Linux Audio

Check our new training course

Loading...
v5.14.15
  1/*	Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
  2
  3	Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
  4	which also acknowledges contributions by Mike Burrows, David Wheeler,
  5	Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
  6	Robert Sedgewick, and Jon L. Bentley.
  7
  8	This code is licensed under the LGPLv2:
  9		LGPL (http://www.gnu.org/copyleft/lgpl.html
 10*/
 11
 12/*
 13	Size and speed optimizations by Manuel Novoa III  (mjn3@codepoet.org).
 14
 15	More efficient reading of Huffman codes, a streamlined read_bunzip()
 16	function, and various other tweaks.  In (limited) tests, approximately
 17	20% faster than bzcat on x86 and about 10% faster on arm.
 18
 19	Note that about 2/3 of the time is spent in read_unzip() reversing
 20	the Burrows-Wheeler transformation.  Much of that time is delay
 21	resulting from cache misses.
 22
 23	I would ask that anyone benefiting from this work, especially those
 24	using it in commercial products, consider making a donation to my local
 25	non-profit hospice organization in the name of the woman I loved, who
 26	passed away Feb. 12, 2003.
 27
 28		In memory of Toni W. Hagan
 29
 30		Hospice of Acadiana, Inc.
 31		2600 Johnston St., Suite 200
 32		Lafayette, LA 70503-3240
 33
 34		Phone (337) 232-1234 or 1-800-738-2226
 35		Fax   (337) 232-1297
 36
 37		https://www.hospiceacadiana.com/
 38
 39	Manuel
 40 */
 41
 42/*
 43	Made it fit for running in Linux Kernel by Alain Knaff (alain@knaff.lu)
 44*/
 45
 46
 47#ifdef STATIC
 48#define PREBOOT
 49#else
 50#include <linux/decompress/bunzip2.h>
 51#endif /* STATIC */
 52
 53#include <linux/decompress/mm.h>
 54#include <linux/crc32poly.h>
 55
 56#ifndef INT_MAX
 57#define INT_MAX 0x7fffffff
 58#endif
 59
 60/* Constants for Huffman coding */
 61#define MAX_GROUPS		6
 62#define GROUP_SIZE   		50	/* 64 would have been more efficient */
 63#define MAX_HUFCODE_BITS 	20	/* Longest Huffman code allowed */
 64#define MAX_SYMBOLS 		258	/* 256 literals + RUNA + RUNB */
 65#define SYMBOL_RUNA		0
 66#define SYMBOL_RUNB		1
 67
 68/* Status return values */
 69#define RETVAL_OK			0
 70#define RETVAL_LAST_BLOCK		(-1)
 71#define RETVAL_NOT_BZIP_DATA		(-2)
 72#define RETVAL_UNEXPECTED_INPUT_EOF	(-3)
 73#define RETVAL_UNEXPECTED_OUTPUT_EOF	(-4)
 74#define RETVAL_DATA_ERROR		(-5)
 75#define RETVAL_OUT_OF_MEMORY		(-6)
 76#define RETVAL_OBSOLETE_INPUT		(-7)
 77
 78/* Other housekeeping constants */
 79#define BZIP2_IOBUF_SIZE		4096
 80
 81/* This is what we know about each Huffman coding group */
 82struct group_data {
 83	/* We have an extra slot at the end of limit[] for a sentinel value. */
 84	int limit[MAX_HUFCODE_BITS+1];
 85	int base[MAX_HUFCODE_BITS];
 86	int permute[MAX_SYMBOLS];
 87	int minLen, maxLen;
 88};
 89
 90/* Structure holding all the housekeeping data, including IO buffers and
 91   memory that persists between calls to bunzip */
 92struct bunzip_data {
 93	/* State for interrupting output loop */
 94	int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent;
 95	/* I/O tracking data (file handles, buffers, positions, etc.) */
 96	long (*fill)(void*, unsigned long);
 97	long inbufCount, inbufPos /*, outbufPos*/;
 98	unsigned char *inbuf /*,*outbuf*/;
 99	unsigned int inbufBitCount, inbufBits;
100	/* The CRC values stored in the block header and calculated from the
101	data */
102	unsigned int crc32Table[256], headerCRC, totalCRC, writeCRC;
103	/* Intermediate buffer and its size (in bytes) */
104	unsigned int *dbuf, dbufSize;
105	/* These things are a bit too big to go on the stack */
106	unsigned char selectors[32768];		/* nSelectors = 15 bits */
107	struct group_data groups[MAX_GROUPS];	/* Huffman coding tables */
108	int io_error;			/* non-zero if we have IO error */
109	int byteCount[256];
110	unsigned char symToByte[256], mtfSymbol[256];
111};
112
113
114/* Return the next nnn bits of input.  All reads from the compressed input
115   are done through this function.  All reads are big endian */
116static unsigned int INIT get_bits(struct bunzip_data *bd, char bits_wanted)
117{
118	unsigned int bits = 0;
119
120	/* If we need to get more data from the byte buffer, do so.
121	   (Loop getting one byte at a time to enforce endianness and avoid
122	   unaligned access.) */
123	while (bd->inbufBitCount < bits_wanted) {
124		/* If we need to read more data from file into byte buffer, do
125		   so */
126		if (bd->inbufPos == bd->inbufCount) {
127			if (bd->io_error)
128				return 0;
129			bd->inbufCount = bd->fill(bd->inbuf, BZIP2_IOBUF_SIZE);
130			if (bd->inbufCount <= 0) {
131				bd->io_error = RETVAL_UNEXPECTED_INPUT_EOF;
132				return 0;
133			}
134			bd->inbufPos = 0;
135		}
136		/* Avoid 32-bit overflow (dump bit buffer to top of output) */
137		if (bd->inbufBitCount >= 24) {
138			bits = bd->inbufBits&((1 << bd->inbufBitCount)-1);
139			bits_wanted -= bd->inbufBitCount;
140			bits <<= bits_wanted;
141			bd->inbufBitCount = 0;
142		}
143		/* Grab next 8 bits of input from buffer. */
144		bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++];
145		bd->inbufBitCount += 8;
146	}
147	/* Calculate result */
148	bd->inbufBitCount -= bits_wanted;
149	bits |= (bd->inbufBits >> bd->inbufBitCount)&((1 << bits_wanted)-1);
150
151	return bits;
152}
153
154/* Unpacks the next block and sets up for the inverse burrows-wheeler step. */
155
156static int INIT get_next_block(struct bunzip_data *bd)
157{
158	struct group_data *hufGroup = NULL;
159	int *base = NULL;
160	int *limit = NULL;
161	int dbufCount, nextSym, dbufSize, groupCount, selector,
162		i, j, k, t, runPos, symCount, symTotal, nSelectors, *byteCount;
163	unsigned char uc, *symToByte, *mtfSymbol, *selectors;
164	unsigned int *dbuf, origPtr;
165
166	dbuf = bd->dbuf;
167	dbufSize = bd->dbufSize;
168	selectors = bd->selectors;
169	byteCount = bd->byteCount;
170	symToByte = bd->symToByte;
171	mtfSymbol = bd->mtfSymbol;
172
173	/* Read in header signature and CRC, then validate signature.
174	   (last block signature means CRC is for whole file, return now) */
175	i = get_bits(bd, 24);
176	j = get_bits(bd, 24);
177	bd->headerCRC = get_bits(bd, 32);
178	if ((i == 0x177245) && (j == 0x385090))
179		return RETVAL_LAST_BLOCK;
180	if ((i != 0x314159) || (j != 0x265359))
181		return RETVAL_NOT_BZIP_DATA;
182	/* We can add support for blockRandomised if anybody complains.
183	   There was some code for this in busybox 1.0.0-pre3, but nobody ever
184	   noticed that it didn't actually work. */
185	if (get_bits(bd, 1))
186		return RETVAL_OBSOLETE_INPUT;
187	origPtr = get_bits(bd, 24);
188	if (origPtr >= dbufSize)
189		return RETVAL_DATA_ERROR;
190	/* mapping table: if some byte values are never used (encoding things
191	   like ascii text), the compression code removes the gaps to have fewer
192	   symbols to deal with, and writes a sparse bitfield indicating which
193	   values were present.  We make a translation table to convert the
194	   symbols back to the corresponding bytes. */
195	t = get_bits(bd, 16);
196	symTotal = 0;
197	for (i = 0; i < 16; i++) {
198		if (t&(1 << (15-i))) {
199			k = get_bits(bd, 16);
200			for (j = 0; j < 16; j++)
201				if (k&(1 << (15-j)))
202					symToByte[symTotal++] = (16*i)+j;
203		}
204	}
205	/* How many different Huffman coding groups does this block use? */
206	groupCount = get_bits(bd, 3);
207	if (groupCount < 2 || groupCount > MAX_GROUPS)
208		return RETVAL_DATA_ERROR;
209	/* nSelectors: Every GROUP_SIZE many symbols we select a new
210	   Huffman coding group.  Read in the group selector list,
211	   which is stored as MTF encoded bit runs.  (MTF = Move To
212	   Front, as each value is used it's moved to the start of the
213	   list.) */
214	nSelectors = get_bits(bd, 15);
215	if (!nSelectors)
216		return RETVAL_DATA_ERROR;
217	for (i = 0; i < groupCount; i++)
218		mtfSymbol[i] = i;
219	for (i = 0; i < nSelectors; i++) {
220		/* Get next value */
221		for (j = 0; get_bits(bd, 1); j++)
222			if (j >= groupCount)
223				return RETVAL_DATA_ERROR;
224		/* Decode MTF to get the next selector */
225		uc = mtfSymbol[j];
226		for (; j; j--)
227			mtfSymbol[j] = mtfSymbol[j-1];
228		mtfSymbol[0] = selectors[i] = uc;
229	}
230	/* Read the Huffman coding tables for each group, which code
231	   for symTotal literal symbols, plus two run symbols (RUNA,
232	   RUNB) */
233	symCount = symTotal+2;
234	for (j = 0; j < groupCount; j++) {
235		unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1];
236		int	minLen,	maxLen, pp;
237		/* Read Huffman code lengths for each symbol.  They're
238		   stored in a way similar to mtf; record a starting
239		   value for the first symbol, and an offset from the
240		   previous value for everys symbol after that.
241		   (Subtracting 1 before the loop and then adding it
242		   back at the end is an optimization that makes the
243		   test inside the loop simpler: symbol length 0
244		   becomes negative, so an unsigned inequality catches
245		   it.) */
246		t = get_bits(bd, 5)-1;
247		for (i = 0; i < symCount; i++) {
248			for (;;) {
249				if (((unsigned)t) > (MAX_HUFCODE_BITS-1))
250					return RETVAL_DATA_ERROR;
251
252				/* If first bit is 0, stop.  Else
253				   second bit indicates whether to
254				   increment or decrement the value.
255				   Optimization: grab 2 bits and unget
256				   the second if the first was 0. */
257
258				k = get_bits(bd, 2);
259				if (k < 2) {
260					bd->inbufBitCount++;
261					break;
262				}
263				/* Add one if second bit 1, else
264				 * subtract 1.  Avoids if/else */
265				t += (((k+1)&2)-1);
266			}
267			/* Correct for the initial -1, to get the
268			 * final symbol length */
269			length[i] = t+1;
270		}
271		/* Find largest and smallest lengths in this group */
272		minLen = maxLen = length[0];
273
274		for (i = 1; i < symCount; i++) {
275			if (length[i] > maxLen)
276				maxLen = length[i];
277			else if (length[i] < minLen)
278				minLen = length[i];
279		}
280
281		/* Calculate permute[], base[], and limit[] tables from
282		 * length[].
283		 *
284		 * permute[] is the lookup table for converting
285		 * Huffman coded symbols into decoded symbols.  base[]
286		 * is the amount to subtract from the value of a
287		 * Huffman symbol of a given length when using
288		 * permute[].
289		 *
290		 * limit[] indicates the largest numerical value a
291		 * symbol with a given number of bits can have.  This
292		 * is how the Huffman codes can vary in length: each
293		 * code with a value > limit[length] needs another
294		 * bit.
295		 */
296		hufGroup = bd->groups+j;
297		hufGroup->minLen = minLen;
298		hufGroup->maxLen = maxLen;
299		/* Note that minLen can't be smaller than 1, so we
300		   adjust the base and limit array pointers so we're
301		   not always wasting the first entry.  We do this
302		   again when using them (during symbol decoding).*/
303		base = hufGroup->base-1;
304		limit = hufGroup->limit-1;
305		/* Calculate permute[].  Concurrently, initialize
306		 * temp[] and limit[]. */
307		pp = 0;
308		for (i = minLen; i <= maxLen; i++) {
309			temp[i] = limit[i] = 0;
310			for (t = 0; t < symCount; t++)
311				if (length[t] == i)
312					hufGroup->permute[pp++] = t;
313		}
314		/* Count symbols coded for at each bit length */
315		for (i = 0; i < symCount; i++)
316			temp[length[i]]++;
317		/* Calculate limit[] (the largest symbol-coding value
318		 *at each bit length, which is (previous limit <<
319		 *1)+symbols at this level), and base[] (number of
320		 *symbols to ignore at each bit length, which is limit
321		 *minus the cumulative count of symbols coded for
322		 *already). */
323		pp = t = 0;
324		for (i = minLen; i < maxLen; i++) {
325			pp += temp[i];
326			/* We read the largest possible symbol size
327			   and then unget bits after determining how
328			   many we need, and those extra bits could be
329			   set to anything.  (They're noise from
330			   future symbols.)  At each level we're
331			   really only interested in the first few
332			   bits, so here we set all the trailing
333			   to-be-ignored bits to 1 so they don't
334			   affect the value > limit[length]
335			   comparison. */
336			limit[i] = (pp << (maxLen - i)) - 1;
337			pp <<= 1;
338			base[i+1] = pp-(t += temp[i]);
339		}
340		limit[maxLen+1] = INT_MAX; /* Sentinel value for
341					    * reading next sym. */
342		limit[maxLen] = pp+temp[maxLen]-1;
343		base[minLen] = 0;
344	}
345	/* We've finished reading and digesting the block header.  Now
346	   read this block's Huffman coded symbols from the file and
347	   undo the Huffman coding and run length encoding, saving the
348	   result into dbuf[dbufCount++] = uc */
349
350	/* Initialize symbol occurrence counters and symbol Move To
351	 * Front table */
352	for (i = 0; i < 256; i++) {
353		byteCount[i] = 0;
354		mtfSymbol[i] = (unsigned char)i;
355	}
356	/* Loop through compressed symbols. */
357	runPos = dbufCount = symCount = selector = 0;
358	for (;;) {
359		/* Determine which Huffman coding group to use. */
360		if (!(symCount--)) {
361			symCount = GROUP_SIZE-1;
362			if (selector >= nSelectors)
363				return RETVAL_DATA_ERROR;
364			hufGroup = bd->groups+selectors[selector++];
365			base = hufGroup->base-1;
366			limit = hufGroup->limit-1;
367		}
368		/* Read next Huffman-coded symbol. */
369		/* Note: It is far cheaper to read maxLen bits and
370		   back up than it is to read minLen bits and then an
371		   additional bit at a time, testing as we go.
372		   Because there is a trailing last block (with file
373		   CRC), there is no danger of the overread causing an
374		   unexpected EOF for a valid compressed file.  As a
375		   further optimization, we do the read inline
376		   (falling back to a call to get_bits if the buffer
377		   runs dry).  The following (up to got_huff_bits:) is
378		   equivalent to j = get_bits(bd, hufGroup->maxLen);
379		 */
380		while (bd->inbufBitCount < hufGroup->maxLen) {
381			if (bd->inbufPos == bd->inbufCount) {
382				j = get_bits(bd, hufGroup->maxLen);
383				goto got_huff_bits;
384			}
385			bd->inbufBits =
386				(bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++];
387			bd->inbufBitCount += 8;
388		}
389		bd->inbufBitCount -= hufGroup->maxLen;
390		j = (bd->inbufBits >> bd->inbufBitCount)&
391			((1 << hufGroup->maxLen)-1);
392got_huff_bits:
393		/* Figure how many bits are in next symbol and
394		 * unget extras */
395		i = hufGroup->minLen;
396		while (j > limit[i])
397			++i;
398		bd->inbufBitCount += (hufGroup->maxLen - i);
399		/* Huffman decode value to get nextSym (with bounds checking) */
400		if ((i > hufGroup->maxLen)
401			|| (((unsigned)(j = (j>>(hufGroup->maxLen-i))-base[i]))
402				>= MAX_SYMBOLS))
403			return RETVAL_DATA_ERROR;
404		nextSym = hufGroup->permute[j];
405		/* We have now decoded the symbol, which indicates
406		   either a new literal byte, or a repeated run of the
407		   most recent literal byte.  First, check if nextSym
408		   indicates a repeated run, and if so loop collecting
409		   how many times to repeat the last literal. */
410		if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */
411			/* If this is the start of a new run, zero out
412			 * counter */
413			if (!runPos) {
414				runPos = 1;
415				t = 0;
416			}
417			/* Neat trick that saves 1 symbol: instead of
418			   or-ing 0 or 1 at each bit position, add 1
419			   or 2 instead.  For example, 1011 is 1 << 0
420			   + 1 << 1 + 2 << 2.  1010 is 2 << 0 + 2 << 1
421			   + 1 << 2.  You can make any bit pattern
422			   that way using 1 less symbol than the basic
423			   or 0/1 method (except all bits 0, which
424			   would use no symbols, but a run of length 0
425			   doesn't mean anything in this context).
426			   Thus space is saved. */
427			t += (runPos << nextSym);
428			/* +runPos if RUNA; +2*runPos if RUNB */
429
430			runPos <<= 1;
431			continue;
432		}
433		/* When we hit the first non-run symbol after a run,
434		   we now know how many times to repeat the last
435		   literal, so append that many copies to our buffer
436		   of decoded symbols (dbuf) now.  (The last literal
437		   used is the one at the head of the mtfSymbol
438		   array.) */
439		if (runPos) {
440			runPos = 0;
441			if (dbufCount+t >= dbufSize)
442				return RETVAL_DATA_ERROR;
443
444			uc = symToByte[mtfSymbol[0]];
445			byteCount[uc] += t;
446			while (t--)
447				dbuf[dbufCount++] = uc;
448		}
449		/* Is this the terminating symbol? */
450		if (nextSym > symTotal)
451			break;
452		/* At this point, nextSym indicates a new literal
453		   character.  Subtract one to get the position in the
454		   MTF array at which this literal is currently to be
455		   found.  (Note that the result can't be -1 or 0,
456		   because 0 and 1 are RUNA and RUNB.  But another
457		   instance of the first symbol in the mtf array,
458		   position 0, would have been handled as part of a
459		   run above.  Therefore 1 unused mtf position minus 2
460		   non-literal nextSym values equals -1.) */
461		if (dbufCount >= dbufSize)
462			return RETVAL_DATA_ERROR;
463		i = nextSym - 1;
464		uc = mtfSymbol[i];
465		/* Adjust the MTF array.  Since we typically expect to
466		 *move only a small number of symbols, and are bound
467		 *by 256 in any case, using memmove here would
468		 *typically be bigger and slower due to function call
469		 *overhead and other assorted setup costs. */
470		do {
471			mtfSymbol[i] = mtfSymbol[i-1];
472		} while (--i);
473		mtfSymbol[0] = uc;
474		uc = symToByte[uc];
475		/* We have our literal byte.  Save it into dbuf. */
476		byteCount[uc]++;
477		dbuf[dbufCount++] = (unsigned int)uc;
478	}
479	/* At this point, we've read all the Huffman-coded symbols
480	   (and repeated runs) for this block from the input stream,
481	   and decoded them into the intermediate buffer.  There are
482	   dbufCount many decoded bytes in dbuf[].  Now undo the
483	   Burrows-Wheeler transform on dbuf.  See
484	   http://dogma.net/markn/articles/bwt/bwt.htm
485	 */
486	/* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
487	j = 0;
488	for (i = 0; i < 256; i++) {
489		k = j+byteCount[i];
490		byteCount[i] = j;
491		j = k;
492	}
493	/* Figure out what order dbuf would be in if we sorted it. */
494	for (i = 0; i < dbufCount; i++) {
495		uc = (unsigned char)(dbuf[i] & 0xff);
496		dbuf[byteCount[uc]] |= (i << 8);
497		byteCount[uc]++;
498	}
499	/* Decode first byte by hand to initialize "previous" byte.
500	   Note that it doesn't get output, and if the first three
501	   characters are identical it doesn't qualify as a run (hence
502	   writeRunCountdown = 5). */
503	if (dbufCount) {
504		if (origPtr >= dbufCount)
505			return RETVAL_DATA_ERROR;
506		bd->writePos = dbuf[origPtr];
507		bd->writeCurrent = (unsigned char)(bd->writePos&0xff);
508		bd->writePos >>= 8;
509		bd->writeRunCountdown = 5;
510	}
511	bd->writeCount = dbufCount;
512
513	return RETVAL_OK;
514}
515
516/* Undo burrows-wheeler transform on intermediate buffer to produce output.
517   If start_bunzip was initialized with out_fd =-1, then up to len bytes of
518   data are written to outbuf.  Return value is number of bytes written or
519   error (all errors are negative numbers).  If out_fd!=-1, outbuf and len
520   are ignored, data is written to out_fd and return is RETVAL_OK or error.
521*/
522
523static int INIT read_bunzip(struct bunzip_data *bd, char *outbuf, int len)
524{
525	const unsigned int *dbuf;
526	int pos, xcurrent, previous, gotcount;
527
528	/* If last read was short due to end of file, return last block now */
529	if (bd->writeCount < 0)
530		return bd->writeCount;
531
532	gotcount = 0;
533	dbuf = bd->dbuf;
534	pos = bd->writePos;
535	xcurrent = bd->writeCurrent;
536
537	/* We will always have pending decoded data to write into the output
538	   buffer unless this is the very first call (in which case we haven't
539	   Huffman-decoded a block into the intermediate buffer yet). */
540
541	if (bd->writeCopies) {
542		/* Inside the loop, writeCopies means extra copies (beyond 1) */
543		--bd->writeCopies;
544		/* Loop outputting bytes */
545		for (;;) {
546			/* If the output buffer is full, snapshot
547			 * state and return */
548			if (gotcount >= len) {
549				bd->writePos = pos;
550				bd->writeCurrent = xcurrent;
551				bd->writeCopies++;
552				return len;
553			}
554			/* Write next byte into output buffer, updating CRC */
555			outbuf[gotcount++] = xcurrent;
556			bd->writeCRC = (((bd->writeCRC) << 8)
557				^bd->crc32Table[((bd->writeCRC) >> 24)
558				^xcurrent]);
559			/* Loop now if we're outputting multiple
560			 * copies of this byte */
561			if (bd->writeCopies) {
562				--bd->writeCopies;
563				continue;
564			}
565decode_next_byte:
566			if (!bd->writeCount--)
567				break;
568			/* Follow sequence vector to undo
569			 * Burrows-Wheeler transform */
570			previous = xcurrent;
571			pos = dbuf[pos];
572			xcurrent = pos&0xff;
573			pos >>= 8;
574			/* After 3 consecutive copies of the same
575			   byte, the 4th is a repeat count.  We count
576			   down from 4 instead *of counting up because
577			   testing for non-zero is faster */
578			if (--bd->writeRunCountdown) {
579				if (xcurrent != previous)
580					bd->writeRunCountdown = 4;
581			} else {
582				/* We have a repeated run, this byte
583				 * indicates the count */
584				bd->writeCopies = xcurrent;
585				xcurrent = previous;
586				bd->writeRunCountdown = 5;
587				/* Sometimes there are just 3 bytes
588				 * (run length 0) */
589				if (!bd->writeCopies)
590					goto decode_next_byte;
591				/* Subtract the 1 copy we'd output
592				 * anyway to get extras */
593				--bd->writeCopies;
594			}
595		}
596		/* Decompression of this block completed successfully */
597		bd->writeCRC = ~bd->writeCRC;
598		bd->totalCRC = ((bd->totalCRC << 1) |
599				(bd->totalCRC >> 31)) ^ bd->writeCRC;
600		/* If this block had a CRC error, force file level CRC error. */
601		if (bd->writeCRC != bd->headerCRC) {
602			bd->totalCRC = bd->headerCRC+1;
603			return RETVAL_LAST_BLOCK;
604		}
605	}
606
607	/* Refill the intermediate buffer by Huffman-decoding next
608	 * block of input */
609	/* (previous is just a convenient unused temp variable here) */
610	previous = get_next_block(bd);
611	if (previous) {
612		bd->writeCount = previous;
613		return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount;
614	}
615	bd->writeCRC = 0xffffffffUL;
616	pos = bd->writePos;
617	xcurrent = bd->writeCurrent;
618	goto decode_next_byte;
619}
620
621static long INIT nofill(void *buf, unsigned long len)
622{
623	return -1;
624}
625
626/* Allocate the structure, read file header.  If in_fd ==-1, inbuf must contain
627   a complete bunzip file (len bytes long).  If in_fd!=-1, inbuf and len are
628   ignored, and data is read from file handle into temporary buffer. */
629static int INIT start_bunzip(struct bunzip_data **bdp, void *inbuf, long len,
630			     long (*fill)(void*, unsigned long))
631{
632	struct bunzip_data *bd;
633	unsigned int i, j, c;
634	const unsigned int BZh0 =
635		(((unsigned int)'B') << 24)+(((unsigned int)'Z') << 16)
636		+(((unsigned int)'h') << 8)+(unsigned int)'0';
637
638	/* Figure out how much data to allocate */
639	i = sizeof(struct bunzip_data);
640
641	/* Allocate bunzip_data.  Most fields initialize to zero. */
642	bd = *bdp = malloc(i);
643	if (!bd)
644		return RETVAL_OUT_OF_MEMORY;
645	memset(bd, 0, sizeof(struct bunzip_data));
646	/* Setup input buffer */
647	bd->inbuf = inbuf;
648	bd->inbufCount = len;
649	if (fill != NULL)
650		bd->fill = fill;
651	else
652		bd->fill = nofill;
653
654	/* Init the CRC32 table (big endian) */
655	for (i = 0; i < 256; i++) {
656		c = i << 24;
657		for (j = 8; j; j--)
658			c = c&0x80000000 ? (c << 1)^(CRC32_POLY_BE) : (c << 1);
659		bd->crc32Table[i] = c;
660	}
661
662	/* Ensure that file starts with "BZh['1'-'9']." */
663	i = get_bits(bd, 32);
664	if (((unsigned int)(i-BZh0-1)) >= 9)
665		return RETVAL_NOT_BZIP_DATA;
666
667	/* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of
668	   uncompressed data.  Allocate intermediate buffer for block. */
669	bd->dbufSize = 100000*(i-BZh0);
670
671	bd->dbuf = large_malloc(bd->dbufSize * sizeof(int));
672	if (!bd->dbuf)
673		return RETVAL_OUT_OF_MEMORY;
674	return RETVAL_OK;
675}
676
677/* Example usage: decompress src_fd to dst_fd.  (Stops at end of bzip2 data,
678   not end of file.) */
679STATIC int INIT bunzip2(unsigned char *buf, long len,
680			long (*fill)(void*, unsigned long),
681			long (*flush)(void*, unsigned long),
682			unsigned char *outbuf,
683			long *pos,
684			void(*error)(char *x))
685{
686	struct bunzip_data *bd;
687	int i = -1;
688	unsigned char *inbuf;
689
690	if (flush)
691		outbuf = malloc(BZIP2_IOBUF_SIZE);
692
693	if (!outbuf) {
694		error("Could not allocate output buffer");
695		return RETVAL_OUT_OF_MEMORY;
696	}
697	if (buf)
698		inbuf = buf;
699	else
700		inbuf = malloc(BZIP2_IOBUF_SIZE);
701	if (!inbuf) {
702		error("Could not allocate input buffer");
703		i = RETVAL_OUT_OF_MEMORY;
704		goto exit_0;
705	}
706	i = start_bunzip(&bd, inbuf, len, fill);
707	if (!i) {
708		for (;;) {
709			i = read_bunzip(bd, outbuf, BZIP2_IOBUF_SIZE);
710			if (i <= 0)
711				break;
712			if (!flush)
713				outbuf += i;
714			else
715				if (i != flush(outbuf, i)) {
716					i = RETVAL_UNEXPECTED_OUTPUT_EOF;
717					break;
718				}
719		}
720	}
721	/* Check CRC and release memory */
722	if (i == RETVAL_LAST_BLOCK) {
723		if (bd->headerCRC != bd->totalCRC)
724			error("Data integrity error when decompressing.");
725		else
726			i = RETVAL_OK;
727	} else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) {
728		error("Compressed file ends unexpectedly");
729	}
730	if (!bd)
731		goto exit_1;
732	if (bd->dbuf)
733		large_free(bd->dbuf);
734	if (pos)
735		*pos = bd->inbufPos;
736	free(bd);
737exit_1:
738	if (!buf)
739		free(inbuf);
740exit_0:
741	if (flush)
742		free(outbuf);
743	return i;
744}
745
746#ifdef PREBOOT
747STATIC int INIT __decompress(unsigned char *buf, long len,
748			long (*fill)(void*, unsigned long),
749			long (*flush)(void*, unsigned long),
750			unsigned char *outbuf, long olen,
751			long *pos,
752			void (*error)(char *x))
753{
754	return bunzip2(buf, len - 4, fill, flush, outbuf, pos, error);
755}
756#endif
v4.6
  1/*	Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
  2
  3	Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
  4	which also acknowledges contributions by Mike Burrows, David Wheeler,
  5	Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
  6	Robert Sedgewick, and Jon L. Bentley.
  7
  8	This code is licensed under the LGPLv2:
  9		LGPL (http://www.gnu.org/copyleft/lgpl.html
 10*/
 11
 12/*
 13	Size and speed optimizations by Manuel Novoa III  (mjn3@codepoet.org).
 14
 15	More efficient reading of Huffman codes, a streamlined read_bunzip()
 16	function, and various other tweaks.  In (limited) tests, approximately
 17	20% faster than bzcat on x86 and about 10% faster on arm.
 18
 19	Note that about 2/3 of the time is spent in read_unzip() reversing
 20	the Burrows-Wheeler transformation.  Much of that time is delay
 21	resulting from cache misses.
 22
 23	I would ask that anyone benefiting from this work, especially those
 24	using it in commercial products, consider making a donation to my local
 25	non-profit hospice organization in the name of the woman I loved, who
 26	passed away Feb. 12, 2003.
 27
 28		In memory of Toni W. Hagan
 29
 30		Hospice of Acadiana, Inc.
 31		2600 Johnston St., Suite 200
 32		Lafayette, LA 70503-3240
 33
 34		Phone (337) 232-1234 or 1-800-738-2226
 35		Fax   (337) 232-1297
 36
 37		http://www.hospiceacadiana.com/
 38
 39	Manuel
 40 */
 41
 42/*
 43	Made it fit for running in Linux Kernel by Alain Knaff (alain@knaff.lu)
 44*/
 45
 46
 47#ifdef STATIC
 48#define PREBOOT
 49#else
 50#include <linux/decompress/bunzip2.h>
 51#endif /* STATIC */
 52
 53#include <linux/decompress/mm.h>
 
 54
 55#ifndef INT_MAX
 56#define INT_MAX 0x7fffffff
 57#endif
 58
 59/* Constants for Huffman coding */
 60#define MAX_GROUPS		6
 61#define GROUP_SIZE   		50	/* 64 would have been more efficient */
 62#define MAX_HUFCODE_BITS 	20	/* Longest Huffman code allowed */
 63#define MAX_SYMBOLS 		258	/* 256 literals + RUNA + RUNB */
 64#define SYMBOL_RUNA		0
 65#define SYMBOL_RUNB		1
 66
 67/* Status return values */
 68#define RETVAL_OK			0
 69#define RETVAL_LAST_BLOCK		(-1)
 70#define RETVAL_NOT_BZIP_DATA		(-2)
 71#define RETVAL_UNEXPECTED_INPUT_EOF	(-3)
 72#define RETVAL_UNEXPECTED_OUTPUT_EOF	(-4)
 73#define RETVAL_DATA_ERROR		(-5)
 74#define RETVAL_OUT_OF_MEMORY		(-6)
 75#define RETVAL_OBSOLETE_INPUT		(-7)
 76
 77/* Other housekeeping constants */
 78#define BZIP2_IOBUF_SIZE		4096
 79
 80/* This is what we know about each Huffman coding group */
 81struct group_data {
 82	/* We have an extra slot at the end of limit[] for a sentinal value. */
 83	int limit[MAX_HUFCODE_BITS+1];
 84	int base[MAX_HUFCODE_BITS];
 85	int permute[MAX_SYMBOLS];
 86	int minLen, maxLen;
 87};
 88
 89/* Structure holding all the housekeeping data, including IO buffers and
 90   memory that persists between calls to bunzip */
 91struct bunzip_data {
 92	/* State for interrupting output loop */
 93	int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent;
 94	/* I/O tracking data (file handles, buffers, positions, etc.) */
 95	long (*fill)(void*, unsigned long);
 96	long inbufCount, inbufPos /*, outbufPos*/;
 97	unsigned char *inbuf /*,*outbuf*/;
 98	unsigned int inbufBitCount, inbufBits;
 99	/* The CRC values stored in the block header and calculated from the
100	data */
101	unsigned int crc32Table[256], headerCRC, totalCRC, writeCRC;
102	/* Intermediate buffer and its size (in bytes) */
103	unsigned int *dbuf, dbufSize;
104	/* These things are a bit too big to go on the stack */
105	unsigned char selectors[32768];		/* nSelectors = 15 bits */
106	struct group_data groups[MAX_GROUPS];	/* Huffman coding tables */
107	int io_error;			/* non-zero if we have IO error */
108	int byteCount[256];
109	unsigned char symToByte[256], mtfSymbol[256];
110};
111
112
113/* Return the next nnn bits of input.  All reads from the compressed input
114   are done through this function.  All reads are big endian */
115static unsigned int INIT get_bits(struct bunzip_data *bd, char bits_wanted)
116{
117	unsigned int bits = 0;
118
119	/* If we need to get more data from the byte buffer, do so.
120	   (Loop getting one byte at a time to enforce endianness and avoid
121	   unaligned access.) */
122	while (bd->inbufBitCount < bits_wanted) {
123		/* If we need to read more data from file into byte buffer, do
124		   so */
125		if (bd->inbufPos == bd->inbufCount) {
126			if (bd->io_error)
127				return 0;
128			bd->inbufCount = bd->fill(bd->inbuf, BZIP2_IOBUF_SIZE);
129			if (bd->inbufCount <= 0) {
130				bd->io_error = RETVAL_UNEXPECTED_INPUT_EOF;
131				return 0;
132			}
133			bd->inbufPos = 0;
134		}
135		/* Avoid 32-bit overflow (dump bit buffer to top of output) */
136		if (bd->inbufBitCount >= 24) {
137			bits = bd->inbufBits&((1 << bd->inbufBitCount)-1);
138			bits_wanted -= bd->inbufBitCount;
139			bits <<= bits_wanted;
140			bd->inbufBitCount = 0;
141		}
142		/* Grab next 8 bits of input from buffer. */
143		bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++];
144		bd->inbufBitCount += 8;
145	}
146	/* Calculate result */
147	bd->inbufBitCount -= bits_wanted;
148	bits |= (bd->inbufBits >> bd->inbufBitCount)&((1 << bits_wanted)-1);
149
150	return bits;
151}
152
153/* Unpacks the next block and sets up for the inverse burrows-wheeler step. */
154
155static int INIT get_next_block(struct bunzip_data *bd)
156{
157	struct group_data *hufGroup = NULL;
158	int *base = NULL;
159	int *limit = NULL;
160	int dbufCount, nextSym, dbufSize, groupCount, selector,
161		i, j, k, t, runPos, symCount, symTotal, nSelectors, *byteCount;
162	unsigned char uc, *symToByte, *mtfSymbol, *selectors;
163	unsigned int *dbuf, origPtr;
164
165	dbuf = bd->dbuf;
166	dbufSize = bd->dbufSize;
167	selectors = bd->selectors;
168	byteCount = bd->byteCount;
169	symToByte = bd->symToByte;
170	mtfSymbol = bd->mtfSymbol;
171
172	/* Read in header signature and CRC, then validate signature.
173	   (last block signature means CRC is for whole file, return now) */
174	i = get_bits(bd, 24);
175	j = get_bits(bd, 24);
176	bd->headerCRC = get_bits(bd, 32);
177	if ((i == 0x177245) && (j == 0x385090))
178		return RETVAL_LAST_BLOCK;
179	if ((i != 0x314159) || (j != 0x265359))
180		return RETVAL_NOT_BZIP_DATA;
181	/* We can add support for blockRandomised if anybody complains.
182	   There was some code for this in busybox 1.0.0-pre3, but nobody ever
183	   noticed that it didn't actually work. */
184	if (get_bits(bd, 1))
185		return RETVAL_OBSOLETE_INPUT;
186	origPtr = get_bits(bd, 24);
187	if (origPtr >= dbufSize)
188		return RETVAL_DATA_ERROR;
189	/* mapping table: if some byte values are never used (encoding things
190	   like ascii text), the compression code removes the gaps to have fewer
191	   symbols to deal with, and writes a sparse bitfield indicating which
192	   values were present.  We make a translation table to convert the
193	   symbols back to the corresponding bytes. */
194	t = get_bits(bd, 16);
195	symTotal = 0;
196	for (i = 0; i < 16; i++) {
197		if (t&(1 << (15-i))) {
198			k = get_bits(bd, 16);
199			for (j = 0; j < 16; j++)
200				if (k&(1 << (15-j)))
201					symToByte[symTotal++] = (16*i)+j;
202		}
203	}
204	/* How many different Huffman coding groups does this block use? */
205	groupCount = get_bits(bd, 3);
206	if (groupCount < 2 || groupCount > MAX_GROUPS)
207		return RETVAL_DATA_ERROR;
208	/* nSelectors: Every GROUP_SIZE many symbols we select a new
209	   Huffman coding group.  Read in the group selector list,
210	   which is stored as MTF encoded bit runs.  (MTF = Move To
211	   Front, as each value is used it's moved to the start of the
212	   list.) */
213	nSelectors = get_bits(bd, 15);
214	if (!nSelectors)
215		return RETVAL_DATA_ERROR;
216	for (i = 0; i < groupCount; i++)
217		mtfSymbol[i] = i;
218	for (i = 0; i < nSelectors; i++) {
219		/* Get next value */
220		for (j = 0; get_bits(bd, 1); j++)
221			if (j >= groupCount)
222				return RETVAL_DATA_ERROR;
223		/* Decode MTF to get the next selector */
224		uc = mtfSymbol[j];
225		for (; j; j--)
226			mtfSymbol[j] = mtfSymbol[j-1];
227		mtfSymbol[0] = selectors[i] = uc;
228	}
229	/* Read the Huffman coding tables for each group, which code
230	   for symTotal literal symbols, plus two run symbols (RUNA,
231	   RUNB) */
232	symCount = symTotal+2;
233	for (j = 0; j < groupCount; j++) {
234		unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1];
235		int	minLen,	maxLen, pp;
236		/* Read Huffman code lengths for each symbol.  They're
237		   stored in a way similar to mtf; record a starting
238		   value for the first symbol, and an offset from the
239		   previous value for everys symbol after that.
240		   (Subtracting 1 before the loop and then adding it
241		   back at the end is an optimization that makes the
242		   test inside the loop simpler: symbol length 0
243		   becomes negative, so an unsigned inequality catches
244		   it.) */
245		t = get_bits(bd, 5)-1;
246		for (i = 0; i < symCount; i++) {
247			for (;;) {
248				if (((unsigned)t) > (MAX_HUFCODE_BITS-1))
249					return RETVAL_DATA_ERROR;
250
251				/* If first bit is 0, stop.  Else
252				   second bit indicates whether to
253				   increment or decrement the value.
254				   Optimization: grab 2 bits and unget
255				   the second if the first was 0. */
256
257				k = get_bits(bd, 2);
258				if (k < 2) {
259					bd->inbufBitCount++;
260					break;
261				}
262				/* Add one if second bit 1, else
263				 * subtract 1.  Avoids if/else */
264				t += (((k+1)&2)-1);
265			}
266			/* Correct for the initial -1, to get the
267			 * final symbol length */
268			length[i] = t+1;
269		}
270		/* Find largest and smallest lengths in this group */
271		minLen = maxLen = length[0];
272
273		for (i = 1; i < symCount; i++) {
274			if (length[i] > maxLen)
275				maxLen = length[i];
276			else if (length[i] < minLen)
277				minLen = length[i];
278		}
279
280		/* Calculate permute[], base[], and limit[] tables from
281		 * length[].
282		 *
283		 * permute[] is the lookup table for converting
284		 * Huffman coded symbols into decoded symbols.  base[]
285		 * is the amount to subtract from the value of a
286		 * Huffman symbol of a given length when using
287		 * permute[].
288		 *
289		 * limit[] indicates the largest numerical value a
290		 * symbol with a given number of bits can have.  This
291		 * is how the Huffman codes can vary in length: each
292		 * code with a value > limit[length] needs another
293		 * bit.
294		 */
295		hufGroup = bd->groups+j;
296		hufGroup->minLen = minLen;
297		hufGroup->maxLen = maxLen;
298		/* Note that minLen can't be smaller than 1, so we
299		   adjust the base and limit array pointers so we're
300		   not always wasting the first entry.  We do this
301		   again when using them (during symbol decoding).*/
302		base = hufGroup->base-1;
303		limit = hufGroup->limit-1;
304		/* Calculate permute[].  Concurrently, initialize
305		 * temp[] and limit[]. */
306		pp = 0;
307		for (i = minLen; i <= maxLen; i++) {
308			temp[i] = limit[i] = 0;
309			for (t = 0; t < symCount; t++)
310				if (length[t] == i)
311					hufGroup->permute[pp++] = t;
312		}
313		/* Count symbols coded for at each bit length */
314		for (i = 0; i < symCount; i++)
315			temp[length[i]]++;
316		/* Calculate limit[] (the largest symbol-coding value
317		 *at each bit length, which is (previous limit <<
318		 *1)+symbols at this level), and base[] (number of
319		 *symbols to ignore at each bit length, which is limit
320		 *minus the cumulative count of symbols coded for
321		 *already). */
322		pp = t = 0;
323		for (i = minLen; i < maxLen; i++) {
324			pp += temp[i];
325			/* We read the largest possible symbol size
326			   and then unget bits after determining how
327			   many we need, and those extra bits could be
328			   set to anything.  (They're noise from
329			   future symbols.)  At each level we're
330			   really only interested in the first few
331			   bits, so here we set all the trailing
332			   to-be-ignored bits to 1 so they don't
333			   affect the value > limit[length]
334			   comparison. */
335			limit[i] = (pp << (maxLen - i)) - 1;
336			pp <<= 1;
337			base[i+1] = pp-(t += temp[i]);
338		}
339		limit[maxLen+1] = INT_MAX; /* Sentinal value for
340					    * reading next sym. */
341		limit[maxLen] = pp+temp[maxLen]-1;
342		base[minLen] = 0;
343	}
344	/* We've finished reading and digesting the block header.  Now
345	   read this block's Huffman coded symbols from the file and
346	   undo the Huffman coding and run length encoding, saving the
347	   result into dbuf[dbufCount++] = uc */
348
349	/* Initialize symbol occurrence counters and symbol Move To
350	 * Front table */
351	for (i = 0; i < 256; i++) {
352		byteCount[i] = 0;
353		mtfSymbol[i] = (unsigned char)i;
354	}
355	/* Loop through compressed symbols. */
356	runPos = dbufCount = symCount = selector = 0;
357	for (;;) {
358		/* Determine which Huffman coding group to use. */
359		if (!(symCount--)) {
360			symCount = GROUP_SIZE-1;
361			if (selector >= nSelectors)
362				return RETVAL_DATA_ERROR;
363			hufGroup = bd->groups+selectors[selector++];
364			base = hufGroup->base-1;
365			limit = hufGroup->limit-1;
366		}
367		/* Read next Huffman-coded symbol. */
368		/* Note: It is far cheaper to read maxLen bits and
369		   back up than it is to read minLen bits and then an
370		   additional bit at a time, testing as we go.
371		   Because there is a trailing last block (with file
372		   CRC), there is no danger of the overread causing an
373		   unexpected EOF for a valid compressed file.  As a
374		   further optimization, we do the read inline
375		   (falling back to a call to get_bits if the buffer
376		   runs dry).  The following (up to got_huff_bits:) is
377		   equivalent to j = get_bits(bd, hufGroup->maxLen);
378		 */
379		while (bd->inbufBitCount < hufGroup->maxLen) {
380			if (bd->inbufPos == bd->inbufCount) {
381				j = get_bits(bd, hufGroup->maxLen);
382				goto got_huff_bits;
383			}
384			bd->inbufBits =
385				(bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++];
386			bd->inbufBitCount += 8;
387		};
388		bd->inbufBitCount -= hufGroup->maxLen;
389		j = (bd->inbufBits >> bd->inbufBitCount)&
390			((1 << hufGroup->maxLen)-1);
391got_huff_bits:
392		/* Figure how how many bits are in next symbol and
393		 * unget extras */
394		i = hufGroup->minLen;
395		while (j > limit[i])
396			++i;
397		bd->inbufBitCount += (hufGroup->maxLen - i);
398		/* Huffman decode value to get nextSym (with bounds checking) */
399		if ((i > hufGroup->maxLen)
400			|| (((unsigned)(j = (j>>(hufGroup->maxLen-i))-base[i]))
401				>= MAX_SYMBOLS))
402			return RETVAL_DATA_ERROR;
403		nextSym = hufGroup->permute[j];
404		/* We have now decoded the symbol, which indicates
405		   either a new literal byte, or a repeated run of the
406		   most recent literal byte.  First, check if nextSym
407		   indicates a repeated run, and if so loop collecting
408		   how many times to repeat the last literal. */
409		if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */
410			/* If this is the start of a new run, zero out
411			 * counter */
412			if (!runPos) {
413				runPos = 1;
414				t = 0;
415			}
416			/* Neat trick that saves 1 symbol: instead of
417			   or-ing 0 or 1 at each bit position, add 1
418			   or 2 instead.  For example, 1011 is 1 << 0
419			   + 1 << 1 + 2 << 2.  1010 is 2 << 0 + 2 << 1
420			   + 1 << 2.  You can make any bit pattern
421			   that way using 1 less symbol than the basic
422			   or 0/1 method (except all bits 0, which
423			   would use no symbols, but a run of length 0
424			   doesn't mean anything in this context).
425			   Thus space is saved. */
426			t += (runPos << nextSym);
427			/* +runPos if RUNA; +2*runPos if RUNB */
428
429			runPos <<= 1;
430			continue;
431		}
432		/* When we hit the first non-run symbol after a run,
433		   we now know how many times to repeat the last
434		   literal, so append that many copies to our buffer
435		   of decoded symbols (dbuf) now.  (The last literal
436		   used is the one at the head of the mtfSymbol
437		   array.) */
438		if (runPos) {
439			runPos = 0;
440			if (dbufCount+t >= dbufSize)
441				return RETVAL_DATA_ERROR;
442
443			uc = symToByte[mtfSymbol[0]];
444			byteCount[uc] += t;
445			while (t--)
446				dbuf[dbufCount++] = uc;
447		}
448		/* Is this the terminating symbol? */
449		if (nextSym > symTotal)
450			break;
451		/* At this point, nextSym indicates a new literal
452		   character.  Subtract one to get the position in the
453		   MTF array at which this literal is currently to be
454		   found.  (Note that the result can't be -1 or 0,
455		   because 0 and 1 are RUNA and RUNB.  But another
456		   instance of the first symbol in the mtf array,
457		   position 0, would have been handled as part of a
458		   run above.  Therefore 1 unused mtf position minus 2
459		   non-literal nextSym values equals -1.) */
460		if (dbufCount >= dbufSize)
461			return RETVAL_DATA_ERROR;
462		i = nextSym - 1;
463		uc = mtfSymbol[i];
464		/* Adjust the MTF array.  Since we typically expect to
465		 *move only a small number of symbols, and are bound
466		 *by 256 in any case, using memmove here would
467		 *typically be bigger and slower due to function call
468		 *overhead and other assorted setup costs. */
469		do {
470			mtfSymbol[i] = mtfSymbol[i-1];
471		} while (--i);
472		mtfSymbol[0] = uc;
473		uc = symToByte[uc];
474		/* We have our literal byte.  Save it into dbuf. */
475		byteCount[uc]++;
476		dbuf[dbufCount++] = (unsigned int)uc;
477	}
478	/* At this point, we've read all the Huffman-coded symbols
479	   (and repeated runs) for this block from the input stream,
480	   and decoded them into the intermediate buffer.  There are
481	   dbufCount many decoded bytes in dbuf[].  Now undo the
482	   Burrows-Wheeler transform on dbuf.  See
483	   http://dogma.net/markn/articles/bwt/bwt.htm
484	 */
485	/* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
486	j = 0;
487	for (i = 0; i < 256; i++) {
488		k = j+byteCount[i];
489		byteCount[i] = j;
490		j = k;
491	}
492	/* Figure out what order dbuf would be in if we sorted it. */
493	for (i = 0; i < dbufCount; i++) {
494		uc = (unsigned char)(dbuf[i] & 0xff);
495		dbuf[byteCount[uc]] |= (i << 8);
496		byteCount[uc]++;
497	}
498	/* Decode first byte by hand to initialize "previous" byte.
499	   Note that it doesn't get output, and if the first three
500	   characters are identical it doesn't qualify as a run (hence
501	   writeRunCountdown = 5). */
502	if (dbufCount) {
503		if (origPtr >= dbufCount)
504			return RETVAL_DATA_ERROR;
505		bd->writePos = dbuf[origPtr];
506		bd->writeCurrent = (unsigned char)(bd->writePos&0xff);
507		bd->writePos >>= 8;
508		bd->writeRunCountdown = 5;
509	}
510	bd->writeCount = dbufCount;
511
512	return RETVAL_OK;
513}
514
515/* Undo burrows-wheeler transform on intermediate buffer to produce output.
516   If start_bunzip was initialized with out_fd =-1, then up to len bytes of
517   data are written to outbuf.  Return value is number of bytes written or
518   error (all errors are negative numbers).  If out_fd!=-1, outbuf and len
519   are ignored, data is written to out_fd and return is RETVAL_OK or error.
520*/
521
522static int INIT read_bunzip(struct bunzip_data *bd, char *outbuf, int len)
523{
524	const unsigned int *dbuf;
525	int pos, xcurrent, previous, gotcount;
526
527	/* If last read was short due to end of file, return last block now */
528	if (bd->writeCount < 0)
529		return bd->writeCount;
530
531	gotcount = 0;
532	dbuf = bd->dbuf;
533	pos = bd->writePos;
534	xcurrent = bd->writeCurrent;
535
536	/* We will always have pending decoded data to write into the output
537	   buffer unless this is the very first call (in which case we haven't
538	   Huffman-decoded a block into the intermediate buffer yet). */
539
540	if (bd->writeCopies) {
541		/* Inside the loop, writeCopies means extra copies (beyond 1) */
542		--bd->writeCopies;
543		/* Loop outputting bytes */
544		for (;;) {
545			/* If the output buffer is full, snapshot
546			 * state and return */
547			if (gotcount >= len) {
548				bd->writePos = pos;
549				bd->writeCurrent = xcurrent;
550				bd->writeCopies++;
551				return len;
552			}
553			/* Write next byte into output buffer, updating CRC */
554			outbuf[gotcount++] = xcurrent;
555			bd->writeCRC = (((bd->writeCRC) << 8)
556				^bd->crc32Table[((bd->writeCRC) >> 24)
557				^xcurrent]);
558			/* Loop now if we're outputting multiple
559			 * copies of this byte */
560			if (bd->writeCopies) {
561				--bd->writeCopies;
562				continue;
563			}
564decode_next_byte:
565			if (!bd->writeCount--)
566				break;
567			/* Follow sequence vector to undo
568			 * Burrows-Wheeler transform */
569			previous = xcurrent;
570			pos = dbuf[pos];
571			xcurrent = pos&0xff;
572			pos >>= 8;
573			/* After 3 consecutive copies of the same
574			   byte, the 4th is a repeat count.  We count
575			   down from 4 instead *of counting up because
576			   testing for non-zero is faster */
577			if (--bd->writeRunCountdown) {
578				if (xcurrent != previous)
579					bd->writeRunCountdown = 4;
580			} else {
581				/* We have a repeated run, this byte
582				 * indicates the count */
583				bd->writeCopies = xcurrent;
584				xcurrent = previous;
585				bd->writeRunCountdown = 5;
586				/* Sometimes there are just 3 bytes
587				 * (run length 0) */
588				if (!bd->writeCopies)
589					goto decode_next_byte;
590				/* Subtract the 1 copy we'd output
591				 * anyway to get extras */
592				--bd->writeCopies;
593			}
594		}
595		/* Decompression of this block completed successfully */
596		bd->writeCRC = ~bd->writeCRC;
597		bd->totalCRC = ((bd->totalCRC << 1) |
598				(bd->totalCRC >> 31)) ^ bd->writeCRC;
599		/* If this block had a CRC error, force file level CRC error. */
600		if (bd->writeCRC != bd->headerCRC) {
601			bd->totalCRC = bd->headerCRC+1;
602			return RETVAL_LAST_BLOCK;
603		}
604	}
605
606	/* Refill the intermediate buffer by Huffman-decoding next
607	 * block of input */
608	/* (previous is just a convenient unused temp variable here) */
609	previous = get_next_block(bd);
610	if (previous) {
611		bd->writeCount = previous;
612		return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount;
613	}
614	bd->writeCRC = 0xffffffffUL;
615	pos = bd->writePos;
616	xcurrent = bd->writeCurrent;
617	goto decode_next_byte;
618}
619
620static long INIT nofill(void *buf, unsigned long len)
621{
622	return -1;
623}
624
625/* Allocate the structure, read file header.  If in_fd ==-1, inbuf must contain
626   a complete bunzip file (len bytes long).  If in_fd!=-1, inbuf and len are
627   ignored, and data is read from file handle into temporary buffer. */
628static int INIT start_bunzip(struct bunzip_data **bdp, void *inbuf, long len,
629			     long (*fill)(void*, unsigned long))
630{
631	struct bunzip_data *bd;
632	unsigned int i, j, c;
633	const unsigned int BZh0 =
634		(((unsigned int)'B') << 24)+(((unsigned int)'Z') << 16)
635		+(((unsigned int)'h') << 8)+(unsigned int)'0';
636
637	/* Figure out how much data to allocate */
638	i = sizeof(struct bunzip_data);
639
640	/* Allocate bunzip_data.  Most fields initialize to zero. */
641	bd = *bdp = malloc(i);
642	if (!bd)
643		return RETVAL_OUT_OF_MEMORY;
644	memset(bd, 0, sizeof(struct bunzip_data));
645	/* Setup input buffer */
646	bd->inbuf = inbuf;
647	bd->inbufCount = len;
648	if (fill != NULL)
649		bd->fill = fill;
650	else
651		bd->fill = nofill;
652
653	/* Init the CRC32 table (big endian) */
654	for (i = 0; i < 256; i++) {
655		c = i << 24;
656		for (j = 8; j; j--)
657			c = c&0x80000000 ? (c << 1)^0x04c11db7 : (c << 1);
658		bd->crc32Table[i] = c;
659	}
660
661	/* Ensure that file starts with "BZh['1'-'9']." */
662	i = get_bits(bd, 32);
663	if (((unsigned int)(i-BZh0-1)) >= 9)
664		return RETVAL_NOT_BZIP_DATA;
665
666	/* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of
667	   uncompressed data.  Allocate intermediate buffer for block. */
668	bd->dbufSize = 100000*(i-BZh0);
669
670	bd->dbuf = large_malloc(bd->dbufSize * sizeof(int));
671	if (!bd->dbuf)
672		return RETVAL_OUT_OF_MEMORY;
673	return RETVAL_OK;
674}
675
676/* Example usage: decompress src_fd to dst_fd.  (Stops at end of bzip2 data,
677   not end of file.) */
678STATIC int INIT bunzip2(unsigned char *buf, long len,
679			long (*fill)(void*, unsigned long),
680			long (*flush)(void*, unsigned long),
681			unsigned char *outbuf,
682			long *pos,
683			void(*error)(char *x))
684{
685	struct bunzip_data *bd;
686	int i = -1;
687	unsigned char *inbuf;
688
689	if (flush)
690		outbuf = malloc(BZIP2_IOBUF_SIZE);
691
692	if (!outbuf) {
693		error("Could not allocate output buffer");
694		return RETVAL_OUT_OF_MEMORY;
695	}
696	if (buf)
697		inbuf = buf;
698	else
699		inbuf = malloc(BZIP2_IOBUF_SIZE);
700	if (!inbuf) {
701		error("Could not allocate input buffer");
702		i = RETVAL_OUT_OF_MEMORY;
703		goto exit_0;
704	}
705	i = start_bunzip(&bd, inbuf, len, fill);
706	if (!i) {
707		for (;;) {
708			i = read_bunzip(bd, outbuf, BZIP2_IOBUF_SIZE);
709			if (i <= 0)
710				break;
711			if (!flush)
712				outbuf += i;
713			else
714				if (i != flush(outbuf, i)) {
715					i = RETVAL_UNEXPECTED_OUTPUT_EOF;
716					break;
717				}
718		}
719	}
720	/* Check CRC and release memory */
721	if (i == RETVAL_LAST_BLOCK) {
722		if (bd->headerCRC != bd->totalCRC)
723			error("Data integrity error when decompressing.");
724		else
725			i = RETVAL_OK;
726	} else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) {
727		error("Compressed file ends unexpectedly");
728	}
729	if (!bd)
730		goto exit_1;
731	if (bd->dbuf)
732		large_free(bd->dbuf);
733	if (pos)
734		*pos = bd->inbufPos;
735	free(bd);
736exit_1:
737	if (!buf)
738		free(inbuf);
739exit_0:
740	if (flush)
741		free(outbuf);
742	return i;
743}
744
745#ifdef PREBOOT
746STATIC int INIT __decompress(unsigned char *buf, long len,
747			long (*fill)(void*, unsigned long),
748			long (*flush)(void*, unsigned long),
749			unsigned char *outbuf, long olen,
750			long *pos,
751			void (*error)(char *x))
752{
753	return bunzip2(buf, len - 4, fill, flush, outbuf, pos, error);
754}
755#endif