += pcpu->backtrack;
2588		s.semantic_match_passed += pcpu->semantic_match_passed;
2589		s.semantic_match_miss += pcpu->semantic_match_miss;
2590		s.null_node_hit += pcpu->null_node_hit;
2591		s.resize_node_skipped += pcpu->resize_node_skipped;
2592	}
2593
2594	seq_printf(seq, "\nCounters:\n---------\n");
2595	seq_printf(seq, "gets = %u\n", s.gets);
2596	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2597	seq_printf(seq, "semantic match passed = %u\n",
2598		   s.semantic_match_passed);
2599	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2600	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2601	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2602}
2603#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2604
2605static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2606{
2607	if (tb->tb_id == RT_TABLE_LOCAL)
2608		seq_puts(seq, "Local:\n");
2609	else if (tb->tb_id == RT_TABLE_MAIN)
2610		seq_puts(seq, "Main:\n");
2611	else
2612		seq_printf(seq, "Id %d:\n", tb->tb_id);
2613}
2614
2615
2616static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2617{
2618	struct net *net = (struct net *)seq->private;
2619	unsigned int h;
2620
2621	seq_printf(seq,
2622		   "Basic info: size of leaf:"
2623		   " %zd bytes, size of tnode: %zd bytes.\n",
2624		   LEAF_SIZE, TNODE_SIZE(0));
2625
2626	rcu_read_lock();
2627	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2628		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2629		struct fib_table *tb;
2630
2631		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2632			struct trie *t = (struct trie *) tb->tb_data;
2633			struct trie_stat stat;
2634
2635			if (!t)
2636				continue;
2637
2638			fib_table_print(seq, tb);
2639
2640			trie_collect_stats(t, &stat);
2641			trie_show_stats(seq, &stat);
2642#ifdef CONFIG_IP_FIB_TRIE_STATS
2643			trie_show_usage(seq, t->stats);
2644#endif
2645		}
2646		cond_resched_rcu();
2647	}
2648	rcu_read_unlock();
2649
2650	return 0;
2651}
2652
 
 
 
 
 
 
 
 
 
 
 
 
 
2653static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2654{
2655	struct fib_trie_iter *iter = seq->private;
2656	struct net *net = seq_file_net(seq);
2657	loff_t idx = 0;
2658	unsigned int h;
2659
2660	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2661		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2662		struct fib_table *tb;
2663
2664		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2665			struct key_vector *n;
2666
2667			for (n = fib_trie_get_first(iter,
2668						    (struct trie *) tb->tb_data);
2669			     n; n = fib_trie_get_next(iter))
2670				if (pos == idx++) {
2671					iter->tb = tb;
2672					return n;
2673				}
2674		}
2675	}
2676
2677	return NULL;
2678}
2679
2680static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2681	__acquires(RCU)
2682{
2683	rcu_read_lock();
2684	return fib_trie_get_idx(seq, *pos);
2685}
2686
2687static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2688{
2689	struct fib_trie_iter *iter = seq->private;
2690	struct net *net = seq_file_net(seq);
2691	struct fib_table *tb = iter->tb;
2692	struct hlist_node *tb_node;
2693	unsigned int h;
2694	struct key_vector *n;
2695
2696	++*pos;
2697	/* next node in same table */
2698	n = fib_trie_get_next(iter);
2699	if (n)
2700		return n;
2701
2702	/* walk rest of this hash chain */
2703	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2704	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2705		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2706		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2707		if (n)
2708			goto found;
2709	}
2710
2711	/* new hash chain */
2712	while (++h < FIB_TABLE_HASHSZ) {
2713		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2714		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2715			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2716			if (n)
2717				goto found;
2718		}
2719	}
2720	return NULL;
2721
2722found:
2723	iter->tb = tb;
2724	return n;
2725}
2726
2727static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2728	__releases(RCU)
2729{
2730	rcu_read_unlock();
2731}
2732
2733static void seq_indent(struct seq_file *seq, int n)
2734{
2735	while (n-- > 0)
2736		seq_puts(seq, "   ");
2737}
2738
2739static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2740{
2741	switch (s) {
2742	case RT_SCOPE_UNIVERSE: return "universe";
2743	case RT_SCOPE_SITE:	return "site";
2744	case RT_SCOPE_LINK:	return "link";
2745	case RT_SCOPE_HOST:	return "host";
2746	case RT_SCOPE_NOWHERE:	return "nowhere";
2747	default:
2748		snprintf(buf, len, "scope=%d", s);
2749		return buf;
2750	}
2751}
2752
2753static const char *const rtn_type_names[__RTN_MAX] = {
2754	[RTN_UNSPEC] = "UNSPEC",
2755	[RTN_UNICAST] = "UNICAST",
2756	[RTN_LOCAL] = "LOCAL",
2757	[RTN_BROADCAST] = "BROADCAST",
2758	[RTN_ANYCAST] = "ANYCAST",
2759	[RTN_MULTICAST] = "MULTICAST",
2760	[RTN_BLACKHOLE] = "BLACKHOLE",
2761	[RTN_UNREACHABLE] = "UNREACHABLE",
2762	[RTN_PROHIBIT] = "PROHIBIT",
2763	[RTN_THROW] = "THROW",
2764	[RTN_NAT] = "NAT",
2765	[RTN_XRESOLVE] = "XRESOLVE",
2766};
2767
2768static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2769{
2770	if (t < __RTN_MAX && rtn_type_names[t])
2771		return rtn_type_names[t];
2772	snprintf(buf, len, "type %u", t);
2773	return buf;
2774}
2775
2776/* Pretty print the trie */
2777static int fib_trie_seq_show(struct seq_file *seq, void *v)
2778{
2779	const struct fib_trie_iter *iter = seq->private;
2780	struct key_vector *n = v;
2781
2782	if (IS_TRIE(node_parent_rcu(n)))
2783		fib_table_print(seq, iter->tb);
2784
2785	if (IS_TNODE(n)) {
2786		__be32 prf = htonl(n->key);
2787
2788		seq_indent(seq, iter->depth-1);
2789		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2790			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2791			   tn_info(n)->full_children,
2792			   tn_info(n)->empty_children);
2793	} else {
2794		__be32 val = htonl(n->key);
2795		struct fib_alias *fa;
2796
2797		seq_indent(seq, iter->depth);
2798		seq_printf(seq, "  |-- %pI4\n", &val);
2799
2800		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2801			char buf1[32], buf2[32];
2802
2803			seq_indent(seq, iter->depth + 1);
2804			seq_printf(seq, "  /%zu %s %s",
2805				   KEYLENGTH - fa->fa_slen,
2806				   rtn_scope(buf1, sizeof(buf1),
2807					     fa->fa_info->fib_scope),
2808				   rtn_type(buf2, sizeof(buf2),
2809					    fa->fa_type));
2810			if (fa->fa_tos)
2811				seq_printf(seq, " tos=%d", fa->fa_tos);
2812			seq_putc(seq, '\n');
2813		}
2814	}
2815
2816	return 0;
2817}
2818
2819static const struct seq_operations fib_trie_seq_ops = {
2820	.start  = fib_trie_seq_start,
2821	.next   = fib_trie_seq_next,
2822	.stop   = fib_trie_seq_stop,
2823	.show   = fib_trie_seq_show,
2824};
2825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2826struct fib_route_iter {
2827	struct seq_net_private p;
2828	struct fib_table *main_tb;
2829	struct key_vector *tnode;
2830	loff_t	pos;
2831	t_key	key;
2832};
2833
2834static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2835					    loff_t pos)
2836{
 
2837	struct key_vector *l, **tp = &iter->tnode;
 
2838	t_key key;
2839
2840	/* use cached location of previously found key */
2841	if (iter->pos > 0 && pos >= iter->pos) {
 
2842		key = iter->key;
2843	} else {
2844		iter->pos = 1;
 
 
2845		key = 0;
2846	}
2847
2848	pos -= iter->pos;
2849
2850	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2851		key = l->key + 1;
2852		iter->pos++;
 
 
 
 
2853		l = NULL;
2854
2855		/* handle unlikely case of a key wrap */
2856		if (!key)
2857			break;
2858	}
2859
2860	if (l)
2861		iter->key = l->key;	/* remember it */
2862	else
2863		iter->pos = 0;		/* forget it */
2864
2865	return l;
2866}
2867
2868static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2869	__acquires(RCU)
2870{
2871	struct fib_route_iter *iter = seq->private;
2872	struct fib_table *tb;
2873	struct trie *t;
2874
2875	rcu_read_lock();
2876
2877	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2878	if (!tb)
2879		return NULL;
2880
2881	iter->main_tb = tb;
2882	t = (struct trie *)tb->tb_data;
2883	iter->tnode = t->kv;
2884
2885	if (*pos != 0)
2886		return fib_route_get_idx(iter, *pos);
2887
 
 
2888	iter->pos = 0;
2889	iter->key = KEY_MAX;
2890
2891	return SEQ_START_TOKEN;
2892}
2893
2894static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2895{
2896	struct fib_route_iter *iter = seq->private;
2897	struct key_vector *l = NULL;
2898	t_key key = iter->key + 1;
2899
2900	++*pos;
2901
2902	/* only allow key of 0 for start of sequence */
2903	if ((v == SEQ_START_TOKEN) || key)
2904		l = leaf_walk_rcu(&iter->tnode, key);
2905
2906	if (l) {
2907		iter->key = l->key;
2908		iter->pos++;
2909	} else {
2910		iter->pos = 0;
2911	}
2912
2913	return l;
2914}
2915
2916static void fib_route_seq_stop(struct seq_file *seq, void *v)
2917	__releases(RCU)
2918{
2919	rcu_read_unlock();
2920}
2921
2922static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2923{
2924	unsigned int flags = 0;
2925
2926	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2927		flags = RTF_REJECT;
2928	if (fi) {
2929		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2930
2931		if (nhc->nhc_gw.ipv4)
2932			flags |= RTF_GATEWAY;
2933	}
2934	if (mask == htonl(0xFFFFFFFF))
2935		flags |= RTF_HOST;
2936	flags |= RTF_UP;
2937	return flags;
2938}
2939
2940/*
2941 *	This outputs /proc/net/route.
2942 *	The format of the file is not supposed to be changed
2943 *	and needs to be same as fib_hash output to avoid breaking
2944 *	legacy utilities
2945 */
2946static int fib_route_seq_show(struct seq_file *seq, void *v)
2947{
2948	struct fib_route_iter *iter = seq->private;
2949	struct fib_table *tb = iter->main_tb;
2950	struct fib_alias *fa;
2951	struct key_vector *l = v;
2952	__be32 prefix;
2953
2954	if (v == SEQ_START_TOKEN) {
2955		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2956			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2957			   "\tWindow\tIRTT");
2958		return 0;
2959	}
2960
2961	prefix = htonl(l->key);
2962
2963	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2964		struct fib_info *fi = fa->fa_info;
2965		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2966		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2967
2968		if ((fa->fa_type == RTN_BROADCAST) ||
2969		    (fa->fa_type == RTN_MULTICAST))
2970			continue;
2971
2972		if (fa->tb_id != tb->tb_id)
2973			continue;
2974
2975		seq_setwidth(seq, 127);
2976
2977		if (fi) {
2978			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2979			__be32 gw = 0;
2980
2981			if (nhc->nhc_gw_family == AF_INET)
2982				gw = nhc->nhc_gw.ipv4;
2983
2984			seq_printf(seq,
2985				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2986				   "%d\t%08X\t%d\t%u\t%u",
2987				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2988				   prefix, gw, flags, 0, 0,
 
2989				   fi->fib_priority,
2990				   mask,
2991				   (fi->fib_advmss ?
2992				    fi->fib_advmss + 40 : 0),
2993				   fi->fib_window,
2994				   fi->fib_rtt >> 3);
2995		} else {
2996			seq_printf(seq,
2997				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2998				   "%d\t%08X\t%d\t%u\t%u",
2999				   prefix, 0, flags, 0, 0, 0,
3000				   mask, 0, 0, 0);
3001		}
3002		seq_pad(seq, '\n');
3003	}
3004
3005	return 0;
3006}
3007
3008static const struct seq_operations fib_route_seq_ops = {
3009	.start  = fib_route_seq_start,
3010	.next   = fib_route_seq_next,
3011	.stop   = fib_route_seq_stop,
3012	.show   = fib_route_seq_show,
3013};
3014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3015int __net_init fib_proc_init(struct net *net)
3016{
3017	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3018			sizeof(struct fib_trie_iter)))
3019		goto out1;
3020
3021	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3022			fib_triestat_seq_show, NULL))
3023		goto out2;
3024
3025	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3026			sizeof(struct fib_route_iter)))
3027		goto out3;
3028
3029	return 0;
3030
3031out3:
3032	remove_proc_entry("fib_triestat", net->proc_net);
3033out2:
3034	remove_proc_entry("fib_trie", net->proc_net);
3035out1:
3036	return -ENOMEM;
3037}
3038
3039void __net_exit fib_proc_exit(struct net *net)
3040{
3041	remove_proc_entry("fib_trie", net->proc_net);
3042	remove_proc_entry("fib_triestat", net->proc_net);
3043	remove_proc_entry("route", net->proc_net);
3044}
3045
3046#endif /* CONFIG_PROC_FS */
v4.6
 
   1/*
   2 *   This program is free software; you can redistribute it and/or
   3 *   modify it under the terms of the GNU General Public License
   4 *   as published by the Free Software Foundation; either version
   5 *   2 of the License, or (at your option) any later version.
   6 *
   7 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   8 *     & Swedish University of Agricultural Sciences.
   9 *
  10 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
  11 *     Agricultural Sciences.
  12 *
  13 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  14 *
  15 * This work is based on the LPC-trie which is originally described in:
  16 *
  17 * An experimental study of compression methods for dynamic tries
  18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20 *
  21 *
  22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24 *
  25 *
  26 * Code from fib_hash has been reused which includes the following header:
  27 *
  28 *
  29 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  30 *		operating system.  INET is implemented using the  BSD Socket
  31 *		interface as the means of communication with the user level.
  32 *
  33 *		IPv4 FIB: lookup engine and maintenance routines.
  34 *
  35 *
  36 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37 *
  38 *		This program is free software; you can redistribute it and/or
  39 *		modify it under the terms of the GNU General Public License
  40 *		as published by the Free Software Foundation; either version
  41 *		2 of the License, or (at your option) any later version.
  42 *
  43 * Substantial contributions to this work comes from:
  44 *
  45 *		David S. Miller, <davem@davemloft.net>
  46 *		Stephen Hemminger <shemminger@osdl.org>
  47 *		Paul E. McKenney <paulmck@us.ibm.com>
  48 *		Patrick McHardy <kaber@trash.net>
  49 */
  50
  51#define VERSION "0.409"
  52
  53#include <asm/uaccess.h>
  54#include <linux/bitops.h>
  55#include <linux/types.h>
  56#include <linux/kernel.h>
  57#include <linux/mm.h>
  58#include <linux/string.h>
  59#include <linux/socket.h>
  60#include <linux/sockios.h>
  61#include <linux/errno.h>
  62#include <linux/in.h>
  63#include <linux/inet.h>
  64#include <linux/inetdevice.h>
  65#include <linux/netdevice.h>
  66#include <linux/if_arp.h>
  67#include <linux/proc_fs.h>
  68#include <linux/rcupdate.h>
  69#include <linux/skbuff.h>
  70#include <linux/netlink.h>
  71#include <linux/init.h>
  72#include <linux/list.h>
  73#include <linux/slab.h>
  74#include <linux/export.h>
  75#include <linux/vmalloc.h>
 
  76#include <net/net_namespace.h>
  77#include <net/ip.h>
  78#include <net/protocol.h>
  79#include <net/route.h>
  80#include <net/tcp.h>
  81#include <net/sock.h>
  82#include <net/ip_fib.h>
  83#include <net/switchdev.h>
  84#include <trace/events/fib.h>
  85#include "fib_lookup.h"
  86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87#define MAX_STAT_DEPTH 32
  88
  89#define KEYLENGTH	(8*sizeof(t_key))
  90#define KEY_MAX		((t_key)~0)
  91
  92typedef unsigned int t_key;
  93
  94#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
  95#define IS_TNODE(n)	((n)->bits)
  96#define IS_LEAF(n)	(!(n)->bits)
  97
  98struct key_vector {
  99	t_key key;
 100	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
 101	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
 102	unsigned char slen;
 103	union {
 104		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 105		struct hlist_head leaf;
 106		/* This array is valid if (pos | bits) > 0 (TNODE) */
 107		struct key_vector __rcu *tnode[0];
 108	};
 109};
 110
 111struct tnode {
 112	struct rcu_head rcu;
 113	t_key empty_children;		/* KEYLENGTH bits needed */
 114	t_key full_children;		/* KEYLENGTH bits needed */
 115	struct key_vector __rcu *parent;
 116	struct key_vector kv[1];
 117#define tn_bits kv[0].bits
 118};
 119
 120#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
 121#define LEAF_SIZE	TNODE_SIZE(1)
 122
 123#ifdef CONFIG_IP_FIB_TRIE_STATS
 124struct trie_use_stats {
 125	unsigned int gets;
 126	unsigned int backtrack;
 127	unsigned int semantic_match_passed;
 128	unsigned int semantic_match_miss;
 129	unsigned int null_node_hit;
 130	unsigned int resize_node_skipped;
 131};
 132#endif
 133
 134struct trie_stat {
 135	unsigned int totdepth;
 136	unsigned int maxdepth;
 137	unsigned int tnodes;
 138	unsigned int leaves;
 139	unsigned int nullpointers;
 140	unsigned int prefixes;
 141	unsigned int nodesizes[MAX_STAT_DEPTH];
 142};
 143
 144struct trie {
 145	struct key_vector kv[1];
 146#ifdef CONFIG_IP_FIB_TRIE_STATS
 147	struct trie_use_stats __percpu *stats;
 148#endif
 149};
 150
 151static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 152static size_t tnode_free_size;
 153
 154/*
 155 * synchronize_rcu after call_rcu for that many pages; it should be especially
 156 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 157 * obtained experimentally, aiming to avoid visible slowdown.
 158 */
 159static const int sync_pages = 128;
 
 
 160
 161static struct kmem_cache *fn_alias_kmem __read_mostly;
 162static struct kmem_cache *trie_leaf_kmem __read_mostly;
 163
 164static inline struct tnode *tn_info(struct key_vector *kv)
 165{
 166	return container_of(kv, struct tnode, kv[0]);
 167}
 168
 169/* caller must hold RTNL */
 170#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 171#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 172
 173/* caller must hold RCU read lock or RTNL */
 174#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 175#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 176
 177/* wrapper for rcu_assign_pointer */
 178static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 179{
 180	if (n)
 181		rcu_assign_pointer(tn_info(n)->parent, tp);
 182}
 183
 184#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 185
 186/* This provides us with the number of children in this node, in the case of a
 187 * leaf this will return 0 meaning none of the children are accessible.
 188 */
 189static inline unsigned long child_length(const struct key_vector *tn)
 190{
 191	return (1ul << tn->bits) & ~(1ul);
 192}
 193
 194#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 195
 196static inline unsigned long get_index(t_key key, struct key_vector *kv)
 197{
 198	unsigned long index = key ^ kv->key;
 199
 200	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 201		return 0;
 202
 203	return index >> kv->pos;
 204}
 205
 206/* To understand this stuff, an understanding of keys and all their bits is
 207 * necessary. Every node in the trie has a key associated with it, but not
 208 * all of the bits in that key are significant.
 209 *
 210 * Consider a node 'n' and its parent 'tp'.
 211 *
 212 * If n is a leaf, every bit in its key is significant. Its presence is
 213 * necessitated by path compression, since during a tree traversal (when
 214 * searching for a leaf - unless we are doing an insertion) we will completely
 215 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 216 * a potentially successful search, that we have indeed been walking the
 217 * correct key path.
 218 *
 219 * Note that we can never "miss" the correct key in the tree if present by
 220 * following the wrong path. Path compression ensures that segments of the key
 221 * that are the same for all keys with a given prefix are skipped, but the
 222 * skipped part *is* identical for each node in the subtrie below the skipped
 223 * bit! trie_insert() in this implementation takes care of that.
 224 *
 225 * if n is an internal node - a 'tnode' here, the various parts of its key
 226 * have many different meanings.
 227 *
 228 * Example:
 229 * _________________________________________________________________
 230 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 231 * -----------------------------------------------------------------
 232 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 233 *
 234 * _________________________________________________________________
 235 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 236 * -----------------------------------------------------------------
 237 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 238 *
 239 * tp->pos = 22
 240 * tp->bits = 3
 241 * n->pos = 13
 242 * n->bits = 4
 243 *
 244 * First, let's just ignore the bits that come before the parent tp, that is
 245 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 246 * point we do not use them for anything.
 247 *
 248 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 249 * index into the parent's child array. That is, they will be used to find
 250 * 'n' among tp's children.
 251 *
 252 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 253 * for the node n.
 254 *
 255 * All the bits we have seen so far are significant to the node n. The rest
 256 * of the bits are really not needed or indeed known in n->key.
 257 *
 258 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 259 * n's child array, and will of course be different for each child.
 260 *
 261 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 262 * at this point.
 263 */
 264
 265static const int halve_threshold = 25;
 266static const int inflate_threshold = 50;
 267static const int halve_threshold_root = 15;
 268static const int inflate_threshold_root = 30;
 269
 270static void __alias_free_mem(struct rcu_head *head)
 271{
 272	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 273	kmem_cache_free(fn_alias_kmem, fa);
 274}
 275
 276static inline void alias_free_mem_rcu(struct fib_alias *fa)
 277{
 278	call_rcu(&fa->rcu, __alias_free_mem);
 279}
 280
 281#define TNODE_KMALLOC_MAX \
 282	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 283#define TNODE_VMALLOC_MAX \
 284	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 285
 286static void __node_free_rcu(struct rcu_head *head)
 287{
 288	struct tnode *n = container_of(head, struct tnode, rcu);
 289
 290	if (!n->tn_bits)
 291		kmem_cache_free(trie_leaf_kmem, n);
 292	else
 293		kvfree(n);
 294}
 295
 296#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 297
 298static struct tnode *tnode_alloc(int bits)
 299{
 300	size_t size;
 301
 302	/* verify bits is within bounds */
 303	if (bits > TNODE_VMALLOC_MAX)
 304		return NULL;
 305
 306	/* determine size and verify it is non-zero and didn't overflow */
 307	size = TNODE_SIZE(1ul << bits);
 308
 309	if (size <= PAGE_SIZE)
 310		return kzalloc(size, GFP_KERNEL);
 311	else
 312		return vzalloc(size);
 313}
 314
 315static inline void empty_child_inc(struct key_vector *n)
 316{
 317	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
 
 
 
 318}
 319
 320static inline void empty_child_dec(struct key_vector *n)
 321{
 322	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
 
 
 
 323}
 324
 325static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 326{
 327	struct key_vector *l;
 328	struct tnode *kv;
 329
 330	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 331	if (!kv)
 332		return NULL;
 333
 334	/* initialize key vector */
 335	l = kv->kv;
 336	l->key = key;
 337	l->pos = 0;
 338	l->bits = 0;
 339	l->slen = fa->fa_slen;
 340
 341	/* link leaf to fib alias */
 342	INIT_HLIST_HEAD(&l->leaf);
 343	hlist_add_head(&fa->fa_list, &l->leaf);
 344
 345	return l;
 346}
 347
 348static struct key_vector *tnode_new(t_key key, int pos, int bits)
 349{
 350	unsigned int shift = pos + bits;
 351	struct key_vector *tn;
 352	struct tnode *tnode;
 353
 354	/* verify bits and pos their msb bits clear and values are valid */
 355	BUG_ON(!bits || (shift > KEYLENGTH));
 356
 357	tnode = tnode_alloc(bits);
 358	if (!tnode)
 359		return NULL;
 360
 361	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 362		 sizeof(struct key_vector *) << bits);
 363
 364	if (bits == KEYLENGTH)
 365		tnode->full_children = 1;
 366	else
 367		tnode->empty_children = 1ul << bits;
 368
 369	tn = tnode->kv;
 370	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 371	tn->pos = pos;
 372	tn->bits = bits;
 373	tn->slen = pos;
 374
 375	return tn;
 376}
 377
 378/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 379 * and no bits are skipped. See discussion in dyntree paper p. 6
 380 */
 381static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 382{
 383	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 384}
 385
 386/* Add a child at position i overwriting the old value.
 387 * Update the value of full_children and empty_children.
 388 */
 389static void put_child(struct key_vector *tn, unsigned long i,
 390		      struct key_vector *n)
 391{
 392	struct key_vector *chi = get_child(tn, i);
 393	int isfull, wasfull;
 394
 395	BUG_ON(i >= child_length(tn));
 396
 397	/* update emptyChildren, overflow into fullChildren */
 398	if (!n && chi)
 399		empty_child_inc(tn);
 400	if (n && !chi)
 401		empty_child_dec(tn);
 402
 403	/* update fullChildren */
 404	wasfull = tnode_full(tn, chi);
 405	isfull = tnode_full(tn, n);
 406
 407	if (wasfull && !isfull)
 408		tn_info(tn)->full_children--;
 409	else if (!wasfull && isfull)
 410		tn_info(tn)->full_children++;
 411
 412	if (n && (tn->slen < n->slen))
 413		tn->slen = n->slen;
 414
 415	rcu_assign_pointer(tn->tnode[i], n);
 416}
 417
 418static void update_children(struct key_vector *tn)
 419{
 420	unsigned long i;
 421
 422	/* update all of the child parent pointers */
 423	for (i = child_length(tn); i;) {
 424		struct key_vector *inode = get_child(tn, --i);
 425
 426		if (!inode)
 427			continue;
 428
 429		/* Either update the children of a tnode that
 430		 * already belongs to us or update the child
 431		 * to point to ourselves.
 432		 */
 433		if (node_parent(inode) == tn)
 434			update_children(inode);
 435		else
 436			node_set_parent(inode, tn);
 437	}
 438}
 439
 440static inline void put_child_root(struct key_vector *tp, t_key key,
 441				  struct key_vector *n)
 442{
 443	if (IS_TRIE(tp))
 444		rcu_assign_pointer(tp->tnode[0], n);
 445	else
 446		put_child(tp, get_index(key, tp), n);
 447}
 448
 449static inline void tnode_free_init(struct key_vector *tn)
 450{
 451	tn_info(tn)->rcu.next = NULL;
 452}
 453
 454static inline void tnode_free_append(struct key_vector *tn,
 455				     struct key_vector *n)
 456{
 457	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 458	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 459}
 460
 461static void tnode_free(struct key_vector *tn)
 462{
 463	struct callback_head *head = &tn_info(tn)->rcu;
 464
 465	while (head) {
 466		head = head->next;
 467		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 468		node_free(tn);
 469
 470		tn = container_of(head, struct tnode, rcu)->kv;
 471	}
 472
 473	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
 474		tnode_free_size = 0;
 475		synchronize_rcu();
 476	}
 477}
 478
 479static struct key_vector *replace(struct trie *t,
 480				  struct key_vector *oldtnode,
 481				  struct key_vector *tn)
 482{
 483	struct key_vector *tp = node_parent(oldtnode);
 484	unsigned long i;
 485
 486	/* setup the parent pointer out of and back into this node */
 487	NODE_INIT_PARENT(tn, tp);
 488	put_child_root(tp, tn->key, tn);
 489
 490	/* update all of the child parent pointers */
 491	update_children(tn);
 492
 493	/* all pointers should be clean so we are done */
 494	tnode_free(oldtnode);
 495
 496	/* resize children now that oldtnode is freed */
 497	for (i = child_length(tn); i;) {
 498		struct key_vector *inode = get_child(tn, --i);
 499
 500		/* resize child node */
 501		if (tnode_full(tn, inode))
 502			tn = resize(t, inode);
 503	}
 504
 505	return tp;
 506}
 507
 508static struct key_vector *inflate(struct trie *t,
 509				  struct key_vector *oldtnode)
 510{
 511	struct key_vector *tn;
 512	unsigned long i;
 513	t_key m;
 514
 515	pr_debug("In inflate\n");
 516
 517	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 518	if (!tn)
 519		goto notnode;
 520
 521	/* prepare oldtnode to be freed */
 522	tnode_free_init(oldtnode);
 523
 524	/* Assemble all of the pointers in our cluster, in this case that
 525	 * represents all of the pointers out of our allocated nodes that
 526	 * point to existing tnodes and the links between our allocated
 527	 * nodes.
 528	 */
 529	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 530		struct key_vector *inode = get_child(oldtnode, --i);
 531		struct key_vector *node0, *node1;
 532		unsigned long j, k;
 533
 534		/* An empty child */
 535		if (!inode)
 536			continue;
 537
 538		/* A leaf or an internal node with skipped bits */
 539		if (!tnode_full(oldtnode, inode)) {
 540			put_child(tn, get_index(inode->key, tn), inode);
 541			continue;
 542		}
 543
 544		/* drop the node in the old tnode free list */
 545		tnode_free_append(oldtnode, inode);
 546
 547		/* An internal node with two children */
 548		if (inode->bits == 1) {
 549			put_child(tn, 2 * i + 1, get_child(inode, 1));
 550			put_child(tn, 2 * i, get_child(inode, 0));
 551			continue;
 552		}
 553
 554		/* We will replace this node 'inode' with two new
 555		 * ones, 'node0' and 'node1', each with half of the
 556		 * original children. The two new nodes will have
 557		 * a position one bit further down the key and this
 558		 * means that the "significant" part of their keys
 559		 * (see the discussion near the top of this file)
 560		 * will differ by one bit, which will be "0" in
 561		 * node0's key and "1" in node1's key. Since we are
 562		 * moving the key position by one step, the bit that
 563		 * we are moving away from - the bit at position
 564		 * (tn->pos) - is the one that will differ between
 565		 * node0 and node1. So... we synthesize that bit in the
 566		 * two new keys.
 567		 */
 568		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 569		if (!node1)
 570			goto nomem;
 571		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 572
 573		tnode_free_append(tn, node1);
 574		if (!node0)
 575			goto nomem;
 576		tnode_free_append(tn, node0);
 577
 578		/* populate child pointers in new nodes */
 579		for (k = child_length(inode), j = k / 2; j;) {
 580			put_child(node1, --j, get_child(inode, --k));
 581			put_child(node0, j, get_child(inode, j));
 582			put_child(node1, --j, get_child(inode, --k));
 583			put_child(node0, j, get_child(inode, j));
 584		}
 585
 586		/* link new nodes to parent */
 587		NODE_INIT_PARENT(node1, tn);
 588		NODE_INIT_PARENT(node0, tn);
 589
 590		/* link parent to nodes */
 591		put_child(tn, 2 * i + 1, node1);
 592		put_child(tn, 2 * i, node0);
 593	}
 594
 595	/* setup the parent pointers into and out of this node */
 596	return replace(t, oldtnode, tn);
 597nomem:
 598	/* all pointers should be clean so we are done */
 599	tnode_free(tn);
 600notnode:
 601	return NULL;
 602}
 603
 604static struct key_vector *halve(struct trie *t,
 605				struct key_vector *oldtnode)
 606{
 607	struct key_vector *tn;
 608	unsigned long i;
 609
 610	pr_debug("In halve\n");
 611
 612	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 613	if (!tn)
 614		goto notnode;
 615
 616	/* prepare oldtnode to be freed */
 617	tnode_free_init(oldtnode);
 618
 619	/* Assemble all of the pointers in our cluster, in this case that
 620	 * represents all of the pointers out of our allocated nodes that
 621	 * point to existing tnodes and the links between our allocated
 622	 * nodes.
 623	 */
 624	for (i = child_length(oldtnode); i;) {
 625		struct key_vector *node1 = get_child(oldtnode, --i);
 626		struct key_vector *node0 = get_child(oldtnode, --i);
 627		struct key_vector *inode;
 628
 629		/* At least one of the children is empty */
 630		if (!node1 || !node0) {
 631			put_child(tn, i / 2, node1 ? : node0);
 632			continue;
 633		}
 634
 635		/* Two nonempty children */
 636		inode = tnode_new(node0->key, oldtnode->pos, 1);
 637		if (!inode)
 638			goto nomem;
 639		tnode_free_append(tn, inode);
 640
 641		/* initialize pointers out of node */
 642		put_child(inode, 1, node1);
 643		put_child(inode, 0, node0);
 644		NODE_INIT_PARENT(inode, tn);
 645
 646		/* link parent to node */
 647		put_child(tn, i / 2, inode);
 648	}
 649
 650	/* setup the parent pointers into and out of this node */
 651	return replace(t, oldtnode, tn);
 652nomem:
 653	/* all pointers should be clean so we are done */
 654	tnode_free(tn);
 655notnode:
 656	return NULL;
 657}
 658
 659static struct key_vector *collapse(struct trie *t,
 660				   struct key_vector *oldtnode)
 661{
 662	struct key_vector *n, *tp;
 663	unsigned long i;
 664
 665	/* scan the tnode looking for that one child that might still exist */
 666	for (n = NULL, i = child_length(oldtnode); !n && i;)
 667		n = get_child(oldtnode, --i);
 668
 669	/* compress one level */
 670	tp = node_parent(oldtnode);
 671	put_child_root(tp, oldtnode->key, n);
 672	node_set_parent(n, tp);
 673
 674	/* drop dead node */
 675	node_free(oldtnode);
 676
 677	return tp;
 678}
 679
 680static unsigned char update_suffix(struct key_vector *tn)
 681{
 682	unsigned char slen = tn->pos;
 683	unsigned long stride, i;
 
 
 
 
 
 
 
 684
 685	/* search though the list of children looking for nodes that might
 686	 * have a suffix greater than the one we currently have.  This is
 687	 * why we start with a stride of 2 since a stride of 1 would
 688	 * represent the nodes with suffix length equal to tn->pos
 689	 */
 690	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 691		struct key_vector *n = get_child(tn, i);
 692
 693		if (!n || (n->slen <= slen))
 694			continue;
 695
 696		/* update stride and slen based on new value */
 697		stride <<= (n->slen - slen);
 698		slen = n->slen;
 699		i &= ~(stride - 1);
 700
 701		/* if slen covers all but the last bit we can stop here
 702		 * there will be nothing longer than that since only node
 703		 * 0 and 1 << (bits - 1) could have that as their suffix
 704		 * length.
 705		 */
 706		if ((slen + 1) >= (tn->pos + tn->bits))
 707			break;
 708	}
 709
 710	tn->slen = slen;
 711
 712	return slen;
 713}
 714
 715/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 716 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 717 * Telecommunications, page 6:
 718 * "A node is doubled if the ratio of non-empty children to all
 719 * children in the *doubled* node is at least 'high'."
 720 *
 721 * 'high' in this instance is the variable 'inflate_threshold'. It
 722 * is expressed as a percentage, so we multiply it with
 723 * child_length() and instead of multiplying by 2 (since the
 724 * child array will be doubled by inflate()) and multiplying
 725 * the left-hand side by 100 (to handle the percentage thing) we
 726 * multiply the left-hand side by 50.
 727 *
 728 * The left-hand side may look a bit weird: child_length(tn)
 729 * - tn->empty_children is of course the number of non-null children
 730 * in the current node. tn->full_children is the number of "full"
 731 * children, that is non-null tnodes with a skip value of 0.
 732 * All of those will be doubled in the resulting inflated tnode, so
 733 * we just count them one extra time here.
 734 *
 735 * A clearer way to write this would be:
 736 *
 737 * to_be_doubled = tn->full_children;
 738 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 739 *     tn->full_children;
 740 *
 741 * new_child_length = child_length(tn) * 2;
 742 *
 743 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 744 *      new_child_length;
 745 * if (new_fill_factor >= inflate_threshold)
 746 *
 747 * ...and so on, tho it would mess up the while () loop.
 748 *
 749 * anyway,
 750 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 751 *      inflate_threshold
 752 *
 753 * avoid a division:
 754 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 755 *      inflate_threshold * new_child_length
 756 *
 757 * expand not_to_be_doubled and to_be_doubled, and shorten:
 758 * 100 * (child_length(tn) - tn->empty_children +
 759 *    tn->full_children) >= inflate_threshold * new_child_length
 760 *
 761 * expand new_child_length:
 762 * 100 * (child_length(tn) - tn->empty_children +
 763 *    tn->full_children) >=
 764 *      inflate_threshold * child_length(tn) * 2
 765 *
 766 * shorten again:
 767 * 50 * (tn->full_children + child_length(tn) -
 768 *    tn->empty_children) >= inflate_threshold *
 769 *    child_length(tn)
 770 *
 771 */
 772static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 773{
 774	unsigned long used = child_length(tn);
 775	unsigned long threshold = used;
 776
 777	/* Keep root node larger */
 778	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 779	used -= tn_info(tn)->empty_children;
 780	used += tn_info(tn)->full_children;
 781
 782	/* if bits == KEYLENGTH then pos = 0, and will fail below */
 783
 784	return (used > 1) && tn->pos && ((50 * used) >= threshold);
 785}
 786
 787static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 788{
 789	unsigned long used = child_length(tn);
 790	unsigned long threshold = used;
 791
 792	/* Keep root node larger */
 793	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 794	used -= tn_info(tn)->empty_children;
 795
 796	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 797
 798	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 799}
 800
 801static inline bool should_collapse(struct key_vector *tn)
 802{
 803	unsigned long used = child_length(tn);
 804
 805	used -= tn_info(tn)->empty_children;
 806
 807	/* account for bits == KEYLENGTH case */
 808	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 809		used -= KEY_MAX;
 810
 811	/* One child or none, time to drop us from the trie */
 812	return used < 2;
 813}
 814
 815#define MAX_WORK 10
 816static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 817{
 818#ifdef CONFIG_IP_FIB_TRIE_STATS
 819	struct trie_use_stats __percpu *stats = t->stats;
 820#endif
 821	struct key_vector *tp = node_parent(tn);
 822	unsigned long cindex = get_index(tn->key, tp);
 823	int max_work = MAX_WORK;
 824
 825	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 826		 tn, inflate_threshold, halve_threshold);
 827
 828	/* track the tnode via the pointer from the parent instead of
 829	 * doing it ourselves.  This way we can let RCU fully do its
 830	 * thing without us interfering
 831	 */
 832	BUG_ON(tn != get_child(tp, cindex));
 833
 834	/* Double as long as the resulting node has a number of
 835	 * nonempty nodes that are above the threshold.
 836	 */
 837	while (should_inflate(tp, tn) && max_work) {
 838		tp = inflate(t, tn);
 839		if (!tp) {
 840#ifdef CONFIG_IP_FIB_TRIE_STATS
 841			this_cpu_inc(stats->resize_node_skipped);
 842#endif
 843			break;
 844		}
 845
 846		max_work--;
 847		tn = get_child(tp, cindex);
 848	}
 849
 850	/* update parent in case inflate failed */
 851	tp = node_parent(tn);
 852
 853	/* Return if at least one inflate is run */
 854	if (max_work != MAX_WORK)
 855		return tp;
 856
 857	/* Halve as long as the number of empty children in this
 858	 * node is above threshold.
 859	 */
 860	while (should_halve(tp, tn) && max_work) {
 861		tp = halve(t, tn);
 862		if (!tp) {
 863#ifdef CONFIG_IP_FIB_TRIE_STATS
 864			this_cpu_inc(stats->resize_node_skipped);
 865#endif
 866			break;
 867		}
 868
 869		max_work--;
 870		tn = get_child(tp, cindex);
 871	}
 872
 873	/* Only one child remains */
 874	if (should_collapse(tn))
 875		return collapse(t, tn);
 876
 877	/* update parent in case halve failed */
 878	tp = node_parent(tn);
 879
 880	/* Return if at least one deflate was run */
 881	if (max_work != MAX_WORK)
 882		return tp;
 883
 884	/* push the suffix length to the parent node */
 885	if (tn->slen > tn->pos) {
 886		unsigned char slen = update_suffix(tn);
 887
 888		if (slen > tp->slen)
 889			tp->slen = slen;
 890	}
 891
 892	return tp;
 893}
 894
 895static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
 896{
 897	while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
 898		if (update_suffix(tp) > l->slen)
 
 
 
 899			break;
 900		tp = node_parent(tp);
 
 
 901	}
 902}
 903
 904static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
 905{
 906	/* if this is a new leaf then tn will be NULL and we can sort
 907	 * out parent suffix lengths as a part of trie_rebalance
 908	 */
 909	while (tn->slen < l->slen) {
 910		tn->slen = l->slen;
 911		tn = node_parent(tn);
 912	}
 913}
 914
 915/* rcu_read_lock needs to be hold by caller from readside */
 916static struct key_vector *fib_find_node(struct trie *t,
 917					struct key_vector **tp, u32 key)
 918{
 919	struct key_vector *pn, *n = t->kv;
 920	unsigned long index = 0;
 921
 922	do {
 923		pn = n;
 924		n = get_child_rcu(n, index);
 925
 926		if (!n)
 927			break;
 928
 929		index = get_cindex(key, n);
 930
 931		/* This bit of code is a bit tricky but it combines multiple
 932		 * checks into a single check.  The prefix consists of the
 933		 * prefix plus zeros for the bits in the cindex. The index
 934		 * is the difference between the key and this value.  From
 935		 * this we can actually derive several pieces of data.
 936		 *   if (index >= (1ul << bits))
 937		 *     we have a mismatch in skip bits and failed
 938		 *   else
 939		 *     we know the value is cindex
 940		 *
 941		 * This check is safe even if bits == KEYLENGTH due to the
 942		 * fact that we can only allocate a node with 32 bits if a
 943		 * long is greater than 32 bits.
 944		 */
 945		if (index >= (1ul << n->bits)) {
 946			n = NULL;
 947			break;
 948		}
 949
 950		/* keep searching until we find a perfect match leaf or NULL */
 951	} while (IS_TNODE(n));
 952
 953	*tp = pn;
 954
 955	return n;
 956}
 957
 958/* Return the first fib alias matching TOS with
 959 * priority less than or equal to PRIO.
 
 
 960 */
 961static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 962					u8 tos, u32 prio, u32 tb_id)
 
 963{
 964	struct fib_alias *fa;
 965
 966	if (!fah)
 967		return NULL;
 968
 969	hlist_for_each_entry(fa, fah, fa_list) {
 970		if (fa->fa_slen < slen)
 971			continue;
 972		if (fa->fa_slen != slen)
 973			break;
 974		if (fa->tb_id > tb_id)
 975			continue;
 976		if (fa->tb_id != tb_id)
 977			break;
 
 
 978		if (fa->fa_tos > tos)
 979			continue;
 980		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
 981			return fa;
 982	}
 983
 984	return NULL;
 985}
 986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987static void trie_rebalance(struct trie *t, struct key_vector *tn)
 988{
 989	while (!IS_TRIE(tn))
 990		tn = resize(t, tn);
 991}
 992
 993static int fib_insert_node(struct trie *t, struct key_vector *tp,
 994			   struct fib_alias *new, t_key key)
 995{
 996	struct key_vector *n, *l;
 997
 998	l = leaf_new(key, new);
 999	if (!l)
1000		goto noleaf;
1001
1002	/* retrieve child from parent node */
1003	n = get_child(tp, get_index(key, tp));
1004
1005	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1006	 *
1007	 *  Add a new tnode here
1008	 *  first tnode need some special handling
1009	 *  leaves us in position for handling as case 3
1010	 */
1011	if (n) {
1012		struct key_vector *tn;
1013
1014		tn = tnode_new(key, __fls(key ^ n->key), 1);
1015		if (!tn)
1016			goto notnode;
1017
1018		/* initialize routes out of node */
1019		NODE_INIT_PARENT(tn, tp);
1020		put_child(tn, get_index(key, tn) ^ 1, n);
1021
1022		/* start adding routes into the node */
1023		put_child_root(tp, key, tn);
1024		node_set_parent(n, tn);
1025
1026		/* parent now has a NULL spot where the leaf can go */
1027		tp = tn;
1028	}
1029
1030	/* Case 3: n is NULL, and will just insert a new leaf */
 
1031	NODE_INIT_PARENT(l, tp);
1032	put_child_root(tp, key, l);
1033	trie_rebalance(t, tp);
1034
1035	return 0;
1036notnode:
1037	node_free(l);
1038noleaf:
1039	return -ENOMEM;
1040}
1041
1042static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1043			    struct key_vector *l, struct fib_alias *new,
1044			    struct fib_alias *fa, t_key key)
1045{
1046	if (!l)
1047		return fib_insert_node(t, tp, new, key);
1048
1049	if (fa) {
1050		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1051	} else {
1052		struct fib_alias *last;
1053
1054		hlist_for_each_entry(last, &l->leaf, fa_list) {
1055			if (new->fa_slen < last->fa_slen)
1056				break;
1057			if ((new->fa_slen == last->fa_slen) &&
1058			    (new->tb_id > last->tb_id))
1059				break;
1060			fa = last;
1061		}
1062
1063		if (fa)
1064			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1065		else
1066			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1067	}
1068
1069	/* if we added to the tail node then we need to update slen */
1070	if (l->slen < new->fa_slen) {
1071		l->slen = new->fa_slen;
1072		leaf_push_suffix(tp, l);
1073	}
1074
1075	return 0;
1076}
1077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078/* Caller must hold RTNL. */
1079int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
 
1080{
1081	struct trie *t = (struct trie *)tb->tb_data;
1082	struct fib_alias *fa, *new_fa;
1083	struct key_vector *l, *tp;
1084	unsigned int nlflags = 0;
1085	struct fib_info *fi;
1086	u8 plen = cfg->fc_dst_len;
1087	u8 slen = KEYLENGTH - plen;
1088	u8 tos = cfg->fc_tos;
1089	u32 key;
1090	int err;
1091
1092	if (plen > KEYLENGTH)
 
 
1093		return -EINVAL;
1094
1095	key = ntohl(cfg->fc_dst);
1096
1097	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1098
1099	if ((plen < KEYLENGTH) && (key << plen))
1100		return -EINVAL;
1101
1102	fi = fib_create_info(cfg);
1103	if (IS_ERR(fi)) {
1104		err = PTR_ERR(fi);
1105		goto err;
1106	}
1107
1108	l = fib_find_node(t, &tp, key);
1109	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1110				tb->tb_id) : NULL;
1111
1112	/* Now fa, if non-NULL, points to the first fib alias
1113	 * with the same keys [prefix,tos,priority], if such key already
1114	 * exists or to the node before which we will insert new one.
1115	 *
1116	 * If fa is NULL, we will need to allocate a new one and
1117	 * insert to the tail of the section matching the suffix length
1118	 * of the new alias.
1119	 */
1120
1121	if (fa && fa->fa_tos == tos &&
1122	    fa->fa_info->fib_priority == fi->fib_priority) {
1123		struct fib_alias *fa_first, *fa_match;
1124
1125		err = -EEXIST;
1126		if (cfg->fc_nlflags & NLM_F_EXCL)
1127			goto out;
1128
 
 
1129		/* We have 2 goals:
1130		 * 1. Find exact match for type, scope, fib_info to avoid
1131		 * duplicate routes
1132		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1133		 */
1134		fa_match = NULL;
1135		fa_first = fa;
1136		hlist_for_each_entry_from(fa, fa_list) {
1137			if ((fa->fa_slen != slen) ||
1138			    (fa->tb_id != tb->tb_id) ||
1139			    (fa->fa_tos != tos))
1140				break;
1141			if (fa->fa_info->fib_priority != fi->fib_priority)
1142				break;
1143			if (fa->fa_type == cfg->fc_type &&
1144			    fa->fa_info == fi) {
1145				fa_match = fa;
1146				break;
1147			}
1148		}
1149
1150		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1151			struct fib_info *fi_drop;
1152			u8 state;
1153
 
1154			fa = fa_first;
1155			if (fa_match) {
1156				if (fa == fa_match)
1157					err = 0;
1158				goto out;
1159			}
1160			err = -ENOBUFS;
1161			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1162			if (!new_fa)
1163				goto out;
1164
1165			fi_drop = fa->fa_info;
1166			new_fa->fa_tos = fa->fa_tos;
1167			new_fa->fa_info = fi;
1168			new_fa->fa_type = cfg->fc_type;
1169			state = fa->fa_state;
1170			new_fa->fa_state = state & ~FA_S_ACCESSED;
1171			new_fa->fa_slen = fa->fa_slen;
1172			new_fa->tb_id = tb->tb_id;
1173			new_fa->fa_default = -1;
 
 
 
 
 
1174
1175			err = switchdev_fib_ipv4_add(key, plen, fi,
1176						     new_fa->fa_tos,
1177						     cfg->fc_type,
1178						     cfg->fc_nlflags,
1179						     tb->tb_id);
1180			if (err) {
1181				switchdev_fib_ipv4_abort(fi);
1182				kmem_cache_free(fn_alias_kmem, new_fa);
1183				goto out;
 
 
 
 
1184			}
1185
1186			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
 
1187
1188			alias_free_mem_rcu(fa);
1189
1190			fib_release_info(fi_drop);
1191			if (state & FA_S_ACCESSED)
1192				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1193			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1194				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1195
1196			goto succeeded;
1197		}
1198		/* Error if we find a perfect match which
1199		 * uses the same scope, type, and nexthop
1200		 * information.
1201		 */
1202		if (fa_match)
1203			goto out;
1204
1205		if (cfg->fc_nlflags & NLM_F_APPEND)
1206			nlflags = NLM_F_APPEND;
1207		else
1208			fa = fa_first;
1209	}
1210	err = -ENOENT;
1211	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1212		goto out;
1213
 
1214	err = -ENOBUFS;
1215	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1216	if (!new_fa)
1217		goto out;
1218
1219	new_fa->fa_info = fi;
1220	new_fa->fa_tos = tos;
1221	new_fa->fa_type = cfg->fc_type;
1222	new_fa->fa_state = 0;
1223	new_fa->fa_slen = slen;
1224	new_fa->tb_id = tb->tb_id;
1225	new_fa->fa_default = -1;
1226
1227	/* (Optionally) offload fib entry to switch hardware. */
1228	err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
1229				     cfg->fc_nlflags, tb->tb_id);
1230	if (err) {
1231		switchdev_fib_ipv4_abort(fi);
1232		goto out_free_new_fa;
1233	}
1234
1235	/* Insert new entry to the list. */
1236	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1237	if (err)
1238		goto out_sw_fib_del;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1239
1240	if (!plen)
1241		tb->tb_num_default++;
1242
1243	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1244	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1245		  &cfg->fc_nlinfo, nlflags);
1246succeeded:
1247	return 0;
1248
1249out_sw_fib_del:
1250	switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1251out_free_new_fa:
1252	kmem_cache_free(fn_alias_kmem, new_fa);
1253out:
1254	fib_release_info(fi);
1255err:
1256	return err;
1257}
1258
1259static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1260{
1261	t_key prefix = n->key;
1262
1263	return (key ^ prefix) & (prefix | -prefix);
1264}
1265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1266/* should be called with rcu_read_lock */
1267int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1268		     struct fib_result *res, int fib_flags)
1269{
1270	struct trie *t = (struct trie *) tb->tb_data;
1271#ifdef CONFIG_IP_FIB_TRIE_STATS
1272	struct trie_use_stats __percpu *stats = t->stats;
1273#endif
1274	const t_key key = ntohl(flp->daddr);
1275	struct key_vector *n, *pn;
1276	struct fib_alias *fa;
1277	unsigned long index;
1278	t_key cindex;
1279
1280	trace_fib_table_lookup(tb->tb_id, flp);
1281
1282	pn = t->kv;
1283	cindex = 0;
1284
1285	n = get_child_rcu(pn, cindex);
1286	if (!n)
 
1287		return -EAGAIN;
 
1288
1289#ifdef CONFIG_IP_FIB_TRIE_STATS
1290	this_cpu_inc(stats->gets);
1291#endif
1292
1293	/* Step 1: Travel to the longest prefix match in the trie */
1294	for (;;) {
1295		index = get_cindex(key, n);
1296
1297		/* This bit of code is a bit tricky but it combines multiple
1298		 * checks into a single check.  The prefix consists of the
1299		 * prefix plus zeros for the "bits" in the prefix. The index
1300		 * is the difference between the key and this value.  From
1301		 * this we can actually derive several pieces of data.
1302		 *   if (index >= (1ul << bits))
1303		 *     we have a mismatch in skip bits and failed
1304		 *   else
1305		 *     we know the value is cindex
1306		 *
1307		 * This check is safe even if bits == KEYLENGTH due to the
1308		 * fact that we can only allocate a node with 32 bits if a
1309		 * long is greater than 32 bits.
1310		 */
1311		if (index >= (1ul << n->bits))
1312			break;
1313
1314		/* we have found a leaf. Prefixes have already been compared */
1315		if (IS_LEAF(n))
1316			goto found;
1317
1318		/* only record pn and cindex if we are going to be chopping
1319		 * bits later.  Otherwise we are just wasting cycles.
1320		 */
1321		if (n->slen > n->pos) {
1322			pn = n;
1323			cindex = index;
1324		}
1325
1326		n = get_child_rcu(n, index);
1327		if (unlikely(!n))
1328			goto backtrace;
1329	}
1330
1331	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1332	for (;;) {
1333		/* record the pointer where our next node pointer is stored */
1334		struct key_vector __rcu **cptr = n->tnode;
1335
1336		/* This test verifies that none of the bits that differ
1337		 * between the key and the prefix exist in the region of
1338		 * the lsb and higher in the prefix.
1339		 */
1340		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1341			goto backtrace;
1342
1343		/* exit out and process leaf */
1344		if (unlikely(IS_LEAF(n)))
1345			break;
1346
1347		/* Don't bother recording parent info.  Since we are in
1348		 * prefix match mode we will have to come back to wherever
1349		 * we started this traversal anyway
1350		 */
1351
1352		while ((n = rcu_dereference(*cptr)) == NULL) {
1353backtrace:
1354#ifdef CONFIG_IP_FIB_TRIE_STATS
1355			if (!n)
1356				this_cpu_inc(stats->null_node_hit);
1357#endif
1358			/* If we are at cindex 0 there are no more bits for
1359			 * us to strip at this level so we must ascend back
1360			 * up one level to see if there are any more bits to
1361			 * be stripped there.
1362			 */
1363			while (!cindex) {
1364				t_key pkey = pn->key;
1365
1366				/* If we don't have a parent then there is
1367				 * nothing for us to do as we do not have any
1368				 * further nodes to parse.
1369				 */
1370				if (IS_TRIE(pn))
 
 
1371					return -EAGAIN;
 
1372#ifdef CONFIG_IP_FIB_TRIE_STATS
1373				this_cpu_inc(stats->backtrack);
1374#endif
1375				/* Get Child's index */
1376				pn = node_parent_rcu(pn);
1377				cindex = get_index(pkey, pn);
1378			}
1379
1380			/* strip the least significant bit from the cindex */
1381			cindex &= cindex - 1;
1382
1383			/* grab pointer for next child node */
1384			cptr = &pn->tnode[cindex];
1385		}
1386	}
1387
1388found:
1389	/* this line carries forward the xor from earlier in the function */
1390	index = key ^ n->key;
1391
1392	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1393	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1394		struct fib_info *fi = fa->fa_info;
 
1395		int nhsel, err;
1396
1397		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1398			if (index >= (1ul << fa->fa_slen))
1399				continue;
1400		}
1401		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1402			continue;
1403		if (fi->fib_dead)
1404			continue;
1405		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1406			continue;
1407		fib_alias_accessed(fa);
1408		err = fib_props[fa->fa_type].error;
1409		if (unlikely(err < 0)) {
 
1410#ifdef CONFIG_IP_FIB_TRIE_STATS
1411			this_cpu_inc(stats->semantic_match_passed);
1412#endif
 
1413			return err;
1414		}
1415		if (fi->fib_flags & RTNH_F_DEAD)
1416			continue;
1417		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1418			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1419			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1420
1421			if (nh->nh_flags & RTNH_F_DEAD)
1422				continue;
1423			if (in_dev &&
1424			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1425			    nh->nh_flags & RTNH_F_LINKDOWN &&
1426			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1427				continue;
1428			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1429				if (flp->flowi4_oif &&
1430				    flp->flowi4_oif != nh->nh_oif)
1431					continue;
1432			}
1433
 
 
 
 
 
 
 
 
 
 
 
 
 
1434			if (!(fib_flags & FIB_LOOKUP_NOREF))
1435				atomic_inc(&fi->fib_clntref);
1436
 
1437			res->prefixlen = KEYLENGTH - fa->fa_slen;
1438			res->nh_sel = nhsel;
 
1439			res->type = fa->fa_type;
1440			res->scope = fi->fib_scope;
1441			res->fi = fi;
1442			res->table = tb;
1443			res->fa_head = &n->leaf;
1444#ifdef CONFIG_IP_FIB_TRIE_STATS
1445			this_cpu_inc(stats->semantic_match_passed);
1446#endif
1447			trace_fib_table_lookup_nh(nh);
1448
1449			return err;
1450		}
1451	}
 
1452#ifdef CONFIG_IP_FIB_TRIE_STATS
1453	this_cpu_inc(stats->semantic_match_miss);
1454#endif
1455	goto backtrace;
1456}
1457EXPORT_SYMBOL_GPL(fib_table_lookup);
1458
1459static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1460			     struct key_vector *l, struct fib_alias *old)
1461{
1462	/* record the location of the previous list_info entry */
1463	struct hlist_node **pprev = old->fa_list.pprev;
1464	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1465
1466	/* remove the fib_alias from the list */
1467	hlist_del_rcu(&old->fa_list);
1468
1469	/* if we emptied the list this leaf will be freed and we can sort
1470	 * out parent suffix lengths as a part of trie_rebalance
1471	 */
1472	if (hlist_empty(&l->leaf)) {
 
 
1473		put_child_root(tp, l->key, NULL);
1474		node_free(l);
1475		trie_rebalance(t, tp);
1476		return;
1477	}
1478
1479	/* only access fa if it is pointing at the last valid hlist_node */
1480	if (*pprev)
1481		return;
1482
1483	/* update the trie with the latest suffix length */
1484	l->slen = fa->fa_slen;
1485	leaf_pull_suffix(tp, l);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1486}
1487
1488/* Caller must hold RTNL. */
1489int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
 
1490{
1491	struct trie *t = (struct trie *) tb->tb_data;
1492	struct fib_alias *fa, *fa_to_delete;
1493	struct key_vector *l, *tp;
1494	u8 plen = cfg->fc_dst_len;
1495	u8 slen = KEYLENGTH - plen;
1496	u8 tos = cfg->fc_tos;
1497	u32 key;
1498
1499	if (plen > KEYLENGTH)
1500		return -EINVAL;
1501
1502	key = ntohl(cfg->fc_dst);
1503
1504	if ((plen < KEYLENGTH) && (key << plen))
1505		return -EINVAL;
1506
1507	l = fib_find_node(t, &tp, key);
1508	if (!l)
1509		return -ESRCH;
1510
1511	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1512	if (!fa)
1513		return -ESRCH;
1514
1515	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1516
1517	fa_to_delete = NULL;
1518	hlist_for_each_entry_from(fa, fa_list) {
1519		struct fib_info *fi = fa->fa_info;
1520
1521		if ((fa->fa_slen != slen) ||
1522		    (fa->tb_id != tb->tb_id) ||
1523		    (fa->fa_tos != tos))
1524			break;
1525
1526		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1527		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1528		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1529		    (!cfg->fc_prefsrc ||
1530		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1531		    (!cfg->fc_protocol ||
1532		     fi->fib_protocol == cfg->fc_protocol) &&
1533		    fib_nh_match(cfg, fi) == 0) {
 
1534			fa_to_delete = fa;
1535			break;
1536		}
1537	}
1538
1539	if (!fa_to_delete)
1540		return -ESRCH;
1541
1542	switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1543			       cfg->fc_type, tb->tb_id);
1544
1545	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1546		  &cfg->fc_nlinfo, 0);
1547
1548	if (!plen)
1549		tb->tb_num_default--;
1550
1551	fib_remove_alias(t, tp, l, fa_to_delete);
1552
1553	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1554		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1555
1556	fib_release_info(fa_to_delete->fa_info);
1557	alias_free_mem_rcu(fa_to_delete);
1558	return 0;
1559}
1560
1561/* Scan for the next leaf starting at the provided key value */
1562static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1563{
1564	struct key_vector *pn, *n = *tn;
1565	unsigned long cindex;
1566
1567	/* this loop is meant to try and find the key in the trie */
1568	do {
1569		/* record parent and next child index */
1570		pn = n;
1571		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1572
1573		if (cindex >> pn->bits)
1574			break;
1575
1576		/* descend into the next child */
1577		n = get_child_rcu(pn, cindex++);
1578		if (!n)
1579			break;
1580
1581		/* guarantee forward progress on the keys */
1582		if (IS_LEAF(n) && (n->key >= key))
1583			goto found;
1584	} while (IS_TNODE(n));
1585
1586	/* this loop will search for the next leaf with a greater key */
1587	while (!IS_TRIE(pn)) {
1588		/* if we exhausted the parent node we will need to climb */
1589		if (cindex >= (1ul << pn->bits)) {
1590			t_key pkey = pn->key;
1591
1592			pn = node_parent_rcu(pn);
1593			cindex = get_index(pkey, pn) + 1;
1594			continue;
1595		}
1596
1597		/* grab the next available node */
1598		n = get_child_rcu(pn, cindex++);
1599		if (!n)
1600			continue;
1601
1602		/* no need to compare keys since we bumped the index */
1603		if (IS_LEAF(n))
1604			goto found;
1605
1606		/* Rescan start scanning in new node */
1607		pn = n;
1608		cindex = 0;
1609	}
1610
1611	*tn = pn;
1612	return NULL; /* Root of trie */
1613found:
1614	/* if we are at the limit for keys just return NULL for the tnode */
1615	*tn = pn;
1616	return n;
1617}
1618
1619static void fib_trie_free(struct fib_table *tb)
1620{
1621	struct trie *t = (struct trie *)tb->tb_data;
1622	struct key_vector *pn = t->kv;
1623	unsigned long cindex = 1;
1624	struct hlist_node *tmp;
1625	struct fib_alias *fa;
1626
1627	/* walk trie in reverse order and free everything */
1628	for (;;) {
1629		struct key_vector *n;
1630
1631		if (!(cindex--)) {
1632			t_key pkey = pn->key;
1633
1634			if (IS_TRIE(pn))
1635				break;
1636
1637			n = pn;
1638			pn = node_parent(pn);
1639
1640			/* drop emptied tnode */
1641			put_child_root(pn, n->key, NULL);
1642			node_free(n);
1643
1644			cindex = get_index(pkey, pn);
1645
1646			continue;
1647		}
1648
1649		/* grab the next available node */
1650		n = get_child(pn, cindex);
1651		if (!n)
1652			continue;
1653
1654		if (IS_TNODE(n)) {
1655			/* record pn and cindex for leaf walking */
1656			pn = n;
1657			cindex = 1ul << n->bits;
1658
1659			continue;
1660		}
1661
1662		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1663			hlist_del_rcu(&fa->fa_list);
1664			alias_free_mem_rcu(fa);
1665		}
1666
1667		put_child_root(pn, n->key, NULL);
1668		node_free(n);
1669	}
1670
1671#ifdef CONFIG_IP_FIB_TRIE_STATS
1672	free_percpu(t->stats);
1673#endif
1674	kfree(tb);
1675}
1676
1677struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1678{
1679	struct trie *ot = (struct trie *)oldtb->tb_data;
1680	struct key_vector *l, *tp = ot->kv;
1681	struct fib_table *local_tb;
1682	struct fib_alias *fa;
1683	struct trie *lt;
1684	t_key key = 0;
1685
1686	if (oldtb->tb_data == oldtb->__data)
1687		return oldtb;
1688
1689	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1690	if (!local_tb)
1691		return NULL;
1692
1693	lt = (struct trie *)local_tb->tb_data;
1694
1695	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1696		struct key_vector *local_l = NULL, *local_tp;
1697
1698		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1699			struct fib_alias *new_fa;
1700
1701			if (local_tb->tb_id != fa->tb_id)
1702				continue;
1703
1704			/* clone fa for new local table */
1705			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1706			if (!new_fa)
1707				goto out;
1708
1709			memcpy(new_fa, fa, sizeof(*fa));
1710
1711			/* insert clone into table */
1712			if (!local_l)
1713				local_l = fib_find_node(lt, &local_tp, l->key);
1714
1715			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1716					     NULL, l->key))
 
1717				goto out;
 
1718		}
1719
1720		/* stop loop if key wrapped back to 0 */
1721		key = l->key + 1;
1722		if (key < l->key)
1723			break;
1724	}
1725
1726	return local_tb;
1727out:
1728	fib_trie_free(local_tb);
1729
1730	return NULL;
1731}
1732
1733/* Caller must hold RTNL */
1734void fib_table_flush_external(struct fib_table *tb)
1735{
1736	struct trie *t = (struct trie *)tb->tb_data;
1737	struct key_vector *pn = t->kv;
1738	unsigned long cindex = 1;
1739	struct hlist_node *tmp;
1740	struct fib_alias *fa;
1741
1742	/* walk trie in reverse order */
1743	for (;;) {
1744		unsigned char slen = 0;
1745		struct key_vector *n;
1746
1747		if (!(cindex--)) {
1748			t_key pkey = pn->key;
1749
1750			/* cannot resize the trie vector */
1751			if (IS_TRIE(pn))
1752				break;
1753
 
 
 
 
1754			/* resize completed node */
1755			pn = resize(t, pn);
1756			cindex = get_index(pkey, pn);
1757
1758			continue;
1759		}
1760
1761		/* grab the next available node */
1762		n = get_child(pn, cindex);
1763		if (!n)
1764			continue;
1765
1766		if (IS_TNODE(n)) {
1767			/* record pn and cindex for leaf walking */
1768			pn = n;
1769			cindex = 1ul << n->bits;
1770
1771			continue;
1772		}
1773
1774		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1775			struct fib_info *fi = fa->fa_info;
1776
1777			/* if alias was cloned to local then we just
1778			 * need to remove the local copy from main
1779			 */
1780			if (tb->tb_id != fa->tb_id) {
1781				hlist_del_rcu(&fa->fa_list);
1782				alias_free_mem_rcu(fa);
1783				continue;
1784			}
1785
1786			/* record local slen */
1787			slen = fa->fa_slen;
1788
1789			if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
1790				continue;
1791
1792			switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1793					       fi, fa->fa_tos, fa->fa_type,
1794					       tb->tb_id);
1795		}
1796
1797		/* update leaf slen */
1798		n->slen = slen;
1799
1800		if (hlist_empty(&n->leaf)) {
1801			put_child_root(pn, n->key, NULL);
1802			node_free(n);
1803		}
1804	}
1805}
1806
1807/* Caller must hold RTNL. */
1808int fib_table_flush(struct fib_table *tb)
1809{
1810	struct trie *t = (struct trie *)tb->tb_data;
1811	struct key_vector *pn = t->kv;
1812	unsigned long cindex = 1;
1813	struct hlist_node *tmp;
1814	struct fib_alias *fa;
1815	int found = 0;
1816
1817	/* walk trie in reverse order */
1818	for (;;) {
1819		unsigned char slen = 0;
1820		struct key_vector *n;
1821
1822		if (!(cindex--)) {
1823			t_key pkey = pn->key;
1824
1825			/* cannot resize the trie vector */
1826			if (IS_TRIE(pn))
1827				break;
1828
 
 
 
 
1829			/* resize completed node */
1830			pn = resize(t, pn);
1831			cindex = get_index(pkey, pn);
1832
1833			continue;
1834		}
1835
1836		/* grab the next available node */
1837		n = get_child(pn, cindex);
1838		if (!n)
1839			continue;
1840
1841		if (IS_TNODE(n)) {
1842			/* record pn and cindex for leaf walking */
1843			pn = n;
1844			cindex = 1ul << n->bits;
1845
1846			continue;
1847		}
1848
1849		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1850			struct fib_info *fi = fa->fa_info;
1851
1852			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
 
 
1853				slen = fa->fa_slen;
1854				continue;
1855			}
1856
1857			switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1858					       fi, fa->fa_tos, fa->fa_type,
1859					       tb->tb_id);
 
 
 
 
 
 
 
1860			hlist_del_rcu(&fa->fa_list);
1861			fib_release_info(fa->fa_info);
1862			alias_free_mem_rcu(fa);
1863			found++;
1864		}
1865
1866		/* update leaf slen */
1867		n->slen = slen;
1868
1869		if (hlist_empty(&n->leaf)) {
1870			put_child_root(pn, n->key, NULL);
1871			node_free(n);
1872		}
1873	}
1874
1875	pr_debug("trie_flush found=%d\n", found);
1876	return found;
1877}
1878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1879static void __trie_free_rcu(struct rcu_head *head)
1880{
1881	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1882#ifdef CONFIG_IP_FIB_TRIE_STATS
1883	struct trie *t = (struct trie *)tb->tb_data;
1884
1885	if (tb->tb_data == tb->__data)
1886		free_percpu(t->stats);
1887#endif /* CONFIG_IP_FIB_TRIE_STATS */
1888	kfree(tb);
1889}
1890
1891void fib_free_table(struct fib_table *tb)
1892{
1893	call_rcu(&tb->rcu, __trie_free_rcu);
1894}
1895
1896static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1897			     struct sk_buff *skb, struct netlink_callback *cb)
 
1898{
 
1899	__be32 xkey = htonl(l->key);
 
1900	struct fib_alias *fa;
1901	int i, s_i;
 
 
 
1902
1903	s_i = cb->args[4];
 
1904	i = 0;
1905
1906	/* rcu_read_lock is hold by caller */
1907	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1908		if (i < s_i) {
1909			i++;
1910			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1911		}
1912
1913		if (tb->tb_id != fa->tb_id) {
1914			i++;
1915			continue;
 
 
1916		}
1917
1918		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1919				  cb->nlh->nlmsg_seq,
1920				  RTM_NEWROUTE,
1921				  tb->tb_id,
1922				  fa->fa_type,
1923				  xkey,
1924				  KEYLENGTH - fa->fa_slen,
1925				  fa->fa_tos,
1926				  fa->fa_info, NLM_F_MULTI) < 0) {
1927			cb->args[4] = i;
1928			return -1;
1929		}
1930		i++;
1931	}
1932
1933	cb->args[4] = i;
1934	return skb->len;
 
 
 
 
 
1935}
1936
1937/* rcu_read_lock needs to be hold by caller from readside */
1938int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1939		   struct netlink_callback *cb)
1940{
1941	struct trie *t = (struct trie *)tb->tb_data;
1942	struct key_vector *l, *tp = t->kv;
1943	/* Dump starting at last key.
1944	 * Note: 0.0.0.0/0 (ie default) is first key.
1945	 */
1946	int count = cb->args[2];
1947	t_key key = cb->args[3];
1948
 
 
 
 
 
 
1949	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1950		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
 
 
 
1951			cb->args[3] = key;
1952			cb->args[2] = count;
1953			return -1;
1954		}
1955
1956		++count;
1957		key = l->key + 1;
1958
1959		memset(&cb->args[4], 0,
1960		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1961
1962		/* stop loop if key wrapped back to 0 */
1963		if (key < l->key)
1964			break;
1965	}
1966
1967	cb->args[3] = key;
1968	cb->args[2] = count;
1969
1970	return skb->len;
1971}
1972
1973void __init fib_trie_init(void)
1974{
1975	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1976					  sizeof(struct fib_alias),
1977					  0, SLAB_PANIC, NULL);
1978
1979	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1980					   LEAF_SIZE,
1981					   0, SLAB_PANIC, NULL);
1982}
1983
1984struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1985{
1986	struct fib_table *tb;
1987	struct trie *t;
1988	size_t sz = sizeof(*tb);
1989
1990	if (!alias)
1991		sz += sizeof(struct trie);
1992
1993	tb = kzalloc(sz, GFP_KERNEL);
1994	if (!tb)
1995		return NULL;
1996
1997	tb->tb_id = id;
1998	tb->tb_num_default = 0;
1999	tb->tb_data = (alias ? alias->__data : tb->__data);
2000
2001	if (alias)
2002		return tb;
2003
2004	t = (struct trie *) tb->tb_data;
2005	t->kv[0].pos = KEYLENGTH;
2006	t->kv[0].slen = KEYLENGTH;
2007#ifdef CONFIG_IP_FIB_TRIE_STATS
2008	t->stats = alloc_percpu(struct trie_use_stats);
2009	if (!t->stats) {
2010		kfree(tb);
2011		tb = NULL;
2012	}
2013#endif
2014
2015	return tb;
2016}
2017
2018#ifdef CONFIG_PROC_FS
2019/* Depth first Trie walk iterator */
2020struct fib_trie_iter {
2021	struct seq_net_private p;
2022	struct fib_table *tb;
2023	struct key_vector *tnode;
2024	unsigned int index;
2025	unsigned int depth;
2026};
2027
2028static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2029{
2030	unsigned long cindex = iter->index;
2031	struct key_vector *pn = iter->tnode;
2032	t_key pkey;
2033
2034	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2035		 iter->tnode, iter->index, iter->depth);
2036
2037	while (!IS_TRIE(pn)) {
2038		while (cindex < child_length(pn)) {
2039			struct key_vector *n = get_child_rcu(pn, cindex++);
2040
2041			if (!n)
2042				continue;
2043
2044			if (IS_LEAF(n)) {
2045				iter->tnode = pn;
2046				iter->index = cindex;
2047			} else {
2048				/* push down one level */
2049				iter->tnode = n;
2050				iter->index = 0;
2051				++iter->depth;
2052			}
2053
2054			return n;
2055		}
2056
2057		/* Current node exhausted, pop back up */
2058		pkey = pn->key;
2059		pn = node_parent_rcu(pn);
2060		cindex = get_index(pkey, pn) + 1;
2061		--iter->depth;
2062	}
2063
2064	/* record root node so further searches know we are done */
2065	iter->tnode = pn;
2066	iter->index = 0;
2067
2068	return NULL;
2069}
2070
2071static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2072					     struct trie *t)
2073{
2074	struct key_vector *n, *pn;
2075
2076	if (!t)
2077		return NULL;
2078
2079	pn = t->kv;
2080	n = rcu_dereference(pn->tnode[0]);
2081	if (!n)
2082		return NULL;
2083
2084	if (IS_TNODE(n)) {
2085		iter->tnode = n;
2086		iter->index = 0;
2087		iter->depth = 1;
2088	} else {
2089		iter->tnode = pn;
2090		iter->index = 0;
2091		iter->depth = 0;
2092	}
2093
2094	return n;
2095}
2096
2097static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2098{
2099	struct key_vector *n;
2100	struct fib_trie_iter iter;
2101
2102	memset(s, 0, sizeof(*s));
2103
2104	rcu_read_lock();
2105	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2106		if (IS_LEAF(n)) {
2107			struct fib_alias *fa;
2108
2109			s->leaves++;
2110			s->totdepth += iter.depth;
2111			if (iter.depth > s->maxdepth)
2112				s->maxdepth = iter.depth;
2113
2114			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2115				++s->prefixes;
2116		} else {
2117			s->tnodes++;
2118			if (n->bits < MAX_STAT_DEPTH)
2119				s->nodesizes[n->bits]++;
2120			s->nullpointers += tn_info(n)->empty_children;
2121		}
2122	}
2123	rcu_read_unlock();
2124}
2125
2126/*
2127 *	This outputs /proc/net/fib_triestats
2128 */
2129static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2130{
2131	unsigned int i, max, pointers, bytes, avdepth;
2132
2133	if (stat->leaves)
2134		avdepth = stat->totdepth*100 / stat->leaves;
2135	else
2136		avdepth = 0;
2137
2138	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2139		   avdepth / 100, avdepth % 100);
2140	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2141
2142	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2143	bytes = LEAF_SIZE * stat->leaves;
2144
2145	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2146	bytes += sizeof(struct fib_alias) * stat->prefixes;
2147
2148	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2149	bytes += TNODE_SIZE(0) * stat->tnodes;
2150
2151	max = MAX_STAT_DEPTH;
2152	while (max > 0 && stat->nodesizes[max-1] == 0)
2153		max--;
2154
2155	pointers = 0;
2156	for (i = 1; i < max; i++)
2157		if (stat->nodesizes[i] != 0) {
2158			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2159			pointers += (1<<i) * stat->nodesizes[i];
2160		}
2161	seq_putc(seq, '\n');
2162	seq_printf(seq, "\tPointers: %u\n", pointers);
2163
2164	bytes += sizeof(struct key_vector *) * pointers;
2165	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2166	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2167}
2168
2169#ifdef CONFIG_IP_FIB_TRIE_STATS
2170static void trie_show_usage(struct seq_file *seq,
2171			    const struct trie_use_stats __percpu *stats)
2172{
2173	struct trie_use_stats s = { 0 };
2174	int cpu;
2175
2176	/* loop through all of the CPUs and gather up the stats */
2177	for_each_possible_cpu(cpu) {
2178		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2179
2180		s.gets += pcpu->gets;
2181		s.backtrack += pcpu->backtrack;
2182		s.semantic_match_passed += pcpu->semantic_match_passed;
2183		s.semantic_match_miss += pcpu->semantic_match_miss;
2184		s.null_node_hit += pcpu->null_node_hit;
2185		s.resize_node_skipped += pcpu->resize_node_skipped;
2186	}
2187
2188	seq_printf(seq, "\nCounters:\n---------\n");
2189	seq_printf(seq, "gets = %u\n", s.gets);
2190	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2191	seq_printf(seq, "semantic match passed = %u\n",
2192		   s.semantic_match_passed);
2193	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2194	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2195	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2196}
2197#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2198
2199static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2200{
2201	if (tb->tb_id == RT_TABLE_LOCAL)
2202		seq_puts(seq, "Local:\n");
2203	else if (tb->tb_id == RT_TABLE_MAIN)
2204		seq_puts(seq, "Main:\n");
2205	else
2206		seq_printf(seq, "Id %d:\n", tb->tb_id);
2207}
2208
2209
2210static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2211{
2212	struct net *net = (struct net *)seq->private;
2213	unsigned int h;
2214
2215	seq_printf(seq,
2216		   "Basic info: size of leaf:"
2217		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2218		   LEAF_SIZE, TNODE_SIZE(0));
2219
 
2220	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2221		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2222		struct fib_table *tb;
2223
2224		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2225			struct trie *t = (struct trie *) tb->tb_data;
2226			struct trie_stat stat;
2227
2228			if (!t)
2229				continue;
2230
2231			fib_table_print(seq, tb);
2232
2233			trie_collect_stats(t, &stat);
2234			trie_show_stats(seq, &stat);
2235#ifdef CONFIG_IP_FIB_TRIE_STATS
2236			trie_show_usage(seq, t->stats);
2237#endif
2238		}
 
2239	}
 
2240
2241	return 0;
2242}
2243
2244static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2245{
2246	return single_open_net(inode, file, fib_triestat_seq_show);
2247}
2248
2249static const struct file_operations fib_triestat_fops = {
2250	.owner	= THIS_MODULE,
2251	.open	= fib_triestat_seq_open,
2252	.read	= seq_read,
2253	.llseek	= seq_lseek,
2254	.release = single_release_net,
2255};
2256
2257static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2258{
2259	struct fib_trie_iter *iter = seq->private;
2260	struct net *net = seq_file_net(seq);
2261	loff_t idx = 0;
2262	unsigned int h;
2263
2264	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2265		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2266		struct fib_table *tb;
2267
2268		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2269			struct key_vector *n;
2270
2271			for (n = fib_trie_get_first(iter,
2272						    (struct trie *) tb->tb_data);
2273			     n; n = fib_trie_get_next(iter))
2274				if (pos == idx++) {
2275					iter->tb = tb;
2276					return n;
2277				}
2278		}
2279	}
2280
2281	return NULL;
2282}
2283
2284static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2285	__acquires(RCU)
2286{
2287	rcu_read_lock();
2288	return fib_trie_get_idx(seq, *pos);
2289}
2290
2291static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2292{
2293	struct fib_trie_iter *iter = seq->private;
2294	struct net *net = seq_file_net(seq);
2295	struct fib_table *tb = iter->tb;
2296	struct hlist_node *tb_node;
2297	unsigned int h;
2298	struct key_vector *n;
2299
2300	++*pos;
2301	/* next node in same table */
2302	n = fib_trie_get_next(iter);
2303	if (n)
2304		return n;
2305
2306	/* walk rest of this hash chain */
2307	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2308	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2309		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2310		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2311		if (n)
2312			goto found;
2313	}
2314
2315	/* new hash chain */
2316	while (++h < FIB_TABLE_HASHSZ) {
2317		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2318		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2319			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2320			if (n)
2321				goto found;
2322		}
2323	}
2324	return NULL;
2325
2326found:
2327	iter->tb = tb;
2328	return n;
2329}
2330
2331static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2332	__releases(RCU)
2333{
2334	rcu_read_unlock();
2335}
2336
2337static void seq_indent(struct seq_file *seq, int n)
2338{
2339	while (n-- > 0)
2340		seq_puts(seq, "   ");
2341}
2342
2343static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2344{
2345	switch (s) {
2346	case RT_SCOPE_UNIVERSE: return "universe";
2347	case RT_SCOPE_SITE:	return "site";
2348	case RT_SCOPE_LINK:	return "link";
2349	case RT_SCOPE_HOST:	return "host";
2350	case RT_SCOPE_NOWHERE:	return "nowhere";
2351	default:
2352		snprintf(buf, len, "scope=%d", s);
2353		return buf;
2354	}
2355}
2356
2357static const char *const rtn_type_names[__RTN_MAX] = {
2358	[RTN_UNSPEC] = "UNSPEC",
2359	[RTN_UNICAST] = "UNICAST",
2360	[RTN_LOCAL] = "LOCAL",
2361	[RTN_BROADCAST] = "BROADCAST",
2362	[RTN_ANYCAST] = "ANYCAST",
2363	[RTN_MULTICAST] = "MULTICAST",
2364	[RTN_BLACKHOLE] = "BLACKHOLE",
2365	[RTN_UNREACHABLE] = "UNREACHABLE",
2366	[RTN_PROHIBIT] = "PROHIBIT",
2367	[RTN_THROW] = "THROW",
2368	[RTN_NAT] = "NAT",
2369	[RTN_XRESOLVE] = "XRESOLVE",
2370};
2371
2372static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2373{
2374	if (t < __RTN_MAX && rtn_type_names[t])
2375		return rtn_type_names[t];
2376	snprintf(buf, len, "type %u", t);
2377	return buf;
2378}
2379
2380/* Pretty print the trie */
2381static int fib_trie_seq_show(struct seq_file *seq, void *v)
2382{
2383	const struct fib_trie_iter *iter = seq->private;
2384	struct key_vector *n = v;
2385
2386	if (IS_TRIE(node_parent_rcu(n)))
2387		fib_table_print(seq, iter->tb);
2388
2389	if (IS_TNODE(n)) {
2390		__be32 prf = htonl(n->key);
2391
2392		seq_indent(seq, iter->depth-1);
2393		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2394			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2395			   tn_info(n)->full_children,
2396			   tn_info(n)->empty_children);
2397	} else {
2398		__be32 val = htonl(n->key);
2399		struct fib_alias *fa;
2400
2401		seq_indent(seq, iter->depth);
2402		seq_printf(seq, "  |-- %pI4\n", &val);
2403
2404		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2405			char buf1[32], buf2[32];
2406
2407			seq_indent(seq, iter->depth + 1);
2408			seq_printf(seq, "  /%zu %s %s",
2409				   KEYLENGTH - fa->fa_slen,
2410				   rtn_scope(buf1, sizeof(buf1),
2411					     fa->fa_info->fib_scope),
2412				   rtn_type(buf2, sizeof(buf2),
2413					    fa->fa_type));
2414			if (fa->fa_tos)
2415				seq_printf(seq, " tos=%d", fa->fa_tos);
2416			seq_putc(seq, '\n');
2417		}
2418	}
2419
2420	return 0;
2421}
2422
2423static const struct seq_operations fib_trie_seq_ops = {
2424	.start  = fib_trie_seq_start,
2425	.next   = fib_trie_seq_next,
2426	.stop   = fib_trie_seq_stop,
2427	.show   = fib_trie_seq_show,
2428};
2429
2430static int fib_trie_seq_open(struct inode *inode, struct file *file)
2431{
2432	return seq_open_net(inode, file, &fib_trie_seq_ops,
2433			    sizeof(struct fib_trie_iter));
2434}
2435
2436static const struct file_operations fib_trie_fops = {
2437	.owner  = THIS_MODULE,
2438	.open   = fib_trie_seq_open,
2439	.read   = seq_read,
2440	.llseek = seq_lseek,
2441	.release = seq_release_net,
2442};
2443
2444struct fib_route_iter {
2445	struct seq_net_private p;
2446	struct fib_table *main_tb;
2447	struct key_vector *tnode;
2448	loff_t	pos;
2449	t_key	key;
2450};
2451
2452static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2453					    loff_t pos)
2454{
2455	struct fib_table *tb = iter->main_tb;
2456	struct key_vector *l, **tp = &iter->tnode;
2457	struct trie *t;
2458	t_key key;
2459
2460	/* use cache location of next-to-find key */
2461	if (iter->pos > 0 && pos >= iter->pos) {
2462		pos -= iter->pos;
2463		key = iter->key;
2464	} else {
2465		t = (struct trie *)tb->tb_data;
2466		iter->tnode = t->kv;
2467		iter->pos = 0;
2468		key = 0;
2469	}
2470
2471	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
 
 
2472		key = l->key + 1;
2473		iter->pos++;
2474
2475		if (--pos <= 0)
2476			break;
2477
2478		l = NULL;
2479
2480		/* handle unlikely case of a key wrap */
2481		if (!key)
2482			break;
2483	}
2484
2485	if (l)
2486		iter->key = key;	/* remember it */
2487	else
2488		iter->pos = 0;		/* forget it */
2489
2490	return l;
2491}
2492
2493static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2494	__acquires(RCU)
2495{
2496	struct fib_route_iter *iter = seq->private;
2497	struct fib_table *tb;
2498	struct trie *t;
2499
2500	rcu_read_lock();
2501
2502	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2503	if (!tb)
2504		return NULL;
2505
2506	iter->main_tb = tb;
 
 
2507
2508	if (*pos != 0)
2509		return fib_route_get_idx(iter, *pos);
2510
2511	t = (struct trie *)tb->tb_data;
2512	iter->tnode = t->kv;
2513	iter->pos = 0;
2514	iter->key = 0;
2515
2516	return SEQ_START_TOKEN;
2517}
2518
2519static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2520{
2521	struct fib_route_iter *iter = seq->private;
2522	struct key_vector *l = NULL;
2523	t_key key = iter->key;
2524
2525	++*pos;
2526
2527	/* only allow key of 0 for start of sequence */
2528	if ((v == SEQ_START_TOKEN) || key)
2529		l = leaf_walk_rcu(&iter->tnode, key);
2530
2531	if (l) {
2532		iter->key = l->key + 1;
2533		iter->pos++;
2534	} else {
2535		iter->pos = 0;
2536	}
2537
2538	return l;
2539}
2540
2541static void fib_route_seq_stop(struct seq_file *seq, void *v)
2542	__releases(RCU)
2543{
2544	rcu_read_unlock();
2545}
2546
2547static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2548{
2549	unsigned int flags = 0;
2550
2551	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2552		flags = RTF_REJECT;
2553	if (fi && fi->fib_nh->nh_gw)
2554		flags |= RTF_GATEWAY;
 
 
 
 
2555	if (mask == htonl(0xFFFFFFFF))
2556		flags |= RTF_HOST;
2557	flags |= RTF_UP;
2558	return flags;
2559}
2560
2561/*
2562 *	This outputs /proc/net/route.
2563 *	The format of the file is not supposed to be changed
2564 *	and needs to be same as fib_hash output to avoid breaking
2565 *	legacy utilities
2566 */
2567static int fib_route_seq_show(struct seq_file *seq, void *v)
2568{
2569	struct fib_route_iter *iter = seq->private;
2570	struct fib_table *tb = iter->main_tb;
2571	struct fib_alias *fa;
2572	struct key_vector *l = v;
2573	__be32 prefix;
2574
2575	if (v == SEQ_START_TOKEN) {
2576		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2577			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2578			   "\tWindow\tIRTT");
2579		return 0;
2580	}
2581
2582	prefix = htonl(l->key);
2583
2584	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2585		const struct fib_info *fi = fa->fa_info;
2586		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2587		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2588
2589		if ((fa->fa_type == RTN_BROADCAST) ||
2590		    (fa->fa_type == RTN_MULTICAST))
2591			continue;
2592
2593		if (fa->tb_id != tb->tb_id)
2594			continue;
2595
2596		seq_setwidth(seq, 127);
2597
2598		if (fi)
 
 
 
 
 
 
2599			seq_printf(seq,
2600				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2601				   "%d\t%08X\t%d\t%u\t%u",
2602				   fi->fib_dev ? fi->fib_dev->name : "*",
2603				   prefix,
2604				   fi->fib_nh->nh_gw, flags, 0, 0,
2605				   fi->fib_priority,
2606				   mask,
2607				   (fi->fib_advmss ?
2608				    fi->fib_advmss + 40 : 0),
2609				   fi->fib_window,
2610				   fi->fib_rtt >> 3);
2611		else
2612			seq_printf(seq,
2613				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2614				   "%d\t%08X\t%d\t%u\t%u",
2615				   prefix, 0, flags, 0, 0, 0,
2616				   mask, 0, 0, 0);
2617
2618		seq_pad(seq, '\n');
2619	}
2620
2621	return 0;
2622}
2623
2624static const struct seq_operations fib_route_seq_ops = {
2625	.start  = fib_route_seq_start,
2626	.next   = fib_route_seq_next,
2627	.stop   = fib_route_seq_stop,
2628	.show   = fib_route_seq_show,
2629};
2630
2631static int fib_route_seq_open(struct inode *inode, struct file *file)
2632{
2633	return seq_open_net(inode, file, &fib_route_seq_ops,
2634			    sizeof(struct fib_route_iter));
2635}
2636
2637static const struct file_operations fib_route_fops = {
2638	.owner  = THIS_MODULE,
2639	.open   = fib_route_seq_open,
2640	.read   = seq_read,
2641	.llseek = seq_lseek,
2642	.release = seq_release_net,
2643};
2644
2645int __net_init fib_proc_init(struct net *net)
2646{
2647	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
 
2648		goto out1;
2649
2650	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2651			 &fib_triestat_fops))
2652		goto out2;
2653
2654	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
 
2655		goto out3;
2656
2657	return 0;
2658
2659out3:
2660	remove_proc_entry("fib_triestat", net->proc_net);
2661out2:
2662	remove_proc_entry("fib_trie", net->proc_net);
2663out1:
2664	return -ENOMEM;
2665}
2666
2667void __net_exit fib_proc_exit(struct net *net)
2668{
2669	remove_proc_entry("fib_trie", net->proc_net);
2670	remove_proc_entry("fib_triestat", net->proc_net);
2671	remove_proc_entry("route", net->proc_net);
2672}
2673
2674#endif /* CONFIG_PROC_FS */